ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/45221165

Advances in probabilistic graphical models for optimization and learning.
Applications in protein modeling

Article - January 2006

Source: OAI

CITATIONS READS
15 116
1 author:

-y Roberto Santana
4 Universidad del Pais Vasco / Euskal Herriko Unibertsitatea

254 PUBLICATIONS 2,970 CITATIONS

SEE PROFILE

All content following this page was uploaded by Roberto Santana on 22 April 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/45221165_Advances_in_probabilistic_graphical_models_for_optimization_and_learning_Applications_in_protein_modeling?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/45221165_Advances_in_probabilistic_graphical_models_for_optimization_and_learning_Applications_in_protein_modeling?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto-Santana?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto-Santana?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-del-Pais-Vasco-Euskal-Herriko-Unibertsitatea?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto-Santana?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberto-Santana?enrichId=rgreq-e4ec18522d5f4cc8823e4d18f935e6d3-XXX&enrichSource=Y292ZXJQYWdlOzQ1MjIxMTY1O0FTOjIyMTA3NTY3NDgwMDEyOEAxNDI5NzE5OTU2NzA1&el=1_x_10&_esc=publicationCoverPdf

Advances in Probabilistic Graphical
Models for Optimization and Learning.
Applications in Protein Modeling

Dissertation

Roberto Santana
Department of Computer Science and Artificial Intelligence of the
University of the Basque Country
Co-Supervised by : J. A. Lozano and P. Larranaga

Donostia - San Sebastidn, March 2006

Acknowledgments

This dissertation would never have been possible if it were not for the support of my
thesis supervisors José A. Lozano and Pedro Larranaga. Thank you very much for being
my mentors, for your encouragement and patience.

I am grateful to Inaki Inza and my colleagues in the Intelligent System Group: Aritz
Pérez, Borja Calvo, Dinora Morales, Guzmén Santafé, José Luis Flores, Josu Galdeano,
Ramén Sagarna, Rosa Blanco and Rubén Armananzas for the excellent working atmo-
sphere, occasional advice and continous support. Also to those that spent some time
at the lab and contributed with their comments to enrich the work presented in this
dissertion: Frederick Vincent, Robin Hons, Siddartha Shakya and Yvan Saeys. 1 am
particularly grateful to Robin Hons who hosted me during my stay in Bonn. We enjoyed
long sessions of friendly dicussions and talks on EDAs. The dissertation benefited as well
from the insights and comments of Marta R. Soto. Thanks too to Alex Mendiburu and
Rosa Blanco for their collaboration to finish the thesis.

I am grateful to the University of the Basque Country for the financial support under a
pre-doctoral grant.

I would like to take this opportunity to mention some people that have significantly
constributed at different times of my research: Eunice Ponce de Leén, Marta R. Soto,
Alberto Ochoa, Heinz Miihlenbein, Livang Lozada, and Thilo Mahnig.

Finally, I would like to thank my family and Cuban friends. They have been present all
this time. This thesis is also for them.

iii

Contents

I Probabilistic graphical models

1 Introduction
1.1 Preamble
1.2 Overview o e e e

2 Probabilistic graphical models
2.1 Imtroduction L
2.2 Notation L
2.3 Graphical models based on undirected graphs
2.4 Graphical models based on directed graphs
2.4.1 Bayesian networks
2.5 Algorithms for learning graphical models from data
2.5.1 Learning based on detecting conditional independencies
2.5.2 Learning based on score+search methods
2.6 Inference.
2.6.1 Inference algorithms based on stochastic sampling
2.6.2 Inference algorithms based on propagation methods.

3 Probabilistic graphical models in optimization
3.1 Imtroduction L L
3.2 Estimation of distribution algorithms
3.2.1 Univariate marginal distribution algorithm
3.2.2 Tree based estimation of distribution algorithms
3.2.3 Recent theoretical developments in EDAs
3.3 Optimization methods based on inference

Il Region based decompositions

11
11
11
12
13
14
15
15
15
16
17
17

19
19
20
21
22
22
23

25

Contents

4 Kikuchi approximation of probability distributions
4.1 Introduction
4.2 Kikuchi approximation: definitions
4.3 Markov properties of the Kikuchi approximation
4.3.1 Notation e
4.3.2 Markov propertieso
4.4 Decomposability of the Kikuchi approximation
4.4.1 Definitions
4.4.2 Decomposability of the Kikuchi approximation
4.5 Related work on Kikuchi approximations
4.5.1 Region based approximations
4.5.2 Generalized Kirkwood superposition
4.5.3 Research trends in the application of region-based decompositions .
4.6 Conclusions e

5 Learning Kikuchi approximations from data

5.1 Imtroduction L
5.2 Learning approaches Lo Lo
5.2.1 Accuracy of the Kikuchi approximation
5.2.2 Search strategies o oo
5.3 Finding Kikuchi approximations by edge addition
5.4 Algorithms to learn Kikuchi approximations from data
54.1 Searchmethods
5.5 Applications of the learning algorithm
5.6 Experiments. e
5.6.1 Bayesian network Asia oL
5.6.2 Approximation of Boltzmann probability distributions

5.6.3 Results in the approximation of empirical distributions in large
datasets L
5.6.4 Classification experiments
5.7 Conclusions

6 Region-based decompositions, propagation and abductive inference in opti-
mization

6.1 Introduction L
6.2 Generalized EDAs based on undirected graphs
6.2.1 Learning of the undirected graph

6.2.2 Determining the class of approximation strategies and graphical
modelso
6.2.3 Determination of the inference algorithm
6.3 Learning and sampling from region-based decompositions

vi

Contents

6.3.1 Other extensions oL 78

6.4 Conclusions 78

Il Protein problems 81
7 Computational protein problems 83
7.1 Introduction 83
7.2 Computational biology 83
7.2.1 Modeling in computational biology 85

7.2.2 Optimization in computational biology 86

7.3 Protein definitionso 86
7.3.1 Protein folding 87

74 Protein modeling Lo 89
7.4.1 Energy functions oo 90

7.5 Machine learning approaches to the solution of protein problems 91
7.5.1 Applications in protein structure prediction 91

8 Protein folding in simplified models with estimation of distribution algorithms 93

8.1 Imtroduction 93
8.1.1 Overview of the chapter 93

8.2 The HP and functional model protein 94
8.3 Review of previous evolutionary methods 95
8.4 Dependencies in the simplified protein models 96
8.4.1 Problem representation 0oL 97
8.4.2 Regularities and dependencies in the HP model 97

8.5 EDAs for protein structure prediction 101
8.5.1 Probabilistic modelsused 0L 102
8.5.2 Implementation oo 103

8.6 EDAs as a model of the protein folding mechanism 104
8.6.1 The “new” view of protein folding 104

8.7 Experiments. L e 107
8.7.1 Problem benchmark 108
8.7.2 Results for the HP model in the two-dimensional lattice 109
8.7.3 Results of the HP model in the three-dimensional lattice 112
8.7.4 Results of the protein folding simulations 114

8.8 Conclusions 119
9 Protein side chain placement using estimation of distribution algorithms 123
9.1 Introduction e 123
9.2 Side chain placement problem 124

vii

Contents

10

9.2.1 Rotamers and rotamer libraries 124
9.2.2 Fitness functions 124
9.3 Previous research on side chain prediction 125
9.3.1 Deterministic approaches 000 126
9.3.2 Stochastic approaches 0oL 128
9.3.3 Univariate marginal distribution algorithm 129
9.4 UMDA approach to the side chain placement problem 130
9.4.1 Computational cost of the algorithm 131
9.5 Refinement of the solutions using variable neighborhood search 132
9.5.1 Variable neighborhood search 132
9.5.2 Hybridization between VNS and EDAs 134
9.5.3 EDA-VNS approach for the side chain placement problem 135
9.5.4 VNS schemes for protein side chain placement 136
9.6 Experiments. e 136
9.6.1 Protein benchmark o000 137
9.6.2 Design of the experiments 138
9.6.3 Numerical results 139
9.6.4 Comparison with other methods 139
9.6.5 Analysis of the convergence time 146
9.6.6 Application of the UMDA+VNS approach 147
9.7 Relationship with previous research 149
9.8 Conclusions 153
Inference based methods for protein design 155
10.1 Introductiono e 155
10.2 Problems in protein design L o0 oo 155
10.3 Directed and probabilistic protein design, 157
10.3.1 Probabilistic methods for protein design 157
10.3.2 Improving probabilistic methods for protein design using graphical
modelso 158
10.4 Empirical potential functions oL, 158
10.4.1 TE13 potential function, 159
10.5 Evolutionary niche of protein structures as the search for the most prob-
able configurationso Lo 159
10.5.1 Reformulation of the problem in terms of probability distributions 160
10.5.2 Directed and probabilistic approaches using graphical models . . . 161
10.6 Related work 162
10.7 Experimental results oL 163
10.7.1 Protein benchmark o000 163
10.7.2 Analysis of the topological features of the graphs 164

10.7.3 Evolutionary niche of proteins using BMMF and the TE13 function165

viii

Contents

10.7.4 Evolutionary niche of proteins using EDAs and the TE13 function 167

10.7.5 Approximation of the entropy 170

10.8 Conclusions v i i e e e e e 172
IV Conclusions 175
11 Conclusions 177
12 Bibliography 179

1X

List of Figures

2.1 Structures of: a) General Bayesian network; b) Polytree. 14
4.1 Undirected graph associated with the Asia network. 31
4.2 Independence graph with one incomplete maximal irreducible component

and two completeones. 36
4.3 The grid lattice for the Ising and sping glass models is an irreducible

incomplete component.o Lo 37
4.4 An example of a factor graph. 43
5.1 Example of an independence graph. 52
5.2 Asiamnetwork. 57
5.3 a) Moralization of the Asia network; b) One possible triangulation. 57
5.4 Kullback-Leibler divergence between p(x) and the Kikuchi approximation

at different iterations of the learning algorithm. 58
5.5 Kullback-Leibler divergence between p(x) and the normalized Kikuchi ap-

proximation at different iterations of the learning algorithm. 58
5.6 Kikuchi approximations of Asia network: a) Computed from the undi-

rected graph; b) Learned by the algorithm. 59
5.7 Edges of the graph in the order in which the Kikuchi approximation learn-

ing algorithm learns them. 61
5.8 Kullback-Leibler divergence D(p||k) at different iterations of the algorithm

that learns the Kikuchi approximation of a Boltzmann distribution. 62
5.9 Insurance network structure. Lo 62
5.10 Kullback-Leibler divergence D(p||k) at different steps of the algorithm for

learning the Kikuchi approximation of the Insurance network. 63
5.11 Subgraphs from the Insurance network. a) Learned by the algorithm; b)

Moralized subgraph. 64
5.12 Zoo database: a) KLD and b) accuracy at different steps of the algorithm

for learning the Kikuchi approximation. 66
6.1 a) Cyclic graph; b) Tree shaped graph; ¢) Graph without edges. 71
7.1 Classification of the topics where machine learning methods are applied. . 84

pal

List of Figures

7.2
7.3

7.4

8.1
8.2
8.3
8.4
8.5
8.6

8.7

8.8

8.9

8.10

8.11

9.1
9.2

9.3

9.4

Structure of alanine. oL L L o oo 87
From left to right: Native structure of the pdblmrj protein, backbone of
the protein and side chains. o000 88
Schematic representation of the “classical” (left) and “new” (right) views
of protein folding. 89
One possible configuration of sequence HHHPHPPPPPH in the HP
model. . . . L. 95
Best solutions of the functional model protein (left) and HP model (right)
for sequence HHHPHPPPPPH. 98
Self-intersecting short paths: Configurations with zero probability. 99
Short helices: Configurations with the highest probability. 100
Optimal solution (bottom left) and three sub-optimal solutions for the s7
SEQUENCE. © « v v v v v e e e e e e e e e e e e e e e e 110
Average fitness of the best solution at each generation for different EDAs
in sequence S6. e e e 113
Energy landscape of the functional model protein corresponding to se-

quence PHHPPHPPHHPPHPHPPHPPHHH as sampled by MK-
EDAg. « o e 115
Energy landscape contour graph of the functional model protein corre-
sponding to sequence PHHPPHPPHHPPHPHPPHPPHHH as sam-
pled by MK-EDAo. 116
Relationship between the contact order of the sequences where MK-EDA»
has a success rate above 95 and the average number of generations needed
toconverge. Lo e e e 117
Relationship between the contact order of the sequences where MK-EDA,
found the optimum at least once, and the success rate achieved by the
algorithm for these instances. 118

Relationship between the different contact separations and the evolution
of their probabilities along the evolution of MK-EDA, for instances where
it had a 100% success rate. 120
Classification of the algorithms used for side chain prediction. 126
From left to right: Native backbone structure corresponding to the pdbld2e
protein, side chain configuration found by UMDA. 137

UMDA results for the small set of instances. From left to right, top to
bottom, the histograms corresponding to PD(x%***), PD, PE(x"***) and
PE. . 140
UMDA results for the large set of instances. From left to right, top to
bottom, the histograms corresponding to PD(x%***), PD, PE(x"**) and
PE. . 141

xii

List of Figures

9.5 UMDA results for the dimer set of instances. From left to right, top to
bottom, the histograms corresponding to PD(x%**"), PD, PE(x%***) and
PE. .

9.6 From left to right, top to down, the side chain configurations of the pdbldpe
protein: native, found by SCWRL, SPRINT, and UMDA.

9.7 Dependence between the number of residues in all instances and the UMDA
time of convergence. Only the instances where inference-based methods
converged are included. Additionally, the points are fitted using second
order polynomials.o

10.1 Distribution of the number of residues (left) and the number of maximal
cliques (right) in the benchmark of instances used in the experiments.
10.2 Distribution of the size of the maximum clique of the contact map (left)
and of the average size (right) of maximal cliques in the benchmark of
instances used in the experiments.
10.3 Contact matrices corresponding to two proteins for which exact inference
prediction is feasible (left) and infeasible (right).
10.4 Difference in the belief approximations at different iterations of loopy BP
for protein 4clg-A. Left, total difference. Right, difference for each residue.
10.5 Most frequent interactions found by Tree-EDA in the first generation while
finding the evolutionary niches of proteins 4clg-A and laco.
10.6 Entropy of the residues calculated from the 1000 most probable configu-
rations of protein 1dfn-A. o L

xiii

List of Tables

5.1

5.2

6.1

8.1

8.2

8.3

8.4
8.5
8.6

8.7
8.8

9.1
9.2

9.3

Original distribution and three Kikuchi approximations of the Asia net-
work. Statistics are calculated from the original probability distribution
(E), the Kikuchi approximations calculated from the undirected (U) and
moralized (M) graph, and the Kikuchi approximations learned by the

learning algorithm (A).. 60
Results of the algorithm for learning the Kikuchi approximation in the KRK
database. 67
Approximation strategies, graphical models, and inference methods to be
employed by EDAs based on undirected graphs. 73
The density of the different energy levels HP; and F'P; corresponding
respectively to the HP and functional model protein

of sequence HHHPHPPPPPH. 97
Marginal probability distributions for (X3, X4, X5) calculated from the
Boltzmann distributions for HP and the functional model protein for se-
quence HHHPHPPPPPH. 99
Univariate approximation of the marginal probability of (X3, X4, X5) cal-
culated from the Boltzmann distributions for HP and functional model

protein for sequence HHHPHPPPPPH. 101
HP instances used in the optimization experiments. 108
Results of EDAs for HP instances in the 2-d lattice. 109
Statistical information extracted from k-order Markov probabilistic models

(0 < k < 3) of the 5375 solutions of the s7 sequence with energy lower

than —32. 111
Results achieved by different search heuristics for the HP instances. 113

Results of the EDAs and the hybrid GA in the three-dimensional lattice. . 114

Details of the protein instances. 138
Results achieved by the different algorithms for the subset of small in-
stances for which SPRINT does not converge. 142
Results achieved by the different algorithms for the subset of large in-
stances for which SPRINT does not converge. 142

XV

List of Tables

9.4

9.5

9.6

9.7

9.8

9.9

10.1

10.2
10.3

Results achieved by the different algorithms for the subset of dimer in-

stances for which SPRINT does not converge. 143
Results achieved by UMDA+VNS and VNS (exhaustive scheme) for the
subset of small instances for which SPRINT does not converge. 148

Results achieved by UMDA+VNS and VNS (exhaustive scheme (k = 1))
for the subset of small instances for which SPRINT does not converge. . . 149
Results achieved by UMDA+VNS and VNS (randomized scheme) for the
subset of small instances for which SPRINT does not converge. 150
Results achieved by UMDA-+VNS (exhaustive scheme (k=1)) and UMDA+VNS
(randomized scheme) for the subset of large instances for which SPRINT

does not converge. 150
Results achieved by UMDA+VNS (randomized scheme) for the subset of
dimer instances for which SPRINT does not converge. 151

Protein instances for which BMMF converges and finds at least one con-

figuration. L 166
Results of the Tree-EDA and EDA-Loopy-P 169
Results of the Tree-EDA” and EDA-Loopy 171

xXvi

List of algorithms

3.1
3.2
3.3

5.1
5.2
5.3

6.1
6.2
6.3
6.4

9.1
9.2

Estimation of distribution algorithm 20
Pseudocode for UMDA 22
Pseudocode for Tree-EDAo oo 22
Learning Kikuchi approximations based on independence tests 47
Updating the Kikuchi approximation by X; ~ X; addition 53
Kikuchi approximation learning algorithm 95
Generalized EDA o 70
Algorithm for learning the independence graph 72
Learning and sampling region-based decompositions 77
Best max-marginal first (BMMF) 00 0oL 7
Proposed algorithm for side chain placement 131
Main steps of the basic VNS o oo oo 133

List of Abbreviations

ACO: Ant Colony Optimization

ADF: Additive Decomposed Function

AIC: Aikaike Information Criterion

BDe: Bayesian-Dirichlet Equivalence Metric

BIC: Bayesian Information Criterion

BEDA: Boltzmann Estimation of Distribution Algorithm
BMDA: Bivariate Marginal Distribution Algorithm
BMMF': Best Max-Marginal Fit algorithm

BN: Bayesian Network

BP: Belief Propagation

BOA: Bayesian Optimization Algorithm

c¢GA: compact Genetic Algorithm

CVM: Cluster Variation Method

DEE: Dead-end elimination

EDA: Estimation of Distribution Algorithm

FDA: Factorized Distribution Algorithm

GA: Genetic Algorithm

GBP: Generalized Belief Propagation

GS: Gibbs Sampling

KLD: Kullback Leibler Divergence

MC: Monte Carlo

MCMC: Markov Chain Monte Carlo

MDL: Minimum Description Length

MN-EDA: Markov Network Estimation of Distribution Algorithm
MT-EDA: Mixture of Trees Factorized Distribution Algorithm
PBIL: Population Based Incremental Learning

UMDA: Univariate Marginal Distribution Algorithm
VNS: Variable Neighborhood Search

Part |

Probabilistic graphical models

1 Introduction

1.1 Preamble

Probabilistic graphical models (43; 127; 234) are an increasingly used knowledge repre-
sentation tool. Theoretical developments and reports of successful applications of these
models in different domains have been extensively reflected in the literature.

The use of probabilistic graphical models in optimization has been enriched with the
introduction of estimation of distribution algorithms (125; 161) and optimization algo-
rithms based on inference methods (36; 240). This new area of application poses new
challenges and requires to widen the scope for theoretical studies on graphical mod-
els. Furthermore, the algorithms conceived for optimization based on graphical models
may be directly applied to practical problems from different fields. One of the current
application arenas is computational biology.

This dissertation has two main objectives. The first one is to introduce a number of
results from the investigation of probabilistic graphical models that use region based
decompositions, and to explain how these results may be applied to optimization. The
second objective is to show the way in which protein problems can be efficiently solved
by using methods based on graphical models which serve not only as problem solvers
but also as modeling tools able to provide useful information about the problem domain.
Moreover, the thesis intends to illustrate how challenging problems from computational
biology can be addressed by the application of optimization algorithms based on simple
and more advanced probabilistic models.

1.2 Overview

The dissertation is divided into four parts and comprises eleven chapters.

The first part defines the thesis objectives. It focuses on the analysis of undirected
graphical models. The ways in which inference and sampling methods based on undi-
rected graphical models can be applied to optimization are discussed. It comprises this
introductory chapter as well as two other chapters.

In this chapter, we have defined the objectives and present an overview of the thesis.
Chapter 2 introduces probabilistic graphical models, focusing on those issues that will

1 Introduction

be treated in detail later on in the thesis. We review some of the main concepts related
to undirected and directed graphical models, approaches to learn graphical models from
data, and inference algorithms.

Chapter 3 focuses the analysis on the use of probabilistic graphical models in optimiza-
tion. The optimization approaches that use probabilistic graphical models relevant to
our research are classified.

The second part of the thesis introduces a number of properties of the class of Kikuchi
approximation that use clique-based decompositions. An algorithm that learns this ap-
proximation from data is introduced and evaluated in different types of approximation
problem. Region-based decompositions in optimization methods that use inference tech-
niques are analyzed. The second part comprises three chapters.

In Chapter 4, the Markov properties of the Kikuchi approximation are proved. It is
shown that it is possible to decompose the Kikuchi approximation into the product of
local Kikuchi approximations defined on a decomposition of the graph. Partial Kikuchi
approximations are introduced. Additionally, the chapter clarifies the place of clique-
based decompositions in relation to other techniques inspired by methods from statisti-
cal physics, and discusses the application of the results introduced in the paper to the
conception of Kikuchi approximation learning algorithms.

Chapter 5 presents a score+search algorithm that learns Kikuchi approximations from
datasets. The paper proves that the Markov and decomposability properties satisfied by
the Kikuchi approximation permit the conception of learning algorithms that can pursue
the search of the model by making only local updates on the current approximation. The
chapter presents results on the use of the algorithm that learn Kikuchi approximations
to approximate probability distributions by means of Bayesian networks and Boltzmann
distributions.

Chapter 6 focuses on the use of region based decompositions, propagation and most
probable configuration methods in optimization. The chapter presents a generalized
estimation of distribution algorithm that illustrates the application of the results on
Kikuchi approximations detailed in previous chapters. Additionally, the chapter puts
the algorithms used in the third part of the thesis into context.

The third part of the thesis addresses the application of optimization algorithms based
on graphical models to problems from computational biology. It starts by reviewing a
number of computational protein problems. Different proposals that allow the efficient
solution of some of these problems are introduced. A link to the results achieved in
the first part of the thesis is presented by showing how the probabilistic models and
techniques introduced can be added to obtain solutions good enough for these problems.
The third part of the thesis has four chapters.

Chapter 7 reviews part of the biological basis of proteins. The chapter presents a num-
ber of problems in protein research and describes how they have been treated by some

1 Introduction

approaches from the field of machine learning,.

Chapter 8 introduces the application of different variants of estimation of distribution
algorithms to the solution of the protein structure problem in simplified models, and
proposes their use as a simulation tool for the analysis of the protein folding process.
New ideas for the application of EDAs to the bidimensional and tridimensional (2-d and
3-d) simplified protein folding problems are developed.

Chapter 9 presents an algorithm for the solution of the side chain placement problem.
The algorithm combines the application of the Goldstein elimination criterion with the
univariate marginal distribution algorithm which stochastically searches the space of
possible solutions. The suitability of the algorithm to address the problem is investigated
using a set of 425 proteins. The results obtained show that the algorithm can achieve
better structures than those obtained with other state-of-the-art methods.

Chapter 10 presents an application of optimization methods based on graphical models
to a problem from the protein design field. An estimation of distribution algorithm
that includes a method to generate the most probable configuration of a probability
distribution is introduced. The method is applied to find protein sequences with low
energy.

Part four consists of only one chapter that presents the conclusions of the thesis.

2 Probabilistic graphical models

2.1 Introduction

Probabilistic graphical models (43; 127; 234) have become common knowledge represen-
tation tools capable of efficiently representing and handling independence relationships.
They are one of the most recurred machine learning paradigms to specify interactions in
complex systems in terms of probabilistic dependencies. In this chapter, we introduce the
main concepts related to graphical models that will be used throughout the dissertation.

In the most general case, there are four distinct components of a graphical model (25):
the semantics, the structure, the implementation, and the parameters.

There are a variety of semantics, including directed and undirected models, chain graphs
and other frameworks. The model structure is related to dependence/independency
relationships displayed in a graph: the absence of some links means the existence of
certain conditional and/or marginal independence relationships between variables, and
the presence of links may represent the existence of direct dependency relationships.

Fixing the structure, there are a number of ways to implement the dependencies between
random variables, such as conditional probability tables or ADtrees (8). The quantitative
component of the model is a collection of numerical parameters, usually conditional
probabilities, which give an idea of the strength of the dependencies.

2.2 Notation

Let X be a random variable. A value of X is denoted z. X = (X1,...,X,) will denote
a vector of random variables. We will use x = (z1,...,2,) to denote an assignment to
the variables. S will denote a set of indices in N = {1,...,n}, and Xg (respectively,
xg) a subset of the variables of X (respectively, a subset of values of x) determined by
the indices in S. The joint generalized probability distribution of x is represented as
p(X = x) or p(x). p(xg) will denote the marginal generalized probability distribution
for Xg. We use p(X; = z; | X; = ;) or, in a simplified form, p(x; | z;), to denote the
conditional generalized probability distribution of X; given X; = x;.

If the set of random variables X is discrete, p(X = x) = p(X = x) or p(x). p(X = x) is
known as the joint probability mass function for X. Similarly, p(X; = x;) is the marginal

11

2 Probabilistic graphical models

mass probability function of X; and p(x; | z;) is the conditional mass probability of X;
given X, = ;.

If the set of random variables X is continuous, p(X = x) = f(x)x or f(x). f(X =x)
is known as the joint density function of X. Similarly, f(x;)x, is the marginal density
function of X; and f(z; | z;) is the conditional density function of X; given X; = ;.

2.3 Graphical models based on undirected graphs

An undirected graph G = (V, E) is defined by a non-empty set of vertices or nodes V,
and a set of edges . An edge between nodes V; and V; will be represented by i ~ j.

Definition 2.1. Given an undirected graph G = (V, E), a clique in G is a subset of V
for which there exists an edge between every pair of vertices. We reserve the letter C
to refer to a clique. C' is mazximal when it is not contained in any other clique. C is a
mazximum clique of the graph if it is a clique in C with the highest number of vertices.
The collection of all maximal cliques in G is denoted as C.

Definition 2.2. Given an undirected graph G = (V, E), a junction graph constructed
from a set of maximal cliques is a graph where each node corresponds to a mazximal
clique, and there exists an edge between two nodes if their corresponding cliques overlap.

A cycle in a graph is a vertex sequence Vi,...,V,, where V; = V,, but all other pairs
are distinct, and {V;,V;11} € E. A cycle is chordless if all pairs of vertices that are
not adjacent in the cycle are not neighbors. An undirected graph is said to be chordal
if every cycle of length four or more has a chord. A fundamental property of chordal
graphs is that their maximal cliques can be joined to form a tree, called the junction tree,
such that any two cliques containing a node « are either adjacent in the junction tree,
or connected by a chain made entirely of cliques that contain «. This property is called
the running intersection property (127). A junction tree is an acyclic junction graph.

Independence graphs display the probability dependencies that exist between the vari-
ables of a given probability distribution. Two vertices are joined in the independence
graph if the corresponding variables are not conditionally independent given the rest
of the variables. Throughout this thesis we will mainly consider independence graphs
defined on undirected graphs. Each variable X; has an associated vertex V; in the cor-
responding graph. To emphasize this relationship, vertices may be named after their
variables: V = {X1,..., X, }. When we refer to a variable, or a vertex or node, it will
be clear from the context.

12

2 Probabilistic graphical models

Markov random fields

Given an undirected graph G = (V, E) we have the following definitions:

Definition 2.3. The neighborhood N(X;) of a vertexr X; € X is defined as N(X;) =
{X;: Xj ~ X; € E}. The set of edges uniquely determines a neighborhood system on the
associated graph G.

Definition 2.4. The boundary of a set of vertices, Xg C X, is the set of vertices in
X \ X that neighbors at least one vertexr in Xg. The boundary of Xg is denoted as
bd(Xs).

Definition 2.5. The closure of a set of vertices, Xs C X, is the set of vertices cl(Xg) =
XsUbd(Xg).

Definition 2.6. A probability p(x) is called a Markov random field with respect to the
neighbor system on a graph G if, Vx € X, Vi € {1,...,n}, p(x;|x \ z;) = p(z;|bd(x;)).

Definition 2.7. A probability p(x) on a graph G is called a Gibbs field with respect to
the neighborhood system on the associated graph G when it can be represented as follows:

1
p(x) = Ee—f“x) (2.1)
where H(x) = Y ~cc Po(x) is called the energy function, being ® = {®c € C} the
set of clique potentials, one for each of the mazimal cliques in G. The value of ®c(x)
depends on its local configuration on the clique C. The normalizing constant Z is the
corresponding partition function, Z =, e Hx),

Probabilistic models based on undirected graphs will be analyzed in detail in chapter 4.

2.4 Graphical models based on directed graphs

A probabilistic graphical model based on a directed graph is a representation of the
joint generalized probability density function p(x). The representation consists of two
components: a structure and a set of local generalized probability distributions. The
structure S for X is a directed acyclic graph (DAG) that represents a set of conditional
independence assertions about the variables on X. The structure S for X represents the
assertions that X; and {X1,..., X, }\Pa; are independent given Pa?, i = 2,...,n. The
set of variables Pazs are called the parents of X;. Thus, the factorization is as follows:

n

pler,...en) = [pleilpal) (2.2)
=1

13

2 Probabilistic graphical models

a) b)

Figure 2.1: Structures of: a) General Bayesian network; b) Polytree.

The local generalized probability distributions associated with the probabilistic graphical
model are precisely those in the previous equation. In this representation, it is assumed
that, for each variable, the local generalized probability distribution depends on a finite

set of parameters 0g = (01, ...,0,). Hence, Equation (2.2) could be rewritten as:
n
p(x | 0s) =[] p(xi | pa,6:) (2.3)
i=1

2.4.1 Bayesian networks

Bayesian networks are graphical models based on directed acyclic graphs and discrete
variables. They have been used for probabilistic inference in domains such as expert
systems (61; 126) classification problems (27; 76), and optimization (72; 179).

In a Bayesian network, where variable X; has r; possible values, (z},...,z}), the local
distribution p(x; | pag’S, 0;) is an unrestricted discrete distribution:

1,S
paf | pal”, 0:) = 0,000 = Oijn (2.4)

where pazl ’S, ceey pagi’s denotes the values of PaZ-S , the set of parents of X; in the structure

S. q; is the number of possible different instances of the parent variables of X;, hence
4 = ngepaf g

The local parameters are given by 6; = ((szk)zzl)g;l Parameter 0, is the conditional
probability of variable X; being in its k-th state given that the set of parents is in its
j-th configuration.

14

2 Probabilistic graphical models

One of the aspects that influences the complexity of the Bayesian network is the connec-
tivity of the model structure. A number of particular Bayesian networks can be defined
according to the structure.

Definition 2.8. A polytree is a Bayesian network that does mot allow cycles in the
associated undirected graph.

Definition 2.9. A tree is a subclass of the polytree class where each vertex in the graph
can have not more than one parent in the network.

Another particular case of a graphical model is the total independent model where none
of the nodes have parents (all the variables are independent). Figure 2.1 shows the
graphical model structures corresponding to a general Bayesian network and a polytree.

2.5 Algorithms for learning graphical models from data

Graphical models can be learned from data. In Chapter 5, we will analyze the problem of
learning a probabilistic model based on an undirected graph from data. Here we briefly
review the alternatives that exist when learning a Bayesian network.

There are two main approaches to learning Bayesian networks from data: learning
based on detecting conditional independencies by means of independence tests, and
score+search algorithms. The problem of learning a general Bayesian network from
data is NP-hard (48).

2.5.1 Learning based on detecting conditional independencies

The input of these algorithms are some dependency relationships among subsets of vari-
ables of the problem, and their output, the Bayesian network structure. The dependency
relationships can be obtained by different means. Independence relationships can be
learned from the data by means of independence tests. These type of algorithms differ
in the cost of the statistical tests, and in the reliability of the results (124). Two of the
methods used for the structure learning of Bayesian networks, and which are based on de-
tecting conditional independencies, are the PC algorithm (208; 209), and the algorithms
used to learn polytrees presented in (2).

2.5.2 Learning based on score+search methods

The problem of finding an accurate Bayesian network can be posed as the optimization of
a score function over the set of all possible graph structures. The score can be understood

15

2 Probabilistic graphical models

as a measure of the accuracy of the structure to represent the independency relationships
of the data. The score usually includes a term to penalize the complexity of the network.
Likelihood scores are usually employed together with complexity penalization functions
like the Bayesian information criterion (BIC) (198) or the Akaike information criterion
(AIC) (6). Bayesian and information theory based scores can also be employed (40).
A certain Bayesian scores is the Bayesian-Dirichlet equivalence (BDe), whose metric
combines prior knowledge of the problem and statistical data from a given dataset.

Learning a Bayesian network from data as a score+search approach is proven to be an
NP-hard problem when the BDe metric is the objective function (48). It is assumed
that, when other scores are used, the complexity of the problem is not reduced (27).
Therefore, heuristic strategies, among which the most popular are greedy based search
heuristics (51), have to be followed to obtain good solutions. A detailed account of the
methods used to learn Bayesian networks can be found in (124).

2.6 Inference

Used for inference, a graphical model can provide specific information about the joint
probability distribution (e.g. marginal probabilities). Inference can be done in the pres-
ence of information that was not initially stored in the graphical model (evidence). When
knowledge is represented in terms of the probability dependencies contained in a graph-
ical model, it can be used to infer the probability of an event given that some (possibly
incomplete) information is available.

Given a graphical model that encodes the dependencies of the variables of our domain,
we would like to find the probabilities of the assignments for a subset of the variables.
This can be achieved by marginalization. Marginal probabilities are defined in terms of
sums over all the possible states for all the other nodes in the system. For example, if the
marginal probability of the last node p(z,) needs to be computed, this can be achieved
using Equation 2.5.

p(a;n):zz Zp(zl,xg,xg,...,a:n) (2.5)

1 x2 Tn—1

Approximate marginal probabilities are usually called “beliefs”. For graphical models
with a small number of variables and values, marginalization can be easily done directly,
but the number of terms in the sums will grow exponentially with the number of nodes
in the model. In these cases, different algorithms can be used to calculate the marginals.
We analyze two cases: Algorithms based on sampling (91), and belief propagation (BP)
(24; 177; 245).

16

2 Probabilistic graphical models

2.6.1 Inference algorithms based on stochastic sampling

Stochastic sampling algorithms (also called stochastic simulation or Monte Carlo algo-
rithms) (23; 140) are a family of algorithms used to approximate a distribution p(x) and
to estimate expectations derived from p(x). They include methods that only generate
independent samples from the desired distribution (e.g. rejection sampling) and other
methods where this is not necessarily the case, like Markov chain Monte Carlo methods

(MCMC).

MCMC methods comprise different algorithms able to devise an ergodic Markov chain
such that the steady-state distribution of the chain is p(x). To approximate the proba-
bility, the chain can be started at any point x, and, after a sufficiently long time (e.g. k
steps), take each state of the chain as a sample of the desired probability. The MCMC
literature refers to the initial time the Markov chain is run until it is assumed to be as
close enough to stationarity as the burn-in period.

Classical MCMC algorithms can determine only an approximation of p(x) that depends
on the burn-in period. In general, it is a difficult to estimate the burn-in period a priori
in such a wayt that d(p(x) — o(x)) < €, where o(x) is the approximation of p(x), and €
is the acceptance error.

Inference algorithms based on stochastic sampling generate a set of points simulating
from the graphical model. From this set, they estimate the beliefs of the desired vari-
ables. After a sufficient amount of points have been generated, they are taken as samples
from the original distribution, and used to find the statistics desired. Probabilistic logic
sampling (PLS) (91) was the first proposed sampling algorithm for Bayesian networks.
It starts from an order imposed to the variables according to the Bayesian network struc-
ture. Each variable is sampled given the values assigned to its ascendants in the order.

2.6.2 Inference algorithms based on propagation methods

Traditional propagation methods are commonly used for probabilistic reasoning based on
graphical models. They proceed by sending flows of messages through the nodes of the
graphical model. Belief propagation distributes information across the whole structure.

Pearl (177) has shown that belief propagation gives the exact marginal probabilities for
all the nodes in any singly-connected graphical models. Usually, belief propagation is
defined on junction trees that can be obtained directly from undirected graphs. For
Bayesian networks, they can be obtained by means of a process called compilation that
includes the moralization and triangulation of the graph.

As the belief propagation algorithm does not make reference to the topology of the graph
that it is running on, it can be used in graphs with loops too. However, in these cases, the
messages may circulate indefinitely around the loops and the process may not converge

17

2 Probabilistic graphical models

to a stable equilibrium (177). There are examples of successful applications of BP in
graphs with loops (245).

BP can also be used to calculate the most probable configuration of the graphical model

(54). This process is also known as belief revision (177), or the most probable explanation
problem (213).

18

3 Probabilistic graphical models in
optimization

3.1 Introduction

In this chapter, we review a number of approaches for the application of probabilistic
graphical models in optimization. The chapter lays the foundations for the proposals
presented in Chapters 8, 9 and 10.

Given a function f : Qx — R, the optimization problem is to find x"*%* with:

f(xmam) = maxxf(x) = frnaz (3.1)

This maximum is not necessarily unique. The function will be called the objective func-
tion or fitness function. We will constrain the analysis to functions defined on discrete
variables.

Regarding the way the search space is sampled by general heuristic methods, there are
two main types of approaches. Single point search methods inspect one point at a time
whereas population based methods use a set of points to conduct the search. There are
also hybrid approaches that combine techniques of both types.

Among the most used single point search heuristics are tabu search (79), simulated
annealing (109) and variable neighborhood search (85). Population based algorithms
include ant colony optimization (ACO) (67), evolution algorithms like genetic program-
ming (115), evolution strategies (199), genetic algorithms (GAs) (80; 94), and immune
algorithms (73).

Wolpert and Macready (235) have proven that all problem solvers have the same average
behavior if all the possible search spaces are considered. In this sense, none of them
is better than random search. Other authors (68) state that more restricted scenarios,
where complexity or difficulty is limited in some sense, fit better to real life optimization
than the scenario described in (235). For these restricted scenarios, it is possible to
demonstrate the convenience of using one class of optimization techniques over the others.

The use of inference in optimization begins assuming that, by using probabilistic models,
some useful information of the search space can be learned from a set of solutions already

19

3 Probabilistic graphical models in optimization

inspected or from the problem structure. This information can be used to conduct a more
effective search.

Our analysis will focus on the class of optimization methods that use probabilistic graph-
ical models to organize the search. In this class, we constrain the analysis to algorithms
of two types:

1. Estimation of distribution algorithms.

2. Optimization methods based on inference.

3.2 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) (30; 125; 161; 178) are evolutionary al-
gorithms that work with a set (or population) of points. Initially, a random sample of
points is generated. These points are evaluated using the objective function, and a subset
of points is selected based on this evaluation. Hence, points with better function values
have a higher chance to be selected. Then a probabilistic model of the selected solutions
is built, and a new set of points is sampled from the model. The process is iterated until
the optimum has been found or another termination criterion is fulfilled.

Algorithm 3.1: Estimation of distribution algorithm

1 Set t < 0. Generate M points randomly.

2 do{

3 Evaluate the points using the fitness function.

4 Select a set S of N < M points according to a selection method.

5 Calculate a probabilistic model of S.

6 Generate M new points sampling from the distribution represented
in the model.

7 t<=t+1

8 } until Termination criteria are met.

The general scheme of the EDA approach is shown in Algorithm 3.1. There are a number
of selection methods that can be used. In the literature, truncation, Boltzmann, and
tournament selection are commonly used with EDAs.

One essential assumption of these algorithms is that it is possible to build a probabilistic
model of the search space that can be used to guide the search for the optimum. A key
characteristic and crucial step of EDAs is the construction of this probabilistic model. If
there is available information about the function (e.g. variable dependencies), this can
be exploited by including parametrical and/or structural prior information in the model.

20

3 Probabilistic graphical models in optimization

Otherwise, the model is learned exclusively using the selected population. Several prob-
abilistic models with different expressive power and complexity can be applied. These
models may differ in the order and number of the probabilistic dependencies that they
represent.

Different classifications of EDAs can be used to analyze these algorithms. Relevant to our
research is the classification according to the complexity of the models used to capture the
interdependencies between the variables (122). Regarding the way learning is done in the
probability model, EDAs can be divided into two classes. One class groups the algorithms
that do a parametric learning of the probabilities, and the other one comprises those
algorithms where structural learning of the model is also done. Parametric and structural
learning are also known as model fitting and model selection, respectively. Population
based incremental learning (PBIL) (15), compact GA (cGA) (88), the univariate marginal
distribution algorithm (UMDA) (161), and the factorized distribution algorithm that uses
a fixed model of the interactions in all the generations (FDA) (160) all belong to the first
class of algorithms. Likewise, the mutual information maximization for input clustering
algorithm (MIMIC) (62), the extended compact GA (EcGA) (87) and EDAs that use
Bayesian and Gaussian networks (32; 72; 158; 167; 168; 179; 178) belong to the second
class. The success of EDAs in the solution of different practical problems has been
documented in the literature (138).

As an example, we present the pseudocodes of UMDA (Algorithm 3.2) and Tree-EDA
(Algorithm 3.3), which are used in this thesis.

3.2.1 Univariate marginal distribution algorithm

The univariate model used by UMDA assumes that all variables are independent. The
configuration of variable X; does not depend on the configuration of any other variable.
p(x) can be factorized as follows:

n

p(x) = [p(:) (3.2)

i=1

Algorithm 3.2 shows the steps of the UMDA. In Algorithm 3.2, p?(x;,t) is the marginal
probability corresponding to value x; of variable X; calculated from the selected popu-
lation at generation t.

Theoretical results derived from the UMDA (161) expose its relationship with GAs,
particularly with GAs that use uniform crossover. Miihlenbein and Mahnig (157) have
investigated some of the issues that explain the success of UMDA in the optimization
of a wide class of functions. Other theoretical results have been obtained for UMDA
(82; 249) and other EDAs based on univariate models (81).

21

3 Probabilistic graphical models in optimization

Algorithm 3.2: Pseudocode for UMDA

1 Set t <= 0. Generate M points randomly.

2 do{

3 Select a set S of N < M points according to a selection method.

4 Compute the univariate marginal frequencies p;(x;,t) of S.

5 Generate M new points according to the distribution p(x,t+ 1) =
H?:l pf (x% t)'

6 t<=t+1

7} until Termination criteria are met.

3.2.2 Tree based estimation of distribution algorithms

The tree based estimation of distribution algorithm (Tree-EDA) (191) uses a factorization
that is based on a forest. Although other methods can also be employed (180; 207), the
factorization is constructed using the algorithm introduced in (49) that calculates the
maximum weight spanning tree from the matrix of mutual information between pair
of variables. Additionally, a threshold for the mutual information values is used when
calculating the maximum weight spanning tree, to allow for disconnected components in
the graphical structure.

Algorithm 3.3: Pseudocode for Tree-EDA

Set t <= 0. Generate M points randomly.
do {
Select a set S of N < M points according to a selection method.

DN WO~

Compute the univariate and bivariate marginal frequencies p; (x;, t)
and p; ;(w;, z;,t) of S.

5 Calculate the mutual information and learn the tree structure.
6 Generate M new points from the tree.

7 t<=t+1

8 } until Termination criteria are met.

3.2.3 Recent theoretical developments in EDAs

Initial applications of probabilistic models in EDAs were mainly constrained to the trans-
plantation of methods for learning and sampling probabilistic models to the context of
population based optimization. Recently, emphasis has been given to the investigation
of other important issues, e.g. analyzing the interactions between EDA component and

22

3 Probabilistic graphical models in optimization

elucidating how a given optimization problem determines the nature and number of de-
pendencies that arise in KDAs.

Some of the current research trends are fitness function approximation with probabilis-
tic models (197; 201; 207), use of entropy based methods for theoretical analysis and
improvement of EDAs (166; 169), analysis of the role of selection in the arousal of
dependencies (77; 193), introduction of alternative sampling methods (95; 190; 207),
and development of alternative probabilistic models to represent dependencies in EDAs
(33; 148; 190; 219). The last two research trends, which are very related to each other,
are particularly relevant to our work and will be treated in this thesis.

An example of alternative sampling methods in the context of EDAs is the use of the
algorithms to calculate the most probable configurations. In (207), an algorithm that
calculates the most probable configurations in the context of optimization by EDAs was
introduced. The algorithm was applied to obtain the most probable configurations of the
univariate marginal model, and models based on trees and polytrees. For the univariate
model no BP is needed. For trees and polytrees BP is guaranteed to converge to the
MAP solution. The results presented show that a UMDA that combines PLS with the
computation of the most probable configuration was more efficient in terms of function
evaluations than the UMDA that only uses PLS.

Another sampling procedure introduced together with region based decompositions for
EDASs (see Chapter 4) is Gibbs sampling, which is applied to sample the Kikuchi approx-
imation constructed from a clique-based decomposition of an independence graph (190).
Clique-based decompositions are a particular type of region decompositions. Clique-
based decompositions can be obtained from previous information about the problem or
can be learned from data.

A common problem of EDAs that use sampling based on factorizations or Gibbs sampling
is that the most probable configurations have an exponentially small probability. In this
case, Monte Carlo sampling is not a favorable technique because, to hit the optimum, a
large number of configurations needs to be visited before. In (95), region-based approxi-
mations were used to estimate and sample the probability in the context of EDAs. The
local beliefs of a region graph are calculated using generalized belief propation (GBP)
(245). Then, a factorization is used to sample promising points in the search space. In
contrast to the work presented in (190), the sampling method employed avoids the use
of the more expensive Gibbs sampling algorithm. Additionally, the important role of the
inverse temperature § as a useful parameter to influence the search is analyzed.

3.3 Optimization methods based on inference

In contrast to EDAs, optimization methods based on inference (240; 241) are not iterative
methods, in the sense that the probability model is constructed only once. There are no

23

3 Probabilistic graphical models in optimization

subsequent generations of points. Instead, the idea is to build a probabilistic model from
the given function in such a way that the most probable configuration using the model
corresponds to the optimum of the problem. Exact or approximate inference can then
be employed to find the most probable configuration of the model. When the original
independence graph is chordal, a junction tree can be constructed (127). For these
models, the most probable configuration can be calculated using dynamic programming
(177). This technique was then extended to calculate the M most probable configurations
(164; 242).

Although the number of published papers devoted to the use of optimization methods
based on inference appears to be smaller than those devoted to EDAs, there are results
on the application of approximate inference algorithms in optimization problems coming
from the bioinformatics field (240; 242). In (240), the best max-marginal fit algorithm
(BMMF) to calculate the most probable configurations, based on the use of loopy belief
propagation is presented. BMMF is based on a dynamic programming method compu-
tationally more efficient than Nilsson’s method (164). For the problems investigated,
BMMEF was able to find better most probable configurations than those obtained by
Gibbs sampling and another method based on a greedy optimization of the posterior
probability.

Propagation algorithms have also been employed to find the optimal solutions of con-
straint problems. In (35; 36), warning and survey propagation is introduced to solve
the satisfiability problem (SAT). Warning and survey propagation belong to a new type
of propagation algorithms that intend to find satisfiable assignments to a set of clauses.
The algorithm uses factor graphs (119) to represent the structure of the problem and
organizes the passing of messages from variables nodes to factor nodes and vice-versa.
Although these message passing algorithms do not use region based decompositions, their
purpose is also to find optimal solutions. The relationship between warning and survey
propagation algorithms and sum-propagation algorithms is discussed in (35).

24

Part |l

Region based decompositions

25

4 Kikuchi approximation of probability
distributions

4.1 Introduction

Belief propagation (3; 177) is a well-known technique used in statistical inference to
obtain a posteriori marginal probabilities in graphical models. Generalized belief propa-
gation enables the class of models where these inference algorithms can be applied to be
extended. Recent work on generalized belief propagation methods (245) have revealed
the applicability that results achieved in the statistical physics domain, in the approx-
imation of energy and entropy measures, have in the machine learning domain. One
of the contributions from the field of statistical physics to inference algorithms comes
from the use of region-based decompositions, like the Bethe (24) and Kikuchi (108; 154)
approximations, in the context of generalized belief propagation.

Basically, a region-based decomposition of a function can be seen as a function defined
on the variables associated to the vertices of a graph. The global function is formed
by the composition of local subfunctions defined in those variables grouped in each of
the regions. For instance, in the free energy approximation in physics, regions serve
as the basic units to define the local energies, which are combined to give the global
free energy function. Region-based decompositions can be used for the approximation
of other measures. In this chapter, we use them to calculate suitable approximations of
probability distributions. In this context, an essential question is how to determine a
convenient region-based decomposition that maximizes the accuracy of the approxima-
tion. As we will see throughout the chapter, there are algorithms that can calculate these
decompositions.

One particular case of such algorithms is the cluster variation method (CVM) (108;
154), originally introduced to obtain Kikuchi approximations of free energy in statistical
physics. Starting from an initial set of regions defined in a graph, the CVM determines
a way to obtain a whole set of regions where the free energy is decomposed. The CVM
does not specify any particular choice for the initial regions. Nevertheless, the Kikuchi
approximation clearly depends on this choice.

Some approaches that try to cope with the problem of selecting an appropriate set of
initial regions have been published. This interest highlights the relevance of this prob-

27

4 Kikuchi approximation of probability distributions

lem for the field. The methods introduced have been proposed in the context of belief
propagation algorithms (232), and are also related to work done on structural mean field
methods (237; 238). The clique-based decomposition of the graph has been introduced
in (190) as a particular way to select the initial regions for the CVM. The method was
used for optimization by means of EDAs that employ Kikuchi approximations of the
probability.

We focus on the clique-based decomposition as the method to select the initial regions of
the Kikuchi approximation which is, in this case, an unnormalized approximation of the
probability distribution. Therefore, this approach departs from common used schemes
that look for consistent probability distribution approximations. There are a number
of reasons that make this approach worth of consideration. First, in several situations,
the computation of normalized distributions is infeasible. The number of terms to be
considered in the partition function grows exponentially with the number of variables.
Second, in some cases where belief propagation can be employed, there is not guarantee
the method will converge. Third, recent applications of region-based decompositions
(100; 190) show that they can be used not only for the common tasks of inference but can
also be applied for optimization and classification. In these contexts, the decompositions
will be used for tasks such as sampling that can be accomplished using unnormalized
factorizations. Finally, even in cases in which normalized approximations are feasible,
it is an important and unexplored area to investigate to what extent the unnormalized
approximation is useful, and which properties it satisfies.

The approach followed in this chapter is to study some of the properties satisfied by
clique-based Kikuchi approximations. The properties proven in this thesis are useful to
achieve goals such as evaluating the quality of the approximation, the design of algorithms
to learn Kikuchi approximations from data, and the design of sampling algorithms. Our
work can be seen in the more general context of setting the theoretical basis for the ap-
plication of unnormalized Kikuchi approximations as a practical approximation method
in machine learning. In order to achieve this purpose, we investigate Markov and de-
composability properties of the Kikuchi approximation constructed from clique-based
decompositions of the graphs. The introduction of the concept of partial Kikuchi ap-
proximations allows to combine exact marginal with Kikuchi approximations of some of
the irreducible components of the graph.

Additionally, we pay attention to recent developments in the application of region-based
decompositions in machine learning. Our analysis intends to throw some light on the
way these approximations are being conceived and applied in the field. We clarify the
place of clique-based decompositions in relation to other techniques inspired by methods
from statistical physics.

The chapter is organized as follows. Section 4.2, introduces clique-based decompositions
and the Kikuchi approximation of the probability distribution. Section 4.3 proves that

28

4 Kikuchi approximation of probability distributions

the clique-based Kikuchi approximation satisfies the local, pairwise and global Markov
properties with respect to the independence graph. Section 4.4 shows that the Kikuchi
approximation can be factorized into the irreducible components of the graph. In Sec-
tion 4.5, we argue that our work is part of a current research trend that benefits from the
cross-fertilization between machine learning and statistical physics. Section 4.6 presents
the conclusions of the chapter.

4.2 Kikuchi approximation: definitions

Kikuchi approzimations of the energy (108) are region-based decompositions of the energy
that satisfy certain constraints. The Kikuchi approximation of a probability distribution
from a clique-based decomposition of an independence graph (190) is a particular type
of factorization that uses marginal distributions. The marginals in the factorization are
completely determined by the independence graph. Given this graph, the clique-based
decomposition is formed by the maximal cliques of the graphs and their intersections.
All these cliques are called regions.

Given a probability distribution p(x), its independence graph G = (V, E) associates one
vertex with every variable of X, and where two vertices are connected if the corresponding
variables are conditionally dependent given the rest of the variables.

We define a region R of the independence graph G = (V, E) of a probability distribution
p(x) as a subset of V. A graph region-based decomposition (R,U), is a set of regions
R that covers V', and an associated set of overcounting numbers U which is formed by
assigning one overcounting number cgr for each R € R. cp will always be an integer,
and might be zero or negative for some R. There are different methods that find region-
based decompositions (4; 24; 108; 243), among them the CVM that learns Kikuchi
approximations. In the CVM, R is formed recursively by an initial set of regions Rg
such that each node is in at least one region of Ry, and any other region in R is the
intersection of one or more of the regions in R. The set of regions R is closed under the
intersection operation, and can be ordered as a partially ordered set (154).

To be valid, a decomposition must satisfy a number of constraints that relate R and U.
Inspired by the work by (244), we call this sub-problem that of finding a valid region-
based decomposition of a graph. A set of regions R and overcounting numbers U give a
valid region-based graph decomposition (244) when for every variable X;:

> cr=1 (4.1)

RER
X;CXp

29

4 Kikuchi approximation of probability distributions

Equation (4.1) states that, for any variable X;, the sum of the overcounting numbers
of regions that contain X; is 1. Equation (4.2) can be obtained extending the previous
constraint to every subset of variables Xg the following way:

Y er=1 (4.2)

ReR
XgCXp

where the sum of the overcounting numbers of regions that contain Xg is also 1. In
(173), conditions represented by equations (4.1) and (4.2) are called balanced and totally
balanced conditions, respectively.

We will apply the CVM making a particular choice of the initial regions. We will form set
Ro by taking one region for each maximal clique in G. As a result, all the regions R € R
will be cliques because they are the intersection of two or more cliques. We call this type
of region-based decomposition of undirected graphs a clique-based decomposition.

We define the Kikuchi approximation of the probability distribution p(x) associated with
a clique-based decomposition, k(x), as:

k(x) = [plxa) (4.3)
ReR
where R comes from a clique-based decomposition and the overcounting numbers cg are
constrained to be calculated using the following recursive formula:

cr=1- Z cs (4.4)
SeR
RCS

where cg is the overcounting number of any region S in R such that S is a superset of R.
cr values corresponding to the initial maximal cliques are equal to 1. If cp is different
from zero, the region is included in the clique-based decomposition. In (173) is proven
that any collection of regions that is closed under intersection, and where overcounting
number are calculated following 4.4 fulfills the balanced and totally balanced conditions
(173).

From now on, when we refer to a Kikuchi approximation, we imply a Kikuchi approxima-
tion of the probability distribution obtained from a clique-based decomposition. Exam-
ple 4.1 describes the Kikuchi approximation of the probability calculated a given graph.

Example 4.1. This example shows the Kikuchi approximation (Equation (4.1)) corre-
sponding to the independence graph shown in Figure 4.1.

k(x) = p(xa, z7)p(xr, 2E)p(2E, X)p(2E, 21)p(TL, v5)p(Ts, 2B)p(B, 2p)p(TE, D)

p(er)p(zE)3p(er)p(rs)p(zs)p(zD)
(4.5)

30

4 Kikuchi approximation of probability distributions

Figure 4.1: Undirected graph associated with the Asia network.

The factors of the decomposition correspond to the eight maximal cliques of the graph
and their overlappings. The factor corresponding to variable Xg has an overcounting
number 3 because it is included in four original cliques.

4.3 Markov properties of the Kikuchi approximation

Graphical models associated with probability distributions display a number of condi-
tional and marginal independence properties that are stated by the Markov properties
defined on the graph. These independence properties can be used for more efficient stor-
ing and sampling of probability distributions. Therefore, it is important to investigate
which information about the properties of the Kikuchi approximation can be extracted
from the graphical model where it is defined. In this section, we show that certain
independence properties of the Kikuchi approximation can be deduced from the graph
structure.

Firstly, we prove that the Kikuchi approximation satisfies the local, pairwise, and global
Markov properties with respect to the independence graph.

4.3.1 Notation

We use the notation introduced in Section 2.2. The marginal and conditional functions
of the Kikuchi approximation are defined as:

kxs)= > k() (4.6)

x'|xlg=xg

31

4 Kikuchi approximation of probability distributions

k(x(a,B})

k(xB)
where {A, B} is a simplified notation for { AUB}. Notice that, as we work with a positive
probability distribution p(x), marginal and conditional probability distributions are also
positive. As k(x) is not necessarily a probability distribution, neither are k(xg) and
k(x4 | xp). Nevertheless, they can respectively be used as approximations of p(xg) and
plxa | xp).

k(xa | xB) = (4.7)

4.3.2 Markov properties

The Markov properties of a probability distribution p(x) given its independence graph
G are:

1. Pairwise Markov property: For all non-adjacent vertices X; and X; in G,

p(xi,zj | x\ (26, 25)) = plos | x\ (26, 25))p(x; | x\ (24, 75))
2. Local Markov property: For every vertex X; in G,
pzi, x \ cl(zi) | bd(z;)) = p(wilbd(x:))p(x \ cl(z)[bd(z;))

3. Global Markov property: For all disjoint subsets X 4, Xp, and X, whenever Xp
and X are separated by X 4 in the graph, in the sense that all paths from Xp to
X go through X 4, then:

p(xp,xc | x4) = p(xp | x4)p(xc | X4)

To prove that the Markov properties are satisfied by the Kikuchi approximation, we
start from the fact that the Kikuchi approximation from Equation (4.3) is defined on
the maximal cliques of the graph and can be treated as the unnormalized version of the

probability distribution corresponding to the undirected graphical model.

Let us call the normalized distribution ¢(x) = %:), where Zj, is the normalizing constant
calculated for k(x). The conditional function of the Kikuchi approximation can be written

as:

k(xa,xp) _ q(Xa,%XB)
k(xaq|xp) = = 4.8
(ka | %5) k(xa) q(xa) (48)
The previous equality is given by the fact that ¢(x4) = % and that normalization
constants cancel out each other. As a consequence, the proof of the following theorems
is straightforward.

32

4 Kikuchi approximation of probability distributions

Theorem 4.1. Given a Kikuchi approzimation k(x) defined on a graph G, and a set of

variables X 4,
k(xa |x\x4)=k(xa|bd(x4))

Theorem 4.2 (Local Markov property). Given a Kikuchi approzimation k(x) defined
on a graph G, and a variable X;,

k(xi,x \ cl(z;) | bd(z;)) = k(x;|bd(z;))k(x \ cl(x;)|bd(x;))

Theorem 4.3 (Pairwise Markov property). Given a Kikuchi approzimation k(x)
defined on a graph G, and two variables X; and X;, if the corresponding vertices are not
joined in G:

k(zi x| x\ (i, 25)) = k(zi | x\ (23, 75)) k(x5 | X\ (24, 25))

Theorem 4.4 (Global Markov property). Given a Kikuchi approzimation k(x) de-
fined on a graph G, for all disjoint subsets X4, Xp, and X, whenever Xp and X¢ are
separated by X 4 in the graph, then:

k(xp,xc | xa) = k(xp | xa)k(xc | xa)

Now we study the decomposition property of the Kikuchi approximation. Given any

region A, we introduce K (x, A) and K (x, A) for notational convenience, to represent k(x)

more concisely. If K(x,A) = [[rer p(xg)°R, and K(x,A) = [[rer p(XR)°E,
XpNX 4

XpNX 4#0 =0
then k(x) can be expressed in the following way:

kx)= [] »pxr)™ [] pxr)*

RER RER
XpNX 4#0 XpNX 4=0
= K(x,A)K(x, A) (4.9)

The non-standard notation ~ {xg} will be used to represent the summation over all
variables except Xg, when Xg = xg, obtaining:

pxs)= Y p(x)= > p) (4.10)
~{xs} x|xg=xg

Notice the use of this notation in equation (4.11), which shows two different ways to
calculate the marginal probabilities of bd(X 4).

Yo)=) px) (4.11)

~cl(xa) ~{x\xa} ~bd(x4)

33

4 Kikuchi approximation of probability distributions

Equation (4.11), together with implications (4.12) and (4.13) below, are used in our
proofs.

VR, Xr 2 X; CXA#XRQCZ(XA) (4.12)
VR, Xp 2 X; C X4 = Xp C X\ X, (4.13)

Implication (4.12) derives from the fact that, in the clique-based decomposition, any
region is a clique. Therefore, any set of variables in the same region as X 4 belongs to
its closure. On the other hand, implication (4.13) represents the fact that, if none of
the variables that are in region Xy belongs to X 4, then the whole region Xy belongs to
X\ X 4.

In what follows, kax will refer to the Kikuchi approximation constructed from the sub-
graph that includes vertices and edges that contain variables in X 4.

Theorem 4.5 (Kikuchi decomposition property). Given a Kikuchi approzimation
k(x) defined on a graph G, such that X = X, UXpUX¢, and X4 is a separator of Xp
and X¢, then:

_ kap(xa,xB)kac(xa,%xc)
k(x) = Fox (%4)

(4.14)

Proof.
From the global Markov property,

k(xa,xp)k(x4,%xc)

k(x) = k(%)

Additionally, as X4, Xp, and X are a partition of X, the following equations are
verified:

XRQXC:(DéXR C XuB
XrNXpg :(Z):>XR C Xac
XrNXpe=0=XrC Xy
Finally, from the definitions of K (x, A) and K(x, A) (4.9) follows:

K(x,BC) = K(x,0)K (x, B) (4.15)

34

4 Kikuchi approximation of probability distributions

Equation (4.15) is used in order to prove the result of Equation (4.14). Decomposing
k(x) by means of the global Markov property, we obtain:

Hcaxpbxae) Do, K06 OR(,C) Xy, K, B, B)
k(xa) B ZX%C K(x', BO)K (x', BC)
K(x,C)K(x,B) Zx/c Kx',C) ZX% K(x',B)
K(x,BC) Exbc K(x',BC)
B Dot Kx',C) Do, K(x/',B)
TS, K& B0

k(x) =

= HRERXRQXAUB p<XR)CR HRERXRQXAUC p(XR)CR

[Trerx px pex , P(XR)R
_ KAB(Xa (Aa B))KAC(Xv (A7 C))

Ky(x,A)
_ Kap(xa,xp)Kac(xa,xc)
= Ka(xa) (4.16)
m

To summarize the results proven in this section, we have shown that some of the proper-
ties of the independence graph are translated into the Kikuchi approximation. Pairwise,
local, and global Markov properties are fulfilled. We have proven that it is possible to
decompose the Kikuchi approximation in the product of local Kikuchi approximations
defined from a decomposition of the graph.

4.4 Decomposability of the Kikuchi approximation

Decomposability is essential to handle feasible approximations of a probability. In this
section, we show how the Kikuchi decomposition property will permit the definition of
Kikuchi approximations in which each factor itself is a Kikuchi approximation corre-
sponding to a subgraph of the original independence graph. We go one step further
and define the class of partial Kikuchi approximations, in which some of the Kikuchi
approximation components correspond to exact marginal probability distributions. First
of all, we introduce a number of definitions, propositions and theorems, borrowed from
(234), that lead to a factorization of the Kikuchi approximation based on the irreducible
components of the independence graph.

35

4 Kikuchi approximation of probability distributions

Figure 4.2: Independence graph with one incomplete maximal irreducible component and
two complete ones.

4.4.1 Definitions

Definition 4.6 (Whittaker:1991, pp. 381). There exists a decomposition of the
random vector X with respect to a probability distribution p(x) or equivalently, X is
reducible, if and only if there exists a partition X into (Xa,Xp,Xc) such that:

1. p(xB,xclx4) = p(xp|x4)p(Xc|x4) and neither B nor C' are empty.

2. The subgraph on A, in the independence graph of X, is complete.

If so, the components of X are Xap = (Xa,Xp) and Xac = (X4,Xc¢). If such a
decomposition does not exist, X is said to be irreducible.

Example 4.2. Consider the graph in Figure 4.2 and the partition defined by sets A =
{2,6}, B={1,7} and C' = {3,4,5}. Then, X 45 and X 4¢ are the components that form
a decomposition of the graph. X 4p is an irreducible component, and X 4¢ is a reducible
one because it can be decomposed according to definition 4.6.

Definition 4.7. The random vectors Xp,,Xp,,...,Xp,, are the mazimal irreducible
components of X if and only if:

1. Each vector Xp, is an irreducible component of X.
2. No subset D; is a proper subset of any other, D;.

3. X=Xp, UXp,U---UXp_,

An irreducible component is said to be complete if it is a clique. Otherwise, it is called
an incomplete irreducible component.

Example 4.3. X267, X2356, and X345 are the maximal irreducible components of
the graph shown in Figure 4.2. X 267 and X345 are complete irreducible components.
X2.3,5,6 is an irreducible component that is not complete.

36

4 Kikuchi approximation of probability distributions

O—E&—(2—9
O—O——W
O—E—0w—
O——0—W

Figure 4.3: The grid lattice for the Ising and sping glass models is an irreducible incom-
plete component.

Proposition 4.8 (Whittaker:1991, pp. 385). The mazimal irreducible components of
X corresponding to the subsets {Xp,,Xp,,...,Xp,,} are unique, and the density func-

XD XD "'fxD . .
—L——2 ——m where function g is a product

tion of X factorizes uniquely into f(x) =
of marginal density functions, g = [[fx,, in which each subset X4 is an intersection
of irreducible components, and it is complete. f(x) is called an irreducible component

factorization.

Definition 4.9 (Whittaker:1991, pp. 389). An n-dimensional random vector X, or
its density function, is decomposable if and only if there exists a sequence of decomposi-
tions to complete irreducible components.

Independence graphs can be decomposed into irreducible components. The problem is
known as decomposition by clique separators (214) or maximal prime subgraph decompo-
sition (170) and it may be solved by certain algorithms (214). Maximal prime subgraph
decompositions have been proposed in Bayesian networks as a computational structure
for lazy propagation (170). However, in the case of Bayesian networks, this type of de-
composition has also been criticized as a very limited representation of the independence
relationships of this class of models (41).

One important remark is that irreducible incomplete components can be very large and,
in fact, a graph can be formed by a unique irreducible component (e.g. the graph shown
in Figure 4.3).

37

4 Kikuchi approximation of probability distributions

4.4.2 Decomposability of the Kikuchi approximation

We study how to extend the results achieved for the factorization of distributions to the
Kikuchi approximation. We show that the Kikuchi approximation can be decomposed
into the Kikuchi approximations of the irreducible components of the original graph. This
result provides useful insight into ways to measure the accuracy of the Kikuchi approxi-
mation. It also allows the definition of the partial Kikuchi approximation which combines
exact marginal with Kikuchi approximations of some of the irreducible components.

Theorem 4.10. Given the independence graph G of X, and the Kikuchi approzrima-
tion k(x) defined on G, if there exists a partition X into (Xa,Xp,Xc) such that the
components of X are Xap = (X4, Xp) and Xac = (X4, X¢), then:

k(x) = kap(xaB)kac(xac)

4.17
T (x0) (4.17)
Proof.
This is a particular case of Theorem 4.5 when the separator X 4 is a clique. O
Theorem 4.11. Given the independence graph G, and a factorization
pXD pr o 'prm
p(x) = ——3%
Hi:l pxdi
in which Xq,,Xdy, - - -,Xa,,_, S the (possibly empty) set of complete irreducible compo-
nents, resulting from the intersection of the irreducible components Xp,,Xp,,...,XD,,,

then, the Kikuchi approzimation k(x) defined on G can be decomposed as:

kD XD kD XD "'kDm XD
k(x) _ 1(1) 2(m_12) ()
|

Proof.

The proof will be done by induction on the number of components, and using Theo-
rem 4.10.

If m = 1, there is only one component Xp, and no separators. In this case, k(x) =
k(XDl)-

Let us suppose that, for the component X(p, p, . p,), the theorem holds, i.e.

le (XDI)sz (XDz) T kDifl (XDifl)
[1j=1 P,

k(X(Dl,Dg,...,Di_l)) =

38

4 Kikuchi approximation of probability distributions

Now we prove that, for X(p, p,. .. p,), the theorem is satisfied.

Let A =d;—1, B={Dy,Do,...,D;—1}, and C = D;. (X4,Xp,X¢) is a partition of
X(D1,Ds,...,D;) that satisfies the conditions of theorem 4.10. Therefore,

k(X(D;,Ds,....D;))
k(X(Dy,Ds,...0;_1))k(XD,)

k(x4,)
_ kp,(xp,)kp,(Xp,) - kp,_, (XD,_,) k(xp,)
B]_[3;21 Pxq, k(x4;)
_ kp, (xp,)kp,(xD,) - - - kp,(XD,)
ITj= Px,,

For all 7, Xy, is a complete irreducible component (i.e. clique). Thus, kg, (X4,) = p(X4,)-

We have reached the decomposition of the Kikuchi approximation of X(p, p,... p,)- To
complete the proof, notice that X = X(p, p, . p,.)- O

Example 4.4. We analyze the independence graph shown in Figure 4.2. The Kikuchi
approximation of this graph is:

_ p(x1, w2, w6, x7)p(22, 13)p(5, T6)p(23, T4, T5)
Fx) = p(z2)p(23)p(7s)p(we) (4.18)

The factorization of k(x) based on the irreducible components of the graph is:

k(x1,x9, x7, x6)k(22, T3, 5, 6) K(23, T4, T5)
k(zo, x6)k(xs3, x5)

k(x) = (4.19)
The Kikuchi approximation of the incomplete irreducible component (X9, X3, X5, Xg) is:

p(z2, 23)p(x3, 25)p(T5, 6) (T2, T6)
p(z2)p(x3)p(ws)p(we)

k(2,3,5,6) (T2, T3, T5, T6) = (4.20)

Substituting Equation (4.20) in (4.19), and considering that the other factors are calcu-
lated from complete irreducible components, and that, therefore, the Kikuchi marginals
coincide with the probability marginals, we obtain the original Kikuchi approximation
shown in Equation (4.18).

39

4 Kikuchi approximation of probability distributions

Now we highlight another aspect related to the Kikuchi approximation of an indepen-
dence graph: by identifying the regions of the independence graph where the Kikuchi
approximation is localized (the incomplete components), we can estimate to what extent
the Kikuchi approximation is used for the approximation of the distribution associated
with a given graph. Therefore, we can obtain a measure of the approximation accu-
racy. Many irreducible components will imply more components approximated with the
Kikuchi approximation.

Furthermore, we can constrain the use of the Kikuchi approximation to certain areas of
the graph.

Given the independence graph G of X, a partial Kikuchi approximation of the probability
is one where only a subset of all the irreducible incomplete components are approximated
by the corresponding Kikuchi approximation of the components. The rest of the compo-
nents are calculated exactly.

The partial Kikuchi approximation admits the existence of components that are calcu-
lated exactly, i.e. they can be triangulated the same way methods for doing inference in
graphical models usually do.

Let us suppose that the number of incomplete irreducible components in G is t. The
number of partial Kikuchi approximation is 2¢—2, including the complete Kikuchi approx-
imation. Hence, the total number of partial Kikuchi approximations is 2! — 1. Rationales
for selecting one partial Kikuchi approximation rather than others might be related to
the size of the induced triangulated clique (e.g. 4-sized cliques could be assumed to be
triangulated). Another criterion can be the cardinality of the variables that are in the
incomplete irreducible component (e.g. when the cardinality of the variables involved is
high, the Kikuchi approximation is recommendable to diminish the number of parameters
needed to approximate the model).

4.5 Related work on Kikuchi approximations

We have presented a number of properties fulfilled by the Kikuchi approximation con-
structed from clique-based decompositions. Now we relate these results to current re-
search on similar topics.

4.5.1 Region based approximations

Kikuchi approximations are an example of a panoply of methods that deal with the
problem of approximating a measure (i.e. energy, entrogy, probability) using graph-
based decompositions. Initial applications of Bethe and Kikuchi approximations were
constrained to the field of statistical physics (108; 153; 154). The purpose of finding a

40

4 Kikuchi approximation of probability distributions

way to decompose the otherwise difficult to handle free energy of a system led to the use
of these approximations in physics. The idea was developed later by (245) in the context
of generalized belief propagation. This contribution expanded the scope of application
of belief propagation, which has been traditionally used in tasks like obtaining a pos-
teriori marginal probabilities in graphical models (177), computing the most probable
global states or system configurations (164), and improving the efficiency of iterative
proportional fitting (IPF) (11; 216).

4.5.2 Generalized Kirkwood superposition

There is another path that leads to the notion of Kikuchi approximation treated in
this chapter. The Kirkwood superposition (110) is an approximation for the three-body
distribution of liquids introduced in liquid-state statistical mechanics. Since this approxi-
mation has been recently applied in the machine learning community (100), we elaborate
on its relationship with the clique-based decomposition and the Kikuchi approximation.

The essence of the original Kirkwood superposition approximation is that all possible
correlations in a system are expressed by binary relations. Although the approach has
been widely applied in the theory of liquids, its implications and range of applications
are controversial (see (84) for an extensive review on the subject). More relevant to our
research is the derivation of the generalized Kirkwood superposition for the expansion of
the information entropy in terms of correlation functions that has been proposed in (10).

In simple terms, this derivation proposes an approximation of the information entropy
that includes successively higher-order correlations in a systematic fashion. The approach
is extended by (141) to calculate the highest order mutual information M1 (X):

MI(X1,...,X) = (1" Y play,...)i 2L Tn) (4.21)

P,)

where p(x) is the generalized Kirkwood superposition defined as:

n—1
plar,... z) = [J-DF [plar. . z0k) (4.22)
k=1 11<ee.<lp—k
where [[; . _, . runs over all possible combinations {i1,...,i,—r} C {1,...,n} and

11 <ig <o <lp_kg.

There is a clear relationship between the generalized Kirkwood superposition and the
Kikuchi approximation constructed from a clique-based decomposition. The Kirkwood
superposition corresponds to a situation in which a complete graph is considered and,
instead of choosing the single maximal clique of size n, all cliques of size n — 1 are chosen

41

4 Kikuchi approximation of probability distributions

as the initial regions. Nevertheless, the higher-order contributions can be neglected
from Equation (4.22), obtaining approximations that may yield good results for weakly
correlated examples (141).

4.5.3 Research trends in the application of region-based decompositions

Concerning the field of machine learning, we identify two main current research trends
in the application of region-based decompositions.

1. The use of region-based decompositions to design and improve inference methods,
particularly, GBP algorithms.

2. The use of region-based decompositions to find approximate factorizations of prob-
ability distributions based on marginal probability distributions.

The first research trend (5; 56; 92; 147; 173; 215; 225; 226; 245; 246) includes work on the
determination of efficient message passing schemes in BP, bounds on the accuracy of the
inferred marginals, and conditions of convergence for the propagation algorithms. The
second one (95; 100; 101; 190) studies the conception of measures to evaluate the accuracy
of the learned approximations, algorithms to learn and sample these approximations from
data, and the identification of significant interactions in data.

One common problem of both lines of research is the selection of the initial regions upon
which the approximations are based. Some recent work on belief propagation algorithms
addresses this problem using graph partition strategies (237; 238), sequential methods
(232), and other approaches (173; 245).

In (101), the use of Kikuchi approximations for supervised classification has been pro-
posed. A region-based decomposition learning algorithm is introduced with this objec-
tive. Region-based decompositions based on 2-way and 3-way interactions are tested.
Higher order interactions are not considered.

In opposition to the GBP approach, clique-based decompositions are a way to automati-
cally determine the initial regions of the graph that can be used to construct region-based
decompositions. The local Markov property of the Kikuchi approximation was useful to
define algorithms to learn the approximations from data (190) and sample the approx-
imation obtained. However, results presented in (190) did not provide any measure
to evaluate the accuracy of the approximation. Furthermore, it was not clear whether
Kikuchi approximations could be applied locally in the probability distribution approx-
imations. The properties presented in this thesis can be used (see Chapter 5) to define
decomposable accuracy measures that can help to create more sophisticated methods for
learning the approximations.

42

4 Kikuchi approximation of probability distributions

Figure 4.4: An example of a factor graph.

Another difference between the belief propagation approach and the learning approach
is the type of graph in which the construction of the Kikuchi approximation is based,
and its interpretation. In the original work of (243), the Kikuchi approximation was
calculated using pairwise or higher-order Markov random fields (MRFs). Regions in the
graph comprised the variables and the sets in which the potential functions were defined.
Recent work (244) focuses on models defined on factor graphs (119). Factor graphs have
variable and factor nodes. There is a variable node for each variable of the problem and
a factor node for each node, with an edge connecting variable node i to factor node a if
X, is an argument of f,.

In factor graphs, functions can represent some sort of interaction among their argument
variables, but there is no requirement concerning the type and strength of these interac-
tions. The validity condition of the region-based decomposition used by (244) establishes
that every variable and factor node is counted once in the approximation (using the cp
values in the sum) but, apart from this requirement, the choice of the initial regions is
arbitrary. There are other different ways to represent the region graph decompositions,
which include Hasse diagrams (173), region graphs (244), and hypergraphs (226).

The work presented in this thesis can be extended to include different graph represen-
tations. The definition of the Kikuchi approximation given in Section 4.2 is based on
an independence graph that is interpreted as a graphical model. However, the Kikuchi
approximation constructed from a clique-based decomposition can be defined not only on
undirected graphical models but also on a larger class of models equivalent to hierarchical
log-linear models. These models can be graphically represented using factor graphs.

In the factor graph representation of a clique-based decomposition each maximal clique
will have an associated factor. As in the case of hierarchical models, it is assumed that
the existence of a clique means that all lower interactions are covered by the model. The

43

4 Kikuchi approximation of probability distributions

factor graph coincides with the maximal representation of the hierarchical models.

Example 4.5. Consider a probabilistic model with factors Xi2, Xo3 and Xi3. The
Kikuchi approximation of this model would be

() = p(w1, v2)p(w2, 3)p(T1, 73)
p(x1)p(x2)p(xs3)
This approximation cannot be recovered from any undirected graph because the original
model does not correspond to a log-linear graphical model (234). Figure 4.4 shows the
factor graph representation of this model.

4.6 Conclusions

In this chapter, we have investigated a number of properties satisfied by the Kikuchi
approximation constructed from the clique-based decomposition. We have shown that
the Kikuchi approximation satisfies the local, pairwise, and global Markov properties.
These results lay the foundations for the further development of algorithms that use
Kikuchi approximations.

We have proposed a decomposition of the Kikuchi approximation according to the ir-
reducible components of the graph. From this decomposition, we have introduced the
notion of partial Kikuchi approximations. As a consequence of this result, an initial mea-
sure of the complexity of the Kikuchi approximation can be given, based on the number
of irreducible components and their complexity (number of nodes and factors involved
in the factorization). The results achieved indicate a way to investigate the accuracy of
the Kikuchi and partial Kikuchi approximations.

44

5 Learning Kikuchi approximations from
data

5.1 Introduction

An open problem related with region-based decompositions is how to select a set of
initial regions that permits an accurate model-based approximation of the probability
distribution. Some recent work addresses this problem using graph partition strategies
(238) and sequential approaches (232).

A different approach has been taken in (101) in the context of supervised classification.
A region-based decomposition learning algorithm is introduced to learn this type of de-
composition from data. The algorithm is based on the use of goodness of fit testing.
Therefore, a metric to evaluate the accuracy of the Kikuchi approximations is not pro-
vided. On the other hand, only region-based decompositions that use 2-way and 3-way
interactions were tested. Higher order interactions were not considered. Nevertheless,
the results obtained, when compared with traditional classification methods, showed the
convenience of using Kikuchi approximations to solve supervised classification problems.

Our aim in this chapter is to study a related problem. Given a dataset, we investigate
how to learn an accurate factorization of the probability distribution of the data. This
factorization is calculated from a learned region-based decomposition of an underlying
graphical model representing the dependencies in the data. We constrain our analysis to
clique-based decompositions. Previous work on clique-based Kikuchi approximations was
constrained to the study of probability distributions that arise in function optimization.
In (190), an algorithm for learning clique-based decomposition from data was introduced.
The algorithm learns the model by means of independence tests.

There are certain drawbacks behind learning clique-based decompositions from data us-
ing independence tests. Firstly, independence tests can be computationally costly and
unreliable. Therefore, the use of higher order tests is impractical. Secondly, when the
independence graph is very dense, the dimension of the cliques will increase beyond a fea-
sible limit. Lastly, a measure of the learned approximation accuracy cannot be achieved
using this type of approach.

In this chapter, we introduce a method to learn Kikuchi approximations from data by
means of a score+search approach. The chapter is organized as follows: Section 5.2

45

5 Learning Kikuchi approximations from data

begins describing the two most common approaches used for model learning. As we
focus on score+search methods, a measure of the Kikuchi approximation accuracy is
introduced. Section 5.3 presents an important property of the Kikuchi approximation
that permits the decomposition of accuracy measures according to the graph structure.
Section 5.4 introduces local and global search techniques that can be employed to find
Kikuchi approximations that optimize the score. Section 5.5 reviews possible applications
of the learning algorithm. Section 5.6 presents a number of experiments from different
domains where the behavior of the learning algorithm is investigated and its performance
validated in the approximation of distributions generated from Bayesian networks and
Boltzmann distributions. Finally, Section 5.7 presents the conclusions of the chapter
together with a number of lines for future research.

5.2 Learning approaches

Model search methods used in graphical models can be classified into two main groups
according to the nature of the modeling: detecting conditional independencies versus
score+search methods (90). Both approaches can be tested when learning Kikuchi ap-
proximations.

In (190), an algorithm for learning Kikuchi approximations by independence tests is
presented. Its pseudocode is shown in Algorithm 5.1. To learn the undirected graph,
the methodology proposed by Spirtes et al. (208) has been followed. The idea is to
start from a complete undirected graph, and then try to remove edges by testing the
conditional independence between the linked nodes, using conditioning sets as small as
possible. After completing all the tests, the resulting graph is formed by all the remaining
edges.

One limitation of this method is that, as the order of tests increases, their reliability
decreases. Therefore, the use of higher order tests is not practical. Another drawback
of Algorithm 5.1 is that, when the independence graph is very dense, the dimension of
the cliques will increase beyond a feasible limit. An alternative to solve this problem
is, at one step previous to the calculation of the cliques, to make the graph sparser.
Nonetheless, the refinement step is only a partial solution to deal with this problem. See
(190) for other limitations of this approach based on independence tests.

The reasons given above explain why the learning algorithm based on independence tests
is an infeasible approach for general situations. This fact points to the need to explore the
score+search approach for learning Kikuchi approximations from data. One necessary
step is the definition of the score function.

46

5 Learning Kikuchi approximations from data

Algorithm 5.1: Learning Kikuchi approximations based on independence tests

1 Learn an independence graph G from the data by using independence
tests.

If necessary, refine the graph.

Find the set C of all the maximal cliques of G.

Construct a clique-based decomposition of the graph.

Find the marginal probabilities for the regions of the decomposition.

Gr N W e

5.2.1 Accuracy of the Kikuchi approximation

An important issue is how to measure the accuracy of the Kikuchi approximation. First
candidates are the accuracy measures used to compare probability distributions (e.g. the
Kullback-Leibler divergence). In fact, the Kullback-Leibler divergence has been used in
statistical physics to find good Bethe and Kikuchi approximations of the free energy
(245).

The Kullback-Leibler divergence (KLD) (53) between the probability distribution p(x)
and the probability distribution ¢(x) is defined as:

X
D(pllq) = Zp log (5.1)

(x)
We call the general Kikuchi approximation k(x), and its normalized version p(x),

ke kX
PX) = h T 7

We analyze the relationship between the divergence of general and normalized Kikuchi
approximations with respect to the original probability distribution p(x). Then, for the
general Kikuchi approximation, equation (5.1) becomes:

D(pl[k) = Zp logk ® (5.2)
p) = x)lo @
D(pl|p) = Ex:p(Moy =5 (5.3)

Since, in general, the Kikuchi approximation is not a probability distribution, properties
proven for the Kullback-Leibler divergence are not sure to be satisfied when the Kikuchi

47

5 Learning Kikuchi approximations from data

approximation is used instead of a probability distribution. For instance, it is not guar-
anteed that D(p||k) will be always equal to or higher than zero. Nevertheless, it is always
true that, if k(x) = p(x) for all x, then D(p||k) = 0. Equation (5.2) can be seen as a
relaxation of the Kullback-Leibler divergence.

We analyze D(p||k) starting with its relationship with D(p||p).

- k(x)
=)l gpggjk = p(x)logZ;

= D(pllp) — Y _ p(x)logZi
= D(pl|p) — logZk

If and only if Z = 1, then D(p||p) = D(p||k). Otherwise, the sign of logZ}, determines
whether D(p||p) < D(pl|lk) or D(p||p) > D(pl||k). At least apparently, logZ; > D(p||p)
is possible. In this case, D(p||k) will be negative, which is not a desired property.

Let us consider a ‘pathological’ case where k(x) = ap(x), Vx. In this situation, Z; =
Yo ap(x) = a, so p(x) = p(x). Hence, D(p||p) = 0, however D(p||k) = —loga. Thus,
it can be arbitrarily set. Nevertheless, the Kikuchi approximation k(x) is not arbitrarily
determined. It is calculated from the marginals of p(x). Therefore, k(x) = ap(x) seems
to be very unlikely.

D(pl||k) and D(p||p) will be used as two alternative measures to orient the search. Obvi-
ously, the calculation of D(p||p) implies an exponential number of numerical operations.
Nevertheless, D(p||p) is a more accurate measure of the approximation, because it refers
to a divergence between probability distributions.

5.2.2 Search strategies

Heuristic algorithms used for model searching in the context of score+search methods
can be roughly divided into algorithms that change a single link between the variables
at each step, and algorithms that change more links of the graph. Single link lookahead
search is usually employed with greedy or simulated annealing heuristics (122).

Although the interplay between scoring metrics and the search process has not been
analyzed in detail, it is known that there is a class of probability models that cannot
be learned by single link lookahead search procedures (e.g. pseudo-independent models
(236)). Global search strategies are required for these situations. This type of strategies

48

5 Learning Kikuchi approximations from data

can be designed for Kikuchi approximations. Nevertheless, in this chapter we concentrate
on the study of local search techniques.

5.3 Finding Kikuchi approximations by edge addition

In this section, we derive a number of results related to the Kikuchi approximation.
These results allow the conception of an algorithm to learn the Kikuchi approximation
from data. An edge addition Kikuchi approximation learning algorithm is presented.

The following results will lay the foundations for the conception of a Kikuchi learning
algorithm based on local modifications on the independence graph.

The local Markov property (4.2) determines that any subset of variables is independent
of the rest given their neighborhood. Hence,

k(xa | x\xa)=k(xa |bd(x4)) (5.5)

Now we prove that the computation of k(x4) involves only cliques that contain variables
in Xy4.

Theorem 5.1. Given a Kikuchi approzimation k(x) defined on a graph G, and a set of

variables X 4, then:
K(x,A)

k(x4 | bd(x4)) = ZN{X\XA} K A) (5.6)
Proof.
k(x4 | bd(x4))
_ k(cl(x4))
k(bd(x4))
ZN{cl (x4) }K(X A) ()
ZN{X\XA} ZN{Cl (x4) }K(X A)K (A)
(X A) er{cl(xA]_{()
ZN{x\xA} K(le A) ZN{cl(xA I_(()
K(x,A)
T Y K A)
O

49

5 Learning Kikuchi approximations from data

An important question is whether it is possible to construct a Kikuchi approximation
that locally optimizes a predefined score by making local changes to the graph. We now
show that this can, indeed, be achieved.

Theorem 5.2. Given two Kikuchi approzimations ki1(x) and ka(x), such that their re-
spective independence graphs are identical except perhaps in some of the edges that join
vertices in X4 C X, then Vx

iy (%) = ka(x)8(cl(X 1)) (5.7)

where ¢ is a function that only depends on cl(X 4).

Proof.
Using the local Markov property, a simplified expression of k(x) can be found:

k(%)

E(xa,x\ cl(x4) | bd(x4))k(bd(x4))
= k(xa | bd(x4))k(x\ cl(x4) | bd(x4))k(bd(x4))
k(xa | bd(xa))k(x\ cl(x4), bd(x4))
k(xa | bd(xa))k(x\x4)

Noticing that

k(x\xa)= Y K(xA) K(x,A)
~{x\xa}
=K(x,A) Y K, A4 (5.8)
~{x\xa}

and substituting k(x4 | bd(x4)) by the expression found in Theorem 4.1, we obtain:

ki(x) _ ki(xa | bd(xa))k1(x\ x4)
ka(x) ko(xa | bd(xa))ke(x\ x4)
Ki(x,A) ZNX\XA Ks(x, A) Ki(x, A) ZN{x\xA} Ki(x,A)
Kg(x A) X axa Ki(x, 4) Ka(x, A) Do\ a) K2(x, A)
Kl(x A)
KQ(X A)
= d(cl(x4))

50

5 Learning Kikuchi approximations from data

The equality between Ki(x, A) = Ka(x, A) holds because the independence graphs of
k1(x) and ka(x) are identical for X\ ¢l/(X 4). Therefore, they share the same clique-based
decompositions in these subgraphs, and the products or their marginals are equal. O

We are interested in evaluating the gain in accuracy given the addition of edges between
variables in X 4.

Corollary 5.3. Given the same assumptions required for Theorem 5.2,

Diplks) ~ DOk) = X e (007) (.10

Proof.

D(p|[k2) — D(p|lk1) = Zp x)log <) Zp x)log (
= Zp)log (ki1 (x Zp Jlog(k2(x))
=20 (ka(x §>
= Z{:p(X)log < Ei ;) (5.11)

O

An important particular case of Theorem 5.2 and Corollary 5.3 is when X 4 comprises
only two vertices, and the change from ki (x) to ka(x) is due to the addition of edge
X; ~ Xj. To evaluate the gain due to the addition of this edge, it is enough to consider
cl(Xi, X;). Therefore, the change in divergence can be locally computed.

Example 5.1. Let us consider the Kikuchi approximation shown in (5.12). This ap-
proximation corresponds to the independence graph shown in Figure 5.1.

h(x) = p(x1, 2, 23)p(x3, 24, T5)p(21, T6, T7)P(T5, T6, T8)P(T9)

p(@1)p(as)p(zs)p(we) (5.12)

Notice that there are five maximal cliques, as well as their overlappings. Now we consider
the effect that the addition of two different edges to the independence graph has on the
new Kikuchi approximation.

Equation (5.13) shows the new Kikuchi approximation obtained after adding edge Xa ~
X4. The equation has been factorized into two main terms. The first term is formed by

ol

5 Learning Kikuchi approximations from data

Figure 5.1: Example of an independence graph.

cliques that contain variables in cl(X3, X4). The second term is formed by the ones that
only contain variables in (X \ cl(X2, X4).

k1(x)
_ p(w1, 2, 3)p(x3, 24, 25)p(X2, T3, T4)p(21, T, T7)P(T5, T6, T8)p(T9)
p(w2, 23)p(x3, £4)p(21)p(23)p(25)

" plao) (513)

Equation (5.14) shows the new Kikuchi approximation obtained after adding the edge
Xg ~ Xg to the graph in Figure 5.1. In this case, a size two clique of is added to the
factorization.

ko(x) = p(x3, 4, 25)p(T2, 73, 24)p(T1, 6, T7)p(T5, T6, T8)P(T8, T9)
p(x5)p(ze)p(Ts)
Pz, 22, 23)

p(e)p(as) (5:14)

From the comparison between the Kikuchi approximations k1(x) and ks(x) obtained in
Example 5.1, and the original Kikuchi approximation k(x), it can be seen that the second
main factor of k1(x) (respectively of ko(x)) containing variable Xg (repectively X, Xo
and X3) was already present in Equation (5.12). As proven in Theorem 5.2, the addition
of one edge only causes changes in cliques that contain variables in the closure of the
vertices that form the edge. The choice of the edge to be added determines the extent of
the necessary modification to the original clique-based decomposition. With X 4 being

52

5 Learning Kikuchi approximations from data

the region to be added, in Equation (5.13) only one clique belongs to X \ ¢l(X4). In
Equation (5.14), three cliques belong to this region.

5.4 Algorithms to learn Kikuchi approximations from data

Theorem 5.2 enables the reuse of the marginal probability distributions already calculated
for variables that are in regions that do not contain variables cl(X;, X;). The rest of the
regions are recalculated as the intersections of the maximal cliques, and their overcounting
values are found using Equation (4.4). The initial maximal cliques produced by the
addition of the edge are created finding subsets of maximal cliques that are joined both
to X; and Xj.

Corollary 5.3 also facilitates the design of an algorithm to learn the Kikuchi approxima-
tion from data by changing only one edge at a time. The pseudocode of the algorithm
to update the Kikuchi approximation is shown in Algorithm 5.2.

Algorithm 5.2: Updating the Kikuchi approximation by X; ~ X, addition

1 Separate the regions corresponding to the current Kikuchi approxima-
tion k(x) into two sets O and Q). O contains regions with variables in
X\ el(Xj, X;). The remaining set of regions is called Q.

2 Form the set S with the intersections between every possible pair of
maximal cliques in @), such that one of the two cliques contains X; and
the other one, Xj;.

Add variables X; and X to every clique in S.

Find the set of new regions @ from the maximal cliques in .S and the
rest of maximal cliques that do not contain X; or Xj.

5 Calculate the cg values for the cliques in @ applying Equation (4.4).
Remove cliques with cg = 0 from Q).

7 From the union of regions in O and @, compute the new Kikuchi
approximation k'(x).

Example 5.2. This example presents the application of the steps shown in Algorithm 5.2
to the initial Kikuchi approximation k(x) presented in Example 5.1, when edge Xo ~ X4
is added.

93

5 Learning Kikuchi approximations from data

Step 1 O = {{Xe¢}, {Xo}}
Q = {{X1, X2, X3}, { X3, Xy, X5)}, { X1, X6, X7}, { X5, X6, X5},
{ X1 { X5} {Xs}}
Step 2 S = {{X3}}
Step 3 S= {{X27X37X4}}
Step 4 Q = {{Xl, XQ, Xg}, {Xg, X4, X5)}, {XQ, X3,)(4}7 {Xl, XG, X7},
{ X5, X6, Xs}, {Xo, Xa}, { X3, Xa}, {X0},{ X5}, {X3}}
Step 5 CQ:{1,1,1,1,1,1,—1,—1,—1,—1}
Step 6 The final Kikuchi approximation is shown in Example 5.1, Equation 5.13

5.4.1 Search methods

We now present a greedy-based local search method to find the Kikuchi approximation
that optimizes the score.

Every possible subgraph of the independence graph G = (V, E) has a different set of
maximal cliques and thus represents a different Kikuchi approximation. There are 27!
possible Kikuchi approximations corresponding to every subset of edges of G. When no
information is available in the form of an independence graph, we assume that all the
edges could be added. Therefore, the maximum number of edges that can be considered

for addition are n(nQ—l)‘

The local search procedure is a greedy algorithm that, at each iteraction, analyzes all
possible one-edge additions to the current graph. Solutions are transformed into clique-
based decompositions and the corresponding Kikuchi approximation is evaluated using
Equation (5.2). Transition to the Kikuchi approximation with the best score is done if its
score is better than the current one. The algorithm ends when improvement is not higher
than a given threshold . The pseudocode is shown in Algorithm 5.3. The algorithm
begins with an empty graph.

5.5 Applications of the learning algorithm

Algorithm 5.3 can be applied to learn probability models from data. The convenience
of applying the learning algorithm is given by the fact that it allows an alternative
representation to traditional models. As discussed in Chapter 4, the complexity of the
Kikuchi approximation depend on the size of the maximum clique of the graph and the
cardinality of the variables. The complexity of other models depend on the size of the

o4

5 Learning Kikuchi approximations from data

Algorithm 5.3: Kikuchi approximation learning algorithm

Start from a complete disconnected graph.

do {

Calculate marginal probabilities for the cliques of the graph.
besty, = 0.

Mark all vertices in the graph to be updated.

D v N L ¥~

For every disconnected pair of vertices (X, X;) in which at least one
of the vertices has been marked for updating.

Calculate the Kikuchi approximation of cly (X;, X;).
Add edge (X; ~ X;) to the graph.
Calculate the Kikuchi approximation of cla(X;, X;).
10 Calculate the gain in the approximation g(cli,cls) using a score
metric (e.g. Equation (5.2)).
11 If g(cly, cla) > besty, then besty = g(cly, cla).
12 If besty > 1.
13 Add the corresponding edge (X; ~ X) to the graph.
14 Mark all vertices in cl(X; ~ X;) to be updated and unmark the rest.
15} until best, < 7.

maximum clique of the triangulated graph. Additionally, partial Kikuchi approximations
can be used to approximate only some groups of variables corresponding to regions of
the graph.

There is a number of contexts where this problem rises. One example is optimization.
Given the results achieved by EDAs that use Kikuchi approximations learned by means
of independence tests, the use of the Kikuchi learning algorithm in this context is a
promising research area. One step to study the convenience of applying the learning
algorithm in optimization is the study of probability distributions calculated from fitness
functions. In this sense, a natural candidate is the Boltzmann distribution. Similarly,
Kikuchi approximations learned from probability distributions encoded by Bayesian net-
works serve to study the differences between these two types of models. In this thesis,
we present results on the use of Algorithm 5.3 for approximating the Boltzmann distri-
bution calculated from a fitness function and learning Kikuchi approximations of points
generated from Bayesian networks.

The learning algorithm can be employed in supervised classification problems by consid-
ering the class variable part of the joint distribution and using its conditional probability
given the rest of variables to classify incumbent points. Given a classification prob-
lem where X1,...,X,_1 are the predictive variables and X, is the class variable with r

99

5 Learning Kikuchi approximations from data

possible values, the Kikuchi approximation k(x) is learned from the empirical joint proba-
bility distribution calculated from the data. Given the values of the predictive variables,
classification is done by selecting the highest Kikuchi value of the class variable from
k(xn | 21,y Tp_1) = H

Algorithm 5.3 can be modified by considering the gain in the classification accuracy given
by the inclusion of each edge during the search. However, this approach would clearly
be more expensive than the use of the KLD.

5.6 Experiments

Experiments investigate the performance of Algorithm 5.3 in learning Kikuchi approxi-
mations of distributions generated from Bayesian networks and Boltzmann distributions,
and in the solution of classification problems. In the first set of experiments, the Kikuchi
approximation is learned directly from the known exact joint probability distribution.
The use of the exact distribution allows us to focus on the ability of the learning algo-
rithm to find accurate Kikuchi approximations, giving an exact measure of the divergence
between the target distribution and the approximations.

In the rest of the experiments, the exact probability distribution is not available. A
dataset is used instead. Marginal distributions are learned from the dataset using max-
imum likelihood estimation. The divergence is calculated between the empirical distri-
bution and the Kikuchi approximation. In the classification experiments, the KLD is
minimized and, in every step, the classification accuracy of the best approximation is
determined.

5.6.1 Bayesian network Asia

The aim of the first experiment is to calculate the Kikuchi approximation of a well-known
Bayesian network. We analyze the behavior of Algorithm 5.3 for the Asia network
(126), which calculates the probability of a patient to have tuberculosis, lung cancer
or bronchitis based on a number of factors. The structure of the network is shown in
Figure 5.2.

First, the joint probability distribution determined by the Bayesian network is calcu-
lated from the conditional distributions. A minor modification is done to the conditional
probabilities to guarantee that the joint distribution is positive. Conditional probabil-
ities equal to zero are replaced by 1078, and complementary probabilities are modified
accordingly. This is our target probability distribution p(x). It is defined on a domain
of eight binary variables. The joint probability distribution can also be calculated using
the factorization determined by a triangulation of the graph. Figures 5.3a) and 5.3b)
respectively show the moralized graph and a possible triangulation of the Asia network.

o6

5 Learning Kikuchi approximations from data

Figure 5.2: Asia network.

Figure 5.3: a) Moralization of the Asia network; b) One possible triangulation.

Initially, the learning algorithm is applied using the score D(p||k) presented in Sec-
tion 5.2.1. The learning algorithm receives the joint probability distribution p(x) and
outputs a Kikuchi approximation in the form of a clique-based decomposition of the
independence graph. The stop criterion value v is set at 0.001.

Figures 5.4 and 5.5 show the values that describe the accuracy of the approximation at
each step. Figure 5.6 b) shows the edges that are added at each step of the algorithm.
Each time an edges is added we have a different Kikuchi approximation.

The analysis of Figures 5.4, 5.5, and 5.6 reveals that the algorithm can learn accurate
factorizations of p(x) that are not probability distributions. During the first seven steps
the approximations are probability distributions. At iteration 8, the learned Kikuchi
approximation does not correspond to a probability distribution. However, D(p||k) is
smaller than in the previous iteration. The corresponding distribution p(x) also gives a
better approximation than the factorization obtained in the previous iteration. Although
the D(p||k) value corresponding to iteration 9 indicates that an improvement has been
achieved in the approximation, the calculation of D(p||p) shows that p(x) does not im-
prove the results achieved at the previous step. We conclude that D(pl||k) is not always
a good indicator of the accuracy of p(x). It serves as a rough estimator.

Finally, we find the Kikuchi approximations calculated from the clique-based decompo-
sitions computed using the structures of the initial undirected and moralized graphs.

o7

5 Learning Kikuchi approximations from data

D(pl|k)

Iterations

Figure 5.4: Kullback-Leibler divergence between p(x) and the Kikuchi approximation at
different iterations of the learning algorithm.

1.2

0.8
D(plp) 0.6
0.4

0.2

12

Iterations

Figure 5.5: Kullback-Leibler divergence between p(x) and the normalized Kikuchi ap-
proximation at different iterations of the learning algorithm.

o8

5 Learning Kikuchi approximations from data

a) b)
Figure 5.6: Kikuchi approximations of Asia network: a) Computed from the undirected
graph; b) Learned by the algorithm.

In Table 5.1, different statistics corresponding to the probability distributions are pre-
sented. The table shows this information about the original probability distribution (E),
the Kikuchi approximations calculated from the undirected (U) and moralized (M) graph,
and the Kikuchi approximations learned by the learning algorithm (A).

In the table,) k(x) refers to the sum of the probabilities of the distribution or Kikuchi
approximation. This value is 1 only when k(x) is a probability distribution. D(p||k)
is the divergence between p(x) and k(x). For the cases where k(x) is not a probability
distribution, we include an additional row where the D(p||p) value is also shown. This
allows us to appreciate the change due to the probability normalization. The last colums
of the table represent the univariate marginal values of k(x) for all the variables. Notice
that, since the univariate values do not necessary add up to 1, both values need to be
shown. The former row shows the values for k(X; = 0) and the latter, k&(X; = 1).

The approximation achieved from the moralized graph is better than the one calculated
from the original undirected graph. At least from this Bayesian network, it is clear that
the dependencies represented in the moral graph cannot be discarded without incurring
an important increase in the approximation error. Another conclusion is that the ap-
proximation achieved from the moral graph is only slightly better than the one achieved
with the learning algorithm. Whenever the graphical structure of the probabilistic de-
pendencies arising in the data, in the form of an undirected graph, is available, it can be
used to find the corresponding clique-based decomposition and the associated Kikuchi
approximation.

5.6.2 Approximation of Boltzmann probability distributions

The objective of the following experiment is to evaluate the performance of the learning
algorithm in the approximation of a Boltzmann distribution. This type of distribution is

99

5 Learning Kikuchi approximations from data

S kx) Dk fa ks kr kL ks ke Tix kD

E 1.0000 0.0000 0.9900 0.5000 0.9896 0.9450 0.55 0.9352 0.8897 0.5640
0.0100 0.5000 0.0104 0.0550 0.45 0.0648 0.1103 0.4360

U 1.0074 00332 1.0498 05302 1.0483 0.9952 05825 0.9849 0.9372 0.5971
0.0106 0.5302 0.0121 0.0652 0.4780 0.0755 0.1232 0.4633

1.0000 0.0406 0.9900 0.5000 0.9886 0.9385 0.5493 0.9288 0.8838 0.5631
0.0100 0.5000 0.0114 0.0615 0.4507 0.0712 0.1162 0.4369

M 1.0024 —0.0015 0.0138 05120 1.0134 0.9650 0.5629 0.9550 0.9056 0.5799
0.0102 0.5120 0.0136 0.0590 0.4611 0.0690 0.1154 0.4441

1.0000 0.0015 0.9900 0.5000 0.9896 0.9424 0.5497 0.9326 0.8673 0.5663
0.0100 0.5000 0.0104 0.0576 0.4503 0.0674 0.1127 0.4337

A 1.0030 —0.0011 0.9929 05015 0.9926 0.9452 0.5513 0.9354 0.8899 0.5680
0.0100 0.5015 0.0104 0.0578 0.4516 0.0676 0.1130 0.4350

1.0000 0.0019 0.9900 0.5000 0.9896 0.9424 0.5497 0.9326 0.8873 0.5663
0.0100 0.5000 0.0104 0.0576 0.4503 0.0674 0.1127 0.4337

Table 5.1: Original distribution and three Kikuchi approximations of the Asia network.
Statistics are calculated from the original probability distribution (E), the
Kikuchi approximations calculated from the undirected (U) and moralized
(M) graph, and the Kikuchi approximations learned by the learning algorithm

(A).

usually employed in statistical physics associated with the system energy. It represents

a different domain of application to the Bayesian network example treated before.

Our objective is to define a Boltzmann distribution. We start from the following function

fa(x).

Function f4(x) is used in the definition of function f(x), where x = (z1,...

fa(x1, xa,23) =

tuple of eight binary variables.

0.9 for

0.8 for
0.0 for

1.0 for

1+ 22+ 23 =0
T1+ax9+x3=1
r1+ 22 +x3 =2
T+ To+x3=3

f(x) = fa(x1, w2, 23) + fa(x3, 24, 75) + fa(w1, 26, 27) + fa(25, 76, 28)

Finally, the Boltzmann distribution is defined using f(x),

(5.15)

,xg) is a

(5.16)

(5.17)

where T is the temperature of the system, and Z(T'), the corresponding partition func-

tion.

60

5 Learning Kikuchi approximations from data

Figure 5.7: Edges of the graph in the order in which the Kikuchi approximation learning
algorithm learns them.

We consider T' = 1. When calculating the Boltzmann distribution, the whole space of
solutions has been taken into account. This implies 256 points. The choice of the f;
function for each definition set of f(x) determines the probabilistic dependencies among
each subset of variables within the same definition set. The largest connected component
in Figure 5.1 shows the independence graph corresponding to the Boltzmann probability
model.

Figure 5.7 shows the learned edges numbered according to the order in which Algo-
rithm 5.3 learned them. Figure 5.8 shows the Kullback-Leibler divergence D(pl||k) at
different steps of the learning algorithm.

After studying both figures, the change in D(p||k) due to the addition of each edge can be
seen. The Kikuchi approximation at iteration 7 is formed by edges 1,...,7. The Kikuchi
approximation at iteration 12 is not a probability distribution. In fact, it corresponds to
the Kikuchi approximation shown in Equation (5.12), but excluding factor p(xg) from the
equation. At iteration 13, the algorithm adds an edge that is not in the original graph.
The addition of this edge produces a triangulated graph. Hence, the approximation is
exact with D(p||k) = 0.

This case is an example where the Kikuchi approximation can approximate the Boltz-
mann distribution well. In this case, the Kikuchi approximation is the second best one
after the exact probability distribution obtained from the triangulated graph. The ex-
ample also illustrates that the learning algorithm is able to find this approximation.

61

5 Learning Kikuchi approximations from data

0.35

' Learnind a\gorithm‘ —_—

0.3 B

0.25 | 4

0.2 B

D(pllk)

0.1 4

0.05 | B

Iterations

Figure 5.8: Kullback-Leibler divergence D(p||k) at different iterations of the algorithm
that learns the Kikuchi approximation of a Boltzmann distribution.

rivingSkill ///l/m
ThisCarCost
el \\ i
(@)

GherCarCos

L sl] S st Sh
e i S

Cushionin,

Figure 5.9: Insurance network structure.

62

5 Learning Kikuchi approximations from data

5.6.3 Results in the approximation of empirical distributions in large
datasets

We present experiments with the Insurance network (26). The purpose of this network
is to evaluate the expected cost of insuring an automobile driver. There are 12 observable
nodes, 12 hidden nodes, and 3 query nodes. The observable nodes correspond to questions
that a typical insurance agent would ask any prospective client. The hidden nodes
correspond to variables that cannot be observed, but can be reasonably inferred. The
query nodes represent the expected cost of insuring a driver, divided into property cost,
medical costs, and legal costs. The network, which is shown in Figure 5.9, has 52 arcs.

The goal of our experiment is to evaluate the performance of the learning algorithm
when the size of the dataset is increased. A dataset of 10,000 cases, generated from
the Insurance network using PLS, is employed. The empirical probability distribution
calculated from the dataset is denoted p(x).

We apply the learning algorithm to appproximate p(x). We require that the difference
between two successive values of the KLD be less than 0.005. This way, we try to avoid
the phenomenon of overfitting. Figure 5.10 shows the KLD at different iterations of the
algorithm. The stop condition is satisfied after 92 iterations. It can be seen that the
KLD rapidly decreases with iterations. The best KLD is 1.4591, which is considerably
smaller than the initial value, 12.3315, obtained for the complete disconnected network.

— Learning algorithm

L L L L L L L L L
0 10 20 30 40 50 60 70 80 £ 100
Iterations.

Figure 5.10: Kullback-Leibler divergence D(p||k) at different steps of the algorithm for
learning the Kikuchi approximation of the Insurance network.

We investigate the type of Kikuchi approximations that the algorithm learns at each
step. The first Kikuchi approximation that is not a probability distribution is achieved
at iteration 74. This means that good approximations of the probability can be achieved
in the space of the probability distributions. One reason that could explain this behavior

63

5 Learning Kikuchi approximations from data

Figure 5.11: Subgraphs from the Insurance network. a) Learned by the algorithm; b)
Moralized subgraph.

for the Insurance network is that there are few loopy regions in the graphs obtained at
each generation. The first size 3 clique is formed at iteration 32.

In order to thoroughly analyze the implications of reaching, at step 74, a Kikuchi ap-
proximation that is not a probability distribution, we extract one relevant subgraph from
the current graph kept by the algorithm at this iteration. This subgraph, which is shown
in Figure 5.11 a), contains all the edges to which node X, is connected. Additionally,
other nodes not connected to Xy are shown for reasons explained below. Dashed edges
correspond to edges that are not in the original moralized subgraph of the Insurance
network. Therefore, the algorithm was able to learn from the data all the remaining
edges that were in the original moralized subgraph.

Node X4 is the one that determines that the Kikuchi approximation at iteration 74 is
not a probability distribution. Equation (5.18) shows part of the Kikuchi approximation
obtained at iteration 74. As this is only a part of the Kikuchi approximation, we have
called it k*(x5). Notice that, to obtain this valid Kikuchi approximation, it was necessary
to multiply by factor p(z4). X4 is the only clique in the clique-based decomposition
obtained as an overlapping of overlappings. The inclusion of p(z4) is the only way to
guarantee that the overcounting number associated with X, is 1.

p($2, T4, 9616)1?(332, T4, 3?17)]9(904, Zg, xlo)p(M, Z15, 9616)17(1’47 Z15, xl?)
P, 1) plaa, 15) ' p(aa, 216)*p(24, T17)?
(x4, 16, T23)p(T4, T17, T23)
(4)

P4, 23)"

K (xs) =

(5.18)

64

5 Learning Kikuchi approximations from data

In Figure 5.11, we have included some nodes that are not connected to X4 in order to
compare the graph learned by the algorithm and the original moralized graph. The mor-
alized graph is shown in Figure 5.11 b). Notice that the size of the maximum clique in
the moralized graph is 4. The maximum clique of the graph obtained after the triangu-
lation of the Insurance network is expected to be greater than 4. However, the Kikuchi
approximation obtained after 92 iterations has a size 3 maximum clique. One of the main
advantages of using the Kikuchi approximation is that it can avoid the computational
complexity associated with the increase in the dimension of the cliques after moralization
and triangulization.

5.6.4 Classification experiments

For the classification experiments, we use the Zoo and King and Rook against Black
King (KRK) databases'. The 10 cross validation scheme (212) is used to validate the
models. The Kikuchi approximation is learned using 9 of the 10 data slots and used to
classify the other one. The process is repeated another 9 more times each time a different
slot for classification. Accuracy is the ratio between the number of correct classified cases
and the total number of cases. When a case is classified in more than one class, the score
is divided among all these classes.

Description of the databases

The Zoo database describes 101 animals using 15 Boolean attribute variables (hair, feath-
ers, milk, etc...) and one numerical variable (number of legs). The class variable has 7
possible values that describe the classes where animals can be grouped.

The KRK database (12) is a chess endgame database. In this game, black cannot win and
is unable to draw at dephs greater than zero. Each case stores information about the
current positions (row and column) of three chess pieces (white king, white rook, and
black king). These are the 6 attribute variables. The class variable is the number of
moves (between 0 and 16) needed for white to win or draw (draw is represented with
an additional value “draw”). Minimax optimal play is assumed to calculate the number
of moves from the board configuration. This sort of database has been used in the
Inductive Logic Programing framework (155). These systems are provided no only with
the coordinates of the pieces but also with background knowledge about the problem in
the form of row and column differences between the pieces. The database is automatically
learned, and symmetry in the space of positions of an endgame is exploited in an attempt
to minimize storage size and generation complexity for that endgame (12).

! These databases are available at the UClL repository database
http://www.ics.uci.edu/~mlearn/MLSummary.html

65

5 Learning Kikuchi approximations from data

Results for the Zoo database

Figure 5.12 shows the KLLD and the classification accuracy of the Kikuchi approximation
learned at each iteration of the learning algorithm. As the KLD is minimized, the
accuracy of the classifier tends to increase. At iteration 15, accuracy stops improving but
the KLLD keeps decreasing on. At generation 20, accuracy slightly deteriorates. From
this example, we corroborate that accuracy does not necessary improve with the KLD.
Another interesting result is that the first 13 learned edges are between the class variable
and the rest of the 16 atribute variables.

D(pl[k)
Accuracy

L L L L L L L
0 5 10 15 20 25 0 5 10 15 20 25
Iterations Iterations

a) b)

Figure 5.12: Zoo database: a) KLD and b) accuracy at different steps of the algorithm
for learning the Kikuchi approximation.

Results for the KRK database

The KRK database is very difficult to learn. It has 18 classes and 28056 cases. Additionally,
the cases are irregularly distributed among the classes, with 3 classes with fewer than
100 cases each and 9 classes with more than 1500 cases each. We define 3 different
classification problems from this database. In all the problems, the task is to predict the
number of moves to win. The first problem considers only 5 values for the class variable
(they represent configurations that lead to win in 0,...,4 steps). Similarly, problems
2 and 3 consider 9 and 18 values for the class variable. The number of cases for each
problem is shown in Table 5.2.

Table 5.2 also shows the iteration where the Kikuchi approximation with the best ac-
curacy has been reached. The accuracy and the KLD learned at this iteration are also

66

5 Learning Kikuchi approximations from data

Init Problem 1 Problem 2 Problem 3
N. classes 5 9 18
N. instances 630 5521 28056

Iter.| KLD | Acc. | Iter. | KLD | Acc. | Iter. | KLD | Acc.
Kikuchi & 11.1983 | 0.59 10 | 1.2675 | 0.56 121 0.3809 | 0.44
17 1 0.0002 | 0.25 171 0.0784 | 0.25 16 | 0.0064 | 0.41

Table 5.2: Results of the algorithm for learning the Kikuchi approximation in the KRK
database.

shown. These results are presented in the row corresponding to the Kikuchi approxima-
tion. In the next row, we present the KLLD achieved at the last iteration of the algorithm,
and its corresponding accuracy.

The decrement in the KLD is mainly due to interactions between the attribute variables.
Therefore, there is no strong relationship between the KLD minimization and the increase
in accuracy. The increase in the model’s complexity during learning points out the need
to use a complexity measure to avoid too complex models. This is particularly important
when the cardinality of variables is very high. In these cases, a link in the graphical model
accounts for an important increase in the number of parameters that need to be stored.

However, as mentioned before, KRK is a very particular database, where the relationship
between attribute and class variables is very intricate and where the incorporation of
additional information about the problem knowledge seems to be critical for accurate
prediction results.

5.7 Conclusions

In this chapter, we have introduced an algorithm to learn Kikuchi approximations from
data. In comparison with two previous approaches that exist for this problem, the
proposal introduced has a number of advantages:

e In contrast to the Kikuchi-Bayes method used for classification tasks, the Kikuchi
learning algorithm takes advantage of the theoretical properties satisfied by the
clique-based decomposition to use the Kullback-Leibler divergence as a scoring
metric that can be efficiently optimized by locally updating the current approxi-
mation.

e In comparison with the learning method based on independence tests, the Kikuchi
learning method does not need the use of heuristic methods to make the graph

67

5 Learning Kikuchi approximations from data

sparser in order to avoid an increase in the dimension of the cliques beyond a
feasible limit. Additionally, local and global search methods can be used to find
appropriate Kikuchi approximations.

The metric chosen in the chapter is the Kullback-Leibler divergence. Nevertheless, the
properties fulfilled by the Kikuchi approximation can prove decomposability properties
for other measures, like the equivalent of the likelihood. Potentials applications of the
Kikuchi learning algorithm and research topics that are worth future attention include
the following;:

1. Other graphical representations (e.g. factor graphs) can be used to represent the
Kikuchi approximation and to define more general learning algorithms.

2. The learning algorithm introduced is a natural candidate to learn mixtures of
Kikuchi approximations by means of the expectation maximization (EM) algo-
rithm.

68

6 Region-based decompositions,
propagation and abductive inference in
optimization

6.1 Introduction

Recently, certain developments in probabilistic graphical models have extended the class
of models that can be used to model probability distributions, and have introduced
new algorithms for inference based on these models. In this chapter, we show how these
results can be used to improve the use of graphical models in optimization. We introduce
a number of proposals that expand the type of models and algorithms based on graphical
models that can be used for optimization.

The analysis presented in this chapter focuses on a number of research trends that we
consider relevant for the work in optimization. They are summarized in the following
list:

Development of inference algorithms in graphs with cycles.

Use of region-based approximations.

Study of the properties of propagation algorithms for different graph topologies.

Design of methods for abductive inference.

In Section 3.2.3, we have reviewed a number of early applications of the research trends
listed above to optimization. In Chapters 4 and 5, we presented results on the use of
region-based decompositions to approximate probability distributions. Now, we present
a number of other ways in which optimization algorithms can use these results. The
chapter is organized as follows. In the next section, a framework for the characterization
of EDAs is introduced. Different EDAs are grouped according to the way the probabilistic
model is learned and sampled. In Section 6.3, we study learning and sampling in region-
based approximations and how these methods can be inserted and combined with other
approaches in EDAs. Finally, Section 6.4 presents the conclusions of our work and some
lines for further research.

69

6 Region-based decompositions, propagation and abductive inference in optimization

6.2 Generalized EDAs based on undirected graphs

Algorithm 6.1: Generalized EDA

1 Set t <= 0. Generate M points randomly.

2 do{

3 Select a set S of N < M points according to a selection method.

4 Learn an undirected-graph-based representation of the dependen-
cies in S.

5 Using the graph, determine a class of graphical model or approxi-
mation strategy to approximate the distribution of points in S.

6 De‘herlmine an inference algorithm to be applied in the graphical
model.
Generate M new points from the model using the inference method.

8 t<=t+1

} until Termination criteria are met.

©

We start with the introduction of a generalized EDA that analyzes, from a unified per-
spective, several of the developments of EDAs. We constrain our analysis to EDAs based
on undirected graphical models. The pseudocode of the generalized EDA, shown in Algo-
rithm 6.1, also serves as a framework for the description of the algorithms introduced in
this chapter. Based on this generalized framework, we compare the proposals introduced
with previous works.

There are a number of specific features of the generalized EDA. One important charac-
teristic is that it allows the use of different classes of graphical models at each generation.
This is motivated by the fact that the distributions of points in the selected set could
be very different at each stage of the evolution. These differences can, in some cases, be
captured by probability approximations arising from the same class of graphical models.
However, in many cases, one class of graphical models is more suitable than others to ap-
proximate the distribution at one generation, while the opposite situation can happen at
another generation. This fact can be seen by analyzing the structure of the probabilistic
models learned at different generations, as has been done in (19).

The dynamic change of the probabilistic model would require an automatic procedure to
select among the different types of graphical models. The topological characteristics of
the undirected graphs learned are plausible information for this decision. The number,
size, and cardinalities of the variables of each clique are three of the issues that determine
the feasibility of the model for estimating the marginal probabilities and sampling new
solutions. Once the model has been chosen, different types of sampling algorithms can
be employed.

We analyze the main components of Algorithm 6.1 in detail.

70

6 Region-based decompositions, propagation and abductive inference in optimization

(1) @

(2) (3) ® ®
5> %6 0%e

a) b) c)

Figure 6.1: a) Cyclic graph; b) Tree shaped graph; ¢) Graph without edges.

Example 6.1. Figure 6.1 describes an example of the different types of graphs that
can be learned by EDAs. This corresponds to a problem with six variables. At initial
generations, many dependencies between the variables are usually detected. This case
may be represented by the graph shown in Figure 6.1 a). As evolution advances and
diversity of the population is lost, fewer dependencies may be detected and the graph
can be chordal or easily triangulated. This is the case represented in Figure 6.1 b), where
a tree shaped model is presented. Eventually, the population will converge to a single
solution and diversity will be lost. This case is shown in Figure 6.1 ¢), where the absence
of edges between vertices mean that variables are independent.

6.2.1 Learning of the undirected graph

Although the scheme we have proposed to analyze the different alternatives of learning
and sampling in EDAs is based on undirected graphical models, this scheme could be
generalized to cover algorithms that employ directed graphical models.

We will assume that the undirected graph encodes the dependence/independence re-
lationships between the variables. The graph can be learned from data by means of
score+search methods or using independence tests. When independence tests are used,
it is important to take into account that the final graph may have cycles, which is not
the case in traditional applications of score+search methods.

In (190), an algorithm that constructs the independence graph by means of the applica-
tion of Chi-square independence tests has been used to learn Kikuchi approximations. In
this thesis, the algorithm used to learn the undirected graph employs the mutual infor-
mation between variables. The pseudocode of the algorithm is shown in Algorithm 6.2.
The algorithm receives as an input parameter a threshold value . This value is used
to select those edges that will be removed from the graph. < is used to measure the
strength of the interactions measured by the mutual information values. When variables
have different numbers of values, the mutual information values should be normalized
before the selection of the edges.

71

6 Region-based decompositions, propagation and abductive inference in optimization

We consider two variants of the algorithm. The first variant considers cases in which
problem information about the interactions between variables is available. In other words,
instead of calculating the mutual information for all pairs of variables, it only does so
when there is evidence of interaction between variables. This way, fewer parameters must
be learned.

The second variant resembles the method used when learning the maximum weight span-
ning tree from a matrix of mutual information (49). Edges are selected according to their
weight until all the nodes of the graph that have at least one edge have been added. The
difference from the method for learning the tree structure is that cycles are allowed in
the latter.

Algorithm 6.2: Algorithm for learning the independence graph

1 Compute the univariate and bivariate marginal frequencies p(x;) and
p(x;, z;) of S.
i i S p(zi,z;)
2 Calculate the mutual information value MI; ; = le% PERIIER for
each pair of variables.
8 The undirected graph will be formed by those edges whose correspond-
ing mutual information is above a given threshold ~.

6.2.2 Determining the class of approximation strategies and graphical
models

For this analysis, we will assume that the undirected graph is given and not reducible (i.e.
the existence of an edge implies that the pair of variables is not independent given the
rest of the variables). This assumption might be violated by the algorithm that learns
the undirected graph, but it is convenient for the analysis that follows.

The determination of the class of graphical models to be employed depends on a number
of factors. Since modeling is usually based on a factorization of the probability distri-
bution in marginal and conditional probability factors, the size of the factors play an
important role in the feasibility of the approximation. One important condition for these
factorizations to be feasible is to constrain the size of the marginal tables. This size is the
product of the cardinality of each variable in the table minus one. Another issue related
to the complexity of the approximation is the number of cliques which it comprises.

Therefore, one way to choose among the class of possible approximations is to constrain
the size of the largest marginal table as well as the number of factors.

The first step is to calculate all the maximal cliques of the graph and determine the size of
the probability tables. To simplify our analysis, we will assume that all the variables have

72

6 Region-based decompositions, propagation and abductive inference in optimization

Graphs Graphical model Inference Approximation

exact graph univariate PLS exact
univariate MPC exact
junction tree PLS exact
junction tree MPC-BP exact

junction graph PLS approx.

junction graph MPC-BP approx.

clique-based Kikuchi approx. GS approx.

Bethe approx. MPC-loopy BP approx.

Kikuchi approx. MPC-generalized BP approx.

subgraph univariate PLS approx.

univariate MPC approx.

junction tree PLS approx.

junction tree MPC-BP approx.

junction graph PLS approx.

junction graph MPC-BP approx.

clique-based Kikuchi approx. GS approx.

Bethe approx. MPC-loopy BP approx.

Kikuchi approx. MPC-generalized BP approx.
triangulated graph junction tree PLS exact
junction tree MPC-BP exact

Table 6.1: Approximation strategies, graphical models, and inference methods to be em-
ployed by EDAs based on undirected graphs.

73

6 Region-based decompositions, propagation and abductive inference in optimization

the same cardinality and, therefore, the largest table will correspond to the maximum
clique of the graph. The analysis can be generalized to the case where variables have
different cardinalities. If the graph is triangulated, and the maximum clique of the graph
fulfills the complexity constraint, any of the alternatives listed in Table 6.1 as exact graph
could be applied. Notice that univariate factorizations are a particular case of junction
trees, which, on the other hand, are a particular case of junction graphs.

If the graph is not triangulated, then one possibility is to triangulate, calculate the
maximum cliques of the graph, evaluate whether the complexity constraint is fulfilled for
the triangulated graph, and in that case, apply any of the alternatives listed in Table 6.1
as triangulated graph. Another possibility that avoids the use of triangulation is to use a
junction graph approximation (189), or a Kikuchi approximation of the probability that
uses a clique-based decomposition of the graph (see Chapter 4).

As analyzed in Chapter 4, region-based approximations are used in statistical physics to
calculate the free energy of the system. Since the use of region-based decompositions and
the design of suitable inference algorithms for their application is one the main goals of
this chapter, we analyze these topics in Section 6.3.

If the complexity constraint is not fulfilled in the original or in the triangulated graph,
then other types of approximation must be tried. One possibility is to simplify the graph
by spliting the largest cliques, something that can be done by removing edges. Another
possibility is to make the graph sparser in one step previous to the calculation of the
cliques. In (189; 190), this has been done by allowing a maximum number r—1 of incident
edges to each vertex. If one vertex has more than r — 1 incident edges, those with the
lowest weights (if available) are removed. This way, the size of the maximum clique will
always be smaller than or equal to . The refinement algorithm avoids introducing a bias
in the way the edges are removed. However, it has a main drawback: there could be
more than r — 1 variables depending on a single one, but the maximum clique where this
variable is included could be smaller than r. In this case, the procedure that eliminates
the edges would remove dependencies from the graph without a real need to do so. An
alternative to avoid this situation is to use score+search methods.

Maximal cliques of the graph

To find all the cliques of a graph, the Bron and Kebosch algorithm (38) is used. This
algorithm uses a branch and bound technique to cut off branches that can lead to cliques.
Once all the cliques have been found, they are stored in a list L, and their weights are
calculated from the information about the strength of interactions. When no information
is available, all the edges have identical weight. The weight of any subgraph G’ of G is
calculated as W(G") =37, ;e w(i, j)-

74

6 Region-based decompositions, propagation and abductive inference in optimization

6.2.3 Determination of the inference algorithm

There is one characteristic feature about the use of probabilistic graphical models in
optimization. The ultimate goal of learning the graphical model in optimization, par-
ticularly in EDAs, is to sample new solutions. In most other applications of graphical
models, the final goal is not sampling but doing inference in the presence of evidence,
or estimating the probability associated with a given configuration. This difference must
be taken into account in the analysis that follows. We will use a number of results that
can be conceived either to extend the class of models where inference is possible, or to
increase the efficiency of the inference algorithms. Therefore, the translation of these
results to a domain where the main objective is sampling is not always straightforward.

The most common method applied for inference in the context of EDAs is PLS. It starts
from an order of the variables imposed by the structure of the graphical model. Each
variable is sampled given the values assigned to its ascendants in the order. PLS can be
applied to the junction tree and junction graph, but it cannot be applied to any other
approximation listed in Table 6.1 because, in the general case it is not possible to find
an order of the variables for these approximations.

For Kikuchi approximations that use clique-based decompositions, Gibbs sampling can
be employed. In this case, the conditional probability distributions serve to determine
the transitions in the Markov chain. The drawback of using Gibbs sampling is that if
the most probable configuration has an exponentially small probability a large number
of configurations will need to be visited to hit the optimum. Sampling methods used
with region-based approximations are analyzed in the next section.

6.3 Learning and sampling from region-based
decompositions

In Chapter 4, we have considered the use of region-based decompositions to approximate
probability distributions that are sampled later using Gibbs sampling. In this chapter,
we focus on the application of these approximations for abductive inference within EDAs.

A first step in this direction is the work presented in (95). In this work, the definition set
is a subvector of the variables on which the ADF is defined, and the undirected graph
is the Markov network. A region-based decomposition of the graph is defined. Beliefs
are calculated using the subfunctions defined in each definition set. Belief propagation
is used to find a consistent probabilistic model. Using the beliefs obtained after the
belief propagation has converged, sampling takes place. As, in the general case, it is
not possible to find an order of the variables from the region-based decomposition, a
model building operator (called subfunction join or merge) is introduced before to do

75

6 Region-based decompositions, propagation and abductive inference in optimization

the sampling. This method adds edges but does not necessarilly fulfill the running
intersection property. Three aspects are worth being outlined:

1. The problem structure is given a priori.
2. GBP with marginalization is used.

3. Sampling is done using a subgraph from the initial graph.

Another development was presented in (96). This approach combines the use of Kikuchi
approximations with the application of GBP using maximization instead of marginal-
ization. It is shown that the combination of GBP with an algorithm to find the most
probable configurations of a loopy graphical model is an efficient solution to the Ising
model, which is the benchmark problem used in the experiments.

When the message passing algorithm has converged, this means that all regions are
consistent. In this situation, the maximum can be constructed by setting the variables
of each region at the values with maximal belief. Yet sometimes the algorithm does
not converge. In these cases, the regions are not consistent, and the beliefs could be
contradictory. To solve this task, an ordering of the maximal regions (those without
parents) is defined in (96). The order is used to estimate the maximum by setting, in
each region, the variables at the values with maximal belief, given the values chosen in
the previous step. This procedure is similar to the application of PLS for a junction
graph (189).

The main characteristics of this method are the following:

1. The problem structure is given a priori.
2. GBP with maximization is used.

3. The algorithm used for finding the most probable configurations is the one presented
in (164).

Additionally, experimental results presented in (96) are only for binary problems. We
introduce a new proposal to learning and sampling region-based decompositions from
data. Therefore, the general scheme of our proposal is presented in Algorithm 6.3.

The rationale of Algorithm 6.3 is to allow learning from data. In (95), the structure of the
function and the subfunctions of an additive function are given. However, in many real
black box optimization problems, this information is not available. Another difference is
the type of method used to find the most probable configurations.

In general, methods used to find the most probable configurations combine the application
of max-propagation with a particular partition of the solution space. The efficiency

76

6 Region-based decompositions, propagation and abductive inference in optimization

Algorithm 6.3: Learning and sampling region-based decompositions

Learn the undirected graph from the data.

Determine the region graph decomposition to be employed.

Find the marginal probabilities associated with each region.

Using the marginal probabilities, calculate the local potential in each
region.

5 If necessary, apply a propagation scheme to find consistent marginal
probability distributions.

6 If convergence is achieved, sample using an algorithm for finding the
most probable configurations. Otherwise, organize the sampling from
the inconsistent marginals.

] WO~

of the algorithm critically depends on the quality of the partition of the space used.
Nilsson’s algorithm (164), employed in (95) to find the most probable configurations,
needs O(kn) calculations of the max marginals (propagations), where k is the number of
configurations to be found. In this dissertation, we propose the use of the most probable
configuration algorithm introduced in (242), which only requires O(2n) calculations of
the max marginals. The main steps of this algorithm can be shown in Algorithm 6.4.
We have respected the notation used in (242).

Algorithm 6.4: Best max-marginal first (BMMF)

1 SCORE1(i,) = maw ;)= Pr(X = z|y)

2 x1(i) = argmax; SCORE (i, j)

8 CONSTRAINTS, =10

4 USEDy = 0

5 fort=2toT

6 SEARCH, = (i,j,s < t: xs(i) # j, (i, j, s) € USED,)

7 (it, jt, st) = argmaz; jsesparc, SCORE(i, j)

§ CONSTRAINTS; = CONSTRAINTS,, U{(z(ir) = j;)}
9 SCORE(i, j) = MaTy.0(i)=j,cONSTRAINTS, LT (X = zy)
10 x(i) = argmax;SCORE(i, j)
11 USEDyy1 = USEDU{(it, jt, 5¢) }
12 CONSTRAINTSs; = CONSTRAINTS,, U{(z(ir) # ji)}
13 SCORE;, (i,) = MaZy.4(i)=j,cONSTRAINTS,, (X = z|y)

7

6 Region-based decompositions, propagation and abductive inference in optimization

6.3.1 Other extensions

Propagation also allows information to be integrated from different sources. Belief avail-
able from different evolving populations (e.g. island models) can be passed into the main
graphical model as evidence. The search of a consistent model would be an alternative
way to combine information from different sources.

Another possibility is the use of partial information about the function. In cases where the
structure of the interactions is known only for some of the variables, the graphical model
can combine the information available with that learned from the data. Propagation of
evidence in the resulting model would lead to the generation of solutions that incorporate
the available information about the problem.

6.4 Conclusions
The main contributions of the work presented in this chapter are the following;:

e The application of the propagation has been extended to discrete variables.

e The structure of the problem is learned from data.

The approach allows the combination of information from different sources.

e A more efficient algorithm to calculate of the most probable configurations has
been introduced to EDAs.

The region-based decompositions are not learned a priori. They depend on the
graph structure.

The use of region-based decompositions is another important element of recent develop-
ment on the use of probabilistic models for optimization. In probabilistic inference, GBP
that uses region-based decompositions allows the free energy to be computed in cases
where loopy belief propagation algorithms do not converge.

There are a number of research trends where the work described in this chapter could
be applied. Most existing applications of region-based decompositions are constrained to
pair-wise Markov fields. Therefore, applications in optimization, where complex interac-
tions between sets of three or more variables can arise, are an interesting test field for
propagation methods.

Most probable configurations can be used to evaluate the convenience of using different
probability models in optimization. We can exactly calculate which are the most probable
configurations for a given model. Given the k most probable configurations of a model,

78

6 Region-based decompositions, propagation and abductive inference in optimization

it is possible to use the average fitness of the configurations as a measure to evaluate
the “efficiency” of the model to generate good solutions. This measure would enable
the evaluation of models learned from the same set of original solutions according to
their capacity to exploit the information learned. For instance, in (193), the role of
malign and benign dependencies is studied in the framework of EDAs. Most probable
configurations can further evaluate whether models that comprise only malign interations
are significantly different from those that only employ benign interactions.

79

Part Il

Protein problems

81

7 Computational protein problems

7.1 Introduction

In this chapter, we present the context of application of the results introduced in the
second part of the thesis. Optimization techniques based on graphical models will be
applied to protein problems. Therefore, we briefly analyze current research in the field
of computational biology, focusing on the application of machine learning techniques to
protein problems.

The chapter is organized as follows. In the next section the field of computational biology
is introduced, and some of its main research trends are described. Section 7.3 presents
the biological foundations of proteins. In Section 7.4, we discuss a number of issues
related to protein modeling. Several computational approaches to protein problems are
reviewed in Section 7.5.

7.2 Computational biology

Computational biology comprises the development and application of data-analytical and
theoretical methods, mathematical modeling, and computational simulation techniques
to the study of biological, behavioral, and social systems (50).

For practical purposes, the computational techniques applied to the biological domain
have been further divided into subdomains that include neuroinformatics, social models
and genetics. Similarly, the set of methods that can be included in computational biol-
ogy is very broad. They cover well-established data collection and validation procedures,
statistical tests to analyze these data, and machine learning techniques to model and sim-
ulate biological processes and extract relevant information from these data. This chapter
will concentrate on the study of machine learning approaches to biological problems.

In (123), biological problems where machine learning techniques can be applied are di-
vided into seven main categories: proteomics, genomics, microarrays, systems biology,
evolution, text mining, and other applications. This classification, which is relevant to
our analysis, is described in Figure 7.1, which reflects the overlapping between different
categories.

83

7 Computational protein problems

EVOLUTION
GENOMICS
GENE FINDING
:mngge“ TF Binding Sites
Splice
Phylogenetic tree Coding region
construction identification Alternative S ction Promoter Binding
splicing
Operon
Sequence assemble
1
COMPARATIVE Function MOTIF IDENTIFICATION SYSTEMS BIOLOGY
GENOMICS comparison
SNP's and linkage analysis
Signalnaling networks
Gene Gene function prediction RNA structure prediction
annotation Metabolic pathways
Word
Disambiguation
(V) Protein function prediction Protein structure prediction Genetic networks
= STRUCTURE
= FUNCTION PREDICTION PREDICTION
s >
Protein location prediction <
'_ Protein o
x annotation Protein-protein interaction z
u._l <
PROTEOMICS 2
o

OTHER APPLICATIONS

o
2 E
E 2 Mass espectrometry data Microarray data analysis
Z Y preprocesing
=y Microarray data
& 4 X Mass espectrometry data pre-procesing
Primer design YEZ analysis
X<
x5S

DATA

IMAGE ANALYSIS

Backtranslation Biomedical image analysis

Microarray image analysis

Figure 7.1: Classification of the topics where machine learning methods are applied.

84

7 Computational protein problems

Genomics and proteomics are understood as the study of nucleotide chains and proteins,
respectively. Microarrays refers to the application of computational methods to the man-
agement of complex experimental data derived from experiments, mainly from microarray
essays. Modeling biology includes the modeling of life processes that take place inside
the cell and of others of great interest, like biological networks (34). Evolution is un-
derstood as the application of machine learning techniques to the study of evolutionary
processes, particularly phylogenetic tree reconstruction. Text mining techniques cope
with the problem of extracting relevant information from the increasing amount of data
resulting from the growth in available publications. Other applications is an umbrella
term that covers the rest of applications like primer design for polymerase chain reaction,
biological image analysis, etc. These categories should be understood in a very general
way.

Machine learning applications can be roughly divided into two classes. Machine learning
applications to modeling and machine learning applications to optimization.

In a modeling problem, learning pursues the construction of a simplified representation
of the process that is being modeled after. Since one of the goals of computational
modeling is to make inference from the model, machine learning can use statistical theory
to build such models. The two main steps in this process are (123), first, to induce the
model, processing the huge amount of data, and second, to represent the model and make
inference efficiently.

The optimization problem has been formally posed in Section 3.1. In the next sections,
some of the particularities of the optimization and learning problems in the bioinformatics
domain are analyzed.

7.2.1 Modeling in computational biology

Modeling is an essential step to the understand the very complex structures and dynamics
of biological systems. A number of factors must be considered:

e Definition of the specific features of phenomena that will be modeled.
e Capacity of representation of the modeling framework used.
e Data available for the model validation.

e Definition of the validation procedure and determination of the statistical tests to
be employed.

In this thesis, we have applied graphical models to model some dynamics that arise during
the protein folding process, and that depend on structural features of the proteins. The
factors listed above were taken into account for our analysis. This topic will be analyzed
in detail in the next chapter.

85

7 Computational protein problems

7.2.2 Optimization in computational biology

Many biological problems can be defined as the task of finding an optimal solution
in a space of multiple (sometimes exponentially sized) possible solutions. Usually, the
definition of the problem as an optimization one is not straightforward. Three questions
must be taken into account in these situations:

e Definition of the solution representation: The same problem can be approched using
different representations. This choice can notably influence the search efficiency.

e Definition of the objective function: The objective function should express the
available information about the problem. In the biological arena, where domain
information can be scarce or imprecise, this issue deserves particular attention.

e Choice of the optimization method to be used: There are many optimization algo-
rithms available. The convenience and efficiency of the selected method is crucial
for a successful implementation.

For the problems treated in the thesis, we have previously analyzed these factors. The
choice of the optimization method has been constrained to the class of EDAs. The power
of expression as well as the storage and efficiency concerns, associated with the learning
and using the probabilistic model, have determined the type of EDA selected to address
each problem.

7.3 Protein definitions

Proteins are essential components of living organisms. They are formed by a set of amino
acids or residues which, under suitable conditions, fold to form a functional structure.
Amino acids are combined to form sequences which are considered the primary structure
of the peptides or proteins. The secondary structure is the locally ordered structure
caused by hydrogen bounding mainly within the peptide backbone. The most common
secondary structure elements in proteins are the alpha helix and the beta sheet. The
tertiary structure is the global folding of a single polypeptide chain.

There are twenty different amino acids. Each amino acid has a peptide backbone and a
distinctive side chain. The peptide bond is defined by an amino group and a carboxyl
group connected to an alpha carbon to which is attached an atom of hydrogen, and a
side chain group R. A peptide bond is formed by the dehydration of the carboxyl group
of one amino acid and the amino group of the next.

Figure 7.2 shows the structure of the amino acid called alanine. The amino and carboxyl
groups are in the upper and lower parts of the molecule, respectively. At the center,

86

7 Computational protein problems

H

—-N
H-C-CHj3
O=

H

Figure 7.2: Structure of alanine.

connected to the alpha carbon, are the hydrogen atom on the left, and the side chain
group C'Hs on the right.

The dihedral angles between the amino group and the alpha carbon and carboxyl group
are free to rotate. These angles are respectively referred to as ¢ — v angles. Amino acids
can connect to the backbone in many different ways. The backbone of the protein is
the set of amino acid peptide backbones. Folds can be described as the architecture of
a protein. Two proteins will have a common fold if they have comparable elements of
secondary structure with the same topology of connections.

Figure 7.3 shows!, from left to right, the complete native structure of the pdblmrj
protein?, only the backbone of the protein, and only the side chains.

7.3.1 Protein folding

Under specific conditions, the protein sequence folds into a unique native 3-d structure.
Each possible protein fold has a value for its associated free energy. The thermodynamic
hypothesis states that the native structure of a protein is the one for which the free energy
achieves the global minimum. Another important fact that illustrates the complexity of
protein folding is known as the Levinthal paradox: the size of the conformational space of
a protein makes finding the single native state by combinatorial search impossible. The
sequence must not only specify a native state, but, at the same time, a pathway to arrive
there (210).

LAll the images of protein tertiary structures displayed in this thesis have been made using the Prekin
and Mage softwares to construct molecular kinemages from PDB-format coordinate files. These
programs are available at http://kinemage.biochem.duke.edu/index.php

2In this thesis, all the proteins used in our research are refered to using their protein data bank identifier
(PDB ID) (22)

87

7 Computational protein problems

Figure 7.3: From left to right: Native structure of the pdblmrj protein, backbone of the
protein and side chains.

However, the exact laws that govern protein folding are unknown. Therefore, some
researchers have attempted to explain how amino acid sequences specify the 3-d structure
of proteins.

There are two main approaches to the explanation of the protein folding. They are
commonly referred to as the “classical” and “new” views. The “classical” view considers
folding as a defined sequence of states leading from the unfolded to the native state. This
sequence is called the pathway (174). In the “new” view approach, folding is seen as the
progressive organization of an ensemble of partially folded structures through which the
protein passes on its way to the folded structure (172). This approach emphasizes the
idea of each state being an ensemble of rapidly interconverting conformations. One of
the main differences between both approaches is that the “new” view allows for a more
heterogeneous transition state than the “classical” view, which concentrates on a single,
well-defined folding pathway (13).

Figure 7.4 shows one schematic representation of the “classical” (left) and “new” (right)
views of protein folding. In the figure, a circle represents each possible protein config-
uration, and an arrow represents a possible transition between configurations. In both
approaches, the native state (dark circle) is achieved when the energy is minimized. We
will go back to the analysis of the “new” view of protein folding in Section 8.6.1.

The role of proteins cannot be seen in isolation. Biological processes depend on the
interaction of several proteins that form what are known as protein networks. These are
highly structured networks that allow proteins to interact together to coordinate their
functions.

Beyond the problem of identifying the protein structure from its sequence, is the more
challenging question of predicting its function and the way it interacts with other proteins
in its network. Machine learning techniques are important tools for function prediction
and the discovery of protein networks. So far, in this thesis we concentrate on the use of
protein modeling for function structure prediction and protein design.

88

7 Computational protein problems

.
>
7

Energy

Figure 7.4: Schematic representation of the “classical” (left) and “new” (right) views of
protein folding.

7.4 Protein modeling

Inferring the protein tertiary structure from its sequence is an important problem in
molecular biology (7). Computational models of proteins are an important component
for the solution of the protein structure problem. While, in protein structure prediction,
the goal is to predict the native structure of a protein from its sequence, protein design
intends to create new proteins that satisfy some given structural or functional constraints.

Both problems are very much related to each other. Protein design challenges the general
assumptions used to predict protein structures. Similar energy functions can be used to
solve both problems. The protein design problem can be seen as the inverse folding
protein.

Almost all existing approaches for protein design and protein structure prediction use, to
different extent, homology modeling. Two sequences are homologous if they descend from
a common ancestor. Homology is a clear indication of shared structure and frequently
related function. Proteins can be grouped into families of homologous sequences with a
clear evolutionary relationship. Homologous sequences can share similar folds, although
the opposite is not necessarily the case. Superfolds are folds taken up by a large number
of non-homologous sequences.

The determination of homologous proteins is therefore a required step of many approaches
to protein design. At this step, sequence alignment algorithms are used to determine
homologous proteins. Although there are efficient algorithms for pairwise alignment,
the determination of a multiple alignment that optimizes a given score is a NP problem
(105; 228). Here, heuristic optimization techniques are widely used to obtain near to

89

7 Computational protein problems

optimal solutions.

The case of threading illustrates one of the existing protein design methods. This exam-
ples we explain the case of threading. This example introduces the important role which
objective functions play in protein design and protein structure prediction. This role will
be analyzed in the next section.

The basic concept of threading is to decorate a given backbone structure with the side
chains from a sequence to be analyzed and then evaluate this model with a given objective
function. The sequence can be moved along the model structure and threaded along
alternative structures. If any of the sequence-structure combinations scores significantly
better than the average, this particular combination may be a valid structural model

(210).

7.4.1 Energy functions

There are many factors that influence the stability of proteins and have to be taken into
account to evaluate candidate structures. The native state is thought to be at the global
free energy minimum. The free energy has contributions from electrostatic interactions,
including hydrogen bonds, van der Waals interactions, intrinsic propensities of the amino
acids to take up certain structures, hydrophobic interactions and conformational entropy.
Determining to what extent all of these factors can be represented in the function, as
well as the weight each one must receive are difficult issues.

Simplified models that ignore some of these factors are a first approximation. For ex-
ample, the approximate fold of a protein appears to be specified by the sequence of
hydrophobic and hydropholic residues, irrespective of what the actual amino acids in
that sequence are (210). Therefore, a first approximation might simply be constructed
by a binary patterning of hydrophobic and hydrophilic residues to match the periodicity
of secondary structural elements.

Simplification can be further developed to consider proteins represented using this bi-
nary patterning and to approach the protein structure prediction problem in two and
three dimensional lattices. In this case, the energy function measures only hydrophobic
and hydrophilic interactions. This simple approach for protein structure prediction is
considered in the next chapter.

Based on the thermodynamic hypothesis, many methods that search for the protein
native structure define an approximation of the protein energy and use optimization
algorithms that look for the protein fold that minimize this energy. These approaches
mainly differ in the type of energy approximation employed and in the characteristics of
the protein model.

In the general case, most molecular potentials used for protein design and protein struc-
ture prediction result from (176):

90

7 Computational protein problems

e Fitting interatomic interactions to data derived from quantum electrical calcula-
tions or from spectroscopic experiments. Examples of the force fields obtained with
these methods are CHARMM (39) and AMBER (231).

e Hitting the potential to the structural preferences observed among atomically de-
tailed structures in the protein data base (PDB). An example of this type of func-
tion is the rotamer library approach used for side chain prediction (42).

One of the problems related to energy definition is that protein structures must be
uniquely specified in order to maintain the native state efficiently. Maintaining a pre-
cise folded structure implies that no alternative structure is accessible with comparable
energy. This fact complicates the design of accurate energy functions.

7.5 Machine learning approaches to the solution of protein
problems

Main efforts in computational studies of proteins have been put in the problems of in-
ferring the protein secondary and tertiary structure from the sequence, and in protein
design.

7.5.1 Applications in protein structure prediction

There are a variety of approaches that differ in the complexity of the protein models used,
or in the particular domain of application (silico protein design, evolutionary biology,
etc.).

Several optimization approaches have been used for protein folding in simplified models.
These include tabu search (28; 131), Monte Carlo methods (17; 75; 83; 98; 99; 134), GAs
(52; 113; 117; 118; 121; 181; 206; 221), immune algorithms (58; 59), ACO (203; 204),
and EDAs (192).

Protein side-chain prediction has been approached using dead-end elimination algorithms
(64; 65; 136), GAs (135; 220; 239) and other population-based search methods (78). Sim-
ulated annealing (129), optimization methods based on inference from graphical models
(240; 241), and the self consistent mean field approach (112) have also been employed to
solve this problem. Protein folding with complex models has been also approached using
Monte-Carlo optimization (188).

Some of the approaches mentioned above will be analyzed in detail, along with our
proposals for the solution of these problems, in Chapters 8, 9 and 10.

91

7 Computational protein problems

Although the main attention of protein research has mainly focused on protein struc-
ture prediction and protein design, other domains of applications include the recogni-
tion of protein receptor sites (103), the prediction of small molecule binding modes to
macromolecules of known three-dimensional structures (104), and the identification of
membrane protein solely from its sequence analysis (254). Contact map prediction in
proteins (139) and automatic annotation of protein function based on family identifica-
tion (1) have been treated too.

92

8 Protein folding in simplified models
with estimation of distribution
algorithms

8.1 Introduction

In this chapter, we concentrate on a class of coarse-grained models that have been exten-
sively used to study approximations of the protein folding problem. Using this model,
we propose the use of EDAs for two related problems: to find the native structure of the
protein from its sequence, and to simulate the protein folding mechanism.

The protein model of choice is the hydrophobic-polar (HP) model (66), which is based on
the fact that hydrophobic interactions are a dominant force in protein folding. Although
more complex models have been proposed, the HP model remains a focus of research in
computational biology (44; 45; 46; 57).

In the optimization approach, the search for the protein structure is transformed into
the search for the optimal configuration given an energy function that takes into account
the HP interactions that arise in the model. The problem of finding such a minimum
energy configuration is NP-complete for the 2-d (55) and 3-d (21) lattices. Performance-
guaranteed approximation algorithms of bounded complexity have been proposed to solve
this problem (89), but the error bound guaranteed is not small enough for many appli-
cations.

8.1.1 Overview of the chapter

The chapter is arranged as follows. In the next section, we introduce the HP model
and the functional model protein. Section 8.3 reviews a number of previous approaches
to the solution of simplified models using evolutionary and Monte Carlo (MC) based
algorithms. Section 8.4 introduces the problem representation and discusses how the
probability model can capture the regularities which may arise in the HP problem. In
Section 8.5, the probabilistic models and the EDAs used for the protein structure prob-
lem are introduced. This section also presents the EDA model of protein folding. In

93

8 Protein folding in simplified models with estimation of distribution algorithms

Section 8.7, the experimental benchmark is introduced and numerical results of our ex-
periments are presented. Finally, in Section 8.8, the conclusions of our research are given,
and further work is discussed.

8.2 The HP and functional model protein

The HP model considers two types of residues: hydrophobic (H) residues and hydrophilic
or polar (P) residues. A protein is considered a sequence of these two types of residues,
which are located in regular lattice models forming self-avoided paths. Given a pair of
residues, they are considered neighbors if they are adjacent either in the chain (connected
neighbors) or in the lattice, but not connected in the chain (topological neighbors). The
total number (z) of topological neighboring positions in the lattice is called the lattice
coordination number.

For the HP model, an energy function that measures the interaction between topological
neighbor residues is defined as e = —1 and egzp = epp = 0. The HP problem consists
of finding the solution that minimizes the total energy. In the linear representation of
the sequence, hydrophobic residues are represented with letter H and polar ones, with
P. In the graphical representation, hydrophobic proteins are represented by black beads,
and polar proteins, by white beads. Figure 8.1 shows the graphical representation of a
possible configuration for sequence HHHPHPPPPPH. The energy that the HP model
associates with this configuration is —1 because there is only one HH contact, arisen
between the second and fifth residues.

Although more complex models have been proposed (70; 116; 128; 188), the HP model
remains a focus of research in computational biology (44; 45; 57). Among other reasons,
it is considered as a useful model of an exhaustive sequence-structure map for the study
of evolution (45), and it has been acknowledged that the hydrophobicity pattern in real
proteins has statistical properties similar to those of 2-d HP model proteins (57). In
evolutionary computation (58; 59; 69; 97; 117; 181; 192; 206), the model is still employed
given its simplicity and its usefulness as a test bed for new evolutionary optimization
approaches.

The functional model protein is a “shifted” HP model. The name comes from the fact
that the model supports a significant number of proteins that can be characterized as
functional. This model has native states, some of which are not maximally compact.
Thus, in some cases, they have cavities or potential binding sites, a key property that is
required in order to investigate ligand binding using these models (93). The energy values
associated with the model contain both attractive egzg = —2 and repulsive interactions
epp = 1 and egp = 1. Again, the objective is to minimize the total energy. For example,
the energy that the functional model protein associates with the configuration shown in
Figure 8.1 is 0 because there is one HH and two PP contacts.

94

8 Protein folding in simplified models with estimation of distribution algorithms

Figure 8.1: One possible configuration of sequence HHHPHPPPPPH in the HP
model.

8.3 Review of previous evolutionary methods

Previous population-based approaches to simplified protein folding include the use of
nature-inspired and MC methods (144). Some versions of these methods are compared
with EDAs in the experiments section.

Since the publication of the Unger and Moult paper (221) on the use of GAs for protein
structure prediction, new issues have arisen along with new points of view on the protein
folding problem. However, GA applications to the HP problem are many and varied.
In (113), a search strategy called pioneer search was used together with a simple GA.
Although the algorithm improved some of the results achieved in (221), it was unable to
find the optimal solutions for the longest instances considered.

In (52) and (107), evolutionary algorithms for the 3-d HP problem are proposed. While
in (107) a simple GA showed no better results than those achieved in (221), a more
sophisticated approach is presented in (52). By using a backtracking-based repairing
procedure, the latter algorithm guarantees that the search is constrained to the space of
legal solutions. Since the number of self-avoided paths on square lattices is exponential in
the length of the sequence (221), generating legal solutions with a backtracking algorithm
is a feasible alternative.

The multimeme algorithm (MMA) for protein structure prediction (117) is a GA com-
bined with a set of local searches. From this set, the algorithm self-adaptively selects
which local search heuristic to use for different instances, states of the search, or indi-
viduals in the population. This algorithm was used to find solutions of the functional
model protein. A relevant issue of this algorithm is the use of a contact map memory
as a way to collect and use important problem information. Contact maps abstract the
geometric details of the structures, keeping only the essential topological features of the
configurations. In (181), MMA was extended by the incorporation of fuzzy-logic-based
local searchers. The modifications led to obtain a more robust algorithm that improved
previous MMA results in the protein structure prediction problem. Memetic algorithms
were also combined with a population of rules (206) to solve the HP model in a two-

95

8 Protein folding in simplified models with estimation of distribution algorithms

dimensional triangular lattice. The algorithm proposed outperformed simple versions of
GAs and memetic algorithms.

Immune algorithms (IA) (58; 59) have been recently proposed for the HP problem.
These evolutionary algorithms, inspired in the theory of clonal selection, use hyper-
macromutation and aging as important operators to proceed the search. In (59), the
algorithm found the optimal configurations of the regular 2-d HP model for the smallest
problems. The algorithm failed to find the optimum for the longest instances. In (58),
the original TA is developed to include a memory mechanism that improves results for
the 2-d regular lattice. HP problems on the 3-d lattice are also treated. When the
feasible-space approach is used, TA results outperform those obtained in (52). However,
IA results shown in (58) are no better than those achieved in (52) with the repair-based
approach.

Traditional MC methods that use Markov chains sample from the protein folding space
one point at a time. Due to the rugged landscape, these methods tend to get trapped
in local minima. New MC methods have been proposed to cope with these problems
(86). Among the alternatives proposed, two main classes of the strategies used by the
MC methods can be distinguished: to use chain growth algorithms (17), or to sample the
space with a population of Markov chains in which a different temperature is attached
to each chain (134). Chain growth algorithms (75; 83; 98; 99) like the pruned-enriched
Rosenbluth method (PERM) (99) are based on growing the sequence conformation by
successively adding individual particles, guiding the growth towards configurations with
lower energies, and using population control to eliminate bad configurations and increase
good ones (83). Chain growth methods have achieved some of the best results for HP
models in regular 2-d and 3-d lattices.

All the above-mentioned algorithms either use genetic operators or Markov chain transi-
tions. They do not use any model of the search space. An algorithm that incorporates,
to a certain scale, the modeling step is the ACO method presented in (203; 204). In this
approach, the simulated ants construct candidate conformations for a given HP protein
sequence, apply a local search to achieve further improvement, and update a probability
value based on the quality of the solutions found. In ACO terminology, this value is
called the pheromone trail.

Even though this short overview has focused on MCs and nature-inspired methods, we
emphasize that there are several applications of heuristic algorithms to the protein struc-
ture problem that are beyond the scope of this thesis.

8.4 Dependencies in the simplified protein models

In this section, we show evidence on the emergence of regularities in the search space
of the HP model. In order to achieve this goal, we employ the Boltzmann probability

96

8 Protein folding in simplified models with estimation of distribution algorithms

H(x) -4 -3 -2 -1 0 1 2 3 4 5 invalid total
HP; 0 0 16 1428 9581 0 0 0 0 O 8658 19683
FPy 2 0 426 490 3407 3376 2020 912 350 42 8658 19683

Table 8.1: The density of the different energy levels H Py and F'Py corresponding respec-
tively to the HP and functional model protein of sequence
HHHPHPPPPPH.

distribution. We start by introducing the problem representation.

8.4.1 Problem representation

Let n be the sequence length. For a given sequence and lattice, X; will represent the
relative move of residue 7 in relation to the previous two residues.

Taking as a reference the location of the previous two residues in the lattice, X; takes
values in {0,1,...,z — 2}, where z — 1 is the number of movements allowed in the given
lattice. These values respectively mean that the new residue will be located in one of the
z—1 numbers of possible directions with respect to the previous two locations. Therefore,
values for X; and X» are meaningless. The locations of these two residues are fixed. A
solution x can be seen as a walk in the lattice, representing one possible folding of the
protein. The codification used is called relative encoding, and has been experimentally
compared to absolute encoding in (118), showing better results.

We use 2-d and 3-d regular lattices. For regular d-dimensional lattices, z = 2d, where d
is the lattice dimension.

8.4.2 Regularities and dependencies in the HP model

We illustrate the emergence of regularities in the search space of the HP model using
the HHHPHPPPPPH sequence, introduced in (93). For this sequence, and using the
solution representation previously introduced, we find all possible solutions and evaluate
them according to the HP and functional protein energy functions. The number of
solutions evaluated are 37 = 19683. Of these configurations, 8658 are not self-avoiding
and they are assigned a very high energy equal to 100. In Table 8.1, H(x) denotes
all the possible values that the two evaluated energy functions can reach for sequence
HHHPHPPPPPH. HP; and F Py respectively indicate the number of solutions where
the corresponding value of H(x) has been achieved for the HP and functional protein
energy functions.

It is important to highlight that there is not a one-to-one mapping between each solution
and each state of the sequence. The reason is that one state can have more than one

97

8 Protein folding in simplified models with estimation of distribution algorithms

Figure 8.2: Best solutions of the functional model protein (left) and HP model (right) for
sequence HHHPHPPPPPH.

solution representation, i.e. the representation is redundant. For instance, while there
exists only one optimal state for the functional model protein, in our representation this
optimal state has two possible representations corresponding to symmetrical configura-
tions. In the case of the HP model, there are sixteen optimal solutions. Figure 8.2 shows
optimal configurations for the functional model protein and the HP model.

To associate a probability value with every point of the search space, we will use a
theoretical benchmark based on the Boltzmann distribution. In this benchmark, the
probability of each solution is equal to the Boltzmann distribution calculated from the
energy evaluation in the following way:

e_}{s(X)
p(x) = 7H(x/) (8.1)
zx/ e T

Equation (8.1) shows the expression of the Boltzmann distribution. We set the tempera-
ture at 1, but ¢ can be changed to simulate different experimental conditions. The Boltz-
mann distribution is a natural candidate for the fitness distribution. From a theoretical
point of view, the Boltzmann distribution allows us to associate probabilistic indepen-
dence properties between the variables of the problem with certain characteristics of the
energy function (160). It exhibits another convenient feature: higher probabilities are
associated with points of the search space with better function evaluation. Therefore,
these probabilities describe the desired performance of an ideal optimization algorithm:
better points are visited with a higher probability. The Boltzmann distribution has also
been used together with MC-based methods for HP model optimization (134).

From the Boltzmann distribution, we calculate the marginal probability distributions
corresponding to variables (X3, X4, X5) for probability distributions pyp and ppp,
which are shown in Table 8.2. The table shows the marginal probabilities of the 3% = 27
configurations (from 000 to 222) of variables (X3, X4, X5).

98

8 Protein folding in simplified models with estimation of distribution algorithms

pHp (23,74, T5) prp(T3, 74, T5)
Se¢ 0—— 1—— 2——|0—-—— 1—-= 2——
—00 0.000 0.057 0.069 | 0.000 0.091 0.151
—01 0.035 0.036 0.038| 0.009 0.029 0.033
—02 0.035 0.036 0.035| 0.009 0.029 0.026
—10 0.029 0.034 0.035| 0.021 0.026 0.027
—11 0.038 0.040 0.038| 0.033 0.034 0.033
—12 0.035 0.034 0.029 | 0.027 0.025 0.021
—20 0.035 0.036 0.035| 0.026 0.026 0.009
—21 0.038 0.036 0.035| 0.034 0.030 0.009
—22 0.069 0.057 0.000| 0.151 0.091 0.000

Table 8.2: Marginal probability distributions for (X3, X4, X5) calculated from the Boltz-
mann distributions for HP and the functional model protein for sequence
HHHPHPPPPPH.

] [

Figure 8.3: Self-intersecting short paths: Configurations with zero probability.

99

8 Protein folding in simplified models with estimation of distribution algorithms
0—:: *—0
*—0 l—l

Figure 8.4: Short helices: Configurations with the highest probability.

In Table 8.2, the lowest probability values are bold-faced, while the highest values are un-
derlined. The two configurations with zero probability! are shown in Figure 8.3, where
the direction of the sequence is represented as an arrow between the first and second
residue of the sequence. Unsurprisingly, these are the only two self-intersecting config-
urations that can be formed with three contiguous moves. Any solution that contains
subchains 000 or 222 is not self-avoiding, and therefore receives a very low probability.

The two configurations with the highest probabilities are shown in Figure 8.4. These
are two symmetrical helices. In the HP and functional model protein, these types of
substructures can significantly contribute to the final energy. Helices are present in the
optimal solutions for both models, shown in Figure 8.2.

A remarkable difference between the marginal probabilities corresponding to the HP and
functional model protein is related to the probabilities given to the helices. The difference
between the probabilities of the best and second best configurations is 0.012 for the HP
model, and 0.06 for the functional model protein. This gives an idea of the difference
due to the energy function used.

One conclusion from this experiment is that, by inspecting the marginal distributions
from the search distribution, we can extract relevant information about the problem,
expressed in optimal and poor problem substructures. These substructures are likely
to be present in population-based optimization algorithms able to respect the relevant
interactions between the variables.

We investigate the effect that disregarding the potential interactions between variables
may have on the modeling of the problem. In the next experiment, a univariate prob-
ability approximation of p(x3,x4,x5) is calculated. First, univariate marginal distribu-
tions are calculated for the three variables, p(x;) = Zx| X;=z, P(X). Afterwards, the
approximation pg(zs,z4,25) is computed as the product of the univariate marginals
pal(T3, T4, 5) = p(x3)p(x4)p(rs5). The approximation is shown in Table 8.3.

As in Table 8.2, the lowest probability values are bold-faced, while the highest values are
underlined. Due to the effect of rounding, some other configurations appear in the table
with probabilities that are equal (rounded) to the lowest (respectively highest) ones.

Table 8.3 shows that the best and worst configurations do not agree with the ones ob-
tained using the whole three-variate marginal probability distribution. The univariate

1Strictly speaking, the probabilities are never zero, but they approximate this value.

100

8 Protein folding in simplified models with estimation of distribution algorithms

prP(T3, T4, T5) prp(x3, 14, T5)
Seq 0—— 1—— 2——|0—-— 1——= 2——
—00 0.036 0.042 0.036 | 0.044 0.029 0.044
—01 0.036 0.042 0.036 | 0.029 0.019 0.029
—02 0.036 0.042 0.036 | 0.044 0.029 0.044
—10 0.033 0.038 0.033 | 0.054 0.035 0.054
—11 0.033 0.039 0.033| 0.035 0.023 0.035
—12 0.033 0.038 0.033 | 0.054 0.035 0.054
—20 0.036 0.042 0.036 | 0.044 0.029 0.044
—21 0.036 0.042 0.036 | 0.029 0.019 0.029
—22 0.036 0.042 0.036 | 0.029 0.029 0.044

Table 8.3: Univariate approximation of the marginal probability of (X3, X4, X5) calcu-
lated from the Boltzmann distributions for HP and functional model protein
for sequence HHHPHPPPPPH.

approximation is not able to capture the structural features of the problem represented in
Table 8.2. This experiment illustrates the convenience of using higher order interactions
to capture relevant features of the problem structure. As analyzed in previous sections,
traditional crossover operators do not respect these interactions. Furthermore, as explicit
modeling of the search space is missing in most nature-inspired algorithms, it is impossi-
ble to detect, represent, and store these regularities efficiently. In the following sections,
we show how different probability models can detect and exploit this information.

The experiments presented in this section have been conducted using a single instance.
Obviously, there are other factors that influence the marginal probability distributions
corresponding to the different energy models. We have focused on showing the way in
which structural regularities are exposed by the probability models learned. The analysis
of other factors is beyond the scope of this thesis.

8.5 EDAs for protein structure prediction

The existence of regularities in the search space, expressed in probabilistic dependencies
between subsets of variables, naturally leads to the convenience of using KDAs to take
advantage of these regularities by capturing the dependencies. Probability models used
by EDAs are built from the selected set of solutions. Therefore, the type of selection
method used also influences the number and strength of the interactions learned by the
model. Similarly to the Boltzmann distribution analyzed before, selection methods assign
higher selection probabilities to solutions with higher fitness values.

101

8 Protein folding in simplified models with estimation of distribution algorithms

In this section, we detail the main contributions of this chapter: The introduction of
EDAS to face the solution of the protein structure prediction problem, and the definition
of the EDA-based model of protein folding. The section starts by introducing the proba-
bility models used by EDAs and explaining the rationale behind our choice. At the end,
we define the EDA-based model of protein folding and describe the analogies between
this model and some of the known behavioral characteristics of protein folding.

8.5.1 Probabilistic models used

We propose three types of probabilistic models to be applied to the protein structure pre-
diction problem. In every case, solutions are represented using the vector representation
introduced in Section 8.4.1.

The first model considered is a k-order Markov model in which the configuration of
variable X; depends on the configuration of the previous k variables, where £ > 0 is a
parameter of the model. The joint probability distribution can be factorized as follows:

n

puk(X) =p(x1,.. k) [] plail2ica,. . 2ip) (8:2)
i=k+2

The second probabilistic model is based on a tree where each variable may depend on
no more than one variable that is called the parent. A probability distribution pryce(x)
that is conformal with a tree is defined as:

n

prrec(x) = | [p(@i | pa(zi) (8.3)
i=1
where Pa(X;) is the parent of variable X; in the tree, and p(x; | pa(z;)) = p(x;) when
Pa(X;) =0, i.e. when X, is the root of the tree. The distribution pry..(x) itself will be
called a tree model when no confusion is possible. Probabilistic trees are represented by
acyclic connected undirected graphs.

The third model considered is a mixture of trees (142). A mixture of trees is defined as
a distribution of the form:

PUT(X) = Y APl () (8.4)
7j=1
with \; >0, j=1,...,m, and 37" \; = L.

In this case, the tree distributions are the mixture components. The m trees may have
different structures and different parameters.

102

8 Protein folding in simplified models with estimation of distribution algorithms

The models proposed can be separated into two classes according to the part of the
problem structure that they exploit. The first class of probability models is based on
the existence of connected neighbors. The assumption behind the use of Markov models
is that the most important source of problem interactions comes from the connected
neighbors. Markov models have been used in computational biology to identify coding
regions in proteins, to align sequences, and to predict the protein secondary structure.

The second class of models allows for the existence of arbitrary connections between
the variables of the problem subject to the representation constraints determined by
the probabilistic model. This choice of the models tries to capture interactions arising
from both, connected and topological neighbors. Therefore, algorithms that learn the
structure of the model from the data (49; 142) are incorporated. Models that belong to
this class differ in the type of structural constraints which they represent.

Results of an EDA based on the Markov model, for the solution of 2-d lattice problems,
were presented in (192). These EDAs make a parametric learning of the model. An EDA
called combining optimisers with mutual information trees, which searches for probabilis-
tic models that can be represented using tree-shaped networks, was introduced in (16).
The mixture of trees FDA (MT-EDA), an EDA that uses mixture of trees models to esti-
mate and sample the probability, was presented in (196). These algorithms have mainly
been applied to binary problems. Poor results for preliminary experiments conducted
using EDAs based on unconstrained Bayesian networks (72) determined to discard these
algorithms from our experimental benchmark.

8.5.2 Implementation

In the chosen representation, there might be invalid vectors that correspond to self-
intersecting sequences. To enforce the validity of the solutions, we employ a variation
of the backtracking method used in (52). A solution is incrementally repaired in such a
way that the self-avoidance constraint is fulfilled. At position 4, the backtracking call is
invoked only if self-avoidance cannot be fulfilled with any of the possible assignments to
X;. The order of the assignment of values is random. If all the possible values have been
checked, and self-avoidance is not fulfilled yet, backtracking is invoked.

On the other hand, if the number of backtracking calls have reached a pre-specified
threshold, the repair procedure is abandoned. This is a compromise solution for situations
in which the repair procedure can be too costly in terms of time. The threshold for the
number of backtracking calls was set to 500 and this values was determined empirically.
Further details about the original backtracking algorithm can be found in (52).

In our implementation of EDAs, the truncation selection of parameter T' = 0.1 is used.
Let M be the population size. In this type of selection, the best N =T - M individuals,
according to their function evaluations, are selected. We use best elitism, a replacement

103

8 Protein folding in simplified models with estimation of distribution algorithms

strategy where the population selected at generation ¢ is incorporated into the population
of generation t+1. Thus, only M — N individuals are generated at each generation except
the first one.

We name EDAs according to the probability model that they use. MK-EDAj is the
Markov EDA, where k is the order of the interactions. The EDA that uses a tree model
is called Tree-EDA (see Algorithm 3.3). MT-EDA,,, corresponds to the EDA that uses a
mixture of trees, m being the number of components in the mixture.

8.6 EDAs as a model of the protein folding mechanism

8.6.1 The “new” view of protein folding

The EDA-based model of protein folding presented in this chapter adopts the “new” view
of protein folding (see Section 7.3.1). Therefore, we must study in greater detail some of
the aspects related to it.

In the “new” view approach, the energy landscape of a folding protein resembles a par-
tially rough funnel. The local roughness of the funnel reflects transient trapping of the
protein configurations in local free energy minima. In the protein structure, frustration
is the result of competition between many conflicting energy contributions. The various
interactions are “frustrated”.

Order parameters or progress coordinates help to describe and quantify the protein en-
sembles during the protein folding process. They are used to explore the connection
between the folding process and the topology of the protein native state. Examples of
order parameters are the contact order and the volume of the protein. Another quanti-
fying measure is the folding rate.

The contact order of the protein is the average sequence separation between residues that
make contact in the three-dimensional native structure. The volume is a measure of the
degree of folding of the protein, allowing to distinguish between compact and extended
conformations. The folding rate is the amount of time which the protein takes to fold.

In the case of small proteins, other measurements of folding reactions can be made.
Among them are the distribution of structures in the transition state ensemble, and the
structure of the native state. The fraction of native contacts @ that exist in the current
conformation (171) can be used as a measure of frustration. For a given conformation,
@ varies between 0 and 1, with the native conformation at Q = 1. It is also possible to
compute the total free energy Fi,:(Q) as a function of @,

Ftot(Q) = Fmt(Q) =T- Sconf(Q) (85)

104

8 Protein folding in simplified models with estimation of distribution algorithms

where Fj,;(Q) is the average internal energy of conformations with () native contacts,
T is the temperature of the system, and S¢o,¢(Q) is the corresponding conformational
entropy (the logarithm of the number of accessible conformations with) native contacts)
(13).

We enumerate a number of facts commonly accepted and explained in the “new” view
of protein folding (13; 47; 171; 172). Some of these issues will be investigated through
simulation of the EDA-based model:

e The folding rates of small proteins correlate with their contact order. Proteins with
a large fraction of their contacts between residues close in sequence tend to fold
faster than proteins with more non-local interactions.

e Protein folding rates and mechanisms are largely determined by the protein native
topology. Proteins with similar native states are expected to exhibit a similar
protein folding behavior.

e Local interactions are more likely to form early in folding than non-local interac-
tions.

e During the folding process, the energy of the structures will decrease on average as
they become more and more similar to the native structure of a natural protein.

e Folding is not only determined by properties of the folded state but also by the
energetic difference between the folded and unfolded ensembles of states.

e The geometrical accesibility of different native contacts is different, and therefore
some are more easily formed than others.

e Some contacts may be topologically required (or at least be more likely) to be
formed before others during folding.

The existence of a number of analogies between the “new” view of the protein folding
mechanism and the way EDAs behave motive us to analyze EDAs as a model of pro-
tein folding. Basically, we highlight these coincidences, drawing parallels between both
entities, and investigating to what extent each of the entities can provide answers to
questions rising in the other domain.

To explain our model of the protein folding process, we will use the same representation
introduced in Section 8.4.1. We will assume that all solutions are feasible (i.e. self-
intersecting paths are repaired). At first, during the real folding process, a protein can
only be in one state at each time t. However, in EDAs, at each time, more than one
configuration can be part of the population. To cover this gap, we will assign the main
role in modeling to the EDA probabilistic model. This resembles the “new” view of protein

105

8 Protein folding in simplified models with estimation of distribution algorithms

folding, where proteins are seen as an ensemble of rapidly interconverting conformations.
At each time, a probability p(x) can be associated with every possible configuration x
of the sequence. This probability is related to the energy of the configuration, usually
using the Boltzmann distribution defined in Equation (8.1).

Consider that a given EDA shall model the protein folding process. Each generation of
the EDA will be considered a time step of the folding process. We will assume that the
probability of the sequence to fold to a given conformation is equal to the probability
given to the same configuration by the probabilistic model of the EDA constructed at
generation t.

Starting from this assumption, we advance the following statements:

e Both the “new” view and the EDA define a sampling of the space of configurations.

e The sampling process pursues to sample the sequence configurations with a prob-
ability that depends on the quality of their respective energy function evaluations.

e The goal of the EDA and the protein folding process is achieved when p(x) = 1,
where x is the protein’s native state.

e Both entities tend to preserve local favorable conformational features through suc-
cessive generations (time steps).

In principle, some of the features presented above are not exclusive attributes of EDAs.
For instance, other population-based methods (e.g. GAs) can be used to sample the space
of sequence configurations. The preservation of local favorable configurations, which
may correspond to autonomous folding units in the real protein folding process, can also
be accomplished to a certain extent by different evolutionary methods. However, the
advantage of EDAs is that the probability model which they employ treats phenomena
like solution disruption and frustration, which may arise in the protein folding process,
more effectively. Although in GAs a probability distribution of the solutions is implicitly
used for the search, this probability distribution is explicitly learned and used in EDAs.

As explained in previous sections, traditional crossover operators tend to disrupt the
construction of relevant subsolutions. The probabilistic model used by EDA matches
the statistical nature of the ensemble of conformations. This model is a condensed
description of the selected population and, under suitable conditions, it also matches the
EDA population at time t + 1 well. The main advantage of an EDA model of protein
folding is that it can provide not only global statistical information, but also information
about the local conformations in the ensemble. This information can be appropriately
combined to avoid the disruption of relevant subsolutions.

Let us exemplify this with the frustration problem. In frustrated systems, there are
contacts that are locally unfavorable but that exist in the optimal solution, or there

106

8 Protein folding in simplified models with estimation of distribution algorithms

are favorable contacts that must first be broken to reach the optimal solution (171).
Analogous to a frustrated system would be a population-based method that tries to
optimize a frustrated function.

Let f(x) be a function that can be decomposed into the sum of local functions defined
on (possibly overlapping) subsets of its variables. f(x) is said to exhibit frustration when
the point x where its global optimum is reached does not maximize one or more of the
local functions.

These types of functions are difficult to optimize because finding the optima of the local
subfunctions does not guarantee that the global optimum will be found by the combi-
nation of these optima. The role of frustration as a source of hardness for evolutionary
algorithms has been discussed in (106). In (160), it is shown that, taking into account
the interactions that arise between the variables of the problem, EDAs can optimize frus-
trated functions. Although the capacity of EDAs to deal with frustration also depends
on the probability model employed, we emphasize, to this respect, the suitability of using
EDAs over GAs.

In the section of experiments, devoted to the simulation of the protein folding process
using EDAs, we investigate some of the features exhibited by the EDA model that mimic
the behavior of the protein folding process. The issues considered are the following:

1. Whether there is a correlation between the successful rate of EDAs and the contact
order of the protein models.

2. Whether there is a relationship between the generation convergence of EDAs for
the HP model, and the contact order of the optimal solution.

3. Whether there are differences in the rate of formation of native contacts, and if
these differences are associated with their contact separation.

In our simulations, we will employ some of the order parameters commonly used to
investigate the protein folding process, but adapted to the simplified models. For the
functional model protein, the contact order is calculated as the average sequence separa-
tion of the HH contacts in the corresponding solution. For example, the contact order
of the configurations shown in Figure 8.1 and Figure 8.2 (left) are, respectively, 3 and 6.

8.7 Experiments

In this section, we present experiments on the use of the EDAs presented in this chapter.
The section is divided into four main parts. Section 8.7.1 presents the problem instances
used for the HP model, and the benchmark used for the functional model protein. In

107

8 Protein folding in simplified models with estimation of distribution algorithms

the second part, we present the results of the protein structure prediction problem in the
2-d (Section 8.7.2) and 3-d (Section 8.7.3) regular lattices. Finally, Section 8.7.4 shows
the results of the study through EDA simulations of some factors related to the protein
folding process.

8.7.1 Problem benchmark

The HP instances used in our experiments, and shown in Table 8.4, have previously been
used in (17; 52; 132; 192; 203; 204; 221). The values shown in Table 8.4 correspond to the
best-known solutions (Hx*)) for the 2-d regular lattice. It is important to highlight that
most of the randomly generated amino acid sequences do not behave like natural proteins,
because the latter are products of natural selection. Likewise, most randomly generated
sequences of H and P residues in the HP model do not fold to a single conformation (45).

inst. size H(x*) sequence

sl 20 -9 HPHPPHHPHHPHPHHPPHPH

s2 24 -9 HHPPHPPHPPHPPHPPHPPHPPHH

s3 25 -8 PPHPPHHP*HHP*HHP*HH

s4 36 —14 P3HHPPHHP°H' PPHHP*HHPPHPP

sb 48 —23 PPHPPHHPPHHP®°H'"YPS
HHPPHHPPHPPH®

s6 50 —21 HHPHPHPHPH*PHP*HP*HP*
HP3HP3HPH*{PH}'H

s7 60 —36 PPH3PHSP*HYpPHP?
H2P*HSPHHPHP

s§ 64 —42 HYZPHPH{PPHH}*PPH{PPHH)*
PPH{PPHH}*PPHPHPH"

s9 8 —53 Hp*HR2pPSHl2p3gl2ps
HY2P3HP?H2P?H?P2HPH

s10 100 —48 PSHPH?P°H3PH°PH?P*H?
P2H?PH°PHYPH?PH"
PUH"P2PHPH*PSHPH

s11 100 =50 P3H?P?H*P?H3PH?PH?PH*
P3HSP2HSPYHPH?PH! P?
H3PH?PHP?HPH3PSH?

Table 8.4: HP instances used in the optimization experiments.

For the experiments with the EDA-based model, we have selected the functional model
protein. The existence of a unique native state for the instances of this model is a

108

8 Protein folding in simplified models with estimation of distribution algorithms

desired attribute for our analysis. We have employed a set of 15545 functional model
proteins? that were optimally embedded on a 2-d square lattice (93). For each instance,
the benchmark provides the energy of the unique native state, together with the energy
value and number of structures that are in the first excited state (best sub-optimum).
The length for each sequence is 23. Some of these instances have been previously used
as a benchmark in (117).

MK-EDA» Tree-EDA MT-EDA4
inst. | H(x) S g|Hx) S g|Hx) S g
s1 -9 50 3.34 -9 50 2.96 -9 50 3.18
52 -9 30 3.68 -9 50 3.80 -9 50 3.84
53 -8 50 4.14 -8 44 5.72 —8 45 5.24
s4 —-14 4 87| —14 2 1350 | —14 8 9.50
Eh) -23 7 1957 -23 9 23.66 | —23 2 21.00
56 —-21 43 1172 =21 49 12.67 | —21 48 12.95
s7 -35 5 5506 =35 6 982.00| =35 9 121.22
58 —-42 3 3118 —-41 5 50.70 | —42 6 78.16
59 —-52 2 21800} -51 1 1355.00| =50 2 2161.05
s10 —46 3 92250 | —46 8 144570 | —47 1 707.00
s11 —47 1 215.00| —47 6 1778.80 | —48 1 845.00

Table 8.5: Results of EDAs for HP instances in the 2-d lattice.

8.7.2 Results for the HP model in the two-dimensional lattice

The first experiment consists of finding the optimum of sequences shown in Table 8.4
using EDAs with different probability models. The EDAs described in Section 8.5 (MK-
EDAjy, Tree-EDA and MT-EDA,) are used in our experiments. All the algorithms use
a population size of 5000 individuals and a maximum of 5000 generations. The results
of the experiments are shown in Table 8.5, where S is the number of times that the best
solution has been found in 50 experiments, and g is the average number of generations
needed to find the best solution for the first time. This value gives an idea of the number
of function evaluations needed to reach the best solution.

The first remarkable result is that all EDAs are able to find the optimum solution for
sequences s1-s6. All the algorithms find the second best solution for sequence s7, the
best or second best for sequence s8, and very good solutions for the rest of the longer
sequences. There are two facts that help to put these results in perspective: EDAs do not

®http:/ /www.cs.nott.ac.uk/~nxk/HP-PDB/2dfmp.html

109

8 Protein folding in simplified models with estimation of distribution algorithms

Figure 8.5: Optimal solution (bottom left) and three sub-optimal solutions for the s7
sequence.

use local optimizers that could improve the results, and the parameters of the algorithms
have not been tuned for every instance.

Deceptive instances for EDAs

Instance s7 is deceptive for EDAs. We investigate the performance of the EDAs for this
instance in detail. Detailed research on the dynamics of EDAs for deceptive problems
throws light on the limitations of these methods and could contribute to their improve-
ment.

The optimum of sequence s7 is —36. There are many suboptimal solutions with value
—35. Figure 8.5, bottom left, shows the optimum solution that cannot be found by the
EDAs. The rest of the solutions are the suboptimal ones (H(x) = —35) found by the
EDAs. A clear difference between the optimal and the rest of the solutions shown in the
figure is the number of short helices. The optimum has fewer short helices than the other
solutions. Most of the energy contributions come from interactions between a central
cross-shaped structure and the neighboring residues. As the optimal solution cannot

110

8 Protein folding in simplified models with estimation of distribution algorithms

k p(Xopt) maz(p(x)) mean(p(x)) min(p(x)) N(p(x) > p(Xopt))
0 9.6546e— 27 2.0721e=20 1.2853¢ 22 2.9364¢ 36 952
1 6.8792¢723 2.1155¢~ 11 9.8979¢~ 14 9.0532¢ 37 4952
2 0 1.7751e7 9 4.0864e799 1.9233¢=30 5375
3 0 1.4889¢ 9 4.4991¢ 98 1.9347¢~27 5375

Table 8.6: Statistical information extracted from k-order Markov probabilistic models
(0 < k < 3) of the 5375 solutions of the s7 sequence with energy lower than
—32.

be constructed from the combination of the good substructures present in the other
solutions, the EDAs cannot reach it. As a hypothesis for the reason of this deceptive
behavior, we advance the existence of isolated optimal solutions with components that
are not present in the suboptimal solutions.

To validate this empirical conclusion, we calculate different Markov probabilistic models
(k=0,...,3) from the 5375 solutions whose energy lies between —33 and —35. Using
these models, the probabilities corresponding to each of the database solutions and to the
optimal solution shown in Figure 8.5 are calculated. The models indicate the probability
for the solutions to be present at the new EDA generation.

Results can be appreciated in Table 8.6. In this table, p(xopt), max(p(x)), mean(p(x))
and min(p(x)) respectively correspond to the probabilities given by the models with
different k values (from 0 to 3) to the optimum of the problem, and the maximum, mean
and minimum probabilities given by the models to the 5375 solutions.

The most revealing fact is that the probability given to the optimal solution by probability
models with £ = 2 and k = 3 is zero. This means that the optimal structure does not
share some of its substructures with any of the other 5375 suboptimal solutions. The
analysis of the model revealed that, in the case of k = 2, only one of the substructures
was absent in the other solutions, while when k = 3, four substructures were absent.
N(p(x) > p(xopt)) refers to the number of solutions that are assigned a probability by
the model higher than the one assigned to the optimum.

This experiment shows that deception also arises in the case of the HP model, and that
deceptive instances for the EDAs can be found and described as those which do not
share a number of good substructures with most of the closest suboptimal solutions (in
terms of the objective function value). These substructures can not be captured by the
probability models used.

111

8 Protein folding in simplified models with estimation of distribution algorithms

Comparison with other algorithms

The performance of EDAs is now compared with the best results achieved with other
evolutionary and MC optimization algorithms. The results are shown in Table 8.7. The
results of GA (221) and MMA (117) correspond to the best solution found in five runs.
The results of ACO and NewACO (204) are based on 20-700 tries for the former algorithm
and 300-500 for the latter (204). PERM (99) reports 20-200 tries for sequences s9 and
s11; the other instances have been faced in (204). Results for other optimization methods
(58; 59; 113) were not displayed because either they were unable to find the best results
achieved by EDAs or the number of function evaluations required to find them was much
higher. All the results shown for EDAs are obtained from 50 runs.

A first conclusion is that none of the algorithms is able to outperform the rest of algo-
rithms for all the instances. PERM is the best contender in all cases except s8 in which
its results are very poor. EDA and PERM score the same at sequence s11. In compari-
son with the NewACOQO, EDA reaches equal or better results in all instances except one.
It should be noted that NewACO applies local optimization techniques. In this sense,
a fairer comparison would be between EDAs and ACO. In such a comparison, EDA is
the clear winner. Analysis shows that none of the rest of the algorithms achieves similar
results.

Dynamics of the algorithms

Another relevant issue related to EDAs concerns their particular dynamics for the HP
models. The existence of a model of the search space enables a compact representation
of characteristic features of the best solutions but also determines the particular way in
which the optimal solutions are constructed.

In the next experiment, we analyze the convergence dynamic of the three types of EDAs
employed in our experiments in the optimization of sequence s6. The average fitness of the
best solutions at each generation is calculated by running each algorithm 50 times. The
population size and the rest of the parameters were the same as in previous experiments.
The results are shown in Figure 8.6. The figure shows that, for all EDAs, a small number
of generations is enough to find the optimal solutions. Nevertheless, there are differences
in the dynamics of the algorithms. MK-EDA, reaches better solutions earlier than the
other algorithms, but in the experiments conducted, MT-EDA, reached the optimum
more often. Tree-EDA is the slowest algorithm.

8.7.3 Results of the HP model in the three-dimensional lattice

In the following experiment, we investigate the behavior of EDAs in the solution of the
HP model in the regular 3-d lattice. EDAs are compared with an evolutionary algorithm

112

8 Protein folding in simplified models with estimation of distribution algorithms

BestEDA GA MMA ACO NewACO PERM

inst. H(x) H(x) H(x) H(x) H(x) H(x)
sl -9 -9 -9 -9 -9 -9
52 -9 -9 -9 -9 -9 -9
53 -8 -8 -8 -8 -8 -8
s4 —-14 14 —-14 -14 —14 —14
Eh) -23 =22 —22 =23 —23 —23
s6 -21 =21 —21 —21 —-21
s7 -35 34 —34 —36 —36
58 —-42 =37 —32 —42 —38
59 —52 —51 —53
s10 —47 —47 -50
s11 —48 —47 —48

Table 8.7: Results achieved by different search heuristics for the HP instances.

T T T T T T
e —— MK-EDA2
—©- Tree-EDA
-12r- —— MT-EDA4

I I I I I |
2 4 6 8 10 12 14
Generations

Figure 8.6: Average fitness of the best solution at each generation for different EDAs in
sequence s6.

113

8 Protein folding in simplified models with estimation of distribution algorithms

hybrid GA MK-EDA> TreeEDA MT-EDA4
H(x) meanto H(x) meanto H(x) meanto H(x) meanto
sl —11 —-10.52+0.54 —11 —-10.824+0.38 —11 —-10.68 +0.51 —11 —-10.84 +0.37
s2 —13 —11.28 +0.90 —13 —12.02+0.94 —13 —11.30+0.85 —13 —11.884+0.93
s3 -9 —8.54 +£0.64 -9 —8.96 +£0.19 -9 —8.92 +£0.27 -9 —9.00 £ 0.00

s4 —18 —15.76 £1.05 —18 —16.40+0.80 —18 -16.24+0.83 —18 —16.50+£0.96
s5 —28 —24.60 £1.57 —29 —27.24+£0.92 —29 —26.88+£0.93 —29 —27.06 £1.08
s6 —26 —23.02+£1.48 —29 —25.70£1.26 —31 —25.94+1.58 —28 —25.74+1.22
s7 —49 —41.18 £2.75 —49 —46.30 £ 2.04 —49 —43.78 £3.10 —48 —42.00 £6.76
58 —46 —40.40 £ 2.50 —52 —46.78 £2.28 —49 —43.72+£2.43 —50 —45.64+2.03

Table 8.8: Results of the EDAs and the hybrid GA in the three-dimensional lattice.

hybridized with a backtracking method (hybrid GA). In (52), different variants of the
evolutionary algorithm were employed. Absolut and relative encoding were evaluated.
For the comparisons with EDAs, we have selected the variant that gives the best results.
This corresponds to the evolutionary algorithm that uses an absolute encoding.

The hybrid GA used a population size of 100 individuals and a maximum of 10° evalu-
ations. This is not an appropriate population size for EDAs. We use a population size
of 5000 individuals and a maximum of 1000 generations. In almost all sequences, this
implies a higher number of function evaluations than the 10° used in (52). The average
number of evaluations needed by EDAs was between 6 - 10* for the shortest instances
and 10% for the longest ones.

The results are shown in Table 8.8. In this case, the optimum is not known and it is
critical to establish whether differences among the methods are statistically significant.
We have used the Kruskal-Wallis test to accept or reject the null hypothesis that the
samples have been taken from equal populations. The test significance level was 0.01.
For all the instances considered, significant statistical differences have been found between
the hybrid GA results and those achieved by the Markov (MK-EDAj) and mixture (MT-
EDA,) EDAs. Significant statistical differences between the hybrid GA and the Tree-
EDA have been detected only for instances s3, s5, s6, and s8. All the EDAs have a
better average fitness of solutions, showing that the algorithm clearly outperforms the
hybrid GA. Furthermore, as can be observed in Table 8.8, EDAs find new best solutions
for sequences s5, s6 and s8.

8.7.4 Results of the protein folding simulations

In this section, we present results on the use of EDAs to simulate protein folding in the
HP model. We investigate to which extent EDAs are able to mimic some characteristic
features of the protein folding mechanism. For all the simulation experiments, we use
MK-EDA5. In all the experiments, the population size was set at 2000 and the maximum
number of generations was 20.

114

8 Protein folding in simplified models with estimation of distribution algorithms

Energy landscape of the model

The first experiment investigates the energy landscape of the function for one of the 15545
functional model protein instances available. The goal of this experiment is to build some
intuition about the fitness landscape of the functional model protein. Particularly, the
goal is to illustrate the fact that, as solutions share more of the protein native contacts,
their fitness (energy) decreases.

The experiments consist of executing the EDA and storing all the conformations visited
during the search. Sequence PHHPPHPPHHPPHPHPPHPPHHH was chosen
for the experiment. For every conformation visited during the search, the total number
of contacts (K) and the number of native contacts (Q) are calculated. We classify
the conformations using these two parameters, and calculate the average energy of all
conformations that share the parameters (K, Q). The native state of the sequence has 9
native contacts. Therefore 0 < K,Q <09.

Average energy of sampled protein configurations

Number of native contacts

Total number of contacts

Figure 8.7: Energy landscape of the functional model protein corresponding to sequence
PHHPPHPPHHPPHPHPPHPPHHH as sampled by MK-EDA,.

Figure 8.7 shows the average energy of all the sampled conformations grouped using the
different values of K and (). The figure reveals that, as the number of native contacts
increases in the conformations, the average energy decreases.

Throughout the evolution, MK-EDA, is able to explore the different regions of the energy
landscape, no only those regions with high energy which are abundant in the search space,
but also those corresponding to low energy values where the number of conformations is
scarce. For example, MK-EDA, is able to locate the optimum which is unique.

115

8 Protein folding in simplified models with estimation of distribution algorithms

'

Number of native contacts

0 1 2 3 4 5 6 7 8 9 10
Total number of contacts

Figure 8.8: Energy landscape contour graph of the functional model protein correspond-
ing to sequence PHHPPHPPHHPPHPHPPHPPHHH as sampled by
MK-EDA,.

To appreciate the characteristics of this landscape in detail, Figure 8.8 shows the contour
graph corresponding to the same experiment. Sets of conformations with similar average
energy are joined in the graph by the same contour lines. Regions with lower energy are
those with many native contacts.

The samples obtained by MK-EDA4, make it possible to observe the correlation between
the presence of native contacts in the conformations and the quality of the folding (low
energy). This fact is expected in proteins that have evolved to diminish the degree of
frustration and achieve a fast folding rate. However, it does not mean that, for every
simplified energy function, the EDA will be able to move in the direction of the na-
tive configuration by augmenting the number of native contacts. First, the definition of
realistic protein folding energy functions such that their only significant basin of attrac-
tion is the native state has been recognized as a very difficult task (174). Second, the
phenomenon of frustration can arise in the functional model protein and other energy
functions, moving the MK-EDA, away from the native state.

Influence of the contact order in the protein folding process

We investigate whether the EDA can reflect the influence of the contact order parameter
in the protein folding process. As discussed in Section 8.6.1, proteins with a large fraction
of their contacts between residues close in sequence tend to fold faster than proteins with

116

8 Protein folding in simplified models with estimation of distribution algorithms

more non-local interactions. This section shows how the contact order of the functional
model protein instances influences on the success rate and average number of generations

needed by MK-EDA, to solve the problem.

As a preprocessing step, 100 executions of MK-EDAs are done for each of the 15545
functional model proteins instances. The goal of this step is to determine the easier
instances for the EDA, and to calculate, for all instances, a set of statistics from the best
solutions found at each run. Of the 15545 instances, MK-EDAs was able to find the
optimum in 12588 instances at least once. For 703 instances, the algorithm found the
optimum in at least 95 runs, and for 176 it found the optimum in 100 runs.

8.5

T T T T
- Average generation for each instance
—*%— Average of the average generation for instances with similar C.O.

sk 4

Generations

4 5 6 7 8 9 10 1" 12 13
Contact order

Figure 8.9: Relationship between the contact order of the sequences where MK-EDA,
has a success rate above 95 and the average number of generations needed to
converge.

To evaluate the relationship between the contact order of the sequences and the average
number of generations needed to solve them, we consider those instances for which MK-
EDAj has a success rate higher than or equal to 95. The choice of this set is determined
by the need to have an accurate estimate of the average number of generations. From
this set of instances, Spearman’s rank correlation coefficient is calculated between the
contact order and the average number of generations. Spearman’s rank correlation is the
statistic of a non-parametric test usually employed to test the direction and strength of
the relationship between two variables.

With a significance level of 0.01, and Spearman’s rank correlation equal to 0.3939, the test
refuses the null hypothesis of lack of correlation. In Figure 8.9, the average generation
and the contact order (C.O.) for the set of selected instances are plotted. Additionally,

117

8 Protein folding in simplified models with estimation of distribution algorithms

the figure shows the average number of generations calculated from instances with similar
contact orders. It can be seen that the number of generations needed to solve the problem
grows if the contact order grows.

Using the test based on Spearman’s rank correlation coefficient with the same significance
level, we have evaluated the relationship between the contact order of the sequences
where MK-EDA, found the optimum at least once, and the success rate achieved by
the algorithm for these instances. The test rejected the hypothesis that the observed
correlation was due to random effects. The parameter of the correlation provided by the
test was equal to —0.2848. This means that, as the contact order of the instance grows,
the success rate of the algorithm diminishes. Figure 8.10 shows the average success rate
for instances with similar contact order.

90

T T T
[—— Average success rate for instances with similar C.O. |

80 T

70 b

60 b

Success rate
feu
o
T
|

N
S
T
I

1%}
=)
T
I

20 T

0 I I I I I
4 6 8 10 12 14 16

Contact order

Figure 8.10: Relationship between the contact order of the sequences where MK-EDA,
found the optimum at least once, and the success rate achieved by the
algorithm for these instances.

The analysis of the EDA-based protein folding model has shown that, similarly to the
real protein folding process, low contact order optimal conformations are easier and faster
to find. This behavior has been observed in other optimization algorithms like Rosetta
(188), which is one of the best algorithms for protein folding in the CASP competitions
(223). In Rosetta, the structures sampled by local sequences are approximated by the
distribution of structures seen for short sequences and related sequences in known protein
structures. Using Rosetta, it can take high contact order proteins up to six orders of
magnitude longer to fold than it takes low contact order proteins (29).

118

8 Protein folding in simplified models with estimation of distribution algorithms

Difference in contact accessibility

In the following experiment, we investigate whether the EDA-based protein folding model
is able to reproduce the difference in the rate of formation for different native contacts.
Particularly, we will investigate whether the distance between contacting residues has an
effect on their formation. As discussed in Section 8.6.1, local interactions are more likely
to form earlier in the real folding process than non-local interactions.

Given a protein instance that is optimized using MK-EDAj,, the experiment consists of
computing, at each generation, the frequency of each native contact of the protein from
the selected set of the EDA population. The frequency is calculated as the fraction of
all selected solutions that contain that contact. The EDA is executed 100 times for each
of the 176 instances for which MK-EDA5 had previously found 100% success.

From the information obtained from the 17600 experiments, the frequencies of the con-
tacts with the same contact separation (C.S.) at the same generation are averaged. The
results are shown in Figure 8.11. By selecting a set of instances, we intend to show that
the effects observed are not particular of one single instance. On the other hand, by
choosing the 176 instances for which MK-EDA5 had previously found a 100% success
rate, it is guaranteed that the native state will be reached in all the runs with a very
high probability.

Figure 8.11 shows the evolution of the probabilities along the generations. Two aspects
can be seen. First, the probability of contacts with low contact separation (C.S. < 5) is
higher than the other probabilities since the first set of individuals is selected. Second, the
difference in the rate of convergence determined by contact separation is evident. While
contacts with low contact separation rapidly increase their probability, those contacts
with a higher contact separation (C.S. > 15) grow at a slower rate.

The behavior of our model is once again consistent with what is observed in real protein
folding. Moreover, these results can support hypotheses that help to explain the corre-
lation between the contact order of proteins and the success rate and average number
of generations needed to find them. As the increase of the probability of contacts with
high contact separation is slower, it will take a longer time to obtain native states with
higher contact order. Additionally, it will also be more difficult to find the optimum for
this type of instances as the algorithm will tend to get trapped in suboptimal solutions
with lower contact order.

8.8 Conclusions

The results of the experiments shown in this chapter confirm that EDAs are a feasible
alternative for the protein structure prediction problem. Particularly, we recommend the

119

8 Protein folding in simplified models with estimation of distribution algorithms

54
©
T}

o
®

e
3

Contact probabilities
o o
& o

o
IS

0.3

0 1 2 3 4 5 6 7 8 9
Generations

Figure 8.11: Relationship between the different contact separations and the evolution of
their probabilities along the evolution of MK-EDA5 for instances where it
had a 100% success rate.

use of probabilistic models for the solution of coarse-grained protein folding problems
where MC methods exhibit a poor performance.

The experiments that simulate the protein folding process presented in this chapter have
only investigated a number of the potential issues that can be studied with the model.
The analysis of EDA simulations leads to the study of other features exhibited by the
model. One example is the emergence of nucleation events in protein folding.

It is generally accepted that some sort of nucleation event is a key to the protein folding
mechanism. This means that some local partial structures are generally formed before the
configuration of the whole protein. However, there are different ways to explain how this
mechanism operates. Two opposite explanations are the “many delocalized nuclei” and
the “specific nucleus” ideas. The former states that each conformation in the ensemble
contains a different locally structured region. The latter suggests that the transition
state ensemble consists of conformations that share the same set of essential contacts,
which form a compact core inside the native state (the specific nucleus) (13).

Emergence of nucleation events in protein folding can be approached by the study of the
marginal probability distributions associated with the local configurations. By adding
a priori information about the local structure configurations to the probabilistic model,
the EDA protein folding model can also be harnessed to test the “specific nucleus” or
“many delocalized nuclei” hypothesis.

While the application of the model to real folding problems is clearly constrained by the

120

8 Protein folding in simplified models with estimation of distribution algorithms

nature of the HP energy model and the specificities of EDAs, we recall that different
applications of protein models require different levels of accuracy. Some models can be
used to study catalytic mechanisms while other are more suitable to find functional sites
by 3-d motif searching (14). Furthermore, as shown in this chapter, simple models can
be analyzed in detail over a wide range of instances and parameters.

Finally, we point out that measures associated with the protein folding process, such as
the contact order and the degree of frustration in proteins, are of interest for the design
and study of hardness measures (e.g. fitness distance correlation, epistasis variance, etc.
(163)) for evolutionary algorithms.

121

9 Protein side chain placement using
estimation of distribution algorithms

9.1 Introduction

The problem of finding an optimal positioning for the side chain residues is called side
chain placement or side chain prediction (129; 202; 222) and its discrete version is known
to be NP-hard (182). The problem is important not only for homology modeling but also
for protein design (183), where the goal is to find a protein able to fulfil a given function
or to satisfy a number of structural features.

A way to address the problem is to constrain the search to the discrete space by means
of discrete configurations of the angles, known as rotamers (70; 184). The inclusion of
these discrete configurations implies an important problem reduction. Nevertheless, the
problem remains exponential. Therefore, the conception of efficient search procedures
arises as an important research problem.

Deterministic and stochastic methods have been proposed to cope with the side chain
placement problem. In this chapter, we introduce a stochastic optimization algorithm
for the solution of this problem.

The chapter is organized as follows. In the next section, the biological basis of the side
chain placement problem is reviewed. Previous research on side chain prediction is dis-
cussed in Section 9.3. Section 9.4 presents the UMDA approach to side chain placement.
Section 9.5 introduces the class of VNS algorithms. In this section, possible frameworks
proposed for the combination of EDAs and VNS are discussed, and the EDA+VNS
approach to the protein side chain placement problem is presented. In Section 9.6, nu-
merical results of the application of the algorithm to a set of 425 proteins are presented
and discussed. Section 9.7 thoroughly analyzes the relationship between the UMDA ap-
proach to side chain prediction and previous proposals to this problem. The conclusions
of the chapter are outlined in Section 9.8 along with lines for further research.

123

9 Protein side chain placement using estimation of distribution algorithms

9.2 Side chain placement problem

9.2.1 Rotamers and rotamer libraries

A rotamer, short for rotational isomer, is a single side chain conformation represented
as a set of discrete values, one for each dihedral angle degree of freedom (70). A ro-
tamer library is a collection of rotamers for each residue type. Rotamer libraries can
be backbone-independent (220) or backbone-dependent (71). The distinctions are made
according to whether the dihedral angles of the rotamers and/or their frequencies depend
on the local backbone conformation.

The set of rotamers for an amino acid can be seen as a set of statistically significant
conformations of the most probable configurations. In the side chain placement problem,
the search for the protein structure is “reduced” to the search of a set of rotamers (one for
each residue) that optimizes the objective function. Although the side chain placement
problem considerably reduces the complexity of the protein structure problem for many
proteins, the dimension of the search space remains huge in most cases. Therefore, the
use of brute force algorithms would be unaffordable.

9.2.2 Fitness functions

The evaluation of a side chain conformation (an assignment of a set of angles for each
residue) is usually the combination of several terms that include (233) van der Waals
interactions, hydrogen bonds, solvation terms, and terms representing residue secondary
structure propensities. Fitness functions have been proposed and tuned taking protein
domain specificities into consideration.

In our representation, each residue will be associated with a variable X;. z; will be inter-
preted as the rotamer configuration associated with the i-th residue. When the backbone
is fixed, the energy of a sequence folded into a defined structure can be expressed (224)
as:

n n—1 n
E(x)=Y E(z:)+> > E(xx;) (9.1)
i=1 i=1 j>i

where E(x;) is the energy interaction between the rotamer and the backbone, and
E(z;,z;), the interaction energy between the couple of rotamers. Energies are estimated
using probabilities calculated from a rotamer library. The energy is usually proportional
to the logarithm of the rotamer probability. Residues that do not interact at all have
energy E(x;,2;) = 0 for every possible rotamer configuration.

The function represented by Equation (9.1) is used in this chapter to evaluate the quality
of the side chain configurations. There are several factors that influence the complexity

124

9 Protein side chain placement using estimation of distribution algorithms

of the function. These include the number of variables, the number of possible configu-
rations for each variable and the number of interactions.

It is important to notice that, while structure-based pairwise potentials are fast and have
shown to be useful for fold prediction, they lack sensitivity to local structure at an atomic
level (183). On the other hand, since certain non-additive energy contributions cannot
be treated exactly, this pairwise expression of the energy is just a simplification of the
general case (224).

Therefore, some authors (133) have pointed out that the real obstacle for side chain
prediction is the definition of appropriate scoring functions. Current approaches give
good results for certain types of residues, but not for others. For instance, some steric
clashes are not accounted for in the current proposals to approximate energy functions.

9.3 Previous research on side chain prediction

Different optimization approaches to optimal side chain prediction have been proposed.
We review a number of these state-of-the-art proposals that are relevant to our work
because of the quality of the results achieved, their extent of application, and/or their
relationship with our proposal. A number of the algorithms analyzed are compared with
our proposal in the section of experiments. For a more complete review of these methods,
see (224).

Optimization approaches to side chain prediction are usually grouped using two different
classifications. They are classified into exact and approximate methods (42) according
to the type of solutions found. FExact methods find the exact solution when convergence
is achieved. However, there is no guarantee for them to converge in every instance.
Approximate algorithms always output a candidate solution, but there is no guarantee
for them to be optimal.

Another common classification (183) of optimization methods used for side chain place-
ment divides them into stochastic and deterministic methods. For the same input pa-
rameters a deterministic method will converge to the same solution. Stochastic methods
use a random component that may cause them to obtain different solutions when starting
from the same input parameters. Stochastic algorithms can be divided into local and
population-based search methods. Local search algorithms visit one point of the search
space at each iteration. Population-based search methods use a set or population of
points instead of a single point.

Figure 9.1 shows a classification of the algorithms. Exact algorithms are also determin-
istic. Approximate algorithms can be stochastic or deterministic.

125

9 Protein side chain placement using estimation of distribution algorithms

Deterrﬁinistic
Stochastic

Approximate methods Exact methods

Figure 9.1: Classification of the algorithms used for side chain prediction.

9.3.1 Deterministic approaches

Among the most common deterministic approaches used for side chain prediction are
dead-end elimination algorithms, the self consistent mean field approach, and SCWRL.

Dead-end elimination algorithms

)

Dead-end elimination (DEE) algorithms (64; 65; 136) belong to the class of algorithms
that take advantage of the pairwise decomposability of the fitness function to eliminate
rotamer configurations that been proven not to be among the optima. One of the simplest
DEE implementations uses the Goldstein elimination criterion based on inequality (9.2)
to iteratively eliminate rotamers.

E(x;) — E(xf) + Y ming, (E(x;, z;) — E(x},2;)) > 0 (9.2)
T

This equation establishes a sufficient condition (64) for rotamer configuration z; to be
absent from the optimal solution. When no condition that further eliminates rotamers
can be established, the algorithm stops. If the space of remaining configurations is
small enough, the remaining combinations are searched using exhaustive enumeration.
For example, the A* algorithm is usually employed to search in the remaining space.
Unfortunately, this favorable scenario is not commonly found. New DEE theorems (136)
have been added to the Goldstein criterion. These theorems allow the elimination of
more rotamer configurations.

126

9 Protein side chain placement using estimation of distribution algorithms

Self-consistent mean field approach

The self-consistent mean field (SCMF) approach uses a mean field description of the
interactions between rotamers to smoothen the energy landscape. This smoothness is
expected to help in the search for the global optima. The approach is based on a discrete,
fixed ensemble of conformations for each subentity of the system considered. Each of these
conformations is weighted by a probability which is refined by the SCMF procedure (112).

The mean-field energy for rotamer z; at residue ¢ is (111; 224):

n
Epmg(zi) = E(zi) + Y E(wi, 2;)V () (9.3)

e
The weight of each rotamer V' (x;) is normalized to unity. The first term in Equation (9.3)
is the contribution due to the interaction between the rotamer and the backbone, and
the second term describes all the inter-rotamer pairwise interactions weighted by the
probability of the rotamer. The conformational probability vector can be independently
calculated by Gibb’s ensemble:

1
V(xj) = ;e_ﬁEmf (3), (9.4)
j

where g; is the partition function and 3 is the inverse of the temperature.

After initialization, the mean-field potential E,,;(x;) is calculated from Equation (9.3)
for each residue and rotamer. The energies are converted into probabilities using Gibb’s
equations. The algorithm iterates between Equations (9.3) and (9.4) until self-consistency
is achieved.

In SCMF, a clear link between probability distributions and the objective functions
defined from the rotamer energies is established. However, SCMF is a deterministic
method because, given a set of input parameters, each run of the algorithm will converge
to the same solution.

SCWRL

SCWRL (42; 70) is a heuristic algorithm that uses a representation of the problem based
on graphs. In its initial version (70), residues were separated into inactive and active
groups depending on whether or not they provably are in their minimum configuration.
The combinatorial problem is reduced to find the minimum energy configuration of the
active residues.

SCWRIL3 is the most recent SCWRL version (42). It uses a divide and conquer strategy
that is based on a graphical structure. This graph is a representation of the problem

127

9 Protein side chain placement using estimation of distribution algorithms

structure. Any two residues that contain rotamers with non-zero interaction energies
are considered to have an edge in the graph. First, the graph is split into clusters
of interacting residues. If the cluster is small, its lowest energy is found by using a
backtracking algorithm with pruning. If the cluster is too large, other partition strategies
which divide the clusters into biconnected subgraphs (those that cannot be broken apart
by removal of a single vertex) are used.

9.3.2 Stochastic approaches

Several stochastic approaches have been introduced for the side chain conformation prob-
lem. These include inference-based algorithms (240; 241), GAs (135; 220; 239), simulated
annealing (129), and other population-based methods (78). While simulated annealing
inspects a single point at each iteration, evolutionary and other population-based algo-
rithms explore a set of solutions at each step.

Inference approach to side chain prediction

Inference-based methods (240; 241) can be used to find the exact solutions of the side
chain prediction problem. This class of method comprises a set of algorithms, based
on graphical models (127; 177), and is able to model the search space of the side chain
prediction problem as a probability distribution defined on random variables which cor-
respond to the residues. Each inference algorithm may solve the problem in a particular
way, but they all represent it by using a probabilistic model.

Exact and approximate inference-based methods (164; 242) can be used to compute the
most probable configuration. In the first case, the method is guaranteed to converge to the
most probable configuration. In the second case, convergence is not guaranteed, and the
solution found upon convergence may not necessarily be the optimal one. The inference-
based approach to side chain prediction can be also seen as a mixed approach, where
exact or approximate solutions will be found according to the variant of the inference
algorithm used. If the problem is small enough, one might be able to use an exact
algorithm, but in many cases only approximate algorithms can be applied. On the other
hand, messages can be randomly initialized to obtain a stochastic version of the method.

In (240; 241) inference is used to find the k-lowest energy side chain configurations for a
large set of protein structures. Different variants of belief propagation algorithms were
evaluated in the experiments.

Evolutionary algorithms

An example of a successful application of evolutionary algorithms is presented in (135).
In this paper, a combination of a GA with a mutation procedure improves the quality

128

9 Protein side chain placement using estimation of distribution algorithms

of the solutions obtained using only the GA. The improvement is achieved by allowing
perturbations in the optimal rotamer configurations found. The algorithm was applied to
the rebuilding of 25 protein structures whose real size was less than 558 residues. Results
were compared to the SCWRL algorithm showing equivalent power in rebuilding protein
side chains. While the GA was relatively worse in the prediction of surface residues, it
was more robust in the prediction of the buried part of the interface in the protein-protein
complex.

A similar behavior was achieved by the Gaussian evolutionary method (GEM) introduced
in (239). GEM combines both discrete and continuous global search mechanisms. Since
many side-conformations cannot be covered if only discrete angle values are used, the
inclusion of the continuous search is said to add robustness to the method (239). The
algorithm is evaluated in a set of 38 proteins, with lengths between 40 and 325 residues.
Results comparable to those achieved using SCWRL were obtained.

Another stochastic algorithm is presented in (78). This evolutionary algorithm is based
on the elimination of variable values not likely to be present in the best configuration. At
every step, the algorithm samples a set of points from the search space, evaluates them
and selects two groups according to their fitness evaluation. A contrasting analysis of the
frequency of rotamers between the solutions in the two groups leads to the elimination
of some rotamer configurations. Those rotamers that appear only in the top high-energy
conformations are excluded from future samples. This way, the algorithm constrains the
search to those rotamer configurations more frequent in low energy solutions.

The process is repeated until the reduced number of variable values is smaller than a
user-defined “end of stochastic stage criteria” (78). Then, an exhaustive search is applied
to find the k-lowest configurations. The method was applied to 8 proteins, the largest
with 263 residues. There is no guarantee for the algorithm to find the best configuration
in every execution.

9.3.3 Univariate marginal distribution algorithm

We will focus on the UMDA (Algorithm 3.2), an EDA that uses a factorized probability
model based on the univariate marginals calculated from the selected population.

One of the recognized approaches to the optimization of functions with multiple local
minima is based on hypersurface deformation, in which the function is deliberately al-
tered (227). The goal of different methods proposed (175; 211; 227; 250) is to smoothen
the fitness landscape of the function and reduce the number of minima, thereby making
the global optimization problem easier. One example of these strategies is the ant-lion
method (211). This approach exploits shape modifications of the cost-function hypersur-
face which distend basins surrounding low-lying minima (including global minima). By

129

9 Protein side chain placement using estimation of distribution algorithms

intertwining hypersurface deformations with steepest-descent displacements, the search
is concentrated on a small relevant subset of all minima (211).

Among the examples of applications to the bioinformatics domain are the potential
smoothing and search (PSS) algorithm (175), and the parallel hyperbolic sampling (PHS)
algorithm. PSS has been applied to the prediction of the packing of transmembrane he-
lices. PHS (250) is a Monte Carlo method that logarithmically flattens local high-energy
barriers, allowing the simulation to tunnel more efficiently through energetically inacces-
sible regions to low-energy valleys.

Given a fitness function f(x), UMDA transforms the original fitness landscape defined
by f(x) into a fitness landscape defined by W(p) = p(x)f(x), where W is the average
fitness. This transformation smoothens the rugged fitness landscape of f(x). UMDA
converges to the local atractors of the average fitness. If there is a tendency towards the
global optimum, UMDA may find it (157). Although many of the original local optima
can appear flattened in the fitness landscape defined by W, there are many factors that
influence this transformation; among them, the number of local optima of the function
and the gap between these and the global optimum point (137; 162; 195).

9.4 UMDA approach to the side chain placement problem

In this section, we introduce a method to search for the optimal solution of the side chain
placement problem. The pseudocode of the method is shown in Algorithm 9.1.

The algorithm starts by calculating the adjacency matrix that represents the graphical
model topology inferred from the backbone structure, as described in (241). The calcu-
lation of the matrices simplifies the evaluation of the solutions by only considering the
pairwise interactions that exist between neighbor proteins in the graph.

Then, the number of possible configurations for each residue is calculated using the
backbone-dependent rotamer library of Dunbrack and Cohen (71). This library includes
frequencies, mean dihedral angles and variances as a function of the backbone dihedral
angles.

In the next step, we apply the Goldstein elimination criterion derived from Equation (9.2).
This step considerably contributes to reduce the dimension of the search space, but for
medium and large proteins, research remains unaffordable for exact methods. The Gold-
stein elimination criterion used by DEE is an important component of other optimization
algorithms (e.g. SCWRL). The combination of deterministic and stochastic methods for
side chain placement has been identified as an important development of these algorithms
(183).

130

9 Protein side chain placement using estimation of distribution algorithms

When the application of the Goldstein elimination criterion cannot reduce the number
of variable values further, we determine which are the residues that have more than one
rotamer configuration. The corresponding variables are the only ones to be optimized.

We use the following problem representation for the UMDA search: each residue will
be represented by a random variable X;. The number of values of each variable will
correspond to the number of possible rotamer configurations for the corresponding residue
i (ie. Qx, ={1,..., K;}, where K; is the number of feasible rotamer configurations for
residue 7).

As the fitness function, the energy function in Equation (9.1) is used. The probability
model in Equation (3.2) will represent the probability of a given side chain configuration.

In our implementation of the UMDA, we use a population size M = 5000 and truncation
selection with parameter T = 0.15. In this type of selection, the best N = T - M
individuals, according to their function evaluations, are selected. We use best elitism.
The stop criteria considered are that the optimum has been found (when it is known),
that the number of different solutions is below 10, or that the maximum number of
generations (5000) has been reached. The pseudocode of the algorithm is shown in
Algorithm 9.1.

Algorithm 9.1: Proposed algorithm for side chain placement

1 Calculate the adjacency matrix that describes the graphical model
topology.
2 Calculate the energy interaction between neighboring rotamers.

8 Apply the Goldstein criterion to simplify the number of rotamer con-
figurations.

4 Apply UMDA to find the candidate best solution.

9.4.1 Computational cost of the algorithm

The analysis of the computational cost of the algorithm can be divided into three stages:
1) Calculation of the adjacency matrix, 2) application of the Goldstein criterion, and 3)
application of the UMDA approach.

The calculation of the adjacency matrix depends on the distances between every pair of
residues. The calculation of these distances has complexity O(n?). The complexity of
dead-end algorithms is analyzed in (42). The principal determinant of the computing time
of DEE is the number of rotamer pairwise interaction energies that must be retrieved
for an entire round of eliminations. Let |K;| be the cardinality of variable X;. The

complexity of the DEE step is O(r%/[EANnQ), where rypan = % S K

131

9 Protein side chain placement using estimation of distribution algorithms

As can be seen from the UMDA pseudocode shown in Algorithm 3.2, UMDA has a simple
structure, with few and clearly defined steps. These facts allows its computational cost
to be calculated.

First, we consider the computational complexity of each generation of UMDA. The ini-
tialization step of UMDA consists of assigning the values to all the individuals in the
initial population. It has complexity nM. The computational complexity of the eval-
uation step depends on the number of residues and of the interacting neighbors in the
graph. Let |D| be the number of edges represented by the adjacency matrix. Then, the
running time complexity of this step is O(n + |D|). The complexity of the UMDA selec-
tion steps depends on the selection method used. For truncation selection, complexity is
related to the ordering of the solutions. In the worst case, the complexity of this step is
Mlog(M).

The complexity of the learning step is O(Nn). This is the cost of inspecting the values
of every variable of the N selected solutions. The complexity of the sampling step is
O((M — N)nrarax), where ryjax = mazvieqy,. »y|Kil is the highest cardinality among
the variables. This value corresponds to the maximum number of rotamer configurations
a residue can have.

The actual number of generations needed by UMDA to converge is problem dependent.
In general, this parameter is very difficult to estimate, although theoretical results for
some classes of functions are available (82). Let G be the maximal number of gener-
ations allowed. The complexity of the UMDA for the side chain problem can be esti-
mated as O(GM (nryrax + |D|)), and the total complexity of the proposal introduced is
O(r3 pann® + GM (nrarax + |D))).

9.5 Refinement of the solutions using variable neighborhood
search

UMDA is an efficient algorithm that is able to find high quality solutions without much
computational overload. However, its simple probabilistic model does not allow it to
deal with problems that have strong interactions between the variables. One way to
improve the results achieved by UMDA is to apply it combined with other optimization
techniques. In this section, we propose the use of the variable neighborhood search (VNS)

(149; 150) algorithm to search for optimal solutions starting from the solutions found by
UMDA.

9.5.1 Variable neighborhood search

VNS is based on a simple principle: the systematic change of neighborhood within the
search. Instead of following a trajectory, VNS explores increasingly distant neighbor-

132

9 Protein side chain placement using estimation of distribution algorithms

hoods of the current solution, jumping from this solution to a new one if and only if an
improvement has been made. Working in this way, favorable characteristics of the current
solution will be often kept and used to obtain promising solutions. Moreover, in order
to obtain local optima, a local search routine is repeatedly applied to these neighboring
solutions.

More formally, let Ny, (k =1,...,kmqz) be a finite set of previously fixed neighborhood
structures, and A} (x), the set of solutions in the k' neighborhood of x, a possible
solution of the optimization problem. The main steps of the basic VNS are presented in
Algorithm 9.2.

Algorithm 9.2: Main steps of the basic VNS

1 Initialization. Select the set of neighborhood structures Ny, (k =
L,...,kmaz)

Shaking. Generate a point x’ € Nj(x) at random.

2 Find an initial solution, x.

8 Choose a stopping condition.
4 do{

5 Set k < 1.

6 do {

7

8

Local search. Apply some local search method with x’ as the
initial solution.

Denote with x” the so-obtained local optimum.
9 Mowe or not. If this local optimum is better than the current
solution, x « x”.
Otherwise, set k «— k + 1.
10 } until k = kg
11} until Termination criterion is met.

Several stopping criteria can be used. The most common are to fix a maximum CPU
time, maximum number of iterations, or maximum number of iterations between two
improvements.

The basic VNS is a descent, first improvement method with randomization —notice that
point x’ is generated at random in step 7 of Algorithm 9.2. Modifications to basic VNS
can be done in several ways. In the variable neighborhood descent (VND), steps 7 and
8 are replaced by the finding of the best neighbor of x. If, in step 9, moving is done
with some probability, making the selection of a solution feasible even if it is worse than
the current one, the basic VNS is transformed into a descent—ascent method. Moving
to the best neighborhood among all k4, of them, converts the basic VNS into a best
improvement method. Further modifications to basic VNS as well as applications of this

133

9 Protein side chain placement using estimation of distribution algorithms

metaheuristic to several interesting combinatorial optimization problems are discussed
n (85). Comparisons of VNS with tabu search and GAs can be consulted in (60).

9.5.2 Hybridization between VNS and EDAs

The hybridization between VNS and EDAs can be achieved in different ways. A straight-
forward approach is to apply the alternatives that have been previously explored in GAs.
Particularly relevant is the research done in memetic algorithms (165). This class of
algorithms combines local search heuristics with crossover operators. Indeed, there are
a number of EDA proposals that apply local search procedures to the solutions sampled
from the probabilistic model. This is the case of the proposals presented in (95; 159; 185).
A second possibility is the alternation of the search using EDAs and other schemes. In
(1865 251), EDAs are used together with GAs.

Finally, the probabilistic model can be also used to design local optimization algorithms
in the context of EDAs. In this case, the optimization method would take advantage of
the information kept in the probability model to improve the existing solutions.

Combinations with VNS have been carried out in two different ways. A first type of
hybridization consists of using another heuristic in a step of the VNS. This approach has
been introduced for tabu search (114; 187) and for multistart search (18). The second
proposed combination of VNS has embedded it into a given metaheuristic. For instance,
in (37), VNS is combined in this way with tabu search, while (9) presents an application
where VNS is embedded within a greedy adaptive search procedure.

Combination of EDAs and VNS
In (194), three main ways of combining VNS and EDAs are proposed:

e Application of VNS within EDAs.
e Use of the probabilistic model learned from the solutions in the context of VNS.

e Alternation of VNS and EDAs.

We focus on the alternatives for using VNS within EDAs. Several general ways of embed-
ding VNS within EDAs can be obtained depending on the space where the neighborhood
is taken. The simplest way is when the neighborhood is considered to be in the space of
points of the search space and, consequently, the VNS heuristic is applied to each individ-
ual —representing a point of the search space— sampled from the probability distribution
at each iteration of the EDA. This proposal can be very expensive computationally. In
order to alleviate this load, it could only be applied to the best individual of the last
iteration of the EDAs, as shown in Section 9.5.3.

134

9 Protein side chain placement using estimation of distribution algorithms

The former approach can be extended considering the neighborhood in the space of
populations. This idea can be considered if the best individual obtained when sampling
from the probability distribution learned is worse than the current best individual. In
this situation, several strategies inspired in the basic VNS can be taken into account. A
first strategy is to keep the number of individuals sampled constant and to reduce the
percentage of selected individuals. The objective of this strategy is to learn a probability
distribution with higher density around the best individuals obtained in the simulation
step. A second strategy could consist of bootstrapping from the selected individuals until
the sampling of the learned probability model produces an individual with a fitness value
better than the current best one. In this case, the bootstrap method provides a way
to simulate a neighborhood. A third strategy is to increase the number of individuals
sampled, but keeping the number of selected individuals constant. The aim of this
strategy is to learn the probability distribution from a set of individuals selected with a
higher selective pressure. In this case, the increase in selective pressure enables different
neighborhoods to be obtained.

A different way to embedg VNS into EDAs is to define neighborhoods in the space of
probability distributions. A simple idea is to increase the complexity of the probability
distribution learned at each iteration. In case using the current individuals does not
improve the current best solution.

9.5.3 EDA-VNS approach for the side chain placement problem

In this section, we introduce two different VNS schemes in the context of EDAs to solve
the protein side chain placement problem.

A crucial element of the VNS algorithm is the definition of the neighborhood. The
neighborhood will be defined only for the points represented by those variables and values
that remained after applying the Goldstein criterion. As explained in Section 9.3.1, the
Goldstein criterion allows the number of variables and the range of values for each variable
to be reduced. For the side chain placement problem, we define a k-neighborhood of a
solution x as the set of solutions that are different from solution x in exactly k variables.
More formally,

Ni(x) = {x' | n— Zf(xl,m;) =k}, (9.5)
i=1

where I is the indicator function, equal to one if both values are different.

Clearly, given a point x, for all j # k, N;(x)(Nk(x) = 0. Additionally, we use the
protein structure information to constrain the neighborhood. Particularly, we use the
information contained in the adjacency matrix. In the analysis of the k-neighborhood
(k > 1), we only consider those sets of k variables for which each pair of variable has

135

9 Protein side chain placement using estimation of distribution algorithms

a non-zero entry in the adjacency matrix. This connection constraint naturally arises
from the pairwise nature of the fitness function. Variables whose corresponding residues
are not connected in the graph do not contribute together to the fitness function. The
independent contribution of the variables to the fitness function is covered by the 1-
neighborhood.

In the 1-neighborhood of x, all the values for each of the variables are tried in the
exploration of the neighborhood. For k > 1, the algorithm calculates all possible sets of
k variables with non-zero entries in the adjacency matrix. Each possible configuration
of each set that is different in all k& variables to x defines a neighbor solution. By
requiring that the solution has to be different in all the k£ variables, we guarantee that
the neighborhoods do not overlap. On the other hand, by reducing the search of k-size
sets to those interacting in the protein structure, the algorithm critically reduces the
search space.

9.5.4 VNS schemes for protein side chain placement

Given this neighborhood, we define two alternative ways to define the local search step
8 of Algorithm 9.2. Ezhaustive and randomized procedures can be employed.

To select x” in the exhaustive schema, the Ny(x),(k = {1,...,knae}) is completely
searched to find one of the points where the fitness function is optimized. In the ran-
domized scheme, point x’ is randomly selected. A local search is conducted by randomly
selecting solutions in the neighborhood and moving to this solution if fitness is improved.
A parameter, maxtries, defines the maximum number of points of the neighborhood
that will be searched.

Obviously, the exhaustive search can be more computationally costly than the random-
ized one. However, in the second case, the cost depends on maxtries. To reduce the
computational cost of the exhaustive scheme, we can constrain the set of neighborhood
structures.

9.6 Experiments

In this section, we present the results of the application of Algorithm 9.1 to a large set
of protein instances. We also present the results of the application of the UMDA-+VNS
strategy. First, we introduce the protein benchmark used for our experiments. Then,
we explain how the experiments were designed, as well as the numerical results of the
comparison between UMDA and other optimization algorithms. Finally, the results of

the UMDA+VNS approached are presented.

136

9 Protein side chain placement using estimation of distribution algorithms

Figure 9.2: From left to right: Native backbone structure corresponding to the pdbld2e
protein, side chain configuration found by UMDA.

9.6.1 Protein benchmark

To validate our algorithm, we have used a set of 463 protein structures'. The dataset
corresponds to 463 X-ray crystal structures with a resolution better than or equal to 2,
an R factor below 20%, and a mutual sequence identity less than 50%. Each protein
consisted of 1-4 chains and up to 1000 residues.

For comparison, we have used the Side-chain PRediction INference Toolbox (SPRINT)?,
which is an implementation of the max-product belief propagation algorithm (241). To
simplify the overload related to the calculation of the adjacency matrices, and to focus
on the study of the UMDA, we have used the adjacency matrices available from Yanover
and Weiss SPRINT implementation.

The database of proteins is divided into three groups: Small, large, and dimer proteins.
We have used this classification in our experiments. The total number of instances, as
well as the minimum and maximum size of the instances in each group, are shown in
Table 9.1. In the case of the dimer set, each protein can contain up to five chains of
residues. Figure 9.2 (left) shows the backbone structures of the four chains that form the
pdbld2e protein. This is the largest protein in the dimer set.

Additionally, as a preprocessing step, we have determined, for each group, the instances
for which the Goldstein criterion eliminates all configurations but one, and those instances

! These instances have been obtained from Chen Yanover’s page:
http://www.cs.huji.ac.il/~cheny/proteinsMRF.html
http://www.cs.huji.ac.il/~cheny /sprint.html

137

9 Protein side chain placement using estimation of distribution algorithms

for which the SPRINT algorithm converges. This information is summarized in Table 9.1
together with the number of instances of each group where UMDA is able to find the
known optimal solution in at least one of 50 runs.

As can be observed in Table 9.1, the application of the Goldstein criterion can only solve
instances in the first group. Moreover, SPRINT does not converge for 3% of the instances
in the small class, 31% of the instances in the large class and 32% of the instances in the
dimer class. For the small class of instances, the protein structures obtained from the
instances for which SPRINT converged are known to be the optimal ones (241).

database small large dimer
total 325 45 93
min. size 7 311 124
max. size 267 704 1982
Goldstein 11 0 0
SPRINT conv. 314 31 67
UMDA 284 10 16

Table 9.1: Details of the protein instances.

9.6.2 Design of the experiments

Initial experiments intend to evaluate whether UMDA was able to achieve the optimum.
We have excluded from the experiments the instances for which the Goldstein criterion
eliminates all configurations but one. For the rest of the 314 instances, we run the
UMDA and find the best solution that the algorithm can find in 50 runs. The last row
of Table 9.1 shows the number of protein instances for which UMDA found the known
optimal solution in at least one of the 50 runs.

Results achieved by SPRINT are used as a reference for comparison. For all the in-
stances, we have also calculated the structures found by SCWRL (version 3.0). In (240),
the energies obtained by SCWRL (version 2.9) were reported to be strictly higher than
those found by SPRINT in the small class of instances. Unfortunately, the SCWRL (ver-
sion 3.0) implementation does not provide the energy values corresponding to solutions
calculated by the algorithm. Therefore, in this chapter, we constrain the comparison to
the results achieved by SPRINT.

To evaluate the performance of UMDA, we use measures PD and PFE, expressed in
Equations (9.6) and (9.7) respectively.

opt)

I(z, x;

PD(x) = 22;1 (9.6)

n

138

9 Protein side chain placement using estimation of distribution algorithms

E(x) — E(x°Pt)
E(xort)

PE(x) = (9.7)

PD is the percentage, with respect to the number of side chain residues, of the number of
residues different from the best known solution. In Equation (9.6), I(z;, z;" ") is 1 if the
side chain rotamer configurations of solutions x and x°P* are different for residue i. PE
is the percentage, with respect to the energy of the best known solution, of the energy

gap between the energy obtained and the energy of the best known solution.

For the sets of instances, we analyze the best and average performance of the algorithm.
The best and average performances are respectively calculated using the best solution
x5! found in the 50 experiments (PD(x%*!), PE(x%*!)), and the average (PD, PE)

of the evaluating measures calculated from the best solutions found in each experiment

o Y0, PD) 5 2, PEGO)
(PD = ==5——, PE= ==5—).

9.6.3 Numerical results

Figure 9.3 shows (from left to right, top to bottom) the histograms corresponding to
PD(x%!), PD, PE(x"***!) and PFE for the small set of instances. Similarly, Figures 9.4
and 9.5 respectively show the same measures for the large and dimer sets.

An analysis of the histograms of PD(x?*!) shows that the vast majority of solutions

are less than 4% of the residues apart from the best known solutions. This difference
increases when PD is considered. However, in this case as well, the vast majority of
solutions are only 3% away from the best known solution.

A similar behavior can be observed in the case of the energy gap. Nevertheless, for the
energy, the best and average values are more concentrated around the optimal energy.
This fact reflects that solutions with a higher distance in terms of the number of residues
may be closer in the energy landscape. This provides evidence of the emergence of a
phenomenon called frustration (106).

9.6.4 Comparison with other methods

In the following experiments, we concentrate on those instances for which SPRINT did
not converge. As the optimal solutions are unknown for these instances, they constitute
a challenge for optimization methods. The first column of Tables 9.2, 9.3, and 9.4 shows
pdb file identifiers of the proteins for which SPRINT did not converge from the set of
small, large and dimer proteins respectively. Columns 2 and 3 respectively provide the
remaining number (n) of residues after the application of the DEE? step, and the average

3For simplicity, we also call n to the number of remaining residues after DEE. However, the application
of DEE determines an important reduction of the initial number of residues.

139

9 Protein side chain placement using estimation of distribution algorithms

Number of instances

Number of instances

300 T T T T T
250
200
PD(xbst) PD
200
§ 150
g
2
150 5
5
£
3 100
100
50
. - _ _
0 2 4 6 8 10 12 2 3 4 5 6
Percentage of residues different to the optimal solution Average percentage of residues different to the optimal solution
250
PE(xbest) PE
200 Bl
g
&
150 1 % 150
3
i
g
:
100 1 100
50 1 50

2 3 4
Percentage of the energy gap to the optimal solution

4 6 8
Average percentage of the energy gap to the optimal solution

Figure 9.3: UMDA results for the small set of instances. From left to right, top to bottom,

the histograms corresponding to PD(x"*), PD, PE(x"***!) and PE.

140

9 Protein side chain placement using estimation of distribution algorithms

Number of instances

1.5 2 25 3 35
Percentage of residues different to the optimal solution

4 45 5 05 1 1.5 2 25 3 35 4
Average percentage of residues different to the optimal solution

PE(Xbest)

Number of instances

0 05

25 3 05 1

T ¥ 45 5
Average percentage of the energy gap to the optimal solution

1 2
Percentage of the energy gap to the optimal solution

Figure 9.4: UMDA results for the large set of instances. From left to right, top to bottom,
the histograms corresponding to PD(x"*), PD, PE(x"**!) and PE.

number of rotamer configurations of the variables (K;). The energies corresponding to
the structure found by SPRINT (fsprrnr) and UMDA (fuarpa), which in this case is
the energy of the best solution, are shown in columns 4 and 5. The best energy values
corresponding to each instance appear in bold.

The last two columns show the root mean square distances calculated between the po-
sitions of the structures found by SPRINT (rsprrnr) and UMDA (ryapa), and the
positions of the native structure side chains. The inclusion of these values intends to
evaluate the predictions obtained in comparison to the real protein structure. However,
there is no total correspondence between the root mean square distance and the function
evaluation used during the optimization process. The best root mean square distance
values corresponding to each instance appear underlined.

Table 9.2 shows that UMDA is able to find solutions better than SPRINT in only one
of the instances of the small set of solutions for which SPRINT did not converge. Nev-
ertheless, in the case of the large and dimer sets of solutions, the solutions achieved by

141

9 Protein side chain placement using estimation of distribution algorithms

pdb file n K; fsprINT fUuMDA TSPRINT TUMDA
pdblbuu 27 2.56 200.23 200.23 1.2551 1.2551

pdblbvl 21 252 132.54 132.54 1.2359 1.2359
pdblema 45 4.35 286.40 286.40 1.0859 1.0859
pdblet9 64 4.12 226.80 227.14 1.3090 1.3251
pdblh6h 43 4.13 97.95 97.95 1.3986 1.3986
pdblhh8 63 4.33 369.57 374.63 1.4601 1.5222
pdblmrj 70 5.53 233.36 232.66 1.2253 1.2247
pdb2fcr 51 4.35 236.28 236.28 1.3366 1.3366
pdb2ilk 35 3.17 138.55 138.55 1.6039 1.6039
pdb2tir 28 5.28 92.44 92.60 1.1198 1.0833
pdb3kvt 35 4.91 160.50 163.95 0.8470 1.0111

Table 9.2: Results achieved by the different algorithms for the subset of small instances
for which SPRINT does not converge.

pdb file n K; fsprint fuMDA TSPRINT TUMDA
pdblcrz 75 3.84 628.67 626.41 1.2988 1.2968
pdblddt 146 4.22 767.04 754.93 1.3296 1.3105
pdbldpe 185 4.69 914.48 727.37 1.2889 1.2665
pdble39 127 5.68 545.30 545.30 1.0239 1.0239
pdblf5n 166 4.68 585.78 585.78 1.2480 1.2480
pdblgsk 208 5.36 1237.15 1237.15 1.2031 1.2023
pdb1h3n 318 5.62 1635.33 1626.09 1.3473 1.3458
pdbljyl 144 3.68 862.15 861.92 1.2760 1.2799
pdblkmo 241 5.68 955.94 925.90 1.2901 1.3345
pdblkwh 207 4.88 959.17 972.11 1.3838 1.4247
pdblnbu 155 3.60 858.89 860.67 1.2845 1.2911
pdblnge 189 4.70 620.29 570.29 1.2556 1.3217
pdblnr0 175 3.64 908.02 913.87 1.0409 1.0733
pdb2nap 292 5.26 1100.75 1108.79 1.2354 1.2656

Table 9.3: Results achieved by the different algorithms for the subset of large instances
for which SPRINT does not converge.

142

9 Protein side chain placement using estimation of distribution algorithms

pdb file n K; fspriNt fuMDA TSPRINT TUMDA
pdblb25 916 5.62 4795.46 4788.89 1.2349 1.2628
pdbld2e 281 3.75 2062.97 1839.67 1.2218 1.2087
pdbldxr 353 4.72 2462.54 1703.73 1.2828 1.2683
pdbldz4 288 5.28 974.17 875.77 1.1513 1.1881
pdble3d 454 4.23 2585.02 2416.15 1.1147 1.1259
pdble61 479 4.68 1938.85 1936.92 1.2375 1.2133
pdble6p 365 5.32 1971.44 1681.67 1.2812 1.3101
pdblf60 123 4.59 543.75 537.42 1.2723 1.2548
pdblfmj 294 4.59 1945.95 1100.51 1.2892 1.2370
pdblfm9 239 5.77 987.88 989.51 1.3156 1.2304
pdblfnn 240 4.45 765.49 735.75 1.2009 1.2358
pdblgiq 265 4.49 850.16 806.53 1.1998 1.2068
pdblhOh 934 4.41 4757.16 4848.93 1.1085 1.2040
pdblh3f 206 4.85 923.15 785.56 1.3351 1.3421
pdblhdr 227 4.14 893.04 825.63 1.3567 1.3200
pdblh80 229 3.88 1105.83 1036.90 1.1176 1.0630
pdblhhs 728 5.97 2790.27 2627.41 1.3171 1.2802
pdbligc 288 3.88 1590.14 1538.37 1.2558 1.2534
pdblj3b 289 5.06 1611.57 1600.16 1.3888 1.3999
pdblj8f 329 4.10 952.29 957.08 1.2798 1.2932
pdbljmx 285 4.66 1541.90 1518.10 1.2565 1.2891
pdbllax 268 4.88 924.98 1017.56 1.1864 1.2136
pdbllga 244 4.00 1185.50 935.95 1.1911 1.2171
pdbllsh 350 5.26 1131.90 1125.04 1.3524 1.2376
pdblnp7 424 5.24 1765.15 1783.09 1.3937 1.4025
pdbltki 164 4.29 1083.53 858.68 1.2426 1.2226

Table 9.4: Results achieved by the different algorithms for the subset of dimer instances
for which SPRINT does not converge.

143

9 Protein side chain placement using estimation of distribution algorithms

Number of instances
Number of instances

1 15 2 25 3 35 4
Average percentage of residues different to the optimal solution

PE

Number of instances
Number of instances

1 45 5

15 25 3 35 4 1 2 3 4
Percentage of the energy gap to the optimal solution Average percentage of the energy gap to the optimal solution

Figure 9.5: UMDA results for the dimer set of instances. From left to right, top to
bottom, the histograms corresponding to PD(x***!), PD, PE(x"**!) and PE.

144

9 Protein side chain placement using estimation of distribution algorithms

Figure 9.6: From left to right, top to down, the side chain configurations of the pdbldpe
protein: native, found by SCWRL, SPRINT, and UMDA.

UMDA were better than or equal to those achieved by SPRINT in 10 out of 14 instances,
and 21 out of 26 instances, respectively. These results show that UMDA is an alterna-
tive for those situations where inference-based methods cannot converge. Considering
the root mean square distances, the number of instances where UMDA achieved results
equal to or better than the SPRINT algorithm for small, large and dimer instances were,
respectively, 7 out of 11, 7 out of 14, and 12 out of 26. Notice that the discordance
between the results achieved by the algorithm considering the root mean square distance
and the energy might be due to the fact that the energy function takes into account
other important elements that measure the quality of the prediction, and not only the
distances between the atoms.

145

9 Protein side chain placement using estimation of distribution algorithms

Figure 9.6 shows the side chain configurations found by SCWRL, SPRINT, and UMDA
for the pdbldpe protein. Notice that the structures are very similar. However, the side
chain configuration found by UMDA has a better energy evaluation than the one found
by SPRINT, and has a better root mean square distance to the native structure than the
two other methods tested. Figure 9.2 (right) shows the side chain configurations of the
pdbld2e protein found by UMDA.

9.6.5 Analysis of the convergence time

Section 9.4.1 analyzed the computational cost of UMDA for the protein side chain place-
ment problem. We have acknowledged that computational time critically depends on the
number of generations needed by the algorithm to achieve convergence. In this section,
we investigate the relationship between the size of the proteins and the average time
needed by UMDA to reach convergence. Although there are other factors that influence
the convergence of the algorithm, the number of residues can be useful to obtain an initial
estimate of the time of convergence.

1400

1200

=
S
S

-3
S
S

)
S
=]

I
S
=]

UMDA average time of convergence

+ smallset | |
+ large set
dimer set

200

. .
0 500 1000 1500
Number of residues in the protein

Figure 9.7: Dependence between the number of residues in all instances and the UMDA
time of convergence. Only the instances where inference-based methods con-
verged are included. Additionally, the points are fitted using second order
polynomials.

For our analysis, we have used all instances where inference-based methods converged.
We have calculated the average of the time needed by UMDA to reach convergence
(i.e. to fulfil one of the termination criteria) in the 50 experiments. Figure 9.7 plots
the dependence between protein size and the time needed for convergence (in seconds).
Additionally, and in order to estimate the scalability of the algorithm, the points corre-
sponding to each set of proteins have been fitted using second-order polynomials. The

146

9 Protein side chain placement using estimation of distribution algorithms

polynomial that approximates data corresponding to the small, large and dimer datasets
are respectively shown in Equations (9.8), (9.9), and (9.10). In these equations, x is the
protein size and y, the expected time to converge.

y = 0.0003322 — 0.01182z + 0.93604 (9.8)
y = 0.0058622 — 3.34053z + 593.83942 (9.9)
y = 0.0008522 — 0.44991z + 117.33300 (9.10)

An analysis of the equations shows that complexity is near quadratic in the number of
variables. The equations show that the most complex instances are those that belong to
the large set. This facts seems to indicate that, considering a fixed number of residues,
the complexity of the UMDA approach to the side chain problem can decrease when there
is more than one chain in the protein, as is the case of dimer instances. Even if there are
interactions between residues that belong to different chains, most of the interactions may
be found between the residues of the same chain. Therefore, complexity might depend
more on the size of the largest chain than on the total number of residues in the dimer.

9.6.6 Application of the UMDA+VNS approach

The objective of these experiments is to improve the solutions obtained by UMDA, and to
evaluate the convenience of the VNS method. Additionally, we compare the performance
of the exhaustive and randomized schemes introduced in Section 9.5.4. We use the
instances for which the inference-based algorithm did not converge.

Initial experiments are conducted using the small set of instances. We apply different
variants of VNS, starting from random solutions (VNS) and from the solutions found by
UMDA (UMDA-+VNS). The UMDA+VNS is applied to those solutions found by UMDA
in the 50 experiments conducted for each instance and described in Tables 9.2, 9.3 and
9.4. On the other hand, VNS is applied on 50 randomly generated solutions for each
instance.

Table 9.5 shows the results achieved when exhaustive search of the whole neighborhood
is conducted. This table shows, for each algorithm, the number of times the best solution
was found (5), the mean and stardard deviation (mean + o) of the fitness values, and
the average number of steps (s: the number of cycles of the loop between steps 4 and 11
of Algorithm 9.2 before convergence).

To evaluate the results of the algorithms, we analyze the value of the best solution found
and the average fitness of the solutions. An analysis of the table shows that, in 4 of

147

9 Protein side chain placement using estimation of distribution algorithms

the 11 instances, VNS achieves better results than those obtained by UMDA+VNS. In
4 instances, UMDA+VNS has better results, and in the rest of instances, the algorithms
achieved equal results. VNS is able to find new best solutions in 4 instances while
UMDA-+VNS, in only 2. Regarding the average fitness, UMDA+VNS obtained better
results in 5 of the 11 instances. For 3 instances, the algorithms achieved identical results
and, in the remaining 3 instances, VNS has a lower average fitness evaluation. As ex-
pected, the average number of steps to convergence of the VNS initialized from random
solutions was much higher than for UMDA-+VNS.

exhaustive,k={1,2,3} exhaustive,k={1,2,3}
UMDA+VNS VNS
pdb id best | S| mean o S best | S| mean o S

pdblbuu || 200.23 | 50 | 200.23 £ 0.00 | 0.78 || 200.23 | 40 | 200.52 £ 0.57 | 14.88
pdblbvl || 132.54 | 50 | 132.54 £ 0.00 | 0.00 || 132.54 | 50 | 132.54 £ 0.00 | 10.12
pdblema || 286.40 | 49 | 286.41 £ 0.10 | 0.04 || 286.40 | 16 | 287.83 +1.20 | 30.32
pdblet9 || 226.80 | 22 | 226.90 £ 0.09 | 1.22 || 226.80 | 38 | 226.84 £+ 0.07 | 43.98
pdblh6h | 97.95 |50 | 97.954+0.00 | 0.72 || 97.95 | 50 | 97.95 £ 0.00 | 30.74
pdb1hh8 || 370.16 | 50 | 370.16 £ 0.00 | 3.06 || 369.57 | 10 | 370.04 £ 0.24 | 46.56
pdblmrj || 232.66 | 36 | 232.86 £ 0.31 | 2.78 || 232.66 | 38 | 232.99 £+ 1.28 | 50.14
pdb2fcr || 236.28 | 50 | 236.28 = 0.00 | 0.00 || 236.28 | 26 | 242.01 +6.02 | 37.20
pdb2ilk 138.55 | 50 | 138.55 £ 0.00 | 0.00 || 138.55 | 29 | 145.74 £ 8.54 | 19.52
pdb2tir 92.60 | 50 | 92.60£0.00 | 0.00 || 92.44 | 15| 92.56 £0.08 | 22.26
pdb3kvt || 160.50 | 50 | 160.50 & 0.00 | 1.36 || 160.50 | 50 | 160.50 £ 0.00 | 29.94

Table 9.5: Results achieved by UMDA+VNS and VNS (exhaustive scheme) for the subset
of small instances for which SPRINT does not converge.

In the experiments done for all the instance sets exhaustive search was only feasible for the
set of small proteins. The computational cost associated with neighborhood structures
k = {2,3} makes it impractical to use the exhaustive search of the whole neighborhood
structure for these instances. Therefore, we investigate the use of reduced neighborhood
structures with exhaustive search, and of randomized search in extended neighborhoods.

Table 9.6 presents the results of the comparison between VNS and UMDA-+VNS using
the neighborhood structure with (k = {1}). It can be observed that, considering the
best solutions found, UMDA+VNS achieves better results than UMDA in only one of
the instances. Considering the average fitness evaluation, UMDA+VNS outperforms
VNS in all instances.

We evaluate the convenience of using the randomized scheme defined on the set of neigh-
borhood structures & = {1,2,3}. Results are shown in Table 9.7. Considering the best
solutions found, VNS finds better solutions than UMDA-+VNS in 2 of the 11 instances,
while, in the rest of instances, both algorithms found identical solutions. However, con-

148

9 Protein side chain placement using estimation of distribution algorithms

exhaustive,k=1 exhaustive,k=1
JuMDA+VNS fvns
pdb id best | S| mean =£ o S best | S| mean =£ o s
pdblbuu || 200.23 | 17 | 200.68 £+ 0.33 | 0.10 || 200.23 | 1 |237.62 =+ 29.00 | 10.06
pdblbvl | 132.54 | 50 | 132.54 £+ 0.00 | 0.00 || 132.62 | 1 |140.51 £+ 7.40| 7.26
pdblema || 286.40 | 49 | 286.41 + 0.10|0.04 || 288.70 | 1 |333.33 + 39.66 | 23.88
pdblet9 | 227.14 |20 | 227.63 £+ 1.21|0.10 | 227.92 | 38 | 285.82 + 48.41 | 36.88
pdb1h6h 9795|118 | 98.40 £ 0.36 |0.06 | 98.70 | 1|116.77 £ 11.94 | 25.60
pdblhh8 | 370.96 | 1 |380.95 + 1.45|0.06 | 370.73 | 1 |408.69 =+ 29.37|40.56
pdblmrj || 232.66 | 6|235.01 + 1.37|1.72 | 236.18 | 1 |284.76 + 49.87|43.12
pdb2fcr || 236.28 | 50 | 236.28 + 0.00 | 0.00 || 236.28 | 1 |284.07 + 38.65|31.36
pdb2ilk 138.55 | 50 | 138.55 4 0.00 | 0.00 || 138.55 | 1 |162.74 4+ 12.86 | 15.80
pdb2tir 92.60 | 50 | 92.60 + 0.00|0.00 | 92.60| 6 |106.98 + 20.15]19.56
pdb3kvt || 163.95 | 41 | 164.03 £+ 0.21|0.18 || 163.96 | 2 |235.16 £ 65.68 | 21.52

Table 9.6: Results achieved by UMDA+VNS and VNS (exhaustive scheme (k = 1)) for

the subset of small instances for which SPRINT does not converge.

sidering the average fitness of the solutions, UMDA-+VNS is the best algorithm in 9 of
the 11 instances.

The next experiment focuses on the application of the exhaustive scheme (k = 1) and
the randomized scheme to the large set of instances. Results are shown in Table 9.8.
Values in bold indicate that the result obtained is better than the best result known so
far, either achieved by UMDA or by SPRINT as shown in Section 9.6.4. It can be noticed
that UMDA+VNS improves the best results achieved by UMDA in 7 of the 14 instances.
In each case, the results achieved with the randomized scheme were better than those
obtained with exhaustive search (k =1).

Finally, we apply the randomized scheme to the set of dimer instances for which SPRINT
does not converge. For these instances, even the exhaustive scheme with reduced neigh-
borhood was extremely expensive in terms of computational resources. The results of
the experiments are displayed in Table 9.9. As in previous experiments, values in bold
indicate that the result obtained is better than the best result known so far. These re-
sults confirm that UMDA-+VNS can obtain state-of-the-art solutions to the side chain
placement problem.

9.7 Relationship with previous research

The UMDA approach to side chain placement has a number of contact points with
previous algorithms used to solve this problem. The analysis of these similarities helps

149

9 Protein side chain placement using estimation of distribution algorithms

R it
pdb id best | S| mean =+ o S best | S| mean =+ o S
pdblbuu || 200.24 | 50 | 200.24 + 0.00 | 0.76 || 200.24 | 43 | 200.43 + 0.50 | 2.92
pdblbvl | 132.54 | 50 | 132.54 £ 0.00 | 0.00 || 132.54 | 50 | 132.54 £ 0.00 | 2.46
pdblema || 286.40 | 49 | 286.41 + 0.10 | 0.04 || 286.40 | 12 | 292.97 + 9.60 | 3.86
pdblet9 | 226.80 | 21 | 226.95 + 0.25|1.10 || 226.80 | 30 | 227.10 + 0.48 | 3.94
pdb1lh6h | 97.95 (32| 98.20 + 0.33|0.36| 97.95|45| 98.06 + 0.43|3.30
pdblhh8 | 370.16 | 1 |380.91 + 1.55|0.12 | 369.57 | 6 | 381.78 + 12.89|3.14
pdblmrj || 232.66 | 14 | 234.16 £+ 1.52|1.52 | 232.66 | 3 |236.80 £+ 4.20|4.32
pdb2fer || 236.28 | 50 | 236.28 £ 0.00 | 0.00 || 236.28 | 10 | 249.93 + 11.46 |4.32
pdb2ilk 138.55 | 50 | 138.55 =+ 0.00 | 0.00 || 138.55 | 32 | 144.72 + 8.31|2.76
pdb2tir 92.61 [50 | 92.61 £+ 0.00 |0.00| 9244 | 9| 9292 + 1.84|2.48
pdb3kvt || 160.50 | 15| 162.92 + 1.60 | 0.60 || 160.50 | 17 | 167.08 + 16.39 | 3.80

Table 9.7: Results achieved by UMDA+VNS and VNS (randomized scheme) for the sub-
set of small instances for which SPRINT does not converge.

exhaustive, k=1 randomized

UMDA+VNS UMDA+VNS
pdb id best | S| mean =+ o S best | S| mean =+ o S
pdblcrz 626.41 | 1| 62719 + 0.120.02 626.41 | 1| 627.18 £+ 0.13]0.08
pdblddt 75493 | 1| 759.68 + 2.73]0.58 753.38 | 2| 755.53 + 1.43|2.38
pdbldpe 7273712 | 745.13 £ 14.40 | 1.40 725.50 | 2| 738.98 + 10.89 | 2.22
pdble39 545.30 | 25 | 545.74 + 1.23]0.06 545.30 | 39 | 545.56 + 1.070.36
pdb1f5n 585.78 | 4| 595.57 + 8.09 |0.12 585.78 |33 | 589.72 + 6.29|1.34
pdblgsk 93897 | 1| 94289 + 4.90|3.28 | 936.56 | 15| 938.77 + 3.41|3.98
pdblh3n | 1623.17 | 1|1634.37 4+ 6.82|2.78 | 1620.04 | 1|1626.82 £+ 4.30|3.78
pdb2jy1 856.84 | 4| 859.58 + 7.24|252| 856.84| 4| 85841 + 1.06 |1.12
pdb2kmo | 917.36 | 1| 935.28 4+ 7.59|4.28 902.49 | 1| 917.83 + 8.38|4.60
pdb2kwh || 961.21 | 2| 973.55 + 13.36 | 4.30 960.73 | 1| 972.09 + 13.01]2.78
pdb3nbu 860.67 | 1| 876.39 + 6.92|0.84 858.89 | 8| 870.50 £ 7.95]|1.98
pdb2nqge 565.36 | 2| 587.34 + 1143|266 | 563.35| 2| 579.29 + 11.43|2.44
pdb2nr0 913.87 | 13| 919.69 + 11.30|1.02 912.54 |24 | 917.04 + 9.84|2.04
pdb3nap | 1101.67 | 1|1111.30 £+ 7.08|{3.98 | 1101.21 | 4|1107.16 £ 4.31|4.14

Table 9.8: Results achieved by UMDA+VNS (exhaustive scheme (k=1)) and
UMDA+VNS (randomized scheme) for the subset of large instances for which
SPRINT does not converge.

150

9 Protein side chain placement using estimation of distribution algorithms

femhaustive

UMDA4+V NS
pdb id best | S| mean =+ o s
pdb1b25 || 4727.90 | 1 |4772.87 + 21.13|12.18
pdbld2e || 1826.88 | 4 |1830.49 + 3.24| 5.02
pdbldxr || 1695.16 | 1 |1704.84 + 6.67| 4.84
pdbldz4 867.01 | 2| 87446 + 3.50| 3.92
pdble6l | 1926.26 | 5| 1934.52 + 6.26 | 5.00
pdble6p || 1676.44 | 1 |1685.37 + 5.21 | 4.24
pdb1f60 536.27 | 1| 53983 £ 184 | 1.44
pdblfmj || 1088.80 | 1 |1098.68 + 11.67 | 3.32
pdb1fn9 987.47 | 2| 991.60 £+ 259 | 1.38
pdblfnn 73290 | 2| 73793 £+ 6.19]|12.34
pdblgiq 800.92 | 4| 81280 + 6.68| 3.20
pdb1hOh | 4768.22 | 1 |4807.37 + 18.12|14.76
pdb1h3f 78297 | 4| 788.66 £+ 3.63| 4.94
pdb1lh4r 815.84 | 13| 817.06 £+ 2.56| 5.28
pdb1h80 || 1034.77 | 5|1035.31 £ 0.73| 3.34
pdblhhs || 2586.92 | 1 |2604.39 + 10.16 | 9.80
pdblj3b | 1586.47 | 2| 1599.79 £ 9.48| 3.90
pdb1j8f 942.62 | 26 | 943.44 £+ 1.07| 5.40
pdbljmx || 1514.22 | 1 |1534.84 + 14.35| 4.04
pdbllax 1015.88 | 1|1021.83 £+ 4.47| 3.56
pdbllga 926.16 | 1| 955.27 + 14.17| 3.48
pdbllsh | 1119.23 | 1 |1126.72 + 3.22| 4.40
pdblnp7 || 1767.72 | 1 |1778.87 + 8.08 | 4.62
pdb1tki 855.56 | 2| 858.16 + 1.89| 2.98

Table 9.9: Results achieved by UMDA+VNS (randomized scheme) for the subset of dimer
instances for which SPRINT does not converge.

151

9 Protein side chain placement using estimation of distribution algorithms

to illustrate the different aspects of the algorithm and the way in which they contribute
to an efficient search. This analysis is also relevant for the identification of other possible
applications of EDAs to Computational Biology.

One important aspect of EDAs is their attempt to focus the search in the space of
promising solutions. This is a goal shared by evolutionary algorithms, as is the case of the
one presented in (78). This algorithm eliminates values of the variables (corresponding
to rotamer configurations) that have not been found within the best percentage of the
population, but can be found within the worst population solutions. The way to identify
these values is to constrast the best and worst selected sets.

UMDA pursues the same goal, but in a different way. In this case, a set of best indi-
viduals is also selected. Nevertheless, no comparison is drawn with any other selected
set. Instead, a probability model of the solutions is constructed. Variable values that
are absent in the population have a very low probability in this model. Additionally,
the model keeps information about the frequency of each possible rotamer configuration.
Configurations more likely to be among the best solutions have a higher probability. The
probability model used by UMDA extracts more statistical information than the one
implicitly manipulated by GAs.

Another aspect of UMDA is the simplicity of the univariate model it uses. This model is
similar to the mean-field model used by SCMF. Obviously, the models used by UMDA
and SCMF are only rough approximations of the underlying probability distributions. In
the mean-field approximation, the univariate marginals are considered to be variables.
UMDA computes the marginals from samples. The relationship between the mean-field
approach and the UMDA has been studied in (156).

Compared to SCMF, the strengh of UMDA lies in its sampling procedure, which adds
to the stochastic character of the search. By sampling a set of solutions from the uni-
variate model, the algorithm can explore a higher number of points. The deterministic
nature of SCMF can be a drawback for the search. As SCMF must converge to a single
configuration of rotamers, the convergence is made difficult by increasing the number
of rotamer configurations. In these cases, the probability for SCMF not to be able to
converge increases (224). UMDA can be seen as a non-deterministic SCMF algorithm
where a probabilistic model is learned at every iteration, and sampling replaces the role
of the search for consistency as is procured by SCMF.

Finally, we consider the relationship between UMDA and inference-based methods. EDAs
and optimization algorithms that use inference methods are two different ways to use
graphical models in optimization. These approaches can be combined to obtain more
efficient algorithms (96).

The main advantage of EDAs over inference-based methods is that the former do not
need previous information about the structure of the problem. Propagation algorithms
needed by inference-based methods rest on a given graphical model. In the case of

152

9 Protein side chain placement using estimation of distribution algorithms

side chain placement, this model corresponds to the adjacency matrix. UMDA learns
the parameter of its model from the data. Clearly, the graphical structure constructed
from the adjacency matrix stores more information than the univariate model. Therefore,
UMDA should not be seen as an alternative to inference-based methods in every scenario.
It remains a suitable alternative when inference-based methods do not converge.

9.8 Conclusions

We have proposed the use of UMDA as a stochastic optimization algorithm for the side
chain placement problem. We have carried out a systematic study of the algorithm using
a large set of protein instances and comparing the results with state-of-the-art algorithms.
For a number of difficult instances where inference-based algorithms do not converge, it
has been shown that UMDA is able to find better structures. We have studied the
expected and best performance of the method, considering the energy values as well as
the number of correct rotamers of the solutions found. Additionally, we have presented a
theoretical and empirical analysis of the computational cost of the algorithm introduced.

We have shown that, for the side chain placement problem, a hybrid approach between
VNS and UMDA can improve the results achieved by using only UMDA. This is an
example of problems that arise in the field of Computational Biology and that can be
approached from an optimization point of view.

The chapter has reviewed some of the most used current methods for side chain predic-
tion. We have pointed out the links between these methods and our proposal. UMDA
can be seen from the perspective of a good amount of successful applications of evo-
lutionary techniques. However, the simplicity of the UMDA implementation constrasts
with common GA implementations that exhibit intricate, and sometimes costly, genetic
operators. We have shown that this simplicity makes UMDA suitable for theoretical
analysis and enables an estimation of the time complexity of the algorithm for the side
chain problem.

There are a number of branches of further research, both in the improvement of the
method introduced, and in the generalization of UMDA and EDA applications to bioin-
formatic problems.

In our experiments, we have not considered a number of issues that may improve the
efficiency of the algorithm. For instance, the population size has been fixed for all the
instances. It has been shown that, for many problems, the selection of an adequate
population size has an important impact on the convergence rate of EDAs. Furthermore,
the use of local search optimization algorithms is a recurrent alternative to improve the
best solutions found by evolutionary optimization applications. This issue should be
investigated.

153

9 Protein side chain placement using estimation of distribution algorithms

Protein length is not the only indicator of problem difficulty. The number of rotamers
allowed at each residue is another factor that influences problem complexity. For future
research, it is worth analyzing the elements that influence the complexity of the algorithm.

Koehl and Delarue (112) have identified three different directions to address the combina-
torial problems that arise in computational protein design: to use empirical information
about the structure, to reduce the problem dimension, and to simplify the global search
for the minimum of the energy function either by non-deterministically searching approx-
imate solutions or by modifying the potential energy function.

Some of these directions can be followed in the investigation of EDA applications to pro-
tein problems. For instance, UMDA does not take advantage of the problem information
represented by the adjacency matrix. The investigation of the impact that including the
interactions between the variables in the probabilistic model of the algorithm may have
on the efficiency of the search is an open question. Nevertheless, it is important to take
into consideration that, since the number of rotamer configurations can be very high, the
inclusion of higher-order dependencies in the model will imply an important increase in
the computational cost of the algorithm.

Moreover, preliminary experiments (data not included in the chapter) have shown that
the graph structure can be used to split the graph into disconnected components and to
independently execute UMDA in each component. The final solution is found combining
the results obtained in every component. This is an approach similar to the one used by
the most recent version of SCWRL. It could be carried out in a parallel scheme.

Another way to use problem domain information is to seed the initial population by
sampling from the set of most probable rotamer configurations. Seeding has been shown
to accelerate convergence for additive functions. Alternatively, solutions generated from
the application of VNS could be used to seed the initial population.

Similarly to the way in which continuous search is employed in evolutionary algorithms
to refine the final rotamer configurations (135; 239), its combination with the search in
the space of discrete configurations deserves to be considered. Moreover, the search of the
space of continuous rotamer configurations can be done using EDAs based on univariate
Gaussian distributions (20) or EDAs that use higher-order interactions (20; 31). Continu-
ous probabilistic models are able to represent higher-order interactions (e.g. multivariate
Gaussian distributions) and need fewer parameters than their discrete counterparts.

154

10 Inference based methods for protein
design

10.1 Introduction

In the previous two chapters, we have presented results from the application of proba-
bilistic modeling to different computational models of the protein folding problem. In
this chapter we study the application of these techniques to protein design. While protein
folding treats the problem of predicting the structure of known proteins, protein design
faces a related but completely different question. Protein design means the generation
of novel proteins which are either compatible with existing target template structures or
with arbitrarily postulated new three dimensional structural folds.

In this chapter, we treat the application of the proposals introduced in this thesis re-
garding the use of probabilistic model in optimization to the field of protein design.
Particularly, we introduce the application of inference-based techniques to calculate the
evolutionary niche of a protein structure.

The chapter is organized as follows. The next section presents a number of problems that
fit under the umbrella of protein design. Section 10.3 reviews two current alternative
approaches for protein design and shows that the proposal introduced in this chapter
can be included in one of these approaches. Section 10.4 introduces the class of energy
functions used in protein design, and describes the potential function TE13 used in our
experiments. Section 10.5 introduces the problem of finding the evolutionary niche of a
protein structure. The problem is reformulated in terms of searching the most probable
configurations of an associated graphical model. Section 10.6 reviews a number of papers
related to the proposal introduced in this chapter and discusses their relationship with our
work. Section 10.7 presents numerical results of the application of the proposals discussed
to a set of 3900 proteins. The conclusions of the chapter are outlined in Section 10.8
along with lines for further research.

10.2 Problems in protein design

There are two main approaches to the protein design problem (176). In combinatorial
library selection, large numbers of sequences (libraries) are synthesized and screened for

155

10 Inference based methods for protein design

evidence of folding to predefined structures. In computational protein design, computa-
tional protein models are employed to identify candidate protein sequences likely to fold
to the given target structures. Another classification (151), considers the existence of
two global strategies for constructing new protein sequences: Random sequence libraries
and rational design. In the former, the goal is to generate random sequences that will
yield proteins with specifically desired structures. In the latter, some designed procedure
is applied to the construction of the sequence. In this chapter, we focus on the rational
design strategy by means of computational protein design.

There are several related problems that imply different levels of protein design. One of
the problems faced is the protein redesign (63; 136) of naturally occurring proteins. In
this case, the known structure of a protein is modified in order to find a structure of
lower energy.

The understanding of how the protein sequences influence its stability and structure
is an important element in protein design. One of the ways this can be done is by
identifying either randomized or simplified sequences that fold to the same structure
(229). Sequences can be simplified by grouping the original set of amino acids in the
alphabet into different classes. Among the criteria used to group the aminoa cids is their
hydrophobicity level.

The definition of potential functions that lead the search for optimal sequences is an
important research trend in this area that will be analyzed in more detail in Section 10.4.
Decoy structures are possible structural conformations of a protein, usually obtained by
slightly modifying the known native structure of the protein. Potential functions are
essential to distinguish decoy structures from the native sequences (252).

In negative design, proteins are designed to not violate certain constraints or to not do
something deleterious. For example, proteins might be designed to bind strongly to
another protein to trigger the appropriate response, and not to bind to a set of other
proteins to avoid triggering inappropriate reponses (200).

One way in which ideas from negative design can be applied is in the search of energy
functions that do not only assign a good score to native sequences but also try to ensure
that the desired sequence scores better than competing conformations. It has been
stated (218) that protein design should not be possible with a simple energy-like function
without explicitly considering negative design. A useful concept to assist in this search is
that of the evolutionary capacity of a protein structure (145; 146), which is the number
of protein sequences whose energy in the structure is lower than the energy of the native
sequence. In Section 10.5, we analyze this and other related problems.

Other problems related to computational protein design is the a priori determination of
the potential of a protein hybrid to be functional. Protein hybrids are proteins formed
by the combination of two proteins. DNA mutagenesis and/or recombination permit the

156

10 Inference based methods for protein design

creation of protein hybrids whose functionality is either substantially reduced or lost. In
this case, protein hybrid functionality refers to their capacity to fold to a stable structure.

10.3 Directed and probabilistic protein design

In (176), protein design methods are classified into two categories: Directed and proba-
bilistic. This classification refers to the way the search for solutions is addressed. When
the space of solutions is directly explored to identify sequences with low energy, the
method is directed. The use of site-specific amino acid probabilities rather than specific
sequences is referred to as probabilistic.

The directed approach involves the definition of a potential or fitness function that works
as a sequence-structure compatibility measure. Besides, an optimization algorithm to
search the space of solutions has to be selected.

The rationale behind the use of the probabilistic approach to protein design considers the
complexity and uncertainty associated with describing folded proteins. We remark that
the same reason has motivated the introduction of the EDA model of protein folding
for the HP model (see Chapter 8). On the other hand, the calculation of amino acid
probabilities can guide the design for specific sequences and help to identify sequence
regions likely to tolerate mutations (176).

10.3.1 Probabilistic methods for protein design

Residue probabilities can be used in two different ways. On one hand, they can be
employed to calculate a low energy consensus sequence. i.e. the sequence comprising the
most probable amino acid at each position. Clearly, as recognized by (176), the consensus
sequence might not account for correlations that might arise between residues. On the
other hand, they may be used to guide search algorithms, biasing the generation of trial
sequences (253).

There are several methods that may be used to identify the site-specific probabilities of
amino acids likely to fold to this structure. These include (176):

e Multiple sequence alignment. Similar sequences can be used to estimate the site
specific probabilities as the frequencies of each amino acid at each position in the
alignment.

e Directed search methods which can estimate the properties of ensembles of se-
quences by repeatedly applying the search to build up a set of low energy sequences.

e Entropy based methods which estimate the most probable set of probabilities by
optimizing entropy functions subject to constraints.

157

10 Inference based methods for protein design

10.3.2 Improving probabilistic methods for protein design using graphical
models

Graphical models can be extensively applied to improve the efficiency of probabilistic
methods in protein design. We enumerate a number of ways this improvement can be
implemented.

1. Instead of an independent set of univariate probabilities, a graphical model repre-
senting the interactions between the residues can be used to find the most probable
configurations. The graphical model can be learned from data (a set of aligned
sequences) or defined based on available knowledge about the structure.

2. Directed search can be improved by using optimization methods that construct a
model of a search space and lead the search to promising areas of the space of
solutions (in this case, protein conformations of low energy). EDAs are among the
natural candidates to be tried. They allow us to manipulate the complexity of the
probabilitic model to be employed. Additionally, the model learned at different
stages of the search can provide relevant information about the problem.

3. EDAs arise as a way to combine both directed and probabilistic search.

10.4 Empirical potential functions

Contact potentials or scoring functions measure how likely it is for a sequence to fold
to a given structure. Alternatively, these potential functions can be used to distinguish
native from decoy structures.

A contact potential assigns a single contact energy to two amino acids that are close to
each other in the structure. Alternatively, it is set at zero if the two amino acids are not
close enough.

There are two main approaches to calculate an empirical potential function (248). The
first one is to use only native protein structures and apply statistical analysis to extract
information important for protein stability. The second one is to use both native protein
structures and decoy conformations and to apply some technique to derive a potential
function that separates native structures from decoy structures.

Different techniques can be used to extract contact potentials. Perhaps the most used one
is linear programming (74; 143; 217). The application of this method involves solving
a very large set of inequalities to determine the parameters of the potential function.
Sometimes, a feasible solution cannot be found. As a remedy, new functional forms of
the potential, or the detection of an inconsistent subset of the data in the training set
can be tried (143).

158

10 Inference based methods for protein design

In the case of the identification of native structures, other methods have been proposed.
These include the combination of contact interaction descriptors and local sequence-
structure descriptors (248). Additionally, amino acid propensities to occur in secondary
structures have been employed, by means of scoring functions, to estimate the energetic
favorability of fragments of protein sequence to adopt the native conformation (205).

10.4.1 TE13 potential function

The T'E13 potential function was introduced in (217) to correctly rate the native structure
with respect to a set of decoy structures. This potential function was calculated using
a linear programming approach. We introduce the T'E13 that will be employed in our
experiments.

uqg(r) will denote a step potential between a pair of amino acids. The distance between
the geometric centers of two amino acid side chains, r, is divided into 13 steps between
2 and 9 angstroms. The first step along r is between 2 and 3 angstroms, and the rest
of the 12 steps are for half an angstrom each. Each of the uqg(r) (as a function of the
index (3) is 1 only at one of the windows (steps) and zero elsewhere.

The total potential energy is:

E(Xa U) = Zpaﬂnauaﬁ(r) = Zp)\n)\a (101)
o, A

where the index a parameterizes the type of the two interacting amino acids. n, is the
number of contacts of a specific type found when threading the complete sequence x
into the known shape 0. n, and u,g are combined together to form 7, the number of
contacts of a specific type and at a specific distance (A) of structure o. For each of the
-8, there is a corresponding independent parameter py. The total number of parameters
is ((21 x 20)/2) x 13 = 2730.

10.5 Evolutionary niche of protein structures as the search
for the most probable configurations

Although the potential functions have been mainly used to discard decoy structures,
they can also be employed to study the distribution of native-like features in sequence
space. Analyzing the sequence space of proteins using tools from statistical methods is
important for protein design.

In (145; 146), the sequence evolutionary selection mechanisms are analyzed focusing
on the stability energy of sequences. Although the “survival probability” of a protein

159

10 Inference based methods for protein design

sequence depends on a number of other factors such as protein function and protein
flexibility, the sequence-structure relationship can be analyzed in terms of energy. The
analysis assumes that native sequences were selected because they were highly probable
as a function of energy. In (146), this assumption is tested by examining the energy
distribution of homologous proteins.

We will denote the native sequence corresponding to the structure o as x?. E, = E(x7)
is the native energy of sequence x“ in structure o. The quantity N(E,) is the number of
sequences that would have energy in ¢ no greater than that of the actual native sequence.

N(E,) is called the evolutionary capacity of structure o because it reflects how far the
current state of molecular evolution o is from the possible optimum in terms of energy
(146).

Given a protein structure o, an energy function defined on the space of amino acid
sequences with cardinality 20", we address the problem of finding a set of sequences R,
such that,

R, ={x:E(x) < Ex%)} (10.2)

We call this problem finding the evolutionary niche of the protein because it amounts
to finding the niche of all proteins, which, regarding the energy value, are more evolved
with respect to the structure. The calculation of the evolutionary niche of the protein
structure adds up to determining its evolutionary capacity. However, in general, N(E,)
is not known in advance and can only be estimated (146).

The evolutionary niche of a structure can contain a huge amount of solutions. Therefore,
we define a more stringent version of the problem. Given an input parameter k, the
restricted evolutionary niche of parameter k is the set of sequences Ry, such that Ry C R,
|Ri| = k, and for all x € Ry, x' € R, \ Ry, E(x) < E(x’). Thus, Ry, contains k of the
lowest energy configurations in R,.

10.5.1 Reformulation of the problem in terms of probability distributions

We re-formulate the evolutionary niche problem in terms of probability distributions. A
fundamental result of statistical mechanics is that, in thermal equilibrium, the probability
of a state will be given Boltzmann’s law:

1 —B(x)
e
Z(T)

where T is the temperature of the system, and Z(T') the corresponding partition function.

pB(x) =

Clearly, the highest probability of the Boltzmann distribution corresponds to the con-
figuration x with the lowest energy. The Boltzmann distribution has been successfully

160

10 Inference based methods for protein design

used in optimization (95; 109; 160), where the idea is to sample with higher probability
those areas of the search space with better fitness evaluation.

The problem of finding the evolutionary niche of a protein structure o can be translated
into the problem of finding the set of solutions A, .

A, ={x:pp(x) > pp(x?)} (10.3)

The drawback associated with the Boltzmann distribution is the calculation of the parti-
tion function. As the calculation of this term may be exponential, factorized approxima-
tions of the probabilities are normally used. Therefore, we will assume that the energy
function is additively decomposable:

1 > —Es(xs)
= —€ T
Z(T)

= % H W (xs) (10.4)

pB(x)

where F(x;) is the result of evaluating the energy function on the subset of variables,
and U,(x;,) is a potential defined on this set of variables X;. Decomposability of F(xs)
is mostly the case for the energy functions that have been proposed.

The dependence structure of pp(x) can be represented using a graphical structure where
vertices corresponding to variables that belong to the same definition set of the additive
function are joined by an edge. These variables are usually those that correspond to
interacting residues in the protein structure. The graphical structure and the potentials
will be used to find the set A,.

10.5.2 Directed and probabilistic approaches using graphical models

It has been pointed (151) that, to be successful, protein design strategies must incorpo-
rate enough diversity to cover a significant part of sequence space while simultaneously
incorporating enough rational design to limit exploration to those regions of sequence
space most likely to yield sequences that possess the desired qualities.

The reformulation of the evolutionary niche problem allows the optimization scheme pre-
sented in Chapter 6 to be applied. The optimization approach will look for the solutions
with lowest energy. By constructing a probabilistic model of the best solutions so far
visited, the idea of rational design is pursued, collecting information for the exploration
of promising areas of the search space. On the other hand, sampling has a stochastic
component that will allow to generate solutions from unexplored areas of the search
space.

161

10 Inference based methods for protein design

10.6 Related work

There are two main precedents to the work presented in this chapter. In (152), a second-
order mean-field based approach is proposed to recognize functional protein hybrids.
First, the model uses a statistical mechanics description of the residue/rotamer space of
states. The state probabilities are determined by minimizing the free energy using the
first-order mean approximation and the Bethe approximation whose solution is found
using sum-belief propagation.

The objective of the research presented in (152) is not to find the most probable con-
figurations. Marginal beliefs are obtained by using the tools from statistical mechanics.
As an example of the application of the results obtained this way, the beliefs found af-
ter consistency are used to define a metric that helps to determine the tolerance of the
protein structure to different residue combinations.

Work on the use of approximate inference for side-chain prediction (240; 241) is closely
related to our proposal. As done in (240) for the side-chain prediction problem, we
have re-formulated the search for the evolutionary niches of a structure as an inference
problem. One of the alternatives we have followed is the application of the algorithm to
find the most probable configurations as applied in (240; 241).

Rotamer libraries can be also employed for protein design (136). In such applications,
each variable will encode all possible rotamer configurations for each residue. Therefore,
the number of rotamer configurations can be huge. In (240; 241), the results presented
were constrained to the use of inference for side-chain prediction. Therefore, no attempt
was made to modify the energy function used.

There are other examples of the application of inference-based algorithms in protein
problems. In (130), protein functions are predicted using message passing algorithms.
This is a classification problem unrelated to protein design. Similarly, a graph-based
propagation algorithm is introduced in (120) to find similarity relationships between
proteins.

Regarding the use of directed search techniques for protein design, there are several
examples of such applications. Relevant to our reseach is the early use of GAs (102) as
an optimization method for protein design using pairwise potentials, and the application
of a randomized algorithm that perform approximate enumeration of the evolutionary
capacity of proteins (145). The first case shows the convenience of using population
based search methods for protein design. In the second case, the search using the Monte
Carlo method was effective to find an approximate solution to the problem. However,
it is not clear whether a Markov chain where only one residue is changed at a time has
a polynomial mixing rate. Furthermore, protein instances longer than 500 amino acids
were removed from the initial set of proteins. For these instances, the counting procedure
was admittedly poor.

162

10 Inference based methods for protein design

L
400 600 800 1000 1200 1000 1500 2000 2500
Number of residues in the protein Number of cliques in the protein contact matrix

Figure 10.1: Distribution of the number of residues (left) and the number of maximal
cliques (right) in the benchmark of instances used in the experiments.

10.7 Experimental results

In this section, we present the results of the application of two alternatives for the
calculation of the evolutionary niche of a protein. The use of approximate inference
and EDAs are evaluated on a set of 3899 protein instances. In the case of EDAs, the
objective of the experiments is constrained to find the sequence with lowest energy.
First, we introduce the protein benchmark and study the characteristics of the contact
graph of each protein. Later, experiments illustrate the application of approximate loopy
propagation and different variants of EDAs on these instances.

10.7.1 Protein benchmark

We start with an initial set of 3901 protein instances!. This is a reduced and non-

redundant set of protein shapes that is used for fold recognition. It is a good representa-
tive of the known folds of the protein databank (145). Two protein instances have been
removed because they contain one amino acid not included in the list of the 20 most
€Ommon ones.

For each protein, information about the side chain geometric centers of the protein is
available?. Since function TE13 is defined for the distances between the side chain
centers, this distance has been calculated for each pair of residues in each protein.

!These instances have been obtained from Dr. Leonid Meyerguz’s page:
http://www.cs.cornell.edu/~leonidm /counting/protein—list.txt
>This data is available from http://www.cs.cornell.edu/~leonidm /counting/pdb—sample.tar

163

10 Inference based methods for protein design

2500 T T T T T T T T T 2500

Number of instances
Number of instances

L L L
3 35 4 4.5 5 5.5 6 6.5 7 75

4 5 6 7 8 9 10
Size of the maximum clique in the protein contact matrix Average size of the cliques in the protein contact matrix

Figure 10.2: Distribution of the size of the maximum clique of the contact map (left) and
of the average size (right) of maximal cliques in the benchmark of instances
used in the experiments.

We construct the contact graph of each protein. In a contact graph, each vertex represents
a residue. There is one edge between two vertices if the corresponding residues are in
contact in the protein (for function T'E13, contact distances are below 9 angstroms).
The contact graph can be visualized using a binary contact matrix in which the entry at
position %, j is one if residues 7 and j are in contact.

10.7.2 Analysis of the topological features of the graphs

The first experiments are oriented to evaluate the characteristics of the contact graphs
associated with the proteins. For each of the 3899 instances, we calculate all the maximal
cliques in the contact graph. The Bron and Kerbosch algorithm (38) has been used to
calculate the cliques. Figure 10.1 shows the histograms of the number of residues (left)
and the total number of maximum cliques (right) in the set of instances. As can be seen,
the distribution of the sizes is not uniform. The shortest instances are more likely to be
found in the set. Similarly, there are more instances with lower numbers of cliques.

As pointed out in Section 6.2.2, using the topological information of the graph, partic-
ularly the number and characteristics of the cliques, we can evaluate the complexity of
using different approximations of the probability distribution associated with the energy
functions. Therefore, for each protein, we have found the maximum clique and average
size of all the cliques.

Figure 10.2 shows the histograms of the maximum clique size (left) and the average size of
the cliques (right) for all the protein instances. The average size of the maximum clique

164

10 Inference based methods for protein design

Position of the residues of protein 4clg-A
Position of the residues of protein 1200

20

. . . .
5 10 15 20 15 20 25 30 35 40 45
Position of the residues of protein 4clg-A Position of the residues of protein 1200

Figure 10.3: Contact matrices corresponding to two proteins for which exact inference
prediction is feasible (left) and infeasible (right).

is 7.03. This means that the expected dimension of the biggest table is ~ 2079 > 107,
which is clearly a prohibitive value. Since the size of the maximum clique of the graph
gives a lower bound for the size of the maximum clique in the triangulated graph, we can
conclude that exact inference is not expected to be feasible for the average case.

However, for certain instances exact inference is still possible. In Figure 10.3 (left), we
show the contact matrix corresponding to protein 4clg-A. The maximum clique of this
graph has size 3 and the graph is clearly chordal. Therefore, exact inference using belief
propagation on a junction tree can be done. The opposite situation is illustrated in
Figure 10.3 (right). The maximum clique of the contact graph associated with protein
laoo has size 13 and, in this case, exact inference is infeasible. The analysis of the number
of cliques and their sizes show one way in which problem information can help to choose
the best approximation.

10.7.3 Evolutionary niche of proteins using BMMF and the TE13 function

We investigate the performance of BMMF to find the evolutionary niche of the proteins
in our benchmark. Function T'E13 is used to evaluate the energy of the sequences.

The experiment consists of applying BMMF to all the proteins to find the 1000 most
probable configurations using the potential functions defined from T'E13. We expect the
most probable configurations to correspond to the evolutionary niche with k& = 1000.
BMMF will stop when all the configurations have been found or the loopy BP does not
converge. The maximum number of steps for convergence of loopy BP was set at 200.

165

10 Inference based methods for protein design

The results are in Table 10.1. For the instances for which BMMF finds at least one
configuration, the table shows the name of the instance (pdb), its size (n), and the
number of instances found (m). BMMEF is able to find at least one solution in only
60 of the 3899 instances. For three intances, it is able to find the 1000 most probable
configurations. The deceptive behavior of the method is due to the lack of convergence of
loopy belief propagation for most of the instances. This performance is very different from
the one displayed by BMMF for the rotamer problem explained in Chapter 9. Therefore,
we investigate the performance of loopy BP in more detail.

pdb n m pdb n m pdb n
lafp 51 1 1pyc 41 2 1doy 96
lapq 53 1 lqdp 42 42 lehd-A 89
1bba 36 1 1gm-B 25 187 1leo0-A 77
1bh4 30 2 1gk6-A 33 2 1fxr-A 64

1bkv-A 29 184 Tlres 43 6 lgam-A 86
1bgf-A 25 973 1roo 35 2 lgat-A 60
1btd-A 33 1 1shl 48 4 1hd0-A 75
lcig-B 24 16 1sp2 31 1000 1ifl-A 105

._\w\])—n,p[\p»av—loov—lr—*oahl»lk\]ukl\bwwws

lelv-I 32 9 lter 21 1000 1imp 86
1dec 39 1 1lzwd 35 1 1livlkA 107
1dfn-A 30 1000 2mrb 31 2 1kst 68
leiu 37 2 2pta 35 1 1nra 63
lgnf 46 2 3ins-A 21 572 1pba 81
1gps 47 1 3znf 30 16 1qd9-A 124
liva 48 8 8tvi-A 21 5 viy-A 67
1ktx 37 1 laoj-A 60 3 1whf 86
Imet-1 28 1 1b7d-A 61 15 2hgf 97
1mea 28 75 1bbr-H 150 1 2r63 63
lmyn 44 6 1bf0 60 7 4mt2 61
1pnh 31 3 ledq 7 5 bcro-O 60

Table 10.1: Protein instances for which BMMF converges and finds at least one configu-
ration.

Figure 10.4 (left) shows the evolution of the total difference between the approximation
of the beliefs at different generations of loopy BP for protein 4clg-A. Equation 10.5 shows
the value used for the error:

MaT;=1,.. n: j:l,...,20|ﬁt($g) — Pt-1 (933)|, (10.5)

where p;(x]) is the approximation of the j-th marginal probability value taken by variable

166

10 Inference based methods for protein design

Total difference
= o o o o
o @ ~ @ © -
*

=
~

+ + + + + + + + +
ost 1++++¢ +lEs +++i ++¢+¢+
Foog +
g
+ + * ++ +
MM@; e R m
&
iy %&x# W
n1+-§-++¢+ H+ +f ++ F ++*++ ++ ++ T +++++

=]

\ . , , . . . , .)
0 50 100 150 200 250 300 350 400 450 500 5 15 20
Iteration of the loopy propagation algorithm Position of the residues of protein 4clg-A

Figure 10.4: Difference in the belief approximations at different iterations of loopy BP
for protein 4clg-A. Left, total difference. Right, difference for each residue.

X, at iteration t.

For this example, the maximum number of iterations was set at 500. For the total
difference, it can be observed that, after an initial drop of the values, they oscillate
without converging to zero. Further analysis of the evolution of the difference can be
done by observing Figure 10.4 (right). This figure reveals that there is only one subset of
the marginals that do not converge (lighter colors in the figure). As explained before, for
this protein the most probable configurations can be found by using exact probabilistic
inference on a junction tree.

10.7.4 Evolutionary niche of proteins using EDAs and the TE13 function

The second part of the experiments has a three-fold purpose. First, we evaluate the
performance of EDAs to sample the space of low energy configurations for function
TFE13. Second, we check whether the solutions found by EDAs agree with those found
using BMMF. With this goal in mind, the instances for which loopy BP was able to
converge, are used to evaluate EDAs.

In the following experiments, different versions of EDAs are run. All EDAs learn a tree
from the data. Different are given by the way learning and sampling are done The EDAs
used are the following;:

1. Tree-EDA: EDA that learns a tree from the data. Sampling is done applying PLS.

167

10 Inference based methods for protein design

2. Tree-EDA": EDA that learns a tree from the data, but in which only interactions
between variables whose corresponding residues are in contact in the graph are
considered to be included in the tree structure. Sampling is done applying PLS.

3. EDA-Loopy-P: EDA that learns a tree from the data. Sampling is done combining
PLS and loopy BP. The graphical model structure for loopy BP is determined by
the contact graph. Marginals are learned from data.

4. EDA-Loopy: EDA that learns a tree from the data, but in which only interactions
between variables whose corresponding residues are in contact in the graph are
considered to be included in the tree structure. Sampling is done combining PLS
and loopy BP. The graphical model structure is used for loopy BP, and the bivariate
marginals are learned from the data.

In the case of the EDAs that incorporate sampling using Algorithm 6.4, a maximum
number of the 10 most probable solutions are found at each generation. The rest of
the solutions are generated using the tree learned from data. EDA-Loopy-P does prop-
agation on the full contact graph structure. EDA-Loopy does propagation on the tree
(forest) learned from the data. Both algorithms learn the potentials from the bivariate
marginals. The rationale behind introducing a maximum of most probable configurations
is to avoid the computational cost associated with the method to find the most probable
configurations.

All EDASs use truncation selection with truncation parameter T' = 0.15. Best elitism and
a maximum of 50 generations are employed. We establish the best solution found and
the number of times it has been obtained in 100 experiments. The results are shown
in Tables 10.2 and 10.3. The tables show the best value of the fitness found in all the
experiments (f), the number of times the best solution has been found (5), the average
fitness (f), and the average number of generations (g) needed to find the optimum. Stop
criteria considered are the maximum number of generations and the lack of diversity in
the selected population (there are only 10 or less different solutions).

As an initial experiment, we evaluate the tree structure learned by Tree-EDA in the
first generation of the search for protein instances 4clg-A and laoo. 1000 runs of the
algorithm are done for each instance. The tree is learned from the data and the edges in
the tree are stored. We count the number of times each edge has appeared in the trees.
Figure 10.5 shows the contact matrices constructed for edges that have been in at least 50
of the 1000 trees learned. The similarity between the structure learned and the original
contact matrix of the graph (Figure 10.3) is remarkable. This example shows that EDAs
are able to recover problem information from a statistical analysis of the data.

Table 10.2 shows a comparison between the results achieved by Tree-EDA and EDA-
Loopy-P for all the instances. Similarly, a comparison between the results achieved by
Tree-EDA™ and EDA-Loopy for all the instances can be seen in Table 10.3.

168

10 Inference based methods for protein design

pdb Tree-EDA EDA-Loopy-P

-f S —f g -f S —f g
lafp 1493.46 1 1458.46 29.00 | 1498.58 1 1466.51 28.00
lapq 1426.39 1 1367.53 32.00 | 1442.43 1 1402.05 28.00
1bba 800.31 7 775.36 25.00 | 800.31 13 782.85 21.08
1bh4 758.44 3 734.41 21.00 759.42 2 740.41 18.50
1bkv-A 425.23 25 411.48 16.88 425.23 48 418.46 14.60
1bgf-A 479.03 5 458.60 18.80 | 479.03 11 462.94 16.18
1btd-A 703.33 1 678.32 22.00 732.45 2 692.44 19.00
1cig-B 452.90 45 449.99 16.00 | 452.90 62 450.67 14.35
lclv-I 926.78 1 89270 22.00 | 933.72 2 904.03 20.00
1dec 947.68 1 907.02 50.00 | 947.59 1 919.05 50.00
1dfn-A 695.52 1 668.45 19.00 | 699.27 1 674.69 21.00
leiu 907.32 6 898.07 24.50 | 908.19 1 900.74 26.00
1gnf 1167.75 1 1116.09 28.00 | 1170.04 2 1139.54 23.50
1gps 1323.88 1 1284.45 32.00 | 1328.38 1 1295.21 25.00
liva 1300.78 1 1282.35 28.00 | 1301.56 4 1291.08 25.00
1ktx 1002.84 1 941.52 24.00 | 1008.66 1 951.30 22.00
1mct-I 766.62 1 745.84 19.00 | 771.84 2 755.05 19.00
1lmea 691.47 2 664.44 19.50 | 691.47 4 674.63 19.00
1mhu 907.43 1 880.05 22.00 | 907.43 4 885.60 19.50
1myn 1289.52 1 1230.85 29.00 | 1301.34 1 1255.70 24.00
1pnh 687.83 1 669.68 20.00 | 779.23 1 680.18 28.00
1pyc 1101.69 1 1050.11 25.00 | 1123.14 2 1072.40 25.00
lqdp 1104.75 1 1060.80 32.00 | 1114.81 1 1076.30 26.00
1qfn-B 338.55 28 330.84 15.89 | 338.55 41 33273 14.24
1gk6-A 816.63 1 780.12 24.00 | 817.42 1 79276 21.00
1res 1038.58 1 981.14 26.00 | 1070.32 1 1013.49 25.00
1roo 975.74 32 969.57 21.22 | 980.24 1 970.27 21.00
1shl 1405.55 1 1348.21 30.00 | 1442.51 1 1371.17 23.00
1sp2 673.46 1 60836 22.00 | 673.46 3 640.12 18.67
1ter 528.31 4 503.82 16.00 | 528.31 20 507.81 14.55
1tmz-A 609.82 1 573.30 22.00 | 609.82 1 579.25 18.00
lzwd 658.84 1 621.14 24.00 | 662.34 2 637.07 19.00
2mrb 806.87 1 78490 22.00 | 808.44 3 796.49 19.33
2pta 882.57 1 837.70 23.00 | 905.66 1 854.50 21.00
3ins-A 446.54 2 418.86 17.00 446.54 7 423.78 15.43
3znf 679.72 1 668.07 20.00 | 682.03 12 669.87 17.42
8tfv-A 368.23 80 367.04 13.85 | 368.23 83 366.91 12.73
laoj-A 1252.12 1 1163.01 38.00 | 1256.80 2 1219.55 29.00
1b7d-A 1750.34 1 1666.33 40.00 | 1821.99 1 1713.48 30.00
1bbr-H 3615.33 1 3458.34 50.00 | 3900.68 1 3710.49 50.00
1bf0 1665.05 1 1596.53 34.00 | 1707.06 1 1629.43 33.00
ledq 2122.12 1 2043.20 43.00 | 2171.36 1 2080.39 42.00
1doy 3324.07 1 3266.49 50.00 | 3350.96 1 3289.37 48.00
lehd-A | 3243.84 1 3159.73 50.00 | 3287.48 1 3210.14 46.00
leo0-A 2242.45 1 2070.38 50.00 | 2349.48 1 2142.50 48.00
1fxr-A 1924.04 1 1831.44 38.00 | 1987.13 1 1876.89 34.00
lgam-A | 2356.16 1 2266.02 47.00 | 2490.80 1 2353.47 48.00
1gat-A 1495.89 1 1401.05 36.00 | 1510.78 1 1441.40 33.00
1hd0-A 2282.86 1 2179.34 47.00 | 2320.12 1 2225.02 36.00
1if1-A 2984.11 1 2840.86 50.00 | 3041.68 1 2961.29 46.00
limp 2478.64 1 237479 50.00 | 2505.63 1 2430.92 45.00
livl-A 3338.91 1 3195.89 50.00 | 3450.78 1 3349.20 50.00
1kst 2166.32 1 2080.83 42.00 | 2190.66 1 2114.19 36.00
1nra 1888.56 1 1806.72 40.00 | 1910.99 2 1843.35 33.50
1pba 2154.58 1 2033.58 50.00 | 2183.43 1 2090.56 41.00
1gd9-A | 3929.16 1 3762.24 50.00 | 3993.59 1 3871.68 50.00
1viy-A 1857.82 1 1797.28 40.00 | 1880.49 1 1828.34 34.00
1whf 2443.19 1 2293.68 50.00 | 2470.85 1 2382.65 43.00
2hgf 2923.62 1 2848.07 50.00 | 3017.59 1 2917.62 50.00
2r63 1829.48 1 1678.30 45.00 | 1890.86 1 1731.83 32.00
4mt2 1864.31 1 1809.06 é 00 | 1884.13 1 1799.89 32.00
5cro 1527.11 1 1449.72 1 .00 | 1587.78 1 1441.56 31.00

Table 10.2: Results of the Tree-EDA and EDA-Loopy-P

10 Inference based methods for protein design

: =
- -
o ; "™
- = =
sk]] c —
10 3
3 8
g = 15k --i
T <
g 3 =
gop S aof] |
5 s] [|
2 8
H 3 1 = = =
2 3 25 -] -
H 8
= o
£1sp fo—w]]] " =
c s]
£ s Mfm " i
8 € 35 - = OO O O
]
20+ sk - -] -
]
Fa = = = "w "
_——
. L™ T
L L |

.
5 10 15 20 5 10 15 20 25 30 35 40 45
Position of the residues of protein 4clg-A Position of the residues of protein 1200

Figure 10.5: Most frequent interactions found by Tree-EDA in the first generation while
finding the evolutionary niches of proteins 4clg-A and laoo.

An analysis of Table 10.2 shows that EDA-Loopy-P finds the same -if not- better solutions
as Tree-EDA in all instances except instance 1dec for which Tree-EDA finds a solution
with energy —947.68 and EDA-Loopy-P one with energy —947.59. The average energy
found by EDA-Loopy-P is better in all the examples. These experiments confirm that
the addition of the inference steps improves the results achieved by Tree-EDA.

Table 10.3 compares the results achieved by Tree-EDA"™ and EDA-Loopy-P. In this case,
the addition of the inference step does not improve the best solution found for most
of the instances. Although the average of the best solution energies is higher than the
one calculated from the solutions found by Tree-EDA", EDA-Loopy-P is able to improve
the best solutions found by Tree-EDA™ for some instances. Furthermore, a comparison
between Table 10.2 and Table 10.3 underlines that the use of problem information by
means of constraining the search of the tree structures to the set of edges that exist in
the contact graph can improve the results of the KDA. Results achieved by Tree-EDA"
are better than those achieved with Tree-EDA.

10.7.5 Approximation of the entropy

The objective of the following example is to show the way in which the most probable
configurations can provide useful information for protein design. In this case, we calculate
the entropy of the univariate distributions of the most probable configurations found.
This analysis reveals which residues are less sensitive to mutations. There are residues in
which changes do not provoke an important increase in the energy of the configuration.
Figure 10.6 shows the entropy of the residues of protein 1dfn-A calculated from the 1000
most probable configurations of the Boltzmann distribution calculated from the energy

170

10 Inference based methods for protein design

pdb Tree-EDA" EDA-Loopy
) —f g) -f g
lafp 1494.83 1 1468.78 27.00 | 1499.04 2 1467.41 29.00
lapq 1442.43 2 1405.37 27.00 | 1442.43 1 1406.07 27.00
1bba 800.31 20 788.67 20.80 800.31 19 784.38 20.74
1bh4 759.42 4 743.75 18.00 759.42 4 739.60 18.25
1bkv-A 425.23 56 419.71 14.89 425.23 51 418.76 14.84
1bqgf-A 479.03 18 466.56 16.39 479.03 20 463.98 16.50
1btd-A 726.62 1 694.10 21.00 726.96 1 692.15 20.00
1cig-B 452.90 62 451.01 14.60 452.90 60 451.04 14.32
lclv-I 933.72 4 913.21 19.00 933.72 1 904.66 19.00
1dec 955.11 3 924.31 50.00 955.11 2 923.32 50.00
1dfn-A 703.26 2 676.09 17.00 703.26 1 674.55 18.00
leiu 908.19 1 903.53 22.00 907.32 18 900.90 21.17
1gnf 1172.37 1 1147.62 23.00 | 1172.46 1 1139.93 27.00
1gps 1329.07 1 1301.12 26.00 | 1328.38 3 1299.87 26.33
liva 1301.56 3 1294.18 25.67 | 1301.56 3 1292.03 26.00
1ktx 1016.46 1 960.75 25.00 | 1015.53 1 959.02 23.00
1mct-I 771.84 2 757.00 18.50 771.84 4 754.55 17.50
1mea 691.47 7 679.30 18.43 691.47 3 678.31 18.33
1mhu 907.43 4 889.83 18.50 907.43 3 888.71 18.67
Imyn 1299.16 1 1263.31 26.00 | 1298.22 1 1255.04 23.00
1pnh 784.83 1 691.89 21.00 776.76 1 684.77 22.00
1pyc 1123.14 1 1083.41 25.00 | 1123.14 1 1078.01 22.00
lqdp 1114.81 2 1083.88 22.50 | 1117.14 1 1080.18 25.00
1gfn-B 338.55 65 335.45 14.63 338.55 52 334.43 14.67
1gk6-A 817.42 2 797.95 20.00 817.42 1 794.58 21.00
1res 1069.92 1 1026.72 25.00 | 1066.21 1 1017.28 26.00
1roo 977.36 1 971.67 22.00 979.55 1 971.23 18.00
1shl 1436.10 1 1386.09 24.00 | 1444.09 1 1384.37 28.00
1sp2 673.46 18 652.37 19.17 | 673.46 6 645.90 19.83
1ter 528.31 26 513.96 14.69 528.31 23 511.21 14.83
1tmz-A 609.82 8 589.70 18.00 609.82 5 584.88 18.00
lzwd 663.07 2 642.17 20.00 663.38 2 638.83 20.50
2mrb 808.44 4 797.63 18.00 808.44 3 793.25 18.67
2pta 903.44 1 867.30 22.00 903.44 1 858.28 21.00
3ins-A 446.54 12 428.22 14.83 446.54 9 424.92 15.33
3znf 682.03 7 670.64 18.00 682.03 6 667.79 17.50
8tfv-A 368.23 85 367.42 12.80 368.23 83 366.99 12.89
laoj-A 1258.01 1 1226.78 28.00 | 1256.80 2 1220.54 30.00
1b7d-A 1822.28 1 1743.25 32.00 | 1808.39 1 1732.37 31.00
1bbr-H 3947.21 1 3798.36 50.00 | 3962.91 1 3761.01 50.00
1bf0 1711.79 1 1643.32 35.00 | 1696.70 1 1635.60 31.00
lcdgq 2192.00 1 2100.08 38.00 | 2184.83 1 2091.44 39.00
1doy 3373.96 1 3325.90 48.00 | 3361.89 1 3309.27 50.00
lehd-A 3282.18 1 3236.33 44.00 | 3283.69 1 3219.38 44.00
leo0-A 2389.50 1 2227.81 41.00 | 2362.38 1 2204.66 44.00
1fxr-A 1988.22 1 1910.87 31.00 | 1973.55 1 1891.82 35.00
lgam-A | 2465.97 1 2386.30 39.00 | 2460.10 1 2351.36 39.00
1gat-A 1513.75 1 1457.24 30.00 | 1511.62 1 1447.34 34.00
1hdO-A 2331.39 1 2252.34 38.00 | 2317.08 1 2239.32 34.00
1if1-A 3051.07 1 2993.47 49.00 | 3047.62 1 2980.32 46.00
limp 2513.36 1 2458.20 40.00 | 2500.96 1 2434.47 41.00
livl-A 3470.71 1 3407.85 50.00 | 3474.05 1 3377.17 50.00
1kst 2203.51 1 2138.72 42.00 | 2194.82 1 2129.36 36.00
Inra 1914.91 1 1863.79 34.00 | 1914.21 1 1850.92 32.00
1pba 2199.66 1 2112.74 41.00 | 2208.69 1 2111.45 41.00
1qd9-A 4026.28 1 3952.83 50.00 | 4012.66 1 3914.47 50.00
1viy-A 1912.55 1 1844.27 32.00 | 1896.07 1 1836.68 32.00
1whf 2487.02 1 2424.10 41.00 | 2480.45 1 2403.61 43.00
2hgf 3046.69 1 2960.59 50.00 | 3062.54 1 2940.58 47.00
2r63 1912.22 1 1802.58 38.00 | 1923.97 1 1778.93 38.00
4mt2 1884.13 2 1849.47 .50 | 1884.13 1 1845.03 32.00
5cro 1605.88 1 1516.00 1 .00 | 1588.82 1 1500.03 32.00

Table 10.3: Results of the Tree-EDA™ and EDA-Loopy

10 Inference based methods for protein design

Entropy

0 5 25 30

10 15 20
Position of the residues of protein 1dfn-A

Figure 10.6: Entropy of the residues calculated from the 1000 most probable configura-
tions of protein 1dfn-A.

function using loopy-BP. Differences in the entropy of the different residues can be clearly
appreciated.

10.8 Conclusions

This chapter has studied the application of graphical models to protein design. We
have started from the review of current work on probabilistic protein design. We have
proposed a number of ways in which graphical models can be used to improve current
applications of probabilistic modeling to problems that arise in protein design. Two main
alternatives have been identified for the application of graphical models. The first one
considers the use of graphical models to model the problems by associating a probability
distribution with an energy function. Once the probability model has been defined, exact
and approximate inference algorithms can be applied. We have shown in the chapter that
the topological analysis of the contact graph can support clues about the feasibility of
applying exact inference.

The second alternative implies the use of graphical models inserted in the directed search
of low energy configurations. Using EDAs, graphical models participate in the modeling
of the potential function and lead the search to promising areas of the search space. We
have introduced a way to combine traditional learning methods employed in the context
of EDAs with inference based techniques. Although the use of inference techniques have
been proposed for the side chain prediction problem, we have shown that the application
of these techniques goes beyond the scope of protein structure prediction. Furthermore,
both inference based optimization methods and EDAs have shown different performances

172

10 Inference based methods for protein design

in different situations. The combined used of both methods seems to be a good global
strategy.

Finally, this chapter has addressed the problem of finding the evolutionary niche of
a protein. We have re-formulated the problem as that of finding the most probable
configurations of the protein and evaluated the convenience of inference methods and
EDASs to sample the space of low energy configurations.

There are several research trends to continue the work described in this chapter. One
needed step is to extend the analysis of the use of inference techniques and EDAs to
other potential functions. For all the functions considered in our experiments, the score
attached to the native sequence was always higher than that achieved by many other
configurations. This is usually due to the existence of configurations formed by the same
residues that have low energy and can be addressed by modifying the value of the energy
function (145; 146).

Since our main research goal was to evaluate the performance of the algorithms to sample
the space of low energy configuration disregarding the structural characteristics of these
configurations, we did not pay attention to this issue. Nevertheless, the use of other
potential functions could expand the results. Additionally, investigating other potential
functions would allow to know whether the deceptive results of inference algorithms are
due to the topology of the graph or to the particular features of the T'E'13 function.

The inference problems could be faced in two steps by using the binary patterning of
polar and non-polar amino acids (230). This method first establishes a constraint to
the number of residue types, and later on, a more detailed search for sequences. This
approach is based on the important role played by the hydrophobicity pattern of proteins
in the native structure achieved, as has been analyzed in Chapter 8. Binary patterning
of polar and non-polar amino acids could be useful to organize the search for solutions
by first searching for the most probable configurations in a reduced alphabet, and later
conducting a more detailed search.

There are other possible uses of graphical models. They could be the basis of classi-
fication algorithms to be employed to discriminate not only between native and decoy
structures, but also between native and other sequences. This could serve as an alterna-
tive approach to the use of energy potentials. Knowledge based potentials are obtained
from the statistical analysis of known protein structures and/or optimization of the bias
of native structures against their decoys. The limited accuracy of statistical potentials
has been attributed to the fact that the procedure ignores basic physical characteristics
of proteins (247).

By means of manipulating the prior probabilities (e.g. residue propensities calculated
from sequences biased towards the formation of secondary structures), graphical models
can incorporate different types of information to the protein design process.

173

10 Inference based methods for protein design

Another possibility is, given a protein sequence, to obtain from the probabilistic model
probable structural constraints to be satisfied by the protein structure. These constraints
could be expressed in terms of the most probable pairwise distances between the residues.

One of the limitations of current models used for protein design (e.g. rotamer libraries)
is that most of the models consider a fixed backbone (74). This does not allow the
true flexibility that would afford more optimal sequences, and more robust predictions.
Probabilistic modeling should enable a combined representation of backbone flexibility
and residue variability. Indeed, this seems to be a complex task.

174

Part IV

Conclusions

175

11 Conclusions

This chapter presents general conclusions of the thesis. More specific conclusions have
been presented at the end of the corresponding chapters.

Throoughout the thesis, we have shown that Kikuchi approximations satisfy a number
of properties that make them convenient for applications where estimation of probability
distributions is required. We have shown Kikuchi that approximations can be learned
from data by means of score+search techniques. Further study of possible metrics to be
used for learning is needed.

The thesis has provided new evidence about the use of region based approximations
in optimization by means of Kikuchi approximations of the distribution, and by means
of generalized belief propagation algorithms. We have proposed a novel way to insert
abductive inference in the context of estimation distribution algorithms. The approach
combines learning the probabilistic model from data with the application of the max-
marginal loopy propagation algorithm for sampling new solutions. The proposal has been
set in the general context of possible learning and sampling alternatives for EDAs.

A number of problems from protein modeling have been addressed. We have applied
different variants of EDAs to the HP protein folding problem, the protein side chain
placement problem, and the problem of finding solutions from the evolutionary niche
of a protein given an energy function. The results achieved show that EDAs are useful
not only as optimization algorithms. They can support knowledge about the problem
structure and be used to mimic certain features of the problem considered.

The thesis points out to the need to widen the scope of studies of probabilistic graphical
models to analyze the suitability of region based decompositions for the estimation of
probability distributions. It shows that research from computational biology can take
advantage of algorithms that employ the efficient knowledge representation tools which
probabilistic graphical models are.

177

12 Bibliography

1]

2]

13l

[4]

[5]

(6]

7]

8]

[9]

[10]

F. Abascal and A. Valencia. Automatic annotation of protein function based on
family identification. Proteins: Structure, Function and Genetics, 53:683-692,
2003.

S. Acid and L. M. de Campos. Approximations of causal networks by polytrees: An
empirical study. In B. Bouchor-Meunier, R. R. Yager, and L. A. Zadeh, editors,
Advances in Intelligence Computing, volume 945 of Lectures Notes in Computer
Science, pages 149-158. Springer Verlag, 1995.

S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Transactions
on Information Theory, 46(2):325-343, 2000.

S. M. Aji and R. J. McEliece. The generalized distributive law and free energy
minimization. In Proceedings of the 39th Allerton Conference on Communication,
Control, and Computing, Allerton, Illinois, 2001.

S. M. Aji and M. Yildirim. Mathematical Systems Theory in Biology, Communica-
tions, Computation and Finance Series: The IMA Volumes in Mathematics and its
Applications, Vol. 134, chapter Belief propagation on partially ordered sets, pages
275-300. Springer Verlag, 2003.

H. Akaike. A new look at the statistical identification model. IEEE Transactions
on Automatic Control, pages 716-723, 1974.

B. Al-Lazikani, J. Jung, Z. Xiang, and B. Honig. Protein structure prediction.
Current Opinion in Chemical Biology, 5(1):51-56, 2001.

B. S. Anderson and A. W. Moore. ADtrees for fast counting and for fast learning
of association rules. In Knowledge Discovery from Databases 98, pages 134—138,
1998.

A. Andreatta and C. Ribeiro. Heuristics for the phylogeny problem. Journal of
Heuristics, 8:429-447, 2002.

P. Attard, O. G. Jepps, and S. Marcelja. Information content of signals using
correlation function expansions of the entropy. Physical Review F, 56:4052-4067,
1997.

179

Bibliography

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. H. Badsberg and F. M. Malvestuto. An implementation of the iterative propor-
tional fitting procedure by propagation trees. Computational Statistics and Data
Analysis, 37(3):297-322, 2003.

M. Bain. Learning Logical Exceptions in Chess. PhD thesis, University of Strath-
clyde, 1994.

D. Baker. A surprising simplicity to protein folding. Nature, 405:39-42, 2000.

D. Baker. Protein structure prediction and structural genomics. Science, 294:93-96,
2001.

S. Baluja. Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report
CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.

S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial opti-
mization: Learning the structure of the search space. In Proceedings of the 1jth
International Conference on Machine Learning, pages 30-38. Morgan Kaufmann,
1997.

U. Bastolla, H. Frauenkron, E. Gerstner, P. Grassberger, and W. Nadler. Testing
a new Monte Carlo algorithm for protein folding. Proteins: Structure, Function,
and Genetics, 32:52—66, 1998.

N. Belacel, P. Hansen, and N. Mladenovié. Fuzzy J-means: a new heuristic for
fuzzy clustering. Pattern Recognition, 35(10):2193-2200, 2002.

E. Bengoetxea. Inexact Graph Matching Using Estimation of Distribution Algo-
rithms. PhD thesis, FEcole Nationale Supérieure des Télécommunications, 2003.

E. Bengoetxea, T. Miquélez, P. Larranaga, and J. A. Lozano. FEstimation of Dis-
tribution Algorithms. A New Tool for Evolutionary Computation, chapter Exper-
imental results in function optimization with EDAs in continuous domain, pages

177-190. Kluwer Academic Publishers, Boston/Dordrecht /London, 2002.

B. Berger and T. Leight. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. Journal of Computational Biology, 5(1):27-40, 1998.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, 1. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucleid Acid Research,
28:235-242, 2000.

J. Besag. Markov chain Monte Carlo for statistical inference. Technical Report
Working paper No. 9, Center for Statistical and Social Science, University of Wash-
ington, September 2000.

180

Bibliography

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

H. Bethe. Statistical theory of superlattices. Proceedings of the Royal Society of
London, 150(871):552-575, 1935.

J. Bilmes. Dynamic Bayesian multinets. In C. Boutilier and M. Goldszmidt, editors,
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages
38-45. Morgan Kaufmann Publishers, 2000.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29(2-3):213-244, 1997.

R. Blanco. Learning Bayesian Networks from Data with Factorisation and Classi-
fication Purposes. Applications in Biomedicine. PhD thesis, University of Basque
Country, Donostia, Spain, 2005.

J. Blazewicz, P. Lukasiak, and M. Milostan. Application of tabu search strategy
for finding low energy structure of protein. Artificial Intelligence in Medicine,
35:135-145, 2005.

R. Bonneau, I. Ruczinski, J. Tsai, and D. Baker. Contact order and ab initio
protein structure prediction. Protein Science, 11:1937-1944, 2002.

P. A. Bosman and D. Thierens. Linkage information processing in distribution
estimation algorithms. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and
FEvolutionary Computation Conference GECCO-1999, volume 1, pages 60-67, Or-
lando, FL, 1999. Morgan Kaufmann Publishers, San Francisco, CA.

P. A. Bosman and D. Thierens. Expanding from discrete to continuous estimation
of distribution algorithms: The IDEA. In Parallel Problem Solving from Nature
- PPSN VI 6th International Conference, Paris, France, September 16-20 2000.
Springer Verlag. LNCS 1917.

P. A. Bosman and D. Thierens. Multi-objective optimization with diversity pre-
serving mixture-based iterated density estimation evolutionary algorithms. Inter-
national Journal of Approzimate Reasoning, 31(3):259-289, 2002.

P. A. Bosman and D. Thierens. Permutation optimization by iterated estimation of
random keys marginal product factorizations. In J. J. Merelo, P. Adamidis, H. G.
Beyer, J. L. Fernandez-Villacanas, and H. P. Schwefel, editors, Parallel Problem
Solving from Nature - PPSN VII, volume 2439 of Lecture Notes in Computer Sci-
ence, pages 331-340, Granada, Spain, 2002. Springer Verlag.

J. M. Bower and H. Bolouri, editors. Computational Modeling of Genetic and
Biochemical Networks. MIT Press, 2004.

181

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algorithm
for satisfiability. Random Structures and Algorithms, 27(2):201-226, 2005.

A. Braunstein and R. Zecchina. Survey and belief propagation on random k-sat.
Lecture Notes in Computer Science, 2919:519-528, 2004.

J. Brimberg, P. Hansen, N. Mladenovi¢, and E. Taillard. Improvements and com-
parison of heuristics for solving the multisource weber problem. Operations Re-
search, 48(3):444-460, 2000.

C. Bron and J. Kerbosch. Algorithm 457—finding all cliques of an undirected
graph. Communications of the ACM, 16(6):575-577, 1973.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and
M. Karplus. CHARMM: A program for macromolecular energy minimization, and
dynamics calculations. Journal of Computational Chemistry, 4(2):187 — 217, 1983.

W. Buntine. A guide to the literature on learning graphical models. IEEE Trans-
actions on Knowledge and Data Engineering, 8:195-210, 1996.

C. J. Butz, Q. Hu, and X. D. Yang. Critical remarks on the maximal prime
decomposition of Bayesian networks. In G. Wang, Q. Liu, Y. Yao, and A. Skowron,
editors, 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and
Granular Computing (RSFDGrC03), volume 2639 of Lecture Notes in Computer
Science, pages 682—-685. Springer Verlag, 2003.

A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack. A graph-theory algorithm
for rapid protein side-chain prediction. Protein Science, 12:2001-2014, 2003.

E. Castillo, J. M. Gutierrez, and A. S. Hadi. Fzpert Systems and Probabilistic
Network Models. Springer-Verlag, 1997.

H. Cejtin, J. Edler, A. Gottlieb, R. Helling, H. Li, J. Philbin, N. Wingreen, and
C. Tang. Fast tree search for enumeration of a lattice model of protein folding.
Journal of Chemical Physics, 116:121-144, 2002.

H. S. Chan and E. Bornberg-Bauer. Perspectives on protein evolution from simple
exact models. Applied Bioinformatics, 1(3):121-144, 2002.

V. Chandru, A. Dattasharma, and V. S. A. Kumar. The algorithmics of folding
proteins on lattices. Discrete Applied Mathematics, 127(1):145-161, 2003.

L. L. Chavez, J. N. Onuchic, and C. Clementi. Quantifying the roughness on the
free energy landscape: Entropic bottlenecks and protein folding rates. Journal of

American Chemical Society, 126(27):8426-8432, 2004.

182

Bibliography

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

D. M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks is
NP-hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, WA,
1994.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.

K. J. Cios, H. Mamitsuka, T. Nagashima, and R. Tadeusiewicz. Computational
intelligence in solving bioinformatics problems. Artificial Intelligence in Medicine,

35:1-8, 2005.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9:309-347, 1992.

C. Cotta. Protein structure prediction using evolutionary algorithms hybridized
with backtracking. In J. Mira and J. R. Alvarez, editors, Artificial Neural Nets
Problem Solving Methods, volume 2687 of Lecture Notes in Computer Science, pages
321-328. Springer Verlag, 2003.

T. Cover and J. Thomas. Elements of Information Theory. Wiley & Sons, New
York, 1991.

R. Cowell. Sampling without replacement in junction trees. Technical Report
Statistical Research Paper 15, City University, London, 1997.

P. Crescenzi, D. Goldman, C. H. Papadimitriou, A. Piccolboni, and M. Yannakakis.
On the complexity of protein folding. Journal of Computational Biology, 5(3):423—
466, 1998.

C. Crick and A. Pfeffer. Loopy belief propagation as a basis for communication in
sensor networks. In Proceedings of the 19th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-2003), pages 159-166. Morgan Kaufmann Publishers,
2003.

Y. Cui, W. H. Wong, E. Bornberg-Bauer, and H. S. Chan. Recombinatoric explo-
ration of novel folded structures: A heteropolymer-based model of protein evolu-

tionary landscapes. Proceedings of the National Academy of Sciences, 99(2):809—
814, 2002.

V. Cutello, G. Morelli, G. Nicosia, and M. Pavone. Immune algorithms with aging
operators for the string folding problem and the protein folding problem. In G. R.
Raidl and J. Gottlieb, editors, Proceedings of the 5th FEuropean Conference on
Computation in Combinatorial Optimization, EvoCop-2005, volume 3448 of Lecture
Notes in Computer Science, pages 80-90, Lausanne, Switzerland, 2005. Springer.

183

Bibliography

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

V. Cutello, G. Nicosia, and M. Pavone. An immune algorithm with hyper-
macromutations for the Dill’s 2d hydrophobic-hydrophilic model. In Proceedings
of the 2004 Congress on Evolutionary Computation CEC-2004, volume 1, pages
1074-1080, Portland, Oregon, 2004. IEEE Press.

T. Davidovié¢, P. Hansen, and N. Mladenovié¢. Permutation—based genetic, tabu and
variable neighborhood search heuristics for multiprocessor scheduling with commu-
nications delays. Technical Report G-2004—19, Les Cahiers du GERAD, 2004.

A. P. Dawid. Applications of a general propagation algorithm for probabilistic
expert systems. Statistics and Computing, (2):25-36, 1992.

J. S. De Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by estimating
probability densities. In M. C. Mozer, M. 1. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems, volume 9, page 424. The MIT
Press, Cambridge, 1997.

W. F. De Grado, C. M. Summa, V. Pavone, F. Nastri, and A. Lombardi. De novo
design and structural characterization of proteins and metalloproteins. Annual
Review of Biochemistry, 68(1):779-819, 1999.

M. De Maeyer, J. Desmet, and I. Lasters. The dead-end elimination theorem:
Mathematical aspects, implementation, optimization, evaluation, and performance.
Methods in Molecular Biology, 143:265-304, 2000.

J. Desmet, M. De Maeyer, B. Hazes, and I. Lasters. The dead-end elimination
theorem and its use in protein side-chain positioning. Nature, 356:539-542, 1992.

K. A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24(6):1501-1509, 1985.

M. Dorigo and T. Stiitzle. Ant Colony Optimization. MIT press, 2004.

S. Droste, T. Jansen, and I. Wegener. Perhaps not a free lunch but at least a
free appetizer. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-1999, pages 833-839, San Francisco, CA, 1999.
Morgan Kaufmann Publishers, Inc.

S. Duarte-Flores and J. E. Smith. Study of fitness landscapes for the HP model
of protein structure prediction. In R. Sarker, R. Reynolds, H. Abbass, K. C. Tan,
B. McKay, D. Essam, and T. Gedeon, editors, Proceedings of the 2003 Congress on
Evolutionary Computation CEC-2003, pages 2338-2345. IEEE Press, 2003.

184

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[30]

[81]

[82]

R. L. Dunbrack. Rotamer libraries in the 21st century. Current Opinion in Struc-
tural Biology, 12:431-440, 2002.

R. L. Dunbrack and F. E. Cohen. Bayesian statistical analysis of protein side-chain
rotamer preferences. Protein Science, 6(8):1661-1681, 1997.

R. Etxeberria and P. Larranaga. Global optimization using Bayesian networks. In
Proceedings of the Second Symposium on Artificial Intelligence (CIMAF-99), pages
151-173, Habana, Cuba, March 1999.

J. D. Farmer, N. H. Packard, and A. S. Perelson. The immune system, adaptation
and machine learning. Physica D, 22:187-204, 1986.

C. A. Floudas, J. L. Klepeis, J. D. Lambris, and D. Morikis. De novo protein design:
An interplay of global optimization, mixed-integer optimization, and experiments.
In Proceedings of Foundations of Computer Aided Process Design 2004, pages 133—
146, 2004.

H. Frauenkron, U. Bastolla, E. Gerstner, P. Grassberger, and W. Nadler. New
Monte Carlo algorithm for protein folding. Physical Review Letters, 80(4):3149—
3153, 1998.

N. Friedman and M. Goldszmidt. Building classifiers using Bayesian networks. In
AAAI/TAAL Vol. 2, pages 1277-1284, 1996.

Y. Gao and J. C. Culberson. Space complexity of estimation of distribution algo-
rithms. FEvolutionary Computation, 13(1):125-143, 2005.

M. Glick, A. Rayan, and A. Goldblum. A stochastic algorithm for global optimiza-
tion for best populations: A test case of side chains in proteins. Proceedings of the
National Academy of Sciences, 99(2):703-708, 2002.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 5:533-549, 1986.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, MA, 1989.

C. Gonzalez, J. A. Lozano, and P. Larrafiaga. Analyzing the PBIL algorithm by
means of discrete dynamical systems. Complex Systems, 12(4):465-479, 2001.

C. Gonzélez, J. A. Lozano, and P. Larranaga. Mathematical modeling of UMDAc
algorithm with tournament selection. Behaviour on linear and quadratic functions.
International Journal of Approzimate Reasoning, 31(4):313-340, 2002.

185

Bibliography

[83] P. Grassberger. Sequential Monte Carlo methods for protein folding. In D. Wolf,
G. Miinster, and M. Kremer, editors, Proceedings of the NIC Symposium 2004,

volume 20 of NIC series, pages 1-10. John von Neumann-Institut fiir Computing
(NIC), 2004.

[84] V. D. Grouba, A. V. Zorin, and 1. A. Sevastianov. The superposition approxima-
tion: A critical review. International Journal of Modern Physics B, 18(1):1-44,
2004.

[85] P. Hansen and N. Mladenovi¢. Variable neighborhood search: Principles and ap-
plications. Furopean Journal of Operational Research, 130:449-467, 2001.

[86] U. H. E. Hansmann and Y. Okamoto. New Monte Carlo algorithms for protein
folding. Current Opinion in Structural Biology, 9:177-181, 1999.

[87] G. Harik. Linkage learning via probabilistic modeling in the EcGA. TIliGAL Report
99010, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL, 1999.

[88] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm.
IEEE Transactions on Evolutionary Computation, 3(4):287-297, 1999.

[89] W. E. Hart and S. C. Istrail. Fast protein folding in the hydrophobic-hydrophilic
model within three-eights of optimal. Journal of Computational Biology, 3(1):53—
96, 1996.

[90] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20:197—
243, 1995.

[91] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic
sampling. Uncertainty in Artificial Intelligence, 2:317-324, 1988.

[92] T. Heskes. Stable fixed points of loopy belief propagation are minima of the Bethe
free energy. In Advances in Neural Information Processing Systems, (NIPS-2002),
volume 14, pages 343-350. MIT Press, 2003.

[93] J. D. Hirst. The evolutionary landscape of functional model proteins. Protein
Engineering, 12:721-726, 1999.

[94] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI, 1975.

[95] R. Hons. Estimation of Distribution Algorithms and Minimum Relative Entropy.
PhD thesis, University of Bonn, Bonn, Germany, 2006.

186

Bibliography

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

R. Hons, R. Santana, P. Larranaga, and J. A. Lozano. Optimization by max-
propagation using Kikuchi approximations. Submitted for publication, 2006.

M. D. T. Hoque, M. Chetty, and L. S. Dooley. A new guided genetic algorithm
for 2d hydrophobic-hydrophilic model to predict protein folding. In Proceedings
of the 2005 Congress on Fwvolutionary Computation CEC-2005, pages 259-266,
Edinburgh, U.K., 2005. IEEE Press.

H.-P. Hsu, V. Mehra, and P. Grassberger. Structure optimization in an off-lattice
protein model. Physical Review E, 68(2):4 pages, 2003.

H.-P. Hsu, V. Mehra, W. Nadler, and P. Grassberger. Growth algorithms for lattice
heteropolymers at low temperatures. Journal of Chemical Physics, 118(1):444-451,
2003.

A. Jakulin and I. Bratko. Testing the significance of attribute interactions. In
Proceedings of the 21th Conference on Machine Learning (ICML-2004), pages 409—
416, Banff, Canada, 2004. ACM Press.

A. Jakulin, I. Rish, and I. Bratko. Kikuchi-Bayes: Factorized models for approxi-
mate classification in closed form. Technical Report RC23314 (W0408-175), IBM,
August 2004.

D. T. Jones. De novo protein design using pairwise potentials and a genetic algo-
rithm. Protein Science, 3:567-574, 1994.

G. Jones, P. Willett, and R. C. Glen. Molecular recognition of receptor sites using
a genetic algorithm with a description of desolvation. Journal of Molecular Biology,
245(1):43-53, 1995.

G. Jones, P. Willett, R. C. Glen, A. R. L. Leach, and R. Taylor. Development and
validation of a genetic algorithm for flexible docking. Journal of Molecular Biology,
267(3):727-748, 1997.

W. Just. Computational complexity of multiple sequence alignment with sp-score.
Journal of Computational Biology, 8(6):615-623, 2001.

L. Kallel, B. Naudts, and R. Reeves. Properties of fitness functions and search
landscapes. In L. Kallel, B. Naudts, and A. Rogers, editors, Theoretical Aspects of
FEvolutionary Computing, pages 177-208. Springer Verlag, 2000.

M. Khimasia and P. Coveney. Protein structure prediction as a hard optimization
problem: The genetic algorithm approach. Molecular Simulation, 19:205-226, 1997.

R. Kikuchi. A theory of cooperative phenomena. Physical Review, 81(6):988-1003,
1951.

187

Bibliography

[109)]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

18]

[119]

[120]

S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, May 1983.

J. G. Kirkwood and E. M. Boggs. The radial distribution function in liquids.
Journal of Chemical Physics, 10:394-402, 1942.

P. Koehl and M. Delarue. Application of a self-consistent mean field theory to
predict protein side-chains conformation and estimate their conformational entropy.
Journal of Molecular Biology, 239:249-275, 1994.

P. Koehl and M. Delarue. Building protein lattice models using self consistent
mean field theory. Journal of Chemical Physics, 108:9540-9549, 1998.

R. Konig and T. Dandekar. Improving genetic algorithms for protein folding sim-
ulations by systematic crossover. Biosystems, 50:17-25, 1999.

V. Kovacevié, M. Cangalovié, M. Asié, D. Drazi¢, and L. Ivanovié. Tabu search
methodology in global optimization. Computers and Mathematics with Applica-
tions, 37(125-133), 1999.

J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge, MA, 1992.

C. M. Kraemer-Pecore, A. M. Wollacott, and J. R. Desjarlais. Computational
protein design. Current Opinion in Chemical Biology, 5:690-695, 2001.

N. Krasnogor, B. Blackburne, E. K. Burke, and J. D. Hirst. Algorithms for protein
structure prediction. In J. J. Merelo, P. Adamidis, H. G. Beyer, J. L. Fernandez-
Villacanas, and H. P. Schwefel, editors, Parallel Problem Solving from Nature -
PPSN VII, volume 2439 of Lecture Notes in Computer Science, pages 769-778,
Granada, Spain, 2002. Springer Verlag.

N. Krasnogor, W. E. Hart, J. Smith, and D. A. Pelta. Protein structure prediction
with evolutionary algorithms. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Gar-
zon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, volume 2, pages 1596-1601, Orlando,
Florida, USA, 1999. Morgan Kaufmann.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-
product algorithm. I[EEE Transactions on Information Theory, 47(2):498-519,
2001.

R. Kuang, J. Weston, W. S. Noble, and C. Leslie. Motif-based protein ranking by
network propagation. Bioinformatics, 21(19):3711 — 3718, 2005.

188

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]
[128]
[129]

[130]

[131]

[132]

G. B. Lamont and L. D. Merkle. Toward effective polypeptide structure prediction
with parallel fast messy genetic algorithms. In G. B. Fogel and D. W. Corne, editors,
Evolutionary Computation in Bioinformatics, pages 137-162. Morgan Kaufmann,
2002.

P. Larranaga. Estimation of Distribution Algorithms. A New Tool for Evolutionary
Computation, chapter An introduction to probabilistic graphical models, pages 25—
54. Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.

P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano,
R. Armananzas, G. Santafé, A. Pérez, and V. Robles. Machine learning in bioin-
formatics. Briefings in Bioinformatics, 2006. In press.

P. Larranaga, R. Etxeberria, J. A. Lozano, and J. M. Pena. Optimization by
learning and simulation of Bayesian and Gaussian networks. Technical Report
EHU-KZAA-IK-4/99, Department of Computer Science and Artificial Intelligence,
University of the Basque Country, December 1999.

P. Larranaga and J. A. Lozano, editors. FEstimation of Distribution Algo-
rithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers,

Boston/Dordrecht /London, 2002.

S. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems (with discussion).
Journal of the Royal Statistical Society, Series B, 50:157-224, 1988.

S. L. Lauritzen. Graphical Models. Oxford:Clarendon Press, 1996.

G. A. Lazar, J. R. Desjarlais, and T. M. Handel. De novo protein design of the
hydrophobic core of ubiquitin. Protein Science, 6:1167-1178, 1997.

C. Lee and S. Subbiah. Prediction of protein side-chain conformation by packing
optimization. Journal of Molecular Biology, 217:373-388, 1991.

M. Leone and A. Pagnani. Predicting protein functions with message passing
algorithms. Bioinformatics, 21(2):239-247, 2005.

N. Lesh, M. Mitzenmacher, and S. Whitesides. A complete and effective move set
for simplified protein folding. In Proceedings of the Seventh Annual International
Conference on Research in Computational Molecular Biology, pages 188 — 195, 2003.

N. Lesh, M. Mitzenmacher, and S. Whitesides. A complete and effective move set
for simplified protein folding. Technical Report TR-2003-03, Mitsubishi Electric
Research Laboratories, February 2003.

189

Bibliography

[133]

[134]

[135]

[136]

137]

[138]

[139)]

[140]

[141)

[142)

[143]

[144]

[145]

S. Liang and N. V. Grishin. Side-chain modeling with an optimized scoring function.
Protein Science, 11:322-331, 2002.

S. Liang and W. H. Wong. Evolutionary Monte Carlo for protein folding simulation.
Journal of Chemical Physics, 115:3374-3380, 2001.

Z. Liu, W. Li, S. Liang, Y. Han, and L. Lai. Beyond rotamer library: Genetic
algorithm combined with disturbing mutation process for upbuilding protein side-
chains. Proteins: Structure, Function, and Genetics, 50:49-62, 2003.

L. L. Looger and H. W. Hellinga. Generalized dead-end elimination algorithms
make large-scale protein side-chain structure prediction tractable: Implications for
protein design and structural genomics. Journal of Molecular Biology, 307(1):429—
445, 2001.

L. Lozada and R. Santana. UMDA dynamics for a class of parametric functions.
Technical Report ICIMAF 2003-239, Institute of Cybernetics, Mathematics and
Physics, Havana, Cuba, September 2003.

J. A. Lozano, P. Larrafiaga, 1. Inza, and E. Bengoetxea, editors. Towards a New
FEvolutionary Computation: Advances on FEstimation of Distribution Algorithms.
Springer-Verlag, 2006.

R. M. MacCallum. Striped sheets and protein contact prediction. Bioinformatics,
20(8):1224 — 1231, 2004.

D. Mackay. Learning in Graphical Models, chapter Introduction to Monte Carlo
methods, pages 175-204. MIT Press, 1998.

H. Matsuda. Physical nature of higher-order mutual information: intrinsic corre-
lations and frustration. Physical Review E, 62(3):3096-3102, 2000.

M. Meila. Learning Mixtures of Trees. PhD thesis, Massachusetts Institute of
Technology, 1999.

J. Meller, M. Wagner, and R. Elber. Maximum feasibility guideline to the design
and analysis of protein folding potentials. Journal of Computational Chemistry,
23:111-118, 2002.

N. Metropolis, A. Rosenbluth, A. Teller, and E. Teller. Equations of state calcu-
lations by fast computing machines. Journal of Chemical Physics, 21:1087-1091,
1953.

L. Meyerguz, C. Grasso, J. Kleinberg, and R. Elber. Computational analysis of
sequence selection mechanisms. Structure, 12(4):547-557, 2004.

190

Bibliography

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

L. Meyerguz, D. Kempe, J. Kleinberg, and R. Elber. The evolutionary capacity
of protein structures. In Proceedings of the Fighth Annual International Confer-
ence on Research in Computational Molecular Biology, pages 290-297, San Diego,
California, 2004. Morgan Kaufmann Publishers, San Francisco, CA.

T. Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis,
Massachusetts Institute of Technology, Massachusetts, 2001.

T. Miquélez, E. Bengoetxea, and P. Larranaga. Evolutionary computation based on
Bayesian classifiers. International Journal of Applied Mathematics and Computer
Science, 14(3):101-115, 2004.

N. Mladenovié. A variable neighborhood algorithm — a new metaheuristics for
combinatorial optimization. In Abstracts of Papers Presented at Optimization Days.
Montréal, page 112, 1995.

N. Mladenovi¢ and P. Hansen. Variable neighborhood search. Computers and
Operation Research, 24:1097-1100, 1997.

D. A. Moffet and M. H. Hecht. De novo proteins from combinatorial libraries.
Chemical Reviews, 101(10):3191-3203, 2001.

G. L. Moore and C. D. Maranas. Identifying residue-residue clashes in protein
hybrids by using a second-order mean-field approach. Proceedings of the National
Academy of Sciences, 100(9):5091-5096, 2003.

T. Morita. Cluster variation method for non-uniform Ising and Heisenberg models
and spin-pair correlation function. Progress of Theoretical Physics, 85(2):243-255,
1991.

T. Morita. Formal structure of the cluster variation method. Progress of Theoretical
Physics Supplements, 115:27-39, 1994.

S. Muggleton. Inductive logic programming. In S. Muggleton, editor, Inductive
logic programming, pages 3—27. Academic Press, London, 1992.

H. Miihlenbein and R. Hoéns. The estimation of distributions and the minimum
relative entropy principle. Fvolutionary Computation, 13(1):1-27, 2005.

H. Miihlenbein and T. Mahnig. Evolutionary computation and beyond. In Y. Ue-
saka, P. Kanerva, and H. Asoh, editors, Foundations of Real-World Intelligence,
pages 123-188. CSLI Publications, Stanford, California, 2001.

H. Miihlenbein and T. Mahnig. Evolutionary synthesis of Bayesian networks for
optimization. In M. Patel, V. Honavar, and K. Balakrishnan, editors, Advances

191

Bibliography

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

167

[168]

in Evolutionary Synthesis of Intelligent Agents, pages 429-455. MIT Press, Cam-
bridge, Mass., 2001.

H. Miihlenbein and T. Mahnig. Evolutionary optimization and the estimation
of search distributions with applications to graph bipartitioning. International
Journal on Approzimate Reasoning, 31(3):157-192, 2002.

H. Miihlenbein, T. Mahnig, and A. Ochoa. Schemata, distributions and graphical
models in evolutionary optimization. Journal of Heuristics, 5(2):213-247, 1999.

H. Miihlenbein and G. Paaf. From recombination of genes to the estimation of
distributions 1. Binary parameters. In H.-M. Voigt, W. Ebeling, 1. Rechenberg,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN 1V,
pages 178-187, Berlin, 1996. Springer Verlag. LNCS 1141.

H. Miihlenbein and J. Zimmermann. Size of neighborhood more important than
temperature for stochastic local search. In Proceedings of the 2000 Congress on
Evolutionary Computation CEC-2000, pages 1017-1024. IEEE Press, 2000.

B. Naudts and L. Kallel. A comparison of predictive measures of problem diffi-

culty in evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
4(1):1-15, 2000.

D. Nilsson. An efficient algorithm for finding the M most probable configurations
in probabilistic expert systems. Statistics and Computing, 2:159-173, 1998.

M. Norman and P. Moscato. A competitive and cooperative approach to complex
combinatorial search. Technical Report Caltech Concurrent Computation Program,
Report. 790, California Institute of Technology, Pasadena, California, USA, 1989.

J. Ocenasek. Entropy-based convergence measurement in discrete estimation of
distribution algorithms. In J. A. Lozano, P. Larranaga, 1. Inza, and E. Bengoetxea,
editors, Towards a New FEvolutionary Computation: Advances on FEstimation of
Distribution Algorithms, pages 39-50. Springer-Verlag, 2006. In Press.

A. Ochoa, H. Miihlenbein, and M. Soto. Factorized Distribution Algorithms using
Bayesian networks bounded complexity. In Proceedings of the Genetic and Evolu-
tionary Computation Conference GECCO-2000, pages 212-215, 2000.

A. Ochoa, H. Miihlenbein, and M. R. Soto. A Factorized Distribution Algorithm
using single connected Bayesian networks. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solv-
ing from Nature - PPSN VI 6th International Conference, Paris, France, September
16-20 2000. Springer Verlag. LNCS 1917.

192

Bibliography

[169]

[170]

[171]

[172]

173

[174]

[175]

[176]

[177]

[178]

[179]

A. Ochoa and M. R. Soto. Linking entropy to estimation of distribution algorithms.
In J. A. Lozano, P. Larranaga, 1. Inza, and E. Bengoetxea, editors, Towards a New
Evolutionary Computation: Advances on Estimation of Distribution Algorithms,
pages 1-38. Springer-Verlag, 2006. In press.

K. G. Olesen and A. L. Madsen. Maximal prime subgraph decomposition of
Bayesian networks. IEEE Transactions on Systems, Man and Cybernetics: Part
B, 32(1):21-31, 2000.

J. N. Onuchic, H. Nymeyer, A. E. Garcia, J. Chahine, and N. D. Socci. The energy
landscape theory of protein folding: Insights into folding mechanisms and scenarios.

Advances in Protein Chemistry, 53:87-152, 2000.

J. N. Onuchic and P. G. Wolynes. Theory of protein folding. Current Opinion in
Structural Biology, 14:70-75, 2004.

P. Pakzad and V. Anantharam. FEstimation and marginalization using Kikuchi
based methods. Technical Report M04-21, Faculty of Electrical Engineering and
Computer Science. University of California Berkeley, 2003.

V. S. Pande, A. Y. Grosberg, T. Tanaka, and D. S. Rokhsar. Protein folding
pathways: Is a ‘new view’ needed? Current Opinion in Structural Biology, 8(1):68—
79, 1998.

R. V. Pappu, G. R. Marshall, and J. W. Ponder. A potential smoothing algorithm
accurately predicts transmembrane helix packing. Nature Structural Biology, 6:50—
55, 1999.

S. Park, H. Kono, W. Wang, E. T. Boder, and J. G. Saven. Progress in the
development and application of computational methods for probabilistic protein
design. Computers and Chemical Engineering, 29:407-421, 2005.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, California, 1988.

M. Pelikan. Hierarchical Bayesian Optimization Algorithm. Toward a New Gen-
eration of Evolutionary Algorithms. Studies in Fuzziness and Soft Computing.
Springer, 2005.

M. Pelikan, D. E. Goldberg, and E. Canti-Paz. BOA: The Bayesian optimization
algorithm. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-1999, volume I, pages 525-532, Orlando, FL,
1999. Morgan Kaufmann Publishers, San Francisco, CA.

193

Bibliography

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)

[190]

M. Pelikan and H. Miihlenbein. The bivariate marginal distribution algorithm. In
R. Roy, T. Furuhashi, and P. Chawdhry, editors, Advances in Soft Computing -
Engineering Design and Manufacturing, pages 521-535, London, 1999. Springer-
Verlag.

D. Pelta and N. Krasnogor. Multimeme algorithms using fuzzy logic based memes
for protein structure prediction. In W. H. William, N. Krasnogor, and J. E. Smith,
editors, Recent Advances in Memetic Algorithms, Studies in Fuzziness and Soft
Computing, pages 49-64. Springer, 2004.

N. A. Pierce and E. Winfree. Protein design is NP-hard. Protein Engineering,
15(10):779-782, 2002.

N. Pokala and T. M. Handel. Review: Protein design—where we were, where we
are, where we're going. Journal of Structural Biology, 134:269-281, 2001.

J. W. Ponder and F. M. Richard. Tertiary templates for proteins. Use of pack-
ing criteria in the enumeration of allowed sequence for different structure classes.

Journal of Molecular Biology, 193:775-791, 1987.

V. Robles, P. de Miguel, and P. Larranaga. Solving the traveling salesman problem
with EDAs. In P. Larrafiaga and J. A. Lozano, editors, Estimation of Distribution
Algorithms. A New Tool for Fvolutionary Computation, pages 227-238. Kluwer
Academic Publishers, Boston/Dordrecht/London, 2002.

V. Robles, J. M. Pefia, M. S. Pérez, and V. Herves. GA-EDA: A new hybrid
cooperative search evolutionary algorithm. In J. A. Lozano, P. Larranaga, 1. Inza,
and E. Bengoetxea, editors, Towards a New Evolutionary Computation. Advances
in Estimation of Distribution Algorithms, pages 187-220. Springer Verlag, 2006.

I. Rodriguez, J. M. Moreno, and J. A. Moreno. Variable neighborhood tabu search

and its application to the median cycle problem. Furopean Journal of Operations
Research, 151(2):365-378, 2003.

C. A. Rohl, C. E. M. Strauss, K. Misura, and D. Baker. Protein structure prediction
using Rosetta. Methods in Enzymology, 383:66-93, 2004.

R. Santana. A Markov network based factorized distribution algorithm for opti-
mization. In Proceedings of the 14th European Conference on Machine Learning
(ECML-PKDD 2003), volume 2837 of Lecture Notes in Artificial Intelligence, pages
337-348, Dubrovnik, Croatia, 2003. Springer-Verlag.

R. Santana. Estimation of distribution algorithms with Kikuchi approximations.
Evolutionary Computation, 13(1):67-97, 2005.

194

Bibliography

[191]

[192]

193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

R. Santana, E. P. de Leon, and A. Ochoa. The edge incident model. In Proceedings
of the Second Symposium on Artificial Intelligence (CIMAF-99), pages 352-359,
Habana, Cuba, March 1999.

R. Santana, P. Larraniaga, and J. A. Lozano. Protein folding in 2-dimensional
lattices with estimation of distribution algorithms. In Proceedings of the First
International Symposium on Biological and Medical Data Analysis, volume 3337
of Lecture Notes in Computer Science, pages 388-398, Barcelona, Spain, 2004.
Springer Verlag.

R. Santana, P. Larraniaga, and J. A. Lozano. Interactions and dependencies in
estimation of distribution algorithms. In Proceedings of the 2005 Congress on
Evolutionary Computation CEC-2005, pages 1418-1425, Edinburgh, U.K., 2005.
IEEE Press.

R. Santana, P. Larranaga, and J. A. Lozano. Combining variable neighborhood
search and estimation of distribution algorithms in the protein side chain placement
problem. 2006. Submitted for publication.

R. Santana and H. Miihlenbein. Blocked stochastic sampling versus Estimation
of Distribution Algorithms. In Proceedings of the 2002 Congress on Fvolutionary
Computation CEC-2002, volume 2, pages 1390-1395. IEEE press, 2002.

R. Santana, A. Ochoa, and M. R. Soto. The mixture of trees factorized distribution
algorithm. In L. Spector, E. Goodman, A. Wu, W. Langdon, H. Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke, editors, Proceedings of the
Genetic and FEvolutionary Computation Conference GECCO-2001, pages 543-550,
San Francisco, CA, 2001. Morgan Kaufmann Publishers.

K. Sastry, M. Pelikan, and D. Goldberg. FEfficiency enhancement of genetic al-
gorithms via building-block-wise fitness estimation. In Proceedings of the 2004
Congress on Fvolutionary Computation CEC-2004, pages 720-727, Portland, Ore-
gon, 2004. IEEE Press.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 7(2):461—
464, 1978,

H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
1981.

R. P. Sear. Highly specific protein-protein interactions, evolution and negative

design. Physical Biology, 1(3):166-172, 2004.

195

Bibliography

[201]

[202]

203]

[204]

[205]

[206]

207]

208]

[209]

[210]

[211]

S. Shakya, J. McCall, and D. Brown. Using a Markov network model in a uni-
variate EDA: An empirical cost-benefit analysis. In Proceedings of Genetic and
Evolutionary Computation Conference GECCO-2005, pages 727-734, Washington,
D.C., USA, 2005. ACM.

P. S. Shenkin, H. Farid, and J. S. Fetrow. Prediction and evaluation of side-chain
conformations for protein backbone structures. Proteins: Structure, Function, and
Genetics, 26(3):323-352, 1998.

A. Shmygelska, R. A. Herndndez, and H. H. Hoos. An ant colony optimization
algorithm for the 2D HP protein folding problem. In Proceedings of the Third
International Workshop on Ant Algorithms, pages 40-53. Springer Verlag, 2002.

A. Shmygelska and H. H. Hoos. An improved ant colony optimization algorithm for
the 2D HP protein folding problem. In Y. Xiang and B. Chaib-draa, editors, Ad-
vances in Artificial Intelligence, volume 2671 of Lecture Notes in Computer Science,
pages 400-417. Springer Verlag, 2003.

D. Shortle. Composites of local structure propensities: Evidence for local encoding
of long-range structure. Protein Science, 11(1):18-26, 2002.

J. Smith. The co-evolution of memetic algorithms for protein structure prediction.
In W. H. William, N. Krasnogor, and J. E. Smith, editors, Recent Advances in
Memetic Algorithms, Studies in Fuzziness and Soft Computing, pages 105-128.
Springer, 2004.

M. R. Soto. A Single Connected Factorized Distribution Algorithm and Its Cost
of Evaluation. PhD thesis, University of Havana, Havana, Cuba, July 2003. In
Spanish.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search, vol-
ume 81 of Lecture Notes in Statistics. Springer-Verlag, New York, 1993.

P. Spirtes and C. Meek. Learning Bayesian networks with discrete variables from
data. In Proceedings of the First International Conference on Knowledge Discovery
and Data Mining, pages 294-299, San Francisco, 1995. Morgan Kaufmann.

B. Steipe. Protein design concepts. In P. V. R. Schleyer, N. L. Allinger, T. Clark,
J. Gasteiger, P. A. Kollman, H. F. Schaefer 111, and P. R. Schreiner, editors, The
Encyclopedia of Computational Chemistry, pages 2168-2185. John Wiley & Sons,
Chichester, 1998.

F. H. Stillinger and T. A. Weber. Nonlinear optimization simplified by hypersurface
deformation. Journal of Statistical Physics, 52:1429-1445, 1988.

196

Bibliography

212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

M. Stone. Cross-validation choice and assessment of statistical procedures. Journal
Royal of Statistical Society, 36:111-147, 1974.

B. K. Sy. A recurrence local computation approach towards ordering composite
beliefs in Bayesian belief networks. International Journal Approximated Reasoning,
8:17-50, 1993.

R. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55:221-232,
1985.

S. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs measures. In
Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-2002), pages 493-500. Morgan Kaufmann Publishers, 2002.

Y. W. Teh and M. Welling. On improving the efficiency of the iterative propor-
tional fitting procedure. In Proceedings of the International Workshop on Artificial
Intelligence and Statistics, volume 9, 2003.

D. Tobi and R. Elber. Distance-dependent, pair potential for protein folding: Re-
sults from linear optimization. Proteins, 41(1):40-46, 2000.

A. E. Torda. Protein sequence optimisation - theory, practice and fundamental
impossibility. Soft Materials, 2:1-10, 2004.

M. Toussaint. Factorial representations to generate arbitrary search distributions.
In Genetic and Evolutionary Computation Conference GECCO-2005, Workshop
Program, pages 339-345, Washington, D.C., USA, 2005. ACM Press.

P. Tuffery, C. Etchebest, S. Hazout, and R. Lavery. A new approach to the rapid
determination of protein side chain conformations. Journal of Biomolecular Struc-
ture Dynamics, 8:1267-1289, 1991.

R. Unger and J. Moult. Genetic algorithms for protein folding simulations. Journal
of Molecular Biology, 231:75-81, 1993.

M. Vasquez. Modeling side-chain conformation. Current Opinion in Structural
Biology, 6(2):217-221, 1996.

C. Venclovas, A. Zemla, K. Fidelis, and J. Moult. Comparison of performance in
successive casp experiments. Proteins: Structure, Function, and Genetics, 5:163—
170, 2001.

C. A. Voigt, D. B. Gordon, and S. L. Mayo. Trading accuracy for speed: A
quantitative comparison of search algorithms in protein sequence design. Journal

of Molecular Biology, 299(3):799-803, 2000.

197

Bibliography

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

237]

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-based reparameterization
framework for analysis of belief propagation and related algorithms. Technical
Report LIDS P-2510, Laboratory for Information and Decision Systems, MIT, 2001.

M. J. Wainwright and M. 1. Jordan. Graphical models, exponential families, and
variational inference. Technical Report 649, Department of Statistics, University
of California, Berkeley, September 2003.

D. J. Wales and H. A. Scheraga. Global optimization of clusters, crystals, and
biomolecules. Science, 285(5432):1368 — 1372, 1999.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal
of Computational Biology, 1(4):337-348, 1994.

A. L. Watters and D. Baker. Searching for folded proteins in vitro and in silico.
European Journal of Biochemistry, 271(9):1615-1622, 2004.

Y. Wei, T. Liu, S. L. Sazinsky, D. A. Moffet, I. Pelczer, and M. H. Hecht. Stably
folded de novo proteins from a designed combinatorial library. Protein Science,
12:92-102, 2003.

S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case. An all atom force field
for simulations of proteins and nucleic acids. Journal of Computational Chemistry,
7:230-252, 1986.

M. Welling. On the choice of regions for generalized belief propagation. In Proceed-
ings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI-2004),
pages 585-592, Banff, Canada, 2004. Morgan Kaufmann Publishers.

L. Wernisch, S. Hery, and S. Wodak. Automatic protein design with all atom
force-fields by exact and heuristic optimization. Journal of Molecular Biology,
301(3):713-736, 2000.

J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley Series in
Probability and Mathematical Statistics, New York, 1991.

D. H. Wolpert and W. G. Macready. No free lunch theorem for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67-82, April 1997.

Y. Xiang, S. K. M. Wong, and N. Cercone. A microscopic study of minimum
entropy search in learning decomposable Markov networks. Machine Learning,
26(1):65-92, 1997.

E. P. Xing and M. 1. Jordan. Graph partition strategies for generalized mean field
inference. Technical Report CSD-03-1274, Division of Computer Science, University
of California, Berkeley, 2003.

198

Bibliography

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

E. P. Xing, M. 1. Jordan, and S. Russell. Graph partition strategies for generalized
mean field inference. In Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence (UAI-2004), pages 602—610, Banff, Canada, 2004. Morgan
Kaufmann Publishers.

J.-M. Yang, C.-H. Tsai, M.-J. Hwang, H.-K. Tsai, J.-K. Hwang, and C.-Y. Kao.
GEM: A Gaussian evolutionary method for predicting protein side-chain confor-
mations. Protein Science, 11:1897-1907, 2002.

C. Yanover and Y. Weiss. Approximate inference and protein-folding. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 1457-1464. MIT Press, Cambridge, MA, 2003.

C. Yanover and Y. Weiss. Approximate inference for side-chain prediction. Sub-
mitted for publication, 2004.

C. Yanover and Y. Weiss. Finding the M most probable configurations using loopy
belief propagation. In S. Thrun, L. Saul, and B. Schélkopf, editors, Advances in
Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation
and its generalizations. Technical Report TR-2001-22, Mitsubishi Electric Research
Laboratories, November 2001.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approxima-
tions and generalized belief propagation algorithms. Technical Report TR-2002-35,
Mitsubishi Electric Research Laboratories, August 2002.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approxima-
tions and generalized belief propagation algorithms. Technical Report TR-2004-
040, Mitsubishi Electric Research Laboratories, May 2004.

A. Yuille. A double-loop algorithm to minimize the Bethe and Kikuchi free energies.
Neural Computation, 14(6):1691-1722, 2001.

C. Zhang, S. Liu, H. Zhou, and Y. Zhou. An accurate, residue-level, pair potential of
mean force for folding and binding based on the distance-scaled, ideal-gas reference
state. Protein Science, 13(2):400-411, 2004.

J. Zhang, R. Chen, and J. Liang. Empirical potential function for simplified protein
models: Combining contact and local sequence-structure descriptors. Protein, 2006.
In press.

Q. Zhang. On stability of fixed points of limit models of univariate marginal dis-
tribution algorithm and factorized distribution algorithm. IEEE Transactions on
Evolutionary Computation, 8(1):80-93, 2004.

199

Bibliography

250

[251]

[252]

[253]

[254]

Y. Zhang, D. Kihara, and J. Skolnick. Local energy landscape flattening: Parallel
hyperbolic Monte Carlo sampling of protein folding. Proteins: Structure, Function,
and Genetics, 48:192-201, 2002.

A. Zhou, Q. Zhang, Y. Jin, and E. P. K. Tsang. A model-based evolutionary
algorithm for bi-objective optimization. In Proceedings of the 2005 Congress on
Evolutionary Computation CEC-2005, pages 2568-2575, Edinburgh, U.K., 2005.
IEEE Press.

J. Zhu, Q. Zhu, Y. Shi, and H. Liu. How well can we predict native contacts
in proteins based on decoy structures and their energies? Proteins: Structure,

Function, and Genetics, 52(4):598-608, 2003.

J. Zou and J. G. Saven. Using self-consistent fields to bias Monte Carlo methods
with applications to designing and sampling protein sequences. The Journal of

Chemical Physics, 118(8):3843-3854, 2003.

M. Zviling, H. Leonov, and 1. T. Arkin. Genetic algorithm-based optimization of
hydrophobicity tables. Bioinformatics, 21(6):2651 — 2656, 2005.

200

https://www.researchgate.net/publication/45221165

