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por enseñarme el camino y recorrerlo conmigo





Acknowledgements

These last years have been an incredible journey in which many people and entities have

helped me in many different ways. I hope that these lines will serve to recognise all of them.

My supervisors, Concha Bielza and Pedro Larrañaga, for their orientation and wisdom, as
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Abstract

One of the greatest challenges facing science today is to disentangle the functioning of the

brain, with the simulation of the neuronal circuits of the human brain at different scales being

an area of study that has awakened many expectations and interests. Given the incredible

complexity of this goal, computer-assisted mathematical models are a fundamental tool for

reasoning, making predictions and suggesting new hypotheses about the functioning and

organization of neurons. In this thesis we focus on the study of the morphology of dendritic

spines and somas of human pyramidal neurons from the point of view of the computational

neuroanatomy.

Dendritic spines are small membranous protrusions located on the surface of the dendrites,

which are in charge of receiving excitatory synapses. Their morphology has been associated

with cognitive functions such as learning or memory, and it is not surprising that a wide

variety of mental illnesses have been related with alterations in their morphology or density.

It is therefore interesting to identify the types of dendritic spines. Kaiserman-Abramof’s

categorisation, which proposes four groups of dendritic spines, is the most accepted although

it is discussed whether the diversity of morphologies reflects more a continuum than the

existence of particular groups. For their part, somas contain the nucleus of the neuron and

are responsible for generating neurotransmitters, the basic elements of synapses and therefore

of brain activity. Their morphology has been identified as one of the fundamental properties

for distinguishing between types of neurons.

For the development of this dissertation we used individual 3D reconstructions of den-

dritic spines and somas. The application of a novel feature extraction technique allowed

us to univocally characterise the geometry of these 3D bodies according to several magni-

tudes and directions. Through cluster analysis, we automatically and objectively separated

the observations into homogeneous categories. Specifically, we applied model-based clus-

tering, a probabilistic approach that assumes that the data were generated by a statistical

mixture model and whose goal is to fit it from the observed data. According to this frame-

work, each cluster is represented by a multidimensional probability distribution. In this case,

learning these models according to classical statistics presents serious problems due to their

inability to handle the periodicity of directional data. Some distributions focused on mod-

eling directional-linear data has been proposed on the directional statistics literature, but

all of them exhibit important limitations for performing model-based clustering. Most of

the directional-linear distributions are based on copulas to construct bivariate distributions,

which present complicated theoretical results, making them difficult to extend to higher di-

mensions. Additionally, they require from optimisation algorithms for the estimation of the

parameters, that can be prohibitive during the clustering process from a computational per-

spective. Multivariate directional-linear data clustering is even more challenging and it is

almost limited to models that assume independence among directional and linear variables,

severely reducing the expressiveness of the model and introducing an unnecessary number of

clusters.

Probabilistic graphical models, and more specifically Bayesian networks, are diagram-



matic representations of probability distributions that can be used to design generative mod-

els or understand the underlying relationships between random variables. In addition, they

are a very useful tool for probabilistic reasoning in the presence of incomplete information.

Interactions among several variables may be a consequence of a hidden variable, i.e., a variable

that could not be measure or observed. Therefore, BNs provides a framework for discover-

ing hidden variables and performing model-based clustering. In this thesis we exploit the

properties of Bayesian networks to introduce for the first time the Extended Mardia-Sutton

mixture model. To achieve this, we derive a new multivariate density function that cap-

tures directional-linear correlations and whose parameters can be calculated according to

closed-form expressions, relaxing the limitations of previous probability distributions.

In order to understand and interpret the groups resulting from applying model-based

clustering, we identify the most representative features of each cluster using hypothesis tests

and rules generated by a rule induction algorithm. Finally, from the combination of the

generative models implemented in this study and the univocal definition of the morphology of

the neuronal components, we create a methodology for the simulation of 3D virtual somas and

dendritic spines. To the best of our knowledge, this is the first attempt to fully characterise,

model and simulate 3D dendritic spines and somas.



Resumen

Uno de los mayores desaf́ıos a los que se enfrenta la ciencia actual es el de desentrañar

el funcionamiento del cerebro, siendo la simulación de los circuitos neuronales del cerebro

humano a diferentes escalas un área de estudio que ha despertado muchas expectativas e

interés. Dada la incréıble complejidad de este objetivo, los modelos matemáticos asistidos

por ordenador son una herramienta imprescindible para poder razonar, hacer predicciones y

sugerir nuevas hipótesis acerca del funcionamiento y organización de las neuronas. En esta

tesis nos centramos en el estudio de la morfoloǵıa de las espinas dendŕıticas y de somas de

neuronas piramidales humanas desde el punto de vista de la neuroanatomı́a computacional.

Las espinas dendŕıticas son pequeñas protusiones membranosas situadas en la superficie de

las dendritas, siendo las encargadas de recibir las sinapsis excitatorias. Su morfoloǵıa ha sido

asociada con funciones cognitivas tales como el aprendizaje o la memoria, y no es de extrañar

que una gran variedad de enfermedades mentales se hayan relacionado con alteraciones en

su morfoloǵıa o densidad. Por ello resulta de interés identificar las clases de espinas. La

categorización más aceptada es la de Kaiserman-Abramof que propone cuatro grupos de

espinas, aunque se discute si la diversidad de morfoloǵıas refleja más un continuo que la

existencia de grupos concretos. Por su parte, los somas contienen el núcleo de la neurona

y son los encargados de generar los neurotransmisores, elementos básicos de las sinapsis y

por lo tanto de la actividad cerebral. Su morfoloǵıa ha sido identificada como una de las

propiedades fundamentales para distinguir entre tipos de neuronas.

Para el desarrollo de esta disertación utilizamos reconstrucciones individuales 3D de es-

pinas dendrt́icas y somas. La aplicación de una novedosa técnica de extracción de atributos

nos permite caracterizar uńıvocamente la geometŕıa de estos cuerpos 3D de acuerdo a varias

magnitudes y direcciones. Mediante un análisis separamos de manera automática y objetiva

las observaciones en categoŕıas homogéneas. Concretamente, aplicamos el clustering basado

en modelos, un enfoque probabiĺıstico que asume que los datos fueron generados por un mod-

elo estad́ıstico de mixturas y cuyo objetivo es ajustar dicho modelo a partir de los datos

observados. En este marco de trabajo cada grupo se representa con una distribución de

probabilidad multidimensional. En el caso que nos ocupa, el aprendizaje de estos modelos de

acuerdo a la estad́ıstica clásica presenta serios problemas debido a su incapacidad para mane-

jar la periodicidad de los datos direccionales. En la literatura sobre estad́ıstica direccional

se han propuesto algunas distribuciones enfocadas a modelar los datos direccionales-lineales,

pero todas ellas exhiben importantes limitaciones para llevar a cabo clustering basado en

modelos. La mayoŕıa de las distribuciones direccionales-lineales se basan en cópulas para

construir distribuciones bivariantes. Las distribuciones basadas en cópulas presentan resulta-

dos teóricos complejos, lo que dificulta extenderlas a más dimensiones. Además, la estimación

de parámetros de estas distribuciones requiere de algoritmos de optimización, cuya inclusión

al proceso de clustering puede ser prohibitivamente costosa desde una perspectiva computa-

cional. El clustering de datos multivariantes direccionales-lineales es aún más desafiante y

prácticamente se limita a modelos que asumen independencia entre variables direccionales y

lineales, lo que reduce gravemente la expresividad del modelo e introduce un número innece-



sario de grupos.

Los modelos gráficos probabiĺısticos, y más concretamente las redes bayesianas, son repre-

sentaciones gráficas de distribuciones de probabilidad que pueden ser utilizadas para diseñar

modelos generativos o comprender las relaciones entre variables aleatorias. Además, son una

herramienta muy útil para realizar razonamiento probabiĺıstico en presencia de información

incompleta. Las interacciones entre multitud de variables puede ser una consecuencia de una

variable oculta, esto es, una variable que no puede ser medida ni observada. Por lo tanto,

las redes bayesianas proporcionan un marco de trabajo para descubrir las variables ocultas

y llevar a cabo clustering basado en modelos. En esta tesis explotamos las propiedades de

las redes bayesianas para definir por vez primera el modelo de mixtura de Mardia-Sutton

Extendido. Para ello, derivamos una nueva función de densidad multivariante que captura

las correlaciones direccionales-lineales y cuyos parámetros se pueden calcular de acuerdo a

expresiones cerradas relajando las limitaciones de distribuciones de probabilidad previas.

Con el fin de comprender e interpretar los grupos resultantes de aplicar el clustering

basado en modelos, identificamos los atributos más representativos de cada grupo utilizando

test de hipótesis y reglas generadas mediante un algoritmo de inducción de reglas. Finalmente,

a partir de la combinación de los modelos generativos implementados en este estudio y de la

definición uńıvoca de la morfoloǵıa de los componentes neuronales, creamos una metodoloǵıa

para la simulación de somas y espinas dendŕıticas virtuales tridimensionales. A nuestro saber,

este es el primer intento de caracterizar por completo, modelar y simular espinas dendŕıticas

y somas 3D.
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Chapter 1
Introduction

The modern scientific investigation of the structure and mechanisms ruling the functionality

of the nervous system spans more than a century ago when Golgi invented the Golgi’s method

to stain nervous tissue and Ramón y Cajal proposed the neuron doctrine [Ramón y Cajal,

1904]. These findings provided the ground for a series of fundamental discoveries about

synaptic transmission, passive and active electric conductance, neurotrophic factors, etc.,

that have shaped the neuroscience as a highly interdisciplinary field [Ascoli, 2002] giving rise

to ambitious projects as the Cajal Blue Brain Project1, Human Brain Project2 or the BRAIN

initiative3. Their goal is to unravel the inner workings of the human mind and, in this way,

be able to deepen the study of numerous neurological and pathological diseases.

Computational neuroscience emerges as a consequence of the incredible complexity of the

brain to construct compact representations of neurobiological processes through computer-

assisted models, and to simulate the structure of the nervous system to different scales. This

research field provides the tools to address the question of how nervous systems operate on

the basis of known anatomy, physiology and circuitry [Dayan and Abbott, 2001]. In this

thesis we focus on computational neuroanatomy, that consists of the study of the shape and

structure of the nervous system, to characterise quantitatively the 3D morphology of the

neuronal soma and the dendritic spines of pyramidal neurons.

The pyramidal neurons, which receive that name because of the shape of their soma, were

discovered by Ramón y Cajal. They are the most abundant neurons in the cerebral cortex

and have been related to advanced cognitive functions. The soma is the component of the

neuron where its cell nucleus is placed. It is one of the fundamental components of the cell

for discriminating between different types of neurons [Svoboda, 2011]. The dendritic spines

are small membranous protrusions placed on the surface of some neuronal dendrites that are

the targets of most excitatory synapses in the cerebral cortex [Nimchinsky et al., 2002]. They

have captured the attention of neuroscientists since their morphology has been associated with

brain funcionality and disturbances as schizophrenia, dementia or mental retardation [Jacobs

1http://cajalbbp.cesvima.upm.es/
2https://www.humanbrainproject.eu/en/
3https://www.braininitiative.nih.gov/
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et al., 1997]. Therefore the automatic characterisation, clustering and simulation of somas

and dendritic spines according to their morphology is of attracting interest in neuroscience

to reason and suggest new hypotheses about their functions.

Defining neuronal components through 3D morphological attributes is the first step for

an effective association between their shape and their functionality, the categorisation of a

neuron or to obtain accurate and complete simulations of neurons. Morphometric analysis

has been widely applied in neuroscience to quantitatively describe dendrite arborizations [As-

coli and Krichmar, 2000; Ascoli et al., 2001; López-Cruz et al., 2011], somas [Alavi et al.,

2009; Meijering, 2010] or dendritic spines [Basu et al., 2018; Rodriguez et al., 2008]. Fre-

quently, the morphological characterisation of neurons requires the measure of directions and

magnitudes [Leguey et al., 2016; López-Cruz et al., 2011]. After collecting these data an

exploratory analysis is usually performed to reveal patterns. A popular statistical tool to

accomplish this task is cluster analysis, i.e., data division into homogeneous groups describ-

ing their main characteristics. A probabilistic approach is model-based clustering [Fraley and

Raftery, 2002; McLachlan and Basford, 1988; Melnykov and Maitra, 2010] which assumes that

the data are generated by an underlying mixture of probability distributions. Finite mix-

ture models [McLachlan and Peel, 2000] provide a formal setting for model-based clustering

where each cluster is represented by a distribution. The most well-known method for prob-

abilistic clustering is the Gaussian mixture model [Titterington et al., 1985] which is widely

applied because of its computational tractability and its suitability to approximate any linear

multivariate density (variables defined on the domain (−∞,∞)) given enough components.

However, Gaussian mixture models are not able of handling periodicity of directional data

and consequently, they generally underperform in these datasets [Roy et al., 2016].

Directional statistics is the subdiscipline of statistics that deals with angles and rota-

tions representing observations as n-dimensional unit vectors [Jammalamadaka and Sengupta,

2001; Ley and Verdebout, 2017; Mardia and Jupp, 1999]. The study of a plethora of phenom-

ena requires the measure of directions and magnitudes as for example the wind speed and

direction in meteorology [Carta et al., 2008; Leguey, 2018], the acrophases for human natal-

ity in rhythmometry, medicine and demography [Batschelet et al., 1973; Batschelet, 1981],

or the hue and chroma in image recognition [Roy et al., 2016, 2017]. Mixtures of circular

[Jammalamadaka and Sengupta, 2001; Mardia and Jupp, 1999], spherical [Banerjee et al.,

2005] and toroidal [Mardia et al., 2008] probability distributions have been successfully ap-

plied in problems such as text categorisation, gene expression analysis and characterisation of

the structure of proteins improving models based on linear distributions. Nevertheless, clus-

tering of joint directional-linear data with parametric models is challenging because of the

lack of efficient density estimation methods and identifiability problems [Mastrantonio et al.,

2015]. These difficulties motivate that the literature about clustering directional-linear data

is limited to bivariate probability density functions or models that impose strong conditional

independence assumptions between the random variables involved.

Bayesian networks (BNs) [Koller and Friedman, 2009; Pearl, 1988] are probabilistic graph-

ical models that provide a compact and self-explanatory representation of multidimensional
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probability distributions. A BN comprises two components. The first component is the

structure, a directed acyclic graph that encodes conditional independences among triplets of

variables in the network. The second component is the set of parameters, i.e., the conditional

probability distributions of each variable given its parents in the graph. BNs are generative

models that effectively handle uncertainty and incomplete data [Peña et al., 1999; Pham and

Ruz, 2009]. The expectation-maximization (EM) algorithm [Dempster et al., 1977; McLach-

lan and Krishnan, 2008] is the most widely used algorithm for learning a model in the presence

of missing values. Friedman’s structural EM (SEM) algorithm [Friedman, 1997] extends the

EM algorithm to simultaneously learn the structure and parameters of a BN from incomplete

data. This method has been succesfully applied in semi-supervised classification [Hernández-

González et al., 2013; Wang et al., 2014] and clustering [Peña et al., 2000] problems. Given

the suitability of BNs to explicitly encode the conditional independence constraints between

variables through its structure, BNs has been applied in the context of classifying directional

[López-Cruz et al., 2013] and directional-linear data [Leguey et al., 2016].

In this dissertation we pursue the study of the morphology of the soma and dendritic spines

from the point of view of computational neuroscience. To characterise the geometries of these

neuronal components we used individual 3D reconstructions of somas and dendritic spines

from human cortical pyramidal neurons. We propose a morphometric analysis procedure

based on 3D mesh processing and machine learning techniques to unambiguously capture the

shape of these components through a set of features describing their geometry. As result

we obtain magnitudes and directions. To deal with this data, we introduce mixture models

represented as BNs whose mixture components are directional-linear probability distributions.

The proposed mixture models allow us to perform model-based clustering with the aim of

uncover groups of somas and groups of dendritic spines based on their morphology and

analyse the differences between the groups. To better understand the differences between

the clusters, each soma and dendritic spine was crisply assigned to its most probable cluster.

Then, a rule-based classifying algorithm was applied to learn the discriminative characteristics

of each group. Furthermore, the resulting models allow to simulate 3D virtual representations

of somas and dendritic spines that match the morphological definitions of each cluster.

Chapter outline

The main hypothesis and objectives of this thesis are introduced in Section 1.1. In Section

1.2 we summarize and briefly describe the organization of the manuscript.

1.1 Hypotheses and objectives

The research hypotheses of this dissertation can be stated as the following two main points:

� The BNs in combination with the SEM algorithm can be applied to perform model-

based clustering on directional-linear data according to closed-form equations. The

resulting model can capture directional-linear interactions.
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� The combination of an unambiguous characterisation of the morphology of neuronal

components with the generative models learned during the clustering process can be

used to simulate accurate 3D representations of somas and dendritic spines.

Based on these hypotheses, the main objectives of this dissertation are:

� To exploit BNs encoding of conditional independences for developing a multivariate

directional-linear joint probability distribution.

� To derive the closed-form expressions for the above multivariate probability distribution

in the context of the SEM algorithm.

� To define a methodology for objectively discovering and establishing groups of 3D neu-

ronal components based on their morphology, and for simulating realistic virtual repre-

sentation of somas and dendritic spines. This goal can be decomposed into the following

subgoals:

– To pre-process the 3D reconstructions of the neuronal components with the aim

of repairing artifacts introduced in their surface during the data acquisition and

unambiguously describe their geometry according to a set of features.

– To cluster the neuronal components and to identify the most prominent charac-

teristics of each group.

– To simulate virtual 3D neuronal components.

� To implement a software solution for the above methods and techniques.

1.2 Document organization

The manuscript includes six parts and eight chapters, organised as follows:

Part I. Introduction

This part introduces this dissertation.

- Chapter 1 summarises the hypotheses and objectives as well as the manuscript organi-

sation.

Part II. Background

This part consists of three chapters that introduce the basic and theoretical concepts applied

throughout this thesis. We discuss the literature of each topic within its corresponding

chapter.

- Chapter 2 introduces probabilistic graphical models as a compact framework for statis-

tical modelling under uncertainty, focusing on BNs and their properties. In this chapter



1.2. DOCUMENT ORGANIZATION 7

we examine different BN parameterisations that depend on the domain of the dataset

and we describe algorithms for performing inference and learning. We also address

model-based clustering by presenting the SEM algorithm.

- Chapter 3 presents the most widely used univariate distributions of directional statistics

paying special attention to the von Mises distribution. We discuss the extension of

these distributions to the multivariate case (in the sphere, torus and cylinder) and their

representations as probabilistic graphical models. Finally, we summarise the different

approaches proposed in the literature for model-based clustering of directional-linear

data.

- Chapter 4 provides a brief introduction to neuroscience focused primarily on pyramidal

neurons and some of their components, i.e., neuronal soma, dendrites, and dendritic

spines. Additionally, we present computational neuroanatomy examining its scope and

the research based on the simulation of neuronal components and BNs applied to neu-

roscience.

Part III. Contributions to directional statistics and data clustering

This part includes one chapter that presents our proposal in directional-linear data clustering

with BNs.

- Chapter 5 shows three finite mixture models for clustering multivariate directional and

directional-linear data where the predictor variables are assumed to follow the von

Mises (for directional data) and the Gaussian (for linear data) distributions. These are

the näıve Bayes von Mises, the hybrid Gaussian-von Mises and the Extended Mardia-

Sutton mixture models. We derive the closed-form expressions for these distributions

and for the SEM algorithm of the three models. Additionally, we provide the closed-

form equations for the Kullback-Leibler divergence and the Bhattacharyya distance to

evaluate the quality of the clusters. Experiments evaluating the performance of the

models are included.

Part IV. Contributions to neuroscience

This part includes two chapters that present our proposals in neuroscience related to dendritic

spines and neuronal somas.

- Chapter 6 deals with the pre-processing, clustering and simulation of the 3D reconstruc-

tions of dendritic spines from human pyramidal cells. Here, we design techniques to

repair the surface of the 3D dendritic spine representations and extract a set of features

that unambiguously represent the morphology of the spine according to their multires-

olutional Reeb graph representation. We use over 7,000 dendritic spine reconstructions

to perform model-based clustering according to a Gaussian mixture model and we anal-

yse the resulting groups in terms of their distributions by dendritic compartment, age,
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distance from soma and we also find their most discriminative characteristics relying

on the rules generated by a rule induction algorithm. Then, we repeat the experiment

applying the hybrid Gaussian-von Mises and analyse the clusters discovered by this

model. From the resulting Gaussian mixture model we define a method to simulate 3D

virtual dendritic spines from each group.

- Chapter 7 presents an automatic reparation and segmentation method to delimit the

morphology of the neuronal soma. We validated the goodness of this automatic segmen-

tation method against manual segmentation by neuroanatomists to set up a framework

for comparison. From the set of segmented somas we characterise the morphology of

39 3D reconstructed human pyramidal somas in terms of their multiresolutional Reeb

graph representation, from which we extract a set of directional and linear variables

to perform model-based clustering. We deal with this dataset using the Extended

Mardia-Sutton mixture model. We perform Weltch t-tests, Watson-Williams tests, and

rule-based algorithms to characterise each group by its most prominent features. Fur-

thermore, the resulting model allows us to simulate 3D virtual representations of somas

from each cluster.

Part V. Conclusions and future work

This part concludes the dissertation.

- Chapter 8 summarises the contributions of this thesis and discusses future research

lines. Furthermore, we include the list of publications and software tools developed as

result of this research.

Part VI. Appendices

This part provides supplementary information about the research.

- Appendix A includes the rules generated by the RIPPER algorithm to characterise the

cluster of dendritic spines.

- Appendix B presents the derivations for the Kullback-Leibler and the Bhattacharyya

distance between two von Mises distributions, as well as the Kullback-Leibler divergence

between two Extended Mardia-Sutton distributions.
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Chapter 2
Model-based clustering with

Bayesian networks

2.1 Introduction

Uncertainty is an inherent property of most real-world problems. It is a consequence of diverse

factors as for example partial or incomplete information about a system or errors introduced

by measuring instruments. Probability theory provides a well-established foundation for

managing uncertainty and provides the mechanisms to reason and reach conclusions from

the available information [Sucar, 2015]. We could then describe and formulate uncertainty

through probabilistic models. We find that probabilistic graphical models [Castillo et al.,

1996; Koller and Friedman, 2009; Wainwright and Jordan, 2008] provide some advantages

over other probabilistic models as they are a diagrammatic representation of the probability

distributions that can be applied to design the models or to achieve a deeper understanding of

the relation among random variables. This acquires special relevance when it comes to analyse

complex systems that involve multiple interdependences between their components, as the

brain [Rubinov and Sporns, 2010]. In neuroscience it is crucial to identify and comprehend

these relations to uncover functional associations. Interactions among several variables may

be consequence of a hidden variable, i.e., a variable that could not be measured or observed

[Elidan et al., 2001]. Model based clustering [Fraley and Raftery, 2002; McLachlan and

Basford, 1988; Melnykov and Maitra, 2010] and its formalisation, the finite mixture model

[McLachlan and Peel, 2000], provides a framework for discovering hidden variables from a

given set of data points to obtain categories of points that share similar statistical properties.

In this dissertation we apply probabilistic graphical models and more concretely BNs

[Koller and Friedman, 2009; Koski and Noble, 2009; Neapolitan, 2004; Pearl, 1988] to perform

model-based clustering as they are suitable tools to capture the dependencies among variables

while it learns the underlying probability distribution.

11
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Chapter outline

Section 2.2 introduces probabilistic graphical models as a compact framework for proba-

bilistic modeling. Section 2.3 defines some useful notation and terminology. Section 2.4

discusses BNs in detail presenting inference, structure learning algorithms and several pa-

rameterisations. Probabilistic clustering through model-based clustering and the structural

expectation-maximisation algorithm are explained in Section 2.5.

2.2 Probabilistic graphical models

In the presence of uncertainty, the study of most complex systems requires to reason proba-

bilistically about their possible states. Given a set of random variables describing the system

the joint probability distribution (j.p.d.) represents all the possible states of the system and

assigns a probability to each of them [Dechter, 2013]. In the era of big data the number of

variables involved in the description of the system could be of thousands or even millions.

As the number of combinations grow exponentially with the number of variables, storing the

j.p.d. in the computer memory is not longer feasible even for a small number of variables.

Another limitation is that learning the j.p.d. may require huge amount of data to estimate

the probabilities robustly.

Probabilistic graphical models are a graph-based representation that provides a compact

and unifying framework for capturing conditional dependencies among random variables and

constructing multivariate probabilistic models. The graph or structure of a graphical model

consists of a set of nodes representing the random variables and a set of edges that corresponds

to probabilistic relations between those variables. The j.p.d. factorises according to the

structure as a product of factors, preventing the combinatorial blow up by exploiting the

independence properties of the distribution to reduce the dimension of the factors.

There are two main families of probabilistic graphical models. (i) Markov networks [Kin-

dermann and Snell, 1980; Rue and Held, 2005], also known as Markov random fields, are

undirected graphical models that have been successfully applied to image analysis and spa-

tial statistics [Cressie and Wikle, 2015; Li, 2009] and (ii) BNs that are the directed counter-

part. We focus on the latter because they provide a natural representation for many types

of real-world domains [Koller and Friedman, 2009].

2.3 Notation and terminology

We start introducing some basic terminology and notation that will be of common use along

the document:

� Variables names, such as X,Y, Z, are denoted by capital letters and their specific values

with lowercase letters x, y, z. Sets of variables are denoted by boldface capital letters

X,Y,Z and their instantiations are denoted by boldface lowercase letters x,y, z.



2.4. BAYESIAN NETWORKS 13

� We denote the dataset as D = {x1, ...,xN} where N is the number of instances and

xi = (xi1, x
i
2, ..., x

i
L),∀i = 1, ..., N where L is the number of variables.

� The graph G = (V, E) is the structure of the BN. It consists of two components: the col-

lection of vertices or nodes V that corresponds to a given set of linear random variables

X = {X1, X2, ..., XL}, and the collection of arcs or edges E ⊂ V × V.

� We denote the parameters of the model as θ.

� The log-likelihood function of a BN B for a given dataset D is represented as `(B|D).

� Each arc in E consists of a pair of ordered nodes Xl → Xl+1 that indicates a direction.

For an arc Xl → Xl+1, we denote Xl+1 as the child of Xl, or conversely, Xl is the parent

of Xl+1. We use ChGXl and PaGXl = {U1l, U2l, ..., UT l} to denote the set of children and

parent nodes for node Xl in G respectively, where each variable Utl is one of the parents

of Xl and T is the number of parents of Xl. The set of parents of a set of variables is

defined as PaGX = {PaGX1
,PaGX2

, ...,PaGXL}. Additionally, we say that Xl is an ancestor

of Xl+1 and Xl+1 is a descendant of Xl if there is a sequence of arcs Xl → · · · → Xl+1.

� For a given structure G, the Markov blanket of a node Xl in G is the set of nodes

composed of PaGXl , ChGXl and PaG
ChGXl

.

� A directed acyclic graph is a graph where there are not direct cycles. A directed cycle

is a sequence of arcs X1 → X2 → · · · → Xl → Xl+1 ∈ E such that X1 = Xl+1.

� An ordering of the nodes X1, ..., XL is a topological ordering for G if, whenever we have

Xl → Xl+1 ∈ E , then l < l + 1. As a result, all the nodes are ordered such that the

parents come before their children.

2.4 Bayesian networks

A BN [Koller and Friedman, 2009; Koski and Noble, 2009; Murphy, 2012; Neapolitan, 2004;

Pearl, 1988] B is a directed acyclic graph that represents the probabilistic relationships among

a given set of random variables X. A BN consists of a pair of components B = (G,θ), where

G is the structure, and θ are the parameters of the model. Structure G encodes conditional

independences among triplets of variables in the network. The set of parameters θ comprises

the conditional probability distribution of each variable given its parents in G. The BNs

satisfy the local Markov property, i.e., each variable is independent of its non-descendants

given its parents in the graph. Hence, the j.p.d. factorises as

p(X;θ) =
L∏
l=1

p(Xl|PaGXl ;θ). (2.1)

As discussed in Section 2.2, this is a compact representation of the j.p.d., reducing the

dimensionality of the factors and consequently the amount of parameters to be estimated.
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Figure 2.1: Structure of a näıve Bayes model GNB. Given the class variable C, the set of
predictor variables X are conditionally independent of each other given variable C by the
local Markov property (Equation (2.1)) as PaGNBX = {C}

Also, in the presence of complete data, we can exploit the independences encoded by the BN

to factorise the log-likelihood function

`(B|D) =
N∑
i=1

log p(xi|θ) =
N∑
i=1

L∑
l=1

log p(xil|PaGXl ,θ), (2.2)

as a sum of individual terms where each term depends only on the choice of parameters for

a particular variable.

As an illustration of the factorisation we take the näıve Bayes model (NB) [Duda et al.,

2001; Murphy, 2012] which is the simplest BN structure and one of the most extended models

for supervised classification. For the sake of simplicity, we consider that all the variables in

the model are discrete and binary. The main assumption of NB is that all the features are

conditionally independent given the class variable C. Hence, given a set of predictor variables

X, the structure of a NB model, denoted as GNB, fulfils that ChGNBC = X and PaGNBX = {C}
(see Figure 2.1). The factorisation of the j.p.d. according to GNB is

p(C,X;θ) = p(C)

L∏
l=1

p(Xl|C;θ). (2.3)

Although independence among the predictor variables is a strong assumption, we know

that the NB model provides a notorious computational advantage over the general j.p.d.

representation as it reduces the number of parameters from O(2L) to O(L).

2.4.1 Inference

In the context of uncertainty we want to extract knowledge from the system to reason and

optimise the decision making process. BNs can address multiple probabilistic inference prob-

lems such as evidence propagation, determination of the maximum a posteriori hypothesis

and computation of the most probable explanation. Evidence propagation provides the mech-

anisms to perform probabilistic reasoning. Given a set of evidence variables Xe whose value

is known xe, the objective is to query about the posterior distribution of a set of variables
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whose value is unknown Xq. Therefore, the evidence propagation computation is

p(Xq|Xe;θ) =
p(Xq,Xe;θ)

p(Xe;θ)
.

Basically, conditioning consists of clamping the evidence variables to their values xe and then

normalising to go from p(Xq,Xe;θ) to p(Xq|Xe;θ).

Inference methods are divided into two main groups: exact and approximate (see Salmerón

et al. [2018] for a recent review). The former consists of calculating, through a set of algebraic

operations (sums and products), the probability distribution of interest. Most of the exact

methods are based on variable elimination [Dechter, 2013; Shachter, 1990; Zhang and Poole,

1994], recursive conditioning [Darwiche, 2001; Pearl, 1985], or junction tree belief propagation

[Jensen et al., 1990; Shenoy and Shafer, 1990] algorithms. However, inference is generally

NP-hard [Cooper, 1990] and exact inference algorithms can become unfeasible to apply for

complex BNs. Approximate inference methods are an alternative solution based on con-

structing an approximation to the target distribution usually based on statistical sampling

techniques. The most widely applied approximation algorithms are based on belief prop-

agation [Minka, 2001; Pearl, 1988; Welling and Teh, 2001], variational methods [Jaakkola

and Qi, 2007; Jordan et al., 1999], Markov Chain Monte Carlo methods [Gilks et al., 1996;

MacKay, 1998; Neal, 1993] or particle filtering [Bidyuk and Dechter, 2007; Doucet et al.,

2000] algorithms.

2.4.2 Structure learning

The purpose of generative models is to discover the probability distribution from which the

dataset D was generated. In the case under examination, we assume that the dataset D come

from the BN B∗ = (G∗,θ∗) which is unknown. Clearly, our goal during the learning process

is to recover B∗. Since in this section we are interested specifically on the structure, we focus

on techniques to recover G∗.

Sometimes, both the structure and the parameters of the network can be elucidated from

the knowledge of experts. However, it can be laborious and expensive or even impossible

in large applications. Therefore, automatic techniques are needed that allow learning G∗

from D. Unfortunately, this goal is hard to achieve mainly because data are noisy and we

cannot be certain about the underlying distribution. Another limitation is that the space

of possible structures has a super-exponential cardinality on the number of nodes V (see

Robinson [1977]). For this reason, structure learning has received much attention with the

aim of improving the learning techniques giving rise to three different approaches: constraint-

based methods, methods based on maximisation of a score criterion and hybrid methods which

combines both constraint-based and maximisation of a score criterion techniques (see Daly

et al. [2011] for an extensive review).
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2.4.2.1 Constraint-based structure learning

Each BN structure corresponds to a set of probability distributions that it can represent.

Then, an equivalence class of BNs is defined by all the BN structures that represent the same

set of distributions. The constraint-based techniques provide a framework for learning the

equivalence class of BNs that best explain dependencies and independencies on D using con-

ditional independence tests under the faithfulness assumption, i.e., when graphical separation

and probabilistic conditional independence imply each other.

Algorithms for constraint-based learning consist of two steps [Scutari, 2017]:

1. It learns the skeleton of the graph checking through conditional independence tests if

there is a set of variables that separates a particular pair of nodes. If that set is empty,

then there must be an edge between the pair of nodes.

2. It tries to assign directions to the edges of the graph by using some rules [Meek, 1995].

Some arcs can be undirected because sometimes both directions are equivalent providing

the same decomposition of the j.p.d. As a result, the constraint-based algorithms

return completed partially directed acyclic graphs which represent an equivalence class

containing multiple DAGs.

Some of the most celebrated constraint-based algorithms are the Inductive-Causation

[Verma and Pearl, 1991], the PC algorithm [Bühlmann et al., 2010; Kalisch and Bühlmann,

2007, 2008; Spirtes et al., 2000] which is the first practical implementation of the Inductive-

Causation algorithm, the Grow-Shrink algorithm [Bromberg et al., 2009; Margaritis, 2003]

or the Incremental Association Markov blanket [Tsamardinos et al., 2003; Yaramakala and

Margaritis, 2005]. For a more extended overview of the algorithms see [Koller and Friedman,

2009; Scutari and Denis, 2014]. The main drawback of these methods is that they can be

sensitive to failures in individual independence tests and if just one of these tests returns

a wrong answer it can mislead the network construction procedure. Other disadvantage is

that the amount of data required by these algorithms to have a sufficient large sample for

correctly identifying the conditional independences hugely increases with the cardinality of

the conditional set.

2.4.2.2 Score+search structure learning

The score+search-based BN learning can be approached as an optimisation problem [Gámez

et al., 2011; Tsamardinos et al., 2006] that depends on four terms: the hypothesis space, the

set of operators, the scoring function and the dataset D. The hypothesis space is the set of

candidate structures that are considered as potential solutions. The structure optimisation

procedure applies the set of operators to search over the set of candidate structures evaluating

how well they fit D according to the scoring function. Several heuristics have been proposed

in the literature to cope with the superexponential nature of the problem of searching for the

highest-scoring network structure. Depending on their nature they are usually grouped into:
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� Order-based: They assume an initial topological order for the variables. Successive

changes are then applied to this order with the aim of optimising the network score.

Given a set of operators over the orders, changes can be made locally using greedy search

methods [Alonso-Barba et al., 2011; Cooper and Herskovits, 1992; Scanagatta et al.,

2017; Teyssier and Koller, 2005] or some metaheuristics [Faulkner, 2007; Hsu et al.,

2002; Larrañaga et al., 1996]. Their main disadvantages are that, without restrictions,

there are as many orderings as permutations of variables, so the complexity in the worst

case scenario is O(L!), and also a bad order selection can produce graphs that are more

complex than it is needed for representing the probability distribution.

� Greedy search: These algorithms begin by choosing an initial structure G as the starting

point. The score of this structure is calculated for future comparisons. Then we get

all the neighbour networks of G in the space of hypotheses, i.e., all the legal networks

obtained by applying a single operator (e.g. arc addition, arc removal or arc reversion)

to G, and compute the score for each of them. Finally we replace G by the network

that obtained the best score during the procedure. This is repeated iteratively until

there are not changes in the structure that improve the score. The most basic form of

this technique is the greedy-hill climbing method [Chickering et al., 1996; Heckerman

et al., 1995]. A variant of this method applies the branch and bound [Miguel and Shen,

2001; Suzuki, 1999, 2018] technique, which is an exact method to reduce the hypothesis

space, speeding-up the learning procedure.

� Metaheuristics: Over the last decades techniques such as genetic algorithms [Holland,

1992], estimation of distribution algorithms [Larrañaga and Lozano, 2001], genetic pro-

gramming [Koza and Koza, 1992], simulated annealing [Kirkpatrick et al., 1983] or tabu

search [Bouckaert, 1995; Glover et al., 1993] have been widely applied because of their

ability to find good solutions for combinatorial problems in a reasonable time. Since

the search for the optimal structure is a problem with a huge hypothesis space, these

methods look like promising approaches. A common representation of a BN to search

in the space of possible DAGs is to use the connectivity matrix. Some works based on

this representation are Blanco et al. [2003]; Etxeberria et al. [1997]; Larrañaga et al.

[1996b,a]; Wong et al. [1999]. As discussed above, metaheuristics can also be applied to

obtain good topological orders. An extended review about these methods can be found

in Larrañaga et al. [2013].

Evaluating a structure according to any score function involves estimating the optimal

parameters for each network candidate. Computing the complete set of parameters of a model

(see Section 2.4.3) for every candidate structure can be extremely time consuming or even

infeasible. However, as we show in Section 2.4, in the presence of complete data, the log-

likelihood function (Equation (2.2)) factorises according to G in a sum of terms where each

term depends only on the choice of parameters for a particular variable. We can exploit that

to avoid redundant calculations and score each node locally. The log-likelihood is a measure

of the fitness of a model to the data but unfortunately it can run into overfitting problems
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given that it always prefers a complex network over a simpler one [Koller and Friedman, 2009].

Penalized scoring functions [McLachlan and Peel, 2000] try to overcome this problem adding

a penalisation term to the log-likelihood function. An example is the Bayesian information

criterion (BIC) [Schwarz, 1978] defined as

BIC(D,B) = `(B|D)− v log(N)

2
, (2.4)

where v is the number of parameters in B and N is the number of instances in D. Other

scoring functions widely applied are Akaike information criterion [Akaike, 1974], Bayesian

Dirichlet for likelihood-equivalence [Heckerman et al., 1995] and K2 [Cooper and Herskovits,

1992]. Any of these scoring functions are susceptible to being applied for efficient learning as

both the log-likelihood and the penalization term decompose according to the structure.

Score+search methods evaluate the whole structure at once. Hence, they are more robust

against individual failures than constraint-based methods, balancing the degree of dependence

between variables with the cost of increasing the complexity of the model. Their main

drawback is that they pose a search problem that may not have an elegant and efficient

solution.

2.4.2.3 Hybrid structure learning

It is a combination of the two previous methods. The algorithms in this group are based on

two steps called restrict and maximise. In the first step the objective is to reduce the set

of candidate parents for each variable Xl selecting those that have some relation with Xl.

This is intended to reduce the hypothesis space. The second step consists of a score+search

optimisation subject to the restrictions imposed by the first step.

Any of the techniques described for constraint-based and score+search structure learning

can be applied to the restrict and maximise steps respectively. However, some combinations

make more sense than others. The most representative algorithms of this group are the Sparse

Candidate [Friedman et al., 1999] and the Max-Min Hill-Climbing [Tsamardinos et al., 2006]

algorithms.

2.4.3 Parameterisation

As seen above, the marginals and the conditional probability distributions are the building

blocks of the BNs to construct complex j.p.d.s. Any approximator function can be used to

define these distributions, as for example logistic regressions [Lerner et al., 2001], kernel es-

timators [Hofmann and Tresp, 1996], neural networks [Choi and Darwiche, 2018; Monti and

Cooper, 1997], Gaussian processes [Friedman and Nachman, 2000], etc. However, most of

them present difficulties for efficient inference and learning. We examine three cases that are

particularly worthy of note because the parent-child relationship can be extended hierarchi-

cally to construct arbitrarily complex graphs. Depending on the nature of the dataset D we

distinguish between discrete, Gaussian and hybrid BNs.
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2.4.3.1 Discrete Bayesian networks

In the discrete BNs [Darwiche, 2009] all the variables in X are defined in the categorical

domain. A natural choice to represent a finite number of states for a system is the cate-

gorical distribution. This distribution provides several advantages when modeling data, so

the assumption that data is distributed according to a categorical distribution is by far the

most common in the literature of BNs. One of its benefits is that it factorises in a product

of categorical distributions and, consequently, all the building blocks of the BN belong to

the same distribution thereby simplifying the computations. Also they provide transparency

given that the conditional probability distribution p(Xl|PaGXl ;θ) can be encoded in human-

readable tabular format known as a conditional probability table (CPT), which designates

a probability for every assignment of Xl and PaGXl . Additionally the interpretability of the

model is favored by the direct representation of the parameters as probabilities.

Maximum likelihood estimation (MLE) is the most common method for parameter esti-

mation in BNs. It is based on choosing the parameters θ̂ that maximise the log-likelihood

(Equation (2.2)) for a given D. Hence, it is defined as

θ̂ = argmax
θ

`(B|D). (2.5)

As the log-likelihood function of the j.p.d. factorises according to the BN structure in the

presence of complete data, learning or updating the parameters can be performed efficiently

as each CPT can be estimated locally. For the CPT p(Xl|PaGXl ;θ), the MLE is computed

according to

θ̂lmj =
Nlmj∑
j Nlmj

, (2.6)

where Nlmj is the counts in D such that Xl = j and PaGXl = m and Nm is the number of

instances where PaGXl = m.

Given the desirable properties of discrete BNs discussed above and the simplicity of the

calculations in the estimation of the parameters, it is natural to bin continuous variables into

a finite set of intervals. Discretisation can be performed manually by a human expert [Chen

and Pollino, 2012], automatically using the response variable (if any) to optimise the cutoffs

and the number of the intervals [Dougherty et al., 1995; Fayyad and Irani, 1993], or using the

distribution of the continuous variables to ensure that the discretisation procedure introduces

enough intervals to capture the interactions between adjacent variables in the structure of the

BN [Friedman and Goldszmidt, 1996]. It is still an unsolved problem and different strategies

can be applied depending on the data [Beuzen et al., 2018; Nojavan et al., 2017]. The

main drawback of discretisation is that it only captures rough characteristics of the original

continuous distribution of the data and its application can lead to the loss of information from

the system influencing the accuracy of the model [Friedman and Goldszmidt, 1996]. Also,

the categorical representation of variables entails an exponential growth on the number of

parameters with respect to the number of parents, which limits the complexity of the models.
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2.4.3.2 Gaussian Bayesian networks

In the real-valued domain the most studied approach in BN modeling is based on the Gaussian

distribution [Geiger and Heckerman, 1994; Shachter and Kenley, 1989]. Gaussians are a

subclass of the exponential family distributions [Wainwright and Jordan, 2008] that make

very strong assumptions, such as symmetric exponential decay around the mean and linear

dependence among variables [Koller and Friedman, 2009]. These assumptions seem too strong

and do not hold in most of the cases. However, Gaussians provide a surprisingly good

approximation for many distributions. The explanation is that the Gaussian distribution is

the maximum entropy density function among all the real-valued distributions supported in

(−∞,∞) and, according to the principle of maximum entropy [Guiasu and Shenitzer, 1985;

Jaynes, 1957], without further information the distribution of maximum entropy is the one

that best represent the state of our knowledge.

The joint probability density function (p.d.f.) of the multivariate Gaussian distribution

is characterised according to two parameters, a mean vector µ and a symmetric covariance

matrix Σ. The expression for the multivariate Gaussian distribution is

fN (X;µ,Σ) =
1

(2π)n/2|Σ|1/2
e−

1
2

(X−µ)>Σ−1(X−µ). (2.7)

As we have discussed along this chapter, to properly factorise a distribution according to a

BN structure we have to define the marginal and the conditional density functions. It results

that both operations are very easy to perform for the multivariate Gaussian distribution.

Assume that we have a joint p.d.f. over X = {Xa,Xb} where Xa and Xb are two disjoint sets

of real-valued variables. Then, the parameters of the multivariate Gaussian can be decompose

as follows:

f

(
Xa

Xb

)
∼ fN

[(
Xa

Xb

)
;

(
µa

µb

)
,

(
Σaa Σab

Σba Σbb

)]
.

According to this representation, marginalisation of a set of variable (e.g. Xb) in this form is

trivial as it can be directly read from the mean µb and the covariance Σbb. The definition of

the conditional probability distribution for a multivariate Gaussian is achieved through the

Schur complement decomposition [Zhang, 2005] which transforms the p.d.f. to

f

(
Xa

Xb

)
= f(Xb)f(Xa|Xb) = fN (Xb;µb,Σbb)fN (Xa;β0 + β>Xb,Q), (2.8)

where

β0 = µa −ΣabΣ
−1
bb µb,

β> = ΣabΣ
−1
bb ,

Q = Σaa −ΣabΣ
−1
bb Σba.



2.4. BAYESIAN NETWORKS 21

Several useful properties of the Gaussian emerge from this representation. First, both the

marginal and the conditional density functions are also Gaussian distributions. Therefore we

can apply marginalisation and conditioning iteratively in the resulting subsets of variables.

Second, the marginal distribution over Xb is explicitly represented in µb and Σbb so it can

be efficiently computed. The conditional distribution over Xa is a linear combination of

the variables in Xb. Finally, it provides a more compact representation than the discrete

representation given that the number of parameters increase quadratically in the number of

variables instead of exponentially.

As in Section 2.4.3.1, parameter estimation involves the maximization of sums of log-

likelihoods because of the factorisation represented by the BN structure (see Equation (2.2)).

Therefore, the parameters are estimated locally for each variable. For example, let us assume

that Xa = {Xl} in Equation (2.8) and PaGXl = {U1l, U2l, ..., UT l}. Then, by the local Markov

property (see Equation (2.1)) it is fulfilled that Xb = PaGXl . Consequently, for all variables

X \ PaGXl their regression coefficients are zero. The remaining regression coefficients β̂>l =

(β̂0l, β̂1l, ..., β̂T l), which corresponds to β in Equation (2.8) when Xa = {Xl} and are those

that belong to PaGXl , are estimated by solving the following system of equations

ED[Xl] = β̂0lED[1]+ β̂1lED[U1l]+· · ·+ β̂T lED[UT l] (2.9)

ED[Xl · U1l] = β̂0lED[U1l]+ β̂1lED[U1l · U1l]+· · ·+ β̂T lED[U1l · UT l]
...

...
...

...

ED[Xl · UT l] =β̂0lED[UT l]+β̂1lED[U1l · UT l]+· · ·+ β̂T lED[UT l · UT l],

where each of the terms is an average value of the sample dataset ED[·], i.e., ED[1] =
1
N

∑N
i=1 1, ED[Xl] = 1

N

∑N
i=1 x

i
l, ED[Xl·Utl] = 1

N

∑N
i=1 x

i
l ·uitl and ED[Ujl·Utl] = 1

N

∑N
i=1 u

i
j ·uitl.

Once the beta coefficients are known, the variance of Equation (2.8) Q̂ = σ̂2
l is computed as

σ̂2
l =

∑N
i=1(xil − β̂0l −

∑T
t=1 β̂tlu

i
tl)

2

N
. (2.10)

Note that when PaGXl = ∅ these expressions reduce to the well-known formulas for the sample

mean and the sample variance of the univariate Gaussian as ED[Xl] is the mean of Xl and

the system of equations becomes ED[Xl] = β̂0l; and σ̂2
l =

∑N
i=1(xil−β̂0l)

2

N .

Gaussian distribution is well understood because of its linearity assumption among vari-

ables. Because of that, Gaussian BNs can be learned efficiently using closed-form expressions.

Nevertheless, this is a serious restriction that limits the expressive power of the model and

its application to domains with non-linear interactions. Although different approaches based

on learning with non-parametric densities [Hofmann and Tresp, 1996] or Gaussian process

networks [Friedman and Nachman, 2000] have been proposed in the literature to overcome

this problem, non-linear interactions between variables are usually represented as mixtures
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of Gaussians [Sung, 2003].

2.4.3.3 Hybrid Bayesian networks

Purely discrete or continuous datasets are unusual in complex real-world problems. Hybrid

BNs encompass both types of variables and define the basic operations to learn probabilistic

graphical models from these data. So far we have discussed the homogeneous relationships

between variables when all of them follow a categorical or a Gaussian distribution. The treat-

ment of the interactions among variables can be extrapolated to hybrid BNs when both the

parents and their children follow the same distribution and it is categorical or Gaussian. We

now turn our attention to incorporate the relations between discrete and continuous variables

to the model. More concretely, we have to study two types of dependencies: a continuous

variable with continuous and discrete parents, and a discrete variable with continuous and

discrete parents.

The simplest way to represent the first type of dependencies is to assume that the set

of parameters for the continuous variables changes as a consequence of the discrete parent

values. Let assume a set of categorical variables Z with K values or states for z and a set of

continuous variables X. The conditional distribution in hybrid BNs has the form

f(X|Z = k;θ) = f(X|Z;θk).

where θk are context-specific parameters for the instantiation z = k. Hence, for each instan-

tiation of z a density function is obtained. There is not restriction about f(X|Z;θk) which

can be any p.d.f. In the concrete case where the density function of X is Gaussian [Cobb and

Shenoy, 2006; Lauritzen, 1992; Lauritzen and Jensen, 2001], i.e., f(X|Z;θk) = fN (X;µk,Σk),

we can condition each Gaussian variable according to Equation (2.8) and in the presence of

complete data we can factorised the joint p.d.f. to efficiently compute the MLE with the

expressions provided in Equation (2.6) for Z, and Equation (2.9) and Equation (5.9) with

ED[Xl] =
∑N

i=1 p(z
i|xi;θk)xil.

Of special interest for the development of this thesis is the result induced from the

marginalisation over the discrete variables

f(X;θ) =

K∑
k=1

p(Z;θk)f(X|Z;θk), (2.11)

which is the expression for a mixture model, where p(Z;θk) are the mixing weights that

are given by the probability of that instantiation and f(X|Z;θk) is the distribution for the

mixture component k. Among the mixture models, the Gaussian mixture model [Titterington

et al., 1985] is the most known because of its computational tractability and its suitability

to approximate any linear multivariate density given enough components. It is also widely

applied for model-based clustering.

Modeling the relationships between variables when a discrete variable has continuous
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parents varies depending on the nature of the discrete variable. When the discrete variable

presents several categories or states and these are ordinal we can assume that the variable

follows a Gaussian distribution. If this is not the case, alternatively we can use a softmax

function to model the continuous-discrete interaction [Lerner et al., 2001; Murphy, 1999]

or define thresholds over the continuous variables to discretise them [Koller and Friedman,

2009]. The problem with these approaches is that inference becomes complex and usually it

is assumed that continuous variables cannot be parents of categorical variables.

2.5 Model-based clustering

Model-based clustering [Fraley and Raftery, 2002; McLachlan and Basford, 1988; Melnykov

and Maitra, 2010] is generally defined as a finite mixture of models [McLachlan and Peel,

2000] where each cluster represents a probability distribution. The convex combination of

the probability distributions generates the mixture density function (see Equation (2.11)).

In this context Z is assumed to be a set of hidden or latent variables which are categorical

variables and each of their states corresponds to a one mixture component. Hence, the result

of clustering is a probabilistic assignment of each instance to each cluster. Learning BNs for

clustering is a challenging task given that conditional independence assumptions encoded by

the local Markov property (Equation (2.1)) do not apply when Z is unobserved. Consequently,

scoring functions do not factorise and is not longer feasible to search for an optimal network

efficiently.

EM algorithm [Dempster et al., 1977; McLachlan and Krishnan, 2008] is the most widely

used algorithm for estimating the parameters of a model in the presence of incomplete data.

EM addresses the missing data problem by selecting a starting point, which is either an initial

set of parameters or an initial assignment to the latent variables Z. Once we have a parameter

set, we can apply inference to complete the data or, conversely, once we have the complete

data we can estimate the set of parameters from the MLE method. Thus, it is an iterative

method comprising two steps. The expectation step (E-step) completes Z probabilistically

according to

Qi(z
i) = p(zi|xi;θ) =

f(xi|zi;θ)p(zi;θ)∑
z f(xi|z;θ)p(z;θ)

, (2.12)

resulting in the completed dataset D+. The maximisation step (M-step) estimates a new set

of parameters from D+

θ̂ = argmax
θ

N∑
i=1

∑
zi

Qi(z
i) log

f(xi, zi;θ)

Qi(zi)
. (2.13)

The EM algorithm iterates between both steps improving the likelihood of the model for a

given D until convergence [Xu and Jordan, 1996].

In the BN case, the EM algorithm only optimises the parameters θ, assuming a predeter-

mined and fixed structure G. The SEM algorithm [Friedman, 1997] extends the EM algorithm
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including structural learning to simultaneously learn Ĝ and θ̂ of a BN from incomplete data.

SEM starts with a specified initial structure and set of parameters. Then, it alternates be-

tween EM and structure optimisation. For a given Ĝ, EM algorithm estimates the parameters

θ̂ according to the MLE method and infers the completed dataset D+ (Equation (2.12) and

Equation (2.13)). Once the data are complete, the model factorises according to the local

Markov property allowing efficient score+search structure learning. Both steps are repeated

iteratively until convergence. A common choice for the score to be maximised is the BIC

score (Equation (2.4)) because it avoids overfitting and, if the search procedure always finds

a better structure at each iteration, it is ensured the convergence of the EM algorithm.



Chapter 3
Directional statistics

3.1 Introduction

In a wide range of scientific fields, angle measurement is required to represent information

about a phenomenon. Classical statistics is not suitable for modelling directional data because

it cannot handle periodicity. For example, given the angles 1° and 359°, the linear mean would

be 180°. This points in the opposite direction to the directional mean which is 0°. Thus,

models based on the Gaussianity assumption generally underperform in directional datasets

[Roy et al., 2016] and concrete methods to deal with directionality are required to take into

account the structure of this data. This chapter recaps directional statistics [Jammalamadaka

and Sengupta, 2001; Ley and Verdebout, 2017; Mardia, 1975b; Mardia and Jupp, 1999], the

branch of mathematics that provides the techniques and background to deal with directional

observations represented by unit vectors. We revise probabilistic graphical models in the

context of directional statistics and the representation of multivariate directional probability

distributions. Since directional data usually come along with their magnitude (linear data),

we also review the directional-linear literature and its application for data clustering.

Chapter outline

Section 3.2 introduces some procedures to construct circular distributions, discusses the most

widely used univariate distributions of directional statistics paying special attention to the von

Mises distribution. Section 3.3 presents multivariate directional distributions and their adap-

tation to develop probabilistic graphical models. Section 3.4 discusses different approaches

proposed in the literature for model-based clustering of directional-linear data.

3.2 Directional probability distributions

Directional statistics literature is prolific in probability distributions. Next, we describe some

general procedures to construct circular p.d.f., i.e., defined in the domain [0, 2π), and briefly

25
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present the most widely used distributions [Jammalamadaka and Sengupta, 2001; Ley and

Verdebout, 2017].

Wrapping Let X be a linear random variable that follows the p.d.f. fX defined in R.

Then, the circular random variable Y ∈ [0, 2π) is defined according to Y = X mod 2π and

its density is given by

f(Y ) =
∞∑

j=−∞
fX(Y + 2πj), (3.1)

where j is an integer. The most widely use distribution of this family is the wrapped normal

[Schmidt, 1917]. The main drawback of wrapping is that the distributions obtained through

this method usually are complex and do not have a closed-form as they depend on a sum

of infinite terms. As a consequence they have to be approximated [Abramowitz and Stegun,

1970; Kurz et al., 2014]. An exception is the wrapped Cauchy [Levy, 1939; Wintner, 1947]

that admits a simplification. However, the computation of its MLE parameters have to be

approximated according to an iterative procedure as shown in Kent and Tyler [1988].

Characterisation This method is based on the application of concepts as the information

theory to find distributions that enjoy some desirable properties. An example are those circu-

lar distributions that maximise the entropy subject to having some trigonometric moments.

As in classical statistics, the uniform distribution is also the maximum entropy distribution

on the circle. Another remarkable case is the von Mises (vM) [von Mises, 1918] distribution,

which is the most prominent distribution in directional statistics. It is the maximum entropy

distribution when there are specified location and concentration parameters. We discuss this

distribution in more detail in Section 3.2.1.

Conditioning Given a distribution fX defined in R2, X is transformed from the Euclidean

to the polar coordinates, length and angle (r, Y ). Then, the angle is conditioned to the length

according to f(Y |r = 1). The vM distribution can also be obtained by this procedure.

Projecting This technique resembles the conditioning method given that it is obtained

transforming a bivariate distribution on the plane to its polar coordinates. However, instead

of conditioning the length, r is marginalised by means of integration. The most remarkable

distribution of this group is the projected Gaussian distribution also known as offset normal

[Jammalamadaka and Sengupta, 2001; Mardia, 1972].

The seminal work by Mardia [1972] argues that directional probability distributions are

rarely symmetric. Nevertheless, the circular distributions discussed up to this point are sym-

metric because this facilitates their manipulation. To alleviate this constraint and increase

the expressiveness of the distributions some generalisations have been proposed in the liter-

ature. Some remarkable distributions are the skewed wrapped normal [Pewsey, 2000, 2006],

the generalised vM distribution [Gatto and Jammalamadaka, 2007; Gatto, 2008], the gen-

eral projected normal [Wang and Gelfand, 2012], or the family of distributions based on the
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Figure 3.1: Comparison among circular distributions. It shows the p.d.f. of von Mises (vM),
wrapped Cauchy (wC), wrapped normal (wN), and projected normal (pN) density functions
for different values of the concentration parameter κ = {2, 5, 20}. As the concentration
increases, the vM, wN and pN distributions become more similar.

Möbius transformation [Kato and Jones, 2010]. The main goal of these distributions is to

provide flexibility through asymmetry and bimodality but at the expense of increasing the

complexity and the number of parameters of the distributions. An alternative representation

to achieve this flexibility is the use of finite mixtures of circular distributions [Bentley, 2006;

Jammalamadaka and Sengupta, 2001].

3.2.0.1 Relation among circular distributions

From the point of view of circular data modeling it is interesting to know if there are rela-

tionships and equivalences between the distributions. The literature on this subject details

the parametric settings under which two distributions are approximately similar. For ex-

ample, the uniform circular distribution can be obtained from a vM, wrapped normal or

wrapped Cauchy when the concentration parameter is zero. Also, as shown in Proposition

2.2 of Jammalamadaka and Sengupta [2001], the vM distribution can be approximated by a

normal distribution when concentration parameter κ→∞. In fact, if κ is large its reciprocal
1
κ influences the vM distribution like σ2 influences the univariate Gaussian [Gumbel et al.,

1953; Mardia, 1972; Mardia et al., 2008]. Several studies have highlighted the similarity of the

vM distribution with the wrapped normal [Collett and Lewis, 1981; Kent, 1976; Pewsey and

Jones, 2005; Stephens, 1963], leading Kendall [1974] to suggest that they can be exchanged

depending on the statistical context since in some cases it is more convenient to use one over

the other. Both wrapped Cauchy and projected normal distributions are closely approximated

by a vM distribution with the same directional mean and mean resultant length [Mardia and

Jupp, 1999; Presnell et al., 1998]. Figure 3.1 shows a graphical comparison among these four

circular distributions. Given their similarity, the most convenient distribution for the purpose

of the study can be applied without practical loss relative to the other models. The literature

focuses especially on the vM distribution because of its desirable properties for inferential

purposes.
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3.2.1 The von Mises distribution

The vM distribution is the most used among the univariate circular distributions because of

its analogy to the Gaussian distribution on the real line. Given a circular random variable

0 ≤ Y < 2π, the vM p.d.f. is defined as

fVM(Y ;µY , κY ) =
eκY cos(Y−µY )

2πI0(κY )
, (3.2)

where 0 ≤ µY < 2π is the location parameter representing the mean angle, κY is the scale

or concentration parameter and, I0(κY ) is the modified Bessel function of the first kind and

order zero, and

In(κY ) =
1

2π

∫ 2π

0
eκY cos(Y ) cos(nY )dY, (3.3)

is the modified Bessel function of the first kind and order n. Note that fVM(Y ;µY +π, κY ) =

fVM(Y ;µY ,−κY ). To solve this indeterminacy of the parameters it is usual to set k ≥ 0.

Let D = {y1, ..., yN} be a set of directional observations independently drawn form a

vM distribution fVM(Y ;µY , κY ), and let C =
∑N

i=1 cos yi and S =
∑N

i=1 sin yi. Then,

the mean angle can be estimated through the MLE method according to [Bentley, 2006;

Jammalamadaka and Sengupta, 2001]

µ̂Y =



arctan(S,C) if C > 0, S ≥ 0,

π
2 if C = 0, S > 0,

arctan(S,C) + π if C < 0,

−π
2 if C = 0, S < 0,

arctan(S,C) + 2π if C < 0, S < 0,

(3.4)

and the concentration parameter is obtained through

κ̂Y = A−1

(∑N
i cos(yi − µ̂Y )

N

)
, (3.5)

where A(κY ) = I1(κY )
I0(κY ) . An accurate approximation of A−1(·) is presented in Best and Fisher

[1981].

3.3 Directional probabilistic graphical models

Probabilistic graphical models have been widely applied in research fields whose data present

directional variables, as for example biochemistry [Boomsma et al., 2006, 2008; Harder et al.,

2010; Paluszewski and Hamelryck, 2010; Razavian et al., 2011b,a], neuroscience [Leguey,

2018], meteorology [Leguey et al., 2019] or machine learning [López-Cruz et al., 2013], mainly

because they allow to obtain tractable models in a continuous space. It is worth noting that
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Figure 3.2: Examples of geometric spaces obtained from multivariate directional distributions.
(A) Spherical distribution, (B) Toroidal distribution, and (C) Cylindrical distribution.

generalisation from the univariate to the multivariate case on directional statistics is not

immediate given that high dimensional spaces in these cases encompass several geometric

spaces as the sphere, the torus, and the cylinder (see Figure 3.2). The topology of the space

depends on the characteristics of the marginal and conditional distributions and how they are

combined in the model. Next, we discuss the multivariate directional distributions encoded

with probabilistic graphical models.

3.3.1 Spherical distributions

A popular choice when data is on the surface of a sphere or hypersphere is the von Mises-

Fisher distribution [Fisher, 1953], which reduces to the vM distribution on the circle. The

von Mises-Fisher distribution is the spherical analogue of the isotropic multivariate normal

distribution whose covariance matrix is a multiple of the identity matrix [Mardia and Jupp,

1999]. This model outperforms others based on linear distributions for problems such as text

categorization and gene expression analysis [Banerjee et al., 2005; Zhong and Ghosh, 2003].

Because of its simplicity, the von Mises-Fisher distribution is limited to circular contours

of constant probability. However, in some problems it is desirable to have a more general

distribution on the sphere. The generalisation of the von Mises-Fisher distribution is called

the Fisher-Bingham distribution [Kent, 1982; Mardia, 1975b]. It is a flexible distribution but

poses some computational difficulties because of its complex mathematical form and its large

number of parameters.

In order to achieve a balance between both distributions, Kent [1982] proposed the Kent

distribution, which is equivalent to a multivariate Gaussian distribution with unrestricted

covariance providing elliptical contours [Kasarapu]. The BN library Mocapy ++ [Paluszewski

and Hamelryck, 2010] supports the Kent distribution as an independent node of the network.

Distributions on the sphere can be also obtained through the projection technique dis-

cussed above [Pukkila and Rao, 1988; Watson, 1983]. An extension of these works to any

dimensions is introduced in Hernandez-Stumpfhauser et al. [2017]. Despite they are expressive
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models, their main limitation is their complexity and their difficulties for inference, requiring

sampling methods to approximate the results.

3.3.2 Toroidal distributions

The resulting topological space of embedding a set of directional random variables Y =

Y1, Y2, ..., YD, where Yd ∈ [0, 2π), is a torus. Toroidal probability distribution are present

in modern biology problems as the protein folding problem [Boomsma et al., 2006; Mardia

et al., 2007] or the analysis of RNA datasets [Eltzner et al., 2018]. Boomsma et al. [2006]

suggested graphical models as a tool to construct these multivariate distributions.

The development of toroidal probability distributions has been mainly focused on extend-

ing vM distribution to higher dimensions. The bivariate vM distribution was introduced by

Mardia [1975b,a]

f(Y1, Y2) = C exp(κ1 cos(Y1 − µ1) + κ2 cos(Y2 − µ2)

+ (cos(Y1 − µ1), sin(Y1 − µ1))A(cos(Y2 − µ2), sin(Y2 − µ2)),

where C is the normalising constant, µ1, µ2 ∈ [0, 2π) are the location parameters, κ1, κ2 ≥ 0

are the concentration parameters and the 2× 2 matrix A is the circular-circular dependence

parameter. This distribution has been considered overparametrized in the literature [Ley

and Verdebout, 2017] compared with the analogous bivariate normal distribution and dif-

ferent submodels with fewer parameters have been proposed. In particular, Rivest [1988]

constructed a simpler distribution fixing the off-diagonal elements of A to zero. To achieve

further parameter parsimony, Singh et al. [2002] and Mardia et al. [2007] proposed the sine

and the cosine variants of the bivariate vM only modeling the correlations sine-sine and

cosine-cosine, respectively. The result of conditioning a bivariate vM is also a vM distribu-

tion but the marginal is complicated. In fact, Mardia [1975b] proved that there cannot be

any exponential family of bivariate distributions on the torus with marginals and conditionals

that are all vM [Hamelryck et al., 2012]. For this reason the parameters cannot be computed

according to the MLE in closed-form and requires the use of approximate methods. The

cosine variant has been encoded as an independent node of a BN in Boomsma et al. [2006]

and Paluszewski and Hamelryck [2010].

Literature corresponding to the toroidal multivariate distributions is mainly limited to

the multivariate vM [Mardia et al., 2008, 2012], which is the natural extension of the bivariate

sine vM distribution. Its properties have been studied in Mardia and Voss [2014]. Recently,

Navarro et al. proposed the multivariate generalised vM distribution for performing circular

regression and principal component analysis on directional data. The normalising constants

of both distributions do not admit an analytic expression and therefore we need to resort

to approximate inference techniques or impose strong assumptions on the distribution as

high concentration [Mardia et al., 2012]. Morever, an undirected graphical model represen-

tation was introduced by Razavian et al. [2011b,a]. Given that the normalising constant is

unknown, the inference and learning for this network require iterative optimisation methods
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like Gibbs sampling [Bishop, 2006] and the computation of the pseudo-likelihood. López-Cruz

et al. [2013] exploited the conditional independence assumptions encoded by the näıve Bayes

classifier to factorise the joint p.d.f. in a product of univariate vM enabling efficient model

learning.

Other multivariate toroidal distributions are the bivariate wrapped normal [Johnson and

Wehrly, 1978] and the multivariate wrapped normal [Baba, 1981] which have wrapped normals

as conditional and marginal distributions. However, they do not belong to the exponential

family and the estimation of the parameters even in the simplest cases leads to tough nu-

merical solutions that involve ratios of infinite sums, making the algorithms computationally

inefficient [Fisher and Lee, 1994].

3.3.3 Cylindrical distributions

The construction of a joint bivariate directional and linear p.d.f. is a non-trivial problem

being literature about directional-linear distributions scarce. Johnson and Wehrly [1978]

presented several cylindrical distributions invoking maximum entropy principles and a general

method based on copulas to construct bivariate cylindrical distributions with specified circular

and linear marginals. This method has inspired new cylindrical distributions that provide

tractability and flexibility [Abe and Ley, 2017; Kato and Shimizu, 2008] but suffer from

some drawbacks. Because of the complicated theoretical results, copulas are suitable for the

bivariate case but are difficult to extend to higher dimensions. Additionally, it is also arduous

to give closed-form expressions of the MLE equations for copulas.

Conditional probabilities in the cylinder have been proposed in the context of circular

regression models. Gould [1969] introduced a linear regression over the mean direction for

the case where the independent variable is linear and the response variable is directional.

This model presents identifiability problems because the likelihood has infinitely many dis-

tinct global maxima. Also, Fisher and Lee [1992] extended this work applying a monotone

function to the linear regression, mapping the domain (−∞,∞) to (−π, π). The likelihood

of this model is multimodal with maximum on a very narrow peak which can present severe

problems for numerical optimisation methods. Finally, Presnell et al. [1998] developed the

spherically projected multivariate linear model which uses the projection method to obtain

a directional distribution from a conditional Gaussian. Parameter estimation and inference

require iterative optimisation methods as the Newton-Raphson or the EM algorithm.

A different approach to define a bivariate cylindrical distribution was proposed by Mardia

and Sutton [1978] based on conditioning a trivariate Gaussian distribution with some restric-

tions on the parameters. Given the random variables X ∈ R and Y ∈ [0, 2π) they defined

the joint p.d.f. as

fMS(X,Y ;β, σ, µY , κY ) = fN (X;β0 + β1 cosY + β2 sinY, σ)fVM(Y ;µY , κY ) (3.6)
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such that

β0 = µX − β1 cosµY − β2 sinµY

β1 = κY cov(X, cosY )

β2 = κY cov(X, sinY )

σ = σ2
X − κY cov(X, cosY )2 − κY cov(X, sinY )2,

where β> = (β0, β1, β2) are the coefficients of the regression, cov(·, ·) is the covariance be-

tween two random variables, µX is the mean of X and σX is the standard deviation of X.

The resulting p.d.f. has some desirable properties as the marginal distribution for the direc-

tional variable Y is vM and the conditional distribution of the linear variable X is Gaussian.

However the marginal for the linear variable X is complicated.

3.4 Model-based clustering of directional-linear data

Directional data clustering has been addressed in the literature based on the EM framework

and vM distribution. Several studies have modeled directional data with mixtures of uni-

variate vM distributions [Calderara et al., 2007; Masseran et al., 2013; Mooney et al., 2003].

The use of the EM algorithm to cluster bivariate directional data using mixtures of bivari-

ate vM distributions was investigated in Mardia et al. [2007]. The maximisation step was

tackled by means of numerical optimization because the MLE does not have a closed-form

solution. A multivariate vM mixture model was studied in Mardia et al. [2012] proposing

an approximation of the intractable normalizing constant when data is highly concentrated.

This approach computes MLE according to the method of moments and the EM algorithm.

However, the likelihood function may not always be monotonically increasing because it is

using an approximation, although it does usually stabilize to some local maximum.

Clustering of fully correlated multivariate directional-linear data is still an unsolved prob-

lem. The main reason is that, even when directional and linear variables are independent,

multivariate directional distributions can be hardly extended beyond the bivariate case. The

normalisation constant of high dimensional multivariate directional distributions is usually

intractable and only under certain circumstances may be approximated [Mardia et al., 2012].

Thus, little is known about efficient estimation methods for most of the directional-linear dis-

tributions. In the presence of latent variables parameter estimation is even more challenging

given the iterative nature of the EM algorithm. Numerical optimisation methods to estimate

parameters can be prohibitive from a computational point of view when they are embedded

inside the EM algorithm. These difficulties motivate that the literature about clustering

directional-linear data is limited to bivariate p.d.f. or models that impose strong conditional

independence assumptions (see Table 3.1 for a summary).

Among such studies, Carta et al. [2008] and Roy et al. [2017] proposed mixtures of

copula-based bivariate circular-linear distributions constructed according to the Johnson and

Wehrly’s method. These approaches are limited because they cannot be directly extended to



3.4. MODEL-BASED CLUSTERING OF DIRECTIONAL-LINEAR DATA 33

Reference X dim. Y dim. Limitations

Carta et al. [2008] 1 1 As a copula-based distribution, it cannot
be directly extended to higher dimensions

Roy et al. [2017] 1 1 As a copula-based distribution, it cannot
be directly extended to higher dimensions

Mastrantonio et al. [2015] 1 1 Only considers one circular variable
Lagona and Picone [2011] 1 1 Assume independence between a linear

and a circular variables given the latent
variable

Lagona et al. [2015] 1 1 Assume independence between a linear
and a circular variables given the latent
variable

Lagona and Picone [2012] 2 2 Bivariate directional and bivariate skewed
normal distributions are conditionally in-
dependent given the latent variable

Bulla et al. [2012] 2 2 Bivariate directional and bivariate linear
distributions are conditionally indepen-
dent given the latent variable

Roy et al. [2016] L 1 Full correlation among one circular and
several linear variables

Table 3.1: Summary of works involving clustering of directional-linear data with their lim-
itations. The columns named “X dim.” and “Y dim.” denote the maximum number of
linear and directional variables considered by each distribution, respectively. L refers to an
undetermined number of linear variables.
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higher dimensions. Also in the bivariate circular-linear framework, Mastrantonio et al. [2015]

introduced a multivariate hidden Markov model to jointly cluster time-series of circular-linear

observations relying on the general projected normal distribution.

When it comes to generalise from cylindrical p.d.f. to higher dimensions, the simplest way

to model the component densities is to proceed on the basis that the directional and the linear

variables are independent of each other. For this setting, MLE can be computed efficiently

according to closed-form equations. Lagona and Picone [2011] and Lagona et al. [2015]

considered mixtures of independent univariate distributions to analyse meteorological data

and sea regimes. The main drawback of this approach is that these models can introduce

an unnecessary number of latent states given the lack of expressiveness of the underlying

mixture components.

Less restrictive models have been proposed in the literature allowing homogeneous cor-

relations (linear-linear or directional-directional) but assuming that directional and linear

variables are conditionally independent given the latent variable. Bulla et al. [2012] and Lag-

ona and Picone [2012] identified sea regimes by defining mixtures in which each component

is the product of a bivariate von Mises and a bivariate skewed normal that are conditionally

independent given the latent variable.

A joint p.d.f. for circular-linear data that incorporates correlations among a circular and

several linear variables was applied by Roy et al. [2016] for image segmentation. They de-

scribed colour images as mixtures of semi-wrapped Gaussians involving one wrapped normal

variable fully correlated with Gaussian variables. An extension of this model to consider

more than one circular variable leads to difficulties in parameter estimation as Roy et al.

have pointed out.



Chapter 4
Neuroscience

4.1 Introduction

Unveiling the functioning of the brain is one of the main challenges faced by current science.

Neuroscientists seek to solve the unknowns and mysteries that have accompanied the brain

for centuries.

The study of the brain has its origin in the ancient world, in which doctors thought it

was composed of “phlegm”. Later, Aristotle considered that the brain was a refrigerator

that counterbalance the heat of the heart [Zimmer and Clark, 2014]. The mystery about the

brain continued throughout the Renaissance in which anatomists suggested that perceptions,

emotions, reasoning, and actions were the result of “animal spirits”. It is not until the

seventeenth century that thanks to Willis [1663] a revolution took place because brain tissues

were related to the idea of the mental world. It took a century to discover that the brain

is an electrical organ. Nevertheless, little or nothing was known about the routes followed

by the connections of the nervous system. It was Golgi who introduced the idea of an

uninterrupted network of connections. Ramón y Cajal expanded this work by applying new

staining methods, which allowed him to observe that each neuron is a distinct cell separated

from all the others giving rise to the neuron doctrine [Ramón y Cajal, 1904]. Additionally, he

discovered that the neurons send signals through extensions called axons and that they receive

them through receptor extensions called dendrites (Figure 4.1). Ramón y Cajal, along with

other scientists, continued his work analysing the variety of neuronal patterns and making

hypotheses about the roles played by certain morphologies according to their locations in

the brain. Thus, the study of the form and structure of the nervous system denominated

neuromorphology began to develop.

These findings provided the ground for a series of fundamental discoveries about synaptic

transmission, passive and active electric conductance, neurotrophic factors, etc., that have

shaped the neuroscience as a highly interdisciplinary field [Ascoli, 2002]. They have given

rise to ambitious projects as the Cajal Blue Brain Project, Human Brain Project or the

BRAIN initiative whose goal is to unravel the inner workings of the human mind and, in

this way, be able to deepen in the study of numerous neurological and pathological diseases.

35
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Figure 4.1: Graphical representation of a neuron. It is possible to observe the soma or
cellular body where the nucleus of the neuron is located, the axon or neurite through which a
nervous impulse is transmitted from the soma to another neuron and the dendrites that are
ramifications that arise from the nucleus and whose main function is the reception of stimuli.
Image in the public domain downloaded and adapted from: http://upload.wikimedia.org/

wikipedia/commons/7/72/Neuron-figure-notext.svg. Original image from Nicolas Rougier.

In particular, one area of study that has awakened a great expectation and interest is the

analysis of the cortical structure from the morphological point of view of the mammalian

brain, so that a simulation of the whole brain can be created at molecular level [Markram

et al., 2015]. Computational neuroscience plays a fundamental role at this point since its

purpose is to describe the shape and connectivity of the nervous system through computer

assisted models. At present, two fundamental branches of computational neuroscience have

been imposed. On the one hand, it is intended to represent the brain from its synaptic

activity, understanding synapse as the structure that allows the transduction of signals from

a neuron to a target cell [Dayan and Abbott, 2001; Eyal et al., 2018]. On the other hand,

the objective is to associate the shape of the components to the roles that they play by

analysing the structural characteristics of specific components to perform an individualized

neuron by neuron analysis of their morphological characteristics [Clark et al., 2005; Watson

et al., 2010]. In this dissertation we focus on the second approach to study the neuronal soma

and the dendritic spines of pyramidal neurons in the human cerebral cortex.

Chapter outline

Section 4.2 presents the pyramidal neurons and the description of their main components,

i.e., neuronal soma, dendrites and dendritic spines. Section 4.3 focuses on computational

neuroanatomy and reviews the works related to the simulation of neuronal components and

the application of BNs to modeling the brain.

http://upload.wikimedia.org/wikipedia/commons/7/72/Neuron-figure-notext.svg
http://upload.wikimedia.org/wikipedia/commons/7/72/Neuron-figure-notext.svg
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4.2 Pyramidal neurons

Human neurons are near identical to those of other mammals, and the physiology of human

nervous systems is similar to that of other species [Nolte, 2002]. The special capabilities of the

human brain arise as a consequence of its configuration. The human brain is made up of three

main parts, the forebrain or cerebrum, the midbrain or mesencephalon, and the hindbrain (see

Figure 4.2). The forebrain consists of the cerebral cortex, the subpallium, the hypothalamus,

and the diencephalon. The midbrain joins the hindbrain to the forebrain through the tectum,

the cerebral aqueduct, the tegmentum, and the basis pedunculi. The hindbrain is made up

of three major parts, the isthmus, the rhombencephalon, and the cerebellum. The end of the

rhombencephalon joins with the spinal cord.

Figure 4.2: Major subdivisions of the brain. Image in the public domain downloaded
and adapted from: https://commons.wikimedia.org/wiki/File:Diagram_showing_the_brain_

stem_which_includes_the_medulla_oblongata,_the_pons_and_the_midbrain_(2)_CRUK_294.

svg. Original image from Cancer Research UK.

Cognitive functions associated with the complex behaviors in humans are located in dif-

ferent areas of the cerebral cortex [Dickerson and Atri, 2014]. The cortex derives from a

sophisticated interpretation of the information gathered by the senses, combining it with

memory and experience in order to respond in the most optimal way to an external stimulus.

The neurons of the cerebral cortex are arranged from the surface to the deep layers in six

distinct layers [Nolte, 2002]. Each layer is distinguished from the rest by its neurons and

connections (see White and Keller [1989] for a detailed description of the layers and their

properties).

The pyramidal neurons (see Figure 4.3) were discovered and studied by Ramón y Cajal

who gave them this name because of the pyramidal shape of their neuronal soma. They are

the most abundant across all layers of the cerebral cortex [Gerfen et al., 2018] of practically

all mammals that have been studied, representing approximately between the 70 and the 85%

of the total population of neurons [Araya, 2016; DeFelipe and Fariñas, 1992], and are present

on birds, fishes and reptiles. This endorses that their existence in the nervous system has

an adaptive value to the organism and that their basic functions have been preserved during

https://commons.wikimedia.org/wiki/File:Diagram_showing_the_brain_stem_which_includes_the_medulla_oblongata,_the_pons_and_the_midbrain_(2)_CRUK_294.svg
https://commons.wikimedia.org/wiki/File:Diagram_showing_the_brain_stem_which_includes_the_medulla_oblongata,_the_pons_and_the_midbrain_(2)_CRUK_294.svg
https://commons.wikimedia.org/wiki/File:Diagram_showing_the_brain_stem_which_includes_the_medulla_oblongata,_the_pons_and_the_midbrain_(2)_CRUK_294.svg
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Figure 4.3: Example of a pyramidal neuron with its main components denoted by their names.
Image in the public domain downloaded and adapted from: https://commons.wikimedia.org/

wiki/File:1208_Other_Types_of_Neurons.jpg. Original image from OpenStax.

the evolution of the species to assume specialised functions. Pyramidal neurons are found in

the cerebral cortex, hippocampus, and tonsil body. Therefore, pyramidal neurons are found

mostly in structures that are associated with advanced cognitive functions and understanding

them is a requirement to elucidate the neuronal bases of the most sophisticated functions

[Spruston, 2008].

Anatomically, pyramidal cells are heterogeneous with regard to somal size and shape,

dendritic branching and spine density. The typical pyramidal neurons consist of a pyramidal

or ovoid soma and from its apex a large apical dendrite arises that reaches layer I, where

it forms a tuft of branches whose length depends on the depth of the soma. From the base

of the soma basal dendrites emerge laterally or downward which represent the 90% of the

dendritic length of each tree [Larkman, 1991]. Also from the base of the soma the axon arises

downwards, ending in other cortical area. Thus, the pyramidal neurons are projection neurons

[Harris and Shepherd, 2015], in fact the only projection neurons of the cerebral cortex, which

makes them the main components of the intercortical circuitry.

4.2.1 Neuronal soma

The soma, also known as the cellular body, contains a large, spheroidal nucleus (with one or

more nucleoli) where a nuclear membrane and a highly differentiated cytoplasm (perikaryon)

are placed. It can be distinguished from the dendrites and the axon because it has distinct

physiological and molecular characteristics [Szu-Yu Ho and Rasband, 2011], and these com-

partments can in general terms be identified neurochemically; for example, IκBα immunos-

taining recognizes an unidentified protein associated with the microtubule-based cytoskeleton

https://commons.wikimedia.org/wiki/File:1208_Other_Types_of_Neurons.jpg
https://commons.wikimedia.org/wiki/File:1208_Other_Types_of_Neurons.jpg
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at the axon initial segment [Buffington et al., 2012] which can be used to demarcate the axon

initial segment [e.g., Sánchez-Ponce et al., 2012; Schultz et al., 2006]. Since the soma is the

cellular body, it contains the typical organelles of living cells (mitochondria, Golgi appara-

tus, ribosomes, lysosomes, etc.) that perform most of the metabolic activities in the neuron.

These components also support the chemical processing of the neuron that origins the neu-

rotransmitters, which are the basic elements of the synapses and consequently of the brain

activity. Soma also produces proteins for dendrites, axons and synaptic terminals.

The size of a neuronal soma can range from 0.005 mm to 0.1 mm in mammals. Its aspect

is highly variable taking diverse forms, being the most representatives the star, the fusiform,

the conical, the polyhedral, the spherical and the pyramidal. Specifically, the pyramidal

is usually represented as a tetrahedron with the acute angle pointing towards the surface

of the cortex. The morphology of the soma has been identified as one of the fundamental

features for discriminating between different types of neurons [Svoboda, 2011] and a statistical

relationship has been identified between the sizes of the soma and the neuron [Rajković et al.,

2016].

4.2.2 Dendrites

Dendrites are extensions of the neuron’s cellular body. Their main function is to receive

and process input synaptic signals. Dendrites show great structural diversity even within

one neuronal class [Ramaswamy et al., 2012] and knowing the shape of the dendritic tree it

is possible to indicate the type of connectivity that exists between certain neurons. Thus,

studying dendritic trees reveals mechanisms of function in a neuron in terms of its connectivity

and computation [Cuntz et al., 2014]. Differences in their morphologies are believed to be

related to functional differences [Krichmar et al., 2002; Vetter et al., 2001] and it is considered

that they play an important role in certain pathologies. For example, large and complex

dendrites in human pyramidal neurons have been associated with high IQ [Goriounova et al.,

2018]. Also neurodegenerative diseases, autism, Parkinson, Alzheimer and others have been

linked to changes in dendritic and axonal morphology [Kaufmann and Moser, 2000; Moolman

et al., 2004; Srivastava et al., 2012].

As mentioned above, the dendritic tree of a pyramidal neuron is divided into two types, the

basal dendrite that emerges from the base of the soma emanating a spherical arborization

and the apical dendrite that makes it from the apex of the soma. All pyramidal neurons

have several basal dendrites that are usually relatively short. Usually, a long apical dendrite

connects the soma to a bunch of dendrites. The characteristics of the dendrites of a pyramidal

neuron can vary considerably between different layers, cortical regions and species.

4.2.3 Dendritic spines

Dendrites are covered with thousands of dendritic spines (for simplicity’s sake, spines), that is,

small membranous protuberances each of which receives an excitatory synapse [Nimchinsky

et al., 2002]. Although their size and shape are quite heterogeneous, they all consist of a
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head connected by a thin neck to the dendritic trunk. The spines are commonly small, not

reaching 3 µm of length, with an approximately spherical head between 0.5 and 1.5 µm of

diameter that connects to the dendrite from a narrow neck of less than 0.5 µm of diameter

[Smith et al., 2007]. Because of its size, a dendrite can hold more than 50 spines in less than

10 µm. Spines can be found in many species, from annelids to primates, and are especially

abundant in the central nervous system of vertebrates. Their predominance indicates that

they must be essential for the functioning of the brain. In fact, in most areas of the brain,

spines are the dominant structural elements covering the dendrites of the main neurons. For

example, spines can exist in a large number, including more than 200, 000 spines per neuron

in Purkinje brain cells, and are also extraordinarily abundant in the dendrites of pyramidal

neurons in the cortex.

The spines try to extend the surface of the dendritic membrane by enabling synaptic

contacts, i.e., they perform work similar to that of intestinal villus that increases the surface

of the absorption area in the gastrointestinal tract. In fact, it is known that the spines receive

the majority of excitatory inputs and that practically all the spines have an excitatory synapse

in their head. This suggests that each spine essentially corresponds to an excitatory synapse

[DeFelipe and Fariñas, 1992]. Thus, the number of spines represents a minimum estimate of

the number of excitatory synaptic inputs into a neuron, which varies ostensibly depending

on regions and species.

Numerous studies suggest that spine shape could determine their synaptic strength and

learning rules and is also related to the storage and integration of excitatory synaptic inputs

in pyramidal neurons [Araya, 2014]. Quantitative analyses have demonstrated strong corre-

lations between spine morphological variables and synaptic structure. Specifically, the spine

head volume (like the total spine volume) in the neocortex is positively correlated with the

area of the postsynaptic density (PSD) [Arellano et al., 2007]. Both parameters are highly

variable in comparisons across spines. Moreover, PSD area is correlated with the number of

presynaptic vesicles, the number of postsynaptic receptors and the readily-releasable pool of

transmitter. By contrast, the length and diameter of the spine neck are proportional to the

extent to which the spine is biochemically and electrically isolated from its parent dendrite

[Harris and Stevens, 1988, 1989; Nusser et al., 2001; Yuste and Denk, 1995; Yuste et al.,

2000]. Also, it has been shown that larger spines can generate larger synaptic currents than

smaller spines [Matsuzaki et al., 2004a]. Furthermore, dendritic spines are dynamic struc-

tures with volume fluctuations that appear to have important implications for cognition and

memory [Bonhoeffer and Yuste, 2002; Dunaevsky et al., 1999; Kasai et al., 2010; Matus,

2000]. Therefore, spine morphology appears to be critical from the functional point of view.

There are a wide variety of spine morphologies, especially in the human cortex [Benavides-

Piccione et al., 2013]. While many different classifications of spines have been proposed on

the basis of their morphological characteristics, the most widely used was introduced by

Peters and Kaiserman-Abramof [1970] which groups spines into four basic categories (see

Figure 4.4):

� Stubby: They lack a neck and are particularly prominent during postnatal development,



4.2. PYRAMIDAL NEURONS 41

Figure 4.4: Traditional classification of spines proposed in Peters and Kaiserman-Abramof
[1970], adapted from Spruston [2008].

although they are also found among adults.

� Thin: The most common spines. They are composed by a thin and elongated neck and

a small bulbous head.

� Mushroom: Those that present a big head. Commonly they are found on adults.

� Filopodium: They are elongated and usually do not have a clearly distinguishable head.

However, it has also been argued that the large diversity of spine sizes reflects a continuum of

morphologies rather than the existence of discrete groups [Arellano et al., 2007]. Automatic

clustering techniques over 2D spine representations have recently been used [Bokota et al.,

2016; Ghani et al., 2016] to address this argument with the aim of avoiding the subjectivity

and bias involved in manual analyses. Both studies consider that some spines cannot be

clearly assigned to one of Peters and Kaiserman-Abramof’s classes because these spines are

transitions between shapes.

The literature about spines has related their morphology with some brain functionalities.

For example, it has been claimed that thin spines contribute to learning, while the biggest

and steady spines are linked to memory processes. Another objective they are believed to

accomplish is to increase the surface area of the dendritic area in order to group a large

number of synapses. They also play a role in regulating the electrical properties of the

neuron.

In view of the role played by spines in synaptic transmission, it is not surprising that a

large number of human mental illnesses are associated with alterations in their morphology

or density [Basu et al., 2018; Jacobs et al., 1997]. Some of these disorders are schizophrenia,

in which the density of spines in neocortical pyramidal neurons is below average; another is

aging, whose study has focused mainly on neocortical pyramidal neurons and in which it has

been observed that subjects over 50 showed a decrease of between 9% and 10% in the total

length of their dendrites and a reduction of nearly 50% in the number of spines compared to

individuals under 50 years old. Also in mental retardation, which shows a lower density of

spines in the neocortex and hippocampus and in abnormally short and long spines. These are
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some examples to illustrate the importance of these components in brain functioning since

the list of disorders associated with spines is long and growing.

4.3 Computational neuroanatomy

Computational neuroscience [Churchland and Sejnowski, 1992; Dayan and Abbott, 2001]

emerges as a consequence of the incredible complexity of the brain to construct compact

representations of neurobiological processes through computer-assisted models and simulate

the structure of the nervous system to different scales. This research field provides the tools

to address the question of how nervous systems operate on the basis of known anatomy,

physiology and circuitry [Dayan and Abbott, 2001] by developing and testing hypotheses

of the functional mechanisms of the brain. Some brain models covered by computational

neuroscience are neuron and spike production [Dayan and Abbott, 2001; Eyal et al., 2018],

conductance-based models [Prinz et al., 2003], firing-rate models of large-scale circuit oper-

ation [Abbott, 1991; Heiberg et al., 2018], and computational generation and quantitative

morphometric analysis of virtual neurons [Ascoli et al., 2001].

Computational neuroanatomy [Ascoli, 1999, 2002] consists of the study of the shape and

structure of the nervous system. Data acquisition for the morphological analysis of a neuron

usually requires of cell-labeling methods such as those based on biocytin or green fluorescent

protein [Ascoli, 2006]. Then, a reconstruction of the neuron can be achieved using high-

throughput electron microscopy and software tools for 3D neuron tracing as for example

Neurolucida [Glaser and Glaser, 1990], FilamentTracer of Bitplane Imaris software [Worbs

and Förster, 2007] or Neuronstudio [Rodriguez et al., 2008; Wearne et al., 2005] among

others. These tools usually try to prevent or repair some artifacts introduced by noise, low

resolution introduced by the diffraction limitation, or background gradients [Meijering, 2010].

A reconstruction represents all the morphological information allowing for easy computation

and statistical analysis of a plethora of morphometric variables [Ascoli, 2006].

There are several options to quantify the neuronal structure [Meijering, 2010]. A distinc-

tion can be made between topological measures that focus exclusively on the connectivity

pattern and the analysis of physical distances, or between mathematical concepts such as

differential geometry, symmetry axes, and complexity [Costa et al., 2002]. Also different

approaches are followed depending on the neuronal component to be quantified. Soma is

usually evaluated in terms of its size and volume [Uylings and van Pelt, 2002], although

other geometrical measures as its sphericity or ellongation have been considered [Masseroli

et al., 1993]. Some basic morphometrics applied for the characterisation of dendrites are

total height, width, depth, length, volume of the tree and subtrees or the distance to the

soma [López-Cruz et al., 2011]. Also a widely applied method is the Sholl analysis [Sholl,

1953] which uses concentric spheres to measure the spatial distribution of a dendritic arbor.

Dendritic spines are usually characterised by the head to neck ratio, head and neck diameter,

spine length and volume [Rodriguez et al., 2008; Shi et al., 2014]. Very recently, Basu et al.

[2018] have proposed a basic mathematical notation to define different key spine compart-
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ments (e.g., spine head and spine neck) and have extracted some morphometric features as

the base of the spine, the central base point, the center of the head, and the tip of the spine

to classify the spines in the groups defined by Peters and Kaiserman-Abramof (see Figure

4.4).

4.3.1 Simulation of neuronal components

As discussed in Section 4.1, one of the main objectives of projects such as the Human Brain

Project, the Cajal Blue Brain or the BRAIN initiative is to create a large-scale simulation of

the brain using supercomputers. Computational neuroanatomy provides the tools to build

data-driven models from which to simulate virtual neuronal components. The parameters of

these models are computed from a set of random variables describing the morphology of the

neuronal component which reduces the problem of simulating to sampling from a probability

distribution. Advantages of this approach are that it is not necessary to store large volumes of

data because all the information is summarised in the mathematical model and moreover the

analysis of the model provides insights about the characteristics of the neuronal components.

Literature has mainly focused on the simulation of dendrite arborizations [Mainen and

Sejnowski, 1996; Vetter et al., 2001]. Usually, these algorithms perform a recursive branching

process where the characteristics of the following branches of the dendrite are sampled from

the model. Based on the software L-Neuron [Ascoli and Krichmar, 2000; Donohue et al.,

2002], Donohue and Ascoli [2008] examined dendritic elongation, branching, and taper to

stochastically generate bifurcations and branches. López-Cruz et al. [2011] extended this

work including a more complete set of variables and using a BN to consider the relations

among the variables. Other software is NETMORPH [Koene et al., 2009], that simulates

neuronal morphogenesis from the perspective of an individual growth cone, stochastically

sampling the elongation, branching and turning of the dendritic tree.

Computational neuroscience has been also applied to recover or repair incomplete recon-

structions of cells. For example, dendritic arborisations can be incomplete when they pass

the limit of the microscope during the reconstruction process. A repairing algorithm was

presented in Anwar et al. [2009] based on a probabilistic analysis of branch characteristics

at various distances from the neuron soma. The method reconstructs the missing portion

of the incomplete dendritic arborisations by sampling branches from a pool of completely

reconstructed dendrites and joining them to the incomplete dendrites according to the simi-

larity between the completely reconstructed arborisations and the incomplete dendrites. Note

that this strategy makes strong assumptions about the morphology of the dendrites: (i) the

growth of the new dendritic branches only depends on the dendritic branches closer to the

soma and (ii) the pool of completely reconstructed dendrites is big enough to capture all

the fundamental dendritic morphologies. Also, soma is usually ignored or in the best case

assumed to be a sphere by neuron tracing software. Neuronize [Brito et al., 2013] consists of

a set of methods designed to build a realistic and accurate 3D shape of the soma from the

incomplete information stored in the digitally traced neuron.
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4.3.2 Bayesian networks in neuroanatomy

BNs are a suitable tool for modelling in neuroscience given that they provide the mech-

anisms to learn the relations between variables and perform probabilistic reasoning un-

der uncertainty. They have been succesfully applied in several neuroscientific problems as

neuroanatomy, electrophysiology, genomics, proteomics, transcriptomics, and neuroimaging

[Bielza and Larrañaga, 2014].

One of the problems addressed through BNs in neuroanatomy is the classification of

GABAergic interneurons according to axonal arborization patterns [DeFelipe et al., 2013].

López-Cruz et al. [2014] developed a web-based interactive system where 42 experts in the

field described the axonal arborization of 320 cortical interneurons according to six variables.

Then, they developed a consensus model in the form of a Bayesian multinet learning a BN

classifier from the data of each expert to discriminate among the interneuron classes. Based

on the same dataset, Mihaljević et al. [2015] form different subsets of neurons by increasing

the threshold on label reliability, which they defined as the minimal number of neuroscientist

agreeing on the majority type of neuron. Then, they apply BN classifiers on each data subset

to test if reliability on the type of neuron can help to categorized interneurons accurately.

Also Mihaljević et al. [2018] trained several classification algorithms to classify a set of 217

rat interneurons.

Bayesian classifiers have been also applied to discriminate between pyramidal cells and

interneurons from mouse neocortex based on their morphological features. Guerra et al. [2011]

used a database of 327 cells and 65 morphological features for learning a näıve Bayes classifer,

among other models, and evaluated the performance against a test dataset to automatically

distinguish between pyramidal cells and interneurons (without using the existence/absence

of the apical dendrite as a predictor feature).

As discussed above, BNs have been used to model and simulate dendritic trees. López-

Cruz et al. [2011] measured a set of morphological variables from layer III pyramidal neurons

from different regions of the mouse neocortex collection information mainly about the sub-

tree and subdendrite, segment length, orientation, and bifurcation. Then, they suggested a

simulation algorithm to generate virtual dendrites by sampling from the BNs.
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Chapter 5
Directional-linear Bayesian

networks for clustering

5.1 Introduction

The study of a plethora of phenomena requires the measurement of their magnitude and

direction. Examples are meteorology [Carta et al., 2008], rhythmometry, medicine, demog-

raphy [Batschelet et al., 1973; Batschelet, 1981], earthquake prediction [Love and Thomas,

2013; Thomas et al., 2009a,b, 2012] or neuroscience [Leguey, 2018]. Typically, when this

data is collected, an exploratory analysis is performed to reveal patterns. Cluster analysis

partitions data into groups of homogeneous observations. A probabilistic clustering approach

is model-based clustering [Fraley and Raftery, 2002; McLachlan and Basford, 1988; Melnykov

and Maitra, 2010]. Finite mixtures of Gaussians are the most commonly used distribution

in model-based clustering because they can approximate any non-directional multivariate

density given enough components [Titterington et al., 1985]. However, directional data has

special properties that conventional statistics cannot handle. To address this problem several

distributions have been proposed in the directional statistics literature to cluster directional-

linear data (see Section 3.3.3 and Section 3.4). The main drawbacks of these models are that

it is complex to extend them beyond the bivariate case and they have restrictive assumptions

of conditional independence among the variables that limits their expressiveness.

Here we propose approaches based on exploiting the conditional independence assump-

tions encoded by a BN to enable efficient clustering of multivariate directional-linear data.

We introduce three mixture models, from simpler to more expressive. We start defining a

näıve Bayes mixture model to cluster multivariate directional data to finally introduce the

Extended Mardia-Sutton mixture model, whose mixture components are distributed accord-

ing to a newly proposed multivariate probability density function represented as a BN that

is able to capture the directional-linear correlations. Thus, the latter mixture model extends

the previous models proposed in the literature by relaxing the independence constraints to

include relations between directional and linear variables. Additionally, we use the SEM al-
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gorithm [Friedman, 1997] to capture the relations among the random variables at the same

time that we discover the clusters. We also derive the Kullback-Leibler divergence [Kullback

and Leibler, 1951] and Bhattacharyya distance [Bhattacharyya, 1946] for these models as

measures of the quality of the clustering outcomes.

Experimental results will empirically demonstrate the advantages of performing cluster-

ing using directional-linear clustering techniques over using Gaussian mixture models which

cannot capture the periodicity of directional data leading to poor approximations. Numerical

evaluation of our clustering methods suggest that the learned models always obtain better

results than a Gaussian mixture model in the presence of directional data and that they

are able to discover the conditional independence relationships between variables during the

clustering process.

The content of this chapter has been published in Luengo-Sanchez et al. [2016] and

Luengo-Sanchez et al. [2019].

Chapter outline

In Section 5.2 we propose a finite mixture model based on the näıve Bayes assumption to

obtain closed-form equations for clustering multivariate directional data. In Section 5.3 we

add linear variables to the above model, learning the conditional dependences between the

linear variables through the SEM algorithm. In Section 5.4 we propose a generalisation

of the previous models based on the new Extended Mardia-Sutton distribution to include

directional-linear relations between variables. For the models proposed in Section 5.2, Section

5.3 and Section 5.4 we derive the Kullback-Leibler divergence and the Bhattacharyya distance

as measures of similarity between the mixture components. We provide experimental results

that numerically evaluate the suitability of the models. Section 5.5 closes the chapter with

the conclusions.

5.2 Näıve Bayes von Mises mixture model

Here, we exploit the conditional independence encoded by BNs to perform efficient clustering

of directional data D = {y1, ...,yN} distributed according to the vector of directional random

variables Y. Our assumptions about the model are that the dataset D has no missing values,

that the directional variables in set Y are conditionally independent given the latent variable

Z and that the directional variables follow the vM distribution. Figure 5.1 shows a graphical

representation of the BN structure for the proposed model which corresponds to the NB

model.

We choose the NB structure because its factorisation can solve the problems related to

parameter estimation for the multivariate vM distribution. To exploit the benefits of NB

factorisation, however, data must be complete. This is not the case in clustering because

latent variable Z is unobserved. Hence, we need to apply the EM algorithm. First, we

compute the expected values of Z for the cluster 1, ...,K, where K is the number of clusters,

according to the E-step (Equation (2.12)). This completes the data so, according to Equation
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Figure 5.1: Graphical structure G for the näıve Bayes model when all the variables are
directional. The latent or hidden variable Z is the parent of all the variables, ruling out all
other arcs. Thus, given Z, all the variables are conditionally independent of each other.

(2.1), the joint p.d.f. can be factorised to

f(Y;θ) =

K∑
k=1

p(Z;θk)

D∏
d=1

fVM(Yd|Z;θk), (5.1)

which is a product of conditional probabilities such that each variable of the model con-

tributes a factor of that product. This representation shows that NB naturally extends to

D-dimensional data, which is one of the benefits of this factorisation.

Once the E-step has been calculated, parameter estimation is carried out in the M-step.

Substituting the joint p.d.f. of Equation (5.1) in Equation (2.13) results in

θ̂ = argmax
θ

N∑
i=1

K∑
k=1

p(zi|yi;θk)

[
D∑
d=1

log fVM(yid|zi;θk) + log p(zi;θk)

]
.

Thus, the sum of the log-likelihood of each variable must be maximised for each cluster

to compute the MLE of θ in the mixture. Representing MLE as a summation simplifies

parameter estimation so that each variable is optimised locally, i.e., independently of the

others. The biggest advantage of this property is that MLE equations are closed-form and

are computed efficiently for each variable Yd of cluster k as [Calderara et al., 2011]

µ̂kd = arctan

(∑N
i=1 p(z

i|yi;θk) sin yid∑N
i=1 p(z

i|yi;θk) cos yid

)
,

κ̂kd = A−1

(∑N
i=1 p(z

i|yi;θk) cos(yid − µ̂kd)∑N
i=1 p(z

i|yi;θk)

)
,

(5.2)

where A(κ̂kd) =
I1(κ̂kd)

I0(κ̂kd)
(see Equation (3.3)). An accurate approximation for function A−1(·)

is presented in [Best and Fisher, 1981]. The prior probability of cluster k is computed as

p(Z;θk) =
1

N

N∑
i=1

p(zi|yi;θk). (5.3)
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This approach based on exploiting independence constraints avoids the numerical optimi-

sation needed for the mixtures of bivariate and multivariate vM distributions [Mardia et al.,

2007, 2012]. It also ensures that the likelihood increases monotonically in each step of the

EM algorithm until convergence to a local maximum even though data is not highly concen-

trated. The main limitation of this model is that it assumes conditional independence among

all the variables within each cluster. Although there are few real-world cases where the NB

assumption holds, usually its accuracy is competitive and it has a small generalisation error.

5.2.1 Kullback-Leibler divergence and Bhattacharyya distance

The performance of the clustering algorithms depends on the separability of the mixture com-

ponents [Sun and Wang, 2011]. In addition, the identification and interpretation of clusters

are easier when groups are homogeneous, i.e., when the instances ascribed to each cluster

belong to their cluster with a high probability. The overlap between probability distributions

provides a quantitative description of these desirable properties, but its computation is often

intractable analytically. For this reason, overlapping is usually replaced by similarity mea-

sures between distributions. Among them, the most widely used are the relative entropy or

Kullback-Leibler divergence (KL) and the Bhattacharyya distance (BD) . The KL divergence

and the BD can be expressed in closed-form for the above model after decomposing the joint

p.d.f. according to the independence assumptions encoded by the BN structure.

5.2.1.1 Kullback-Leibler divergence

The KL divergence is defined as a measure of the difference between two distributions

DKL(P (Y)||Q(Y)) =

∫
Y
P (Y) log

P (Y)

Q(Y)
dY,

where P (Y) and Q(Y) denote, respectively, the p.d.f. of distributions P and Q for a set of

random variables. In this case, the KL divergence factorises according to the chain rule of

relative entropy [Cover and Thomas, 1991] as

DKL(P (Y)||Q(Y)) =

D∑
d=1

DKL(P (Yd)||Q(Yd)).

Thus, the KL divergence for the joint p.d.f. decomposes as a sum of KL divergences between

univariate vM distributions.

We define the two univariate vM distributions P (Yd) and Q(Yd) (Equation (3.2)) for the

directional variable Yd as

P (Yd) = fVM(Yd;µ
P
d , κ

P
d ) and Q(Yd) = fVM(Yd;µ

Q
d , κ

Q
d )

respectively. Then, for the sake of simplicity in the calculations, distributions P (Yd) and

Q(Yd) are rotated according to µPd , giving as results the means µpd = µPd − µPd = 0 and
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µqd = µQd − µ
P
d . The concentration parameters of the rotated distributions does not change

after the transformation operation so κpd = κPd and κqd = κQd . Note that the rotation does

not change the concentration of the distributions. The KL divergence for the univariate vM

distribution after the rotation is

DKL(P (Yd)||Q(Yd)) = log I0(κqd)− log I0(κpd) +A(κpd)
(
κpd − κ

q
d cos(µqd)

)
. (5.4)

A detailed derivation of this KL divergence between two univariate vM distributions can be

found in Appendix B.3.

5.2.1.2 Bhattacharyya distance

The BD is a measure of the separability between two distributions that has been widely used

in classification [Fukunaga, 1972]

DB(P (Y), Q(Y)) = − ln

(∫
Y

√
P (Y), Q(Y)

)
dY.

The computation of the BD also benefits from the conditional NB assumption. More con-

cretely, the BD factorises according to

BD(P (Y), Q(Y)) = − ln

∫
Y

√√√√ D∏
d=1

fVM(Yd;µ
P
d , κ

P
d ) ·

D∏
d=1

fVM(Yd;µ
Q
d , κ

Q
d )dY

= − ln

D∏
d=1

1

2π
√
I0(κPd )I0(κQd )

∫
Y
e
κPd
2

cos(Yd−µPd )e
κ
Q
d
2

cos(Yd−µQd )dY

= − ln
D∏
d=1

BC(P (Yd), Q(Yd)) =
D∑
d=1

BD(P (Yd), Q(Yd)),

(5.5)

giving as result a closed-form expression that consists of the sum of univariate BD. The BD

between two univariate vM distributions is derived in Appendix B.2 as

BD(P (Yd), Q(Yd)) = − lnBC(P (Yd), Q(Yd)) = − ln(I0(R)) +
ln(I0(κPd )) + ln(I0(κPd ))

2
,

where

R =
√
a2 + b2

a =
κPd
2

cos(µPd ) +
κQd
2

cos(µQd )

b =
κPd
2

sin(µPd ) +
κQd
2

sin(µQd ).
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Table 5.1: Comparison of parameter estimation between vM and Gaussian mixture models
changing the sample size. Each cluster is denoted by Cl., followed by its number. For the
Gaussian mixture model the concentration parameter was approximated as 1/σ2. We use
boldface to denote the value of the distribution that best fits each parameter for each cluster.

Variable Parameters Original
Cl. 1 Cl. 2 Cl. 3

Θ
µΘ 0 π/2 π
κΘ 1 1 1

Φ
µΦ 0 π/2 π
κΦ 2 2 3

N = 30

Variable Parameters vM mixture model Gaussian mixture model
Cl. 1 Cl. 2 Cl. 3 Cl. 1 Cl. 2 Cl. 3

Θ
µ̂Θ -0.53 1.68 2.77 0.79 2.1 5.57
κ̂Θ 3.89 2.94 1.44 2.44 1.26 5.66

Φ
µ̂Φ 0.54 0.77 3.19 0.79 1.71 6.06
κ̂Φ 2.89 2.22 3.18 2.87 0.3 100

N = 300

Variable Parameters vM mixture model Gaussian mixture model
Cl. 1 Cl. 2 Cl. 3 Cl. 1 Cl. 2 Cl. 3

Θ
µ̂Θ -0.36 1.59 2.87 5.03 1.62 3.25
κ̂Θ 1.4 1.34 0.58 1.13 1.06 0.29

Φ
µ̂Φ 0.08 1.27 3.25 4.87 1.48 1.84
κ̂Φ 1.85 1.47 3.33 0.66 0.5 0.92

5.2.2 Experiments

In this section, we numerically evaluate the proposed model by clustering artificial datasets

and measuring the accuracy of the estimated parameters. This study should highlight the

differences of applying a linear distribution in place of a directional distribution for direc-

tional data modeling. For all the experiments, data was simulated to find out beforehand

the component of the mixture that generated each instance and the model parameters for

comparison with the outcome of the experiment. For each experiment we rebooted the al-

gorithm 10 times, changing the initial parametrisation each time. We saved the model that

maximised the BIC score.

In the first place, we evaluated the goodness of fit of the model based on mixtures of

NB for vM variables which we compare with the Gaussian mixture model. To do this, we

simulated data from three clusters and two variables Θ ∼ fVM (µΘ, κΘ),Φ ∼ fVM (µΦ, κΦ).

We set the concentration parameters to low values so clusters overlap. We analysed the

goodness of fit of both models depending on the sample size (N = 30, 300).

Results from Table 5.1 show that the mixtures of NB for vM variables yield better re-

sults for estimating the mean of the distributions, especially when the mean is 0, than the

Gaussian mixture model, which fails due to the special properties of the directional data.
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Table 5.2: Hit rate of vM vs Gaussian mixture models. We simulated 100 instances from
each cluster. The best results are denoted in boldface.

vM mixture model Gaussian mixture model
N. Cl./N. Var. 10 25 50 10 25 50

3 99% 100% 100% 94.6% 99.6% 68.33%
5 97% 100% 100% 47.2% 59.2% 100%
10 56.2% 99.1% 100% 38.7% 40.4% 38.3%

When the sample size increases, the proposed model further improves the estimation of the

concentration parameters.

Then, we evaluated the performance of the clustering algorithm by changing the number

of clusters (K = 3, 5, 10) and variables (M = 10, 25, 50). Modifying the number of variables

provides information about the accuracy of the model when data is concentrated or sparse.

Varying the number of clusters in a bounded and fixed space we measure the performance

of the method as more clusters overlap. For the experiment, complete data was available,

i.e., variables and cluster labels were known. We started by hiding the cluster label of all

instances and clustering the data. We crisply assigned each instance to the cluster with

maximum membership probability. As a result, each instance belonged to one group. Then,

we compared the real label with label provided by the clustering algorithm to get its hit rate.

The accuracy of the proposed model was compared against the Gaussian mixture model, see

Table 5.2.

Analysing Table 5.2 we find that mixtures of vM distributions improve their accuracy as

the number of variables increases. This is because clusters are further apart and consequently

easily separated in higher dimensions. The opposite applies when the number of clusters

grows. In this case the clusters overlap. Therefore, the boundaries between them are not

clearly defined, and clustering algorithms are less accurate. However, the Gaussian mixture

model behaves differently. Even though data sparsity increases when the number of variables

is 50, the accuracy of Gaussian variables decays for 3 and 10 clusters with respect to the case

when there are 25 variables. For all cases vM clustering achieves better results than Gaussian

mixture models.

5.3 Hybrid Gaussian-von Mises mixture model

As discussed in Section 3.1, some practical scenarios involve several linear and directional

variables. The clustering models proposed under this data configuration are generally based

on learning multivariate probability distributions whose variables are conditionally indepen-

dent given the latent variable (Section 3.4). The representation of these models as a BN is

equivalent to preset a fixed structure. However, discovering the graph topology provides in-

formation about the relations of dependence between variables and may improve the model’s

accuracy. The SEM algorithm (see Section 2.5 and Algorithm 1) defines a flexible approach to

clustering, automatically learning the structure of the network during the clustering process.
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Input: Dataset D
Output: Best BN structure G∗ and parameters θ∗

1 select G0 and θ0;
2 loop for j = 0, 1, . . . until convergence
3 θs ← θj+1;
4 loop for s = 0, 1, . . . until convergence
5 // E-step

6 let D+
s be the completed dataset inferred from D and θs;

7 // M-step

8 let θs be arg maxθ `((Gj ,θ)|D+
s );

9 Gj+1 ← Gs,θj+1 ← θs, D+
j+1 ← D+

s ;

10 // hill climbing procedure

11 loop for s = 0, 1, . . . until convergence
12 let c be the set of local changes that can be applied to Gj ;
13 loop for each c in c
14 let G′ be the result of applying c to Gj ;
15 let θ′ be arg maxθ `((G′,θ)|D+

j+1);

16 if BIC(D+
j+1, (G′,θ′)) > BIC(D+

j+1, (Gj+1,θj+1)) then

17 Gj+1,θj+1 ← G′,θ′;
18 G∗,θ∗ ← Gj+1,θj+1;

Algorithm 1: Pseudocode of the SEM algorithm

The proposed multivariate model aims to fit directional-linear data, so some relations

between variables must be constrained in the learning structure step of the SEM algorithm

to exploit factorisation efficiently. To achieve that, we must omit correlations between di-

rectional variables due to the intractability of the normalisation constant of the multivariate

directional distributions (see Section 3.3.2). Therefore, given Z, the independence assump-

tion between directional variables is mandatory to design an efficient clustering algorithm.

We also assume that linear and directional variables follow Gaussian and vM distributions

respectively, and that linear and directional variables are conditionally independent given

the latent variable Z. As a result, we set a scenario where Gaussian dependencies are freely

learned by SEM algorithm (without constraints), the structure of vM variables is fixed and

dependencies between Gaussian and vM variables are ruled out (Figure 5.2). We denote this

model as the hybrid Gaussian-von Mises model.

Given a set of linear X = {X1, X2, ..., XL} and directional Y = {Y1, Y2, ..., YD} variables,

the first step of SEM algorithm is the optimisation of the parameters according to the EM

algorithm (lines 4-8 of Algorithm 1). We find that, after computing the expected values of Z

according to the E-step (line 6), the distribution encoded by the hybrid Gaussian-von Mises

model is factorised as

f(X,Y;θ) =

K∑
k=1

p(Z;θk)

L∏
l=1

fN (Xl|PaGXl , Z;θk)

D∏
d=1

fVM(Yd|Z;θk). (5.6)
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Figure 5.2: An example of the graphical structure G for the hybrid Gaussian-von Mises model.
The structure of Gaussian variables is learnt during the clustering process. vM variables are
independent given Z which is the parent of all the variables. There is no dependence between
Gaussian and vM variables.

where PaGXl ⊂ {X, Z} and Z ∈ PaGXl . Here, the difference between Equations (5.1) and

(5.6) lies in the product of conditional Gaussian distributions. Given the set of parents

PaGXl = {U1l, ..., UT l, Z} of variable Xl in Equation (5.6), each linear Gaussian (see Section

2.4.3.2) is defined as

fN (Xl|PaGl ;θk) = fN (βk0l + βkl
>

X, σ2,k
l ) = fN (βk0l +

T∑
t=1

βktlUtl, σ
2,k
l ),

where (βk0l,β
k
l ) is the vector of regression coefficients and σ2,k

l is the variance of variable Xl

for cluster k, βktl are the non-zero coefficients in βkl , and T are the number of βktl coefficients.

Note that, for those variables X 6∈ PaGXl , their regression coefficients are zero. When the only

parent of a Gaussian variable is Z, then β0k = µkl .

In Section 5.2, NB dependence constraints among variables were exploited to factorise

the joint p.d.f. as a product where each factor corresponded to one variable. When they

were combined using the EM algorithm to estimate the cluster parameters, the parameters of

each variable were maximised independently of the others, resulting in closed-form equations.

The advantages provided by the factorisation of the NB structure on directional data are now

extrapolated to achieve a model for multidimensional hybrid data. Parameter estimation is
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tackled by the M-step (line 8) substituting the joint p.d.f. by its factorisation (5.6):

θ̂ = argmax
θ

N∑
i=1

K∑
k=1

p(zi|xi,yi;θk)

[
L∑
l=1

log fN (xil|uil, zi;θk)

+

D∑
d=1

log fVM(yid|zi;θk) + log p(zi;θk)

]
.

As in the vM model for clustering, due to the independence assumption represented by

the structure, MLE entails maximising a sum of log-likelihoods. Therefore, the parameters

are locally estimated for the vM distributions according to Equation (5.2). For the Gaussian

variables we have to estimate the regression coefficients and the variance. Let

ED[X] =

N∑
i=1

p(zi|xi,yi;θk)xi (5.7)

be the weighted expectation of a random variable X. Then, the regression coefficients are

obtained solving the following system of equations

ED[Xl] = β̂k0lED[1] + · · · + β̂kT lED[UT l]

ED[Xl · U1l] = β̂k0lED[U1l] + · · · + β̂kT lED[U1l · UT l]
...

...
...

ED[Xl · UT l] = β̂k0lED[UT l] + · · · + β̂kT lED[UT l · UT l].

(5.8)

Once the coefficients are known, the variance of Xl is computed as

σ̂2,k
l =

∑N
i=1 p(z

i|xi,yi;θk)(xil − β̂k0l −
∑T

t=1 β
k
tlu

i
tl)

2∑N
i=1 p(z

i|xi,yi;θk)
, (5.9)

where uitl denotes the i-th instance of t-th random variable in Ul. The prior probability of

cluster k is computed as

p(Z;θk) =
1

N

N∑
i=1

p(zi|xi,yi;θk). (5.10)

The expectation and maximisation steps iterate until convergence.

The EM algorithm outputs complete data D+
s and a set of parameters θs. SEM applies

this outcome to learn the structure of the BN (lines 11-17). When complete data is available

(line 9), heuristic search algorithms optimise the score locally due to the decomposability

property. Thus, part of the network topology can be optimised, while the rest remains

unchanged. We exploit this point to search an optimal structure for the Gaussian variables.

We choose the BIC score to search for the best structure because it guarantees that the

algorithm always converges to a local maximum (line 16).
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5.3.1 Kullback-Leibler divergence and Bhattacharyya distance

As in Section 5.2.1, we exploit the conditional independences encoded by the BN to obtain a

close-form expression for the KL divergence and the BD for the hybrid Gaussian-von Mises

model.

5.3.1.1 Kullback-Leibler divergence

The KL divergence between two hybrid Gaussian-von Mises distributions is defined as

DKL(P (X,Y)||Q(X,Y)) =

∫
X,Y

P (X,Y) log
P (X,Y)

Q(X,Y)
dXdY, (5.11)

where P (X,Y) and Q(X,Y) denote, respectively, the p.d.f. of distributions for a set of

linear and directional random variables. Because of the conditional independence assumption

among directional variables and linear variables we can apply the chain rule of relative entropy

to factorise the KL divergence as

DKL(P (X,Y)||Q(X,Y)) =
D∑
d=1

DKL(P (Yd)||Q(Yd)) +DKL(P (X)||Q(X)). (5.12)

Therefore, the KL divergence calculation involves the sum of the KL divergences of univariate

directional variables and the KL divergence between multivariate Gaussian distributions (see

Equation (5.6)).

In Section 5.2.1 we derive the Equation (5.4) to compute the KL divergence between two

univariate vM distributions. Hence, we only have to compute the KL divergence between

two multivariate Gaussian distributions which is given by the well-known equation

DKL(P (X|Y)||Q(X|Y)) =
1

2

[
Tr(Σ−1,QΣP )

+ (µQ − µP )>Σ−1,Q(µQ − µP )− L+ ln
|ΣQ|
|ΣP |

]
, (5.13)

where µP and µQ are the means and ΣP and ΣQ are the covariance matrices of the multi-

variate conditional Gaussian distributions represented by distributions P (X) and Q(X), L is

the number of linear variables, and | · | is the determinant.

5.3.1.2 Bhattacharyya distance

Exploiting the conditional independence assumption introduced by the BN structure we can

compute the BD between two hybrid Gaussian-von Mises distributions P (X,Y) andQ(X,Y).
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Because the linear variables are assumed to be Gaussian, the BD factorises as

BD(P (X,Y), Q(X,Y)) = − ln

∫
X

∫
Y

√√√√fN (X;µP ,ΣP )
D∏
d=1

fVM(Yd|µPd , κPd )

·

√√√√fN (X;µQ,ΣQ)

D∏
d=1

fVM(Yd|µQd , κ
Q
d ).

Note that bold µ denotes the mean of the multivariate Gaussian while µd refers to the mean

of the directional variable d. Then, as the linear and directional variables are independent,

we can reorder the terms as

BD(P (X,Y), Q(X,Y)) =− ln

∫
X

√
fN (X;µP ,ΣP )fN (X;µQ,ΣQ)

− ln

∫
Y

√
fVM(Yd|µPd , κPd )fVM(Yd|µQd , κ

Q
d ).

Therefore, the BD is computed locally for linear and directional variables. The the well-known

expression for the BD between two multivariate Gaussian is

BD(fN (X;µP ,ΣP ), fN (X;µQ,ΣQ)) =
1

8
(µP −µQ)>Σ−1(µP −µQ) +

1

2
ln

(
|Σ|√
|ΣP ||ΣQ|

)
.

(5.14)

where Σ = ΣP+ΣQ

2 . In Section 5.2.1.2 we introduced the expression for the BD between

two multivariate vM distributions where all its variables are conditionally independent (see

Equation (5.5)). Hence, the BD between two hybrid Gaussian-von Mises distributions can

be computed as

BD(P (X,Y), Q(X,Y)) =
1

8
(µP − µQ)>Σ−1(µP − µQ) +

1

2
ln

(
|Σ|√
|ΣP ||ΣQ|

)

−
D∑
d=1

ln(I0(R)) +
ln(I0(κPd )) + ln(I0(κPd ))

2

5.3.2 Experiments

To achieve a deeper insight into the suitability of the hybrid Gaussian-von Mises model

for clustering tasks, we evaluate it numerically clustering artificial datasets and measuring

the accuracy of the estimated parameters. More concretely, we adapted the experiments of

Section 5.2.2 to directional-linear data. We started by validating the goodness of fit and the

structure learnt by the model. To do this, we manually defined a BN with five Gaussian

nodes and two vM nodes (Figure 5.3) setting the number of clusters to 3. We simulated 100

instances of this BN for each cluster. Then, we applied the hybrid Gaussian-von Mises model

to learn the model parameters and the structure from Gaussian variables.
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Figure 5.3: Original structure of the BN learnt the by hybrid Gaussian-von Mises model.
The SEM algorithm approximates the original structure quite well but drops the arc from
X5 to X3.

We measured the distance between the original and the learnt structure according to the

Hamming distance, i.e., the number of changes in a BN structure needed to turn it into

another. The operations are add an arc, drop an arc or revert arc. Figure 5.3 shows that

we only need to add one arc (X5 → X3) to achieve the original structure, so the Hamming

distance was one and the structure was an accurate approximation.

Table 5.3 shows the results of parameter estimation. First, we observe that X3 has

one parameter less because the learnt structure missed an arc with respect to the original

structure. The elimination of the coefficient β5 is offset by the remaining coefficients β̂0

and β̂1. Despite this fact, the value of σ̂ accurately approximates the original value for

that variable. Also note that good approximations were obtained for most of the estimated

parameters, except in some cases like the mean of X1 for cluster 2 and the mean of X2 for

cluster 3. Of particular note are the good results for the directional variables, especially for

the means.

Next, we look at the performance of the hybrid Gaussian-von Mises model by changing

the proportional number of Gaussian and vM variables, as well as the number of clusters.

We simulated three different datasets to evaluate the model and compare it with multivariate

Gaussian mixture models. The first dataset had an equal number of linear and directional

variables and consisted of five Gaussian and five vM variables. The second dataset had more

linear variables: 15 Gaussian and 5 vM variables. The third dataset had 5 Gaussians and 15

vM variables. Again we hid the cluster label of the instances for data clustering.

According to Table 5.4 the hybrid Gaussian-von Mises overcomes the Gaussian mixture

model in all the proposed scenarios. The hybrid Gaussian-von Mises yields better results

when there is an equal number of linear and directional variables and a low dimensional
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Table 5.3: Parameter estimation of hybrid Gaussian-von Mises model with respect to the
original model.

Original

Variable Parameters Cl. 1 Cl. 2 Cl. 3

X1
β0 0 1 0
σ 1 2.27 2.27

X2
β0 0 0 1
σ 1.4 2 2

X3
β0, β1, β5 0.04,1.05,0.11 -0.65,0.19,1.47 0,0.29,0.96

σ 1.4 0.75 1.24

X4
β0, β2 -0.01,0.77 -0.01,0.11 0.87,0.1
σ 1.67 1.38 1.37

X5
β0 -0.01 0.99 0.04
σ 2.3 0.99 1.03

Y1
µ 0 π/2 π
κ 1 1 1

Y2
µ 0 π/2 π
κ 2 2 3

Hybrid Gaussian-von Mises model

Variable Parameters Cl. 1 Cl. 2 Cl. 3

X1
β̂0 0.08 -0.1 -0.26
σ̂ 1.05 2.41 2.35

X2
β̂0 -0.12 0.56 0.14
σ̂ 1.34 2.09 2.01

X3
β̂0, β̂1 0.29,0.90 -0.06,-0.64 0.01,1.52
σ̂ 1.56 0.79 1.30

X4
β̂0, β̂2 0.18,0.77 0.05,0.02 0.85,0.00
σ̂ 1.77 1.36 1.29

X5
β̂0 -0.14 -0.08 -0.06
σ̂ 2.31 1.07 1.05

Y1
µ̂ 0.11 1.43 2.91
κ̂ 0.92 0.77 1.53

Y2
µ̂ -0.19 1.56 3.13
κ̂ 1.21 2.05 2.71

Table 5.4: Hit rate of hybrid Gaussian-von Mises and Gaussian mixture models. We simulate
100 instances for each cluster. We change the number of variables for the data. First we
analyse 5 Gaussian and 5 vM, then 15 Gaussian and 5 vM and finally 5 Gaussian and 15 vM.

Hybrid Gaussian-von Mises model Gaussian mixture model
N. Cl./N. Var. 5-5 15-5 5-15 5-5 15-5 5-15

3 99.6% 100% 100% 99% 99.6% 100%
5 95.4% 100% 100% 89.2% 99.8% 99.6%
10 94.6% 99.8% 100% 81.9% 99.2% 95.5%
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space. However, when there are more linear variables than directional variables, the Gaussian

mixture models turns competitive and almost tie our model. In the last trial, when the

number of directional variables surpass the number of linear variables, the proposed model

slightly outperforms the Gaussian mixture model. The hybrid Gaussian-von Mises obtained

better BIC score in all the cases.

5.4 Extended Mardia-Sutton mixture model based on Bayesian

networks

The aim of this section is to relax the limitations of all the directional-linear models shown

in Table 3.1 and the hybrid Gaussian-von Mises by developing a multivariate distribution

that accommodates more than one directional variable and allows correlations among direc-

tional and linear variables. We omit correlations between directional variables due to the

intractability of the normalisation constant of the multivariate directional distributions as

discussed in Section 5.3.

In model-based clustering, distributions of the mixture components whose MLE equations

are closed-form are preferable over distributions that require numerical optimisation methods

for parameter estimation for obvious computational efficiency reasons and to ensure conver-

gence of the SEM algorithm. One of the few cylindrical distributions whose MLE expressions

are closed-form is the Mardia-Sutton distribution (see Section 3.3.3), which also has the

advantage of being defined according to the maximum entropy distributions for directional

and linear variables, i.e., the vM and the Gaussian distributions. To model directional-

linear data, we propose the Extended Mardia-Sutton (EMS) distribution, an extension of

the Mardia-Sutton distribution from the bivariate (Equation (3.6)) to the multivariate case,

which is defined as

fEMS(X,Y;β,Q,µY,κY) =
D∏
d=1

fVM(Yd;µd, κd) · fN (X;β0 + β>1 cos Y + β>2 sin Y,Q),

(5.15)

where X has dimension L, Y has dimension D, β = (β0,β
>
1 ,β

>
2 ), β0 is a vector of length L,

β>1 and β>2 are matrices of size L×D, Q is a covariance matrix of dimension L, and cos Y,

sin Y, µY and κY are vectors of length D. The detailed derivation and estimation of the

parameters can be found in Appendix B.1.

Assuming that the dataset D has no missing values, a mixture model whose mixture

components are distributed according to the EMS distribution explicitly imposes some con-

straints on the relations between the variables. First, Z is the only parent of the directional

variables, i.e., PaGY = Z. Thus, directional variables should be conditionally independent

given the latent variable. Second, directional-linear correlations must be represented by con-

ditioning linear variables to directional variables (and not vice versa). As shown by the hybrid

Gaussian-von Mises mixture model, BNs in combination with the SEM algorithm are suit-

able tools for learning generative models that satisfy conditional independence constraints
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Figure 5.4: An example of a BN structure representing a mixture of EMS distributions. Green
nodes are Gaussian variables, orange nodes are vM variables and Z is the latent variable.
The only restriction on G is that the only parent of the vM nodes must be Z.

between variables. Both restrictions can be encoded in the BN structure G by fixing the la-

tent variable Z as the unique parent of the directional variables during the learning process.

Fig. 5.4 shows an example of a BN structure representing a mixture of EMS distributions.

Next, the directional-linear data clustering procedure for mixtures of EMS distributions

according to the SEM algorithm is described via the pseudocode of Algorithm 1. In line 1,

SEM is initialised according to a given structure G0 and a set of parameters θ0. Then, in lines

4-8, the EM algorithm iterates optimising the parameters until convergence. The dataset D
is probabilistically completed according to the E-step (see Equation (2.12)) in line 6, giving

the completed dataset D+
s as a result, where s denotes the iteration of the EM algorithm.

Once the data is complete and, consequently, the latent variable Z is observed, the joint p.d.f

factorises according to Equation (2.1) as

f(X,Y;θ) =

K∑
k=1

p(Z;θk)

D∏
d=1

fVM(Yd|Z;θk)

L∏
l=1

fN (Xl|PaGXl ;θ
k), (5.16)

where PaGXl ⊂ {X,Y, Z} and Z ∈ PaGXl . The conditional Gaussian distribution fN (Xl|PaGXl ;θ
k)

is defined as

fN (Xl|PaGXl ;β
k
l , σ

2,k
l )

= fN (βk0l + βk1l
>

X + βk2l
>

cos Y + βk3l
>

sin Y, σ2,k
l )

= fN (βk0l +

T∑
t=1

βktlUtl, σ
2,k
l ).

where βkl = (βk0l,β
k
1l,β

k
2l,β

k
3l)
> are the regression coefficients and σ2,k

l is the variance of vari-
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able Xl for cluster k, βktl are the non-zero coefficients in βk1l,β
k
2l,β

k
3l, and T are the number of

βktl coefficients. Also, we abuse notation to substitute the random variables (X, cos Y, sin Y)

by Ul = (U1l, ..., UT l) for the sake of simplicity. Note that, for those variables X,Y 6∈ PaGXl ,

their regression coefficients are zero.

Parameter estimation is tackled in line 8 by the M-step (see Equation (2.13)). The

decomposition of the joint p.d.f. reduces the MLE computation to a set of local optimisations,

one for each variable. For each latent state (k = 1, ...,K) of Z, the MLE parameters for a

directional variable Yd are computed according to Equation (5.2). The non-zero coefficients

for a linear variable Xl are estimated by solving the system of equations provided in Equation

(5.8) and the variance is estimated from Equation (5.9). Finally, the prior probability of

cluster k is computed according to Equation (5.10).

Algorithm 1 describes in lines 10-17 the hill climbing procedure for BN structure learning.

It is a greedy method that iteratively computes a score function on all of the legal networks

resulting from the application of a single operator to Gj+1 (line 12). Usually, the operators

considered are arc additions, deletions and reversions. At the end of each iteration, the hill

climbing procedure applies the operation that most improves the BIC score on the structure

Gj+1 (lines 16-17). The search for the optimal structure ends when there are no more local

changes on the structure that improve the BIC score.

5.4.1 Kullback-Leibler divergence

In this section we define the KL divergence between two EMS distributions

DKL(P (X,Y)||Q(X,Y)) =

∫
X,Y

P (X,Y) log
P (X,Y)

Q(X,Y)
dXdY,

where P (X,Y) and Q(X,Y) denote, respectively, the probability density functions of distri-

butions P and Q for a set of random variables. The KL divergence formula can be expressed

in closed-form for the EMS distribution, decomposing the joint p.d.f. according to the in-

dependence assumptions represented by the BN structure (see Equation (2.1)) and applying

the chain rule of relative entropy

DKL(P (X,Y)||Q(X,Y)) =
D∑
d=1

DKL(P (Yd)||Q(Yd) +DKL(P (X|PaGX)||Q(X|PaGX)).

Thus, the KL divergence for the joint p.d.f. factorises as a sum of KL divergences between

univariate vM distributions and a conditional relative entropy of the multivariate density

of the linear variables given their parents. The KL divergence between two univariate vM

distributions is provided in Equation (5.4) and derived in Appendix B.3. The conditional

relative entropy between distributions P and Q for the Extended Mardia-Sutton distribution

is

DKL(P (X|PaGX)||Q(X|PaGX)) =

∫
Y

D∏
d=1

P (Yd)DKL(P (X|Y)||Q(X|Y))dY.
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Given that P (X|Y) and Q(X|Y) are distributed according to a multivariate normal distri-

bution (see Equation (5.15)), the KL divergence is computed according to Equation (5.13).

For the sake of simplicity, we define µR = µQ − µP as

µR = (βQ0 − βP0 ) + (βQ1 − βP1 )
>

cos Y + (βQ2 − βP2 )
>

sin Y = βR0 + βR1
>

cos Y + βR2
>

sin Y.

The conditional relative entropy is then computed according to

DKL(P (X|PaGX)||Q(X|PaGX)) =
1

2

L∑
i,j=1

Σ−1,Q
ij

[
βR0iβ

R
0j + 2βR0i

D∑
d=1

βR1jdA(κPd )

+
D∑
d=1

βR1idβ
R
1jd

2

(
1 +

I2(κPd )

I0(κPd )

)
+

D∑
d=1

D∑
m6=d

βR1idβ
R
1jmA(κPd )A(κPm) +

D∑
d=1

βR2idβ
R
2jd

2

(
1−

I2(κPd )

I0(κPd )

)]
+

1

2

[
Tr(Σ−1,QΣP )− L+ ln

|ΣQ|
|ΣP |

]
.

where βR1id and βR2id are the d-th element of vectors βR1i and βR2i of variable Xi; β
R
0i, β

R
1i and

βR2i are the coefficients of the conditional mean corresponding to the linear variable Xi, i.e.,

the i-th elements of vectors βR0 , βR1 and βR2 ; Σ−1,Q
ij is the element at the i-th row and j-

th column of the matrix Σ−1,Q, and κPd is the concentration parameter of the distribution

P (Yd) = fVM(Yd;µ
P
d , κ

P
d ). A more detailed description of the procedure to obtain the above

expression is provided in Appendix B.4.1. In the case of the EMS distribution we did not

develop the derivation of the BD because it has not close-form equations.

5.4.2 Experiments

The main goal of model-based clustering is to recover the underlying distribution that gener-

ated the dataset used to learn the model. We compared the performance between our model

and the hybrid Gaussian-von Mises model introduced in Section 5.3 in this task measuring

the similarity of the models learnt by both approaches with respect to artificially generated

BNs. We considered the hybrid Gaussian-von Mises model for the evaluation because, to the

best of our knowledge, it is the only model in the state of the art that can cluster several

directional and linear variables.

The artificial BNs were randomly generated according to the procedure presented in

[Kalisch and Bühlmann, 2007]. Concretely, the structure G of the artificial BNs was defined

by an adjacency matrix A full of zeros with a fixed ordering of the variables such that the

directional variables were placed before the linear variables. Then, every entry in the lower

triangle of A involving at least one linear variable was replaced by the result of a Bernoulli

trial with a success probability of 0.4. Each success represented an edge of the structure

G. From matrix A the parameters of each mixture component were generated randomly as

follow:

� Each directional variable Yd ∈ Y was assumed to have a vM distribution with mean
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direction uniformly distributed around the circle, i.e. f(µd) = 1
2π , and concentration

parameter κd ∼ U(1, 5) where U(·, ·) is the uniform distribution.

� Each linear variable Xl ∈ X was distributed as a normal distribution with mean coeffi-

cients β ∼ U(−10, 10) and standard deviation σl ∼ U(1, 5). When PaGXl = ∅ the mean

was β0 ∼ U(−10, 10).

� The prior probability of each mixture component k was p(Z;θk) = 1/K where K was

the cardinality of variable Z.

Next, we set several scenarios to evaluate both models, i.e., we changed the proportion of

directional and linear variables (5-10, 10-5 and 10-10 respectively) as well as the number of

clusters (K = {3, 5, 10}). For each setting, we randomly generated ten artificial BNs. Then

for each mixture component of each artificial BN, we simulated 1000 instances. These data

were the input for the learning algorithm. We limited the maximum number of parents for

the nodes during the structure learning to five and seven parents. To reduce the probability of

convergence to non-optimal solutions SEM algorithm was initialised from 30 different random

starting points. From the complete set of solutions provided by all the restarts, we selected

the solution that maximised the BIC score.

An issue that arose when we were evaluating the performance of the models was the

non-identifiability problem of clustering. It states that for K clusters there are K! equivalent

solutions [Bishop, 2006]. Thus, to measure the similarity between the clusters of an artificially

generated BN and a learnt model, we had to find the correspondence between their mixture

components that minimise the divergence between the models. For each pair of clusters of

both models we computed the KL divergence according to the expression provided in Section

5.4.1 resulting a divergence matrix. Applying the Hungarian algorithm [Kuhn, 1955] on

this matrix we found the correspondence between clusters that minimises the sum of KL

divergences.

We used BIC score, the KL divergence and the minimum description length (MDL) prin-

ciple [Cover and Thomas, 1991] computed as

MDL = H(Q(X,Y)) +DKL(P (X,Y)||Q(X,Y))

as performance measures. Table 5.6 shows the results for both approaches. According to

the outcome, the EMS model overcomes the hybrid Gaussian-von Mises model in all the

proposed scenarios. This difference in performance between both models is justified because

the EMS model is more expressive as it can capture correlations between directional and

linear variables. In order to evaluate the differences between both approaches we used a

paired Wilcoxon signed-rank test (see Table 5.5), that is, we tested for each proposed scenario

and metric whether the difference between EMS and the hybrid Gaussian-von Mises model

followed a symmetric distribution around zero (null hypothesis H0). In almost all the cases

presented in the Table 5.5 the hypothesis tests returned a p-value lower than 0.05 thereby

rejecting the null hypothesis. The hypothesis test results on the BIC score are of special
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Table 5.5: Results for the Paired Wilcoxon signed-rank test checking if there were significant
differences between EMS model and the hybrid Gaussian-von Mises model on the KL diver-
gence, MDL and BIC score for a maximum number of five and seven parents. The symbol *
denotes that the resulting p-value < 0.05 and the null hypothesis is rejected while ** denotes
p-value < 0.01.

5 parents 7 parents
N. Cl. N. Var. KL MDL BIC KL MDL BIC

3
5-10 ** ** ** * ** **
10-5 ** ** ** ** ** **
10-10 ** ** ** ** **

5
5-10 ** ** ** **
10-5 ** **
10-10 * * ** ** **

10
5-10 ** ** ** ** **
10-5 ** ** ** ** ** **
10-10 * **

interest as it was the metric to be optimised during the learning process. In most of these

tests, the null hypothesis H0 was rejected with a p-value lower than 0.01 denoting significant

differences between both approaches.

Despite on average EMS performed better than the hybrid Gaussian-von Mises model

when there were five clusters, ten directional variables and five linear variables, the null

hypothesis H0 for the KL divergence and the MDL was not rejected for five either seven

parents. This scenario is characterised by its unusually high standard deviation for the EMS

model which is motivated by an extremely bad result in one of the ten BNs.

5.5 Conclusions

Although the most common approach for modeling directional data is by means of Gaussian

mixture models, this data has some special properties that rule out the use of classical statis-

tics. Therefore, assuming that directional data follows a Gaussian distribution sometimes

leads to poor approximations.

The main limitation of high-dimensional multivariate directional distributions is the in-

tractability of their normalisation constant, which can be approximated only under certain

constraints, as high concentration [Mardia et al., 2012], by using numerical optimisation

methods. Thus, little is known about efficient estimation methods for most of the multivari-

ate directional-linear distributions. In the presence of latent variables, parameter estimation

is even more challenging given the iterative nature of the EM algorithm. Numerical optimi-

sation methods for estimating parameters can be prohibitive from a computational point of

view when they are embedded inside the EM algorithm. These difficulties cause the literature

regarding clustering directional-linear data to be limited to bivariate p.d.f. or models that

impose strong conditional independence assumptions.

To overcome these limitations we presented finite mixture models based on BNs for clus-

tering directional-linear data. Specifically, we exploited the benefits of the factorisation pro-
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vided by the structure of the BNs to get closed-form equations for the maximisation step of

the EM algorithm. Additionally, we also learned the conditional dependence relations among

variables according to the SEM algorithm. This allow us to learn models even when the

data availability is scarce. We also developed a multivariate extension of the Mardia-Sutton

distribution, as well as the closed-form expressions for similarity measures between clusters as

the KL divergence and the BD distance. The proposed multivariate distribution relaxes the

independence constraints among directional and linear variables of previous directional-linear

models applied in clustering, allowing for any number of directional-linear correlations and

avoiding approximate estimation of the parameters.
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Chapter 6
3D morphology-based clustering

and simulation of human pyramidal

cell dendritic spines

6.1 Introduction

Dendritic spines present a large diversity of sizes and morphologies, especially in the human

cortex [Benavides-Piccione et al., 2012]. The most accepted categorisation of the dendritic

spines based on their morphology was proposed by Peters and Kaiserman-Abramof [1970]

that defines three basic classes -thin, mushroom and stubby spines- and an additional group

-filopodium. However, Arellano et al. [2007], Loewenstein et al. [2015] and Tønnesen et al.

[2014] discuss if this variety of shapes is the result of a continuum of morphologies instead

of concrete categories. Recently, both Bokota et al. [2016] and Ghani et al. [2016] applied

automatic clustering techniques over 2D dendritic spine representations to objectively address

this debate. They concluded that some spines clearly belong to Peters and Kaiserman-

Abramof’s classes but the rest cannot be ascribed to any category because their morphology

present transitions between shapes.

Nevertheless, the geometry of spines can be more accurately determined by means of

3D reconstructions, since many morphological features are not taken into account in 2D.

Ideally, 3D reconstruction using electron microscopy serial sections is the gold standard to

obtain accurate estimations of the geometry of spines. However, a relatively low number of

spines (at best in the order of a few hundreds) can be reconstructed in 3D using electron

microscopy in a reasonable time period, and these reconstructions can only be carried out in

small segments of the dendritic arbor of the neurons. Furthermore, the quality of electron

microscopy when using human brain tissue is usually suboptimal due to technical constraints.

On the contrary, fluorescent labeling of neurons and the use of high power reconstruction with

confocal microscopy (or other techniques) allow the visualization of thousands of spines with

high quality along the dendritic arbor (apical and basal dendrites). Thus, in this chapter, we
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used a large, quantitative database of completely 3D-reconstructed spines (7,916) of human

cortical pyramidal neurons -using intracellular injections of Lucifer Yellow in fixed tissue- to

further characterise spine geometry [Benavides-Piccione et al., 2012].

Here we propose a new set of 54 features. We select them to unambiguously approximate

the 3D shape of spines, enabling 3D simulation of spines. Then, we group the 3D recon-

structed human spines according to the previously defined set of morphology-based features

using a probabilistic clustering approach. We obtain that the best number of groups for

probabilistic clustering based on the Bayesian information criterion is six groups of human

spines. To interpret the clusters in terms of their most discriminative characteristics, we rely

on the rules generated automatically by a rule induction algorithm. Since previous studies

have shown that there are selective changes in dendritic and spine parameters with ageing

and dendritic compartments [Benavides-Piccione et al., 2012; Dimitriu et al., 2010; Hof and

Morrison, 2004; Markram et al., 1997], we also explore the distributions of the groups accord-

ing to dendritic compartment, age and distance from soma to further characterise possible

variations according to these parameters. Finally, we present a stochastic method designed

to simulate biologically feasible spines according to the probabilities defined by the clustering

model. We introduce a procedure to shape simulated spines generating their 3D representa-

tions. To the best of our knowledge, this is the first attempt to fully characterise, model and

simulate 3D spines.

The content of this chapter has been published as Luengo-Sanchez et al. [2016] and

Luengo-Sanchez et al. [2018].

Chapter outline

In Section 6.2 we detail the preprocessing methods that we have designed to repair the

dendritic spines and to extract the set of features from the 3D representations of their mor-

phology. Section 6.3 discusses the outcome of clustering and proposes methods to interpret

and visualise them. Section 6.4 provides a technique to simulate virtual 3D dendritic spines.

Section 6.5 contains the conclusions.

6.2 Preprocessing

6.2.1 Repairing spines

The Cajal Cortical Circuits laboratory (UPM-CSIC) sets of 7916 individually 3D recon-

structed spines along the apical and basal dendrites from layer III pyramidal neurons from

the cingular cortex of two human males (aged 40 [C40] and 85 [C85]) were used for analyses.

For each individual spine, a particular threshold was selected to constitute a solid surface

that exactly matched the contour of each spine (Figure 6.1). In many cases, it was necessary

to use several surfaces of different intensity thresholds to capture the complete morphology

of a spine [Benavides-Piccione et al., 2012]. In such cases, spines were usually fragmented or

detached from their parent dendrite (Fig 2A-B) due to the diffraction limitation of confocal
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Table 6.1: Number and percentage of spines after repair by their dendritic compartment and
age.

Prob./Cl. C40 C85 Sum

Apical 1,893 (26%) 1,057 (14%) 2,950 (40%)
Basal 2,500 (34%) 1,847 (26%) 4,347 (60%)
Sum 4,393 (60%) 2,904 (40%) 7,297 (100%)

microscopy. Therefore, they had to be repaired by means of a novel semi-supervised mesh

processing algorithm which generated a new dataset of corrected spines.

We addressed the task of repairing spines by means of a semi-automatic mesh processing

algorithm (Fig. 6.2A). The procedure started by identifying fragmented spines. A spine

was fragmented if there was no path between every pair of vertices on the surface of the 3D

mesh, and all the vertices belonged to a closed mesh. If this was the case, fragmentation

was repaired by applying a closing morphological operator to each spine individually. This

operator requires a binary image as input, and therefore 3D meshes were voxelized [Patil and

Ravi, 2005]. As a result of applying the closing operator to each voxel of the volumetric spine

using a sphere as a structuring element, fragments were joined to form a single body. The

marching cubes algorithm [Lorensen and Cline, 1987] recovered the mesh representation from

the volumetric image of the repaired spine.

The repair process was continued by connecting spines to dendrites by means of spine

path reconstruction (Figure 6.2B). Several points were created to attach the spine to the

dendrite, using the measurement point tool in Imaris software. These are considered to be

the spine insertion points. In those cases where the created spine surface did not reach the

dendritic shaft, the insertion point was placed directly on the dendritic shaft where the spine

emerged from the shaft, while rotating the image in 3D (Figure 6.1G). Spine reconstruction

was applied to any spines whose insertion point was not on the surface of the mesh. This

step in the repair process consists of filling the gap between the closest vertex of the spine

to the insertion point and the insertion point according to an iterative process that grew

the missing base of the spine. Specifically, each detached spine was oriented so that both

points bounding the gap were aligned with the z-axis. Then, the mesh of each spine was

voxelized. Each voxel slice perpendicular to the z-axis between the spine and the insertion

point was filled with the result of applying a 2D Gaussian filter to the slice immediately above.

The mesh representation of the completely repaired spine was recovered from the volumetric

representation by the marching cubes algorithm. Finally, we smoothed the triangular mesh

with a curvature flow technique [Desbrun et al., 1999]. Those spines that were extremely

fragmented, far removed from the dendrite or significantly deferred from their original shape

were discarded. As a result, the original set of 7,916 spines yielded 7,297 (92.18%) spines.

The number and percentage of spines after repair by their dendritic compartment and age

can be found in Table 6.1.

For the repair process, the insertion point of each spine was manually marked, approxi-
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Figure 6.1: 3D reconstructions of human dendritic spines. (A) Confocal microscopy z-
projection image showing a horizontally projecting basal dendrite of an intracellular injected
layer III pyramidal neuron of the C40 human cingulate cortex. (B) 3D reconstruction of
the complete morphology of each dendritic spine shown in A. (C) Estimation of the spine
volume values shown in B by color codes (blue-white: 0.0 µm3 to 0.8 µm3). (D-I) Higher
magnification images of a dendritic segment shown in A-C to illustrate the 3D triangular
mesh I obtained for each individual spine. Scale bar: 4.5 µm in A-C; 2.5 µm in D-F and 1 µm
in G-I.
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Figure 6.2: Spine repair process and multiresolutional Reeb graph computation. Spines are
colored with a gradient whereby the closest points to the insertion point were colored green
and the furthest points were colored purple. (A) Example of a fragmented spine. The
fragmentation problem is solved by applying the closing morphological operator, and the
spine is completely connected. (B) Example of the reconstruction of a spine detached from
its dendritic shaft. The spine was oriented so as to align the insertion point and its closest
vertex with the z-axis. The gap between the spine and the dendritic shaft is filled by means
of an iterative process starting from the base of the spine. This resulted in the growth of the
missing neck. (C) Geodesic distance computation from the insertion point. The black line
denotes the shortest path from the insertion point to an arbitrary point on the surface of
the spine. (D) The domain of the geodesic distance on the surface of the spine was divided
into seven regions. (E) Regions and segments between curves provide enough information
to reconstruct an approximation of the surface. Features extracted from these regions and
segments must conform a complete set of spine topology to provide for a proper computer
simulation. (F) Curves were approximated by the best fitting plane resulting in ellipses that
improve the characterisation and interpretation of the geometry of the spine. Features were
computed on this final 3D representation.
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mately at the center of the created spine surface side that was in contact with the dendritic

shaft. In those cases where the created spine surface did not reach the dendritic shaft, the

insertion point was placed directly on the dendritic shaft where the spine emerged from the

shaft, while rotating the image in 3D (Figure 6.1G). The insertion point was useful for repair-

ing the detached spines and computing a multiresolutional Reeb graph for feature extraction.

6.2.2 Feature extraction

Given 3D meshes representing the surface of the spines, our goal was to extract a set

of morphological features providing enough information to reconstruct an approximation

of their original shapes. Our work was partially inspired by the concept of multiresolu-

tional Reeb graph (MRG) [Tangelder and Veltkamp, 2008] and its particular implemen-

tation in [Hilaga et al., 2001], a technique that constructs a graph from a 3D geometric

model to describe its topology (Figure 6.2C-F). This approach partitions a triangular mesh

into regions based on the value of a function µ(·). This function should preferably be the

geodesic distance, i.e., the shortest path between two points of the mesh along the surface

because it is invariant to translation and rotation and is robust against mesh simplifica-

tion and subdivision. We computed geodesic distance from the insertion point of the spine

to each vertex of the mesh (Figure 6.2C). The domain of µ(·) was divided into K = 7

equal length intervals, where ri indicates the beginning and the end of each region such that

r0 =
[
0, 1

Kα
]
, r1 =

(
1
Kα,

2
Kα
]
, . . . , rK−1 =

(
K−1
K α, α

]
, where α is maxµ(·). This means that

each of the vertices in the triangular mesh was allocated to a particular region depending

on its evaluation function µ(·) (Figure 6.2D-E). At each region i, the curves defining the top

and bottom bounds were assumed to be ellipses contained in the best fitting plane computed

using principal component analysis. We denote Ti and Bi the top and the bottom ellipses of

each region i respectively. Thus, each region provided a local description of the morphology

while the combination of the information of all regions represented a global characterisation

of the spine. Representing a spine as a set of ellipses allows us to capture its most relevant

morphological aspects while spurious details are avoided.

The proposed set of 54 features must unambiguously describe the placement and orienta-

tion of all the ellipses that characterise the geometry of a spine, i.e., there must be a unique

correspondence between an assignment to the features and a 3D spine. If this condition is

fulfilled, then the features should capture all of the relevant geometrical information of the

spine, and consequently any morphometric measure can be computed from the set of features.

To achieve this, at each region i a set of features was computed according to their ellipses Ti

and Bi. Since the surface was required to be continuous coherence constraints were imposed

on adjacent regions: ∀i, 1 < i < K + 1, BR
i = TRi−1, B

r
i = T ri−1. Thus, to satisfy the previous

condition the following features were considered to characterise the spine (Figure 6.3)

� Height (|hi|): This variable measures the length of the vector hi between the centroids

of two consecutive ellipses. The higher the value of this variable, the longer the spine

in that region.
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� Length of major axis of ellipse (BR
i ): Low values mean that spine is thin around BR

i .

� Length of minor axis of ellipse (Br
i ): It provides information about the squishiness of

the spine when it is compared with BR
i . If BR

i and Br
i have the same values the ellipse

is in fact a circle while when Br
i gets smaller the ellipse becomes more squished.

� Ratio between sections (ϕij): It is the ratio between the area of the ellipses j and i,

i.e., ϕij =
πBRj B

r
j

πBRi B
r
i
. If it is higher than 1 it means that ellipse j is bigger than ellipse

i. When values are between 0 and 1 it means that ellipse i is bigger than ellipse j. It

can be interpreted as the widening or narrowing along the spine. We compute ϕ24, ϕ26,

and ϕ46.

� Growing direction of the spine: The vector between ellipse centroids hi defines a direc-

tion which can be expressed in spherical coordinates, i.e., an azimuth angle φi and an

elevation angle θi.

– cos(φi): Cosine of the azimuth or azimuthal angle, obtained as the angle between

the vectors defined by three consecutive ellipses. The cosine is computed from the

dot product: cos(φi) = hi·hi+1

|hi||hi+1| . It measures the curvature of the spine.

– θi: The polar angle, also called colatitude in the spherical coordinate system. It

is needed for simulation.

� Ellipse direction: It is the direction of the perpendicular vector to ellipse Bi. It is

obtained from
BRi
|BRi |
× Bri
|Bri |

(vectorial product). It is expressed in spherical coordinates

as:

– Θi: The polar angle or colatitude in spherical coordinate system. It is the incli-

nation of the vector perpendicular to the ellipse with respect to ~Z axis. If it is 0

then the spine grows horizontally at that point. When it is π
2 , it means that the

spine grows completely vertical at that point. It is needed for simulation.

– Φi: The azimuth or azimuthal angle. It indicates if the spine is growing to the

right, left, forward or backward as it was previously explained for the growing

direction but in this case it is computed for the perpendicular vector to the ellipse.

It is needed for simulation.

� Volume (V ): It is the total volume of the spine.

� Volume of each region (Vi): It an approximation of the volume between two consecutive

ellipses. It is computed from the convex hull of Ti and Bi.

The software to compute the features can be found in the Computational Intelligence

Group github page.

https://github.com/ComputationalIntelligenceGroup/3DSpineMFE
https://github.com/ComputationalIntelligenceGroup/3DSpineMFE
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Figure 6.3: Spine features description. An ellipse is defined by its centroid, major axis
(TRi−1 = BR

i ) and minor axis (T ri−1 = Br
i ). These points are connected by vectors hi whose

length is |hi|. From vectors hi and hi−1, θi and φi are obtained. Θi and Φi are the ellipse
directions of the spine.
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Table 6.2: Number of spines whose maximum probability p∗ of belonging to a cluster is
greater than a threshold. The total number of spines for each cluster is specified between
parentheses. Column 1 establishes a threshold probability. Each cell denotes the number
of spines that belong to its column cluster with a probability greater than is indicated by
its row. For example, 953 spines out of the 1,025 grouped in Cluster 1 had a maximum
probability p∗ greater than 0.99.

Prob./Cl.
Cluster 1
(1,025)

Cluster 2
(1,588)

Cluster 3
(1,273)

Cluster 4
(1,454)

Cluster 5
(1,264)

Cluster 6
(693)

0.99 72 124 163 165 109 45
0.9 30 30 44 50 38 14
0.8 17 13 25 29 20 11
0.7 12 7 16 13 10 6
0.6 9 3 5 6 4 3
0.5 0 0 0 0 0 0

6.3 Clustering

To find groups of spines, we applied a Gaussian mixture model1 approach for model-based

clustering which assigned spines to six clusters according to the Bayesian information criterion

(BIC) (Fig 6.4A and Sections 2.4.3.3 and 2.5). Our approach, based on probabilistic cluster-

ing, assigned a probability distribution (p1, ..., p6) of belonging to each of the six clusters to

each spine, where pi is the probability of belonging to cluster (pi ∈ [0, 1],
∑

i pi = 1). Further-

more, we counted the number of spines whose maximum probability, p∗ = max{p1, ..., p6},
was lower than a given threshold (Table 6.2). We found that the membership probabil-

ity of most of the spines was greater than 0.99 and clearly belonged to a cluster, whereas

a very small number were more scattered and, consequently, their membership was not so

clear. Therefore, we can conclude that with this set of features most of spines had very high

membership probabilities.

6.3.1 Cluster interpretation and visualization

To gain a deeper insight into the characterisation of each group unveiled by the probabilistic

clustering, we identified the most representative features for each cluster. The process was

based on the generation of classification rules according to the RIPPER algorithm [Cohen,

1995] with the implementation included in the collection of algorithms of Weka, a software for

machine learning tasks [Hall et al., 2009]. The spines were crisply assigned to a unique cluster

by selecting the most probable cluster for each spine. Then, RIPPER generated discriminative

rules for each cluster, turning the problem into a binary supervised classification problem

which pitched each cluster label against the rest. SMOTE [Chawla et al., 2002] was applied

1At this point we want to clarify that we chose the Gaussian mixture model because this study was
performed before we developed the directional-linear mixture models presented in Chapter 5. Therefore, we
considered that the Gaussian mixture model was a reasonable option given its computational tractability and
its suitability to approximate any multivariate p.d.f. given enough components.
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Figure 6.4: Model-based clustering representation and interpretation. (A) Graph showing
the resulting BIC values depending on the number of clusters. Results are shown in a range
from two to ten clusters. The model that achieved the highest BIC value had six clusters.
(B) Representative examples of dendritic spines with a p∗ = 1 (highest membership proba-
bility) from the six different clusters. (C) 2D projection of the 6D probability distributions
representing the membership probability of each spine to each cluster according to classical
multidimensional scaling. Spines were colored combining cluster colors according to their
probabilities of membership to each cluster. (D) The absolute value of the logarithm of the
total variance for each cluster, i.e., | log10 det(Σi)|, where Σi is the variance-covariance matrix
of cluster i. It is a value that summarizes the heterogeneity of morphologies within a cluster.
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as a pre-processing step before running RIPPER to avoid bias and deal with the unbalanced

distribution of instances arising from data splitting (one cluster versus the rest). SMOTE

is a technique for adjusting the class distribution so that the set of observations of the least

represented class is resampled. We forced RIPPER to classify using a unique rule to improve

the interpretability of each cluster, highlighting its most discriminative features. However,

a single rule cannot be regarded as enough to characterise all the spines within a cluster

because it is unable to capture all the relations between the variables defined by the model-

based clustering. The result was that each cluster was characterised by only one, two or three

observable features (Figure 6.5). The discriminative rules are available in Appendix A. An

example of the representative spines of the six clusters is shown in Figure 6.4B. The rules

generated by RIPPER when it comes to classify the spines according to their cluster label,

with their accuracy between parentheses, may be summarised as:

� Cluster 1: The height of the spines is extremely low in region 2. (92.94%).

� Cluster 2: Spines with a low curvature across regions 4, 5 and 6 and a small volume in

region 7 (80.90%).

� Cluster 3: These spines have a medium-small volume, a low curvature across regions 2

and 3 and the area of their 6-th ellipse area may not be more than double or less than

half of the area of their 4-th ellipse (75.89%).

� Cluster 4: Their volume is high in region 4 and the 6-th ellipse has a smaller area than

the 4-th (82.16%).

� Cluster 5: Groups spines whose height in region 2 is high and whose 6-th ellipse has an

area that is almost equal to or greater than that of the 4-th region (81.95%).

� Cluster 6: Contains the spines with a large volume in region 7 (70.68%).

The diversity of morphologies within a cluster was estimated by computing the total

variance for each cluster. Figure 6.4D shows that Cluster 2 has the lowest total variance,

denoting similarity among its spines, whereas variance in Cluster 6 stands well above that of

the other clusters, suggesting more heterogeneity.

To improve cluster visualization and interpretation, the distances between the member-

ship probabilities (p1, ..., p6) of the spines in a 6D space were projected to 2D according to

multidimensional scaling (see Figure 6.4C). To achieve this goal, distances between each pair

of multivariate Gaussians defined by the clusters were calculated according to the BD [Abou-

Moustafa and Ferrie, 1995] (see Equation (5.14)). Based on this measure, we were then able to

project the above distances, originally in a 6D space, onto a 2D space using multidimensional

scaling [Torgerson, 1958]. Thus, spines were placed and colored in this space in proportion to

the probability of their belonging to each cluster. Accordingly, “intermediate” spines whose

membership probabilities were distributed evenly across several clusters have a mixture of

colors. In this representation, we find that most of the points are clearly assigned to a cluster,
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Figure 6.5: Graphical representations of the main features that characterise each cluster of
spines. Representative examples of the spines of each cluster have been rescaled to improve
the visualization of their characteristics. The actual proportions between spines are shown
in 6.4B. (A) The height of the spines that belong to Cluster 1 is extremely low in region
2. (B) Cluster 2 includes spines with a low curvature across regions 4, 5 and 6 and a small
volume in region 7. (C) Spines that were assigned to Cluster 3 have a medium-small volume,
a low curvature across regions 2 and 3 and the area of their 6th ellipse area may not be more
than double or less than half of the area of their 4th ellipse. (D) The volume of the spines in
Cluster 4 is high in region 4 and the 6th ellipse has a smaller area than the 4th. (E) Cluster
5 groups spines whose height in region 2 is high and whose 6th ellipse has an area that is
almost equal to or greater than that of the 4th region. (F) Cluster 6 contains the spines with
a large volume in region 7.
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Table 6.3: Probability of misclassifying a spine from cluster P in cluster Q. For example, the
probability of classifying a spine from Cluster 3 in Cluster 4 is 1.69e-05. These values are
interpreted as a measure of the overlap between clusters. Spines that are not clearly assigned
to a cluster are placed between clusters that overlap. This matches the relations between
clusters observed in the multidimensional scaling representation.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Cluster 1 1 2.26e-07 2.09e-07 1.05e-06 1.02e-10 1.75e-11
Cluster 2 6.94e-08 1 8.62e-06 8.29e-06 2.36e-10 0
Cluster 3 1.53e-07 2.35e-05 1 1.69e-05 2.00e-05 1.20e-10
Cluster 4 7.79e-07 2.00e-05 1.53e-05 1 4.54e-06 1.35e-09
Cluster 5 2.08e-10 7.96e-10 4.08e-05 1.06e-05 1 5.88e-06
Cluster 6 1.64e-10 0 2.69e-10 5.79e-09 1.63e-05 1

as suggested by the results reported in Table 6.2. Clusters 1 and 6 are outstanding examples

of a clearly defined cluster, since they are quite isolated and, consequently, easy to discrim-

inate from the other clusters. However, clusters like 3 and 4 are quite closely related. This

tallies with the results reported in Table 6.2, where the clusters identified as being clearly

separate had a higher threshold than highly related clusters that needed a lower threshold

for all their spines to be crisply assigned.

Given the desirable properties of clearly idenitified clusters, then we numerically evaluate

the overlapping among the clusters. Non overlapping clusters are easily discovered as they

group similar instances and separate dissimilar instances. However, clustering algorithms

have trouble separating overlapped clusters because instances cannot be clearly assigned to

clusters. Therefore, the performance of the method depends on whether the clusters overlap

with each other. Overlapping was understood according to [Maitra and Melnykov, 2010;

Melnykov et al., 2012] as the probability of misclassifying an instance from cluster P in a

cluster Q. Thus, the probability ωQP of misclassifying an instance of the P -th component to

the Q-th component was computed as

ωQ|P = p[p(z;θP )fN (x;µP ,ΣP ) < p(z;θQ)fN (x;µQ,ΣQ)|x ∼ fN (µQ,ΣQ)].

The results reported in Table 6.3 support the interpretation of multidimensional scaling.

6.3.2 Distribution of clusters by dendritic compartment, age and distance

from soma

To gain a deeper insight, we analysed how it changes the cluster distribution of the whole

population of spines (Figure 6.6A) when a dendritic compartment (apical/basal), an age

(40/85) or a combination of both (Figure 6.6B-D) is selected after crisply assigning each spine

to a unique cluster. The study of the cluster distribution of the spines according to their

dendritic compartment unveiled that the proportion of spines in Clusters 3, 5 and 6 increase

for apical dendrites and diminish for basal dendrites compared with those observed in Figure
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6.6A, whereas the major increment for basal dendrites and decrement for apical dendrites is

yielded in Cluster 1. In order to evaluate these differences, we used χ2 hypothesis testing, that

is, we tested whether the cluster distribution is independent of the dendritic compartment

(null hypothesis H0). The hypothesis test returned a p-value lower than 3.80×10−34 thereby

the null hypothesis H0 was rejected.

The same process as applied for dendritic compartment was repeated for age. Figure 6.6C

shows that Cluster 2 is overrepresented in C40 and Clusters 4 and 6 in C85. On the contrary,

the major decreases occur in Cluster 2 in C85 and Clusters 4 and 6 in C40. To test if cluster

distribution is independent of age, we tested the hypothesis again. Results rejected the null

hypothesis (the p-value was lower than 3.73 × 10−06. Furthermore, we run the clustering

algorithm for each subject (C40 and C85) to study their distribution independently. As a

result, six clusters emerged from C40 spines mostly matching those obtained for the complete

population of spines and an additional one of 36 spines that only grouped spines from Clusters

5 and 6. Clustering of C85 spines generated five clusters showing similar results to those

achieved for the global population but combining spines from Cluster 2 with Cluster 4 in a

unique cluster and tending to include some spines of original Cluster 6 into Cluster 5.

We then tested the cluster distribution and the combination of dendritic compartment and

age for independence (Figure 6.6D). Figure 6.6D shows that there is an increase of Clusters

3 and 5 for C40 apical dendrites; Clusters 3, 5 and 6 for C85 apical dendrites; Clusters 1 and

2 for C40 basal dendrites and Clusters 1 and 4 for C85 basal dendrites with respect to the

distribution observed for the whole population of spines. Additionally, from Figure 6.6D it

can be observed that Clusters 1 and 4 are underrepresented in C40 apical dendrites; Clusters

1 and 2 in C85 apical dendrites; Clusters 5 and 6 in C40 basal dendrites and Clusters 2, 3

and 4 in C85 basal dendrites. The null hypothesis was rejected (p-value ≈ 4.11 × 10−36).

Hence we can reject independence between cluster distribution and dendritic compartment

combined with age.

In spite of the fact that the null hypothesis was rejected for all the above cases, Figure

6.6B-D show that the discrepancies in the distributions are confined to only a few clusters

and are not evenly spread. With the aim of pinpointing those clusters that exhibit significant

differences, each one was analysed individually. A Pearson’s χ2 test was performed cluster

by cluster to check if the proportion of spines in each individual cluster was independent

of the dendritic compartment, age and combination of both. The outcome of the tests is

shown in Table 6.4. Results confirm that only some clusters vary significantly depending on

dendritic compartment, age or combination of both and indicate how strongly the hypothesis

was rejected for each cluster. An example can be found for age where the null hypothesis

was only rejected for Clusters 2, 4 and 6, showing that they are the only clusters whose

distribution varies significantly with age.

Furthermore, we evaluated the cluster distribution according to the distance from soma

(Figure 6.6E). The number of spines was categorized in 50 µm long sections, from 0 µm (the

beginning of the dendrite) to 300 µm. A χ2 hypothesis test was applied in order to test the

independence between cluster distribution and distance from soma. The outcome rejected
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Figure 6.6: Bar charts showing the distribution of spines belonging to each of the six clusters
according to the maximum membership probability p∗. (A) Distribution of spines into the
six clusters. (B) Relative frequency distribution of clusters for apical (left) and basal (right)
spines. (C) Relative frequency distribution of clusters for C40 (left) and C85 (right) spines.
(D) Relative frequency distribution of clusters for the combination of dendritic compartment
and age, apical C40 (left end), apical C85 (center left), basal C40 (center right) and basal
C85 (right end). Horizontal lines in B, C and D denote the heights shown in A. (E) Bar chart
showing the distribution of spines belonging to each of the six clusters according to distance
from soma. Horizontal lines denote the percentage of spines in each cluster A. Spines were
grouped into intervals of 50 µm to improve visualization.
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Table 6.4: Results for Pearson’s χ2 test checking if the distribution of each cluster is inde-
pendent of its dendritic compartment, age and combination of both. The * symbol denotes
that the resulting p-value is lower than 0.05 and the null hypothesis is rejected, ** denotes
p-value < 0.001 and *** denotes p-value < 0.0001.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Dendritic compartment *** ** *** **
Age * * **

Combination *** * * * *** ***

Table 6.5: Number of dendritic spines as a function of their distance from the soma

0-50 50-100 100-150 150-200 200-250 250-300

Number of spines 310 1107 2727 2407 508 148

the null hypothesis H0 (p-value ≈ 8.00 × 10−23). The number of spines assigned to each

section is specified in Table 6.5. Briefly, Figure 6.6E shows that there is a predominance of

Clusters 1 and 2 at proximal distances (0-50 µm) whereas Clusters 1 and 4 show a higher

percentage than expected at longer distances.

6.3.3 Directional-linear clustering of dendritic spines

As an illustrate example, we present an alternative clustering of 500 dendritic spines randomly

subsampled from the complete dataset of 7916 dendritic spines based on the hybrid Gaussian-

von Mises mixture model. We limit the number of spines because of publishing reasons during

the development of the thesis.

Meshes had to be previously transformed into data characterising the morphology of the

spines. This task was addressed using the multiresolutional Reeb graph (MRG) [Hilaga et al.,

2001; Tangelder and Veltkamp, 2008] which partitions a triangular mesh into seven regions

(see Section 6.2.2). For each region, we measured morphological characteristics, i.e, length,

growth direction, eccentricity, flatness and size of the region (see Figure 6.3).

Since this experiment serves merely to illustrate an application of the proposed model

and does not represent any valid neuroscientific result, we then jittered data with Gaussian

and von Mises noise of zero mean. We ran the general hybrid model several times, modifying

the number of clusters from two to ten. As a result, we managed to maximize the BIC

score and Akaike information criterion score for three clusters and seven clusters respectively.

We analysed exclusively the results provided by BIC score because its number of clusters is

closest to the number of categories in the traditional classification.

To characterise clusters and compare them with the classification in [Peters and Kaiserman-

Abramof, 1970], we performed a Welch t-test [Welch, 1947] for linear variables and a Watson-

Williams test [Watson and Williams, 1956] for directional variables. We observed that almost

all linear variables are significantly different between cluster 2 and the other two clusters.

However, cluster 1 and cluster 3 only differ in so far as cluster 3 has a small neck at the
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base of the spine. We checked which cluster takes the maximum and minimum value for each

measured feature to characterise the spine.

Thus, cluster 1 presents the shortest and flattest regions. Besides, all the regions are of

the same size. This description fits the stubby class. Cluster 2 shows the longest and most

elongated regions. Additionally, the size of the regions increases from the base to the top

and the growth of the regions is less straight. Hence, this cluster groups filopodium and thin

classes. Cluster 3 has short regions and a small base. This cluster grows backwards (in a
3π
2 direction) while the other two clusters grow to the left (in a π direction). It apparently

matches the mushroom class.

Figure 6.7: Examples of spines for each cluster discovered by the hybrid Gaussian-von Mises
mixture model. The spine representing cluster 1 is shaded green, the spine representing
cluster 2 is shaded blue and the spine representing cluster 3 is shaded red.

The SEM algorithm also provides some interesting information about the dependencies

represented by the graph topology. For example, we find that the length of the next region

depends on the length of the previous regions. Also the size of the regions is related to the

size of previous regions. We also observe connections between the eccentricity of the region

and its length. These dependencies may be relevant for the electrophysiological behaviour of

the spine.

6.4 Simulation

The simulation process aimed at achieving accurate 3D representations of spines generated

by the computer. This process is divided into two main phases. First, we sampled new

instances from the mixture model. In this case we focus on the Gaussian mixture model that

discovered six groups of dendritic spines although it can be adapted to any mixture model
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based on other probability distribution as the hybrid Gaussian-von Mises. As a result of

sampling, we got a dataset where each instance consisted of a vector with 54 feature values

defined by a multiresolution Reeb graph. This set of features unambiguously specifies the

position and orientation of ellipses that define the skeleton of a simulated spine. Second, we

generated a 3D representation for each instance. From the set of features of a sampled spine,

we built a skeleton composed of the ellipses establishing the beginning and end of regions

(Figure 6.8A). Because all the ellipses had the same number of points, each pair of consecutive

ellipses was easily triangulated to obtain a closed mesh (Figure 6.8B-C). Although this mesh

is a 3D spine, simulated spines have an artificial appearance because the regions delimited

by the ellipses are clearly distinguishable between them (Figure 6.8C). We improved this

result by smoothing the surface with the Loop’s subdivision algorithm [Loop, 1987]. Thus,

we obtained a more accurate 3D representation of the spine (Figure 6.8D). Examples of

simulations of each cluster can be found in Figure 6.8E. R code, model and dataset to perform

clustering and simulation of dendritic spines can be downloaded from https://github.com/

sergioluengosanchez/spineSimulation.

To be useful for future research, simulated spines must be geometrically equivalent to

real spines. Thus, simulated and real must be indistinguishable. To test for equivalence,

we state a supervised classification problem within each cluster, where the possible labels

are “simulated” vs. “real”. Hence, if both groups were indistinguishable, a classifier would

perform badly, having a classification accuracy of around 50%. To objectively validate the

realism of the simulated spines we used the RIPPER algorithm. First, for each cluster,

we sampled from the probability distribution of each cluster the same number of simulated

spines as real spines are. Second, we combined these with real spines to generate a dataset

for each cluster. Third, we applied the RIPPER algorithm with ten-fold cross-validation

[Kohavi, 1995] over the datasets to discriminate between real and simulated spines. This

process yields classifier accuracy, which can be regarded as the degree of realism. As a result

we obtained that both groups of spines are almost indistinguishable (accuracy being around

60%), with the exception of cluster 1 (80%), where the size of simulated spines is usually

somewhat larger than real spines.

6.5 Conclusions

In this chapter we used over 7,000 complete manual 3D reconstructions of dendritic spines of

human cortical pyramidal neurons to perform clustering based on their morphology. Because

the spines present artifacts due to the diffraction limits of the light, we proposed a protocol

to accurately represent the morphology of the spine. Then, model-based clustering methods

used in this study uncovered six different classes of human spines in terms of a particular set

of features according to the BIC value (see Figure 6.4A). Compared to the previous clustering

of spines [Bokota et al., 2016; Ghani et al., 2016], our proposal describes more accurately the

morphology of the spines as we consider 3D reconstructions instead of 2D; and a univocal set

of features that includes measurements of major morphological aspects like length, width or

https://github.com/sergioluengosanchez/spineSimulation
https://github.com/sergioluengosanchez/spineSimulation
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Figure 6.8: Simulation of 3D dendritic spines. (A) Skeleton built from the set of features
computed according to the multiresolution Reeb graph. (B) Generation of the surface be-
tween two ellipses through the triangulation of the region. (C) 3D representation of a spine.
Once all the regions of the spine have been triangulated, the spine is a closed mesh used to
visualize an artificial spine. (D) Improved spine representation. Loop’s subdivision algorithm
yields a smoother and more realistic version of the artificial spine. (E) Examples of simulated
spines for each cluster.
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size of the spine, but also other aspects such as curvature. Additionally, our model ascribed

most of the spines to a cluster with a high cluster membership probability, but some dendritic

spines could not be clearly assigned to a group showing transition morphologies, which is

consistent with the results reported by both works.

Interestingly, we observed that there are particular clusters of spines that are proportion-

ally highly represented in a particular dendritic compartment/age combination. Specifically,

basal dendrites contained a higher proportion of the small Cluster 1 spines (Figure 6.4B),

whereas apical dendrites contained a higher proportion of the medium/large Clusters 3, 5 and

6 spines. These differences would imply that their functional properties should be expected to

be different in the two dendritic compartments [Araya, 2014]. Regarding individuals, Cluster

2 spines accounted for a higher percentage in the younger individual, whereas Clusters 4 and

6 of bigger spines had higher values than the mean percentage in the older individual. Since

small spines have been reported to be preferential sites for long-term potentiation induction

and large spines might represent physical traces of long-term memory [Kasai et al., 2010;

Matsuzaki et al., 2004b], the results suggest that the younger individual has a higher poten-

tial for plasticity than the aged case. The dendritic compartment/age combination results

also agreed with the previously reported study [Benavides-Piccione et al., 2012] that found

that apical dendrites have longer spines than basal dendrites, and younger basal dendrites are

significantly smaller than aged basal dendrites. For example, small and short spines of aged

basal dendrites and long spines of apical dendrites were lost. Regarding the distance from

soma, there is a higher predominance of the small Clusters 1 and 2 spines than expected at

proximal distances (0-50 µm) and the small Cluster 1 spines at distal distances. Also, distal

distances showed a higher percentage of the medium-sized Cluster 4 spines than expected.

Since variations in spine geometry reflect different functional properties of the spine, this

particular distribution of spines might be related to the morphofunctional compartmental-

ization of the dendrites along the length of the dendritic pyramidal neurons. For example,

it has been reported that different domains of the basal dendritic arbors of pyramidal cells

have different properties with respect to afferent connectivity, plasticity and integration rules

[Benavides-Piccione et al., 2012; Gelfo et al., 2009; Gordon et al., 2006; Häusser and Mel,

2003; Markram et al., 1997; Petreanu et al., 2009]. Thus, these results may be a reflection of

a functional dendritic organization based on spine geometry.

Using the technique of model-based clustering described in this study, we were able to

simulate accurate spines from human pyramidal neurons. This is important for three main

reasons. First, it is not necessary to store large volumes of data because all the information is

summarised in the mathematical model. Second, spines are known to be dynamic structures

(see Berry and Nedivi [2017] for a recent review), and changes in spine morphology have

important functional implications potentially affecting not only the storage and integration of

excitatory inputs in pyramidal neurons but also mediating evoked and experience-dependent

synaptic plasticity. This, in turn, has major repercussions on cognition and memory [Araya

et al., 2014; Kasai et al., 2010; Holtmaat and Svoboda, 2009; Segal, 2017; Tønnesen et al.,

2014; Van Harreveld and Fifkova, 1975]. Thus, it is necessary to link the structural data
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with theoretical studies and physiological data on spines in order to interpret and make the

geometrical data on spines more meaningful. Functional modeling of spines is commonly

carried out according to their values of surface area, spine maximum diameter, spine neck

diameter, spine length, and spine neck length. Since each cluster contains a spine population

with a range of morphological features, it is necessary to model all of these morphological

variations within each cluster in order to compare the possible functional differences between

the clusters found in the present study. Third, one of the major goals in neuroscience is

to simulate human brain neuronal circuitry based on data-driven models because ethical

limitations prevent all of the necessary datasets from being acquired directly from human

brains. Therefore, the implementation of this mathematical model of human pyramidal spines

in current models of pyramidal neurons is a potentially useful tool for translating neuronal

circuitry components from experimental animals to human brain circuits. The simulation

of the spines in this study represents a mathematical model that could be implemented in

pyramidal cell models [Eyal et al., 2016] in order to present the data in a form that can be

used to reason, make predictions and suggest new hypotheses of the functional organization

of the pyramidal neurons.



92 CHAPTER 6. SPINES



Chapter 7
Univocal definition and clustering

of neuronal somas

7.1 Introduction

To the best of our knowledge, there is no line demarcating the soma of the labeled neurons and

the origin of the dendrites and axon. Thus, the morphometric analysis of the neuronal soma

is highly subjective. Differentiating between these compartments and delimiting the neuron

cell body is usually a job for experts, which they do according to their own arbitrary criteria,

as it is not absolutely clear what constitutes the cell body of the labeled neurons. Since

morphological measures rely directly on the delimitation of the cell body, different experts

segmenting the same neuron might get different somatic and dendritic sizes and shapes. Thus,

the results of different researchers are inaccurate and hard to compare. Furthermore, high-

throughput imaging methods have expanded quickly over the last few years, and the manual

tracing of individual cells is a time-consuming task. Thus, it is necessary to develop automatic

techniques to acquire morphometric data on labeled neurons. Ideally, the morphometric

analysis of the cell bodies should be performed automatically on complete 3D reconstructions

of cells using specialized algorithms. 3D reconstructions from image stacks can be quite

easily performed using a variety of techniques, including confocal microscopy to reconstruct,

for example, certain types of neurons from transgenic animals in which neurons are labeled

with green fluorescent protein, or from brain tissue where neurons have been labeled after

intracellular injections of fluorescent dyes. We used labeled cells with intracellular injections

of Lucifer Yellow from previous studies [Benavides-Piccione et al., 2012]. The surface of the

neuron was incompletely labeled due to the hole produced by the micropipette used to inject

the dye, which distorts the cell body. Thus, the labeled cell bodies are not suitable for a

morphological analysis because the measurements on a damaged surface are incorrect.

In this chapter, we propose a procedure for repairing the surface of 3D virtualised cell

bodies of cortical pyramidal cells. We also introduce a mathematical method combining prob-

abilistic clustering and 3D mesh processing algorithms to provide a univocal, justifiable and
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objective characterisation of how a soma can be defined. The labeled cells were reconstructed

in 3D and were processed mathematically. Additionally, neural somas were characterised ac-

cording to their multiresolutional Reeb graph representations, which provide a geometrical

description of their morphology based on a combination of both linear and directional vari-

ables. Based on this representation of the soma, we performed model-based clustering using

the EMS mixture model (Section 5.4) and the SEM algorithm (Section 2.5), and analysed

the morphology of the resulting groups and the similarity between them. We describe the

process of simulating 3D virtual somas from the probabilistic model learned by the clustering

algorithm and provide some examples.

The content of this chapter has been partially published as Luengo-Sanchez et al. [2015]

and Luengo-Sanchez et al. [2019].

Chapter outline

In Section 7.2, we propose a procedure for repairing and segmenting the 3D reconstructions

of the cell bodies. We provide empirical results about the accuracy of our method. Addition-

ally, we use the multiresolutional Reeb graph representation to univocally characterise the

morphology of the neural soma. Section 7.3 presents the results of clustering the somas and

highlights the main characteristics of each cluster using the rule-based algorithm RIPPER.

In Section 7.4 we show the procedure for soma simulation and some simulated somas. Section

7.5 includes the conclusions.

7.2 Preprocessing

Neurons were intracellularly injected with Lucifer Yellow (LY) in layer III of the human

cingulate (25 somas), temporal (16 somas) and frontal (18 somas) cortex from a 40-years-

old human male. Somata were reconstructed in 3D using Imaris software 6.4.0 yielding,

by thresholding, a solid surface that matched the contour of the neuron. The generated

surface, called triangular mesh, was composed of two basic elements, vertices which defined

3D Cartesian points and faces that denoted the edges between vertices. Each face was a set

of three edges connecting vertices forming a triangle of the triangular mesh.

7.2.1 Repairing the soma

Soma surfaces frequently showed faults like holes or cavities produced by the intracellular

injection procedure (Figure 7.1A). MeshLab software [Cignoni et al., 2008] was used for the

purposes of both repair and segmentation by means of automatic scripts of MeshLab.

The faults on the surface were regarded as noise which should be removed. An approxi-

mation of the original shape of the soma was then computed to achieve a single closed mesh.

We called this process “repairing the soma” (Figure 7.1B-D). The first step in the repair pro-

cess consisted of distinguishing between the vertices on the surface and the vertices forming

holes, cavities or placed inside the neuron.
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Figure 7.1: Repair and segmentation process of neural somas. (A) Initial state of four
representative pyramidal cells. (B) Neuron exposure to ambient lightning. (C) Neuron after
vertices forming holes and cavities or positioned inside the mesh have been discarded. (D)
Neuron after mesh closing. (E) Vertices of the mesh colored according to shape diameter
function to segment soma and dendrites. (F) Neuron after the basal dendrites have been
removed. (G) Final result.
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Figure 7.2: Example of 2D ambient occlusion. Let the thick black line be the surface of the
mesh. The brown line denotes the normal vector of the evaluated vertex i. A hemisphere
is placed around the normal vector. The green lines represent the sampled N points of the
hemisphere. The red dots are the intersection between the rays and the mesh surface. In this
case, Ai = 3

8 .

Assuming that a neuron could be isolated in a fictitious lighting space, the vertices of the

neuron on the mesh surface would be exposed to light, whereas the vertices that formed a

hole or were placed inside the mesh would be darkened. Thus, light exposure information has

the potential to distinguish between the vertices forming the original surface of the neuron

and the vertices introduced by the injection.

This motivated the application of ambient occlusion [Zhukov et al., 1998] of MeshLab,

which is a technique that provides a way to estimate the amount of light projected onto a

vertex of a mesh through ray tracing. The ambient occlusion factor A is a measurement of the

light rays blocked by the objects around the evaluated vertex. For each vertex, a hemisphere

with an infinite radius oriented according to its own normal vector was generated (Figure

7.2). Then, N points of the hemisphere were sampled uniformly. Next, rays were traced from

the evaluated vertex to each sampled point. Counting the number of rays that intersected the

mesh surface (Ni), obviously disregarding the starting point, and comparing it with the total

number of traced rays (N), the ambient occlusion for a vertex i was computed as Ai = Ni
N

(see Figure 7.2).

The result of the scalar value Ai was in the range [0, 1], where 0 denoted that no ray

intersected the surface of the mesh and 1 meant that all the traced rays intersected the mesh

and consequently that the vertex was inside the mesh. The points whose ambient occlusion

factor Ai was close to 0 were exposed to light and colored white and the points close to 1

were colored black (see Figure 7.1B).

Because some vertices were artifacts introduced by the filling process they had to be

discarded. A simple approach could be to impose an arbitrary threshold such that vertices

whose ambient occlusion factor was greater than the threshold would be discarded. However,

the threshold should preferably be estimated automatically.

At this point, we considered that a clustering algorithm, whose goal is to group instances
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Figure 7.3: Mesh reconstruction. (A) The indicator function. (B) Gradient of the indicator
function. Since the indicator function is constant outside (0s) and inside (1s) the mesh, the
gradient of the space there is 0. Only points on the frontier are not 0. (C) Inward-facing
normals and their vertices. (D) Surface of the mesh. Adapted from [Kazhdan et al., 2006].

of similar data in the same group, fitted the problem specifications exactly. Probabilistic

clustering based on a Gaussian mixture [McLachlan and Basford, 1988] was applied to cluster

vertices into two groups:

1. The vertices on the surface of the neuron.

2. The vertices forming holes and cavities or inside the neuron.

Probabilistic clustering returned the probability of each vertex being a member of either

cluster. The decision boundary between both clusters, i.e., the ambient occlusion factor for

which both groups were equiprobable, was the threshold. Vertices i whose Ai factor was

greater than the threshold were removed, as were their associated faces. As a consequence,

the mesh was opened as shown in Figure 7.1C. An approximation of the original surface of

the soma was computed to achieve a single closed mesh (Figure 7.1D) as explained below.

A simple way to define the closed surface of an object is by means of an indicator function

that denotes the space inside and outside the object as 1 and 0, respectively (Figure 7.3A).

Thus, as a result of computing the gradient of this function, space would be zero almost ev-

erywhere except near the surface of the object (Figure 7.3B). However, the indicator function

was unknown and only the vertices and the inward-facing normals of the mesh were provided

by Imaris and MeshLab software (Figure 7.3C). A relationship between the gradient of the

indicator function and an integral of the surface normal field was derived in [Kazhdan et al.,

2006]. The surface of the mesh was approximated from this integral relation (Figure 7.3D)

so the holes in the surface introduced in the previous step disappeared and the surface of the

soma was also slightly smoothed.
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Figure 7.4: Example of shape diameter function. A cone (brown) is centered on the inward-
normal of each vertex (pink arrow). Several rays (green) are sampled inside the cone such
that the sum of the length of the rays from the vertex to their intersection with the mesh
surface on the opposite side of the mesh approximates vicinity volume. The rays sampled
inside the soma are longer than the rays sampled inside the dendrites and the volume of the
vertices in the vicinity of the soma is therefore greater.

7.2.2 Automatic soma segmentation

Segmentation can be understood as a clustering problem where each vertex belongs to one

cluster, either soma or dendrite. In [Shapira et al., 2008] is presented a scalar function, called

shape diameter function (SDF), based on exploiting differences between the volume in the

neighborhood of the vertices of the mesh. This function is suitable for our segmentation

problem since dendrites are thinner than the soma and the volume in the vicinity of the

vertices of the soma is therefore greater. An illustration of SDF computation for some mesh

vertices is shown in Figure 7.4.

The colored neurons illustrated in Figure 7.1E were obtained from the SDF outcome.

The vertices of the mesh were colored according to the value of the scalar function SDF such

that the darker the vertex, the smaller the vicinity volume. Consequently, the vertices of the

somata were gray, and the vertices of the dendrites were black.

As with ambient occlusion, some vertices were discarded. In this case, the vertices of the

soma were kept whilst vertices of the dendrites were removed. Thus, a threshold based on the

SDF outcome was imposed. Again probabilistic clustering based on a Gaussian mixture was

applied to build a mathematical model for vertex clustering. The one-dimensional distribution

of the SDF outcome appeared to fit a two-component Gaussian mixture (see Figure 7.5A),

the soma and the dendrites. However, since the apical dendrite is typically thicker than the
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Figure 7.5: (A) Histogram and first clustering. The charts represent the volume distribution
of the soma and the apical dendrite (red) and the basal dendrites (green) of the neurons
shown in Figure 7.1. There are clearly two Gaussians. However, there are also two Gaussians
in the charts of the second clustering shown in Figure 7.5B, again demonstrating that the
apical dendrite was hidden. (B) Histogram and second clustering. The charts show the
volume distributions in the vicinity of the soma (red) and the apical dendrite (green). This
clustering removes the vertices of the apical dendrite in some cases, as in the second chart,
and improves the accuracy of the cutoffs in other cases, as in the fourth chart.

basal dendrites, sometimes the clustering algorithm regarded the apical dendrite as part of

the soma. So, we tried clustering into three groups. In those cases where the apical and basal

dendrites were quite similar, the soma was cut by half. The observed problems in identifying

the neuron regions were due to the fact that there were far fewer vertices representing the

apical dendrite than there were for the soma or the basal dendrites. Because the volume of

the apical dendrite was between that of the soma and basal dendrites, it did not show up

in the histograms, and only two Gaussians were noticeable in Figure 7.5A, one for the soma

and the other for the basal dendrites.

In order to overcome this problem, we defined a two-step process. In the first step, we

separated out basal dendrites from apical dendrite and somata by means of two Gaussian

clustering according to the SDF distribution (Figure 7.5A). Thus, the vertices and the faces of

the mesh which belonged to the basal dendrites were automatically identified and discarded

(Figure 7.1F). In the second step, two Gaussian clustering was applied to distinguish between

the soma and the apical dendrite (Figure 7.5B). The vertices and faces of the apical dendrite

were identified and discarded by segmenting the soma. The apical dendrite was sometimes

removed in the first step; the second clustering step improved cutoff accuracy in such cases.

The resulting soma was an open mesh and was then closed using the [Kazhdan et al., 2006]

method (Figure 7.1G). Other example of resulting somata, where the repaired and extracted

soma is displayed and placed over the original neurons, are shown in Figure 7.6.
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Figure 7.6: Examples of final soma result. The reconstructed neuron is colored white and its
automatically extracted soma is denoted in red.

7.2.3 Mesh comparison

The distance between the surfaces of two triangular meshes quantifies the distortion added

by a mesh processing technique. In our case, the distance was computed to validate the

goodness of the proposed method.

The distance between two meshes is defined as the minimum distance from each point on

the surface S1 of a mesh to the surface S2 of a second mesh. As the boundaries of a mesh are

defined by its vertices, we studied the distance from vertices only. The distance ε between a

vertex p ∈ S1 and the surface S2 was computed according to [Cignoni et al., 1998] as

ε(p, S2) = min
p′∈S2

d(p, p′),

where d is the Euclidean distance between p and p′ in R3. Then the root mean square error

(RMSE) was computed as follows:

RMSE(S1, S2) =

√∑
p∈S1

ε(p, S2)2

|S1|
,

where |S1| is the number of vertices of the surface of the mesh. RMSE is an asymmetric

measure as RMSE(S1, S2) 6= RMSE(S2, S1). A symmetric form of the RMSE was obtained

as

RMSES(S1, S2) = max{RMSE(S1, S2), RMSE(S2, S1)}.

Thus, RMSES(S1, S2) = 0 ⇐⇒ S1 = S2.

Also, it is useful to compare different mesh processing techniques. For two techniques,

one approach was based on processing M meshes with each processing method. Then the

volume of each processed mesh was calculated according to [Zhang and Chen, 2001]. Mesh

processing techniques were compared by the mean absolute quotient between volumes (MAQ).

Its outcome was an estimation of the proportional difference in volume when a method is

applied in place of the other:
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MAQ1,2 =

∑M
i=1

∣∣∣T1iT2i
− 1
∣∣∣

M
,

where T1i is the volume of mesh i produced by the first technique, T2i is the volume of mesh

i produced by the other technique and M is the total number of meshes processed by both

methods. MAQ is also an asymmetric measure as MAQ1,2 6= MAQ2,1. A symmetric form of

the MAQ was obtained as

MAQS = max{MAQ1,2,MAQ2,1}.

Thus, MAQS = 0 ⇐⇒ MAQ1,2 = MAQ2,1.

7.2.4 Validation of automatic segmentation

In order to validate the goodness of the automatic segmentation method, two experts in

neuroanatomy manually segmented nine 3D neurons to set up a framework for comparison.

For all nine neurons, we compared the RMSE for the somata segmented manually by the

experts and the somata output by the automatic method whose surface had been repaired.

The differences between both experts’ cutoffs, i.e., the inter-expert variability, were also

quantified (see Figure 7.7A).

The Wilcoxon signed-rank test was applied to corroborate the discrepancies in the plots

observed in Figure 7.7A. It was assumed as a null hypothesis H0 that the RMSE between

automatically and manually segmented somata was not significantly different from the inter-

expert RMSE. As a result, H0 was rejected for the first expert (p-value ≈ 0.02). Hence,

there were found to be significant differences between the morphology of the first expert’s

somata and the morphology of the somata yielded by the proposed procedure. Nevertheless,

H0 could not be rejected for the second expert (p-value ≈ 0.055).

In the light of the findings of the Wilcoxon test, the experts’ somata were repaired to test

whether the discrepancies with the automatically extracted somata were due to the method

of repair or the segmentation process. Then 3D representations of the somata were rendered

(Figure 7.8). The resulting three segmentations for each neuron unveiled similar geometries,

save for some fine distinctions in the cutoffs surfaced around the boundaries between the soma

and apical dendrite. Hence, the significant differences previously observed between somata

could be due to the repair process.

To find out this, the manually segmented somas were repaired by the automatic repair

process and RMSE was recomputed. Figure 7.7B shows RMSE between the automatically

and manually extracted somata. In this case, H0 was not rejected for either the first (p-value

≈ 0.73) or the second expert (p-value ≈ 0.43). Hence, it was the repair process that caused

the significant differences between the automatically and manually extracted somata.

We then calculated the MAQ between the volumes of the automatically and manually seg-

mented somata. Thus, we found that there is a 4.33% and a 5.06% of difference in the volume

of the somata segmented by the proposed process and the manually segmented somata by
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Figure 7.7: RMSE before and after repairing the experts’ somata. (A) For all neurons
except Neuron 6, RMSE was less between experts than between the somata output by our
procedure and by either of the experts. For several neurons, the difference was actually more
than double. (B) The differences between automatically and manually segmented somata
were not so remarkable after the repair of the experts’ somata. Note that for some neurons
RMSE was less between our procedure and the first expert than between both experts, i.e.,
the proposed procedure can produce similar cutoffs to an expert
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Figure 7.8: Illustration of the goodness of the soma segmentation method on four cells. The
somata segmented manually by the first expert are shaded green, the somata segmented by
the second expert are shaded blue and the somata segmented according to the proposed
procedure are shaded red.

the first (MAQS(Proc,Exp1)) and second expert (MAQS(Proc,Exp2)) respectively. Con-

sequently, the difference in the volume of the somata between the procedure and the experts

was on average around a 4.7%. As regards somata segmented by experts, the inter-expert

difference in volume (MAQS(Exp1, Exp2)) was around 3.08%. This result shows that the

measurements of properties in the characterization of a manually segmented neuron vary

from one expert to another. Since the proposed method is deterministic and increases or de-

creases the volume by on average only 1.62% more than manual segmentation, its application

is useful for achieving reproducible results.

7.2.5 Intra-expert variability

The cutoffs on neurons are subject to variation due to human inaccuracy and the limitations

of the hardware and software used for 3D reconstructions of the cells. For example, the

segmentation of 3D meshes on a computer screen changes the morphology of the resulting

soma depending on the perspective of the neuron when it is cut. Hence, an expert segmenting

the same neuron never obtains the same soma. This intra-expert variability can be avoided

by the proposed procedure, which yields deterministic results.

To test this, the two experts segmented six repaired neurons three times, each on a

different day. The intra-expert variability was estimated from these somata. The results are

shown in Figure 7.9. As the bar plot shows, the same expert never gets the same result

for the same neuron. Additionally, experts found some neurons harder to segment. See,

for example, Neuron 5 for the first expert or Neuron 4 for the second expert. However,

the intra-expert variability is close to the inter-expert variability observed in Figure 7.7.
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Figure 7.9: RMSE between the somata extracted from six neurons by both experts on three
different days. (A) For the first expert, intra-expert variability was high for Neurons 4, 5
and 6, whereas Neurons 2 and 3 were quite accurately segmented. (B) For the second expert
Neurons 4 and 5 stand out from the others because of the others because of their higher
variation. Again Neurons 2 and 3 were the most accurately segmented.

In fact, the mean inter-expert RMSE was 0.458, whereas the mean intra-expert variability

was 0.4254 for the first expert and 0.4236 for the second expert. Therefore, applying the

proposed procedure to remove the intra-expert variability is avoided the main differential

factor between morphologies originating from the same neuron.

We studied the soma locations at which some neurons were harder to segment than

others using the distances between meshes. The R package Morpho [Schlager, 2014] provides

a functionality to color a mesh according to its distance to the compared mesh (Figure

7.10). As a result, easily identifiable cutoffs were shaded green, like the surface of the soma.

However, troublesome cutoffs were shaded red when the dendrite was longer than that of the

other mesh and blue otherwise. Thus, by exposing the morphology around the soma and

combining it with the colors of the cutoffs, the hot spots were highlighted and the causes of

differences between cutoffs were analyzed.

Figure 7.10A and Figure 7.10B are the best examples of the differences between the expert

segmentations. They show that intra-expert discrepancies occur in the thickest primary

dendrites, especially the apical dendrite. This denotes the intrinsic complexity of segmenting

the apical dendrite properly. By contrast, the neurons shown in Figure 7.10C and Figure

7.10D have thinner primary dendrites and are easier to segment, which makes it simpler to

get accurate cutoffs.
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Figure 7.10: Somata with their primary dendrites after manual segmentation. The somata
surface is green. The cutoffs are denoted by a color on a scale between red and blue in such
a way that the longest distances are denoted by the end colors and the shortest distances by
an equal combination of both. The opacity of the primary dendrites was decreased in order
to show up the colors of the cutoffs. (A) and (B) illustrate the somata with the greatest
differences according to Figure 7.9, i.e., (A) is Neuron 5 segmented by the first expert and
(B) is Neuron 4 segmented by the second expert. (C) and (D) show the somata with the
smallest differences, i.e., (C) is Neuron 2 segmented by the first expert (D) is Neuron 3
segmented by the second expert.

7.2.6 Feature extraction

For clustering purposes, 3D meshes representing the surface of the somas must be trans-

formed into a set of morphological features that unambiguously captures the geometry of the

somas, i.e., there must be a unique correspondence between an assignment to the features

and a 3D soma. If this condition is fulfilled, then the features should capture all of the

relevant geometrical information of the soma, and consequently any morphometric measure

can be computed from the set of features. The characterisation method proposed in Section

6.2.2 is based on this premise. It partitions the surface of the mesh into regions from a mul-

tiresolutional Reeb graph representation [Hilaga et al., 2001; Tangelder and Veltkamp, 2008]

and computes a set of features for each region that locally characterizes the topology of the

object, while the combination of all of the features provides a complete description of the

soma morphology. Figure 7.11 summarises this characterisation of the somas. As a result

of computing the multiresolutional Reeb graph, each soma was represented as a set of six

regions and seven ellipses. Then, for each region i, we measured the following set of linear

and directional features (see Figure 7.12) that are a subset of the features defined in Section

7.11:

� |hi|: Height of region i. It is the length of the vector hi between the centroids of the

ellipses bounding region i.

� |BR
i |: Length of the major axis of ellipse Bi, where Bi is the closest ellipse to the apical

dendrite of the pair of ellipses that bound region i.

� |Br
i |: Length of the minor axis of ellipse Bi.
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� cos θi: Curvature of the soma at region i. Taking vector hi as the zenith of a spherical

coordinate system, vectors hi and hi+1 define a direction that can be expressed in

spherical coordinates, i.e., the azimuth angle φi and elevation angle θi. The curvature

is computed from the dot product cos θi = hi·hi+1

|hi||hi+1| . Note that, although θi is an angle,

and it is not periodical because its domain is [0, π]. In [Mardia, 1975b], it is discussed

that the suitability of modelling random angles is clearly restricted to an interval smaller

than 2π as circular variates, concluding that these angles should be treated like ordinary

linear variables. Hence, we considered θi as a linear variable.

� φi: Growing direction of region i. It is the azimuth angle computed from vectors hi

and hi+1 that, combined with θi, describes the direction of a vector hi+1 in spherical

coordinates.

� Θi: Direction of ellipse Bi. It is the polar angle or colatitude in the spherical coordinate

system defined by the perpendicular vector to ellipse Bi, assuming the centroid of the

ellipse as the origin. It is obtained from the vector
BRi
|BRi |
× Bri
|Bri |

. It was considered as a

linear variable for the same reason as θi.

� Φi: Direction of ellipse Bi. The azimuth or azimuthal angle in the spherical coordinate

system defined by the perpendicular vector to the ellipse Bi assuming the centroid of

the ellipse as the origin. It is obtained from the vector
BRi
|BRi |
× Bri
|Bri |

. Both Θi and Φi

together describe the direction of the perpendicular vector to Bi.

7.3 Clustering

The morphology of a soma was approximated with 43 variables, where 12 of them are di-

rectional and 31 are linear. According to this characterisation, the number of variables was

larger than the number of repaired somas. When the number of parameters to estimate is

larger than the amount of data available, the model can overfit the data, or the covariance

matrix can even become singular for some clusters. This problem gets worse in model-based

clustering, as the number of parameters of the model increases linearly with the number of

components of the mixture. Hence, we had to constrain the degrees of freedom of the model

by introducing an upper bound to the maximum number of parents for each node, as well

as the number of clusters. Another implementation detail is related to the SEM algorithm,

which guarantees the convergence to a stationary point (local optimum, global optimum or

a saddle point), which can be non-optimal in some cases. Because SEM is a determinis-

tic algorithm, the starting point dictates the convergence point. To reduce the probability

of converging to undesirable stationary points, SEM algorithm was initialised from several

random uniformly distributed starting points. We empirically set the maximum number of

parents to two for the structure learning and executed the SEM algorithm 300 times from

randomly selected starting points for two and three clusters.
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Figure 7.11: Characterisation of the soma morphology. (A) Computation of the insertion
point. We obtained the blue points on top by projecting the vertices that represented the
apical dendrite on the surface of the soma. The insertion point denoted by the colour green
was the result of averaging all the blue points and searching for the closest vertex of the
mesh to that mean. (B) Computation of the geodesic distance [Xin and Wang, 2009] from
the insertion point. The soma is coloured with a gradient whereby the closest vertices to
the insertion point were coloured green and the furthest were coloured purple. (C) Mul-
tiresolutional Reeb graph. We discretised the surface of the soma into equal-length regions
according to the geodesic distance. All of the points in a curve are equidistant with respect
to the insertion point (isolines or contour lines). (D) Each curve was approximated by the
ellipse contained in the best fitting plane computed using principal component analysis.
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Figure 7.12: Feature extraction from the multiresolutional Reeb graph representation. Each
ellipse Bi is defined by its centroid and major |BR

i | and minor |Br
i | axes. The height of each

region is given by the length of the vector hi between the centroids of the ellipses. Vectors
hi and hi+1 define a direction in spherical coordinates from which φi and θi are obtained. Φi

and Θi are computed from the perpendicular vector to each ellipse Bi.

From the SEM algorithm outcome (see Figure 7.13), we selected the model that maximised

the BIC score (Equation (2.4)) and found three clusters as the best result. For each soma, we

computed its probability of belonging to each cluster (p1, p2, p3), where pi is the membership

probability of a soma to cluster i and
∑3

i pi = 1. All of the somas were clearly ascribed to

their most probable cluster as it was fulfilled that max{p1, p2, p3} > 0.99 in all of the cases.

We then assigned each soma to its most probable cluster; the 39 somas that made up the

complete dataset were distributed so that five somas belonged to Cluster 1, 17 somas were

attributed to Cluster 2, and the remaining 17 somas were ascribed to Cluster 3. Examples of

the somas assigned to each one of the three clusters are shown in Figure 7.14. We also include

3D representations of all the somas ascribed to each cluster as Supplementary Material1.

To identify the features that characterised each cluster, we performed the Welch t-test

[Welch, 1947] on the linear variables and the Watson-Williams test [Watson and Williams,

1956] on the directional variables. Given a pair of clusters, the null hypothesis of both

tests determined if both clusters had equal means. Table 7.1 shows that for each cluster,

the features for which the null hypothesis was rejected with a p-value < 0.05 in all of the

hypothesis tests performed between a given cluster and the rest of the clusters.

Table 7.1 is useful for distinguishing the clusters. Nevertheless, evaluating all of the

characteristics at the same time is an arduous task for a neuroanatomist who wants to identify

the most prominent properties of each group to determine possible functionalities. Using the

rule-based learner RIPPER [Cohen, 1995], we summarised in a unique rule for each cluster

1The source code in R, the software documentation and the 3D representations of the somas grouped
by their cluster with higher membership probability are freely available at https://github.com/
sergioluengosanchez/EMS_clustering.

https://github.com/sergioluengosanchez/EMS_clustering
https://github.com/sergioluengosanchez/EMS_clustering
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Figure 7.13: The BN structure learned by the SEM algorithm during the clustering process.
To avoid cluttering the BN with many arcs, all the arcs from the latent variable Z (top) to
each variable are represented as only one arc from Z to the group (inside the box). The BN
structure shows that linear variables (green) are interrelated in consecutive regions, such as
|Br

4| → |Br
3| → |Br

2|. Also, curvature variables θ and Θ (orange) are mostly correlated with
directional variables or other curvature variables.
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Table 7.1: Results from the Welch t-test and the Watson-Williams test, which checked for
significant differences between the means of the cluster and the rest of the clusters. The first
column shows the names of the variables (a total of 20 out of 43) for which their mean was
significantly different (p-value < 0.05) from the mean of the same variable in the rest of the
clusters. The symbol < denotes that the mean of the variable was significantly smaller than
it was for the other clusters, > denotes that the mean was significantly larger and = means
that the mean was neither larger nor smaller and was significantly different.

Variables Cluster 1 Cluster 2 Cluster 3
|h3| >
|h4| >
|h5| >
|Br

1 | < = >
|BR

1 | >
|BR

2 | >
|Br

4 | < >
|Br

6 | < >
cos θ2 >
cos θ5 <
cos θ7 <
φ6 >
Θ2 <
Θ3 <
Θ4 <
Θ5 <
Θ6 <
Φ2 <
Φ3 <
Φ6 <
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Figure 7.14: Examples of somas attributed to their most probable cluster.

the set of characteristics needed to best discriminate between clusters. The rules generated

by the RIPPER algorithm for each cluster with their accuracy between parentheses and a

short description are:

� Cluster 1: |Br
3| ≤ 4.59 (89.8%). Somas whose short axis of the third ellipse is extremely

small.

� Cluster 2: Θ5 ≥ 0 and Θ5 ≤ 1.36 and |h3| ≤ 3.62 (71.8%). Somas whose fifth ellipse is

slightly tilted and the farthest region from the apical dendrite is very short.

� Cluster 3: |h3| ≥ 3.66 (76.9%). Somas whose third region is long.

To gain insights on the complete morphology of the somas, we extend the study based

on the features extracted from the regions defined by the multiresolutional Reeb graph rep-

resentation that describes locally the geometry of the somas. More concretely, we analyse

the full set of variables checked as significantly different among clusters (Table 7.1) and the

variables identified by RIPPER as a whole. We observe that the somas in Cluster 1 are

mainly characterised by short axes in their ellipses. Therefore, the somas in this group are

narrower than the rest. Cluster 2 can be distinguished because the variables related to the

instantaneous curvature take lower values than for the other clusters. In consequence these

somas tend to be more curved farther from the apical dendrite. Finally, the length of the

regions as well as the length of the ellipse axes are significantly longer for Cluster 3, so the

largest somas are grouped within this cluster.
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From a neuroanatomical point of view, neurons with similar morphologies perform anal-

ogous brain functions. Therefore, it is interesting to find out which clusters of morphologies

were more similar to each other. For this purpose, we computed the KL divergence between

the three subtypes of pyramidal somas uncovered by our clustering approach. Thus, we ob-

tained that the most similar clusters were Cluster 1 and Cluster 3 with a KL divergence of

869.4. Cluster 2 brought together the most different morphologies, as its KL divergences with

respect to Cluster 1 and Cluster 3 were 2,078.3 and 1,629.0, respectively.

7.4 Simulation

One of the main challenges faced by neuroscience is the simulation of the human brain

circuitry based on mathematical models (see Section 4.1). Given that ethical limitations

prevent acquisition of the data directly from human brains, statistical models present an

opportunity to reason, make predictions and suggest new hypotheses. The generative model

implemented in this study allowed us to simulate virtual somas following the same two-step

process described for dendritic spines in Section 6.4. First, new datasets were sampled from

the joint p.d.f. represented by the learned BN. Then, for each instance of the new dataset, the

3D representation of the soma was generated. Note that the univocal correspondence between

an assignment to the variables and the geometry of the soma enabled the 3D reconstruction.

The procedure to obtain a virtual soma and some examples of virtual somas simulated from

each cluster are shown in Figure 7.15.

7.5 Conclusions

In this study we provide a mathematical definition of the neuronal soma and an automatic

segmentation method to delimit the neuronal soma of pyramidal cells. Since there are no

benchmarks with which to compare the proposed procedure, we validated the goodness of

this automatic segmentation method against the manual segmentation performed by experts

in neuroanatomy in order to set up a framework for comparison.

The results have demonstrated the importance of the repair process. Significant differ-

ences were found between the morphology of the cell bodies with and without a reconstructed

surface. However, after repairing the surface of the somata, there were no significant differ-

ences between automatically and manually segmented somata, i.e., the proposed procedure

segments the neurons more or less as an expert would. It also provides univocal, justifiable

and objective cutoffs. The cutoffs on neurons are subject to variation due to human inaccu-

racy and the limitations of the software used for 3D reconstructions of the cells. Furthermore,

manual tracing of individual cells is a time-consuming task. It is, therefore, important to

develop automated methods for the morphological analysis of large numbers of neurons to

enable high-throughput research.

We think that the mathematical definition of the soma of pyramidal cells is an important

step not only towards establishing and maintaining effective communication and data sharing
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Figure 7.15: Simulation of virtual somas. (A) The skeleton is created. First, the insertion
point (green) is placed at the origin of the coordinates. For each ellipse, compute the co-
ordinates of its centroid from the centroid of the previous ellipse using the height |hi|, the
curvature cos θi and the growing direction φi of region i. (B) An ellipse for each centroid is
generated. Given the centroid at the bottom of region i, 360 points are sampled from ellipse
Bi defined by the length of its axes, |BR

i | and |Br
i |, and its inclination given by Θi and Φi.

(C) Finally, consecutive ellipses are triangulated to obtain a closed mesh. (D) Examples of
virtual somas simulated from each cluster.
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between different laboratories, but also for better characterising these cells. For example, it is

well known that these cells are heterogeneous with regard to soma size and shape and different

subpopulations of pyramidal cells have different size [Hendry and Jones, 1983]. However, there

are no accurate morphometric data, and the data variations between different laboratories

may simply reflect the discrepancy regarding the delimitation of the cell body. We thin that

an undertaking by different laboratories to use the same methodology to define the soma

would have a great impact. The reason is that this information is relevant not only for better

characterizing the morphology of these cells in different cortical areas and species but also

for annotating and exchanging relevant information for modeling the activity of these cells.

For example, the method that we propose will help to generate detailed functional models

requiring knowledge of number of density of axo-somatic synapses, or of when quantitative

data about molecules playing a key role in the physiology of these cells are critical, for

example, to the density of different voltage-gated ion channels and receptors on the somatic

membrane surface area.

Previous studies have reported variations in the size of pyramidal neurons, but these

studies are based on arbitrary soma measurements, impeding comparisons between different

laboratories or the performance of other correlational studies, such as the possible relationship

between the size of the soma and the number of branches, nodes, etc., of the dendritic tree.

Thus, this study is an excellent means for further characterizing pyramidal neurons in order

to objectively compare the morphometry of the somata of these neurons in different cortical

areas and species and try to find possible rules governing the geometric design of pyramidal

cells.

We applied our EMS finite mixture model to the neuroscientific problem of clustering neu-

ral somas by their morphology. The characterisation of the somas according to the adapted

multiresolution Reeb graph representation enabled 3D simulation of virtual somas from the

three groups found by the SEM algorithm. We also identified the most prominent charac-

teristics of each cluster by means of hypothesis tests and the RIPPER algorithm which can

provide the neuroanatomist a deeper insight about the relation between morphology and

functionality of the soma.
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Chapter 8
Conclusions and future work

In this chapter we highlight the most important contributions and describe future research

work. The chapter also includes a list enumerating the publications and submissions product

of this research.

8.1 Summary of contributions

The contributions have been divided into two parts:

� Part III includes our contribution to directional statistics and data clustering. In Chap-

ter 5 we propose a set of finite mixture models for clustering multivariate directional

and directional-linear data according to closed-form expressions, avoiding numerical

optimisation methods that can be extremely computational expensive in combination

with the EM algorithm. Using the SEM algorithm we are able to learn the conditional

dependencies among variables encoded by the structure of the BN while we discover

the clusters. This provides several advantages such as the interpretability of the model,

the control over the complexity of the model and the possibility to manually include

constraints in the relationships between variables. We also present the multivariate

extension of the Mardia-Sutton distribution which allows us to relax the independence

constraints among directional and linear variables of previous directional-linear mod-

els applied in clustering. Additionally we derive the closed-form expressions for the

Kullback-Leibler divergence and Bhattacharyya distance which are similarity measures

between distributions that can be useful to evaluate the quality of the clusters.

� Part IV presents our work on clustering and simulation of 3D dendritic spines and

neuronal somas. Chapter 6 details the geometrical clustering results from over 7,000

complete manual 3D reconstructions of human cortical pyramidal neuron spines. First,

we propose a repairing protocol to accurately represent the morphology of the spines

which presented artifacts due to the diffraction limits of the light. Then, we compute a

set of features that summarise the morphology of the spine. These characterisation un-

ambiguously captures the geometry of the spines, i.e., there is a unique correspondence
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between an assignment to the features and a 3D representation of the spine. Thus, the

features capture all the relevant geometrical information and consequently any mor-

phometric measure can be computed from these set of features. From this dataset we

learn a Gaussian mixture model that uncovered six different classes of human spines

according to the BIC score. Additionally, we find that particular clusters were predom-

inant in different dendritic compartments, ages and distances from soma. To gain a

deeper insight into the characteristics of each group we identify the most representative

features for each cluster using the RIPPER algorithm. From the interpretation of these

rules the morphology of clusters can be related to their functionality. Furthermore,

we create 3D virtual representations of spines that match the morphological definitions

of each cluster. This is important because ethical limitations prevent all the neces-

sary datasets from being acquired directly from human brains to simulate human brain

neuronal circuitry, and the proposed model is a potentially useful tool for translating

neuronal circuitry components from experimental animals to human brain circuits. To

the best of our knowledge, this is the first time that such a large dataset of individual

manually 3D reconstructed spines from identified human pyramidal neurons is used to

automatically generate objective morphological clusters with a probabilistic model.

Chapter 7 develops an automatic reparation and segmentation method to delimit the

neuronal soma of 59 human pyramidal cells. The resulting somas did not show sig-

nificant differences with respect to manually segmented somas by neuroanatomists.

Therefore, our proposal provides univocal, justifiable, and objective cutoffs. We think

that this contribution is a relevant step not only toward speeding-up the tracing of

individual cells which can be a very time-consuming task, but also toward establishing

and maintaining effective communication and data sharing between different laborato-

ries. The reason is that if different laboratories use the same methodology to define

the somas, the resulting somas would be better characterised. From the set of seg-

mented somas, we unambiguously describe the geometry of the soma computing a set

of directional-linear features. Applying the EMS mixture model for clustering the so-

mas we discovered three groups according to the BIC score. All the somas are clearly

ascribed to their most probable cluster. To identify the most prominent characteristics

of each cluster we perform the Welch t-test on the linear variables and the Watson-

Williams test on the directional variables that we complement with the rules generated

by the RIPPER algorithm to facilitate the interpretation of the clusters. Finally, we

adapt the simulation method described for generating 3D virtual dendritic spines in

Chapter 6 to simulate virtual neuronal somas from each cluster. The resulting model

can be a useful tool for reasoning and suggesting new hypotheses regarding the function

of the somas from a neuroscientific perspective.

8.2 List of publications

Peer-review JCR journals:
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� Luengo-Sanchez, S., C. Bielza, R. Benavides-Piccione, I. Fernaud-Espinosa, J. DeFe-

lipe, and P. Larrañaga, A univocal definition of the neuronal soma morphology using

Gaussian mixture models, Frontiers in Neuroanatomy, vol. 9, issue 137, 2015. doi:

10.3389/fnana.2015.00137. Impact factor (JCR 2015): 3.260. Ranking: 2/22 (Quartile

1). Category: Anatomy & morphology.

� Luengo-Sanchez, S., I. Fernaud-Espinosa, C. Bielza, R. Benavides-Piccione, P. Larrañaga,

and J. DeFelipe, 3D morphology-based clustering and simulation of human pyramidal

cell dendritic spines, PLOS Computational Biology, vol. 14, issue 6, e1006221, 2018.

Impact factor (JCR 2017): 3.955. Ranking: 5/59 (Quartile 1). Category: Mathematical

& computational biology.

� Luengo-Sanchez, S., C. Bielza, and P. Larrañaga, A directional-linear Bayesian net-

work and its application for clustering and simulation of neuronal somas, IEEE Access,

in press, 2019. Impact factor (JCR 2017): 3.557 . Ranking: 24/148 (Quartile 1).

Category: Computer science & information systems.

Peer review congress contributions:

� Luengo-Sanchez, S., C. Bielza, and P. Larrañaga, Hybrid Gaussian and von Mises

model-based clustering, In European Conference on Artificial Intelligence (ECAI), vol.

285, pp. 855-862, 2016. Ranking: Core A.

Communications:

� Luengo-Sanchez, S., C. Bielza, P. Larrañaga. Directional-linear data clustering using

structural expectation-maximization algorithm, In Advances in Directional Statistics

17, ADISTA Workshop, Rome, 2017.

Collaborations:

� Benjumeda, M., S. Luengo-Sanchez, P. Larrañaga, and C. Bielza, Tractable learning of

Bayesian networks from partially observed data, Pattern Recognition, vol. 91, pp. 190-

199, 2019. Impact factor (JCR 2017): 3.965 . Ranking: 16/132 (Quartile 1). Category:

Computer science & artificial intelligence.

8.3 Software

We have developed the following software tools to support the research presented in this

dissertation:

� A MATLAB toolbox that given a 3D spine reconstruction computes a set of char-

acteristic morphological measures that univocally determine the spine shape. https:

//github.com/ComputationalIntelligenceGroup/3DSpineMFE

� An R package for simulating dendritic spines. https://github.com/sergioluengosanchez/

spineSimulation

https://github.com/ComputationalIntelligenceGroup/3DSpineMFE
https://github.com/ComputationalIntelligenceGroup/3DSpineMFE
https://github.com/sergioluengosanchez/spineSimulation
https://github.com/sergioluengosanchez/spineSimulation
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� An R package to repair, segment and characterise pyramidal neurons. It includes the

code to objectively compare the morphology of the somata of these neurons in different

cortical areas and species. http://cig.fi.upm.es/software/3DSomaMS

� An R and C++ package for performing directional-linear clustering according to the

EMS distribution. It also includes the code for simulating 3D neuronal somas. https:

//github.com/sergioluengosanchez/EMS_clustering

8.4 Future work

In this section we propose some future research lines.

The EMS model could be improved by conditioning the directional variables to linear vari-

ables or to other directional variables using, for example, the projected normal distribution as

in Mastrantonio et al. [2015]. This would increase the expressiveness of the model and would

probably simplify the structures of the BNs learned by the SEM algorithm, but numerical

optimisation would be required to estimate the parameters of the model. Additionally, most

of the regression models in the cylindrical framework are based on bivariate distributions that

assume a linear relation between the directional and the linear variables [Mardia and Jupp,

1999] or on non-parametric regression procedures, which are more flexible but also more dif-

ficult to extend to multivariate data [Di Marzio et al., 2013]. Inspired by Sung [2003], where

a Gaussian mixture regression is proposed, future research would include the development of

an EMS mixture regression model for non-linear regression analysis when the independent

variables are directional and linear, and the response variable is linear. Future research could

include to use the EMS distribution for factor analysis, assuming the vM distribution as the

prior distribution of a multivariate Gaussian, as a method to discover periodical patterns on

linear data. In Benjumeda et al. [2019] we study the advantages of directly computing the

score with respect to the observed data instead of an expectation of the score in the context

of learning with the SEM algorithm, and provide a strategy to efficiently perform these com-

putations. We could adapt the results of this work to perform multidimensional clustering of

directional-linear data and improve the results of the EMS mixture model.

Regarding neuroscience applications, human spine heads and necks are significantly larger

in terms of their area and longer, respectively, than mouse spines [Benavides-Piccione et al.,

2002]. Therefore, it would be interesting to compare human and non-human spines using the

present model-based clustering to ascertain whether the clusters that appear are the same

or different in other species, or whether there are differences between different cortical areas.

Additionally, we intend to perform directional-linear clustering on an available dataset of

16,000 dendritic spines of different cortical areas. From the comparison between the clusters of

the different areas it is expected to better understand how each cluster of spines is distributed

in each region and along the dendrites. As far as the neuronal soma is concerned, the proposed

method could be applied to any cell (e.g., interneurons and glial cells) labeled with fluorescent

dyes or expressing different fluorescent proteins. Future applications of the repairing method

for somas would also include the segmentation and analysis of images from conventional

http://cig.fi.upm.es/software/3DSomaMS
https://github.com/sergioluengosanchez/EMS_clustering
https://github.com/sergioluengosanchez/EMS_clustering
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3D light microscopy. Finally, we plan to gather more data of pyramidal somas from different

cerebral cortex layers and subjects and repeat the clustering while relaxing the constraints on

the model as increase the maximum number of parents per node and the maximum number

of clusters for the SEM algorithm. We also consider to perform neuron classification and

clustering using the set of features proposed in this work given that they could provide a

better description of the soma morphology than the usual characterization of the literature,

which consists of bidimensional measures as the perimeter, the area, the elongation or the

sphericity of the soma.
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Appendix A
Set of rules for the characterization

of dendritic spine clusters

Next we show the rules generated by RIPPER algorithm with the percentage of spines cor-

rectly classified:

� Cluster 1: (|h2| ≤ 0.09667589) 92.19% spines correctly classified

� Cluster 2: (V7 ≤ 0.01888145) and (cos(φ4) ≤ −0.9492174) and (cos(φ5) ≤ −0.964604)

84.49%

� Cluster 3: (ϕ46 ≥ 0.6491841) and (ϕ46 ≤ 2.028975) and (cos(φ2) ≤ −0.9235236) and

(V ≤ 0.5182492) 75.62%

� Cluster 4: (V4 ≥ 0.1093572) and (ϕ46 ≤ 0.8391926) 84.48%

� Cluster 5: (ϕ46 ≥ 0.8920209) and (|h2| ≥ 0.3030611) 84.18%

� Cluster 6: (V7 ≥ 0.09488738) 89%

A set of tables summarizing the 36 morphological features that represent morphological

aspects of the dendritic spines are shown. It can be used to compare and analyze the rules

of the section “Cluster interpretation and visualization”. Each table represents a concrete

feature along all the spine regions. Note that these are the values before standardization.

|h1| |h2| |h3| |h4| |h5| |h6| |h7|

Min 9 · 10−07 2 · 10−05 5 · 10−04 8 · 10−03 0.02 0.03 0.02
Q1 0.03 0.13 0.17 0.19 0.20 0.19 0.13

Median 0.10 0.23 0.26 0.26 0.26 0.26 0.18
Mean 0.12 0.24 0.26 0.27 0.27 0.27 0.20

Q3 0.18 0.33 0.34 0.33 0.34 0.34 0.25
Max 0.95 1.21 1.13 1.16 1.15 1.13 1
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BR
2 BR

3 BR
4 BR

5 BR
6 BR

7

Min 0.03 0.04 0.04 0.06 0.05 0.03
Q1 0.15 0.23 0.29 0.33 0.34 0.27

Median 0.20 0.30 0.35 0.41 0.44 0.36
Mean 0.21 0.31 0.37 0.42 0.46 0.39

Q3 0.26 0.37 0.44 0.51 0.55 0.48
Max 0.67 0.82 0.94 1.09 1.24 1.16

Br
2 Br

3 Br
4 Br

5 Br
6 Br

7

Min 0.02 0.03 0.03 0.04 0.03 0.03
Q1 0.11 0.15 0.17 0.2 0.21 0.16

Median 0.15 0.19 0.22 0.26 0.27 0.21
Mean 0.15 0.2 0.23 0.27 0.28 0.22

Q3 0.19 0.24 0.28 0.32 0.34 0.27
Max 0.42 0.54 0.76 0.78 0.79 0.70

ϕ24 ϕ26 ϕ46 V

Min 0.04 0.02 0.01 2 · 10−03

Q1 1.32 0.83 0.45 0.18
Median 1.85 1.25 0.65 0.35
Mean 2.32 2.05 0.93 0.46

Q3 2.62 2.27 1.02 0.62
Max 80.31 84.21 37.22 3.98

cosφ1 cosφ2 cosφ3 cosφ4 cosφ5 cosφ6

Min -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
Q1 -0.98 -0.99 -0.99 -0.99 -0.99 -0.98

Median -0.95 -0.96 -0.97 -0.98 -0.98 -0.95
Mean -0.86 -0.90 -0.93 -0.95 -0.96 -0.90

Q3 -0.85 -0.89 -0.91 -0.94 -0.96 -0.88
Max 0.99 0.99 0.61 0.88 0.61 0.98

V1 V2 V3 V4 V5 V6 V7

Min 0 5 · 10−06 3 · 10−04 7 · 10−04 5 · 10−04 2 · 10−04 3 · 10−05

Q1 2 · 10−03 0.02 0.03 0.05 0.06 0.04 0.01
Median 6 · 10−03 0.04 0.06 0.09 0.11 0.09 0.02
Mean 9 · 10−03 0.05 0.08 0.11 0.15 0.16 0.03

Q3 0.01 0.07 0.11 0.15 0.20 0.18 0.04
Max 0.16 0.78 0.94 1.37 1.70 1.48 0.37



Appendix B
Proofs

B.1 Derivation of the Extended Mardia-Sutton distribution

To obtain a directional-linear distribution, Mardia and Sutton Mardia and Sutton [1978]

decomposed a trivariate normal distribution into a Gaussian distribution conditioned to

a bivariate Gaussian. Then, they transformed the bivariate Gaussian from Cartesian to

polar coordinates and restricted their parameters to construct the von Mises distribution

(see Equation (3.6)). We define the Extended Mardia-Sutton distribution following a similar

procedure.

First, we consider two disjoint sets of linear random variables Xa ∈ RL and Xb ∈ R2D,

where L is the number of linear variables and D is the number of directional variables. We

assume that Xa and Xb are distributed according to the following joint p.d.f.:

f

(
Xa

Xb

)
∼ N

[(
Xa

Xb

)
;

(
µa

µb

)
,

(
Σaa Σab

Σba Σbb

)]
,

where µa ∈ RL and µb ∈ R2D are the means of Xa and Xb, respectively, Σaa is a matrix of

dimension L × L, Σab is a matrix of dimension L × 2D, Σba = ΣT
ab, and Σbb is a matrix of

dimension 2D × 2D.

Applying the chain rule of probability to the joint p.d.f. of the multivariate normal

distribution, the well-known expression for the conditional normal distribution is obtained

f

(
Xa

Xb

)
= f(Xb)f(Xa|Xb) = fN (Xb;µb,Σbb)fN (Xa;β0 + β>Xb,Q), (B.1)

where

β0 = µa −ΣabΣ
−1
bb µb,

β> = ΣabΣ
−1
bb ,

Q = Σaa −ΣabΣ
−1
bb Σba.
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The next step transforms the multivariate normal distribution on variables Xb from Carte-

sian to polar coordinates through a Jacobian transformation. The components of the trans-

formation are

Xb1 = r ◦ cos Y

Xb2 = r ◦ sin Y,

where Xb = (Xb1,Xb2)>, Xb1 and Xb2 ∈ RD, r = (r1, ..., rD)>, Y = (Y1, Y2, ..., YD)> are the

vector of directional variables and 0 ≤ Yd ≤ 2π for all d = 1, ..., D. The Jacobian determinant

for the transformation is given by

J(r,Y) =

∣∣∣∣∣∣∣∣
∂Xb1

∂r

∂Xb1

∂Y

∂Xb2

∂r

∂Xb2

∂Y

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
cos Y −r ◦ sin Y

sin Y r ◦ cos Y

∣∣∣∣∣∣ =
D∏
d=1

rd.

Hence, the resulting expression of applying the Jacobian transformation to Equation (B.1) is

f(Xa|Y, r)f(Y, r) = fN ((r ◦ cos Y, r ◦ sin Y);µb,Σbb)

fN (Xa;β0 + β>1 (r ◦ cos Y) + β>2 (r ◦ sin Y),Q)

D∏
d=1

rd. (B.2)

Given the independence assumption between the directional variables and that cosYd and

sinYd are orthogonal with the same variance σ2
d = 1

κd

Σbb =

(
Σb1b1 Σb1b2

Σb2b1 Σb2b2

)

is a diagonal matrix such that

Σb1b1 = Σb2b2 =


1
κd

0 0

0
. . . 0

0 0 1
κD

 ,

and Σb1b2 = Σb2b1 = 0.

The last step to construct the Extended Mardia-Sutton distribution is to restrict the

distribution over the directional variables to the unit circle. For this purpose, we condition

Equation (B.2) so that r = 1 obtaining

f(Xa,Y|r = 1) = f(Xa|Y, r = 1)f(Y|r = 1).

The expression f(Xa|Y, r = 1) is obtained from the conditional multivariate normal distri-
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bution given in Equation (B.2)

f(Xa|Y, r = 1) = fN (Xa;β0 + β>1 cos Y + β>2 sin Y,Q). (B.3)

The computation of the expression f(Y|r = 1) is not immediate and has to be obtained using

the Bayes’ theorem, i.e., f(Y|r = 1) = f(Y,r=1)
f(r=1) . The numerator is computed according to

f(Y, r = 1) =
1

|2πΣbb|1/2
· e−

1
2

∑D
d=1[(cosYd−cosµd)2κd+(sinYd−sinµd)2κd]

=
D∏
d=1

eκd cos(Yd−µd)

∏D
d=1 e

−κd

|2πΣbb|1/2
.

(B.4)

The normalisation term f(r = 1) is obtained by marginalizing Y in Equation (B.4) and

applying the modified Bessel function (see Equation (3.3)):

f(r = 1) =

∫
Y

D∏
d=1

eκd cos(Yd−µd)

∏D
d=1 e

−κd

|2πΣbb|1/2
dY =

D∏
d=1

2πI0(κd)

∏D
d=1 e

−κd

|2πΣbb|1/2
. (B.5)

Thus, from Equation (B.4) and Equation (B.5) we have

f(Y|r = 1) =

D∏
d=1

eκd cos(Yd−µd)

2πI0(κd)
=

D∏
d=1

fVM(Yd;µd, κd). (B.6)

Finally, the Extended Mardia-Sutton distribution among liner variables Xa and directional

variables Y is defined by the product of Equation (B.3) and Equation (B.6) as

fEMS(Xa,Y;β,Q,µY,κY) = f(Xa,Y|r = 1) = f(Xa|Y, r = 1)f(Y|r = 1)

=
D∏
d=1

fVM(Yd;µd, κd) · fN (Xa;β0 + β>1 cos Y + β>2 sin Y,Q),

(B.7)

where

β0 = µXa − β>1 cosµY − β>2 sinµY,

β1 = Σab1Σ
−1
b1b1,

β2 = Σab2Σ
−1
b2b2,

Q = Σaa −Σab1Σ
−1
b1b1Σb1a −Σab2Σ

−1
b2b2Σb2a,

Σab1 = cov(Xa, cos Y),

Σab2 = cov(Xa, sin Y).
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B.2 Bhattacharyya distance for the von Mises distribution

In this section we introduce the mathematical background needed to achieve a closed-form

equation for the Bhattacharyya distance between two univariate vM distributions. First,

the Bhattacharyya coefficient between two univariate vM distribution P (Yd) and Q(Yd) for

a directional random variable Yd is defined as

BC(P (Yd), Q(Yd)) =

∫ 2π

0

√
P (Yd)Q(Yd)dYd. (B.8)

Then, Bhattacharyya distance is computed as

BD(P (Yd), Q(Yd)) = − lnBC(P (Yd), Q(Yd)).

Let define the following trigonometric identities that will be used during the derivation

of the Bhattacharyya distance

cos(x− y) = cos(x) cos(y) + sin(x) sin(y), (B.9)

and

a cos(x) + b cos(x) = R cos(x− α) (B.10)

where R =
√
a2 + b2 and tan(α) = b

a .

First of all we have to derive the Bhattacharyya coefficient (B.8) between two univariate

vM distributions as

BC(P (Yd), Q(Yd)) =

∫ 2π

0

√√√√eκ
P
d cos(Yd−µPd )

2πI0(κPd )

eκ
Q
d cos(Yd−µQd )

2πI0(κQd )
dYd

=
1

2π
√
I0(κPd )I0(κQd )

∫ 2π

0
e
κPd
2

cos(Yd−µPd )e
κ
Q
d
2

cos(Yd−µQd )dYd

where the means of both distributions are µPd and µQd and the concentration parameters are

κPd and κQd . To compute the integral part we apply the first trigonometric identity (B.9) and

rearrange the terms

1

2π
√
I0(κPd )I0(κQd )

∫ 2π

0
e
κPd
2

(cos(Yd) cos(µPd )+sin(Yd) sin(µPd ))+
κ
Q
d
2

(cos(Yd) cos(µQd )+sin(Yd) sin(µQd ))

=
1

2π
√
I0(κPd )I0(κQd )

∫ 2π

0
ecos(Yd)(

κPd
2

cos(µPd )+
κ
Q
d
2

cos(µQd ))+sin(Yd)(
κPd
2

sin(µPd )+
κ
Q
d
2

sin(µQd ))
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Then, replacing according to

a =
κPd
2

cos(µPd ) +
κQd
2

cos(µQd )

b =
κPd
2

sin(µPd ) +
κQd
2

sin(µQd ),

we obtain
1

2π
√
I0(κPd )I0(κQd )

∫ 2π

0
ea cos(Yd)+b sin(Yd).

Applying the trigonometric identity (B.10) results:

1

2π
√
I0(κPd )I0(κQd )

∫ 2π

0
eR cos(Yd−α)

where R =
√
a2 + b2 and tan(α) = b

a Finally, the closed-form expression for the Bhat-

tacharyya coefficient is obtained replacing the integral by the definition of modified Bessel

function (3.3) of first kind and order 0 so:

BC(P (Yd), Q(Yd)) =
1

2π
√
I0(κPd )I0(κQd )

2πI0(R) =
I0(R)√

I0(κPd )I0(κQd )
(B.11)

The resulting expression for the Bhattacharyya distance is:

BD(P (Yd), Q(Yd)) = − lnBC(P (Yd), Q(Yd)) = − ln(I0(R)) +
ln(I0(κPd )) + ln(I0(κPd ))

2
(B.12)

B.3 Kullback-Leibler divergence for the von Mises distribu-

tion

The Kullback-Leibler divergence or relative entropy between two vM distributions P and Q

for a directional random variable Yd is defined as

DKL(P (Yd)||Q(Y )) = EP
(

log
P (Y )

Q(Y )

)
. (B.13)

To obtain a closed-form expression for the KL divergence between two univariate vM we start

by introducing the definitions of the modified Bessel function of the first kind and order n

for a directional variable Yd

In(κ) =
1

2π

∫ 2π

0
eκ cos(Yd) cos(nYd)dYd (B.14)
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and the ratio between modified Bessel functions of order one and order zero

A(κ) =
I1(κ)

I0(κ)
. (B.15)

Assume that we have two univariate von Mises distributions (Equation (3.2)) for the direc-

tional variable Yd, i.e.,

P (Yd) = fVM(Yd;µ
P
d , κ

P
d ) and Q(Yd) = fVM(Yd;µ

Q
d , κ

Q
d ).

For the sake of simplicity, we rotate the directional variable Yd and the distributions P (Yd) and

Q(Yd) according to µPd . The directional variable after the rotation is defined as Y ∗d = Yd−µPd ,

and the rotated distributions p and q are defined as

p(Y ∗d ) = fVM(Y ∗d ;µpd, κ
p
d) and q(Y ∗d ) = fVM(Y ∗d ;µqd, κ

q
d),

where the means of both distributions are µpd = µPd − µPd = 0 and µqd = µQd − µ
P
d and the

concentration parameters are obtained from κpd = κPd and κqd = κQd . Note that the rotation

does not change the concentration of the distributions. Then, the KL divergence between

univariate vM distributions is given by

DKL(p(Y ∗d )||q(Y ∗d )) =

∫ 2π

0
p(Y ∗d ) log

p(Y ∗d )

q(Y ∗d )
dY ∗d =

∫ 2π

0
p(Y ∗d ) log

eκ
p
d cos(Y ∗d )

I0(κpd)

I0(κqd)

eκ
q
d cos(Y ∗d −µ

q
d)
dY ∗d .

Simplifying and applying the logarithm, we obtain∫ 2π

0
p(Y ∗d )

[
log I0(κqd)− log I0(κpd) + κpd cos(Y ∗d )− κqd cos(Y ∗d − µ

q
d)
]
dY ∗d .

Thus, we have to compute four integrals. The first integral is:∫ 2π

0
p(Y ∗d ) log I0(κqd)dY

∗
d = log I0(κqd)

∫ 2π

0
p(Y ∗d )dY ∗d = log I0(κqd),

as
∫ 2π

0 p(Y ∗d )dY ∗d = 1. The second integral is obtained similarly:∫ 2π

0
p(Y ∗d ) log I0(κpd)dY

∗
d = log I0(κpd)

∫ 2π

0
p(Y ∗d )dY ∗d = log I0(κpd).

To compute the third integral, we use Equations (3.3) and (B.15):∫ 2π

0
p(Y ∗d )κp cos(Y ∗d )dY ∗d =

κp

2πI0(κpd)

∫ 2π

0
eκ

p
d cos(Y ∗d ) cos(Y ∗d )dY ∗d = κpdA(κpd).
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To compute the last integral, we again apply Equations (3.3) and (B.15):∫ 2π

0
p(Y ∗d )κqd cos(Y ∗d − µ

q
d)dY

∗
d

=
κqd

2πI0(κpd)

∫ 2π

0
eκ

p cos(Y ∗d ) cos(Y ∗d − µq)dY ∗d

=
κqd

2πI0(κpd)

∫ 2π

0
eκ

p cos(Y ∗d )(cos(Y ∗d ) cos(µqd) + sin(Y ∗d ) sin(µqd))dY
∗
d

=
κq

2πI0(κpd)

[
cos(µqd)

∫ 2π

0
eκ

p
d cos(Y ∗d ) cos(Y ∗d )dY ∗d + sin(µqd)

∫ 2π

0
eκ

p
d cos(Y ∗d ) sin(Y ∗d )dY ∗d

]
=

κqd
I0(κpd)

cos(µqd)I1(κpd) = κqd cos(µqd)A(κpd).

Finally, joining the results of all the integrals, we obtain the closed-form

DKL(p(Y ∗d )||q(Y ∗d )) = log I0(κqd)− log I0(κpd) +A(κpd)
(
κpd − κ

q
d cos(µqd)

)
. (B.16)

B.4 Kullback-Leibler divergence for the Extended Mardia-

Sutton distribution

The Kullback-Leibler divergence or relative entropy between two Extended Mardia-Sutton

distributions P and Q is defined as

DKL(P (X,Y)||Q(X,Y)) = EP
(

log
P (X,Y)

Q(X,Y)

)
, (B.17)

which can be factorised according to Equation (B.7) as

DKL(P (X,Y)||Q(X,Y)) =

D∑
d=1

DKL(P (Yd)||Q(Yd)) +DKL(P (X|PaGX)||Q(X|PaGX)). (B.18)

Hence, the KL divergence decomposes as a sum of independent KL divergences between

univariate von Mises distributions B.3 and the KL divergence of the linear variables condi-

tioned to the directional variables. In the next subsections, we derive the two types of KL

terms.

B.4.1 Conditional Kullback-Leibler divergence of the Extended Mardia-

Sutton distribution

The KL divergence of the linear variables conditioned to the directional variables between

the Extended Mardia-Sutton distributions P and Q is defined as

DKL(P (X|PaGX)||Q(X|PaGX)) =

∫
Y

D∏
d=1

P (Yd)DKL(P (X|Y)||Q(X|Y))dY. (B.19)
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Given that the linear variables are distributed according to a multivariate normal distribu-

tion (see Equation (B.7)), the multivariate normal KL divergence can be computed according

to the well-known equation

DKL(P (X|Y)||Q(X|Y)) =
1

2

[
Tr(Σ−1,QΣP ) + (µQ − µP )>Σ−1,Q(µQ − µP )− L+ ln

|ΣQ|
|ΣP |

]
,

(B.20)

where L is the number of linear variables.

There are four additive terms. The first, the third and the fourth terms are constant with

respect to Y, so

∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d )·1

2

[
Tr(Σ−1,QΣP )− L+ ln

|ΣQ|
|ΣP |

]
dY =

1

2

[
Tr(Σ−1,QΣP )− L+ ln

|ΣQ|
|ΣP |

]

Let us define µR = µQ − µP as

µR = (βQ0 − βP0 ) + (βQ1 − βP1 )> cos Y + (βQ2 − βP2 )> sin Y = βR0 + βR1
>

cos Y + βR2
>

sin Y.

The second term in the multivariate normal KL divergence (see Equation (B.20)) is a quadratic

form that can be written as∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d )

(
L∑

i,j=1

Σ−1,Q
ij µRi µ

R
j

)
dY =

∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d )

(
L∑

i,j=1

Σ−1,Q
ij (βR0i + βR1i

>
cos Y + βR2i

>
sin Y)(β0j + βR1j

>
cos Y + βR2j

>
sin Y)

)
dY.

where Σ−1,Q
ij is the element at the i-th row and j-th column in Σ−1,Q and µRi and µRj are the

i-th and j-th components of vector µR. Then, we compute the integrals over each additive

term, applying Equation (3.3) and some well-known trigonometric identities to yield

∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d )

 L∑
i,j=1

Σ−1,Q
ij βR0iβ

R
0j

 dY =

L∑
i,j=1

Σ−1,Q
ij βR0iβ

R
0j ,

∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d ) ·

 L∑
i,j=1

Σ−1,Q
ij βR0i(β

R
1j
>

cos Y)

 dY =
L∑

i,j=1

Σ−1,Q
ij βR0i

D∑
d=1

βR1jdA(κPd ),

∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d ) ·

 L∑
i,j=1

Σ−1,Q
ij βR0j(β

R
1i
>

cos Y)

 dY =

L∑
i,j=1

Σ−1,Q
ij βR0j

D∑
d=1

βR1idA(κPd ),
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∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d ) ·

 L∑
i,j=1

Σ−1,Q
ij (βR1i

>
cos Y)(βR1j

>
cos Y)

 dY

=

L∑
i,j=1

Σ−1,Q
ij

(
D∑
d=1

βR1idβ
R
1jd

2
·
(

1 +
I2(κPd )

I0(κPd )

)
+

D∑
d=1

D∑
m6=d

βR1idβ
R
1jmA(κPd )A(κPm)

)
,

and

∫
Y

D∏
d=1

fVM(Yd;µ
P
d , κ

P
d ) ·

 L∑
i,j=1

Σ−1,Q
ij (βR2i

>
sin Y)(βR2j

>
sin Y)

 dY

=
L∑

i,j=1

Σ−1,Q
ij

D∑
d=1

βR2idβ
R
2jd

2

(
1−

I2(κPd )

I0(κPd )

)
.

We omit those terms whose result of solving the integral was always zero. Finally, grouping

all of the terms in one equation, we obtain the expression for the conditional KL divergence

DKL(P (X|PaGX)||Q(X|PaGX)) =
1

2

L∑
i,j=1

Σ−1,Q
ij

[
βR0iβ

R
0j + 2βR0i

D∑
d=1

βR1jdA(κPd )

+
D∑
d=1

βR1idβ
R
1jd

2

(
1 +

I2(κPd )

I0(κPd )

)
+

D∑
d=1

D∑
m6=d

βR1idβ
R
1jmA(κPd )A(κPm) +

D∑
d=1

βR2idβ
R
2jd

2

(
1−

I2(κPd )

I0(κPd )

)]
+

1

2

[
Tr(Σ−1,QΣP )− L+ ln

|ΣQ|
|ΣP |

]
.
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C. Bielza and P. Larrañaga. Bayesian networks in neuroscience: A survey. Frontiers in

Computational Neuroscience, 8:131, 2014. doi: 10.3389/fncom.2014.00131.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

R. Blanco, I. Inza, and P. Larrañaga. Learning Bayesian networks in the space of structures

by estimation of distribution algorithms. International Journal of Intelligent Systems, 18

(2):205–220, 2003.

G. Bokota, M. Magnowska, T. Kusmierczyk, M. Lukasik, M. Roszkowska, and P. Dariusz.

Computational approach to dendritic spine taxonomy and shape transition analysis. Fron-

tiers in Computational Neuroscience, 10:140, 2016. doi: 10.3389/fncom.2016.00140.

T. Bonhoeffer and R. Yuste. Spine motility: Phenomenology, mechanisms, and function.

Neuron, 35(6):1019–1027, 2002.

W. Boomsma, J. T. Kent, K. V. Mardia, C. C. Taylor, and T. Hamelryck. Graphical models

and directional statistics capture protein structure. Interdisciplinary Statistics and Bioin-

formatics, 25:91–94, 2006.

W. Boomsma, K. V. Mardia, C. C. Taylor, J. Ferkinghoff-Borg, A. Krogh, and T. Hamelryck.

A generative, probabilistic model of local protein structure. Proceedings of the National

Academy of Sciences, 105(26):8932–8937, 2008.



140 BIBLIOGRAPHY

R. R. Bouckaert. Bayesian Belief Networks: From Construction to Inference. PhD thesis,

Faculteit Wiskunde en Informatica, Universiteit Utrecht, 1995.

J. Brito, S. Mata, S. Bayona, L. Pastor, J. DeFelipe, and R. Benavides Piccione. Neuronize:

A tool for building realistic neuronal cell morphologies. Frontiers in Neuroanatomy, 7:15,

2013. doi: 10.3389/fnana.2013.00015.

F. Bromberg, D. Margaritis, and V. Honavar. Efficient Markov network structure discovery

using independence tests. Journal of Artificial Intelligence Research, 35:449–484, 2009.

S. A. Buffington, J. M. Sobotzik, C. Schultz, and M. N. Rasband. Iκbα is not required for

axon initial segment assembly. Molecular and Cellular Neuroscience, 50(1):1–9, 2012.
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P. Larrañaga. A univocal definition of the neuronal soma morphology using Gaussian

mixture models. Frontiers in Neuroanatomy, 9(137), 2015. doi: 10.3389/fnana.2015.00137.

S. Luengo-Sanchez, C. Bielza, and P. Larrañaga. Hybrid Gaussian and von Mises model-based

clustering. In Proceedings of the 22nd European Conference on Artificial Intelligence, pages

855–862. IOS Press, 2016.

S. Luengo-Sanchez, I. Fernaud-Espinosa, C. Bielza, R. Benavides-Piccione, P. Larrañaga,

and J. DeFelipe. 3D morphology-based clustering and simulation of human pyramidal cell

dendritic spines. PLOS Computational Biology, 14(6):e1006221, 2018.



BIBLIOGRAPHY 151
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B. Mihaljević, P. Larrañaga, R. Benavides-Piccione, S. Hill, J. DeFelipe, and C. Bielza.

Towards a supervised classification of neocortical interneuron morphologies. BMC Bioin-

formatics, 19(1):511, 2018.

T. P. Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis,

Massachusetts Institute of Technology, 2001.

S. Monti and G. F. Cooper. Learning Bayesian belief networks with neural network estimators.

In Proceedings of the 11th Conference on Neural Information Processing Systems, pages

578–584, 1997.

D. L. Moolman, O. V. Vitolo, J.-P. G. Vonsattel, and M. L. Shelanski. Dendrite and dendritic

spine alterations in Alzheimer models. Journal of Neurocytology, 33(3):377–387, 2004.

J. Mooney, P. Helms, and I. Jolliffe. Fitting mixtures of von Mises distributions: A case study

involving sudden infant death syndrome. Computational Statistics and Data Analysis, 41

(3-4):505–513, 2003.

K. P. Murphy. A variational approximation for Bayesian networks with discrete and contin-

uous latent variables. In Proceedings of the 15th Conference on Uncertainty in Artificial

Intelligence, pages 457–466. Morgan Kaufmann Publishers Inc., 1999.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

A. K. W. Navarro, J. Frellsen, and R. E. Turner. The multivariate generalised von Mises

distribution: Inference and applications, booktitle = Proceedings of the 31 Conference on

Artificial Intelligence, pages = 2394–2400, year = 2017, publisher= American Association

for Artificial Intelligence.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical

Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.



154 BIBLIOGRAPHY

R. E. Neapolitan. Learning Bayesian networks. Pearson Prentice Hall, 2004.

E. Nimchinsky, B. Sabatini, and K. Svoboda. Structure and function of dendritic spines.

Annual Review of Physiology, 64:313–353, 2002.

F. Nojavan, S. S. Qian, and C. A. Stow. Comparative analysis of discretization methods in

Bayesian networks. Environmental Modelling & Software, 87:64–71, 2017.

J. Nolte. The Human Brain: An Introduction to its Functional Anatomy. Mosby, 2002.

Z. Nusser, D. Naylor, and I. Mody. Synapse-specific contribution of the variation of trans-

mitter concentration to the decay of inhibitory postsynaptic currents. Biophysical Journal,

80(3):1251–1261, 2001.

M. Paluszewski and T. Hamelryck. Mocapy++ – A toolkit for inference and learning in

dynamic Bayesian networks. BMC Bioinformatics, 11(1):126, 2010.

S. Patil and B. Ravi. Voxel-based representation, display and thickness analysis of intricate

shapes. In Proceedings of the 9th International Conference on Computer Aided Design and

Computer Graphics, pages 415–422. IEEE Computer Society, 2005.

J. Pearl. A constraint propagation approach to probabilistic reasoning. In Proceedings of

the 1st Annual Conference on Uncertainty in Artificial Intelligence, pages 357–369. AUAI

Press, 1985.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers Inc., 1988.

J. Peña, J. Lozano, and P. Larrañaga. An improved Bayesian structural EM algorithm

for learning Bayesian networks for clustering. Pattern Recognition Letters, 21(8):779–786,

2000.
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