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Introduction

Biology and machine learning are two scientific fields destined to keep working
together. The milestone of the human genome sequencing (International Hu-
man Genome Sequencing Consortium, 2001, 2004) was the official starting
point of the genomics era within biological research. From that time on, this
field has exponentially grown in a very short period of time. And, parallelly,
machine learning and data mining disciplines have come across biology so as
to deal with the new era data.

We are now aware of the complexity of our own biological mechanism.
Human beings have 23 chromosome pairs; the haploid human genome occupies
a total of just over 3 billion DNA base pairs; it contains an estimated 20,000
to 25,000 protein-coding genes; and also, RNA genes, regulatory sequences,
introns and junk DNA. Unfortunately, we are still far from understanding
all these intricate mechanisms and, more importantly, being able to repair it
when needed.

Disciplines of bioinformatics and computational biology have emerged from
the convergence of the new omics fields and the computational tools that
are needed to manage, store and analyze the huge amount of data produced
by them. But, just as the classical biology was not ready to have such a
great revolution, neither was classical machine learning ready to deal with
the biological data without adaptations.

One of the most classical problems in computational biology research is
to extract knowledge from population studies where different phenotypes are
considered. Classical examples are, among others, cancer studies that compare
healthy individuals with patients, early biomarker discovery for different dis-
ease states, drug responses and clinical trials. This kind of research is mapped
by the machine learning discipline into the supervised classification problems.

Roughly speaking, supervised classification can be seen as learning from
experience. The supervised classification task uses data where the class or the
group structure is known in order to learn a mathematical model which is able
to classify unseen data samples where the class is unknown. Several models
exist to accomplish this task, but, in order to extract useful biological knowl-
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edge, the classifiers based on Bayesian networks (Castillo et al., 1997; Jensen
and Nielsen, 2007; Neapolitan, 2003; Jensen and Nielsen, 2007) are of the
most useful. Bayesian network classifiers (Friedman, 1997; Larrañaga et al.,
2005) are a particular type of probabilistic graphical models (Pearl, 1988;
Whittaker, 1991; Lauritzen, 1996) that have become very popular paradigms
to represent uncertainty.

Optimization approaches have found a new field of application in the
omics data. Classical search strategies are unfeasible to deal with high-
dimensionality biological problems, where the current computer power is still
insufficient to provide exhaustive searches. For instance, to adjust kinetic
equations, look for particular patterns in the genomic sequences of different
specimens or protein folding by energy minimization, are new optimization
problems. In such cases, stochastic search techniques such as estimation of
distribution algorithms (Mühlenbein and Paaß, 1996; Larrañaga and Lozano,
2002; Pelikan, 2005) are a perfect solution to tackle these problems.

Nevertheless, machine learning and optimization procedures need accom-
modation to the specificities of the novel biological data. This dissertation
aims to contribute to the state of the art of machine learning techniques
adapted for dealing with computational biology problems. In addition, we
provide and discuss a set of tools to adequately analyze DNA microarray and
mass spectrometry data, which are two of the most popular research domains
in computational biology. In the following sections we clarify these contribu-
tions, which are introduced throughout the dissertation.

1.1 Contributions of the dissertation

The main contributions of this dissertation are presented as six elements. A
brief explanation of each one is given next. Section 1.2 includes the full thesis
overview, pointing to the particular chapters and sections where each item is
presented and discussed.

A. Consensus approaches within bioinformatic problems

Dealing with a low number of cases is a great challenge to get valid results in a
data mining analysis. Even more when the ratio between the number of cases
and the number of features is completely unbalanced to the features. In this
scenario, we tackle four different machine learning approaches: univariate rel-
evance metrics, discretization policies, reliable dependence Bayesian classifiers
and feature selection by estimation of distribution algorithms.

As the first consensus approach, we propose seven different univariate
ranking metrics and a way to combine them into a single order ranking. Such a
relevance ranking is derived from the positional combination of each individual
metric one. Due to its low computational cost, this method is a good approach
to have an initial idea of each feature relevance. When a practitioner wants



1.1 Contributions of the dissertation 5

to retrieve a set of relevant features, machine learning discipline proposes the
use of feature subset selection algorithms. We explore here the combination
of different discretization methods with a correlation-based feature subset se-
lection. By repeating the same analysis stages using different discretizations,
we look for a set of minimum prototypical and relevant features, regardless of
the discretization technique used.

The third contribution in the consensus course is a reliably-flexible depen-
dence Bayesian network classifier. By combining a bootstrap approach and a
feature subset selection technique, it is possible to induce a hierarchy of di-
rected acyclic graph structures. The sparsity of the network structure can be
tuned by increasing/decreasing the minimum confidence level demanded for
the edge set. This flexible structure is proposed as a inducer for gene interac-
tion networks and it can be also used on classification purposes by integrating
the class variable on the structure.

The last methodological contribution belongs to the optimization field and
comprises the consensus population on estimation of distribution algorithms.
The classical algorithm outputs the best solution of the search process but
does not pay attention to the good intermediate solutions visited throughout
the full search. We propose a consensus way to combine all this information to
retrieve more robust and stable solutions. Instead of a single one, our proposal
outputs a set of solutions to work with. Two metrics to study the consistency
and stability of feature subset selectors are also introduced.

B. Quality criteria for microarray data

DNA microarray data is perhaps the most spread gene expression platform
worldwide. This high-throughput biological device is able to measure the gene
activity of thousands of genes in a single appliance. Despite this capability,
it presents a crucial side-effect: the noise that the raw results include. In this
dissertation we include a set of metrics to evaluate the reliability of each of
the measures a microarray returns.

These criteria are presented from two points of view: to discard/accept a
full microarray or to discard/accept a particular gene measuring through a
cohort of microarrays. The criteria set are based both on statistics and biology
assumptions. Furthermore, different quality metrics are presented for the two
main microarray manufacturers, Affymetrix and Agilent.

C. Research on the pathogenesis of two autoimmune diseases

As a first direct application of the consensus policies presented previously, we
tackle a gene expression analysis on systemic lupus erytemathosus and pri-
mary antiphospholipid syndrome. These are two autoimmune diseases, clas-
sified as rare due to their low population prevalence, that have an unknown
origin and pathogenesis. In order to make an in-depth data analysis, we apply
the univariate metric consensus and the consensus gene selection by different
discretizations. The found relevant set of genes are validated from a statistical
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and biological point of view. Results successfully point to previous reported
findings and, more importantly, uncover new possible biological hypothesis to
work on.

D. Gene and micro RNA interaction networks

Another two genomics applications are collected in the third part of the disser-
tation. In the first case, we analyze gene expression data from a local project
on colorectal cancer research. The main methodological tool in this case is the
reliable dependence identification approach to infer a gene interaction net-
work. Apart from the reliable dependences, results from its application may
also identify new possible biomarkers for this kind of cancer. The whole study
can be of great importance because a European patent has been submitted
with a diagnosis kit based on these and other complementary results.

The induction of reliable interactions is not only limited to gene expres-
sion data, and, we also present an open research with a recently discovered
genetic molecule, the micro RNA. These small molecules come from the chro-
mosomical DNA but they do not constitute proper genes. MicroRNA are small
molecules that are supposed to repress the expression of certain target genes.
Within this study two interaction network structures are induced from mi-
cro RNA expression data coming from multiple sclerosis and healthy samples.
Results enlighten the importance of some micro RNAs which are expected to
have a relevant function on the disease.

E. Preprocessing tasks for mass spectrometry data

A mass spectrometer is another general-purpose high-throughput biological
device dedicated to the elucidation of the elemental composition of a sample
or molecule. It is a high complex device and its outputs are signal profiles
of mass charge ratio abundances. Such is the case in the microarrays, the
physics of spectrometer devices biases their outcome, adding chemical noise,
signal shifts and artifacts. A standard pipeline of cleaning tasks is not provided
by the scientific community. In the continuous search to reach a standard, we
propose our own pipeline of tasks to remove all this unwanted noise from the
raw signal. This pipeline, known as preprocessing pipeline, ends with a peak
profiling algorithm that identifies possible relevant points in each spectrum.
This preprocessing pipeline has been tested with four mass spectra datasets,
showing promising results. A Matlab implementation of the pipeline is publicly
available on the Internet.

F. Peak selection on mass spectra data by estimation of distribution
algorithms

The last application of this thesis work is the selection of relevant peaks on
mass spectrometry datasets using the population consensus in estimation of
distribution algorithms. This application starts with the proposal of a whole
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data analysis workflow to get rid of the overfitting problems that some feature
selection schemes present. The analysis workflow includes two validation loops,
an honest way to make the preprocessing and relevant peak selections and a
multiobjective filter to the population consensus results.

Four public datasets are analysed by the algorithm and the results are
compared in terms of predicted classification accuracy, stability degree and
coincidence with the original works. In addition, we present a new chart,
called as peak frequential plot, that allows an expert to have a straight vision
of the results. Using these plots not only are previous findings corroborated,
but new research lines are also pointed out.

1.2 Overview of the dissertation

This dissertation is divided into thirteen chapters, which are organized into
four main parts. The first part consists of five chapters. The first chapter is
an introduction to the dissertation where the reader can find a synthesis of
the contributions and how the dissertation is structured. Chapter 2 introduces
the molecular biology concepts that are used throughout the dissertation and
presents an scheme of how the new omics disciplines interacts among them.
Chapter 3 is devoted to explaining the classification tasks in machine learn-
ing, focussing on supervised classification and feature selection. The basic
mathematical notation is presented as well. Chapter 4 introduces probabilistic
graphical models with special attention on Bayesian network models. Finally,
Chapter 5 presents estimation of distribution algorithms, provides a taxonomy
of them and makes a revision of their current impact in the bioinformatics
field.

Part II is dedicated to the consensus adaptations of some machine learning
and data mining techniques. Chapter 6 gives an introduction to the drawbacks
related with the new high-throughput biological devices, asserting the need for
consensus policies when analyzing data produced by those devices. Chapter 7
includes the first consensus approach to univariately assess the relevance of
a variable by supervised filter metrics. A multivariate relevance technique is
described in Chapter 8 and a way to combine different discretization metrics
to select relevant genes on gene expression problems. Chapter 9 proposes a
method to identify robust arc dependences in Bayesian classifiers and how this
proposal is fitted to the induction of gene interaction networks. Chapter 10
introduces a method to reach a consensus for different populations when us-
ing estimation of distribution algorithms as wrapper feature selectors. Two
metrics to measure the stability among different subset selections are also
presented.

Part III turns the interest to the molecular biology field and illustrates
different applications of the new approaches to some computational biology
problems or datasets. Chapter 11 reviews the DNA microarray field, introduc-
ing different quality criteria for that kind of data. Regarding gene expression
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applications, two in depth studies are collected: one for two autoimmune dis-
eases (systemic lupus erythematosus and primary antiphospholipid syndrome)
and another for colorectal cancer. In addition, an open study on multiple scle-
rosis by means of recently discovered molecules, namely micro RNAs, closes
the chapter. Chapter 12 exemplifies how the consensus population is applied
to four proteomic mass spectra datasets. Results are discussed from different
points of view and a new tool to graphically inspect the analyses is presented.

Part IV concludes the dissertation with Chapter 13. This chapter presents
some general conclusions, the list of publications and proposals for future
work.



2

Mollecular biology, computational biology and

bioinformatics

This dissertation lays its foundation in the crossroads between computer sci-
ence and biology. The computer science paradigms, concepts and techniques
used throughout it are introduced in the following Chapters 3, 4 and 5. How-
ever, a wide range of biological concepts are also used in the applications,
where sometimes a not so profound introduction is made.

In this chapter, we present a brief description of the majority of those bi-
ological (sometimes philosophical) concepts. The aim of the dissertation is to
present new methodological approaches within the disciplines of bioinformat-
ics and computational biology. Therefore, this chapter only presents a limited
introduction to sometimes very vast concepts. In the case that some element
remains still unclear, we refer the reader to the huge amount of biology and
genetics books, e.g. (Griffiths et al., 2002).

2.1 Cell biology

The cell is the structural and functional unit of all known living organisms. It
is the smallest unit of an organism that is classified as living, and is often called
the building brick of life. Some organisms, such as most bacteria, consist of
a single cell (unicellular). Other organisms, such as humans, are multicellular
(estimations for humans are in 1014 cells). A typical cell size is 10 µm with an
average mass of 1 nanogram. The largest known cell is an unfertilized ostrich
egg cell.

The word cell comes from the Latin cellula, meaning, a small room. Each
cell is a small container of chemicals and water wrapped in a membrane. Each
cell can take in nutrients, convert them into energy, carry out specialized func-
tions, and reproduce as necessary. They are usually known as self-contained
and self-maintaining entities. There are two types of cells: eukaryotic and
prokaryotic.

• Prokaryotic cells are usually independent and they show the simplest struc-
ture. A prokaryotic cell lacks a nucleus and most of the internal organs or
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organelles that an eukaryotic presents. There are two kinds of prokaryotes,
bacteria and archaea, with a similar overall structure.

• Eukaryotic cells are often found in multicellular organisms. The major dif-
ference between prokaryotes and eukaryotes is that eukaryotic cells contain
membrane-bound compartments in which specific metabolic activities take
place. Among these differences, the most important is the presence of a cell
nucleus: a membrane-delineated compartment that houses the eukaryotic
cell’s DNA (see Section 2.1.2).

Eukaryotic cells also have other specialized organelles. As the name im-
plies, you can think of organelles as small organs. There are a dozen different
types of organelles commonly found in eukaryotic cells. Figure 2.1 list the
primary components of the eukaryotic cell.

Fig. 2.1. Diagram of a typical eukaryotic cell. Organelles are labelled as follows: 1.
Nucleolus; 2. Nucleus; 3. Ribosome; 4. Vesicle; 5. Rough endoplasmic reticulum; 6.
Golgi apparatus; 7. Cytoskeleton; 8. Smooth endoplasmic reticulum; 9. Mitochon-
drion; 10. Vacuole; 11. Cytosol; 12. Lysosome; 13. Centriole.

Some organelles, such as the nucleus or Golgi apparatus, are solitary, while
others, such as mitochondria and lysosomes, can be numerous (hundreds to
thousands). The cytosol is the gelatinous fluid that fills the cell and surrounds
the organelles. Three organelles carry out key tasks for the survival of the cell:

• Mitochondria - The mitochondria are the principal energy source of the cell
(thanks to the cytochrome enzymes of terminal electron transport and the
enzymes of the citric acid cycle, fatty acid oxidation, and oxidative phos-
phorylation). The mitochondria convert nutrients into energy as well as
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doing many other specialized tasks. Each mitochondrion has a chromo-
some composed of DNA that is quite different from the chromosomes in
the nucleus. We inherit our mitochondrial chromosome from our mother,
thus, it is transmitted in a matrilinear manner. It is much smaller than
the regular nucleus chromosomes and there are many copies of it in every
cell, whereas there is normally only one set of chromosomes in the nucleus.

• Ribosomes - The ribosome is a large complex of RNA and protein molecules.
This is where proteins are produced in the translation process (see Sec-
tion 2.1.4).

• Cell nucleus - It is the most noticeable organelle found in a eukaryotic
cell. The nucleus is spherical in shape and separated from the cytoplasm
by a double membrane called the nuclear envelope. It houses the cell’s
chromosomes, and it is responsible for maintaining the integrity of these
chromosomes and controling the activities of the cell by regulating gene
expression. The nucleolus is a specialized region within the nucleus where
ribosome subunits are assembled. The nucleus is where the transcription
process takes place (see Section 2.1.4).

2.1.1 Genome

The nucleus of most human cells contains two sets of chromosomes, one set
given by each parent. Each set has 23 single chromosomes, 22 autosomes and
an X or Y sex chromosome. There are notable exceptions including the egg
and sperm cells (each of which have only 23 chromosomes containing half the
usual amount) and mature red blood cells (which no longer have a nucleus
and, so, lack chromosomes).

Chromosomes can be seen under a light microscope. Differences in size and
composition allow the 24 chromosomes to be distinguished from each other,
an analysis called a karyotype (see Figure 2.2 (a)). A few types of major
chromosomal abnormalities, including missing or extra copies or gross breaks
and rejoinings (translocations), can be detected by microscopic examination.
For example, Down’s syndrome is due to the inclusion of a third copy of
chromosome 21 in an individual’s cells.

Near the center of each chromosome is its centromere, a narrow region
that divides the chromosome into a long arm (q) and a short arm (p). We
can further divide the chromosomes using special stains that produce stripes
known as a banding pattern. Each chromosome has a distinct banding pat-
tern, and each band is numbered to help identify a particular region of a
chromosome. This method of mapping known as cytogenetic mapping gives
a bird’s eye view of each chromosome. Figure 2.2 (b) presents the Ensembl 1

representation of the homo sapiens cytogenetic mapping.
Chromosomes are made of deoxyribonucleic acid (DNA), and genes are

special units of chromosomal DNA. Each chromosome is a very long DNA

1 http://www.ensembl.org
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(a) Example of a complete human kary-
otype.

(b) Classical cytogenetic map represen-
tation.

Fig. 2.2. Different representations of human chromosomes. Subfigure (a) displays
a microscope karyotype; Subfigure (b) shows the schematic view of a cytogenetic
mapping.

molecule, so it needs to be wrapped tightly around proteins for efficient pack-
aging. Chromosomes contain the entire human genome, roughly speaking all
the genetic information necessary to build a human being.

2.1.2 DNA molecule

DNA is a double-stranded molecule held together by weak hydrogen bonds
between base pairs of nucleotides. The molecule forms a double helix in which
two strands of DNA spiral about one another. These two strands run in op-
posite directions to each other and are therefore anti-parallel. The double
helix looks something like an immensely long ladder twisted into a helix, or
coil. The sides of the ladder are formed by a backbone of sugar and phos-
phate molecules, and the rungs consist of nucleotide bases weakly joined in
the middle by the hydrogen bonds (see Figure 2.3).

The DNA chain is 22 to 26 Ångströms wide (2.2 to 2.6 nanometres), and
one nucleotide unit is 3.3 Å long. Although each individual base is very small,
DNA polymers can be very large molecules containing millions of nucleotides.
For instance, the largest human chromosome, chromosome number 1, is ap-
proximately 220 million base pairs (bp) long.

There are four nucleotides in DNA. A DNA nucleotide is made of a five-
carbon sugar, a molecule of phosphoric acid, and a molecule called a base. The
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Fig. 2.3. The double helix of the DNA molecule. Each spiral strand, composed of
a sugar phosphate backbone and attached bases, is connected to a complementary
strand by hydrogen bonding (non- covalent) between paired bases, adenine (A) with
thymine (T) and guanine (G) with cytosine (C). Adenine and thymine are connected
by two non-covalent hydrogen bonds while guanine and cytosine are connected by
three.

bases are the letters that spell out the genetic code. In DNA, the code letters
are A, T, G, and C, which stand for the chemicals adenine, thymine, guanine,
and cytosine, respectively. In DNA base pairing, adenine always pairs with
thymine, and guanine always pairs with cytosine (see Figure 2.4). Due to this
chemical property, the base sequence of each single strand of DNA can be
simply deduced from that of its partner strand.

Fig. 2.4. Chemical scheme of one A–T and G–C base pair bonds. Non-covalent
hydrogen bonds between the pairs are shown as dashed lines.



14 2 Mollecular biology, computational biology and bioinformatics

It is the sequence of these four bases along the DNA’s backbone that
encodes information. The DNA genome of an organism is in fact comprised
of the sequence of all the nucleotide bases for all the existing chromosomes.
However, this raw information is not directly read/translated by the cells; it
is encoded in what is known as genetic code.

This genetic code is the set of rules by which information encoded in ge-
netic material is translated into proteins (amino acid sequences) by living
cells. The canonical genetic code defines a mapping between tri-nucleotide
sequences, called codons, and amino acids. A triplet codon in a nucleic acid
sequence usually specifies a single amino acid (see Section 2.1.3 and Table 2.1).
Nevertheless, there are many variant codes to the canonical one: e.g. human
protein synthesis in mitochondria relies on a genetic code that varies from
the canonical code. And, most importantly, not all the genetic information
is stored as genetic code. All organisms’ DNA contain regulatory sequences,
intergenic segments, chromosomal structural areas, which operate using a dis-
tinct sets of rules maybe not as straightforward as the codon-to-amino acid
paradigm.

2.1.3 RNA molecule

RNA stands for ribonucleic acid, a nucleic acid molecule similar to DNA.
RNA and DNA differs in a few important structural details: in the cell, RNA
is usually single-stranded, while DNA is usually double-stranded; RNA nu-
cleotides contain ribose while DNA contains deoxyribose; and, the nucleotide
base thymine (T) that is present in DNA is replaced by uracil (U) in RNA.
RNA play crucial roles in protein synthesis and other cell activities.

RNA is formed upon a DNA template. Synthesis of RNA is usually cat-
alyzed by the RNA polymerase –an enzyme (protein) that assembles the RNA
from ribonucleotides–. RNA polymerase produces the RNA strand by using
DNA as a template in a process known as transcription. Initiation of tran-
scription begins with the binding of the enzyme to a promoter sequence in
the DNA. The DNA double helix is unwound by the helicase activity of the
enzyme. Then, the enzyme progresses along the template strand synthesiz-
ing a complementary RNA molecule. The DNA sequence also dictates where
termination of RNA synthesis will occur.

There are more than thirty classes of RNA molecules. Among the most
important ones we can cite the following three:

• Messenger RNA (mRNA) - mRNA is the RNA that carries information
from DNA to the ribosome, the factories of protein synthesis in the cell.
The coding sequence of the mRNA determines the amino acid sequence in
the protein that is produced. The sequence is again elucidate in basis of
the genetic code read in codons. Table 2.1 presents the codification from
mRNA nucleotide bases to protein amino acids.

• Transfer RNA (tRNA) - tRNA is a short-chain type of RNA present in
cells. There are 20 varieties of tRNA. Each variety combines with a specific
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amino acid and carries it along, leading to the formation of protein with
a specific amino acid arrangement dictated by DNA.

• Ribosomal RNA (rRNA) - rRNA is a component of ribosomes. Ribosomal
RNA functions as a nonspecific site for making polypeptides.

Amino acid Coding codon(s) Amino acid Coding codon(s)

Alanine (A) GCU, GCC, GCA,
GCG

Leucine (L) UUA, UUG, CUU,
CUC, CUA, CUG

Arginine (R) CGU, CGC, CGA,
CGG, AGA, AGG

Lysine (K) AAA, AAG

Asparagine (N) AAU, AAC Methionine (M) AUG
Aspartic acid (D) GAU, GAC Phenylalanine (F) UUU, UUC
Cysteine (C) UGU, UGC Proline (P) CCU, CCC, CCA,

CCG
Glutamine (Q) CAA, CAG Serine (S) UCU, UCC, UCA,

UCG, AGU, AGC
Glutamic acid (E) GAA, GAG Threonine (T) ACU, ACC, ACA,

ACG
Glycine (G) GGU, GGC, GGA,

GGG
Tryptophan (W) UGG

Histidine (H) CAU, CAC Tyrosine (Y) UAU, UAC
Isoleucine (I) AUU, AUC, AUA Valine (V) GUU, GUC, GUA,

GUG
START AUG STOP UAG, UGA, UAA

Table 2.1. Genetic code for the translation between mRNA codons and amino
acids.

Once the transcription is carried out by the RNA polymerase, the RNA
strand is then processed to give messenger RNA (mRNA), which is free to
migrate through the cell. There, mRNA molecules bind to ribosomes located in
the cytosol, where they are translated into polypeptide sequences according
to the rules specified by the genetic code (see Table 2.1). This process is
known as translation, and it proceeds in four phases: activation, initiation,
elongation and termination (all describing the growth of the amino acid chain,
or polypeptide that is the product of translation).

Translation starts with a chain initiation codon (start codon). The codon
alone is not sufficient to begin the process and nearby sequences and initiation
factors are also required to start translation. The most common start codon is
AUG, which also codes for methionine. The three stop codons are UAG, UGA
and UAA. Stop codons are also called termination codons and they signal
release of the nascent polypeptide from the ribosome. The new polypeptide
then folds into a functional three-dimensional protein molecule.
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2.1.4 Gene expression

Each of the 46 human chromosomes contains the DNA for thousands of indi-
vidual genes, the units of heredity. There are estimated 20,00025,000 human
protein-coding genes, although this number could drop. Human genes are
distributed unevenly across the chromosomes: each chromosome contains var-
ious gene-rich and gene-poor regions. In cells, a gene is a portion of DNA
that contains both coding sequences that determine what the gene does, and
non-coding sequences that determine when the gene is expressed (active).

Coding sequences are known as exons and code for a specific portion of a
complete protein. Depending on the context, exon can refer to the sequence in
the DNA or its RNA transcript. Its counterpart, DNA non-coding sequences
are called introns (intra-genic regions). These non-coding sections are present
in the precursor mRNA (pre-mRNA) directly translated for the DNA se-
quence, and removed by a process called splicing during the processing to
mature RNA. The mature RNA molecule can be a messenger RNA or a func-
tional form of a non-coding RNA such as rRNA or tRNA. As a general view,
we will only consider mRNA that, after intron splicing, consists only of exons,
which are translated into a protein.

Fig. 2.5. Detailed description of a gene expression process. The left part presents
the intron-exon configuration of a gene. The right part illustrates how, from the
DNA sequence, the transcription and translation processes produce a polypeptide
chain in basis of the genetic code.

In summary, when a gene is active, the coding and non-coding sequences
are transcribed, producing an RNA copy of the gene’s information. This piece
of RNA can then direct the synthesis of proteins via the genetic code (see
Figure 2.5). In other cases, the RNA is used directly, e.g. tRNA, ribosomal
RNA, microRNA, and other non-coding RNA genes. The molecules resulting
from gene expression, whether RNA or protein, are known as gene products
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or transcripts, and are responsible for the development and functioning of all
living things.

2.1.4.1 Gene expression monitoring

A gene activity in an organism is determined by the rates of its expression and
degradation. There are nowadays different techniques to measure such gene
activity, among the most known and used are the Northern blot, Real-time
PCR, Multiplex PCR, SAGE or DNA microarray. In all of them and in order
to robustly detect and accurately quantify the expression from small amounts
of DNA/RNA, amplification of the gene transcript is necessary.

For this purpose the polymerase chain reaction was invented by K. Mullis
in 1983 . The polymerase chain reaction (PCR) is a molecular biology tech-
nique whose name derives from one of its key components, the DNA poly-
merase molecule. PCR is used to amplify a piece of DNA by in vitro enzymatic
replication. As the reaction progresses, the DNA generated is used again as
a template for replication, in consequence the DNA template is exponentially
amplified. With PCR it is possible to amplify a single or few copies of a piece
of DNA across several orders of magnitude.

Three major steps are involved in a PCR. These three steps are repeated
for 30 or 40 cycles. The cycles are done on an automated cycler, a device
which rapidly heats and cools the test tubes containing the reaction mixture.
Each of the three steps takes place at different temperatures:

• Denaturation (94◦C) - The double-stranded DNA melts and opens into
two pieces of single-stranded DNA.

• Annealing (54◦C) - The reaction primers pair up with the single-stranded
DNA sequence to be copied. On the small length of double-stranded DNA,
the polymerase attaches and starts copying the template.

• Extension (72◦C) - DNA building blocks complementary to the template
are coupled to the primer, making a double stranded DNA molecule.

With one cycle, a single segment of double-stranded DNA template has
thus been amplified into two separate pieces of double-stranded DNA. These
two pieces are then available for amplification in the next cycle.

PCR has found widespread and innumerable uses: to diagnose genetic
diseases, do DNA fingerprinting, find bacteria and viruses, study human evo-
lution, clone the DNA of an Egyptian mummy, etc.. Accordingly, PCR has
become an essential tool for biologists, DNA forensics labs, and many other
laboratories that study genetic material. The reaction is easy to execute and
requires no more than a test tube, a few simple reagents, and a source of heat.

Based on the polymerase chain reaction, the real-time polymerase chain
reaction, also called quantitative real time polymerase chain reaction (Q-
PCR/qPCR), was invented. qPCR makes use of the polymerase chain reaction
to amplify and simultaneously quantify a targeted DNA molecule. Both the de-
tection and quantification of a particular DNA sequence is possible by means
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of qPCR. The procedure follows the general principle of polymerase chain
reaction. The key feature is that the amplified DNA is in real time quantified
as it accumulates in the reaction after each amplification cycle. The biological
foundations of qPCR are complex and there have been different approaches to
the quantification of the DNA/RNA sequence increase. For a more in depth
explanation, we refer to the revision by (Nolan et al., 2006).

2.2 Omics

The suffix -om- refers to totality of some sort. The English neologism omics
informally addresses those biology fields in which the objects of study conform
a totality. The first example was genomics, which stands for the study of the
genome. Due to the success of high-throughput biological devices and new
analytical tools, the suffix -om- has also been picked up by a wide array of
other large-scale quantitative biology fields. Many of them are very recent
terms that are not fully accepted by all the research community2, among the
most established we can find:

Genomics study of the genome, the entire DNA sequence of organ-
isms, the genetic mapping and its activity which also
includes studies of intragenomic phenomena and other
interactions between loci and alleles within the genome.

Transcriptomics study of the transcriptome, the mRNA complement of
an entire organism, tissue type, or cell.

Proteomics study of the proteome, the protein complement of an
entire organism, tissue type, or cell.

Metabolomics study of the metabolome, the totality of metabolites in
an organism.

Spliceomics study of the spliceosome, the totality of the alternative
splicing protein isoforms.

Glycomics study of glycome, the totality of glycans, carbohydrate
structures of an organism, a cell or tissue type.

Lipidomics study of the lipidome, the totality of lipids.

In general, the term omics focuses on large scale and holistic data research
to understand life in encapsulated omes. It is common to use the term omics
referring to the comprehensive integration of analyses from different layers of
the biological systems. New technology is developing constantly and quickly,
so omics disciplines will not only have an impact on our understanding of bio-
logical processes, but the prospect of more accurately diagnosing and treating
disease is becoming a reality.

2 A full list of omics disciplines can be found at http://omics.org
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2.3 Computational biology and bioinformatics

There is nowadays some ambiguity when dealing with these two terms. Some
authors state that bioinformatics is the main discipline while computational
biology is one of its integrated subdisciplines. Others stress the opposite, that
bioinformatics is a subdiscipline of computational biology. Since there is no
accepted consensus for this discussion, we here gather definitions that support
the latter statement, which we believe is the most adequate.

Computational biology can be defined as a new interdisciplinary field that
applies the techniques of computer science, applied mathematics and statistics
to address biological problems. Being a very general definition, it encompasses
many different fields:

• Computational biomodeling - A field within biocybernetics concerned with
building computational models of biological systems. These biomodels try
to mathematically emulate the biological mechanisms involved in a partic-
ular system. Examples in this discipline can be genetic networks, enzyme
kinetics, cancer cell models, or bigger scale models such as the modelling
of the heart.

• Computational genomics - A field within genomics which studies the
genomes of cells and organisms. Computational genomics focuses on un-
derstanding the human genome, and more generally the principles of how
DNA controls the biology of any species at the molecular level. In ad-
dition, high-throughput genome sequencing produces lots of data, which
requires extensive post-processing genome assembly. It uses DNA microar-
ray technologies to perform statistical analyses on the genes expressed in
individual cell types. This can help find genes of interest for certain dis-
eases or conditions. This field also studies the mathematical foundations
of sequencing.

• Molecular modeling - A field complementary to the computational biomod-
eling, it focuses attention on modelling the behaviour of molecules of bio-
logical importance. The fields of application can range from small chemical
systems to large biological molecules. The main difference with computa-
tional biomodeling is that molecular modeling mimics the external be-
haviour of the elements under study, whereas biomodeling tries to mimic
the full entity. Typical examples are potential or energy functions that
simulate biological behaviours by mathematics.

• Protein structure prediction - Also including structural genomics, this field
concentrates on systematically producing accurate structural models for
three-dimensional protein structures that have not been determined exper-
imentally. It deals with the prediction of a protein’s tertiary structure from
its primary structure. This tertiary structure (spacial distribution) of the
amino acids sequence of a protein fixes its functionality and behaviour. Ex-
perimental methods such as X-ray crystallography or NMR spectroscopy
are very expensive and high time-consuming, so computational approaches
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are used to predict the real structure in the meantime. Protein structure
prediction is of high importance in drug and novel enzymes designs.

• Computational biochemistry - Very related to the last item, this field
makes extensive use of structural modeling and simulation methods in
an attempt to elucidate the kinetics and thermodynamics of protein func-
tions. Kinetic equations are differential equations without a close solution,
in this field computational optimization is used to adjust the a priori ki-
netic models to the real measures obtained by experimental methods.

The last item is the bioinformatics. Bioinformatics can be defined as the
field which applies algorithms and statistical techniques to the interpretation,
classification and understanding of biological datasets. From this definition
it is easy to induce that bioinformatics applies to all of the computational
biology subdisciplines (all of them produce biological datasets for analysis).
There are a wide range of bioinformatics applications: DNA (RNA) or protein
sequence analysis and alignment, comparisons of homologous sequences, gene
finding and prediction, gene expression analysis, protein-protein interactions,
genome-wide association studies, the modeling of evolution, and many others.

One of the key features of bioinformatics and computational biology in gen-
eral is its intensive use and development of data mining and machine learning
algorithms (Inza et al., 2009; Larrañaga et al., 2006). We can think of algo-
rithms to assess relationships among members of large data sets, methods to
locate a gene within a sequence, predict protein structure and/or function,
and cluster protein sequences into families of related sequences. However, it is
relatively easy to find references to bioinformatics when referring to the im-
plementation of tools that enable efficient access and management of various
types of biological information. Although this discipline is a necessary con-
sequence of the former bioinformatics definition, the term biodata managing
seems to be more appropriate in this case.

Recently, especially from year 2,000 onwards, a new discipline related to
all of the previous has arisen: the systems biology. Most of the times, com-
putational biology disciplines most of the times reduce the complexity of the
domain under study by imposing design constraints or limitations. Sometimes
this is the only way to tackle complex systems and to obtain a good but not
perfect result or approach. Conversely, systems biology tries to integrate the
study of complex interactions in biological systems in a holism way: the sum
of the parts does not explain the whole. This new perspective of systems biol-
ogy is aimed at the discovery of properties that may arise from the systemic
view and, thus, to better understand the entirety of processes that happen in
a biological system.

In many occasions, the term systems biology is used to refer to a research
paradigm in biology, the antithesis to the reductionist paradigm. In general,
a systems biology point of view is the one that tries to integrate results from
different omics and retrieve new conclusions from all the interactions that
combination produces. As a graphical summary, Figure 2.6 presents a par-
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Fig. 2.6. Computational biology field with the data and problem interactions pro-
duced among its several subdisciplines.

tial vision of all the problems, applications and disciplines integrated within
computational biology.





3

Classification tasks within machine learning

The verb to classify comes from the Latin classificare and literally means “to
arrange or assign according to type”. Machine learning borrows this defini-
tion and states that a classification task involves assigning a given dataset
categories or labels from a set of possible classes. This assignment is not pos-
sible without the previous existence of a mathematical tool or classification
model that allows such a task. To this end, classification includes two different
subtasks: first, the way to create, induce or learn the classification model or
classifier; and, secondly, the procedure to assign their corresponding labels or
categories to similarly formed data (new observations).

The introduction to the former task will be discussed in Chapter 4, while
the latter task is presented in the present one. A taxonomy of the classification
problems is briefly discussed with more detail on the supervised classification.
Since all the problems and advances presented in this discussion belong to
the supervised classification domain, the principal concepts to evaluate the
goodness of a classifier are also presented in detail. Lastly, the basics of the
supervised feature subset selection are gathered.

But first of all, let us set up some notation and probability concepts that
will be present throughout all this dissertation.

3.1 Notation from the probability theory

A random variable is a function that associates a numerical value with eve-
ry outcome of a random experiment. A unidimensional random variable is
denoted by X and x denotes a particular value for that random variable.
When a random variable belongs to a n-dimensional space it is denoted as
X = (X1, . . . , Xn), where each Xi with i = 1, . . . , n is a unidimensional
random variable.

A set of values for a n-dimensional random variable X is represented
by x = (x1, . . . , xn), and is also known as an instance of X. A set of N
different instances of X is called a dataset and denoted as D = {x1, . . . , xN}.
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Depending on the particular context of the discussion, the nouns instance,
observation, case or sample are used indistinctly to refer to the same concept.
In the same way, the nouns feature or variable are used to refer to the concept
of random variable.

If the opposite is not stated, upper-case letters denote random variables
while lower-case letters denote the values of such variables. Boldface typeset
represents a vector, either of random variables or instances of them.

The generalized joint probability distribution of X over a point x is rep-
resented by ρ(X = x) or just by ρ(x). Similarly, the marginal generalized
probability distribution of X is denoted as ρ(x) and the conditional general-
ized distribution of Xi given Xj through ρ(xi|xj).

A discrete random variable, or discrete variable, is a random variable that
takes a numerable number of values. In opposition, a continuous random vari-
able is that one whose domain is not numerable. If every unidimensional ran-
dom variable Xi of a n-dimensional one is discrete, then ρ(x) = p(x) is known
as the joint probability mass function of X. Similarly p(x) and p(xi|xj) refers
to the marginal and conditional probability mass functions, respectively. Anal-
ogously for the continuous case, ρ(x) = f(x) is the joint density function of
X and f(x) and f(xi|xj) represents the marginal and conditional density
functions.

3.2 Unsupervised, semisupervised or supervised

classification

A classification dataset D is comprised of a set of N observations (cases or
instances), each of which is described by n + 1 random variables. The first n
variables, X1, X2, ..., Xn, are known as predictive variables, and the variable in
the n+1 position is the class variable C, or the supervised variable. Table 3.1
gathers the classical disposition of D into observations.

X1 X2 . . . Xi . . . Xn C
1 x1

1 x1
2 . . . x1

i . . . x1
n c1

...
...

...
. . .

...
. . .

...
...

j xj
1 xj

2 . . . xj
i . . . xj

n cj

...
...

...
. . .

...
. . .

...
...

N xN
1 xN

2 . . . xN
i . . . xN

n cN

Table 3.1. Data matrix of a (supervised) classification task.

However, the full knowledge of C and/or some or all of its values is not
always at hand. The consequence is that the classification problem can be
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divided into different subtypes, namely, unsupervised, semisupervised or su-
pervised classification. The boundary among them relies on the degree of
knowledge we have about the class variable. Given a classification dataset
D, if all the data is present with all its different categories or classes then we
talk about a supervised classification problem. When the degree of knowledge
is not so great, and some of the data could be assured to belong to a class
but nothing can be said for the rest of the data, we have a semi-supervised
problem. Finally, when we have uncategorised data and our aim is to find the
inherent categories that could explain the data characteristics and group the
observations into those categories, then we shall talk about an unsupervised
classification or clustering problem.

Among these three categories, more particular subtypes of classification
problems have already been reported. The following enumeration presents
some key characteristics of the main classification categories, plus some from
the more specific classification subtypes:

• Supervised classification. In general, these are classification problems for
which all the samples are labeled beforehand. The classical formula-
tion (Duda et al., 2001; Bishop, 2006) needs the explicit presence of sam-
ples from all the classes. A particular variant of this scheme, namely one
class classification (Manevitz and Yousef, 2001; Tax and Duin, 2002), oc-
curs when the class can only take two values but the data available only
contain samples from one of the classes. Classification applications are
found in a vast number of scientific fields: from the early introduction of
computers, supervised classification was also introduced in the modern
way of life. Among many others, we can cite applications in medicine,
computer vision, statistics and biology.

• Semi-supervised classification. There are domains in which to state the
membership or class of all samples is not possible. Under this contraint,
a dataset may contain labeled samples of one or more classes, but, at the
same time, samples whose membership is unknown. Due to that uncer-
tainty, these problems are known as semi-supervised (Zhu, 2005; Chapelle
et al., 2006). Similarly to the supervised case, there are particularisations
of the general scheme. For instance, the positive unlabelled (Denis et al.,
2002; Calvo, 2008) problem, where the class only takes two values and
the dataset only contains positive and unlabelled samples. Other domains
for semi-supervised classification are the web-mining and text-mining do-
mains where there are only a few labelled examples and a huge amount of
unlabelled instances.

• Unsupervised classification. Widely known as clustering problem (Forgy,
1965; Jardine and Sibson, 1971; Bezdek, 1981), in this problem there is no
knowledge about the class variable. Not only are the samples unlabelled,
but also the number of possible values for the class is unknown. Clustering
constitutes a well-established and successful application of classification
in many fields such as biology, medicine, population surveys, image seg-
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mentation, chemistry or geology, among others, and it is possible to find
a huge number of works on its state of the art.

All the problems tackled in this dissertation belong to the supervised clas-
sification domain. Therefore, all the methodologies presented are devoted to
taking advantage of the supervised knowledge. Let us introduce how the super-
vised classification can be formally modelled by means of probability theory.
A classifier can be seen as a function that assigns labels to observations,

γ : (x1, . . . , xn) → {1, 2, . . . , m},

where x = (x1, . . . , xn) ∈ Rn conforms the observation and {1, 2, . . . , m}
are the range of possible values for the class variable C. The real class is
denoted by c and takes values among that range. The main assumption is the
existence of an unknown underlying probability joint distribution where the
observations come from

p(x1, . . . , xn, c) = p(c|x1, . . . , xn)p(x1, . . . , xn) = p(x1, . . . , xn|c)p(c). (3.1)

In practice, this joint probability distribution p(x1, . . . , xn, c) can be esti-
mated from a random sample,

{

(x1, c1), . . . , (xN , cN )
}

,

extracted from the true joint probability distribution.
There exists a cost matrix, cost(r, s) with r, s ∈ {1, . . . , m}, for which

the associated cost of misclassifications are collected. In particular, cost(r, s)
contains the associated cost of classifying an element from class r as belonging
to class s. In the case that a 0/1 loss function is employed, we will have:

cost(r, s) =

{

1 if r 6= s ,
0 if r = s .

Thus, the main objective is to induce a classifier that minimizes the cost
of the total number of misclassifications. This is done by means of the Bayes
classifier (Duda and Hart, 1973):

γ(x) = argmin
k

m
∑

c=1

cost(k, c)p(c|x1, . . . , xn) .

The classification paradigms discussed in this dissertation belong to the
generative or informative classification family. Generative classifiers aim to
model the probability distribution of Equation 3.1 that generated the data.
This purpose its attained by using the Bayes rule to obtain the class condi-
tional probabilities,

p(c|x1, . . . , xn) =
p(c, x1, . . . , xn)

∑

c′ p(c′, x1, . . . , xn)
.
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When the classification scheme assumes a 0/1 loss function (Friedman,
1997), the Bayes classifier assigns to a given observation x = (x1, . . . , xn) the
class with higher a posteriori probability (Duda and Hart, 1973):

γ(x) = argmax
c

p(c|x1, . . . , xn) .

On a more general scheme, the observations could be classified according
to different criteria, that is, more than one class. This scheme is known as
multidimensional classification and presents a multidimensional class variable
C, that integrates each individual criterion. Multidimensional classification
is a very recent topic under study and there exists very few works on the
simultaneous prediction of more than one class (Van der Gaag and de Waal,
2006; de Waal and Van der Gaag, 2007; Rodŕıguez and Lozano, 2008).

3.3 Classifier evaluation

On a classification problem, a way to measure the goodness of a given classi-
fier or classification paradigm is imperative. Not only to have an idea of the
classification ratio, but also to be able to choose the most suited classification
paradigm for a given problem. This evaluation is comprised of two parts, a
performance measure and a way to estimate it. Both tasks have been long
discussed and in this section we present the most representative techniques to
tackle both issues.

3.3.1 Measures of performance

The classification error of a classifier γ, ǫγ , is defined as the probability that
γ mistakes the real class of a new instance x. Formally,

ǫγ =
∑

x

p(γ(x) 6= c)p(x) ,

where c is the actual class of x.
Most often, the classification error is expressed in terms of its comple-

mentary measure, that is, the classification accuracy. The accuracy of a given
classifier, Accγ , is thus the probability of correctly classifying a new instance
x:

Accγ =
∑

x

p(γ(x) = c)p(x) .

Classification error and/or accuracy are the most often used performance
measures to illustrate the goodness of a classification model. We should be
aware that this is only fair when the error cost is equally distributed for all
classes. However, when this cost is not independent of the class distribution,
the total cost should be decomposed and other more specialized performance
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measures are set out. Moreover, when a data set is unbalanced (the number
of samples in different classes vary greatly) the error rate of a classifier is not
representative of the true performance of that classifier.

Large research has been undertaken on binary classification problems in
order to propose new and more specialized performance measures. In this
kind of problem, we can inspect the performance of a classifier showing its
evaluation confusion matrix. Table 3.2 presents the classical disposition of a
confusion matrix on dichotomic classification. Each column gathers how many
instances have been classified as been either Positive or Negative. The rows
indicate how many of those classifications were according to the reality or
actual class label and how many were not.

PREDICTED γ(x)
Positive Negative

R
E

A
L

C Positive TP FN

Negative FP TN

Table 3.2. Confusion matrix in binary classification problems.

The main diagonal values in a confusion matrix correspond to the cor-
rected classified instances, which are the number of true positive (TP) and
the number of true negatives (TN). The missclassification values are divided
into false negatives (FN) and false positives (FP), depending on the direction
of the mistake.

Usually, the cost function is configured as a 0/1 loss function. In such
cases, both the cost of a false positive error is the same as the cost of a false
negative one. Then, the classifier’s accuracy value corresponds to the ratio
between the sum of TP and TN and the total number of classified instances.
However, other specific measures are available, such as the sensitivity and the
specificity values.

The sensitivity, Sn, is the ratio of positive instances that are correctly
classified as positive. Also known as recall, r, or true positive rate, TPR, it is
computed as

Sn = r = TPR =
TP

TP + FN
.

The counterpart of sensitivity for the negative instances is the specificity,
Sp. The ratio of actual negative cases that are correctly classified is thus the
specificity value,

Sp =
TN

TN + FP
.
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In some domains, e.g. health care, the cost of a false negative can be orders
of magnitude higher than the cost of a false positive: Imagine a patient with
cancer that is suggested as not having. Oppositely, there are other domains,
e.g. finance systems or real time systems, where the cost of a false positive is
orders of magnitude higher than the cost of a false negative. Imagine a high
investment in a financial asset that later falls in the market, or the detection
of a person when it was an animal passing by. In all those scenarios, two more
measures are of great interest when developing the classification systems, the
false positive rate and the precision of a classifier.

The false positive rate, FPR, is the ratio of negative cases that have been
classified as positive and can be estimated as

FPR =
FP

TN + FP
= 1 − Sp.

Its counterpart is the precision, pr, that can be defined as the probability
that an instance classified as positive is actually positive. From the confusion
matrix, we compute it as

pr =
TP

TP + FP
.

There are even more performance measures in the state of the art of classi-
fication in general. Of remarkable relevance could be the area under the ROC
curve (AUC) (Spackman, 1989) and the F measure (van Rijsbergen, 1979;
Goutte and Gaussier, 2005).

3.3.2 Estimation of the performance measures

For the aims of this dissertation, the classification error and/or accuracy are
the chosen performance measures. In most occasions, this value is used to state
which classifier is best suited to a certain problem among a set of classification
paradigms. However, those statements are made on the basis of estimations,
because the real error value is still unknown. Furthermore, accuracy estimation
is usually performed with a (very) limited number of instances and that fact
prevents a proper estimation.

The error rate of a classifier can be decomposed into two additive terms (Ko-
havi and Wolpert, 1996): the error bias and its variance. The error bias refers
to the error due to the difference between the true error (as mentioned, impos-
sible to know in real domains) and the estimated one by some of the methods
that we will now discuss. The variance component of the error comes from the
fact that, even if we assume that the bias value is very low, there will always
be an intrinsic variance on the datasets (Rodŕıguez et al., 2009).

The decomposition of the total error into its two components is an open
issue in the classification field. Many authors defend that the error can be
decomposed as

ǫγ = bias2 + variance.
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Other studies suggest that the term is more a ratio than an addition,

ǫγ = bias/variance.

Under the latter formulation (Friedman, 1997), the bias effect is of less im-
portance in comparison to the variance term if and only if the class predicted
by the classifier is correct. Notice that the bias contribution to the total error
directly depends on what decomposition is chosen.

Besides the own error value, two unwanted side effects may arise in the
estimation process. The first one is the overfitting problem related to the bias
term. When a classifier is highly specialized towards the training set, that is,
overfitted to that training set, the bias component of the error is expected to
be large when new instances are presented to that classifier. The second effect
is due to the number of instances on the test set(s). If the cardinality of these
sets is low, the variance of the estimation tends to be high (Braga-Neto, 2005).
Similarly to all estimations from a population sample, the variance tends to
decrease as the number of cases increases.

Historically, three different ways to estimate the classification error have
been used (Toussaint, 1974), namely resubstitution (Smith, 1947), hold-
out (Larson, 1931; Wherry, 1931) and k-fold cross-validation (Hills, 1966;
Cochran, 1968; Lachenbruch and Mickey, 1968).

• The resubstitution error (Smith, 1947) estimation is the simplest one and
it consists of inducing a classification model with the full available dataset
and testing its performance again on the same whole dataset. Roughly
speaking, the training and test sets are the same one, which corresponds
to the original dataset. Although the variance of the accuracy estimation
is zero, this is not a desirable method. Resubstitution estimators present
a high bias due to the overfitting and, thus, they provide accuracy estima-
tions which are too optimistic.

• In order to obtain an honest or fair estimation, the classification model
must be evaluated in a set of samples independent from the ones used to
induce it. This is the idea behind the hold-out (Larson, 1931) estimation
or H estimator : split the dataset into two disjoint sets, one to induce
the model and the other one to estimate its performance. Usually, the
proportion of instances in each set is 2/3 for the train and 1/3 for the
test, although this proportion can be changed by the user. H estimator is
well suited to problems in which there are a large number of instances.
For problems with a low number of instances, since the test set is again
smaller, the variance component of the error could be high (Horst, 1941).

• The k-fold cross-validation (Hills, 1966) (k-fold CV) constitutes a general-
ization of the H estimation. The dataset is divided into k randomly chosen
and exclusive subsets. Iteratively, k − 1 of these subsets are configured as
the train set and the remaining one as the test set. The process is repeated
k times, evaluating all possible combinations. At the end, the accuracy es-
timator is formed by the average of all folds’ accuracies and its standard
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deviation. The selection of the k value is a design decision that may vary
the estimations in a great manner (Stone, 1974).

A direct improvement to both the H and the k-fold cross-validation esti-
mators is to look for robustness by repeating the process several times. For
the H estimator, it is called random subsampling, while for the latter, it is
called repeated k-fold cross-validation (Kohavi, 1995). Both ways produce es-
timations with lower bias and variance. Another enrichment to obtain more
realistic estimations was proposed by Breiman et al. (1984) and consists of
obtaining the partitions while trying to keep the original proportion of classes.
This constraint is usually denoted as stratification and in the case of the k-fold
CV, it is usually taken as the standard way.

A particular case for the k-fold CV is the case where k = N . Within this
configuration, known as leaving-one-out cross-validation or LOOCV (Mosteller
and Tukey, 1968), the test set is always comprised of a single instance while
the train sets are formed by all instances except that instance. LOOCV ob-
tains almost unbiased accuracy estimations (Lachenbruch and Mickey, 1968)
although it can return optimistic errors in some domains.

The above presented methods are, in general, accepted and widely used by
the machine learning community, though they have also been criticized (Ng,
1997; Provost et al., 1998; Nadeau and Bengio, 2003). As alternatives, other
methods try to reduce the bias and variance of the estimators: jackknife (Rao
and Shao, 1992), bootstrap (Efron, 1983) or bolstered estimator (Braga-Neto
and Dougherty, 2004a).

3.4 Supervised feature selection

As introduced in Section 3.2, the main goal of supervised classification
is to induce a classifier model that allows us to classify unseen examples
E∗ = {xN+1, . . . , xN+Q} that are described by the values of their n features
or predictive variables. During the induction of the model, a total of N sam-
ples E = {x1, . . . , xN}, belonging to m different classes ΩC = {c1, . . . , cm},
are used and the model is expressed on the basis of the values of each corre-
sponding n features X = {X1, . . . , Xn}.

The feature selection or FS approach deals with the fact that, for many
classification sets, the reduction in the number of features carries out a gain
in the final accuracy of the induced classification model. Not only a better
predictive accuracy can be achieved, but also an improvement in the compre-
hension of the model and a reduction in both the induction time and the cost
of the data acquisition (Saeys et al., 2007).

Parsimonious theory states that, in general, mathematical models with the
smallest number of parameters are preferred, as each parameter introduced
into the model adds some uncertainty to it. Following this aim, it has been
already proven that the classification accuracy of supervised classification al-
gorithms is not monotonic with respect to the addition of features (Liu and
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Motoda, 2008). The predictive accuracy of such models could be lessened by
irrelevant or redundant features. Therefore, the quest for a subset of variables
X′ ⊂ X is in many occasions a must rather than an alternative task. Fea-
ture selection as a general approach deals with the problem of choosing some
features given a classification problem. However, we also focus our attention
on a more specific subtask: to choose a subset of relevant features from the
original ones. This is usually known as feature subset selection or FSS and
in many times both terms, feature selection and feature subset selection, are
indistinctly used. Examples of feature selectors as just univariate relevance
metrics are presented in Chapter 7 of this dissertation. In contrast, Chapter 8
introduces a feature subset selector and all its elements.

Feature subset selection is, basically, a search problem: each state in the
search space corresponds to a different configuration for the subset X′, and
associated to each configuration there is a value of an objective function
that measures the goodness of such a configuration. Exhaustive evaluation
of all possible subset configurations is most of the times infeasible due to
the NP-hard nature of the problem (Kohavi and John, 1997). Thus, the use
of heuristic-based search approaches is usually suggested to deal with such
searches. Let us present the main four pillars that every FSS approach needs
to settle.

Fig. 3.1. Evaluation policies on a feature subset selection procedure. The subindex
t in X ′

t refers to the t-th iteration of the search.
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A. Starting point

The search might begin with no features selected at all and successively add
them. On the contrary, there could be a backward search policy, beginning
with all the features and iteratively removing them while the objective func-
tion keeps improving. A middle alternative is to set up an initial set of selected
features and then explore the nearby search space.

B. Organization of the search

Basically, we can divide this issue into complete or heuristic. Complete search
will systematically examine every possible feature subset, while the heuris-
tic procedures will take advantage of some auxiliar function in order to avoid
exploring the whole search space. Heuristic algorithms are also divided into de-
terministic –sequential forward and backward selection, best-first search, ...–
and non-deterministic –genetic algorithms, simulated annealing, ant colony
optimization, etc.–.

C. Evaluation of feature subsets

There are three possible policies to evaluate a feature subset in the context of
a classification problem, filter, wrapper and embedded methods.

Filter techniques (Ben-Bassat, 1982) assess the relevance of features by
looking only at the intrinsic properties of the data. In most cases a feature
relevance score is calculated, and low-scoring features are removed. After-
wards, this subset of features constitutes the input of the classification algo-
rithm. Wrapper methods (Kohavi, 1995) embed the classification induction
algorithm within the feature subset search. In this setup, the evaluation of a
specific subset of features is obtained by training and testing a specific clas-
sification model, the final subset of features being only suited to that specific
classification algorithm. The third kind of evaluation policy, known as em-
bedded techniques, performs a search for an optimal subset of features at the
same time the classifier model is built, and can be seen as a hybrid combi-
nation between the former two policies. Figure 3.1 graphically illustrates the
behaviour of these three evaluation approaches.

D. Search stop criterion

This criterion is usually set by the user. Valid options could be the non-
improvement of the evaluation function, setting up a limit on the number of
possible solutions, or other options more particular for the search strategy in
use.

A good review of general FSS methods can be found in (Liu and Motoda,
1998) and in (Liu and Motoda, 2008). In particular for the bioinformatic field,
the review by (Saeys et al., 2007) explores the applications of FSS into the
computational biology field.
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Bayesian networks for classification purposes

In this section we will introduce a type of probabilistic graphical model known
as Bayesian networks (Pearl, 1988; Jensen and Nielsen, 2007; Neapolitan,
2003) that has been used during the last decade for reasoning in domains
with an intrinsic uncertainty. Statistics and machine learning fields have de-
veloped different approaches to solve the supervised classification problem:
classification trees (Breiman et al., 1984), classifier systems (Holland, 1975),
discriminant analysis (Fisher, 1936), k-NN classifiers (Cover and Hart, 1967),
logistic regression (Hosmer and Lemeshow, 1989), neural networks (McCulloch
and Pitts, 1943), rule induction (Clark and Niblett, 1989) and support vector
machines (Cristianini and Shawe-Taylor, 2000) among others. Within these
approaches, Bayesian networks represents one of the models that requires less
effort by humans to produce an interpretation. They have a straight graphical
representation allowing to observe and understand the underlying probabilis-
tic classification process.

Starting by introducing the mathematical concepts that constitute the
basics of probabilistic graphical models, the first part of this chapter is devoted
to what Bayesian networks are and how to induce them from data. The second
part of the chapter is devoted to introducing the Bayesian network classifiers
that are used in the experimental parts of this dissertation.

4.1 Probabilistic graphical models

The probabilistic graphical models or PGMs theory is built from the roots
of graph theory. Before the presentation of PGMs and Bayesian networks, a
set of concepts from graph theory should be introduced. A reader interested
in a more in-depth study of all the following concepts may check the work
by Castillo et al. (1997).
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4.1.1 Introductory concepts from graph theory

We define a graph G to be a pair G := (X , L), where X is a finite set of
vertices, also called nodes, of G, and L is a subset of the set X ×X of order
pairs of vertices, called the edges or links of G. As L is a set, the graph G

has no multiple edges. We require that L consist of pairs of distinct vertices
so that there are no loops.

If both ordered pairs (α, β) and (β, α) belong to L, we say that we have
an undirected edge between α and β, and write α ∼ β (or α ∼G β to indicate
the relevant graph G). We also say that α and β are neighbours, α is neigbour
of β, or β is neigbour of α. The set of neighbours of a vertex β is denoted by
Ne(β) or Neβ .

If (α, β) ∈ L but (β, α) /∈ L, we call the edge directed, and write α → β
(α →G β). We also say that α is a parent of β, and that β is a child of α.
The set of parents of a vertex β is denoted by Pa(β) or Paβ , and the set of
children of a vertex α by Ch(α) or Chα. The family of β, denoted as Fa(β)
or Faβ , is Faβ = {β} ∪ Paβ . If (α, β) ∈ L or (β, α) ∈ L, we say that α and
β are joined. Then α ≁ β indicates that α and β are not joined, i.e., both
(α, β) /∈ L and (β, α) /∈ L. We also write α 9 β if (α, β) /∈ L. A graph is
called complete if every pair of vertices is joined.

Given a subset A of X, A ⊂ X, the expressions PaA, ChA and NeA

will denote the collection of parents, children and neighbours, respectively, of
the elements of A, but exclude any element in A.

When all the edges of a graph are directed, we say that it is a directed
graph. Conversely, if all the edges of a graph are undirected, we say that
it is an undirected graph. The undirected version G∼ of a graph G is the
undirected graph obtained by replacing the directed edges of G by undirected
edges.

We call GA := (A, LA) a subgraph of G := (X , L) if A ⊆ X and
LA ⊆ L ∩ (A × A). Thus, it may contain the same vertex set but possibly
fewer edges. If, in addition, LA = L∩(A×A), we say that GA is the subgraph
of G induced by the vertex set A.

A path of length r from α to β is a sequence α = α0, . . . , αr = β of
distinct vertices such that (αi−1, αi) ∈ L for all i = 1, . . . , r. Thus, a path
can never cross itself and movement along a path never goes against the
directions of arrows. If the path of length r from α to β given by the sequence
α = α0, . . . , αr = β is such that for at least one i ∈ {1, . . . , r} there is a
directed edge αi−1, αi, we say that the path is directed. We will write α 7→ β
if there is a path from α to β, and say that α leads to β.

An r-cycle is a path of length r with the modification that the end points
are identical. Similarly a directed r-cycle is a directed path with the modifi-
cation that the end points are identical. We say that a graph is acyclic if it
does not possess any cycles. Consequently, a directed graph which is acyclic
is called a directed acyclic graph or DAG.
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It is always possible to well-order the nodes of a DAG by a linear ordering
or numbering such that, if two nodes are connected, the edge points from the
lower to the higher of the two nodes with respect to the ordering. Note that
a DAG may not have a unique well-ordering. If a DAG is well-ordered, the
predecessors of a node α, denoted by Pr(α) or Prα, are those nodes that
have a lower number than α.

Given a DAG, the set of vertices α such that α → β but not β → α is
the set An(β) or Anβ of the ancestors of β. The descendants of α, De(α) or
Deα, are the vertices β such that α → β but not β → α. The ancestral set A
of α is comprised of α and of all the ancestors of the vertices in A. Roughly
speaking, a subset of vertices A within a DAG is an ancestral set if, for every
vertex in the set, all ancestors of that vertex are also in the set.

Fig. 4.1. Example of the U -separation definition. We want to check whether W =
{W} D-separates Y = {Y1, Y2} and Z = {Z1, Z2} or not. First we have to obtain
the smallest ancestral set of nodes containing Y , Z and W , which is the original
graph except the node X. Then we moralise the resulting graph and check whether
W U -separates Y and Z in the undirected graph or not. As any path between Y1

or Y2 and Z1 or Z2 contains the node W we can say that W U -separates Z and Y

in the moral graph of the smallest ancestral set and, thus, W D-separates Z and Y

in the original DAG. Thus, we can state that, in the original DAG, Z and Y are
conditionally independent given W .



38 4 Bayesian networks for classification purposes

Let G be a DAG, the moral graph associated to G is the graph obtained
by adding undirected edges between all pairs of parents of each vertex which
are not already joined, and then making all edges undirected. This process is
called moralization of G.

Finally, we present the two criteria that allow the theoretical analysis of
a graph as a set of conditional (in)dependences, and viceversa. Those are the
U -separation in undirected graphs and the U -separation in DAGs. Figure 4.1
shows the application of the U -separation definition through a graphical ex-
ample.

Let Y , Z and W be three disjoint subsets of vertices in an undirected
graph G. We say that W U -separates Y and Z in G iff every path between
each node in Y and each node in Z contains, at least, one node in W . Thus,
subset Y will be graphically independent of Z given W , if W U -separates Y

and Z.
Let Y , Z and W be three disjoint subsets of nodes in a DAG G. We say

that W D-separates Y and Z in G iff W U -separates Y and Z in the moral
graph of the smallest ancestral set containing Y , Z and W . Similarly to the
previous criterion, subset Y will be graphically independent of Z given W

on a DAG, if W D-separates Y and Z.

4.1.2 Probabilistic graphical models based on directed acyclic
graphs

Probabilistic graphical models or PGMs represent multivariate joint probabi-
lity distributions, ρ(x), via a product of terms, each of which involves only
a few variables. The structure of this product is represented by a graph that
relates variables that appear in a common term. This graph specifies the
product form of the distribution and also provides tools for reasoning about
the properties entailed by the product (Lauritzen and Spiegelhalter, 1988).
For a sparse graph, the representation is compact and in many cases allows
effective inference and learning.

PGMs based on DAGs make use of the concept of conditional independence
to obtain the joint probability distribution.

Definition 1. Let Y , Z and W be three disjoint sets of random variables. Y

is conditionally independent of Z given W , CI(Y , Z|W ), iff

ρ(y|z, w) = ρ(y|w) ,

for any possible configuration y, z and w.

To parse the graphical independences to a probabilistic domain, we need
to define what an I-map and a minimal I-map are:

Definition 2. A graph G is known as an independence map or I-map from a
model of dependences M if
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CI(Y , Z|W )G =⇒ CI(Y , Z|W )M ,

that is, if all the conditional independences from G are also verified by M .

Definition 3. A graph G is a minimal I-map of a model of dependences M ,
if G is an I-map of M , but it loses this property when any of its edges is
removed.

By means of a DAG, G := (X , L), we can represent the variables of a
domain as vertices or nodes in X. The graphical structure in L represents
the graphical (in)dependences between triplets of variables. Therefore, given
a DAG G and the D-separation criterion, we can gather all the graphical
independences from the structure of G. If G is a minimal I-map, all the
graphical independeces correspond to probabilistic independences, and then
we can parse the graphical independences to conditional independences and
to the joint probability distribution.

The chain rule gives us the joint probability distribution of X as a product
of factors of the form

ρ(x) = ρ(x1, . . . , xn) =

n
∏

i=1

ρ(xi|x1, . . . , xi−1) .

The structure of the DAG on a PGM can be assumed to follow an ancestral
ordering where each node Xi takes the i-th position in that ordering. Thus,
for every ancestral node Xj of Xi, we can state that j < i.

Let G = (X, L) be the DAG of a PGM that follows an ancestral ordering,
the set of parents of a node Xi, Pai, D-separates Xi from any previous node
in the ancestral ordering. Consequently, Xi is conditionally independent of
any Xj , with j < i, given its parents.

Finally, we can combine this property with the chain rule, and then induce
the joint probability distribution encoded by G as

ρ(x) =

n
∏

i=1

ρ(xi|pai) .

The last element of PGMs is the set of parameters θ ∈ Θ needed to fully
describe the factorisation induced from the graphical structure. Thus, the
factorisation should be rewritten taking into account this extra component:

ρ(x) =

n
∏

i=1

ρ(xi|pai, θ) .

The estimation of these numerical parameters depends on the probabilistic
graphical model and the nature of its nodes. For the purposes of this disser-
tation, the estimation of θ will be discussed in the following section.
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4.1.3 Bayesian networks

Bayesian networks are probabilistic graphical models based on DAGs where
the nodes are discrete random variables. A random variable Xi ∈ X rep-
resents a unidimensional discrete random variable with ri possible states
{x1

i , . . . , x
ri

i }. On a Bayesian network, each variable Xi is associated with a
conditional probability distribution p(Xi = xi | Pai = pai), where Pai ⊂ X
is the set of parents of Xi.

A Bayesian network is fully described by the pair of elements that consti-
tutes any PGM: the graphical skeleton G, given by a directed acyclic graph,
and the set of parameters θ that are associated to the local probability dis-
tribution of each variable Xi in G. The joint probability distribution encoded
by G follows the product expression,

p(x) = p(x1, . . . , xn) =
n

∏

i=1

p(xi | pai) .

The set of parameters θ = (θ1, . . . , θn) is given by θi = (θijk) where θijk

represents the conditional probability of Xi when taking its k-th state given
that its parents set Pai takes its j-th configuration,

θijk = p(xk
i |pa

j
i ) .

Notice that the set of parents may represent a multidimensional variable,
and, thus, it may take

∏

Xg∈Pai
rg different configurations. Being conditional

probabilities, they fulfill the Kolmogorov axioms, θijk > 0 and
∑ri

k=1 θijk = 1.
As an example, Figure 4.2 contains a Bayesian network formed by five

dichotomic variables X1, . . . , X5. In Figure 4.2.a the corresponding DAG is
displayed, while on the right side, Figure 4.2.b, we illustrate the list of param-
eters to be estimated. Notice that the rest of parameters are directly computed
as the difference towards 1 for each variable. On the bottom, the joint proba-
bility factorization is addressed. In the case that all the θ values were needed,
the number of parameters would have reached 31, while with the factorisation
given by the DAG we only have to assess 11 values.

Therefore, to assess a Bayesian network B = (G, θ) it is necessary to
specify:

• The structure by means of a directed acyclic graph which reflects the set
of conditional (in)dependencies among the variables. Thus, the concept of
conditional independence between triplets of variables is the semantic to
understand and interpret the Bayesian network framework. Subsequently,
the structure constitutes the qualitative part of the model.

• The unconditional probabilities for all root nodes –nodes with no prede-
cessors– as well as the conditional probabilities for all other nodes, given
all possible combinations of their direct predecessors. These unconditional
and conditional probabilities constitute the quantitative part of the model.
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p(x1) = 0.20
p(x2 | x1) = 0.80
p(x2 | x1) = 0.80
p(x3 | x1) = 0.20
p(x3 | x1) = 0.05
p(x4 | x2, x3) = 0.80
p(x4 | x2, x3) = 0.80
p(x4 | x2, x3) = 0.80
p(x4 | x2, x3) = 0.05
p(x5 | x3) = 0.80
p(x5 | x3) = 0.40

a. Bayesian network structure b. Parameters

Fig. 4.2. Achieved joint probability factorisation with the attached Bayesian net-
work: p(x1, x2, x3, x4, x5) = p(x1)p(x2 | x1)p(x3 | x1)p(x4 | x2, x3)p(x5 | x3).

Once the Bayesian network is built, it constitutes an efficient device to
perform probabilistic inference (Lauritzen and Spiegelhalter, 1988). It gives
us the chance to assess a probability distribution over some variables of inter-
est given evidence of the value of some other variables in the net. Neverthe-
less, the problem of building a Bayesian network remains. The structure and
conditional probabilities necessary for characterising the Bayesian network
can be provided either externally by experts –time consuming and subject to
mistakes– or by automatic learning from a database of cases. However, the
learning task can be separated into two subtasks: structure learning, that is, to
identify the topology of the Bayesian network, and parametric learning. This
second subtask is related with the estimation of the numerical parameters
(conditional probabilities) for a given Bayesian network topology.

4.1.3.1 Learning Bayesian networks from data

It is common to classify the different approaches to Bayesian network model
induction according to the nature of modelling in approaches based on i) the
detection of conditional (in)dependencies between triplets of variables, and,
ii) score+search methods.

The output for algorithms belonging to the first approach is a directed
acyclic graph that represents a large percentage –and even all of them if
possible– of these relations. Once the structure has been learnt, the condi-
tional probability distributions required to completely specify the model are
estimated from the database. See (Spirtes et al., 1993) for more details about
this approach to Bayesian networks modelling from data.

Although the approach to model elicitation based on detecting conditional
(in)dependences is quite appealing, due to its closeness to the semantic of
Bayesian networks, a big percentage of the developed structure learning algo-
rithms belongs to the category of score+search methods. To use this learning



42 4 Bayesian networks for classification purposes

approach, we need to define a metric that measures the goodness of every can-
didate Bayesian network with respect to a data-file of cases. In addition, we
also need a procedure to move in an intelligent way through the space of pos-
sible directed acyclic graphs. The most usual score metrics are penalised max-
imum likelihood, a Bayesian score known as marginal likelihood, and scores
based on information theory. With respect to the search procedure there are
a lot of different alternatives in the literature: greedy search, simulated an-
nealing, genetic algorithms, tabu search, etc. For a review on score+search
methods for learning Bayesian networks from data, the paper by Heckerman
et al. (1995) can be consulted.

Throughout this dissertation, we will focus our attention on the first way
to induce Bayesian networks, that is, to induce the pair B = (G, θ) from
data by means of the detection of conditional (in)dependences. This process
constitutes a blind learning in the sense that no human previous knowledge
biases the final outcome. The complexity degree of the graph structure will be
discussed over the next Section 4.2, and we now illustrate how the parameters
are learnt when a DAG structure is already given.

In order to estimate the associated parameters θ given a network structure
G, two assumptions should be made:

1. The dataset D contains no missing data.
2. The parameter vectors θij are mutually independent, known as parameter

independence (Spiegelhalter and Lauritzen, 1990).

There exist two broadly known approaches to estimate the parameter con-
figuration under these assumptions: the maximum a posteriori or MAP esti-
mation, and the maximum likelihood or ML.

The ML estimation maximizes the probability of the dataset given the
model, that is,

θ̂ = arg max
θ

p(D|G, θ) ,

where p(D|G, θ) is the likelihood function

p(D|G, θ) =

N
∏

d=1

p(x(d)|G, θ) .

The value of x(d) is the value of X in the d-th sample of the dataset D. The
maximization of this function outputs the ML parameters as

θ̂ijk =
Nijk

Nij

.

This ML approach is the one used to assess the estimators in all the
Bayesian network classifiers that are introduced in the next section. Bear-
ing that in mind, the next section reviews how the Bayesian networks are
adapted to a classification purpose and the resulting classification paradigms.



4.2 Bayesian network classifiers 43

4.2 Bayesian network classifiers

The use of Bayesian network structures in classification tasks give rise to what
is broadly known as Bayesian network classifiers. The majority of these classi-
fication paradigms assume that the classification variable is a parent of all the
predictive variables, that is, the classification output conditionally depends on
each predictive variable. From this prior condition, the relationships’ struc-
ture among the predictive variables may lead from the simplest structure (no
dependences) to an unrestricted Bayesian network structure.

Bayesian network classifiers are generative classifiers that graphically en-
code the joint probability distribution of the domain variables by means of
a Bayesian network structure. Under this assumption, the estimation of the
model parameters is straightforward computed from the maximum likelihood
estimators.

There exists a wide spectrum of Bayesian network classifiers, however, this
section is mostly devoted towards two of them that are of special interest to
the developed work: the näıve Bayes classifier and the k-dependence Bayesian
classifier. Nevertheless, a brief introduction to other members of this classifi-
cation family is carried out.

4.2.1 Näıve Bayes classifier

The simplest Bayesian network classifier has its roots in the pattern recogni-
tion community (Duda and Hart, 1973). It first appearance in the machine
learning literature took place in the 80’s (Cestnik et al., 1987) with the pur-
pose of comparing its results against more sophisticated paradigms. Soon, its
potential and robustness turned it into a gold standard within classification
tasks. Many names refer to it, namely, idiot Bayes (Ohmann et al., 1988), sim-
ple Bayes (Gammerman and Thatcher, 1991), independent Bayes (Todd and
Stamper, 1994) or näıve Bayes (Minsky, 1961). Throughout this dissertation,
the näıve Bayes denomination is used.

The pillars of the näıve Bayes classifier are two assumptions between the
predictive variables (findings or symptoms) and the variable to predict (class
or diagnosis):

1. the diagnoses are exclusive, that is, the class variable C can only take one
of its m possible values: {c1, . . . , cm};

2. the findings are conditionally independent given the diagnosis. If the class
value is known, the knowledge of whatever predictive variable is irrelevant
to the remaining ones.

In Section 3.2, Equation 3.1 presents the joint distribution from which
the observations of a classification problem are expected to come from. It is
possible to expand the unknown term by means of the chain rule as
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p(x1, . . . , xn|c) = p(x1 | x2, . . . , xn, c) ·
p(x2 | x3, . . . , xn, c) ·
. . .

p(xn | c) .

On the basis of the näıve Bayes assumption of conditional independence
between the predictive variables and the class, we also have that

p(xi | xi+1, . . . , xn, c) = p(xi | c) ,

for every i ∈ {1, . . . , n}. Combining both terms, we obtain the general simpli-
fication of the näıve Bayes paradigm,

p(x1, . . . , xn|c) =
n

∏

i=1

p(xi|c) . (4.1)

Therefore, the search for the most probable diagnosis, c∗, once all the
symptoms x = (x1, . . . , xn) of a given instance are known, is reduced to find
the value

c∗ = arg max
c

p(c)

n
∏

i=1

p(xi|c) . (4.2)

In terms of complexity, the number of parameters to be estimated for a
näıve Bayes with discrete predictive variables is

(m − 1) +

n
∑

i=1

m(ri − 1) ,

where ri corresponds to the number of states the variable Xi can take. The
first m−1 parameters are needed to specify the a priori probability of the class
variable C and the rest correspond to the conditional probability distributions
of the variables.

Since the number of states of the predictive variables could be variable, the
cost of a discrete näıve Bayes is usually simplified to a dichotomic classification
with all binary predictive variables, resulting in 2n + 1 parameters.

In the case that the n predictive variables present continuous values, the
näıve Bayes classifier looks for the value c∗ that maximizes the a posteriori
probability of the class variable C given an instance x. The search c∗ value is,
thus, the one that verifies

c∗ = arg max
c

p(c)

n
∏

i=1

fXi|c(xi|c) ,

where fXi|c(xi|c) represents, for each i = 1, . . . , n, the density function of Xi

conditioned to a c value for the class variable C.
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In order to model the probability distribution of the predictive variables
it is very common to use normal densities (John and Langley, 1995). For each
c value of C, and for each i ∈ {1, . . . , n}, we assume that

fXi|c(xi|c) ; N (xi; µ
c
i , (σ

c
i )

2) .

The näıve Bayes classifier then searches the prediction value c∗ as

c∗ = arg max
c

p(c)
n

∏

i=1

[

1√
2πσc

i

e
−1

2

“

xi−µc
i

σc
i

”2]

.

The number of parameters to estimate in the continuous case is of (m −
1) + 2mn, the class a priori m − 1 estimations and 2mn due to the normal
parameters conditioned to each class value.

In general, a mixture scenario can appear in which some predictive vari-
ables are continuous while others have a discrete number of states. In such
cases, the paradigm is divided according to the nature of each variable. So,
given a total of n predictive variables, n1 of them will correspond to discrete
variables, X1, . . . , Xn1

, while the rest n2 = n− n1, Y1, . . . , Yn2
, will belong to

the continuous domain. Bearing in mind the main näıve Bayes assumption, we
can express the a posteriori probability of each class value given an instance
as

p(c|x1, . . . , xn1
, y1, . . . , yn2

) ∝ p(c)

n1
∏

i=1

p(xi|c)
n2
∏

j=1

fYj |c(yj |c) .

Graphically, a näıve Bayes classifier can be displayed as the network struc-
ture of Figure 4.3.

Fig. 4.3. Structure of a näıve Bayes model with five predictive variables.

Even when the root assumptions of the näıve Bayes are hardly ever ful-
filled in real domains, in many cases this classifier obtains promising results
and is competitive with the most sophisticated ones. Some successful applica-
tions include medical domains (Kononenko, 1990; Ohmann et al., 1996; Mani
et al., 1997; Movellan et al., 2002), web site classification according to user
interests (Pazzani et al., 1996), collaborative filter approaches (Miyahara and
Pazzani, 2000), text classification (McCallum and Nigam, 1998) or failure
detection (Hamerly and Elkan, 2001).
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4.2.2 Advances on the näıve structure

Despite its good performance, the basic näıve Bayes presents hard limitations
in terms of the representation of dependences. Although very robust against
irrelevant features, it is very sensitive to highly correlated features. Thus, and
in order to overcome these concerns and extend the dependences represen-
tation possibilities, a set of näıve augmented models has arisen in the last
years.

The most direct improvement to the basic scheme is to perform, before-
hand, a feature subset selection on the original variables. After removing re-
dundant and/or irrelevant features, the original näıve structure is used. This
first advance was introduced by (Langley and Sage, 1994) and is known as se-
lective näıve Bayes. Originally, Langley and Sage (1994) proposes a wrapper
feature selection process with a greedy forward search procedure. However,
any feature subset selection scheme may suit the selection of a variables’ sub-
set (see Section 3.4).

A more ambitious advance is considered in (Kononenko, 1991) and (Paz-
zani, 1997). Formally known as seminäıve Bayes, both authors propose the
Cartesian product of variables in order to create new ones that smooth the
independence assumption of the original model. In Kononenko (1991) the vari-
ables are joined removing the original ones, while Pazzani (1997) proposes two
algorithms –namely forward sequential selection and joining FSSJ, and, back-
ward sequential elimination and joining BSEJ– to remove irrelevant variables
and combine relevant ones.

But, the most widely known improvement to the classical näıve Bayes is the
tree augmented näıve Bayes classifier or TAN. Firstly introduced by Friedman
et al. (1997), the main idea of this paradigm is to, first, build a dependence
tree-like structure among the variables and, then, connect all the predictive
variables with the class one. In this way, conditional dependences between
the variables are explicitly captured. The algorithm presented in (Friedman
et al., 1997) is basically an adaptation of the (Chow and Liu, 1968) algorithm.
While this algorithm is based on the joint mutual information between two
variables, the TAN algorithm includes dependences with respect to the value
of the conditional mutual information between two given predictive variables
and the value of the class. Both TAN and Chow and Liu algorithms fulfill an
important theoretical property: the asymptotically correction. That is, having
enough instances coming from a real tree-dependence structure, they are able
to perfectly recover such a structure from the sample.

Nevertheless, the restrictions can be still quite strong. One of the poste-
rior attempts to create more flexible models is the forest augmented network
algorithm FAN (Lucas, 2004), in which the dependences are represented by a
forest of tree structures rather than a single tree structure. For both TAN and
FAN their hard restriction lays on the fact that the predictive variables are
only allowed to have up to one parent (excluding the class variable). This re-
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striction will be overcome by the Bayesian paradigm presented in the following
section.

(a) Selective näıve Bayes structure (b) Seminäıve Bayes struc-
ture

(c) Tree augmented
network structure

(d) Forest augmented network
structure

Fig. 4.4. Examples of the structure of different Bayesian network classifiers.

Figure 4.4 visually illustrates all the above introduced improvements to
the näıve Bayes basic classifier. For a more detailed review, both historical
and technical, of all of these improvements to the näıve Bayes, the reader may
check the work by Blanco (2005).

4.2.3 k-dependence Bayesian classifier

Sahami (Sahami, 1996) presents an algorithm called k-dependence Bayesian
classifier (kDB) that allows to go through the wide spectrum from the näıve
Bayes to a complete Bayesian network. The algorithm has its basis in a näıve
Bayes structure that allows each predictive variable to have a maximum num-
ber of k parent variables (excluding the class one).

The simple näıve Bayes classifier corresponds to the 0-dependence Bayesian
classifier, the TAN model would be the 1-dependence and the complete
Bayesian classifier –structure where there is no independence– would corre-
spond to a (n − 1)-dependence Bayesian classifier. The kDB induction pseu-
docode is presented in Figure 4.5.
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Step 1. For each predictive variable Xi, i = 1, . . . , n, compute the mutual
information with respect to the class variable C, I(Xi, C)

Step 2. For each pair of predictive variables, compute the mutual information
conditioned to the class, I(Xi, Xj |C), with i < j and i, j = 1, . . . , n

Step 3. Initialize to empty the list of used variables ℵ
Step 4. Initialize the Bayesian network classifier to build, BN, to a single node,

the one corresponding to the C variable
Step 5. Repeat until ℵ includes all the variables

Step 5.1. Choose among the variables not included in ℵ, that variable
Xmax with highest mutual information with respect to C

Step 5.2. Add Xmax into BN
Step 5.3. Add an arc from C to Xmax in BN
Step 5.4. Add m = min(|ℵ|, k) arcs from the m different variables Xj of ℵ

that have the highest values for I(Xmax, Xj |C)
Step 5.5. Add Xmax into ℵ

Step 6. Compute the conditional probabilities needed to specify the Bayesian
network classifier BN

Fig. 4.5. kDB algorithm pseudocode (Sahami, 1996).

The main idea of this algorithm is to extend the algorithm proposed by
Friedman et al. (Friedman et al., 1997) allowing a variable to have a number
of parents, excluding the class variable C, bounded by k. This k parameter
will allow the expert to vary the sparsity degree of the results, focusing on
single interactions or on more complex ones. As in the TAN model, the mutual
information conditioned to the class variable is used to decide which edges are
included and in which order. Its value is computed through the expression,

I(X, Y |C) =

v
∑

i=1

w
∑

j=1

m
∑

r=1

p(xi, yj , cr) log
p(xi, yj |cr)

p(xi|cr)p(yj |cr)
,

being X and Y two discrete predictive variables conditioned to the class vari-
able C. Figure 4.6 shows an example of how the kDB induction algorithm
builds the network structure with a set of five predictive variables.

Sahami also introduces a modification in Step 5.4 of the algorithm. The
variant, named kDB-θ, does not consider all the possible parent’s set bounded
by the k value, it only includes those dependences which surpass a given
threshold θ within the conditional mutual information I(Xmax, Xj|C). The
main drawback for this kDB variation is the determination of the θ value.

As of our knowledge, the conditional mutual information can be formulated
as

I(Xi, Xj |C) =
∑

k

p(ck)I(Xi, Xj|C = ck) ,

where each of the I(Xi, Xj |C = ck) terms was proven to follow, under the
null hypothesis of independence of Xi and Xj variables when C = ck, a
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(a) (b) (c)

(d) (e) (f)

Fig. 4.6. Structural learning of a kDB model with a k value
of 2. I(X3, C) > I(X1, C) > I(X4, C) > I(X5, C) > I(X2, C)
I(X3, X4|C) > I(X2, X5|C) > I(X1, X3|C) > I(X1, X2|C) > I(X2, X4|C) >
I(X2, X3|C) > I(X1, X4|C) > I(X4, X5|C) > I(X1, X5|C) > I(X3, X5|C).
The joint probability is then expressed as: p(c|x1, x2, x3, x4, x5) ∝
p(c)p(x1|x3, c)p(x2|x1, x5, c)p(x3|c)p(x4|x1, x3, c)p(x5|x1, x4, c).

χ2
(ri−1)(rj−1) statistical distribution (Blanco et al., 2005). Unfortunately, the

distribution for the joint conditional I(Xi, Xj |C) is unknown under the same
null hypothesis. This fact makes it impossible to fix beforehand a θ value for
a given confidence level by means of statistical tests.

Computing a kDB network structure requires O(n2Nmv2), where n is the
number of variables, N is the number of cases, m is the number of classes and
v is the maximum number of discrete values a predictor variable may take.
For the conditional probability tables of the network structure, the algorithm
takes O(n(N + vk)) time. In most cases v and k are small values, thus, the
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computing time for the network parameters scales linearly with N , the amount
of data available.

There exist other Bayesian classifiers based on more generic paradigms,
such as the Bayesian network augmented näıve Bayes (Cheng and Greiner,
2001) or the full Bayesian network (Jensen and Nielsen, 2007). However, for
the aims of the present work and due to the intrinsic characteristics that
the biological data usually present (course of dimensionality), we consider
these other paradigms out of our scope. The reader can find more details and
applications of the Bayesian classifiers in the work by Santafé (2008).
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Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) are a novel class of evolution-
ary optimization algorithms that were developed as a natural alternative to
genetic algorithms in the last decade. The principal advantages of EDAs over
genetic algorithms are the absence of multiple parameters to be tuned (e.g.
crossover and mutation probabilities) and the expressiveness and transparency
of the probabilistic model that guides the search process. In addition, EDAs
have been proven to be better suited to some applications than GAs, while
achieving competitive and robust results in the majority of tackled problems.

5.1 EDA basics

Estimation of distribution algorithms (Bosman and Thierens, 1999; Larrañaga
and Lozano, 2002; Lozano et al., 2006; Mühlenbein and Paaß, 1996; Pelikan,
2005) are evolutionary algorithms that work with a multiset (or population
sets) of candidate solutions (points). Figure 5.1 illustrates the flow chart for
any EDA approach.

Set t← 0. Generate M points randomly
do

Evaluate the points using the fitness function
Select a set S of N ≤M points according to a selection method
Estimate a probabilistic model for S
Generate M new points sampling the distribution represented in the model
t← t + 1

until Termination criteria are met

Table 5.1. Estimation of distribution algorithms: evolutionary computation based
on learning and simulation of probabilistic graphical models.
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Initially, a random sample of points is generated. These points are evalu-
ated using an objective function. An objective function evaluates how accurate
each solution is for the problem. Based on this evaluation, a subset of points
is selected. Hence, points with better function values have a bigger chance of
being selected.

Then, a probabilistic model of the selected solutions is built, and a new
set of points is sampled from the model. The process is iterated until the
optimum has been found or another termination criterion is fulfilled.

For more details, Table 5.1 sets out the pseudocode that implements a
basic EDA. There is a complete running example of an EDA in (Larrañaga,
2002).

Essentially EDAs assume that it is possible to build a model of the promis-
ing areas of the search space, and use this model to guide the search for the
optimum. In EDAs, modeling is achieved by building a probabilistic graphical
model that represents a condensed representation of the features shared by
the selected solutions. Such a model can capture different patterns of interac-
tions between subsets of the problem variables, and can conveniently use this
knowledge to sample new solutions.

Probabilistic modeling gives EDAs an advantage over other evolutionary
algorithms that do not employ models, such as GAs. These algorithms are
generally unable to deal with problems where there are important interactions
among the problems’ components. This, together with EDAs’ capacity to solve
different types of problems in a robust and scalable manner (Lozano et al.,
2006; Pelikan, 2005), has led to EDAs sometimes also being referred to as
competent GAs (Goldberg, 2002; Pelikan et al., 2002).

Halting

criteria

YESNO

1. Generate initial

    population 

2. Select a number

    of individuals

3. Estimate probability

    distribution

5. Create new

    population

4. Generate new individuals

    by sampling the estimated

    distribution

END

Fig. 5.1. Diagram of how an estimation of distribution algorithm works. This
overview of the algorithm is further specified by the pseudocode shown in Table 5.1.
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5.2 A taxonomy of EDAs

Since several EDAs have been proposed with a variety of models and learning
algorithms, the selection of the best EDA to deal with a given optimization
problem is not always straightforward. One criterion that could be followed
in this choice is to trade off the complexity of the probabilistic model against
the computational cost of storing and learning the selected model. Both issues
are also related to the problem dimensionality (i.e. number of variables) and
to the type of representation (e.g. discrete, continuous, mixed).

Researchers should be aware that simple models generally have minimal
storage requirements, and are easy to learn. However, they have a limited ca-
pacity to represent higher-order interactions. On the other hand, more com-
plex models, which are able to represent more involved relationships, may
require sophisticated data structures and costly learning algorithms. The im-
pact that the choice between simple and more complex models has in the
search efficiency will depend on the addressed optimization problem. In some
cases, a simple model can help to reach non-optimal but acceptable solutions
in a short time. In other situations, e.g. deceptive problems, an EDA that
uses a simple model could move the search away from the area of promising
solutions.

Another criterion that should be taken into consideration to choose an
EDA is whether there is any previous knowledge about the problem struc-
ture, and which kind of probabilistic model is best suited to represent this
knowledge. The following classification of EDAs is intended to help the bioin-
formatic researcher to find a suitable algorithm for his or her application.

EDAs can be broadly divided according to the complexity of the proba-
bilistic models used to capture the interdependencies between the variables:
univariate, bivariate or multivariate approaches. Univariate EDAs, such as
PBIL (Baluja, 1994), cGA (Harik et al., 1999) and UMDA (Mühlenbein and
Paaß, 1996), assume that all variables are independent and factorize the joint
probability of the selected points as a product of univariate marginal probabili-
ties. Consequently, these algorithms are the simplest EDAs and have also been
applied to problems with continuous representation (Sebag and Ducoulombier,
1998).

The bivariate models can represent low order dependencies between the
variables and be learnt using fast algorithms. MIMIC (De Bonet et al.,
1997), the bivariate marginal distribution algorithm BMDA (Pelikan and
Mühlenbein, 1999), dependency tree-based EDAs (Baluja and Davies, 1997)
and the tree-based estimation of distribution algorithm (Tree-EDA) (Santana
et al., 1999) are all members of this subclass. The latter two use tree and forest-
based factorizations, respectively. They are recommended for problems with a
high cardinality of the variables and where interactions are known to play an
important role. Trees and forests can also be combined to represent higher-
order interactions using models based on mixtures of distributions (Santana
et al., 1999).
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FDA EBNA, BOA EcGA

Fig. 5.2. Diagram of probability models for the proposed EDAs in combinatorial
optimization with multiple dependencies (FDA, EBNA, BOA, and EcGA).

Multivariate EDAs factorize the joint probability distribution using statis-
tics of order greater than two. Figure 5.2 shows some of the different proba-
bilistic graphical models covered by this category. As the number of dependen-
cies among the variables is higher than in the above categories, the complexity
of the probabilistic structure, as well as the computational effort required to
find the structure that best suits the selected points, is greater. Therefore,
these approaches require a more complex learning process. Some of the EDA
approaches based on multiply connected Bayesian networks are:

• The (Factorized Distribution Algorithm) FDA (Mühlenbein et al., 1999)
is applied to additively decomposed functions for which, using the run-
ning intersection property, a factorization of the mass-probability based
on residuals and separators is obtained.

• In (Etxeberria and Larrañaga, 1999), a factorization of the joint probabil-
ity distribution encoded by a Bayesian network is learnt from the selected
set in every generation. The estimation of Bayesian network algorithm
(EBNA) uses the Bayesian information criterion (BIC) score as the qual-
ity measure for the Bayesian network structure. The space of models is
searched using a greedy algorithm.

• The Bayesian optimization algorithm (BOA) (Pelikan et al., 1999) is also
based on the use of Bayesian networks. The Bayesian Dirichlet equiva-
lent metric is drawn on to measure the goodness of every structure. The
algorithm enacts a greedy search procedure. BOA has been improved by
adding dependency trees and restricted tournament replacement. The re-
sulting, more advanced, hierarchical BOA (hBOA) (Pelikan, 2005) is one
of the EDAs for which extensive experimentation has been undertaken.
The results show good scalability behavior.

• The extended compact Genetic Algorithm (EcGA) proposed in (Harik
et al., 1999) is an algorithm in which the basic idea is to factorize the joint
probability distribution as a product of marginal distributions of different
size.

There are alternatives to the use of Bayesian networks for representing
higher order interactions in EDAs. Markov network-based EDAs (Alden, 2007;
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Shakya and McCall, 2007; Santana, 2005) could be an appropriate choice for
applications where the structure of the optimization problem is known and
can be easily represented using an undirected graphical model. EDAs that
use dependency networks (Gámez et al., 2007) can encode dependencies that
Bayesian networks cannot represent. Both classes of algorithms need relatively
complex sampling procedures based on the use of Gibbs sampling (Geman and
Geman, 1984).

In addition to the order of complexity encoded by the probability model,
there is another key feature when dealing with an EDA algorithm: the way
that model is learned. There are two alternatives: induce the model structure
and its associated parameters, or induce just the set of parameters for an a
priori given model. The first class is denoted as structure+parameter learn-
ing, whereas the second is known as parameter learning. Both approaches
need to induce the parameters of their models, but the first approach’s need
for structural learning makes it more time consuming. By contrast, parame-
ter learning is dependent on the fixed model, whereas structure+parameter
learning exhibits a greater power of generalization.

Population-based incremental learning (PBIL) (Baluja, 1994), the compact
GA (cGA) (Harik et al., 1999), the univariate marginal distribution algorithm
(UMDA) (Mühlenbein and Paaß, 1996) and the factorized distribution algo-
rithm (FDA) (Mühlenbein et al., 1999) which use a fixed model of interactions
in all generations, are all parameter approaches. On the other hand, the mu-
tual information maximization for input clustering algorithm (MIMIC) (De
Bonet et al., 1997), the extended compact GA (EcGA) (Harik et al., 1999) and
EDAs that use Bayesian and Gaussian networks (Etxeberria and Larrañaga,
1999; Mühlenbein and Mahnig, 2001; Ochoa et al., 2000b,a; Pelikan, 2005;
Pelikan and Mühlenbein, 1999) belong to the structural+parameter class.

So as to have a graphical taxonomy of the subdivisions presented through
this section, Table 5.2 illustrates all the above features and models providing
a graphical taxonomy of the subdivisions presented throughout this section.
It also includes some useful tips to choose among the available EDAs, such as
their pros and cons.

5.3 Estimation of distribution algorithms as feature

selectors

One big drawback of many classical search strategies for FSS is their inability
to explore different regions of the search space rather than those in which
the initialization processes have set up. Stochastic policies outperform this
problem by their random components. A population-based search includes an
initial random population that can be completely different from one run to
another. Moreover, these techniques are able to perform jumps on the search
space to unveil new solutions. On the other hand, the user should be aware
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Statistical or-
der

Advantages Disadvantages Examples

Univariate Simplest and fastest Ignore feature de-
pendencies

PBIL (Baluja, 1994)

Suited for high car-
dinality problems

Bad performance for
deceptive problems

UMDA (Mühlenbein
and Paaß, 1996)

Scalable cGA (Harik et al.,
1999)

Bivariate
(statistics of or-
der two)

Able to represent
low order dependen-
cies

Possibly ignore
some feature depen-
dencies

MIMIC (De Bonet et
al., 1996)

Suited for many
problems

Slower than univari-
ate EDAs

Dependency trees
EDA (Baluja and
Davies, 1997)

Graphically inquire
the induced models

BMDA (Pelikan and
Mühlenbein, 1999)
Tree-EDA / Mixture
of distributions EDA
(Santana et al., 1999)

Multivariate Parameter learning (only interaction model parameters)
(statistics of or-
der greater than
two)

Suited for problems
with known underly-
ing model

Possibly ignore com-
plex feature depen-
dencies

FDA (Mühlenbein et
al., 1999)

Greater memory re-
quirements than bi-
variate

Markov network-based
EDA (Shakya and Mc-
Call, 2007)

Structure+parameter learning (interaction model & parameters)
Maximum power of
generalization

Greatest computa-
tion time

EcGA (Harik et al.,
1999)

Flexibility to intro-
duce user dependen-
cies

Greatest memory re-
quirements

EBNA (Etxeberria
and Larrañaga, 1999)

Online study of the
induced dependen-
cies

BOA / hBOA (Pelikan
et al., 1999, 2005)

Dependency networks
EDA (Gámez et al.,
2007)

Table 5.2. A taxonomy of some representative EDAs. We highlight a set of char-
acteristics that can guide the choice of a particular EDA suited to the goals and
properties of a given problem.
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that the optimum set of features can not be always retrieved, although at
least a good approximation can.

In this scenario, the adaptation of EDAs to work as feature subset selectors
is straight forward. Each individual will be formed by a binary array of size
n =| X |, which corresponds to the total number of features of the problem.
Thus, each individual is in its own a subset of features, those that are set
to a true value are selected while the false ones are not. With this genotype
codification we let the EDA evolve until it outputs its best solution, that is,
a set of true selected features, thus, the feature subset selected.

Once the codification is defined, we shall set up the five main components
required on a FSS problem:

1. The starting point. Here the starting point is comprised of the initial or
first population. This population is usually random generated by sampling
a Bernoulli distribution with p parameter set to 0.5. The value of p can
be used to initially shift a population from a very sparse to a more dense
one.

2. Individuals’ evaluation. Here the EDAs follow a wrapper approach. Given
a dataset, it is divided into the corresponding training and test sets and
the goodness of each individual is measured in terms of its estimate pre-
dictive accuracy. The classification algorithm used is a design decision. In
principle, there is no limitation to any classifier, but light induction algo-
rithms are more desirable because of the low learning complexity. Notice
that a validation should be performed for each individual in the popula-
tion.

3. Search policy. From their own nature, the search policy of an EDA on a
FSS problem will be heuristic and non-deterministic. The main behaviour
of the search is somehow determined by what kind of probabilistic distri-
bution is estimated for each population (see Section 5.2).

4. Stop criteria. The stop criterion is always to achieve a perfect classifica-
tion, 100% in the accuracy estimation for the best individual. But this is
not always the case, so other stop criteria should be added to avoid stack-
ing on a deadlock, for instance, to reach a fixed number of generations.

By setting all these elements, EDAs constitute a good option to tackle
the FSS domain. Nevertheless, it is crucial to evaluate the complexity that
the algorithm could have beforehand, both in terms of computing time and
memory space. The evaluation step costs M ×k×f(n), where k is the number
of folds to evaluate an individual and f(n) is the cost of learning each fold
classification model. To this product, we have to add the learning cost of the
distribution model for each population h(n, M). And the total cost is always
in function of the number of generations the search evolves, g.

In one of the simplest cases, with an UMDA distribution estimator and
a näıve Bayes model for a dichotomic classification, f(n) = 2n + 1 (see Sec-
tion 4.2.1) and h(n, M) = n × M . In the worst case, the whole running cost
could reach a value of Mng(2k + k/n + 1), whose asymptotically order is
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Θ(Mng). In most occasions, M > g > n, and then the minimum cost is upper
bounded by Θ(n3). In terms of memory space, this scheme linearly scales with
the larger number of individuals or features (space cost of M + n).

Consequently, the UMDA scheme is one of the most used EDAs paradigms,
not only over FSS problems but also on many other optimization prob-
lems (Larrañaga and Lozano, 2002; Lozano et al., 2006). The next section
will introduce what is the state of the art of all the EDAs paradigms in the
bioinformatics field. It provides a review of each application and the modifi-
cations needed to tackle the computational biology field.

5.4 EDAs in bioinformatics

Due to advances in modern high-throughput biotechnology devices, large and
high-dimensional data sets are obtained from analyzed genomes and tissues.
The heuristic scheme provided by EDAs has proved to be effective and efficient
in a variety of NP-hard genomic problems. Because of the huge cardinality of
the solution spaces of most of these problems, researchers are aware of the need
for an efficient optimization algorithm. In this way, authors have preferred
simple EDA schemes that assume that the variables are independent. These
schemes have obtained accurate and robust solutions in reasonable CPU times.
Together with a brief definition of each tackled genomic problem, we describe
the main characteristics of each EDA scheme, with a special emphasis on the
codification used to represent the search individuals.

5.4.1 Applications in genomics

5.4.1.1 Gene structure analysis

As genomes are being sequenced at an increasing pace, the need for auto-
matic procedures for annotating new genomes is becoming more and more
important. A first and important step in the annotation of a new genome is
the location of the genes in the genome, as well as their correct structure.
As a gene may contain many different parts, the problem of gene structure
prediction can be seen as a segmentation or parsing problem. To solve this
problem automatically, pattern recognition and machine learning techniques
are often used to build a model of what a gene looks like. This model can then
be used to automatically locate potential genes in a genome (Mathé et al.,
2002; Majoros, 2007).

A gene prediction framework consists of different components, where each
component (often modeled as a classifier) aims at identifying a particular
structural element of the gene. Important structural elements include the start
of the gene (start codon), the end of a gene (stop codon) and the transitions
between the coding and non-coding parts of the gene (splice sites).
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The exact mechanisms that the cell uses to recognize genes and their struc-
tural elements are still under research. As this knowledge is missing, one major
problem in this context is to define adequate features to train the classifiers
for each structural element. Consequently, large sets of sequence features are
extracted in the hope that these sets will contain the key features. However, it
is known that not all of these features will be important for the classification
task at hand, and many will be irrelevant or redundant.

To find the most relevant features for recognizing gene structural elements,
feature subset selection (FSS) techniques can be used. These techniques try to
select a subset of relevant features from the original set of features (Liu and Yu,
2005; Saeys et al., 2007). As this is an NP-hard optimization problem with 2n

possible subsets for evaluation (given n features), population-based heuristic
search methods are an interesting engine for driving the search through the
space of possible feature subsets. Each solution in the population decodes a
feature subset as a binary string: features having a value of 1 are included in
the subset, whereas those having a value of 0 are discarded.

As a natural alternative to genetic algorithms, the use of EDAs for FSS
was initiated in (Inza et al., 1999) for classic benchmark problems, and their
use in large scale feature subset selection domains was reported to yield good
results (Inza et al., 2001; Saeys et al., 2003). Furthermore, the EDA-based
approach to FSS was shown to generalize to feature weighting, ranking and
selection (Saeys et al., 2006). This has the advantage of getting more insight
into the relevance of each feature separately, focusing on strongly relevant,
weakly relevant, and irrelevant features.

The application of EDA-based FSS techniques in gene structure prediction
was pioneered for the most important gene prediction components in (Saeys,
2004). Its most important application was the recognition of splice sites. Us-
ing näıve Bayes classifiers, support vector machines and C4.5 decision trees
as base classifiers, an UMDA-based FSS scheme was used to obtain higher
performance models.

In addition to better models, an UMDA-based approach was also used to
get more insight into the selected features. This led to both the identification
of new characteristics, as well as the confirmation of important previously
known characteristics (Saeys et al., 2004).

5.4.1.2 Gene expression data by means of DNA microarrays

The quantitative and qualitative DNA analysis is one of the most important
areas of modern biomedical research. DNA microarrays can simultaneously
measure the expression level or activity level of thousands of genes under
a set of conditions. Microarray technology has become a popular option for
partial DNA analysis since (Golub et al., 1999)’s pioneering work.

The starting point of the following applications is the so called gene ex-
pression matrix, where rows represent genes, columns represent experimental
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conditions (or samples), and the values at each position of the matrix char-
acterize the expression level of the particular gene under the particular ex-
perimental condition. Additional biological information about the genes and
the experimental conditions can be added to the matrix in the form of gene
and/or sample annotation. Depending on how we treat the annotation, gene
expression data analysis can be either supervised or unsupervised. When sam-
ple annotation is used to split the set of samples into two or more classes or
phenotypes (e.g. healthy or diseased tissues), supervised analysis (or class pre-
diction) tries to find patterns that are characteristic of each of the classes. On
the other hand, unsupervised analysis (or class discovery) ignores any anno-
tation. Examples of such analysis are gene clustering, sample clustering and
gene expression data biclustering.

A. Classification of DNA microarray data

It is broadly assumed that a limited number of genes can cause the onset of a
disease. Within this scenario biologists demand a reduction in the number of
genes. In addition, the application of a FSS technique to microarray datasets
is an essential step to achieve an accurate classification performance for any
base classifier.

Although univariate gene ranking procedures are very popular for differen-
tial gene expression detection, the multivariate selection of a subset of relevant
and non-redundant genes has borrowed from the field of heuristic search en-
gines to guide the exploration of the huge solution space (there are 2n possible
gene subsets, where n is the number of initial genes). Two research groups
have proven that the EDA paradigm is useful for this challenging problem.
Both groups have implemented efficient algorithms that have achieved ac-
curacy levels comparable to the most effective state-of-the-art optimization
techniques:

• Using a näıve Bayes network as the base classifier and the UMDA as
the search algorithm, (Blanco et al., 2004) achieve competitive results in
two gene expression benchmarking datasets. The authors show that the
predictive power of the models can be improved when the probability of
each gene being selected in the first population is initialized using the
results provided by a set of simple sequential search procedures.

• (Paul and Iba, 2004, 2005) propose two variations of the PBIL search al-
gorithm to identify subsets of relevant and non-redundant genes. Using
a wide variety of classifiers, notable results are achieved in a set of gene
expression benchmarking datasets with subsets of extremely low dimen-
sionality.

Using a continuous-value version of the UMDA procedure, EDAs have
been used as a new way of regularizing the logistic regression model for mi-
croarray classification problems (Bielza et al., 2008). Regularization consists
of shrinking the parameter estimates to avoid their instability when there are
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a huge number of variables compared to a small number of observations (as
in the microarray setting).

Therefore, the parameter estimators are restricted maximum likelihood
estimates, i.e. the maximum value of a new function including the likelihood
function, plus a penalty term where the size of the estimators is constrained.
There are different norms for measuring estimators size. This leads to different
regularized logistic regression names (Hastie et al., 2001): ridge, Lasso, bridge,
elastic net, etc.

EDAs could be used to optimize these new functions and be a good opti-
mization method especially in some cases where numerical methods are unable
to solve the corresponding non-differentiable and non-convex optimization
problems. However, another possibility, taken up in (Bielza et al., 2008), is to
use EDAs to maximize the likelihood function without having to be penal-
ized (which is a simpler optimization problem) and to include the shrinkage
of the estimates during the simulation of the new population. New estimates
are simulated during EDA evolutionary process in such a way that guarantees
their shrinkage while maintaining their probabilistic dependence relationships
learnt in the previous step. This procedure yields regularized estimates at the
end of the process.

B. Clustering of DNA microarray data

Whereas the above papers propose a supervised classification framework, clus-
tering is one of the main tools used to analyze gene expression data obtained
from microarray experiments (Ben-Dor et al., 1999). Grouping together genes
with the same behaviour across samples, that is, gene clusters, can suggest
new functions for all or some of the grouped genes. We highlight two papers
that use EDAs in the context of gene expression profile clustering:

• (Peña et al., 2004) present an application of EDAs for identifying clusters
of genes with similar expression profiles across samples using unsuper-
vised Bayesian networks. The technique is based on an UMDA procedure
that works in conjunction with the EM clustering algorithm. To evaluate
the proposed method, synthetic and real data are analyzed. The exper-
imentation with both types of data provides clusters of genes that may
be biologically meaningful and, thus, interesting for biologists to research
further.

• (Cano et al., 2006) use UMDA and genetic algorithms to look for clusters
of genes with high variance across samples. A real microarray dataset is
analyzed, and the Gene Ontology Term Finder is used to evaluate the
biological meaning of the resulting clusters.

Like clustering, biclustering is another NP-hard problem that was orig-
inally considered by (Morgan and Sonquistz, 1963). Biclustering is founded
in the fact that not all the genes of a given cluster should be grouped into
the same conditions due to their varying biological activity. Thus, biclustering
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assumes that several genes will only change their expression levels within a
specified subset of conditions (Cheng and Church, 2000). This assumption has
motivated the development of specific algorithms for biclustering analysis.

An example is the work by (Palacios et al., 2006), which applies an UMDA
scheme to search the possible bicluster space. They get accurate results com-
pared to genetic algorithms when seeking single biclusters with coherent evo-
lutions of gene expression values. Like the classic codification discussed for the
FSS problem, the authors use two concatenated binary arrays to represent a
bicluster, (x1, ..., xn | y1, ..., ym). The first array represents each gene of the
microarray, where the size is the number of genes. The second array represents
each condition, with a size equal to the number of conditions. A value of 1 in
the ith position of the first array shows that the ith gene has been selected
for inclusion in the bicluster. Likewise, a value of 1 in the jth position of the
second array indicates that the jth condition has been selected for inclusion in
the bicluster. This codification results in a space of 2n+m possible biclusters.

5.4.1.3 Inference of genetic networks

The inference of gene-gene interactions from gene expression data is a powerful
tool for understanding the system behaviour of living organisms (Armañanzas
et al., 2008a).

This promising research area is now of much interest for biomedical prac-
titioners, and a few papers have applied EDAs to this domain. One of these
early works uses Bayesian networks as the paradigm for modeling the inter-
actions among genes, while an UMDA approach explores the search space to
find the candidate interactions (Dai and Liu, 2005). The subsequent literature
evaluation of the most reliable interactions unveils that many of them have
been previously reported in the literature.

5.4.2 Protein structure prediction and protein design

The objective of protein structure prediction is to predict the native structure
of a protein from its sequence. In protein design, the goal is to create new pro-
teins that satisfy some given structural or functional constraints. Frequently,
both problems are addressed using function optimization. As the possible solu-
tion space is usually huge, complex and contains many local optima, heuristic
optimization methods are needed. The efficiency of the optimization algorithm
plays a crucial role in the process. In this section, we review applications of
EDAs to different variants of protein structure prediction and protein design
problems.

Protein structure prediction and protein design are usually addressed by
minimizing an energy function in the candidate solution space. Two essential
issues in the application of EDAs and other optimization algorithms to these
problems are the type of protein representation employed and the energy
function of choice.
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There are many factors that influence the stability of proteins and have
to be taken into account to evaluate candidate structures. The native state is
thought to be at the global free energy minimum of the protein. Electrostatic
interactions, including hydrogen bonds, van der Waals interactions, intrinsic
propensities of the amino acids to take up certain structures, hydrophobic in-
teractions and conformational entropy contribute to free energy. Determining
to what extent the function can represent all of these factors, as well as how to
weight each one are difficult questions that have to be solved before applying
the optimization method.

Simplified protein models omit some of these factors and are a first
problem-solving approximation. For example, the approximate fold of a pro-
tein is influenced by the sequence of hydrophobic and hydrophilic residues, ir-
respective of what the actual amino acids in that sequence are (Steipe, 1998).
Therefore, a first approximation could simply be constructed by a binary pat-
terning of hydrophobic and hydrophilic residues to match the periodicity of
secondary structural elements. Simplification can be further developed to con-
sider proteins represented using this binary patterning and to approximate the
protein structure prediction problem as two- and three-dimensional lattices.
In this case, the energy function measures only hydrophobic and hydrophilic
interactions. An example of this type of representation is shown in Figure 3,
where a sequence of 64 aminoacids is represented on a two-dimensional lattice.

5.4.2.1 EDA approaches

Depending on how sophisticated and detailed the protein model used is, EDAs
can be divided into two groups: EDAs applying a simplified model (Bacardit
et al., 2007; Santana et al., 2004; Santana, 2006; Santana et al., 2008b) and
EDAs using more detailed (atomic-based) models (Belda et al., 2005; Santana
et al., 2007b, 2008a). A more thorough classification is related to the type of
problems addressed:

• Protein structure prediction in simplified models (Santana et al., 2004,
2008b).

• Protein side chain placement (Santana et al., 2007b, 2008a).
• Design of protein peptide ligands (Belda et al., 2005).
• Protein design by minimization of contact potentials (Santana, 2006; San-

tana et al., 2007a).
• Aminoacid alphabet reduction for protein structure prediction (Bacardit

et al., 2007).
• Using EDAs as a simulation tool to investigate the influence of different

protein features in the protein folding process (Santana et al., 2008a).

In (Santana et al., 2004; Santana, 2006; Santana et al., 2008b), EDAs are
used to solve bi-dimensional and three-dimensional simplified protein folding
problems. The hydrophobic-polar (HP) (Dill, 1985), and functional protein
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models (Hirst, 1999) are optimized using EDAs based on probabilistic models
of different complexity (i.e. Tree-EDA (Santana et al., 2001), mixtures of trees
EDA (MT-EDA) (Santana et al., 2001) and EDAs that use k-order Markov
models (MK-EDAk) (Santana et al., 2004)).

Fig. 5.3. Optimal solution of an HP model found by an EDA that uses a Markovian
model.

The results achieved outperform other evolutionary algorithms. For exam-
ple, the configuration shown in Figure 5.3 is the optimal solution found by
MK-EDA2. Due to the particular topology of this instance, other evolutionary
algorithms consistently fail to find the optimal solution (Santana et al., 2004).

Side chain placement problems are dealt with using UMDA with discrete
representation in (Santana et al., 2007b, 2008a). The approach is based on
the use of rotamer libraries that can represent the side chain configurations
using their rotamer angles. For these problems, EDAs have achieved very
good results in situations where other methods fail (Santana et al., 2008a).
Results are better when EDAs are combined with local optimization methods
as in (Santana et al., 2008a), where variable neighborhood search (Mladenović,
1995) is applied to the best solutions found by UMDA.

(Belda et al., 2005) use different EDAs to generate potential peptide lig-
ands of a given protein by minimizing the docking energy between the can-
didate peptide ligand and a user-defined area of the target protein surface.
The results of the population based incremental learning algorithm (PBIL)
and the Bayesian optimization algorithm (BOA) are compared with two dif-
ferent types of genetic algorithms. Results showed that some of the ligands
designed using the computational methods had better docking energies than
peptides designed using a purely chemical knowledge-based approach (Belda
et al., 2005).

In (Santana et al., 2007a), three different EDAs are applied to solve a
protein design problem by minimizing contact potentials: UMDA, Tree-EDA
and Tree-EDAr (the structure of the tree is deduced from the known protein
structure, tree parameters are learned from data). Combining probabilistic
models able to represent probabilistic dependencies with information about
residue interactions in the protein contact graph is shown to improve the
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search efficiency for the evaluated problems. In (Santana, 2006), EDAs that
use loopy probabilistic models are combined with inference-based optimization
algorithms to deal with the same problems. For several protein instances, this
approach manages to improve the results obtained with tree-based EDAs.

The alphabet reduction problem is addressed in (Bacardit et al., 2007)
using the extended compact genetic algorithm (EcGA). The problem is to
reduce the 20-letter amino acid (AA) alphabet into a lower cardinality alpha-
bet. A genetics-based machine learning technique uses the reduced alphabet
to induce rules for protein structure prediction features. The results showed
that it is possible to reduce the size of the alphabet used for prediction from
twenty to just three letters resulting in more compact rules.

Results of using EDAs and the HP model to simulate the protein folding
process are presented in (Santana et al., 2007a). Some of the features exhibited
by the EDA model that mimics the behaviour of the protein folding process are
investigated. The features considered include the correlation between the EDA
success rate and the contact order of the protein models, and the relationship
between the generation convergence of EDAs for the HP model and the contact
order of the optimal solution. Other issues analyzed are the differences in the
rate of formation of native contacts during EDA evolution, and how these
differences are associated with the contact separation of the protein instance.

5.5 Summary

Throughout this chapter, the estimation of distribution algorithms have been
put on stage. Sections 5.1 presents the basics of these kind of evolutionary
algorithms and Section 5.2 divides them in terms of the complexity degree of
the dependences they are able to deal with. In Section 5.3 the feature subset
selection or FSS is explained, as well as, how EDAs could be configured to be
a feature subset selector. Finally, Section 5.4 makes an in depth review of the
works currently available in the bioinformatics field which use EDAs to solve
or, at least, tackle them.
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Introduction

6.1 The curse of dimensionality

The curse of dimensionality is a term coined by (Bellman, 1961) to describe
the problem caused by the exponential increase in volume associated with
adding extra dimensions to a mathematical space. The curse of dimensionality
can directly affect many fields such as, for example, problems in statistics,
economics, optimization and machine learning.

In our case, machine learning problems that involve learning an unknown
distribution from a finite (low) number of data samples in a high-dimensional
feature search space are very often not affordable. This is due to the sparsity
effect produced by the dimensionality problem: the amount of data to sustain
a certain spatial density increases exponentially with the dimensionality of
the input space, or alternatively, the sparsity increases exponentially given a
constant amount of data, with points tending to become equidistant from one
another.

Formally, a problem presents the curse of dimensionality when its associ-
ated data matrix ∆, with a dimension of n×m, complies with the inequality
n ≫ m, where n is number of features and m the number of cases included in
the problem.

Within the computational biology field the curse of dimensionality is often
present. In fact, all the applications presented throughout this thesis belong
to this class of problems. As a general rule, all the recent high-throughput
biological devices retrieve datasets with this singularity. These devices are able
to measure a huge amount of features from a given sample, but the numbers
of samples at hand is always very low. In particular to gene expression data
or mass spectrometry problems, the dimensionality problem is exemplified by
a number of features, n, of order 103 − 105 while the number of samples, m,
is of order 101 − 102.

The direct solution to this problem is to have a proportional number of
samples, but, in practice, this solution is unfeasible. The amount of observa-
tions (samples) should be enormous to obtain good estimations in the machine
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learning approach. The reader may think of the number of cancer or rare dis-
eases patients in a hospital compared to few thousand genes to measure.

Nevertheless, there is light in such a dim scenario (Donoho, 2000). One
positive characteristic is known as the concentration of measure. Roughly
speaking, this formulation states that many of the data come from constant
distributions on most of the space, so there are possibilities of correct inference
in this kind of data.

The second positive characteristic is related to the former and it is known
as dimension asymptotics. When the data dimension goes to infinity, the dis-
tributions converge to some limiting distribution. In many cases, it becomes
possible to obtain predictions that work for moderate dimensions but which
are derived by using the limiting distributions.

The third point is when the data is a sampled version of a continuous
phenomenon, namely approach to continuum. Since what is measured is con-
tinuous, the space of observed data will show signs of compactness that can
be exploited.

6.2 The theory of consensus

The first and usually very effective way of dealing with high-dimensional data
is to reduce the number of dimensions. This is principally done by removing
some dimensions that seem irrelevant to the problem. However, this removal
process must be carefully done because the limited number of cases could lead
to deceitful relevance statements.

As an initial approach, we propose this relevance determination by means
of a set of decisions rather than relying only on a particular one. This making
decision approach belongs to the consensus theory which is defined both as a
general agreement and as the process of getting to such agreement.

Consensus is a general policy applied to many questions: politics, philoso-
phy, polling, intelligence, engineering and, of course, computing. The original
consensus term comes from an ancient criterion of truth, consensus gentium
in Latin, which states that which is universal among men carries the weight
of truth (Ferm, 1962).

The Boolean algebra also comes across consensus with two algebraic the-
orems:

(a ∨ b) ∧ (b ∨ c) ∧ (¬a ∨ c) ≡ (a ∨ b) ∧ (¬a ∨ c) ,

(a ∧ b) ∨ (b ∧ c) ∨ (¬a ∧ c) ≡ (a ∧ b) ∨ (¬a ∧ c) .

The term which is left out is called the consensus term. The logical sim-
plification of this term states that given a pair of terms for which a variable
appears in one term, and its complement in the other, then the consensus
term is formed by combining the original terms together, leaving out the se-
lected variable and its complement. These theorems algebraically expose how
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it is possible to reduce the data when there is redundance in it and obtain the
same outcome.

A mathematical description of consensus is to say that there is an iterative
process through (d + e)-dimensional parameter space, starting from initial
guesses at a solution in d-dimensional parameter space, which tries to converge
to find a common solution in (d + e)-dimensional parameter space.

The machine learning approach must face three important issues when
dealing with the curse of dimensionality: affordability, results’ variance and
overfitted models. There exist basic techniques to tackle such problems:

• Feature selection - As the first approach to the curse of dimensionality,
the practitioner can make use of a dimensionality reduction by using some
feature selection approach. This is not only restricted to feature subset
selections but also to ranking metrics, as will be introduced in the next
chapter.

• Bootstrap approaches - When the dataset is comprised of a very low num-
ber of instances, a way to alleviate the possible overfitted and variable
results is to perform repeated resampling of the dataset and repetitions
of the analysis techniques. A bootstrap approach will reduce the posibil-
ity of obtaining statistical artifacts when relying on repeteated and stable
findings (Friedman et al., 1999).

• Classifier combination - Following the same policy as with the bootstrap,
a combination of different or similar classification paradigms can bring
stability to the results. There is a full research field within the machine
learning in this issue (Kuncheva, 2004). In addition, the combination of
classifiers may significantly improve the prediction accuracy of a full clas-
sification system (e.g. automatic medical systems in the help of diagno-
sis/prognosis).

Through all the methodological proposals included in this part, we con-
front the former problematic issues by means of consensus adaptations of these
and other classical machine learning techniques. The aim of such consensus
approaches is always add more reliability, robustness and generalization, in
order not to get trapped by the dimensionality problematic. Notice that all
the consensus proposals included are designed to deal with specific computa-
tional biology problems. Despite this fact, the proposals are introduced in a
general way as far as it is possible and some benchmark results couple their
formulations. For a full application of all these techniques in challenging real
computational biology problems, the reader can consult Part III of the dis-
sertation.
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Consensus over univariate ranking metrics

The impressive growth that the biological/bioinformatics datasets have un-
dergone through the last decade is an important challenge to the data mining
discipline. When a practitioner in this field tackles a new problem, one of the
first questions is: –What is the importance of this gene, protein, sequence or
entity in my problem?

This question can be quickly addressed through the statistics using dif-
ferent relevance metrics. These metrics belong to the filter approach and are
very fast in their computation, so, they are perfectly suited to having initial
idea about the features under evaluation.

Through this chapter, we introduce a set of relevance metrics to measure
such relevance. All of them are designed to deal with supervised classification
problems. Looking for more robustness in the final output, we propose a way
to combine a set of univariate metrics into a single consensus decision. This
approach could be of special interest when dealing with problems of very low
number of cases. It is possible to find more relevance metrics in the state-
of-the-art literature (Saeys et al., 2007) appart from those included in this
chapter.

7.1 Univariate relevance metrics

Within the filter approaches to feature selection (see Section 3.4 for details),
the simplest and probably most extended approach is to measure the good-
ness or relevance of a feature in the dataset that is under study. Since this
measurement is performed individually, it only takes into account the val-
ues that the feature takes. These univariate metrics output a coefficient that
quantifies the degree of relevance that a feature has in the problem. Almost
all of these metrics are formulated for the supervised classification field and
its measurement is directly related to the separability that each feature has
in the classification problem.
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If we consider all the feature set of a particular problem, each feature
coefficient can be seen as a punctuation or merit and therefore it is possible
to sort all of them in a relevance ranking. In this way, a ranking of feature
importance is computed according to a particular relevance metric.

All the metrics presented in this chapter have their formulations based on
heuristics derived from divergence measures between data distribution func-
tions. The coefficients retrieved for each feature constitute the ranking value
for which the features are sorted. Univariate metrics assign higher coefficients
to the most relevant features. However, there are metrics based on minimiza-
tion, that is, the lower the coefficient is, the more relevant the feature is. One
of the most important characteristics of the univariate metrics is their speed
in terms of computational time. Since the evaluation is individual and there
is no classification paradigm to learn, the complexity order is nearly always
linear or close to linear.

Another important issue is that their formulation is not based on any a
priori data distribution assumption, such as Gaussian or Poisson distribution.
All these relevance metrics are thus categorized into the non-parametrical
statistics, a fact that makes them ideal when the number of instances available
is low or very low. In these cases, such as in many bioinformatic problems,
other parametrical relevance techniques are forced to test the parametrical
assumptions (Gaussan distribution and heterocedasticity), assumptions that
are not easily fulfilled (Jafari and Azuaje, 2006).

Based on the work by (Ben-Bassat, 1982), we adapt here seven different
univariate filter metrics. Most of them are originally proposed for dichotomic
problems. In these cases, we extend its use to multiclass problems by weighting
the dichotomic metric in function of the marginal probability of each class.
For computing the global coefficient for the multiclass problem, the marginal
dichotomic coefficients are computed and added as

Filtermulticlass =

rc
∑

i=1

j<i
∑

j=1

p(ci)p(cj)Filter(ci, cj) ,

where Filter(x, y) is the original dichotomic metric and rc is the number of
classes or states for the class variable.

Notice that all the following metrics expect discrete values as input. If the
problem under consideration includes continuous values (e.g. gene expressions
or PCR values), all those values need to be discretized into a number of
finite states. In the following Chapter 8, Section 8.2 is exclusively devoted
to introducing possible discretization approaches. We refer the reader to that
section for a more detailed revision.

A. Mutual information

One of the most known and widely used relevance metrics is the mutual infor-
mation (Shannon, 1948). Based on the information theory, mutual information
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computes the relation that exists between a pair of variables. Its formulation
measures how much uncertainty is unveiled by the knowledge of a variable
about the possible state that the second variable could have. This metric
ranges from 0 to 1 where values close to 1 imply a high correlation between
the variables, whereas values close to 0 point to independence between them.

As a ranking metric, the variables to compare are, first, the variable under
evaluation and, second, the supervised variable. Its formulation is

I(X, C) =

rx
∑

i=1

rc
∑

j=1

p(xi, cj) log
p(xi, cj)

p(xi)p(cj)
,

where X is the variable to evaluate, C is the class variable, and rx and rc are,
respectively, the number of states that both variables can take.

Mutual information presents a disadvantage when comparing its values
for different pairs of variables. Due to its formulation, the mutual information
metric score benefits those variables with a large number of states. Therefore,
when the number of states of two variables is not equal, the direct comparison
of their relevance in terms of mutual information is unfair.

B. Matusita metric

The original Matusita distance (Matusita, 1955) is intended for measuring the
distance between two probability distributions. On the following adaptation,
we measure the average distance between the marginal distributions of each
variable values and the values from the class. Using the same notation as in
the previous case, its mathematical expression is

MA(X, C) =

rc
∑

i=1

j<i
∑

j=1

p(ci)p(cj)

[

rx
∑

k=1

√

p(xk|ci)p(xk|cj)

]

.

C. Kullback-Leibler divergence

The Kullback-Leibler divergence (Kullback, 1987) is the most known tech-
nique to measure the difference between two probability distributions P (X)
and Q(X), taking one of them as reference. The general formulation is

KL (P (X), Q(X)) =
∑

xi

p(xi) log
p(xi)

q(xi)
.

Two different approaches are proposed to instantiate the probability dis-
tributions. First, compare the a priori marginal probabilities (mode 1). And,
secondly, compare the a priori conditional probabilities. Remember that since
this is a dichotomic metric we have to initially weight each class marginal
probability as
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KL(X, C) =

rc
∑

i=1

j<i
∑

j=1

p(ci)p(cj) KLij(X, C)a ,

where a = {1, 2} is the two possible modes. The mode 1 divergence is formu-
lated as

KLij(X, C)1 = KL (P (X |ci), P (X)) + KL (P (X |cj), P (X)) ,

and, in mode 2, as

KLij(X, C)2 = KL (P (X |ci), P (X |cj)) + KL (P (X |cj), P (X |ci)) .

D. Shannon entropy

Shannon’s entropy (Shannon, 1948) is one of the most extended metrics
to measure the goodness of a given variable. Its dichotomic formulation is
adapted to the multiclass case as

SH(X, C) =

rc
∑

i=1

j<i
∑

j=1

p(ci)p(cj) Hij(X) ,

where

Hij(X) = −
rx
∑

k=1

p(xk|ci) log2 p(xk|cj) + p(xk|cj) log2 p(xk|ci) .

E. Bhattacharyya metric

This metric (Bhattacharyya, 1943) measures the degree of dependence be-
tween two probability distributions. We are going to compare the a priori
probability of a variable versus the probability conditioned to the class value.
The higher this degree is, the more important the variable should be for the
classification problem. Its formulation is then

Bh(X, C) =

rc
∑

i=1

− log



p(ci)

rx
∑

j=1

√

p(xj |ci)p(xj)



 .

F. Euclidean distance

The last metric does not derive from any information analysis or probabilistic
function. It comes from the definition of Euclidean distance in a n-dimensional
space. Let P = (p1, . . . , pn) and Q = (q1, . . . , qn) two points of an Euclidean
n-space, the Euclidean distance between them is defined as
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ED(P, Q) =

√

√

√

√

n
∑

i=1

(pi − qi)2 .

We propose a multiclass metric based on this distance as a contrast to the
six previous metrics based on probabilistic theories. The metric is formulated
as

ED(X, C) =

√

√

√

√

rx
∑

i=1

rc
∑

j=1

k<j
∑

k=1

p(ck)p(cj) | p(xi|ck)2 − p(xi|cj)2 | .

7.2 Positional consensus

As previously exposed for the curse of dimensionality, it is common to find
datasets in computational biology that contain a limited number of instances,
whereas a large number of features or variables are present. In these scenarios,
the main drawback for the univariate metrics is the high variance associated
to the data values. This variance reflects the fact that the data distribution is
scattered and, as a consequence, the relevance rankings could vary significantly
if we compute them through different metrics.

The first approach to the consensus is thus to make a positional consen-
sus (Armañanzas et al., 2009a). This consensus is a way to not only rely on
one particular metric but to allow the evaluation of all of them. Once all the
rankings are computed, we calculate the average ranking for all the metrics.
This average ranking will be the single output ranking, instead of returning
many similar but different ones.

These kinds of problems were firstly described by (Condorcet, 1785) in
the context of voting and distribution of seats. In fact, the problem can
be reformulated as an aggregation of individual preferences (Kemeny, 1959)
and solved by more sophisticated approaches of the linear ordering problem
(LOP) (Garey and Johnson, 1979).

Formally, given a supervised classification problem with a feature set
X = {X1, . . . , Xn} and a class variable C, it is possible to apply u differ-
ent univariate relevance metrics in the problem obtaining u different relevance
rankings. Each feature Xi presents, in each ranking, a set of different positions
p1

Xi
, p2

Xi
, . . . , pu

Xi
. Then, for a given feature Xi, we can take the u associated

positions and compute its associated consensus position as

pcons
Xi

≡ or

⌊

∑u
j=1 pj

Xi

u

⌋

,

where or stands for the order (ties are randomly broken) of the value
∑u

j=1 pj
Xi

/u within the set
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{

∑u
j=1 pj

X1

u
, . . . ,

∑u
j=1 pj

Xn

u

}

.

The features are sorted using this consensus position as the ordering crite-
rion, obtaining the consensus relevance ranking. This is the easiest approach
to the consensus. The final ranking illustrates, as a general criterion, the more
relevant (first positions) and irrelevant (last positions) features in the super-
vised problem. Since the metrics are univariate, no dependence between the
features is explored. It is very likely to find close features in the ranking that
may present a high level of redundancy between them.
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Consensus over gene selection

From the statistics and data mining fields, the expression level of a gene is
represented as a random variable of a probabilistic process. Such a random
variable could be measured in different cohorts of samples belonging to differ-
ent phenotypes. As exposed in the previous chapter, the first approach is to
measure the individual relevance of each of those variables in the supervised
problem.

However, in a second study phase, the practitioner would like to get a
more precise result: a set of relevant genes in the undergone experimentation.
Here, the biology borrows the feature subset selection approaches from the
machine learning discipline. But the cardinality of the bioinformatic problems
is usually a problem and the classical approaches need to be adapted.

Through this chapter we first explore a relatively recent filter feature sub-
set selection. Namely correlation-based feature subset selection, its formu-
lation makes it ideal when dealing with gene expression data coming from
microarray experiments.

Gene expression data is always expressed in a continuous scale. This con-
tinuous expression needs to be translated into categorical values so as to apply
all the proposals included in this part of the dissertation. There are different
ways to perform such categorization and this discretization process biases the
original data. In order to shorten these biases, we here propose a combina-
tion between feature subset selection and discretization approach to look for
a small and very relevant set of genes. The consensus approach to do so is
called consensus gene selection or CGS and detailed in Section 8.3. Some
experiments that demonstrate its good performance in three benchmark mi-
croarray datasets are also presented.
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8.1 Correlation-based feature subset selection for gene

selection

Selecting an optimal subset of relevant genes from a large collection is an
NP-hard combinatorial problem (Garey and Johnson, 1979). Due to its own
nature, the filter approach is quicker than the wrapper approach: when the
number of features increases to more than hundreds, the computing time a
wrapper algorithm needs is not affordable with the current resources. On the
other hand, the filter approach is independent from the learning algorithm,
that is, the selected features are presumed to be good for whatever learning
algorithm used afterwards. Lastly, and due to the usual low number of samples
in DNA microarray problems, there is a high risk for wrapper procedures
to overfit the data. Due to these reasons, filter techniques are an adequate
approach to gene selection in such contexts (Inza et al., 2004; Xing et al.,
2001; Yu and Liu, 2003, 2004).

When searching for an optimal feature subset, two issues are fundamental:
redundancy and irrelevancy. The desired feature subset should have the lowest
redundancy among the selected features, and, at the same time, the most
relevant features of the problem. These features are closely related to the
problem class label.

In 1997, Hall and Smith presented a feature selection method called corre-
lation-based filter selection (CFS) (Hall and Smith, 1997), which deals with
these two issues. Based on a hill-climbing search strategy guided by a heuristic
evaluation function, CFS accomplishes the redundancy and irrelevancy issues
in a linear time, obtaining competitive results in comparison with the wrapper
approaches over large, different domains (Hall and Smith, 1999). For a feature
subset S ⊆ X , the CFS filter-inspired heuristic, Gs, is computed as follows:

Gs =
krci

√

k + k(k − 1)rii′
. (8.1)

Equation 8.1 has three components: k represents the subset size, rci de-
notes the mean correlation between the selected features and the class feature,
and rii′ denotes the average intercorrelation between the selected features.
The numerator can be seen, in a pairwise way, as an indicator of how well a
group of features can predict a class. The denominator measures, also from a
bivariate point of view, the redundancy that exists among the features of the
subset.

A derived consequence of this heuristic is crucial in the microarray context:
irrelevant features will not be included as they will be poor predictors of the
class, and redundant ones will be ignored because of its close correlation with
the features previously included. Bear in mind that there can be features with
a high correlation coefficient in relation to the class that are not included in
the subset that is finally selected. This is due to the fact that another feature
accomplishes the heuristic metric better, although its class correlation is lower
than that of the first.
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The metric which measures the correlation level between a pair of features
and between each feature and the class is based on the conditional entropy. If
X and Y are random discrete variables with possible states given by rx and
ry respectively, the a priori entropy of Y is defined as:

H(Y ) = −
ry
∑

y=1

p(y) log(p(y)) . (8.2)

In a similar way, we define the conditional entropy of variable Y , when the
value of variable X is observed as:

H(Y |X) = −
rx
∑

x=1

p(x)

ry
∑

y=1

p(y|x) log(p(y|x)) . (8.3)

On the basis of the conditional entropy, the correlation measure between
Y and X , also called the uncertainty coefficient of Y given X , is defined as:

Corr(Y |X) =
H(Y ) − H(Y |X)

H(Y )
. (8.4)

This coefficient can take values between 0 and 1. A value of 0 indicates
that X and Y have no relation; a value of 1 indicates that knowing the X
value completely predicts the Y value. These values are used to compute the
mean class correlation and the average feature intercorrelation coefficients rci

and rii′ , respectively.
The last issue to consider is the search procedure. We have selected a for-

ward greedy hill-climbing procedure due to two main reasons: affordability for
the NP-hard search and the fact that forward selection supplies optimal sub-
sets of small sizes, contrary to backward selection, which supplies bigger ones.
Especially, for the DNA microarrays domain, backward selection could select
several thousand genes. Many biological studies consider that the number of
genes involved in a biological process is not higher than twenty or thirty rele-
vant genes (Golub et al., 1999; Li and Yang, 2002). Hence, forward selection
search is chosen.

With all these fixed parameters, a detailed analysis of the original algo-
rithm reveals that there is a large number of repetitive computations within a
complete run. To start with, we can change the expression of the correlation
measure between Y and X by using the mutual information metric:

Corr(Y |X) =
I(X, Y )

H(Y )
=

I(Y, X)

H(Y )
.

If we extend the greedy forward search runs step by step, it is possible to
formulate a recurrent expression that minimizes the number of computations.
The correlation between the selected feature set and the class variable, rci,
can be obtained as
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rci =
k − 1

k
r′ci +

I(C, Anew)

k H(C)
.

The average intercorrelation between the selected features, rii′ , is also
simplified to the following recurrence:

rii′ =
k − 2

k
r′ii′ +

k−1
∑

i=1

R(Ai, Anew) ,

where

R(Ai, Aj) =
I(Ai, Aj) [H(Ai) + H(Aj)]

H(Ai)H(Aj)
.

The term Anew refers to the new added feature, r′ci and r′ii′ are the inter-
correlation values computed in the previous search iteration. In the very first
search iteration, the expression of the heuristic is just reduced to compute the
mutual information between each one of the features and the class variable,
I(C, Ai). Consequently, the first selected feature is the one with the highest
mutual information metric coefficient.

In summary, we consider that CFS is an ideal procedure for feature sub-
set selection when dealing with DNA microarray data. Three main reasons
support this statement:

• First, the amount of sequences a microarray is now able to analyze. In a
problem with more than several thousand genes, a filter approach is the
most affordable in terms of the present computational resources.

• Second, a DNA microarray takes a snapshot of many diverse genes, even
genes with no relationship with the studied experiment. These genes are
supposed to not show any special activity, that is, to be irrelevant. They
have to be ignored.

• Third, CFS tries to select uncorrelated features. This statistical orthog-
onality can be taken to the biological domain, checking whether any of
these selected features directly supports a biomarker.

The computational cost of a CFS run directly depends on the selected
search policy and on the database’s characteristics. By using forward greedy
search, this cost can be approached in function of an α parameter that relates
the number of original features n and the number of selected features s (s ≅

α ·n). In the worst case, the total number of operations for a CFS run will be
delimited by the polynomial expression αn3 + (N − α)n2 − Nn, where N is
the number of database cases.

8.2 Discretization matters

A great number of machine learning methods are designed to deal only with
discrete data, such as CFS is. In order to use this battery of procedures,
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this restriction makes it necessary to translate the data from continuous to
discrete value-domains. This translation is made by means of discretization
transformation, from the continuous values to an ordinal set of values for each
variable or feature. The process can make the original data lose precision, even
degrading its original quality.

On the basis of its biological activity, the general assumption towards
the possible expression states of a gene is that each gene can only be in a
few functional states. As a usual criterion in this field (Causton et al., 2003;
Friedman et al., 2000), our assumption is that these possible states are three,
using the idea of over-expression, under-expression or base-line activity for
the gene.

Most of the original studies dealing with discretized microarray data uses
a fixed discretization policy (Friedman et al., 2000). The problem within this
strategy is that not all the genes show the same numerical behaviour. For
instance, for two different genes, the expression value of an over-expressed
profile could be the same as a base-line profile for another one. Another issue
about discretizing policies is the fact that once the discretization is performed,
the new data fitting is not tested. If the discretization process has biased the
original data, this bias affects all the posterior knowledge discovery processes,
especially when little data is provided. This could be critical when simple
discretization policies are used.

Due to the usual small number of samples, and searching for a more robust
data analysis, many DNA microarray-related papers propose to construct dif-
ferent models for the data (Blanco et al., 2004; Dudoit et al., 2002; Lee et al.,
2005). Once the models are built, the most adequate one is chosen in function
of the problem’s context or objectives. Thus, in the context of biological data
and due to sample number dependency, the effects of a unique discretization
policy for all the data can even be critical.

For the present dissertation, we evaluate the use of three well-known
and widely-used discretization policies. Two of them are based on classical
statistics: equal frequency (Catlett, 1991) and equal width (Kerber, 1992).
The third one is a well-known supervised discretization technique that comes
from the machine learning discipline: the entropy discretization of Fayyad and
Irani (Fayyad and Irani, 1993).

Equal width and equal frequency techniques do not take into account
any information about the class variable distribution in the problem: both
are unsupervised univariate policies. Given a number of bins, b, equal width
simply sorts the values a feature can take and divides the observed range into
b equally sized intervals (Friedman et al., 2000; Tuzhilin and Adomavicius,
2002). Equal frequency divides the range into b bins which gather the same
number of occurrences (Sheng et al., 2003).

Entropy discretization is a non-parametrical technique that is considered
one of the best and most commonly used discretization policies in machine
learning. This technique is known as entropy because it uses the entropy mea-
sure to identify the optimal bins of a continuous feature. Entropy discretiza-
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tion makes use of the data class distribution over the problem, in conjunction
with a minimal description length-based algorithm (MDL) (Rissanen, 1978).
For each attribute independently, this technique finds the appropriate cut-off
points in such a way that the class entropy within each resulting interval is
minimum, while balancing this by introducing as few cut-off points as possible.
Such progressive search is very robust when the data distribution is skewed.
Therefore, no assumption about the data distribution is needed a priori.

8.3 Consensus gene selection

In order to tackle the gene selection problem, we seek to find a robust know-
ledge discovery process and to overcome the problems previously exposed.
Therefore, not only is a single discretization evaluated, but the use of many dif-
ferent discretization techniques will be researched. Beginning with a microar-
ray dataset discretized in different ways, we propose to look for a consensus
result with larger reliability and robustness than usual single-discretization
modelling. These types of consensus strategies have demonstrated good re-
sults and they are a typical topic in DNA microarray-related studies (Monti
et al., 2003; Swift et al., 2004). Thus, beginning with a microarray dataset
discretized in different ways, we search for a consensus set of relevant genes
by applying a feature subset selection to all of them. This consensus is ex-
pected to return a limited number of relevant genes that may be augmented
in function of the experimentation needs (Armañanzas et al., 2005b).

Formally, let the discrete datasets S1, . . . , SN be the result of different
discretization policies of the original O microarray dataset. N feature subset
selections are performed on the basis of these Si discrete datasets, producing
the following subsets of genes: G1, . . . , GN . The consensus gene subset Γ will
be the intersection between all of them, that is

Γ =

N
⋂

i=1

Gi ,

with |Γ | = m 6 mini=1,...,N |Gi|.

In order to amplify the final output gene set, for each of the m selected
genes, its q most univariately correlated genes are also selected. Fig. 8.1 graph-
ically exemplifies the whole information flow.

The objective of the overall process was to enhance the robustness of the
final solution. The use of different discretization procedures adds indepen-
dence from a specific discretization task, and obtains a compact gene set
Γ =

⋂N
i=1 Gi. Although the original set O is the same, the Γ set contains

genes that are considered relevant in different discrete datasets. This fact
demonstrates the importance of these m selected genes, showing its relevance
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Fig. 8.1. Machine learning data flow to identify the relevant gene set: Identifying
the prototype genes and the genes mostly correlated with them.

over the experiment studied. Hence, these genes are considered as statistical
prototypes showing different behaviour profiles among them.

Due to the conservative formulation of the intersection consensus, there
may be genes related to the class that are left as unselected. That is why an
amplification of the Γ set is performed and the q most univariately correlated
genes with the m prototypes are also selected. Notice that this correlation
is computed for each discrete dataset Si, adding up to m × q genes to the
final selected set. This posterior enlargement of the outcome can add valuable
information contained in each of the starting gene sets. It is very likely that
when augmenting the consensus selection there could appear repeated genes
in the selection. These repetitions are explained by means of their inherent
relevance to the problem.

8.4 CGS specification

Although the consensus gene selection in presented as a general approach, the
user needs to set up the different methods that it contains in order to run
it. The comparison study between different methods applied in the CGS is
complex and out of scope of this dissertation. Nevertheless, we propose and
argue the use of three of them specially well-suited for the gene selection over
DNA microarray data.

Three are the parameters to instantiate from the general approach:

• Discretization procedures – Following the discussion introduced in Sec-
tion 8.2, we choose the three techniques described: equal width, equal fre-
quency and entropy. Assessing gene activity, the number of bins in equal
frequency and equal width discretizations is fixed at three (parameter not
needed by the entropy discretization due to its free-parameter nature).

• Feature subset selection technique – Also presented and discussed in Sec-
tion 8.1, correlation-based feature selection is able to identify the genes
most correlated with the phenotype distribution, keeping the redundancy
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among them minimum. CFS has been widely used in this bioinformatics
context, reporting good results both in time and in relevant genes (Hall
and Smith, 1999; Wang et al., 2005b; Sáenz et al., 2008).

• Coexpression measure – Mutual information (see Section A.) has no sign
consideration in its formulation and the relationships found could be direct
and inverse in the gene profiling. Thus, it can cover a key biological process:
positive or negative transcription regulation. Once the prototype genes are
found, the number of genes most correlated with each prototype gene is
set at nine for each Si discrete dataset.

The computation time of the full technique is dominated by the feature
subset selection step. In the case of the suggested specification, the CFS is
clearly the bottle-neck task. Although a lot of mutual informations are com-
puted on the last stage, the computational order for the mutual information
is linear (for c classes and v states for the predictive variable is of O(ncv)).
Moreover, CFS needs to compute in total far more times mutual informations
through the search process. Therefore, the general cost of the full pipeline can
be delimited by the cost of the number of CFS runs.

8.4.1 Benchmark examples of application

As exposed, the objective of the overall process proposed is to enhance solution
robustness. The use of different discretization procedures adds independence
of a specific discretization task, obtaining a compact and consensed gene set
Γ =

⋂N
i=1 Gi. So as to study how this first stage works, we tested its behaviour

using three well-known microarray benchmark datasets:

• Colon (Alon et al., 1999) - This array set comes from a colon gene ex-
pression study of 62 samples –40 tumoral and 22 non-tumoral– with 1,989
features from the original 2,000 (removing 11 Affymetrix microarray con-
trol sequences). Feature intensity values of each microarray are scaled into
an average intensity value of 50.

• Leukemia (Golub et al., 1999) - Leukemia dataset is composed of 72 sam-
ples in two classes of leukemias: Acute Lymphoblastic Leukemia (ALL)
and Acute Myeloid Leukemia (AML). From the 7,070 original features,
only those with 75% presence value in the raw data are included in this
study, that is, 1,161 features. The two phenotypes are distributed as 47
(ALL patients) and 25 (AML patients) samples per class. Features have
been scaled using the factors provided by its authors.

• Lymphoma (Alizadeh et al., 2000) - One of the very first works in high
throughput microarray technology was the analysis of different cells com-
ing from a variety of lymphoma tumors. The set is originally composed
of 96 samples and 4,026 probes were measured. There are nine diagnosis
classes corresponding with different lymphocite cell types with cardinali-
ties 46, 2, 2, 10, 6, 6, 9, 4 and 11, respectively.
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The discretization and feature selection techniques are those recommended
above: equal width, frequency, entropy and CFS, respectively. Since we want
to analyze the consensus selection, we are not expanding the selected genes
but only the intermediate and final consensus genes are analysed. Therefore,
the selected intermediate genes and the final prototypes are used for a leaving-
one-out cross validation (LOOCV) over the continuous datasets, using four
different broadly used classification paradigms: logistic regression, k-NN, näıve
Bayes with Gaussian assumption and random forest. Estimated accuracies by
the LOOCV process are gathered in Table 8.1.

Genes Log. reg. k-NN* N. Bayes R. forest

Colon 1,989
Γ =

T

3
Gi 03 83.87 80.64 87.10 85.48

GEq.F req. 22 72.58 83.87 93.55 85.48
GEq.Width 24 74.19 80.65 91.94 85.48
GEntropy 40 74.19 82.26 93.55 91.94

Leukemia 1,161
Γ =

T

3
Gi 04 86.11 83.33 87.50 87.50

GEq.F req. 28 77.78 90.28 90.28 84.72
GEq.Width 19 76.39 88.89 93.05 79.17
GEntropy 48 80.55 95.83 91.67 84.72

Lymphoma 4,026
Γ =

T

3
Gi 16 87.50 89.60 87.50 86.46

GEq.F req. 198 97.92 94.80 85.42 89.58
GEq.Width 125 94.79 94.80 85.42 87.50
GEntropy 165 77.08 94.80 81.25 88.54

Table 8.1. Estimated accuracy percentages for the benchmark datasets. *k-NN is
computed with Euclidean distance and k=2.

Table 8.1 includes in bold, for each classifier and each selected gene set,
the highest estimated accuracy values. The consensus selection reduces the
number of features by a degree of magnitude in comparison with the single
discretization and selections. Even with such a drastic reduction, the consensus
features are able to achieve the highest accuracy at least once for each dataset:
in Colon with logistic regression, in Leukemia with random forest and logistic
regression, and, in Lymphoma with näıve Bayes. Although the differences are
not statistically tested, we can check that the core of genes selected by the
consensus is able to work out a high degree of class separability. In general,
with a reduced number of features, the accuracy estimations always achieve
competitive values.

In Section 11.3 an application of this approach is presented to deal with
data coming from two autoimmune diseases. The results from the method are
validated both from the statistical and biological point of view. This applica-
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tion finds previously reported insights into the diseases and, at the same time,
points out new biological hypothesis to work on (Armañanzas et al., 2009a).



9

Reliable gene interaction networks

The next step in a biological study is to take a look at the possible relations
that the relevant genes present among themselves. DNA microarrays allow the
practitioner to measure thousands of gene expressions ar the same time. These
data constitute the numeric seed for the induction of such a gene networks
known as gene interaction networks. The main purpose of a gene interaction
network is therefore to map the relationships of the genes that are out of sight
when a genomic study is carried out.

In this chapter, we propose a new approach to build gene networks by
means of Bayesian classifiers, variable selection and bootstrap resampling.
The interactions induced by the Bayesian classifiers are based both on the
expression levels and on the phenotype information of the supervised variable.

Feature selection and bootstrap resampling add reliability and robustness
to the overall process, removing possible false positive findings. The consensus
among all the induced models produces a hierarchy of dependences and, thus,
of variables. The practitioner can define the depth level of the model hierarchy
so the set of interactions and genes involved can vary from a sparse to a dense
set. In addition to their utility as an hypothesis research tool, once a confidence
level is set, the network structure can be used as a supervised classifier.

Running examples with DNA benchmark microarray datasets illustrate
our proposal. Experimental results show how these networks perform well on
classification tasks and how the sparsity degree of the networks can be tuned.

9.1 Introduction

Gene networks or gene interaction networks (Friedman, 2004) are currently a
topic under heavy research in the computational biology field. High through-
put biological devices have reduced the gap between the traditional medicine
and what is known nowadays as biomedicine. But in this context, not only
the proof of a certain gene activity is necessary, but also the investigation of
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how a set of genes interact among themselves is crucial for the understanding
of different complex diseases.

However, there is still a tendency to analyze gene expression data only
from a pure numeric point of view, that is, to look for the smallest and most
accurate set of genes that are able to distinguish between two or more pheno-
types (Bontempi, 2007; Lin et al., 2006; Wang et al., 2007; Yang et al., 2006).
This analysis strategy still falls into the problems related with the curse of
the dimensionality of these domains. As the high throughput devices, like the
DNA microarray devices, begin to be less expensive, the amount of available
data will allow to overcome these problems such as, for instance, the overfit
effect (Braga-Neto and Dougherty, 2004b; Michiels et al., 2005).

Apart from these studies, computational techniques have proven their ca-
pacity to help physicians to analyse the gene activities of complex diseases.
In order to understand such complex relations, many approaches have gone
on stage. From pure Bayesian networks (Friedman et al., 2000; Peña et al.,
2005b; Pe’er et al., 2001) to statistical validations by multiple random simu-
lation (Baker and Kramer, 2006), new graphical models to match gene inter-
actions (Shmulevich et al., 2003; Wang et al., 2005a) or biological validation
of previously reported interactions (Hartemink et al., 2001; Rapaport et al.,
2007). The main corpus of all these works is to assume that a gene behaves as
a random variable of an unknown probabilistic distribution. Over that distri-
bution, the regulatory interactions between the genes are expected to produce
corresponding probabilistic dependences within their expression levels (Pe’er
et al., 2006).

In this framework, the majority of the works just look for differentially
expressed genes to build their models. However, few of them are explicitly
focused on the statistical information that the comparison of different sample
types contributes. The conditional probabilities learnt through the pheno-
type statistical distribution in the database will be used to report interac-
tions among genes, not only based on their individual expression levels, but
also on their behaviour through the different conditions. This fact involves
the addition of the probabilistic relationship that associates the sample class
or phenotype with each relevant gene or feature under the study, that is, a
supervised-class experimental design (Larrañaga et al., 2006). Our proposal
belongs to these supervised studies, stressing the search of robust results by
means of a hierarchy of supervised Bayesian classifiers.

Based on the frequency of appearance of each arc within an induced pool
of Bayesian classifiers, our approach assigns confidence levels to those arcs.
Depending on the confidence level fixed by the expert, the final model can
vary from a very simple structure including a small set of dependences to a
deep forest-like one with hundreds of them. This property allows to retrieve a
hierarchy of autoinclusive models: from the simplest and most reliable one with
only one interaction to the most complex one that includes all the detected
interactions. These hierarchical networks are computed by means of a set of
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tools well-suited for the biological characteristics, taken from the machine
learning and statistics fields:

• The estimations produced by stratified sampling with replacement, known
as non-parametric bootstrap, are cautious. The ratio of false positives in the
features induced with this procedure is very low (Friedman et al., 1999).
This fact is significantly important when dealing with biological data in
which the number of samples is still very low.

• A small set of genes gathers most of the information in an entire microar-
ray. A feature selection procedure must be applied to reduce the dimen-
sionality from thousands to only hundreds of candidate genes (Saeys et al.,
2007).

• No a priori biological information is used by the Bayesian classifiers, only
the phenotype distribution is considered. Therefore, no previous biological
premise will bias the final models.

• Consensus conclusions in the analysis of microarray data have already
demonstrated good results (Li and Yang, 2002; Monti et al., 2003; Swift
et al., 2004). When seeking for robust gene interactions, finding a par-
simonious set of both genes and dependences, which have a high degree
of confidence on the basis of the data, guarantees a low number of false
positives in the final network.

9.2 Induction of reliable Bayesian networks

Specifically, our approach combines a resampling method with an inner feature
selection technique and a Bayesian k-dependence classifier (see Section 4.2.3)
to obtain a gene interaction network formed by arcs which surpass a certain
confidence level. The expert can fix the complexity threshold of the relation-
ships among the genes in the output network so it can be used as a tool to
unveil or corroborate biological hypothesis.

The use of Bayesian classifiers to tackle this task implies that, first, the
statistical dependences among the genes can reveal real interactions among
them. Secondly, the gene interactions not only describe relationships solely
among genes, but also describe different biological behaviours based on the
phenotype distribution of each gene’s expression. Similar studies with the
same aim (Friedman et al., 2000; Pe’er et al., 2001; Zhou et al., 2004) make
use of the classical score+search Bayesian learning scheme and focus their
attention on partially directed models. Our method returns directed acyclic
models with directed edges and it can be configured with both different vari-
able set selections and Bayesian classifier inductors.

Because of this flexibility, the approach can also be seen as a consensus fea-
ture selection if the expert is only interested in the genes or variables connected
by the arcs of the output model. Therefore, two different biological validations
can be performed: the discussion of the selected genes’ relevance and the dis-
cussion of the relations reported among them. According to this idea, the
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reliability of the results collected in this work is also discussed in both ways:
from a pure classification and from a biological point of view (Armañanzas
et al., 2008a).

9.2.1 Robust arc identification

The disposal of a low number of instances forces every kind of machine learning
technique to look for robustness in its results. In the gene expression context
and with this purpose, we propose the combination of two widely known
techniques: a stratified bootstrap resampling (Efron, 1979) and a feature subset
selection.

The bootstrap approach was first introduced by Efron (Efron, 1979). It
is based on sampling intermediate databases from the original one. These
databases are conformed by instances randomly selected from the original
dataset with replacement. The proportion between classes in the original
dataset is maintained in each resampled dataset, which is known as strat-
ified bootstrap. This bootstrap scheme is known as non-parametrical boot-
strap (Friedman et al., 1999) due to the fact that it needs no external param-
eter to adjust or compute. On domains where the number of cases is low, the
bootstrap scheme is widely used to analyse these data (Simon, 1997).

Step 1. Repeat B times
Step 1.1. Stratified randomly sample N instances with replacement from

the original dataset
Step 1.2. Select an optimal feature subset and reduce the sampled dataset

to only those selected features
Step 1.3. Run the induction algorithm on the new reduced dataset, learning

a kDB classification model
Step 2. Compute the confidence level of each arc as the relative frequency of

its presence among all the B induced models

Fig. 9.1. Robust arc identification algorithm.

After the stratified sampling of the dataset, an intermediate feature sub-
set selection step is undertaken. Throughout this step, we look for the most
relevant features in each different resampled dataset; datasets that can show
differences among them due to the stochastic nature of the bootstrap resam-
pling. The relevant feature selection constitutes a running parameter to be
chosen by the researcher. Feature selection methods that return sets of vari-
ables rather than individual relevances are recommended in this step.

Subsequently, a k-dependence Bayesian classifier (Sahami, 1996) is induced
for each resampled dataset reduced to the found relevant features. On the basis
of all the induced kDB graphical structures, the confidence of each configured
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arc between a pair of variables is computed as the relative frequency of its
presence in the B induced classification models. Figure 9.1 shows the proposed
algorithm.

In a k-dependence Bayesian classifier model all the nodes of its structure
graph conditionally depend on the class node. These common dependences
will not be taken into account: our aim is to find repeated dependency struc-
tures among the predictive variables, as well as to identify which variables are
reported by those dependences.

9.2.2 Bayesian networks with high confidence dependences

Let lij be the arc from variable Xi to variable Xj . On the basis of the robust
arc identification algorithm presented in the previous section, we can define
aijr as

aijr =

{

1, if lij is present in the r-th induced graph,

0, otherwise.

The number of occurrences of a certain arc lij over the B induced classifiers
can be expressed as

oij =

B
∑

r=1

aijr . (9.1)

From now on, each arc lij will be associated with its corresponding number
of occurrences, oij . The set of arcs L that have been configured at least once
over all the models can be expressed as

L = {lij | oij > 1}. (9.2)

Let t be the confidence threshold or reliability level, that is, the number
of times that sets the confidence border of the features for an in-depth study.
In our case, the set of arcs from L that overcome the threshold t, hereafter
known as the set of t-reliability dependences, Lt, is then defined as

Lt = {lij ∈ L | oij > t}. (9.3)

Analogously, the set of variables included in a set of t-reliability depen-
dences Lt, S(Lt), is defined as

S(Lt) = {X t ⊆ {X1, . . . , Xn} | ∀Xi ∈ X t ∃Xj ∈ X t lij ∈ Lt}. (9.4)

According to Lt and S(Lt), it is possible to build a probabilistic graph-
ical model Gt of t-reliability dependences. In this model, we can find cycles
between two variables due to the inclusion of the same arc, but in opposite
directions. In such cases, we only take into account the dependence that shows
the larger number of occurrences.

Changing the reliability level t, we can build a hierarchy of models, from
an empty model to a model that includes almost all the found dependences.
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The simplest model corresponds to a reliability level of t = max{oij} i, j ∈
{1, . . . , n}, when this maximum is unique, Lt only comprises a single depen-
dence and Gt includes two variables and one link between them. At the limit,
when t = 1, almost every dependence is included; only those that are removed
to avoid cycles are not included. In this way, when the value of t varies, the au-
toinclusion property between all the models is verified, reporting a hierarchy
of graphical model structures that can be profoundly analysed:

Gmax{oij} ⊆ . . . ⊆ Gt ⊆ . . . ⊆ G0. (9.5)

Finally, once a t level is set, the structure of the model Gt can be retrieved
and then the parameters obtained from the dataset (Heckerman et al., 1995).
The autoinclusive property adds a new characteristic to this gene interaction
network: the capability to study how the sets of dependences and variables
evolve step-by-step throughout all the models. The Gmax{oij} model will pre-
sumably include just two variables and an arc between them. Since we decrease
the threshold, more variables and arcs will appear in the general model. Thus,
it is possible for an expert to control the depth of the study and to isolate
findings that could comprise a future work hypothesis. In the biodata min-
ing field, the control over the false positives is of crucial interest. So, work
hypothesis based on high confidence thresholds is presumed to be far from a
statistic artifact.

9.3 Performance analysis

9.3.1 Suggested running parameters

The methodological proposal previously introduced includes a set of running
parameters to be fixed, principally the feature subset selection, a boundary for
the maximum number of parents k for the k-dependence Bayesian classifier
and the number of times that the boostrap loop is performed. Moreover, and
especially in the gene expression context, all these parameters are expected
to set a scenario in which the running time could be affordable.

For the subset selection step we suggest the use of the already presented
correlation-based feature subset selection (Hall and Smith, 1997) (see Sec-
tion 8.1 for a detailed explanation). Similarly to the consensus gene selection
of Section 8.4, the search strategy for the CFS is configured in a classical
forward greedy hill-climbing search that starts from an empty set of features.
This search strategy guarantees that the cardinality of the output subsets is
not of a high dimension.

Once the dataset is reduced by the CFS, the kDB Bayesian classifier to
be learnt is configured with a k value of 4. This value allows the graphical
models to be both flexible and not sparse when inducing the structures of
dependences. Moreover, it implies a sufficient value so none of the possible
relevant dependences can be outside the models.



9.3 Performance analysis 95

Finally, the proposed algorithm in Section 9.2.1 is repeated a thousand
times, that is, the bootstrap parameter B is set to a value of 1,000. This way,
we search for arcs that occur a number of times that can be widely considered
as reliable.

9.3.2 Computational cost

The complexity order of the full algorithm configured with these parameters
can be estimated as the product of the bootstrap parameter B times the
computational cost of the feature subset selection and the kDB structure
induction. Computing the kDB network structure requires O(n2Nmv2), where
n is the number of variables, N is the number of cases, m is the number
of phenotypes and v is the maximum number of discrete values a predictor
variable may take (three in our case).

The computational cost of the CFS step was already discussed in Sec-
tion 8.1. In the worst case and by using forward greedy search, the compu-
tational cost can be expressed in function of an α parameter that relates the
number of original features n and the number of selected features s (s ≅ αn).
For each bootstrap iteration the value of α changes, but we will only consider
its maximum value for all the B iterations. In such cases, the total num-
ber of operations for a CFS run is delimited by the polynomial expression
αn3 + (N − α)n2 − Nn.

In short, the result of the joint algorithm is asymptotically of Θ(Bαn3)
order and the time for computing the conditional probability tables, when the
structure is used as a classifier, linearly depends on the number of variables
and dependences included when setting the reliability threshold.

9.3.3 Benchmark datasets

The proposed method is tested using the same three benchmark array sets
previously presented in Section 8.4.1: Colon, Leukemia and Lymphoma. All of
them are well-known microarray benchmark sets and have been widely used
for this purpose.

Since Bayesian classifiers can only deal with discrete variables, a discretiza-
tion process of the original continuous data is approached. On the basis of
its biological activity, we assume that a gene can only be in a few different
numbers of activity states. As discussed in Section 8.2 a general criterion in
microarray analysis (Friedman et al., 2000; Causton et al., 2003) is that this
number of states is three: an up-regulated, a down-regulated and a baseline or
null activity. Following this idea, we consider the equal width (Kerber, 1992)
discretization in three different bins as the most appropriate method to parse
the continuous values into discrete states. Because of its formulation, the pos-
sible bias included by the discretization is not expected to affect the real gene
profiling behaviour.
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9.3.4 Graphical outputs

Table 9.1 presents a summary of the numeric results provided for each mi-
croarray set. Column |S(L1)| shows the number of probes that are selected
at least once from the original set. The next column, |L1|, reflects the aver-
age number of arcs configured through all the induced classification models
–removing those that create cycles among them–. Lastly, column Arc collects
the most times configured probabilistic relationship for each array set; within
each set, the reported arc is included in a total of max t models out of a
thousand models.

Features |S(L1)| |L1| max t Arc

Colon 1,989 617 10.67 317 M76378 → J02854
Leukemia 1,162 587 15.96 205 D49400 at → U46751 at
Lymphoma 4,027 3,710 180.64 321 g4012X → g1171X

Table 9.1. Run statistics for the benchmark microarray sets.

For the Colon array set, the total number of variables in S(L1) selected
represents 31% of the original set. The variables not included can be safely dis-
carded for the subsequent knowledge discovery process. Moreover, and taking
into account the arcs configured at least a hundred times (threshold t = 100),
we can radically reduce this number to only 13 variables. Figure 9.2 shows the
graphical structure compounded by all the arcs included in at least a hundred
of the models (shaded nodes match variables without parents apart from the
class variable). On each arc, the number of times that arc has been included is
displayed. Moreover, the graphical thickness of each arc is proportional to each
arc’s weight. This way it is possible to study the relevance of each dependence
and the variables involved within at a glance.

As for the Leukemia dataset, Figure 9.3 reflects the dependences found at
least in a hundred runs out of the total thousand. The most configured arc is
included in a total of 205 models (D49400 at → U46751 at) which implies that
both variables have been jointly selected by the feature selection algorithm
and linked by the kDB induction algorithm in such a number of resamplings.
From the 1,161 original variables, in Figure 9.3 only 14 are collected, showing
the potential of this technique as a feature subset selection approach.

Regarding the Lymphoma array set, the fact that there is no significant
reduction in the number of selected variables is interesting. Almost 93% of
all the original 4,026 variables, a total of 3,710 ones, are selected at least one
time throughout the experiments. This high number of variables explains the
high average number of arcs configured, more than 180 arcs per model. Both
effects come from the fact that this array set is very complex in its phenotype
separability: nine classes distributed throughout only 96 samples. With such
a low number of instances per class, the conditional statistics evaluated for
the classification models make them very dispersed.
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Fig. 9.2. Graphical structure of the high reliable dependences network for the Colon
dataset and a t value of 100.

Fig. 9.3. Graphical structure of the high reliable dependences network for the
Leukemia dataset and a t value of 100.

9.3.5 Classification accuracy

Although the priority of our proposal is to present and apply a new knowledge
discovery method, a reliable set of dependences can also be used in a pure
classification application. For this purpose, firstly, the expert has to fix a
certain value for the dependency threshold t to return the set of variables
and arcs which surpass that level, obtaining a single model. This way, the
complexity of the models can be tuned, assessing the scope of the study,
variables or aims. After that, the class node is included in the model, adding
arcs from it to the rest of the variables. This way the graphical structure is
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completed and the corresponding conditional probabilities are computed by
their maximum likelihood estimators (see Section 4.1.3.1 for details on the
maximum likelihood estimators). Figure 9.4 represents the model structures
for the Lymphoma array set for threshold t = 300, that is, each model contains
the probabilistic relationships that have been jointly selected and configured
300 times at least.

Class

g4012X

g1171X g2402X g3629X g1622X

Fig. 9.4. Example of the graphical structure of the network classifier configured
from the high confidence dependences set in the case of the Lymphoma array set
(the threshold is set at 300).

As the confidence threshold falls, the sparsity degree of the models de-
creases and, thus, the number of variables to be evaluated increases. There-
fore, it is of interest to study how the classification models evolve from the
very simplest to the most dense models. In order to analyse this effect, an
evaluation of the classification accuracy of each model is performed. Due to
the number of models to be evaluated, the total runs and the required comput-
ing time for the whole process, a five fold cross validation method is used to
estimate the final classification accuracy. This estimation scheme was proven
to be well suited for the microarray context (Bouckaert and Frank, 2004; Stat-
nikov et al., 2005), guaranteeing a fair and not overfitted accuracy percentage.
For each fold, the run parameters are equal to the ones used in Section 9.3.1:
a thousand bootstrap loops, CFS as multivariate filter method and a value of
4 for the kDB classifiers.

Table 9.2 gathers, for each array set and for each fold, the number of
selected variables, the total number of arcs induced in all the models, the
number of times the most often retrieved dependence is recovered, and the
maximum average accuracy achieved. Notice that the accuracies shown are
jointly evaluated for a fixed confidence threshold.

The low number of instances in the test set of each fold forces the mean ac-
curacy to have a high level of standard deviation. Thus, accuracy percentages
for each array set do not improve the state-of-the-art error rates, but clearly
show that recovered high confidence structures are also able to clear up a sig-
nificant piece of the phenotype information. All these genes and dependences
can be of great interest to reveal new underlying biological knowledge.
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Train1 Train2 Train3 Train4 Train5 Mean Std

Colon (1,989 vars)
| S(L1) | 461 652 636 668 513 586 92.92

|L1 | 6.43 11.56 10.24 12.85 7.38 9.69 2.73
max t 352 267 411 265 336 326.2 61.65
max acc. (t = 264) 76.92 92.31 83.33 100 66.67 83.85 13.00

Leukemia (1,162 vars)
| S(L1) | 545 489 492 413 534 494.6 51.93

|L1 | 15.00 11.02 12.52 8.71 12.05 11.86 2.29
max t 209 241 271 217 284 251.25 33.43
max acc. (t = 88) 86.67 60.0 85.71 85.71 64.29 76.48 13.18

Lymphoma (4,027 vars)
| S(L1) | 2,511 2,495 2,434 2,501 2,505 2,489.2 31.40

|L1 | 70.28 75.30 72.04 76.90 85.69 76.04 6.00
max t 462 395 343 454 259 382.6 84.26
max acc. (t = 99) 70 84.21 94.74 89.47 89.47 85.58 9.47

Table 9.2. Details about the number of variables and arcs for each cross validation
fold. The cardinality of the highest configured arc is included.

As a visual tool to study the tendency in classification, we have collected
for each threshold the number of variables, arcs, mean accuracies and standard
deviation in a single plot (see the example for Leukemia in Figure 9.5). These
kinds of charts can be useful to decide to which degree of complexity a biologist
is willing to analyse, taking into account the number of variables, arcs and
the accuracy level that the model is able to reach.

Inspecting these results shows that there is no direct relationship between
the number of arcs/variables and the accuracy of the model. Figure 9.5 illus-
trates how, despite the addition of new arcs and thus more variables, there is
no guarantee that the accuracies of a more complex model would be higher
than those from a simpler model. There is a nuclear set of variables/arcs that
are able to work out a high degree of the classification separability: more
complex models do not necessarily correspond with higher accurate models.
For instance, in the Leukemia set results, at a confidence level of t = 200,
four variables with four arcs correctly predict 70% of the samples. This fact
corroborates other studies regarding gene expression classification based on
a reduced number of genes (Wang et al., 2007; Baker and Kramer, 2006; Li
et al., 2004).

Moreover, recent results in biological gene networks have proven that gene
networks are sparsely connected, and that the average number of upstream-
regulators per gene is less than two (Leclerc, 2008). Theoretical methods for
selection robust gene networks will favor this kind of minimally complex net-
works. Biological experiments suggest that a sparse, minimally connected,
genetic architecture may be a fundamental design constraint shaping the evo-
lution of gene network complexity.
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Fig. 9.5. Estimated accuracy tendency over the Leukemia array set. Mean accu-
racies are presented with their associated standard deviation for each confidence
threshold, as well as the number of variables and edges included for that threshold.

9.4 Conclusions

Throughout this chapter a new approach to identify gene interactions has
been proposed based on the consensus of Bayesian networks learnt from a
pool of bootstrap samples. A major feature of our proposal is the possibility
to set confidence levels in order to rely only on interactions highly supported
by the expression data. It offers to the expert a broad range of probabilistic
dependences to be studied, depending on the available time and laboratory
resources.

Bayesian classifiers induce their structure by means of class-conditional
probabilities, therefore, studies that compare control against illness samples
are feasible targets for this technique. The conjunction of a triplet of well-
known machine learning procedures (a stratified boostrap, a feature selection
and a Bayesian k-dependence classifier) assures a robust set of results, and,
even more importantly, a low number of false positives. A hierarchy of struc-
tures is computed, allowing the user to set a threshold in the frequency of
appearance of each arc in the pool of bootstrap models. The hierarchy re-
ports for this given threshold both a set of dependences and a set of variables;
therefore, it also constitutes a variable subset selector.

Reported results have also shown the potentiality of the induced mod-
els in a pure classification task. Reduced sets of dependences/variables are
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able to achieve a competitive degree of accuracy when performing a class-
discrimination procedure, corroborating previous statements in the microar-
ray analysis field.

In addition, and despite the numeric results, the proposed method is able
to point out new research targets. As exposed in Section 11.4 and 11.5 of the
applications part of the dissertation, this knowledge discovery method brings
into focus a new set of tools to help understand complex diseases that show
relationships of different degrees among the involved genes.
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Population consensus on estimation of

distribution algorithms

Estimation of distribution algorithms (EDAs) emerged as a natural alterna-
tive to classical genetic algorithms (GAs). EDAs turn the population statistics
to their advantage and eliminate the need for the crossover and mutation op-
erators used by traditional GAs. EDAs have produced competitive results in
a great many domains (Larrañaga and Lozano, 2002; Lozano et al., 2006),
and they have already demonstrated this potential for tackling high dimen-
sional data problems in the field of computational biology (Armañanzas et al.,
2008c).

Throughout this chapter, we propose population consensus on top of the
general EDA scheme. This consensus approach enhances the robustness of the
results and, again, it is designed to deal with the problems that appear due
to the curse of dimensionality of some biological data.

Consensus approaches have reported good results on high dimensional-
ity and noisy data in the past (Swift et al., 2004; Valkenborg et al., 2008),
especially in terms of reliability and low false-positive findings (Armañanzas
et al., 2009a). Specifically, the consensus we propose allows an expert to select
a confidence threshold and rely on findings above the set level only.

To test the robustness of the approach, two stability measures are also
presented. These stability metrics allow the researcher to quantify the stability
behaviour of a subset selection technique and, of more interest, to compare
different feature selectors in terms of their stability behaviour.

10.1 Introduction

Estimation of distribution algorithms have been introduced in detail in Chap-
ter 5. As a brief summary to better understand the following concepts, we
include their main scheme again in Figure 10.1.

The main characteristic that sets apart current EDA procedures is how the
probability distribution pg(x) is learned. It is not affordable to compute all the
parameters needed to specify the full probability model. Thus, the different
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g ← 0.
Dg ← Generate and evaluate M random individuals (the initial population).
do

DS
g ← Select N 6 M individuals from Dg according to a selection method.

pg(x) = p(x | DS
g )← Estimate the joint probability distribution of

the selected individuals.
Dg+1 ← Sample and evaluate M individuals from pg(x) (a new population).
g ← g + 1.

until A stopping criterion is met.

Fig. 10.1. Main scheme of the estimation of distribution algorithm approach.

EDA families must assume different factorizations according to a probabil-
ity model and to the problem dimensionality. Based on these assumptions,
EDAs can be divided into univariate, bivariate or multivariate families (see
Section 5.2 for the complete taxonomy).

10.2 Feature selection using an UMDA population

consensus

Of the currently developed factorizations of EDAs, the simplest approach
is the univariate marginal distribution algorithm (UMDA) (Mühlenbein and
Paaß, 1996). UMDA factorization is usually suited to high-dimensional prob-
lems in which the possible relationships among the problem variables are un-
clear. In fact, this technique assumes that the probability distribution of each
feature is marginal, that is, no dependence between the problem variables is
taken into account when learning the factorization. Thus, the n-dimensional
joint probability distribution factorizes as a product of n univariate and in-
dependent probability distributions:

pg(x) =

n
∏

i=1

pg(xi) .

This formulation implies that the learning process is fast compared with
other more complex models. Moreover, UMDA scalability is one of its best
characteristics because it has a running complexity of nM for the learning
process and of M +

∑n
i=1(ki − 1) in memory requirements (ki is the number

of states for feature Xi).
Good results have been reported for UMDAs used to address feature subset

selection, especially within the computational biology field (Armañanzas et al.,
2008c; Saeys et al., 2004). The UMDA algorithm can be easily adapted to
search relevant features in a supervised classification domain by setting up
the following elements:
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• Genotype encoding. Each individual (or candidate feature subset) is rep-
resented as a binary array of size n. Each position of the array maps each
problem’s variable. A value of 1 implies that the respective variable is
selected, whereas a value of 0 denotes that the variable is left out.

• Evaluation function. The evaluation function for ranking the merit of
each individual is the classification accuracy estimated by a k-fold cross-
validation process.

• Stopping criteria. The stopping criterion is either to achieve a perfect clas-
sification (100% accuracy estimation) or to have reached a fixed number
of generations g.

This scheme is a classical wrapper feature selection because it includes the
classification process (see Section 3.4). The final output of the algorithm is
the best individual in the search, i.e. the feature subset that achieved highest
accuracy.

It is very worthwhile to analyze what the selection tendency is over the
evolved populations and to investigate if the selected set of features is ro-
bust (Saeys et al., 2008). Especially in problems with many features, it is
advisable to enhance the robustness and reliability of the selection of rel-
evant peakbins. The classical UMDA has to be adapted to achieve higher
rates of robustness. Therefore, we propose building a hierarchy of the best
solutions found throughout the search instead of keeping just one best solu-
tion (Armañanzas et al., 2009b). These consensus approaches have already
been reported to perform well on similar problems (Saeys et al., 2007).

This improvement to the basic algorithm keeps all the best individuals
found in the search and evaluates which are the features that have been flagged
as selected throughout those solutions. Formally, given a set of solutions S
consisting of r individuals, S = {x1, . . . ,xr}, of the form xj = (xj

1, x
j
2, . . . , x

j
n)

with xj
i ∈ {1, 0}, the consensus solution over S with a confidence level T (T 6

|S|) is defined in Equation 10.1:

xC
T (S) = (xC

1,T , . . . , xC
n,T ) with xC

i,T = 1 ⇐⇒
|S|
∑

j=1

δ(xj
i,T , true) > T (10.1)

where

δ(xj
i,T , true) =

{

1, if xj
i = 1,

0, if xj
i = 0.

The consensus solution xC
T (S) contains the features in S that are selected

at least T times. Obviously, the maximum value for T is |S|. This corresponds
to the features that have always been flagged as selected in S. By decreasing
the value of T , a hierarchy of consensus solutions can be built. This hierarchy
fulfills the inclusion property, stating in this case that given S and any T0 6 T ,
the following implication xC

i,T = 1 =⇒ xC
i,T0

= 1 holds for all i = 1, . . . , n.
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As the value of T decreases, the number of features selected in the consen-
sus solution should increase. In fact, the addition of new features guarantees
that the search procedure does not get trapped in a local optimum and other
parts of the search space are also considered. Thanks to this flexibility a whole
range of subsets can be evaluated instead of just a single one. Therefore, the
user can set up a maximum and a minimum value for T , and the procedure
will output all the consensus solutions within that range. Thus, the features
returned by this consensus approach are expected to be the most reliable and,
at the same time, best suited to the classifier used by the wrapper evaluation.

10.3 Consistency measures and stability index

Stability analysis is a recent topic in the feature selection domain (Kalousis
et al., 2005; Kuncheva, 2007). The main aim of stability analysis is to provide
a means to state whether the features selected by a given selection approach
are robust to changes in the data. In domains where knowledge discovery is a
key objective, the stability of the selected features is a highly desirable prop-
erty. The currently available stability studies rely on the concept of consis-
tency between solutions. A consistency measure between two different subsets
of selected features quantifies the degree of (dis)similarity between the two
subsets. There exist different ways to measure this consistency, and different
interpretations of the measures in terms of the source of the compared solu-
tions: solutions could come from different runs of the same algorithm or from
runs of different algorithms.

In stochastic searches, two subsets (A and B) seldom contain an equal
number of features. A consistency metric should deal with this effect and
be able to analyze subsets of different sizes. In principle, this difference in
size should be a penalization term. In this scenario, we present two different
metrics to measure consistency and show how to combine them into a stability
index.

Let X be the set of available problem features and A and B two subsets
of it, A, B ⊂ X . Furthermore, let n = |X | denote the number of features
or cardinality of the set X . Let |A| = kA, |B| = kB and r = |A ∩ B| be
the cardinalities of the subsets A, B and A ∩ B. It is possible to define a
consistency index between two subsets A and B of different sizes kA and kB

by adapting Kuncheva’s original metric (Kuncheva, 2007). The difference in
size is taken into account in the index by selecting the highest cardinality
between the two subsets, kM = max{kA, kB}. Kuncheva’s consistency index
can then be reformulated as

IK(A, B) =
rn − k2

M

kM (n − kM )
.

Despite the different sizes of A and B, there exists another consistency
index able to compare feature subsets of different sizes. Usually known as the
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Jaccard similarity coefficient, it has already been used to measure consistency
in feature selection problems (Kalousis et al., 2005). The Jaccard index is
based on comparing the number of common features in A and B and the
total number of selected features:

IJ (A, B) =
r

kA + kB − r
.

The boundary limits of both indices are different: IK varies between -1
and 1, while IJ ranges from 0 to 1. Therefore, it is not possible to directly
compare their values.

The stability index is defined as a metric for comparing the consistency
between a set of solutions rather than just two solutions A and B. The
mathematical formulation of this metric is straightforward: compute the av-
erage of all pairwise consistency measures. Therefore, given a set of solutions
S = {S1, S2, . . . , Sm}, the stability among them can be computed as

Σ(S) =
2

m(m − 1)

m−1
∑

i=1

m
∑

j=i+1

I(Si, Sj) ,

where I(Si, Sj) is one of the two possible consistency indices presented above:
IK or IJ .

10.4 Application on mass spectrometry data

The population consensus in UMDA and its behaviour is put on stage to dis-
cover biomarkers in mass spectrometry data. This kind of data comes from the
proteomics field and has two key characteristics: it is very noisy and the ratio
between features and instances is similar to the DNA microarray field. Chap-
ter 12 is fully devoted to all this experimentation. The consensus approach
is applied to four different mass spectrometry data. The results reported are
discussed from the machine learning point in terms of accuracy estimations,
stability and multiobjective optimization. From the biological point of view,
the biological meaning of the results is also discussed and compared with the
original findings for each dataset (Armañanzas et al., 2009b).

We refer the reader to Section 12.6 to have a joint set of conclusions
between the population consensus and its ability to find relevant information
in the mass spectrometry datasets.





Part III

Applications in computational biology
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Genomics

The term genomics refers to the study of the organisms’ genomes. Its main
effort is focused on determining the entire DNA sequence of such organisms
and the hidden genetic map. Once this genetic sequence is uncovered, expres-
sion studies research on how that DNA sequence translates into genes and
proteins and interacts with the organisms. In this chapter we present two
genomics high throughput devices for making expression studies: the DNA
microarray and the micro RNA arrays. More interestingly, two microarray
and one micro RNA studies are presented and discussed in-depth. Studies
for which all the methodological contents of Part II of this dissertation are
applied.

The DNA microarray (or just array) technology is relatively recent (Hol-
loway et al., 2002) and from the very beginning two different ways of mi-
croarray manufacturing took predominant positions. The first one gathers the
devices that simultaneously compare two different samples or specimens, while
the latter only measures the genetic activity of one sample or specimen. As
classical works on the second approach we can find (Alon et al., 1999; Golub
et al., 1999), whereas (Alizadeh et al., 2000; van’t Veer et al., 2002) were pi-
oneering works comparing two samples in the same array. In detail, (Golub
et al., 1999) uses microarrays for finding dysregulated genes within samples
of two different leukemias (AML and ALL). In the work by (Alon et al.,
1999), the expression of 40 tumoral colon samples are compared against 22
non-tumoral colon samples. (Alizadeh et al., 2000) have a total of 96 samples
to analyse, 46 control and 50 belonging to nine different lymphoma types.
Lastly, (van’t Veer et al., 2002) deal with breast cancer with 98 samples of
sporadic and non-sporadic tumors.

Despite the demonstrated power of these high throughput gene expression
profiling approaches, some important limitations have been noted. DNA mi-
croarray and micro RNA analyses are typically hypothesis-driven, in the sense
that the experiments are designed to address a scientific question (Fathman
et al., 2005), an approach that could lead to a biased interpretation of the
results. Additionally, because microarrays are inherently noisy, they impact
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on data quality (Drobyshev et al., 2003; Yang et al., 2002). Moreover, present
expression studies usually include a very low number of samples under study.
In this context, the reliability of a single data mining technique is no guarantee
at all. Clear evidence of these effects is the differences found within the results
of data analysis techniques for the same biological data (Li et al., 2001).

The discipline of machine learning, in combination with data mining tech-
niques has been very useful in diverse fields of research, including the bioin-
formatics discipline, to overcome this technology-intrinsic data noise and to
obtain relevant knowledge out of a high volume of data (Larrañaga et al.,
2006).

Recently, a new expression and protein synthesis modulators were iden-
tified: the small non-coding RNA molecules (micro RNA, microRNA or
miRNA). These miRNA molecules are single-stranded RNA molecules of
about 20-25 nucleotides (ntd) encoded by nuclear genes (70-150 ntd) and
highly conserved among species. These small molecules are not translated
into proteins like the normal messenger RNA or mRNA. Instead, they are
are processed from primary transcripts (called pri-miRNA) to short stem-
loop structures called pre-miRNA and finally to functional miRNA (mature
miRNA).

They were first described in 1993 (Lee et al., 1993) although the term
microRNA was coined in 2001 (Ruvkun, 2001). The expression pattern of
miRNA varies over time and between tissues. Evenmore, in plants, miRNA
behaves in an opposite way than in animal organisms. Animal miRNAs are
usually complementary to a site in the 3’ UTR, whereas plant miRNAs are
usually complementary to coding regions of mRNAs.

The mature miRNA molecules are partially complementary to one or more
mRNA sequences (target mRNA or target genes) and their function is to
down-regulate gene expression. This repression is done via mRNA degradation
or inhibition of translation (Bartel, 2004).

The number of miRNA molecules is currently unknown. Initial estimates
suggest that there are more than 500 validated human miRNA (Griffiths-Jones
et al., 2006; Griffiths-Jones, 2004), although in the public database around
700 were proposed in October 20081. Association studies between miRNAs
and complex diseases are still at an early stage. Noteworthy examples are the
several links between some miRNAs and some types of cancer (He et al., 2005;
O’Donnell et al., 2005) and the essential role of miRNAs for heart conditions
in murine (Chen et al., 2008a; Zhao et al., 2007).

Throughout this chapter we present successful applications of the method-
ologies presented in Chapters 7 to 9 to different microarray and microRNA-
based studies. A detailed introduction of how microarray and microRNA de-
vices work is also provided. In addition, different quality criteria are presented
to remove possible data artifacts from the raw data. Biological validations of

1 Data obtained from the miRBase (Griffiths-Jones et al., 2006) at
http://microrna.sanger.ac.uk.
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the results of the data mining techniques are included in the cases where a
wet lab collaboration was possible.

11.1 Microarray data basics

DNA microarray technology (Lockhart et al., 1996) offers the possibility to si-
multaneously analyze the expression of hundreds to thousands of genes (Schena
et al., 1995, 1996). In particular, DNA microarrays are assays for quantifying
the types and amounts of mRNA transcripts present in a collection of cells.
The number of mRNA molecules derived from transcription of a given gene
is an approximate estimate of the level of expression of that gene.

RNA is extracted from the specimen and the mRNA is isolated. The
mRNA transcripts are then converted to a form of labeled polynucleotides
(usually known as targets) and placed on the microarray. The microarray is
made of a solid surface on which strands of polynucleotides have been attached
in predefined positions. We refer to the polynucleotides immobilised on the
solid surface as probes. The probes consist either of cDNA printed on the
surface or shorter iconoclasts (chain of nucleotides) synthesized or deposited
on the surface. The biological mechanism is simple: the labeled targets bind
by hybridization to the probes on the array with which they share sufficient
sequence complementary.

After enough time for the full hybridization reaction to take place, the
excess sample is washed off the solid surface. At that point, each probe on
the microarray should be bound to a quantity of labeled target that is pro-
portional to the level of expression of the gene represented by that probe.
Finally, by measuring the fluorescent intensity produced by a laser blast we
obtain numbers that ought to estimate the expression level of all the corre-
sponding probes.

In the microarray field, the experimental design is defined as the most
adequate way to set out both samples and arrays. This planning should answer
a clear objective, experimental hypothesis or investigation. Two factors are
crucial: the microarray platform available, and the number of samples on
the cohort. The experimental design is a key factor and directly affects the
subsequent data analysis. Not all the experimental designs produce data that
can be directly translated to a machine learning point of view.

As previously mentioned, two main tendencies exist in this field: single
channel platforms (only includes one sample per array) or dual channel plat-
forms (includes two samples per array). One major consequence of this differ-
ence is the number of samples that each platform is able to analyse. On the
single channel case, the practitioner will have the same number of arrays as
original samples whereas, on the dual channel platforms, the way to combine
the samples usually decreases the number of arrays available after the exper-
imentation. Even more, and as is later detailed, the scanning technologies,
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quantification algorithms and statistics analyses are different between both
platforms.

As a general suggestion (Moreno and Solé, 2004), with a low number of
samples the recommended experimental design is a sample pair-wise compar-
ison. When there is a sufficient number of samples, an interesting approach
is to make reference biological pools (mixture of samples) and compare the
expression levels with respect to the individual samples (Sundaresh et al.,
2005; Zhang and Gant, 2005). Economically, the pooling is cheaper than the
pair-wise design, and, when the number of samples is enough, the statistical
results from both of them are similar (Zhang and Gant, 2005).

When working with microarray data, the common tendency is not to deal
with the raw expression levels. Instead, the logarithmic transformation is used,
the known logExpression or logRatio value. The logRatio is a logarithmic
transformation, in base two, of the intensity differences observed between two
targets. The logExpression is just the logarithmic transformation of an indi-
vidual expression intensity. Roughly speaking, when a target shows a logRatio
higher than or equal to an absolute value of one, the corresponding gene is
considered as being ’expressed’. Its expression level can be positive (overex-
pression) or negative (underexpression).

11.1.1 Affymetrix technology

Affymetrix is a manufacturer of DNA microarrays that was founded in 1992.
Affymetrix’s commercial name for its microarrays is GeneChip. The company
went public in 1996 with an HIV genotyping GeneChip. Affymetrix manufac-
tures its GeneChips using photolithography over quartz slides. The company
has GeneChip models for more than 30 organisms, the most famous being the
human genome (HG) arrays, such as the HG-U133A 2.0 or the HG-U133 Plus
2.0.

GeneChip technology is a single channel (or one-color) technology (Lock-
hart et al., 1996), which displays the intensity expression levels of a single
sample of cRNA. That is, only one sample is hybridized against the oligonu-
cleotides synthetised on the array slide. Other biotechnology companies such
as Applied Biosystems (CodeLink microarrays) or Eppendorf (DualChip &
Silverquant microarrays) also manufacture this kind of single channel arrays.

A GeneChip microarray from Affymetrix consists of a number of cells
(square-shaped areas) in which many copies of a unique oligonucleotide se-
quence have been in-situ synthesized. These probes are 25 nucleotides long in
the classical Affymetrix microarrays, such as the HG-U133A and the HG-U133
Plus models.

Probes are tiled in probe pairs consisting of a perfect match (PM) and
a mismatch (MM) of the reference sequence. Basically, the sequences gather
in the PM and MM cells are the same, expect for a nucleotide substitution
in the middle of the MM probe sequence. The Affymetrix microarrays are
then organized in probe sets or series of probe pairs (usually 11 to 16 pairs)
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that represents a transcript. These transcripts are defined by the own manu-
facturer and receive unique accession numbers, such as 58094 at, 12345 a at,
224847 s at or 210006 x at. The last three characters ( at) identify the probe
set strand. Probe sets that are designed to detect the anti-sense strand of
the gene of interest are annotated with ’ at’. The intermediate letter that
shows some probe sets’ ids ( a, s or x) indicates that the genomic sequence
is not fully matched within the probes included, the sequence is usually split
in parts and more than one probe set contains those parts. The unique probe
sets, such as 58094 at, perfectly match a full genomic sequence. Affymetrix
provides on its web more detailed information about the naming and probe set
matching system2. A graphical illustration of all these elements is presented
in Figure 11.1.

Fig. 11.1. Elements of a classical Affymetrix GeneChip platform.

Once the mRNA sample is transcribed from the original cRNA sample,
it is labeled with a biotinylated ribonucleotide analog and fragmented into
smaller strands, then the mixture is hybridized with the microarrays oligonu-
cleotides. After hybridization, the chip is stained with a fluorescent molecule
(streptavidin-phycoerythrin) that binds to biotin and provides an amplified
fluor that emits light when the chip is scanned with a confocal laser. This
light is captured by the scanner device and translated as the data image of
the microarray (see Figure 11.1).

The signal for a given probe set is calculated using the one-step Tukeys
biweight (or bisquare) estimate (Hampel et al., 2005), which yields a robust
weighted mean that is relatively insensitive to outliers. The Tukeys biweight
method gives an estimate of the amount of variation in the data, exactly as
standard deviation measures the amount of variation for an average.

The intensity (signal) of a probe set is computed subtracting a deviation
estimate based on the intensity of the MM signal from the PM signal. However,
to avoid possible negative values in cases where the MM signal outweighs the
PM signal, an adjusted value is used.

2 http://www.affymetrix.com/support/index.affx
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One of the most important issues on the Affymetrix technology is known
as detection call of a probe set. The detection call tries to answer the question
if the transcript of a particular probe set is reliably detected by the microar-
ray. The Affymetrix detection algorithm solves this question assigning three
different states to the call: absent (A), present (P) or marginal (M).

The algorithm is divided into two sequential tasks. The first task is to
set a discrimination value that is used as a filter to remove from further
considerations all probe sets with insignificant differences between the PM
and MM pairs signals. One discriminative value is computed per each pair
of signals as (PM − MM)/(PM + MM). Then for the whole probe set, the
median of the discrimination ratios of all probe pairs is compared to a user-
modifiable parameter τ . The default τ parameter suggested by the company
should be set to a value of 0.015 and all the probe sets that do not surpass
that level are considered as absent calls.

The second part of the algorithm computes a one-sided Wilcoxon’s signed
rank test (Wilcoxon, 1945) comparing the signal of all PM cells and all MM
cells of the probe set. Then, to state the detection call, the p-value of the
test is examined on an axis with two user-definable thresholds α1 and α2.
If the p-value is lower than α1, the detection is set to a present value, if its
value is between α1 and α2, a marginal value is used, and, if the p-value is
equal or higher than α2, the detection would be an absent vale. Affymetrix
suggests setting these thresholds at α1 = 0.04 and α1 = 0.06. Although user
configurable, these standard values are seldomly changed.

11.1.2 Agilent technology

Agilent Technologies or Agilent, is a company which designs and manufac-
tures instruments and equipment for measurement and evaluation in the field
of biology. Originally, it was a division of Hewlett-Packard but in 1999 the
products related with the live sciences were grouped together and the new
firm split as an independent company.

Its roots in the printing industry have a direct influence in the way that
some of its products are conceived. In particular to its microarray products,
the technology to in-situ synthesize the nucleotides forming the oligonucleotide
chains is similar to a big biological printer.

Agilent have developed methods of in-situ synthesis of oligonucleotides on
glass arrays using ink-jet technology that does not require photolithography.
This ink-jet technology can also be used to attach pre-synthesized DNA probes
to glass slides. Thus, Agilent microarrays deals with cDNA probes robotically
printed on a microscope slide coated with poly-lysine or poly-amine to enhance
absorption of the DNA probes (Schena, 2000).

Agilent oligonucleotide microarrays consist of 60-mers contrasting with the
short 25-mers probes employed by Affymetrix. The 60-mer format provides
enhancements in sensitivity over the 25-mer format partly due to the larger
area available for hybridization (Hughes et al., 2001). A major advantage of
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Agilent oligonucleotide microarrays is that they require only one probe per
gene or transcript, whereas Affymetrix usually split the transcript mapping
different probesets.

Because of cDNA probes are 60 bases long, stringent hybridization condi-
tions are employed and cross-reactivity is almost null. However, the robotic
printing often results in substantial variability in the size and shape of corre-
sponding spots on different arrays. For the cDNA arrays, the labeled sample
is not usually uniformly distributed across the face of the array and thus the
distribution of the sample may differ among identical arrays. For this reason, a
direct comparison of intensities of corresponding probes on different arrays is
problematic. This interarray variability can be eliminated by a normalization
or smoothing task.

Another direct way to avoid this variability is the use of co-hybridization,
that is, the use of two samples on the same array (dual channel arrays). In
the case of Agilent, the two cDNA samples are labeled with different fluores-
cent dyes, typically Cyanine-3 (Cy3) and Cyanine-5 (Cy5). As we will later
introduce in Section 11.2.2, these compounds reacts at different laser wave-
length impulses and that is the way to measure the different intensities for
each target.

Depending on the experimental design, the second sample may represent
either a specimen whose expression profile relative to the first one is of bio-
logical interest, or a reference sample used on all arrays in order to control
experimental variability (e.g. pooling samples).

11.2 Quality criteria for processing microarray data

The different microarrays technologies and manufacturers nowadays available
still present a common problem: the high presence of noise in the raw re-
sults. Due to the measurement technology, the experimental procedures and
the intrinsic biological stochastic process, the very first data retrieved by the
scanner contains a high noisy component (Yang et al., 2002). Since all the
research community is aware of this problem, most of the papers in the field
include their own way to remove (or at least reduce) such noise. The bad news
is that there is not a universal method (or pipeline of methods) to preprocess
and clean the microarray data.

However, some of the most used techniques are becoming a de facto stan-
dard such as the data normalization by lowess regression (Dudoit et al.,
2002) or robust multichip analysis (RMA) (Irizarry et al., 2003). Lately, the
American National Institute of Health (NIH) has promoted an international
project 3 to reach a consensus over this and other open issues within the
microarray technology.

3 Microarray quality control project (MAQC) -
http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc
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The following sections present the different criteria that have been used in
the quality assessment both of a microarray itself and to the probes contained
in it. There is a large number of examples of preprocessing policies for single
and dual channel platforms (Alon et al., 1999; Golub et al., 1999; Notterman
et al., 2001; van’t Veer et al., 2002; Walker et al., 2004). Here we present a
set of criteria to state that a microarray is not trustable (Section 11.2.1) and
another set of criteria to assess if the intensity level reported by a given probe
is reliable (Section 11.2.2).

11.2.1 Individual chip quality criteria

We refer to this set of criteria as individual because its aim is to state whether
a full microarray should be included in a study or, oppositely, rejected from
the study dataset. To this end, this individual criteria explores the whole
tendency over the array and presents a global value of acceptance or not,
rather than individual quality values for each probe in the array.

In the case of the Affymetrix GeneChip technology, the company itself
published three criteria to study the reliability of the values read from its
microarrays. In addition, one more criterion is included throughout this thesis’
study on systemic lupus erythematosus by means of Affymetrix arrays. The
four criteria are as follows:

• Spike control BioB - Spike controls are control probes for sequences that
are included in the hybridization mixture. The presence of these controls
indicates that the hybridizing, washing, developing and scanning processes
are correct. The least represented spike control in the mixture is BioB, that
is, the control used to evaluate the experiment’s sensitivity.

• Housekeeping control GAPDH - Housekeeping controls are gene
probes that are thought to be expressed in all types of tissues. In the
microarray, there are probes corresponding to the 3’, central, and 5’ re-
gions of these genes. The relation between the hybridization signals for the
3’ probes with respect to the 5’ probes shows the integrity of the synthe-
sized cRNAs. This relation measures the original RNA quality. An array
can be considered valid if the 3’/5’ relation is smaller than three. The most
frequently used housekeeping control, among all the genes represented in
the array, is GAPDH (glyceraldehyde-3-phosphate dehydrogenase).

• P call % - It denotes the percentage of probes identified as present (P)
for the detection value in each array. This percentage confirms the quality
of an array: an acceptable range of tolerance for the HGU133A GeneChips
is 40-60%.

• Array outlier % - It measures the percentage of probe sets that behave
unexpectedly in relation to the pattern shown by the same probe sets in
the rest of the experiment arrays. The software used for this analysis –
dChip (Li and Wong, 2003) from Harvard University– sets the tolerance
limit at 5%.
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In the case of the dual channel Agilent platform, the individual rejection
or acceptance comes early in the experimentation pipeline: the samples must
comply with different biological qualities in order to continue in the study.
After the arrays are hybridized and scanned, they are rejected only if some
present large defects. To investigate these defects, the following section pro-
poses the use of quality metrics that inspect how the genomic reactions behave
for each probe in the arrays.

11.2.2 Probeset/probe/spot filtering

One of the most common mistakes within the fluorescent image field is to
think that the brighter an image is, the better it should be. Different types
and brand of detectors, different image processings, analog-to-digital convert-
ers resolutions and other design differences may produce different intensity
values for the same microarray spot. In addition, the selected color map,
monitor parameters such as the brightness or contrast have an influence on
the apparent image brightness.

In order to assess the real quality of an image, we can make use of the
detection limit. This limit indicates the minimum amount of signal a device is
able to correctly quantify. Signal devices will be able to quantify signals be-
neath the limit, but, inaccurately. The most reliable measure to set a threshold
to this detection limit is the signal-to-noise ratio (SNR). Roughly speaking,
the SNR shows how well a system isolates the real signal level from the back-
ground noise or brightness. Dealing with images, the SNR of a signal is defined
as

SNR =
signal intensity − background intensity

standard deviation of the background intensity
.

In the image field, when an image’s SNR is equal or lower than a value
of 3, the quantification will not be accurate (Pickett, 2003). Below that level,
even though the signal could be visible to the naked eye, its quantification is
not reliable.

In the Affymetrix case, the SNR is conceptually replaced by the detection
call algorithm presented in Section 11.1.1. On the basis of the presence or
absence reported by the algorithm, a probeset filter process is tackled. The
process will remove from any further analysis all probesets that, throughout all
available arrays, presents as much as a 5–10% of absence values (A). In other
words, only those probesets that are detected as present (P) at least in 90-95%
of the arrays are considered to be valid. The exact filtering threshold must be
set by the practitioner and it greatly depends on the number of microarrays
in each experiment. Marginal values (M) for the detection call are normally
treated as absence values (A) in such a way so as to be as conservative as
possible.

The dual channel microarrays (Eppendorf, Arrait, Agilent) have the dis-
advantage that these technologies need to measure and quantify signals in two
different wavelengths: 635 nm for the Cy5 dye and 532 nm for the Cy3 dye.
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Moreover, and to properly quantify both signals, two intensities are needed
per dye, the transcript signal and the correspondant associated background.

These four intensity readings are carried out by quantifying the regions
or pixels that map each probe within the microarray slide. The final value is
computed as an average (or median) of all unitary values (one per pixel), and
the associated standard deviation (or the median absolute deviation) is also
returned. Throughout this section, we will refer to the following parameters
associated to a given probe p as their abbreviated form:

Sp
r Signal intensity measurement in the red channel (635 nm) for the

p probe.
Sp
g Signal intensity measurement in the green channel (532 nm) for

the p probe.
Bp

r Background intensity measurement in the red channel for the p
probe.

Bp
g Background intensity measurement in the green channel for the p

probe.
SNRp

r SNR detected on the red channel for the p probe.
SNRp

g SNR detected on the green channel for the p probe.

µb·

r Global average for all the values B·
r of a microarray.

σb·

r Standard deviation of µb·

r .

µb·

g Global average for all the values B·
g of a microarray.

σb·

g Standard deviation of µb·

g.

In the work by (Chen et al., 2002), a theoretical modelization of the gene
expression profiling is presented. Using those statistical models, we adapt
three different ratios to assess the reliability of a probe’s detected signal on a
dual channel microarray experiment. All these quality metrics take values in
the range 1 to 0, being 1 the maximum reliability value and 0 the minimum.

11.2.2.1 Fluorescent intensity measurement quality

Given a probe p, a SNR that surpasses a value of 6 implies that the signal
is very strong relative to the background variation and, thus, its quality is
perfect. On the contrary, we have previously stated that a SNR value equal
or less than 3 implies a non trustable signal.

Looking for a conservative quality metric, we will use the minimum values
of both channels’ SNRs to define the quality coefficient of the fluorescent, wp

i
,

for the p probe:

wp
i

=















0, if min{SNRp
r, SNRp

g} 6 3,
min{SNRp

r, SNRp
g}

6
, if 3 < min{SNRp

r, SNRp
g} 6 6,

1, otherwise.
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11.2.2.2 Background flatness quality

Manufacturing faults in the microarray slide can cause problems when mea-
suring the background intensities. One way to detect such bad measures is
to compare the background intensity of a particular probe p in one channel
against the global average of the same background intensity over all the probes
in the same channel.

Then, for the red channel, if the background intensity of p, Bp
r, is less than

µb·

r + 4 · σb·

r then the background signal is within the background flatness

requirements. If not, the quality coefficient for the background flatness, wp
br

,

is linearly computed from 1 to 0 until the value of Bp
r reaches µb·

r + 6 · σb·

r:

wp
br

=



















1, if Bp
r < µb·

r + 4 · σb·

r ,

(µb·

r + 6 · σb·

r) − Bp
r

3 · σb·

r
, if µb·

r + 4 · σb·

r 6 Bp
r < µb·

r + 6 · σb·

r ,

0, if Bp
r > µb·

r + 6 · σb·

r .

Similarly for the green channel, the coefficient for the background flatness,
wp

bg
, of a probe p must be computed using the respective values for that green

channel: Bp
g, µb·

g and σb·

g. The joint flatness coefficient for both channels is

then defined as the minimum value of both of them: wp
b

= min{wp
br

, wp
bg

}.

11.2.2.3 Signal intensity consistency quality

Due to other physical problems in the whole chain of microarray process, it is
possible to get an intensity level that does not properly reflect the real intensity
due to an unexpected high color deviation in the pixels. To analyse such
problems, we borrow the coefficient of variation, cv = σ

µ
, from the statistics

field.
Let cvp

min be the minimum coefficient of variation from red and green
channels for a given probe p, the signal-intensity-consistency metric, wp

s
, can

be then defined as:

wp
s

=















0, if 1.1 < cvp
min,

cvp
min − 0.9

0.2
, if 0.9 < cvp

min 6 1.1,

1, if cvp
min 6 0.9.

The thresholds for this metric come from the analysis of the coefficient
of variation in the different probability distributions. This way, distributions
that show a cv < 1 (such as an Erlang distribution) are considered low-
variance, while those with a cv > 1 (such as a hyper-exponential distribution)
are considered high-variance. In the middle, the exponential distribution has
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a coefficient of variation of 1 because its standard deviation is equal to its
mean. In order to allow some degree of freedom, the constraints are set to
0.9 and 1.1, while in the range between them, the quality metric is linearly
estimated from the variation coefficient.

11.2.2.4 Global quality metric

Once the three quality metrics are computed for a given probe, we must define
how to combine their values to have a single value. There exist no criterion
that states which metric is more important, on the contrary, the three seem
to be equally important. Following this idea, the global quality metric of a
probe should be conservative. In the biological domain is a good policy to
avoid false positives as much as possible. Therefore, the global quality metric,
wp, is defined as the minimum value of the three individual criteria:

wp = min{wp
i
, wp

b
, wp

s
} .

However, within a cohort of microarrays, we need to have a criterion to
assess the quality of a probe throughout all the arrays. This criterion will
state whether a probe should be left out of the following data mining tasks or
should be included. The usual way to do so is to compute, for each probe p, the
average over all global quality metrics wp. Then, we need to fix a minimum
threshold of acceptance (usually in the neighborhood of 0.99) to reject all
probes that do not achieve this level.

11.3 Microarray analysis of autoimmune diseases by

machine learning procedures

DNA microarray technology has been applied successfully to better classify
many cancers and to understand the molecular pathways involved in sev-
eral pathologies (Baechler et al., 2006). Genome-wide gene expression profiles
of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid
arthritis or Sjogren’s syndrome have also been obtained (Alarcón-Segovia,
2004). These studies have identified genes with a dysregulated expression in
autoimmune diseases. Further application of microarray analyses should fa-
cilitate the identification of pathways that are common in autoimmunity, but
more importantly, genes and pathways that uniquely define patients with a
particular disease phenotype, which could be useful for the development of
specific treatments (Gregersen and Behrens, 2006).

We have applied machine learning procedures to DNA microarray data
derived from samples of patients suffering from systemic lupus erythematosus
(SLE) and primary antiphospholipid syndrome (PAPS) in order to obtain an
unbiased identification of genes that could be relevant to the pathogenesis of
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these diseases (Armañanzas et al., 2009a). An important feature of such pro-
cedures relies on the fact that no prior knowledge of the system under study
is necessary to run the analysis, thus constituting a blind process for which
the final results are only based on the characteristics of the raw data. Due to
this blindness, a strict validation of the results needs to be tackled: statisti-
cal relevance, laboratory qPCR validation, bibliographic revision, regulatory
activity evaluation and dysregulation of transcription factors among others.

11.3.1 Introduction

The systemic lupus erythematosus (SLE) is an inflammatory disease with au-
toimmune features and unknown origin. It can affect multiple organs and body
systems, including skin, joints, kidney and the central nervous system (Wal-
lace and Hahn, 2002). The first discoveries related with a lupus4 disease date
back to the beginning of the 19th century (Willan, 1808). Nevertheless, it is
usually accepted that Biett (Biett, 1857) discovered the erythematosus lupus
type in 1833.

The presence of antinuclear antibodies is usually used as the confirmation
evidence of the illness, but its early detection is much more complex. In 1982,
the American College of Rheumathology (Tan et al., 1982) published a check-
list with eleven diagnostic classification criteria for SLE (see Table 11.1). If
patients present four out of these eleven criteria, whether or not at the same
time, they are diagnosed as SLE with 96% confidence.

According to the National Institute of Arthritis and Musculoskeletal and
Skin Disease5, there are three types of lupus disease:

• Discoid (cutaneous) - It is limited to skin affection and it is easily de-
tected by face, neck and scalp rashes. Diagnosis of discoid lupus is probed
by means of a skin biopsy of these rashes. Ten percent of discoid lupus
patients may develop the systemic type without knowing why. Frequently,
this is due to the existence of undetected systemic disease from the very
beginning.

• Systemic - It can affect any body organ, usually, articulations, lungs and
kidneys. There is no couple of SLE patients with the same symptoms.
When the term lupus is used, it usually refers to the systemic form of the
disease.

• Secondary to drugs - After a certain time taking drugs prescribed for
different diseases (obviously not SLE), the illness appears. Symptoms of
this lupus type are similar to those of the systemic one. The number of
patients that suffer from it is very small, and giving up the prescribed
drugs lowers the symptoms until they finally disappear.

4 This name refers to the wolf –lupus in Latin– because the skin rashes are similar
to the bites of that animal.

5 http://www.niams.nih.gov/
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Criterion Definition

1. Malar rash in butterfly Fixed erythema, flat or raised, over the malar eminences, tending
to spare the nasolabial folds.

2. Discoid rash Erythematous raised patches with adherent keratotic scaling and
follicular plugging; atrophic scarring may occur in older lesions.

3. Photosensitivity Skin rash as a result of unusual reaction to sunlight, by patient
history or physician observation.

4. Oral ulcers Oral or nasopharyngeal ulceration, usually painless, observed by
physician.

5. Arthritis Nonerosive arthritis involving 2 or more peripheral joints, charac-
terized by tenderness, swelling, or effusion.

6. Serositis a. Pleuritis: convincing history of pleuritic pain or rubbing heard
by a physician or evidence of pleural effusion.
b. Pericarditis: documented by ECG or rub or evidence of peri-
cardial effusion.

7. Renal disorder a. Persistent proteinuria greater than 0.5 grams per day or greater
than 3+ if quantitation not performed.
b. Cellular casts: may be red cell, hemoglobin, granular, tubular,
or mixed.

8. Neurologic disorder Seizures or psychosis in the absence of offending drugs or known
metabolic derangements, e.g., uremia, ketoacidosis, or electrolyte
imbalance.

9. Hematologic disorder a. Hemolytic anemia with reticulocytosis.
b. Leukopenia: less than 4,000/ml total on 2 or more occasions.
c. Lymphopenia: less than 1,500/ml on 2 or more occasions.
d. Thrombocytopenia–less than 100,000/ml in the absence of of-
fending drugs.

10. Immunologic disorder a. Positive LE cell preparation.
b. Anti-DNA: antibody to native DNA in abnormal titer.
c. Anti-Sm: presence of antibody to Sm nuclear antigen.
d. False positive serologic test for syphilis known to be positive
for at least 6 months and confirmed by treponema pallidum im-
mobilization or fluorescent treponemal antibody absorption test.

11. Antinuclear antibody An abnormal titer of antinuclear antibody by immunofluorescence
or an equivalent assay at any point in time and in the absence
of drugs known to be associated with “drug-induced lupus” syn-
drome.

Table 11.1. SLE classification criteria of the American College of Rheumatology.

Regarding the genetic basis of the disease, there are no complete families
known to be affected by SLE. However, if a first-line relative suffers from
SLE, the risk of developing it is 3% higher than the average risk among the
population.

It is accepted that this genetic susceptibility is due to multiple genes (Sul-
livan, 2000), and a certain threshold of susceptibility must be reached before
an external process may trigger SLE. The incidence of SLE varies in different
populations because the set of gene variants involved in the genetic suscepti-
bility also varies from population to population. The highest ratio, 1 out of
250, belongs to African-American women between 15 and 44 (NIAMS, 1994).
Within men of the same ethnic origin, the risk is approximately 10-fold lower.
Perhaps the lowest prevalence is for Caucasians, who have a 20 in 100,000
ratio.

It is also believed that, due to the different natural history of the popula-
tions, different combinations of genes can play different roles in genetic sus-
ceptibility. There is clear evidence that African-American and Asian SLE pa-
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tients suffer from more aggressive variations of the disease, while, Caucasians
are more likely to only develop skin-related affection and platelet destruction.

To sum up, more than a hundred genes are now thought to be involved in
SLE genetic susceptibility (Sullivan, 1999). It is quite clear that the specific
genes involved in such susceptibility are indeed different in different ethnic
groups (Sullivan, 2000).

As for the antiphospholipid syndrome, APS, or Hughes syndrome, it was
first described in 1983 by Graham Hughes and his team in London (Hughes,
1983). APS, also known as “sticky blood” syndrome, is another immunological
disease characterized by the repeated appearance of thrombosis (in veins,
arteries and capillaries), a high number of miscarriages in the second and
third gestation quarters, and thrombopenia or hemolitic anemia. All of these
symptoms are associated with the presence of antiphospholipid antibodies
(aPL), among which the most known ones are the cardiolipine antibodies
(AAC) and the lupic anticoagulant (AL).

APS is called “sticky blood” due to the patient’s high blood coagulation
tendency. The syndrome can manifest by itself, in the absence of lupus symp-
toms (primary APS, PAPS), or can develop secondarily in a subset of lupus
patients, implying that some pathogenic pathways are common to both au-
toimmune diseases. (Bertolaccini et al., 2005). In this case, the syndrome is
the secondary disease; SLE patients tend to develop APS in 20-30% of the
cases.

Neither SLE nor PAPS can be diagnosed clearly. Different criteria have
to be evaluated in order to assess its presence. Although a unified diagnosis
criterion does not exist (Alarcón-Segovia et al., 1992; Harris, 1990), there are
symptoms that point out its possible presence: arterial and/or vein thrombo-
sis, recurrent miscarriages, thrombopenia, and high levels of AAC (IgG and
IgM types).

As previously mentioned, the relationship between PAPS and SLE is
known to be very close. When a patient has been diagnosed as SLE, this pa-
tient can develop a secondary APS (Pons et al., 2001) for unknown reasons. If
the patient shows nine out of the eleven fixed criteria for SLE diagnosis, the
patient is considered to have possibly acquired secondary APS. Two criteria
excluded from the list are photosensitivity and neurologic disorders.

A severe variant of APS has also been detected: catastrophic APS. There
have been cases of patients with both diseases that present a secondary multi-
organ failure followed by a multisystemic thrombosis of large and small blood
vessels. The evolution of this organ failure is almost fatal.

Contrary to SLE, in APS there are families with many members show-
ing positive AAF antibodies. This could indicate that a genetic hereditary
component is involved in the development of the illness in these families.
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11.3.2 Study participants

After informed consent, patients and controls provided a peripheral blood
sample, and PBMC were isolated from whole blood by ficoll gradient purifi-
cation. All patients were Caucasian women, and had physician-verified SLE
or PAPS. Data on age, clinical characteristics, disease activity and current
medication are summarized in Table 11.2 and Table 11.3. Disease activity in
SLE patients was determined using SLEDAI score (Bombardier et al., 1992).

Id Age Smoker Diagnosis SLEDAI Treatment

C6 32 No Healthy – –
C7 53 No Healthy – –
C11 26 Yes Healthy – –
C12 37 No Healthy – –
C14 61 Yes Healthy – –
LV3 24 No SLE 6 Hydroxychloroquine and

NSAID*
LV4 35 No PAPS – ASA**
LB8 40 Yes SLE 8 NSAID
LB10 31 No SLE + sec.APS – Hydroxychloroquine and antico-

agulant
LV11 42 Ex SLE 8 Hydroxychloroquine and

NSAID
LV15 39 No PAPS – No treatment

Table 11.2. Extended personal information about the samples of the microarray
experiment; both healthy and ill women. * Non-steroid anti-inflammatory drugs. **
Acetylsalycilic acid.

11.3.3 Sample processing and chip hybridization

For microarray experiments, four patients with SLE, two patients with pri-
mary APS and five healthy individuals were used (see Table 11.2). RNA was
extracted from PBMC using triZOL followed by RNeasy cleanup. The iso-
lated RNA was amplified and labeled as described in the GeneChip Expres-
sion Analysis Technical Manual, and subsequently hybridized to HG-U133A
Genechip microarrays and scanned according to the manufacturer’s recom-
mendations. The labeling, hybridization and scanning procedures were carried
out in Progenika.

11.3.4 Microarray quality metrics

After the hybridization and the developing and scanning processes, the fi-
nal process provided twelve different images, each one corresponding to each
HGU133A microarray.
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Id Age Smoker Diagnosis SLEDAI Treatment

C2 26 No Healthy – –
C8 70 No Healthy – –
C9 45 No Healthy – –
C18 43 Yes Healthy – –
C21 49 No Healthy – –
C25 – – Healthy – –
LB1 27 Yes SLE 2 No treatment
LV7 46 No SLE 2 Hydroxychloroquine, prednisone,

NSAID
LV9 53 No SLE 0 Hydroxychloroquine, aceclofenac
LV13 49 No PAPS – Danazol, hydrochlorothiazide,

acenocoumarol, ASA
LV14 68 No PAPS – ASA
LV20 33 No PAPS – ASA
LV21 44 No PAPS – Enalapril, simvastatin, aceno-

coumarol
LV25 – – PAPS – ASA

Table 11.3. Extended personal information about the samples of the qPCR exper-
iment; both healthy and ill women.

The next step is to test the quality of each microarray. To evaluate the
reliability of the microarrays in the experiment, diverse values are measured.
The arrays that do not comply with the reliability criteria have to be con-
sidered outliers and, therefore, rejected. The four criteria considered for each
microarray are the ones introduced in Section11.2.1: presence of control BioB,
ratio of GAPDH, percentage of P calls and percentage of outliers.

Id BioB GAPHD P Call % Array outlier %

µa1 Present 0.87 37.7 0.24
µa2 Present 1.08 40.0 0.04
µa3 Present 1.12 44.3 0.07
µa4 Present 1.29 45.6 0.16
µa5 Present 1.47 42.1 0.13
µa6 Absent 1.79 29.9 39.09

µa7 Present 1.25 47.1 0.21
µa8 Present 1.35 44.0 0.02
µa9 Present 1.08 47.1 0.09
µa10 Present 1.07 44.6 0.17
µa11 Present 1.08 40.3 0.04
µa12 Present 1.38 42.4 0.11

Table 11.4. Realibility criteria values for each performed microarray in the expe-
riment.
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Table 11.4 lists the values of the reliability controls for each array. The
µa6 microarray does not reach a sufficient reliability level: in three out of
the four measures, it does not verify the minimum acceptance thresholds.
Furthermore, the percentage of outlier probe sets is extremely high, pointing
to a bad quality in the original tissue or some failure in the intermediate
processes. Due to this, the µa6 array is rejected and it is not included in any
further analysis.

However, our purpose is to study the intensity change showed by each
probe set between sample and reference tissues. Due to the fact that the
Affymetrix technology only includes one tissue on each microarray, after all
the physic processes have finished, the user must compute these comparisons
between the reference and the sample microarrays in a synthetic way. This
sample vs reference experimental design is the direct translation of the classi-
cal dual channel comparison made on cDNA arrays (Yang and Speed, 2002).

In order to produce this kind of comparison, MAS (Microarray Affymetrix
Suite) software can generate synthetic hybridization-crosses on the basis of the
original single channel microarrays. Using one microarray as the comparison
baseline or reference, and another microarray as the compared one or sam-
ple, it generates a synthetic cross between them. For each of these synthetic
crosses, the most valuable fields are the comparison and the relative expres-
sion change or logRatio values. The comparison value shows the behaviour
observed for each probe set between the baseline and the compared intensity
levels, that is, between both channels. Similar to the detection value, compari-
son is computed on the basis of a Wilcoxon’s rank test, and its possible values
are increase (I), marginal increase (MI), no change (NC), marginal decrease
(MD) and decrease (D).

It is worth mentioning that it is possible to find genes that show an in-
crease (I) or decrease (D) value for comparison when their detection value is
absent (A). This collateral effect could be caused by a very little transcript
quantity. Hence, and not relying on the qualitative interpretation given by
the comparison value, the first filter stage comprises discarding all probesets
showing an absent detection value in both channels (AA). Microarray inter-
nal control sequences are also removed. In our experimental process, after this
filtering process, the amount of probes decrease from 22,067 to 8,808; these
sequences form our starting gene set, our critical set of predictive variables.

Finally, a last issue arises at this preprocess stage: the µa10 microarray
corresponds to a patient who has developed secondary APS (see Table 11.2).
This fact can be problematic if the genetic pattern shown by the patient is
more similar to primary APS than to SLE. The µa10 generates five different
instances out of the twenty SLE class labeled instances. In order to study
the similarity degree of these five instances with respect to the rest of SLE
instances, a hierarchical clustering is carried out. The clustering parameters
were set to: Pearson correlation and average linkage. The analysis clearly
showed that instances from µa10 are clustered with the rest of SLE patients
and not with PAPS patients (see Fig. 11.2). Furthermore, clustering of all



11.3 Microarray analysis of autoimmune diseases 129

0.90.80.70.60.50.40.30.20.1

LB10
LB10
LB10
LB10
LB10
LV3
LV3
LV3
LV3
LV3
LB8
LB8
LB8
LB8
LB8
LV11
LV11
LV11
LV11
LV11
LV4
LV4
LV4
LV4
LV4
LV15
LV15
LV15
LV15
LV15

Fig. 11.2. Clustering of the illness instances (SLE & PAPS). Branches coloured in
blue belong to SLE class labeled instances, while branches in red belong to PAPS
instances. The expression profiles of each test sample were compared separately with
the expression profiles of control samples, resulting in five comparisons for each SLE
or PAPS sample. The five instances generated by sample LB10 flawlessly behave as
the rest of SLE instances, being all clustered in the same group.

SLE instances is very similar and homogeneous, implying that a secondary
acquisition of an antiphospholipid syndrome does not significantly modify the
transcriptional profile that characterizes SLE.

11.3.5 Experimental design

Based on the nature of both diseases, the study of the following three different
diagnostic problems is defined as medically and biologically relevant. We will
regard each diagnostic category as two different problem classes:

Healthy vs SLE vs APS - We are interested in genes that are differentially
expressed in each disease: genes that present different expression profile
behaviours in each diagnostic category are highly interesting.
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Healthy vs Unhealthy - Diagnosis of both diseases is not easy, so the identi-
fication of genetic patterns is helpful. Differential patterns between med-
ically fit individuals and patients suffering from SLE and APS can help
detect and diagnose, when there is doubt.

SLE vs APS - Both diseases have many similarities: APS can appear simul-
taneously as a secondary disease, but the standard case is to detect them
individually. Although a large number of genes show the same expression
profiles due to their similarities, a differential analysis between them is
desirable in order to find genes with different behaviours in both diseases.

Based on the patients’ collected data, this work tackles the first diagnostic
problem exposed. From the machine learning point of view, these diagnostic
problems can be seen as supervised classification tasks: the second and the
third modelizations can be considered subproblems included in the first one.

This three-class supervised problem resulting from the experimental me-
thodology comes from the three different ways in which the synthetic crosses
are performed:

• Ten of them correspond to the crosses between the control arrays among
themselves (never an array against itself), conforming the HEALTHY in-
stances.

• Another ten correspond to the crosses between the five control and the
two APS patient arrays, conforming the ten APS instances.

• The last twenty correspond to the crosses between control and SLE arrays
(the SLE instances).

All of these forty comparisons form the set of forty instances of our ma-
chine learning task. Figure 11.3 shows the logRatio expression values for the
subset of 8,808 preselected genes and the forty instances, showing no a priori
unwanted or unlikely behaviour in any of them.

Fig. 11.3. Expression logRatios for all problem categories; HEALTHY (left), APS
(center) and SLE (right) patients.
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11.3.6 Results & discussion

To identify genes that discriminate SLE and PAPS patients from healthy
controls we applied the data mining workflow introduced in Chapter 8, namely
the consensus gene selection. The supervised classification scheme in use is a
three-class classification problem also previously introduced in Section 11.3.5.

For setting up the gene selection method in use, we used a set of three
different discretization policies, namely: equal width (Kerber, 1992), equal
frequency (Catlett, 1991) and entropy (Fayyad and Irani, 1993). As a usual
criterion in this field (Friedman et al., 2000; Causton et al., 2003), our as-
sumption is that a gene could be in three possible states, using the idea of
over-, under- or base-line activity, so the number of bins was set to three. As
for the feature selection approach, we used the CFS method presented also
in Section 8.1. To enhance the jointly selected genes, we used the classical
mutual information as a co-expression measure (Cover and Thomas, 1991).

A total of 150 probes or genes out of an original set containing more than
22,000 genes were detected as the relevant genes whose differential expression
confidently discriminates among SLE patients, PAPS patients and healthy
controls. The complete list of relevant genes, including the Affymetrix probe
ID, the gene symbol, their locus, their relative gene expression in SLE or PAPS
patients and a short description is available online through the Supplemen-
tary content page 6. The significantly different expression profile exhibited by
these genes in patients samples relative to samples of healthy controls could
contribute to the pathogenesis of the autoimmune conditions analyzed in this
work.

Many of the genes identified in our study have not been previously im-
plicated in SLE or PAPS, and represent new biomarkers of these diseases.
Interestingly, a link with autoimmunity, and in particular to lupus, has al-
ready been established for a significant number of the genes included in this
group of dysregulated genes. Such is the case of the genes SSB, SP100, H1F0,
all of which are lupus autoantigens (Scofield, 2003; Srivastava et al., 2003;
Maddison et al., 1988; Wichmann et al., 2003; Hardin and Thomas, 1983) or
TAP-1, a transporter gene with polymorphisms showing genetic association
with SLE (Correa et al., 2003; Hualupusng et al., 2004) among others.

11.3.6.1 Statistical analysis

From the 150 total genes returned by the consensus gene selection, there were
a total of eight statistical prototypes (CPSF1, SLC25A12, UQCRB, NADK,
MICAL2, KIAA0776, PARL and CECR1). It is mandatory to note that pro-
totype genes are the result of a statistical process and their aim is to comprise
the statistical axes of the problem. Although a direct biological translation
could be made, it would have no biological link to the statistical and the

6 Supplementary page at http://www.sc.ehu.es/ccwbayes/members/ruben/sle
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biological interpretations: the prototype genes could not have any special bi-
ological contribution in the domain of the diseases under study.

The statistical analysis of the selected genes was performed in two ways: by
measuring the relevance of the selected genes, and the estimated prediction
accuracy in a supervised class prediction procedure. A priori, the selected
genes should be relevant to the problem, showing a high correlation degree
with the phenotype distribution.

Using the Elvira platform (Elvira Consortium, 2002), and on the basis
of the three discrete datasets, seven different univariate filter rankings (Inza
et al., 2004) were calculated. As explained in Section 7, in order to obtain an
average ranking for each dataset, each gene was weighted with a coefficient
proportional to the relative positions shown in each ranking. The consensus
rankings are accessible through the online Supplementary content page, pre-
senting a list of the 8,808 (924 in the case of entropy discretization) genes
ordered by their correlation level with respect to the problem class label.

Gene EF EW Entropy

CPSF1 22 93 46
SLC25A12 13 26 32
UQCRB 33 33 51
NADK 106 106 142
MICAL2 11 14 20
KIAA0776 31 35 30
PARL 1 3 12
CECR1 19 38 68

Table 11.5. Positions of the statistical prototypes over the consensus rankings for
the three discrete sets (EF, EW and Entropy)

Table 11.5 shows the positions of each statistical prototype in the con-
sensus rankings of each discrete dataset. It is easy to check that the selected
genes appear in the top positions of the rankings, with average positions of
29.5, 43.5 and 50.1 for equal frequency (EF), equal width (EW) and entropy
discretization, respectively. Such average positions significantly differ from
the ones obtained if a random selection is made: 4,004.5, 4,004.5 and 462.5,
respectively.

The second aspect of the statistical analysis comprised the estimation of
the prototypes’ strength when classifying a new instance not included in the
original set. This strength was evaluated on the basis of different classifier
performance tests. Due to the great difference between the number of genes
(predictive variables) and the instances of each experiment, many distinct
and equally effective classifiers may exist for the same training set (Dudoit
et al., 2002; Lee et al., 2005; Inza et al., 2004; Michiels et al., 2005). This
fact led us to consider four different classification models instead of only one.
Furthermore, and trying to cover a wide range of classical paradigms, the four
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models chosen come from different classification families and are commonly
used in DNA microarray class prediction studies (Lee et al., 2005):

• Logistic regression - Logistic regression (Kleinbaum, 1994) has become
a very widely used classification paradigm in life sciences because its pa-
rameters can be interpreted as risk factors. Logistic regression is based on
the logistic function and it allows an interpretation in probability terms.
A set of parameters has to be estimated from the problem data, usu-
ally known as regression coefficients. Usually, regression coefficients are
estimated using the maximum likelihood estimation method, but there
are adaptations that penalize this maximum likelihood with other factors.
The logistic regression model used in this work penalizes the likelihood
estimation with an estimator known as the ridge estimator (Cessie and
Houwelingen, 1992).

• k-Nearest Neighbor - The k-NN algorithm (Aha et al., 1991) proceeds
with the classification task in terms of similarity: unlabeled examples are
classified based on their distance to the examples in the training set. k-
NN is a classification paradigm with no explicit classification model. In
other words, there is no learning stage in which a mathematical model is
induced, and from which the categorization stage is tackled. It finds the
k closest features in the data and assigns them to the class that most
frequently appears within the k-subset. In this work, k-NN is computed
with Euclidean distance and a k value of three.

• Näıve Bayes - Continuous näıve Bayes (John and Langley, 1995) belongs
to the Bayesian classifier family. The model parameters are estimated with
a factorization based on the normal distribution assumption for each vari-
able. A detailed explanation is included in Section 4.2.1 of this dissertation.

• Random forest - This classification paradigm belongs to the tree-like
classification family. Random forest (Breiman, 2001) builds a forest com-
posed of t random trees. When building these trees, a random variable
selection is performed. The random tree set is learnt using a bootstrap
instance selection, and the built trees are not pruned. For our work, no
variable selection is configured at the induction step, because a feature se-
lection has already been performed. Thus, using all the predictive variables
provided, ten random trees are built for each forest.

In order to obtain a fair estimation of each classifier performance a cru-
cial task arose: the choice of the most suitable accuracy estimation method
in the context of the microarrays. Classical methods such as hold-out, sim-
ple or leaving-one-out cross-validations have been demonstrated to not fit on
the intrinsic microarray dimensionality problem (Braga-Neto and Dougherty,
2004b; Statnikov et al., 2005). Nowadays, there are two main approaches com-
monly accepted as the best estimation techniques for this domain: the cor-
rected bootstrap estimator (Efron, 1983) and nested stratified cross-validation (Weiss
and Kulikowski, 1991).
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We chose the use of a nested stratified cross-validation scheme as the
accuracy estimation method. This method comprises the performance of two
different stages: one internal (or inner) loop in which the parameters of the
classification methods are estimated; and an external (or outer) loop in which
the classifiers are induced and validated against previously unseen instances.
In our specific case, the feature selection methods were run throughout the
inner loop and the different classifiers were induced on the basis of these
selected features. This classifier is tested over instances not previously seen in
the induction stage.

The next parameter to adjust was the number of times that all this process
is done for each classifier and for each feature selection method. Taking ad-
vantage of previous works, it is proven that the ten times repetition of ten of
these stratified cross-validations obtains suited accuracy estimations (Bouck-
aert and Frank, 2004; Statnikov et al., 2005). This validation scheme is usually
known as 10-times 10-fold cross-validation.

As for the study of the prototype’s classification strength, we performed
the validation over four different gene sets: the intermediate genes selected
by the correlation feature selection over the three different discretized data
sets, and the consensus prototype genes. The number of selected genes and
estimated accuracies are presented in Table 11.6. All the induction and valida-
tion processes were computed using the Waikato environment for knowledge
analysis (WEKA) framework (Witten and Frank, 2005).

Γ =
T

3
Gi GEq.Width GEq.Freq. GEntropy

Set size 6.17±0.72 25.57±3.19 38.83±2.01 41.42±3.02

Log. reg. 86.75±3.72 95.25±3.05 95.25±2.61 95.00±3.35
Näıve Bayes 86.75±5.01 97.00±1.00 96.25±2.02 96.75±2.25N

k-NN 88.50±4.50 100.0±0.00N 100.0±0.00N 98.75±2.02N

Rand. forest 80.25±8.98 95.75±2.75 93.00±4.44 90.25±4.39

Table 11.6. Estimated accuracies obtained for the 10-times 10-fold cross-validation
on each classification paradigm.

To assess the significance and reliability of the consensus genes in compar-
ison with each one of the intermediate gene sets, a corrected repeated k-fold
cv test (Bouckaert and Frank, 2004) was performed. This statistical test has
been proven as one with the most suited relation between the Type I and
II errors (Nadeau and Bengio, 2003; Bouckaert and Frank, 2004) and a high
replicability degree (Bouckaert and Frank, 2004). The test compares the dif-
ferences between two different classification algorithms by a special corrected
t-test. The null hypothesis is that both algorithms have the same classification
behaviour; the alternative hypothesis states that one algorithm outperforms
the classification degree of the other.

For each base classifier, the accuracy of each single discretization policy
was compared with respect to the consensus approach. For all the twelve com-



11.3 Microarray analysis of autoimmune diseases 135

parisons, only four of them (values with a N symbol in Table 11.6) rejected
the null hypothesis for an α = 0.05 significance level. For a 0.01 level, none
of them showed statistical differences –the null hypothesis was not rejected in
any of them–. These results let us state that, while suffering a decrease in the
classification accuracies, the differences between the use of the consensus pro-
totypes and the intermediate selected gene sets are not statistically significant
in many comparisons.

11.3.6.2 Biological analysis

A. Verification of microarray hybridization by quantitative Q-PCR analysis

In order to perform a rigorous validation, we used a second cohort of SLE
and PAPS samples. DNA purified from these six healthy donors, three SLE
patients and five PAPS patients (see Table 11.3) was reversed transcribed into
cDNA.

Quantitative TaqMan PCR analyses were performed for the following five
genes (all previously related to the diseases by other studies): H1F0, PPIA,
GNLY, SSB and SP100. In addition, qPCR of TBP was performed on all sam-
ples, which served as an internal control. The primers and TaqMan probes for
all the genes were obtained from Applied Biosystems. The reactions were run
by triplicate on an ABI 7900HT Fast Real-Time PCR System from Applied
Biosystems at the Genomics Facility of the University of the Basque Country,
using standard cycling conditions. Results were analysed with the Sequence
Detection System (SDS) Software v2.0 to obtain the Ct values for each sample.

A DCt value was calculated reflecting the difference between the average
Ct of the replicate samples obtained for the control gene (TBP) and the
average Ct of the replicate samples obtained for the test gene to be validated.
Using these DCt values as the raw expression value in the qPCR experiment,
we first determined the median DCt for all the healthy control samples. Next,
we calculated the difference between the DCt of each test sample and the DCt
values of the healthy controls, thus obtaining a set of DDiff values for each
phenotype and gene.

Two out of the five monitored genes (H1F0 and SP100) are IFN-regulated
genes previously associated with SLE (Hardin and Thomas, 1983; Wichmann
et al., 2003). Our microarray data showed that both genes were upregulated
in SLE patients, but only H1F0 expression was increased in PAPS, whereas
SP100 expression was downregulated.

SSB, also called La autoantigen, is a ribonucleoprotein involved in chro-
matin metabolism, and is known to elicit autoantibody responses in SLE (Mad-
dison et al., 1988). Its expression in SLE samples was similar to controls, but
it was downregulated in PAPS. The remaining two genes (GNLY and PPIA)
that were selected for PCR analysis are known to have a role in the execution
of immune functions (Deng et al., 2005; Jin et al., 2004; Zander et al., 2003)
and were found to be downregulated in PAPS samples.
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Gene Phenotype Median 1st-quartil 3rd-quartil Expected p-value

H1F0 Control 0.0 -0.99 0.99 – –
SLE 1.66 1.0 2.16 UP < 0.0001
PAPS 2.08 1.01 3.14 UP 0.00264

PPIA Control -0.32 -1.37 1.04 – –
SLE 0.8 0.4 1.56 BASELINE 0.12506
PAPS -1.39 -1.99 -0.7 DOWN 0.06598

GNLY Control 0.0 -1.34 1.26 – –
SLE -0.1 -0.79 0.58 BASELINE 0.95635
PAPS -2.65 -3.26 -1.93 DOWN < 0.0001

SSB Control 0.0 -1.51 1.51 – –
SLE 0.8 -0.28 1.66 BASELINE 0.20110
PAPS -3.17 -3.56 -1.41 DOWN < 0.0001

SP100 Control -0.16 -1.09 0.97 – –
SLE 3.19 2.26 3.33 UP 0.00076
PAPS -1.22 -2.03 -0.89 DOWN 0.07220

Table 11.7. qPCR output values and expected activity for five genes from the
relevant genelist.

For each gene and phenotype, the median values of their DDiff, together
with the expected gene expression activities are shown in Table 11.7. As a
dispersion measure of the results, the values for the first and third quartile
of each group of values are also shown. Fig. 11.4 graphically summarizes the
results obtained for each gene within the qPCR validation.
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Fig. 11.4. qPCR validation summary for five genes from the relevant genelist.
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As a criterion, a median DDiff value between -1 and 1 was considered a
baseline activity, that is, unchanged with respect to healthy controls. Median
values higher than 1 reflect an upregulated activity, while values lower than
-1 reflect a downregulated activity. Clearly, the expected gene expression pro-
filing as measured by microarray quantitation is fully validated by the qPCR
experiment.

As a final validation criterion for the expected gene expression activities, a
statistical test was performed comparing the DDiff expression values between
the control samples and either SLE or PAPS samples. Column p-value in Ta-
ble 11.7 gathers the output of a non-parametric Mann-Whitney hypothesis
test (Mann and Whitney, 1947), showing that all the values of over or under
expression are statistically significant for an α = 0.10 significance level. In ad-
dition, the p-values for the baseline activities show no statistically significant
differences between these cases and the control expression. Thus, all these
results are consistent with the expected expression activity for each gene.

B. Functional characterization of the relevant genes in SLE and PAPS

To check whether the results made sense from a biological point of view,
we have analysed the list of dysregulated genes with the FatiGO+ tool (Al-
Shahrour et al., 2006). FatiGO+ can be used to search for the GO annotations7

that are overrepresented in a list of genes. The significance of the overrepresen-
tation is assessed by means of a Fisher exact test. From the 150 dysregulated
genes identified, only 112 have GO annotations. Fig. 11.5 shows the results
obtained with this tool (for terms in the level 3 of GO biological process an-
notations). As we can see in the figure, immune-system-related annotations,
such as defense response or immune system process, are overrepresented in
the list of dysregulated genes.

A comparison with previous work on microarray analyses revealed a no-
table similarity in the functional categories of the genes found to be dysregu-
lated in our analysis (Mandel et al., 2004), confirming their importance in the
pathogenesis of the disease (see Figure 11.5). Such is the case of the categories
defense response, immune system process, death, cell communication or re-
sponse to chemical stimulus. In addition, our analysis revealed other relevant
functions, including metabolism, establishment of localization or regulation
of biological processes that have not been previously associated with SLE or
PAPS, and that may provide important clues about the pathogenesis of these
diseases.

C. Regulatory pathways dysregulated in SLE and PAPS

It is believed that mutations in susceptibility genes that contribute to the
pathogenesis of a given disease result in an altered expression and/or activity
of genes regulated by them, thus revealing a particular molecular signature

7 Gene Ontology Consortium http://www.geneontology.org
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Fig. 11.5. Gene ontology biological process (level 3) annotations that are signifi-
cantly overrepresented in the list of dysregulated genes. Annotations with an inci-
dence level lower than 5% are not shown.

of the disease (Burmester and Haupl, 2004). Taking this idea into account,
we searched for factors that could be regulating the genes whose expression
is altered in SLE and/or PAPS. For each of the 150 genes identified in the
original set, and using the Ingenuity Pathways Analysis tool8, the factors that
could be involved in the regulation of their expression or activity were identi-
fied. Only those genes with known regulators were considered for subsequent
analyses. Furthermore, genes regulated by other genes included in the original
set were discarded because it is not possible to know whether these genes are
dysregulated due to a mutation in the genes that regulate their expression or
because their regulators are dysregulated themselves.

The resulting filtered set includes a total of 129 genes (out of 150), and the
gene set known to regulate them contains a total of 299 genes. Only the genes
regulating three or more target genes were considered, which resulted in a final
number of seventeen regulatory genes controlling the expression of a total of 45
dysregulated genes (see Table 11.9). Finally, their location within the genome
was sought. Remarkably, nearly half of them (8 out of seventeen) were found to
be located in chromosome regions previously reported as susceptibility regions
for SLE (Johansson, 2004; Koskenmies, 2004; Tsao, 2003; Shai et al., 1999;

8 For a detailed description of Ingenuity Pathways Analysis, visit
http://www.ingenuity.com
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Functional group Genes

Cellular metabolic process GAS7, DDX5, RRAGD, MBD4, CECR1,
CUTL1, PTMA

Primary metabolic process SNRPD2, CPSF1, SSB, SFRS2IP, PPIG,
NADK, DNPEP, HSD17B4, NAGPA,
ZNF202, ABCA1, COMT

Macromolecule metabolic process EIF4A1, EIF3S8, RPL18A, MRPL9, HSF2,
HSPA6, PFDN4, HSPA8, HSP90B1

Regulation of biological process KRAS, TMEM97, GPS1, UQCRB, CYB561,
TNKS2, ZNF83, ZNF587, POLR2K, GMEB2,
SP100

Cell organization and biogenesis HIST1H1C, TSPYL4, H1F0
Establishment of localization RIN3, SLC25A12, UQCRB, CYB561, SYPL1,

GOSR1, KDELR2, C14orf108, GOLGA4,
KPNB1, SLC25A5, PEX1

Cell communication GNB2L1, CDC42EP3, IQGAP1, PKN1,
RAB2, TAX1BP3, ARF3, ANK3

Defense response WAS, TAP1, GNLY, NMI, CD160
Immune system processes ISG15, IGHM, HLA-DQB1, GPSM3, MX1
Response to chemical stimulus HSPA6, HSPA8
Death BAG5, TNFRSF10B, CASP1, SIRT1

Table 11.8. Some of the GO functional groups identified from the relevant genelist
and the genes that belong to each group.

Aringer and Smolen, 2004; Horiuchi et al., 2006; Lee et al., 2006; Croker and
Kimberly, 2005).

Recent microarray reports have suggested that the interferon regulatory
pathway could be an important contributor of SLE, based on the dysregulated
expression of numerous interferon-inducible genes in lupus samples (Rozzo
et al., 2001; Baechler et al., 2003; Bennett et al., 2003). Remarkably, our
analyses revealed that three of the regulatory genes are interferon proteins
(IFNG, IFNA1 and IFNA2), regulating the expression and/or activity of nine
genes identified in the microarray experiments. Seven of these nine genes were
overexpressed in SLE patients, consistent with previous findings. Moreover,
three more regulator proteins (IL15, MYC, TNFSF10) are also known to be
regulated by IFNs. These results indicate that the IFN pathway regulates
nearly half of the regulatory genes identified in our analysis, either directly or
indirectly, corroborating the importance of the interferon signature in SLE,
and suggesting an important role for this pathway also in PAPS pathogenesis.

Other regulatory genes with a known or suspected role in autoimmunity
were also present in the search. Such is the case of PTEN, a phosphatase
involved in the regulation of the PI3K pathway (Patel and Mohan, 2005),
TNF, tumor necrosis factor (Hsu et al., 2006) or the antiapoptotic protein Bcl-
2 (Deming and Rathmell, 2006). It will be worth examining these regulatory
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Regulator Regulated genes Locus Reference

IL15 BTG1, GNLY, PFDN4,
POLR2K, SELPLG,
SLC25A5, SP100

4q31

IFNG ABCA1, CYB561, HSPA8,
MX1, PSMB4, TN-
FRSF10B

12q14

MYC ARF3, DDX5, PPIA,
SLC25A5, TNFRSF10B

8q24.12-
13

(Johansson, 2004; Kosken-
mies, 2004)

TP53 COMT, DLG1, ISG15,
THRAP2, TNFRSF10B

17p13.1 (Johansson, 2004; Kosken-
mies, 2004)

EGF GNB2L1, HK1, MVP, WAS 4q25
HGF ANK3, ISG15, HK1,

TMEM97
7q21.1 (Tsao, 2003)

TNF ANXA2, BTG1, ISG15,
MVP

6p31.3 (Aringer and Smolen, 2004;
Horiuchi et al., 2006; Lee
et al., 2006)

PTEN BTG1, CYB561, ISG15,
RPL36A

10q23.31

TGFB1 ANXA2, KDELR2, KPNB1,
TAX1BP3

19q13.1 (Johansson, 2004; Kosken-
mies, 2004)

IFNA1 CYB561, ISG15, MX1, NMI 9p22
IFNA2 MX1, SP100, TNFRSF10B 9p22
CDC42 IQGAP1, PKN1, WAS 1p36.1 (Koskenmies, 2004; Shai

et al., 1999)
BCL2 CASP1, IGHG1, KRAS 18q21.3 (Johansson, 2004; Shai

et al., 1999)
FOS CPSF1, SNRPD2, HSP90B1 14q24.3
TNFSF10 ISG15, SP100 , TN-

FRSF10B
3q26 (Johansson, 2004)

MYCN EIF4A1, RPL37A, RPS25 2q24.1
SRC ACP1 , ANXA2 , GNB2L1 20q12-13 (Koskenmies, 2004; Tsao,

2003)

Table 11.9. Location of the detected regulator genes.

networks in more detail, to determine their contribution to the pathogenesis
SLE or PAPS, as well as their usefulness as markers of these diseases.

D. Analysis of transcription factor binding sites in the promoters of genes
relevant for SLE and PAPS identification

Genes that participate in a particular pathway often share a common tran-
scription factor binding site. We next explored the possibility that the dysreg-
ulated genes in SLE and PAPS could be regulated by common transcription
factors involved in the development of autoimmunity. We reasoned that if a
significant number of dysregulated genes in SLE and PAPS were regulated by
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a common transcriptional factor, then this factor could somehow be associated
with the disease.

IRF2 IRF1 PAX2 SP1 MEF2 P300 E2F CDXA CREBP1-

CJUN

Frequency
z-value 2.81 2.05 2.71 2.23 2.15 2.14 2.10 -2.33 -2.08
sample mean 0.061 0.078 0.026 2.278 0.035 2.148 0.157 2.470 0.009
population mean 0.021 0.039 0.006 1.824 0.013 1.857 0.095 3.234 0.055
ratio 2.9 2.0 4.2 1.2 2.8 1.2 1.7 0.8 0.2
p-value 0.0049 0.0408 0.0067 0.0256 0.0318 0.0323 0.0353 0.0200 0.0377

Incidence
number 5 7 3 78 4 105 17 81 1
sample mean 4.35% 6.09% 2.61% 67.83% 3.48% 91.30% 14.78% 70.43% 0.87%
population mean 2.02% 3.79% 0.62% 68.09% 1.25% 82.54% 8.86% 79.47% 5.28%
ratio 2.2 1.6 4.2 1.0 2.8 1.1 1.7 0.9 0.2
p-value 0.0840 0.1474 0.0355 0.4043 0.0572 0.0060 0.0251 0.0059 0.0132

Table 11.10. Deregulated transcription factors found based on the identified rele-
vant genelist.

We made use of the Transcription Element Listening System (Cole et al.,
2005), also known as TELiS, to identify transcription factor-binding motifs
(TFBM) that are overrepresented in the promoters of a given gene set. This
analysis considers two variables for any binding motif: (i) the frequency of this
motif per gene: a comparison is made between the average frequency within
the whole microarray and the frequency in the genes of the relevant list; (ii)
the number of genes exhibiting this motif in the relevant list compared to
the whole microarray. Using these values, it is possible to compute a z-value
statistic (Kanji, 2006) and to perform a two-tailed hypothesis test based on a
Bernouilli-set trials that examines which TFBMs are overrepresented in the
test list with respect to the expected occurrence computed from the original
microarray list.

In our case, the parameters for the genome scan were as follows: the pro-
moter search interval was fixed between -1000 and +200 bp, and the strin-
gency of the test is fixed to a 0.9 value. TELiS analysis identified a total of
115 genes from the total of 141 mapped genes in the relevant gene set. Within
these parameters, TELiS reported a total number of seven overrepresented
transcription factor binding motifs (see Table 11.10). Importantly, two inter-
feron response elements (IRF1 and IRF2) appeared as overrepresented, again
revealing the importance of the IFN-regulated pathway in these autoimmune
diseases. The binding sites for SP1 and P300 were also significantly overrep-
resented, particularly with regard to the frequency of binding sites per gene.
However, the increase in frequency as well as in incidence were minimal with
respect to the reference control, and it is unlikely to be biologically meaning-
ful.

Pax2 and Mef2 are transcription factors that are known to be involved in
cellular differentiation and organ development (Berkes and Tapscott, 2005).
The finding that their binding sites are overrepresented in our analysis, sug-
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gests that factors regulating differentiation also play a role in autoimmunity.
Remarkably, E2F binding sites were found overrepresented in this analysis.
E2F constitutes a family of transcription factors involved in the transcriptional
regulation of genes necessary for cell-cycle control (Nevins, 2001). Recently,
functional inactivation of E2F2, a member of this family, has been found to
promote a lupus-like autoimmune disease in a mouse model, linking cell cycle
regulation to autoimmunity (Murga et al., 2001). Additionally, reduced ex-
pression of E2F2 has been reported in SLE patients (Baechler et al., 2003).
These findings project a role for E2F in the regulation of autoimmunity, and
suggest that modulation of E2F levels could be beneficial in these diseases.

11.3.7 Conclusions

Consensus approaches are alternative techniques that try to overcome the
technology-intrinsic data noise in microarray experiments. Throughout this
chapter, we have applied the supervised consensus gene selection method,
aiming to add robustness to the biomarker identification procedures by means
of Affymetrix DNA microarrays.

Microarray studies must deal with “the course of dimensionality” and “the
course of sparsity” (Somorjai et al., 2003): in a problem with a huge number of
variables (features or genes), there are only a small number of instances (cases
or samples) whereas there are several thousand variables. Therefore, their
results must be strictly proven to assess reliability over the given statements.
This assessment has been carried out by a successful in-depth statistical and
biological validation.

It is important to stress the importance of being conservative when dealing
with findings coming from a low number of samples. With some rare diseases,
such as SLE and PAPS, it is very difficult for physicians and clinics to find
samples cohorts. Studies in these fields must be able to deal with these ad-
versities while they bring some light into the present genomic research. Of
special importance is the posterior validation of the findings by means of
qPCR analysis with outer samples not used in the previous statistical stages.

Among these findings, the statistical techniques applied have corroborated
the importance of the IFN pathway in SLE and PAPS, and have also revealed
the existence of other gene signatures that could be playing an important role
in the pathogenesis of these diseases. Future clinical and/or biological tests
over the presented results could throw light on the molecular basis of SLE
and PAPS diseases.

11.4 Colorectal cancer biomarker discovery through gene

interaction network induction

A tumoral biomarker is defined as a molecule that unveils the presence of a
cancer, or, a molecule that provides relevant information about the possible
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development of a tumour in the future. The first tumoral biomarker was de-
tected in 1848 when Bence-Jones discovered the presence of a certain protein
in a urine sample coming from a patient of osteomalacia (softening of the
bones). A hundred years later, such protein was identified as the light chain
of immunoglobulins (Edelman et al., 1961). From that moment on, it was ev-
ident that there exist a series of proteins and glycoproteins directly produced
by tumours that can be detected by means of immunological trials.

The presence of tumoral biomarkers can be due to the increase of a particu-
lar gene expression, to internal causes related to the cancer or to both of them.
Biomarkers may be useful for one or more of the following purposes (Duffy,
2001):

• Early screening of a subjacent disease.
• Help on a diagnosis process.
• Clues on the prognosis (how the patient will progress) of a given disease.
• Prediction of a therapy efficacy.
• Monitoring of a patient who underwent surgery.

Despite all the research in this biomarker field, there are currently very few
tumoral biomarkers clinically accepted as so. Over the last years, many new
molecules have been proposed as new biomarkers (Crawford et al., 2003; Allen
and Johnston, 2005) but almost all should be still analysed and evaluated in
depth.

The present chapter is intended to apply the reliable dependence detec-
tion presented in Chapter 9 to seek for these biomarkers. Not only is the
identification of possible biomarkers of interest, but also the study of possible
relations between them, in our case, those biological relations coming from
the conditional dependences of the consensus networks.

11.4.1 Introduction

Colorectal cancer (CRC), also called colon cancer, is the third most common
form of cancer and the second leading cause of death among cancers in the
Western World. In Spain, 25,000 new cases of CRC per year are diagnosed,
representing an incidence of 50 new cases per 100,000 inhabitants9. It consti-
tutes the second cause of death in Spain, following lung cancer.

CRC is classified in hereditary, familial or sporadic colon cancer (Calvert
and Frucht, 2002), which is the most common form of colon cancer, repre-
senting 70% of the diagnosed cases. It is the result of the accumulation of
multiple mutations that affect tumor suppressor genes, as well as oncogenes
or mismatch repair genes (Weinberg, 1994; Calvert and Frucht, 2002). Current
prognostic models are based on histoclinical parameters, but sometimes are
not accurate enough for prediction in individual patients. Despite the huge

9 Information obtained from the Spanish Association Against Cancer,
http://www.aecc.org.
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amount of studies carried out on CRC, little is known about the molecular
alterations, and no molecular marker has been validated for use as a new
diagnostic or prognostic tool.

One of the most common classification systems to define in which stage the
CRC is in a patient is the Dukes staging (Dukes, 1932). Originally proposed
in 1932, this system placed patients into one of three categories (A, B and C).
Later in 1954, Astler et al. (Astler and Coller, 1954) included another stage
(D) and subdivided stages B and C into two more substages (B1, B2, C1 and
C2). More recently, the system was augmented with two new substages (B3
and C3). Table 11.11 contains the medical description of each of these stages
and Figure 11.6 graphically illustrates how a tumour usually progress within
the colon wall into the different stages.

Stage Description

A Tumour limited to the mucosa.
B1 Tumour reaches the muscularis propia, but it is not in-

vasive.
B2 Same as B2 but with an invasive behaviour.
B3 Same as B3 but the tumour has already invaded adjacent

structures.
C1

Similar incidence as B1, B2 and B3 but with metastasis
in the nodules.

C2
C3
D Tumoral cells have invaded the blood or lymphatic strem

and have produced distance metastasis.

Table 11.11. Augmented Dukes classification system for colorectal tumours.

Fig. 11.6. Colorectal cancer classification following the augmented Dukes stage
system.
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When the colorectal tumour is detected in the early stage A the survival
rate relative to the following 5 years is higher than 90%. Unfortunately, only
39% of the cases are detected in this stage. As the tumour evolves, the survival
rate in the following 5 years decreases. In particular, for the B stages, this
rate falls into 83-85% of the cases. If there exists metastasis (stages C), the
drop down from 72% (C1 stage) to 44% (C3 stage). When the tumour has
spread to other organs, stage D, the survival rate in the next 5 years is only
8% (O’Connell et al., 2004).

Currently, the presented colorectal staging is based on clinicopathologic
features such as bowell wall penetration and lymph node metastasis. Unfor-
tunately these clinical staging systems often fail to discriminate the biologic
behavior of a large number of tumors, resulting in the systematic overtreat-
ment or undertreatment of patients with adjuvant therapies and it can only
be applied after complete surgical resection. Recently developed microarray
technology has permitted the development of cancer classifiers, identification
of tumor subclasses, discovery of progression markers and prediction of disease
outcome in many types of cancer. Unlike clinicopathologic staging, molecular
staging has shown promise in predicting the long-term outcome of any one
individual based on the gene expression profile of the tumor at diagnosis. Ev-
ery tumor contains informative gene expression signatures that at the time of
diagnosis can direct the biologic behavior of the tumor over time.

Gene expression data have proven highly informative of disease state, par-
ticularly in the area of oncology, where accurate and early diagnosis, followed
by appropriate treatment, can prove critical. Studies on clinical samples have
shown that gene expression data can be used not only to distinguish between
tumour types, define new subtypes and identify misclassified cell lines, but also
to predict prognostic outcomes (Golub et al., 1999; Alizadeh et al., 2000). Mi-
croarrays can be used in combination with other diagnostic methods to add
more information about the tumour specimen by looking at thousands of
genes concurrently. It not only classifies tumour samples into known and new
taxonomic categories and discovers new diagnostic and therapeutic markers,
but also identifies new subtypes that correlate with treatment outcome.

11.4.2 Sample processing

A total of 120 paired (from tumoral and distal non tumoral tissues) samples
were processed. They were obtained with informed consent from 60 patients
with sporadic colorectal tumours in the following different stages of devel-
opment according to Dukes classification: B, C or D (substages B1, B2, B3
or C1, C2, C3 were respectively grouped together in B or C). Immediately
after surgery, an anatomopathologic analysis was carried out on the samples
to confirm diagnosis as well as tumour staging. Samples were collected in a
tube containing RNA later solution to preserve the RNA from degradation
and kept at −80◦C until their use.
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Total RNA was extracted from the 120 samples using the RNeasy mini
spin kit (Qiagen). RNA quantity and integrity was determined by 2100 Bio-
analyzer (Agilent Technologies). The RIN algorithm allows calculation of RNA
integrity using a trained artificial neural network based on the determination
of the most informative features that can be extracted from the electrophoretic
traces out of 100 features identified through signal analysis. The RNA integrity
number quantitative assesses the integrity of a given RNA sample (Schroeder
et al., 2006).

For solid tissues, RIN number is usually between 6 and 8 (Fleige and Pfaffl,
2006) and the suggestion is not to use a sample with a RIN number below a
value of 5 (Wolber et al., 2006). Following this recommendation, the lowest
accepted value in the study was of 5.6, rejecting the samples that showed a
lower RIN. In total, 32 tumoral and 42 non tumoral samples were available.
Clinical features of the correspondent patients are listed in Table 11.12.

Patient Dukes’ Age Sex Patient Dukes’ Age Sex

833030 D 46 F 1180611 D 83 M
1178604 B2 69 M 1028566 D 74 M
1179837 B3 68 M 69098 C2 71 F
986007 D 63 M 850184 C2 65 M
1017459 C1 87 F 118160 B2 57 M
1174501 C2 68 F 103933 B1 71 M
1050010 D 81 M 120680 B1 68 M
938226 D 77 F 118406 B1 59 M
622444 B1 73 M 78895 B2 71 M
1020521 C3 47 M 121154 C2 70 M
1179816 B2 71 F 121148 B2 76 F
1057760 B2 72 M 120524 C3 57 F
67363 C2 73 F 85035 B2 63 M
119781 B3 73 M 70576 B2 63 M
41072 B2 55 M 93318 – – –
36692 B2 66 F 134597 – – –
31980 B1 77 M 105224 B2 75 F
1179575 B1 46 M 20505 B2 60 M
736934 C2 47 M 12032 D 69 F
1186314 D 50 M 63823 C1 62 F
1180734 C3 67 F 121345 C2 67 M

Table 11.12. Clinical parameters of colorectal cancer patients included in the study.
Sex: M, male, F, female. DUKES stages: localized tumour without nodes (B1, B2,
B3), localized tumour with nodes (C1, C2, C3) and initial metastasis (D).
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11.4.3 Experimental design and chip hybridization/scanning

The hybridization platform is the Agilent microarray Human 1A(V2) Oligo
Microarrays that measures 22,574 probes simultaneously. We used one refer-
ence pool of non tumoral samples in one channel, while the second channel
was formed by the individual tumoral and non tumoral samples. Previously
referred to in Section 11.1, the experimental design based on pooling reduces
the effects due to the proper biological samples variation (Churchill and Oliver,
2001). At the same time, a pooling design mantains the common behaviours
on the transcripts’ expressions (Kendziorski et al., 2005). There are several
works which use the same experimental design to research colon cancer sam-
ples (Birkenkamp-Demtroder et al., 2002; Kim et al., 2005; Zou et al., 2002).

The 33 non tumoral samples selected to form the pool were chosen taking
into account, along with the RIN quality, that they should have at least 2 g
of RNA, then they were aliquoted and stored at −80◦C. The pool NT was
constituted by 2µg of total RNA from 33 of the non tumoral samples selected
for the study. Aliquots for each round of hybridization were prepared and
stored at −80◦C. 32 tumoral samples (T) and 33 non tumoral samples (NT)
were hybridized against the constructed pool (Pool NT). Thus, a total of
65 arrays were available, see Figure 11.7 for a graphical illustration of the
comparisons.

Fig. 11.7. Experimental design of the study. The microarrays were hybridized ac-
cording to the above scheme.

Reverse transcription was performed on 500 ng of total RNA extracted to
synthesize the first and second strands of cDNA using the Agilent Low RNA
Input Fluorescent Linear Amplification kit. Next, the cRNA was created using
T7 RNA polymerase which simultaneously incorporates the fluophores. The
pool was labelled with Cyanine-3-CTP, whereas the tumoral and non tumoral
samples were labelled with Cyanine-5-CTP. Labelled probes were measured
in the spectrophotometer at two different wavelengths, at 550 nm the samples
labelled with Cy3 and at 650 nm the ones labelled with Cy5. In order to
determine the efficiency of the labelling, the ratio of the picomoles of cyanine
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dye and µg of cRNA was calculated. Only those probes with a ratio between
10 and 20 were suitable to hybridize.

0.75 µg of cRNA labelled samples were hybridized onto the arrays using
the Agilent in situ hybridization kit-plus. The arrays were placed inside the
hybridization oven and we performed the hybridization reaction for 17 hours
at 60◦C. The slides were washed at room temperature in 20X SSPE and
20% N-laurylsarcosine and dried with the stabilization and drying solution
provided by Agilent.

The hybridized arrays were scanned using the Axon GenePix 4000B dual
laser slide scanning system at the wavelengths corresponding to each of the
flurophore. The image was processed with the GenePix Pro 6.0 (Axon), with
10 µm resolution. Microarray internal controls named ’NA’, ’NegativeControl’,
’N/A’, ’BrightCorner’, ’Pro25G’ and ’eQC’ were removed from the raw data.

11.4.4 Probes quality preprocessing

Following the criteria described in Section 11.2.2, the first step on every pre-
processing task on a microarray experimentation is to remove those probes
whose values might not be reliable. To this end, the three criteria were com-
puted for all the probes of the 65 available microarrays:

• The fluorescent intensity measurement quality,
• the background flatness quality,
• the signal intensity consistency quality.

Once the global quality metric was computed, the threshold for a probe to
be accepted was set up on a 0.99 value. Taking this value into account, from
the original 17, 986 probes, only 11, 104 probes were retained as being valid
and with reliable values.

The next tackled step for preparing the data for a data mining process
is to normalize the data values. Within the microarray analysis field, this
normalization is referred to as the reallocation or smoothing of the data values
on the basis of a biological fact: in a biological experiment, the number of genes
to be dysregulated has to be low.

However, due to different physical and biological factors such as the sys-
tematic variations in the dyes properties, the efficiency of dye incorporation
or the experimental variability in hybridization, this statement is systemat-
ically unfulfilled. Thus, so that biological differences can be more easily dis-
tinguished and comparison of expression levels between slides allowed, the
intensity values must be corrected.

The most graphical tool to understand this need is the MA-plot (Dudoit
et al., 2002). An MA-plot graphically compares the intensity values of a dual
channel array. The plot’s axes are defined by M = log2(Sr/Sg) as the ordinate
and A = log2

√

Sr × Sg as the abscissa. An MA-plot is basically a char of the
dispersion level that the values present. Figure 11.8 displays an array MA-plot
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before a normalization process and how the number of underexpressed genes
is extremely high. The same Figure 11.8 shows how this defect is corrected
after the normalization process.

Fig. 11.8. MA-plots of one of the CRC microarrays in the study. The top chart
corresponds to the unnormalized data, whereas the bottom chart shows the values
after a normalization process.

There are different techniques to perform this normalization task: global
normalization, scale to a given value, normalization with respect to control
or housekeeping genes, statistical standardization, etc. Nevertheless, two tech-
niques have gained interest and the microarray community consider both to be
the gold standard: Robust multi-array (RMA) normalization (Irizarry et al.,
2003) and locally weighted linear regression (or lowess) normalization (Dudoit
et al., 2002; Yang et al., 2002). Lowess normalization has been reported to re-
trieve low variance data and thus more reliable probe expressions (Zahurak
et al., 2007). Therefore, and since there is no consensus in the community of
which of them is better, we chose to use lowess to normalize all the microarray
data values.

Data coming from microarrays may also include lost or unknown values
due to physical problems on the hybridization process. Figure 11.9 presents
three examples of these bad hybridizations (all detected in our CRC data).

Usually, the scanning software is in charge of the automatic detection of
these hybridization defects. The software identifies the problematic probes
and its associated values are flagged with a lost-value identifier. Seldomly,
these probes may be identified by the scanner operator and flagged manually.
The presence of lost values is an obstacle to tackle any posterior data mining
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Fig. 11.9. Examples of physical problems on the hybridization process. Incorrect
binding of the cRNA (left), external fiber inclusion in the array (center) and again
an incorrect binding of the cRNA to the slide (right).

process. The great many machine learning and data mining techniques need
to have a complete dataset, that is, without any lost value.

However, the practitioner should be aware that the completion of the lost
values may bias the data if the number of lost values is high in comparison
with the actual known values. Within our dataset, we found a total number
of 17,147 lost probes throughout the 65 arrays, which only constitutes 1.47%
of the values. This number suggested that the lost values filling process, com-
monly known as lost values imputation, was not substantially biasing the
data.

Contrary to previous preprocessing steps, in the microarray lost values
imputation problematic, one approach has gained the approval of almost all
the research community: the k-NN imputation of (Troyanskaya et al., 2001).
k-NN impute is based on the classical k-Nearest Neighbors supervised classi-
fier proposed by (Aha et al., 1991). The imputation algorithm uses a similar
scheme to the classification one. It looks for the closest k probes among all
the array set (in terms of a given distance between all the values, usually
euclidean). Then, a correlation coefficient is computed between the probe to
impute and all the selected neighbours. Finally, the lost value is computed
taking into account the neighbours values as a weighted mean value by the
correlation coefficient.

Following the recommendations of its authors, the value of k was set in 15
neighbours and a total of 7,534 values were imputed. This number of probes
corresponds to the lost values found in the probes that have already passed
the quality criteria process.

The colon samples come from biopsias taken in open colon surgeries. This
origin implies that there are several kind of tissues in each sample (e.g. mucosa,
muscle or lymphatic cells among others). A side effect appears then: between
samples grouped on the same phenotype there could be extreme differences
in the expression profiles of some particular genes. This “chaotic” behaviour
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is found to be of no interest because it is far from being reliable in a general
study (Kitahara et al., 2001).

Thus, following the physicians recommendations, the probes that showed
an intra-class variability equal or higher than 2-fold were removed from the
analysis. Starting with a valid set of 11,120 probes, a total of 3,016 were
removed, keeping 8,104 probes which comprised the set of probes/genes/-
variables/features of the supervised classification problem.

Section 8.2 discusses the discretization problematic when dealing with con-
tinuous values in biological researches. Presented in Secion 8 and put on stage
in Section 11.3, the consensus gene selection is a way to alleviate possible data
biases of the discretization policies. However, in the case of CRC dataset we
decide to discretize the data only with one policy, equal width (Kerber, 1992),
because of its unsupervised nature and fitness for gene expression data. As a
general criterion on the gene expression studies, the number of functional sta-
dios a gene can be is low (Causton et al., 2003; Friedman et al., 2000). In the
case of arrays experiments this number is commonly set to three states: over
expression, under expression or baseline (null) activity. Thus, borrowing this
criterion, we considered that the most fitted discretization policy was a three-
bin equal width discretization. The procedure is easy, each probe’s continuous
values are sorted and the range is divided into the number of bins (Tuzhilin
and Adomavicius, 2002). In addition, it does not use the supervised informa-
tion of the class separation, a fact that adds independence from the supervised
classification problem.

11.4.5 Supervised classification approach

From the machine learning point of view, the translation of this experimental
design into a supervised classification problem is straightforward. The super-
vised dataset will be comprised of 65 instances (one per hybridized array) with
two values for the supervised variable: tumoral (arrays when a tumor sample
(T) is compared against the NT pool) and non tumoral (each non tumoral
sample is individually compared against the NT pool). The number of in-
stances for each class respectively is thus of 32 tumoral and of 33 non tumoral
ones (Armañanzas et al., 2008a). Similar schemes in cancer studies have been
previously used (Birkenkamp-Demtroder et al., 2002; Kitahara et al., 2001;
Zou et al., 2002).

This supervised modelling could be augmented by subdiving the tumoral
instances into their corresponding Dukes’ stadio. This way, the class variable
should take four different states: non tumoral (NT ), Dukes B stadio(B state),
Dukes C stadio (C state) or Dukes D stadio(D state). Within this augmented
scheme, one instance must be removed because it comes from a Dukes A sta-
dio and there were no others from the same stadio. Finally, the distribution
could be as follows: 33 NT, 13 B state, 10 C state and 8 D state instances
respectively. Although of interest, this supervised scheme presents very few
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instances in each state, a fact that may significantly penalize the generaliza-
tion of the results. The previous dichotomic scheme is therefore used in the
subsequent analysis.

11.4.6 Data analysis results

11.4.6.1 Running parameters

The methodological proposal introduced in Chapter 9 includes a set of running
parameters to be fixed, principally the feature subset selection, a boundary for
the maximum number of parents k for the k-dependence Bayesian classifier
and the number of times that the boostrap loop is performed. Moreover, and
especially in the microarray context, all these parameters are expected to set
a scenario in which the running time could be affordable.

The feature subset selection technique was, as in the case of SLE and
PAPS, the correlation-based feature subset selection (CFS). Once the dataset
is reduced by the CFS, the Bayesian classifier to be learnt is a kDB with a k
value of 4. This value allows the graphical models to be both flexible and not
sparse when inducing the structures of dependences. Moreover, it implies a
sufficient value so none of the possible relevant dependences could be outside
the models. It has been tested experimentally that the kDB-θ does not add
any improvement to this design within the microarray domain.

Finally, the proposed algorithm in Section 9.2.1 is repeated a thousand
times, that is, the bootstrap parameter B is set to a value of 1,000. This way,
we search for arcs that occur a number of times that can be widely considered
as reliable.

11.4.6.2 Reliable gene-dependence network

After all the running pipeline finished, we found the following statistical re-
sults: the total number of probes that were selected as relevant at least once
from the original 8, 104 set was of |S(L1)| = 1, 723. On the basis of these
variables, the average number of arcs configured through all the induced kDB
classification models –removing those that create cycles among them– was of
|L1| = 35.19. Among them, the most times configured probabilistic relation-
ship was the arc TCF3 → ENC1 that was included a total of 799 times from
the 1,000 total runs.

The reduction range in the number of variables is up to 78.74% of the
original set, and the number of arcs is consistent with this reduction. The
high number of times that the arc TCF3 → ENC1 is included is noticeable,
see Figure 11.10 for a complete view. At least 80% of all the feature selection
runs selected both variables, and, within all those runs, 799 out of 1, 000
models induced this arc. This fact entails a very high degree of confidence to
this dependency. In Section 11.4.6.4 the biological background of this finding
and others are discussed in detail, showing a clear correspondence between
the statistical models and the biological findings.
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Fig. 11.10. Graphical structure of the high reliable dependences network for the
CRC dataset and a t value of 350. Notice that each arc width is proportional to the
associated number of times it was configured.

11.4.6.3 Classification accuracy

Although the priority of this analysis was to apply the reliable dependence
detection algorithm, a reliable set of dependences can also be used in a pure
classification application. For this purpose, firstly, the expert has to fix a
certain value for the dependency threshold t to return the set of variables
and arcs which surpass that level, obtaining a single model. This way, the
complexity of the models can be tuned, assessing the scope, variables or aims
of the study. After that, the class node is included in the model, adding
arcs from it to the rest of the variables. This way the graphical structure
is completed and the corresponding conditional probabilities are computed
by their maximum likelihood estimators. Figure 11.11 represents the model
structures for the CRC array sets for threshold t = 400, that is, each model
contains the probabilistic relationships that have been jointly selected and
configured 400 times at least.

As the confidence threshold falls, the sparsity degree of the models de-
creases and, thus, the number of variables to be evaluated increases. Therefore,
it is of interest to study how the classification models evolve from the very
simplest to the most dense ones. In order to analyse this effect, an evaluation
of the classification accuracy of each model is performed. Due to the number
of models to be evaluated, the total runs and the required computing time
for the whole process, a five fold cross validation method is used to estimate
the final classification accuracy. This estimation scheme was proven to be
well suited for the microarray context (Bouckaert and Frank, 2004; Statnikov
et al., 2005), guaranteeing a fair and not overfitted accuracy percentage. For
each fold, the run parameters are equal to the ones used in Section 11.4.6.1:
a thousand bootstrap loops, CFS as multivariate filter method and a value of
4 for the kDB classifiers.



154 11 Genomics

Class

NEU1

TCF3

ENC1FLJ20539 NMBACAT1 GABPB1 CBFB SNAI1

Fig. 11.11. Example of the graphical structures of the network classifiers configured
from the high confidence dependences set: the corresponding threshold t is set at
400.

Table 11.13 gathers the number of selected variables, the total number of
arcs induced in all the models, the number of times the most often retrieved
dependence is recovered, and the maximum average accuracy achieved. Notice
that the accuracies shown are jointly evaluated for a fixed confidence thresh-
old. As a visual tool to study the tendency in classification, we have collected
for each threshold the number of variables, arcs, mean accuracies and stan-
dard deviation in a single plot (see Figure 11.12). This Figure could be useful
to decide to which degree of complexity a biologist is willing to analyse, tak-
ing into account the number of variables, arcs and the accuracy level that the
model is able to reach.

Train1 Train2 Train3 Train4 Train5 Mean Std

CRC (8104 vars)
|S(L1)| 1223 1205 1188 1073 952 1128.2 114.62

|L1| 23.55 25.63 23.65 19.08 17.54 21.89 3.41
max t 689 380 433 439 323 452.8 140.11
max acc. (t = 89) 100 100 100 100 83.33 96.67 7.45

Table 11.13. Details about the number of variables and arcs for each cross valida-
tion fold. The cardinality of the highest configured arc is included.

Inspecting these results shows that there is no direct relationship between
the number of arcs/variables and the model’s accuracy. Figure 11.12 illus-
trates how, despite the addition of new arcs and thus more variables, there is
no guarantee that the accuracies of a more complex model would be higher
than the ones from a simpler model. There is a nuclear set of variables/arcs
that is able to work out a high degree of the classification separability: more
complex models do not necessarily correspond with higher accurate models.
At a level of t = 310, the estimation of the accuracy with only four variables
and three arcs achieves a mean value of 96%. This fact corroborates other
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Fig. 11.12. Estimated accuracy tendency over the CRC array set. Mean accuracies
are presented with their associated standard deviation for each confidence threshold,
as well as the number of variables and edges included for that threshold.

studies regarding gene expression classification based on a reduced number of
genes (Wang et al., 2007; Baker and Kramer, 2006; Li et al., 2004).

The low number of instances in the test set of each fold forces the mean ac-
curacy to have a high level of standard deviation. Thus, accuracy percentages
for each array set do not improve the state-of-the-art error rates, but clearly
show that recovered high confidence structures are also able to clear up a sig-
nificant piece of the phenotype information. All these genes and dependences
can be of great interest to reveal new underlying biological knowledge.

11.4.6.4 Biological discussion

The graphical dependency structure reported in Figure 11.11 gathers a total
of nine genes given a t threshold of 400. From all of them, TCF3 results in
a kernel gene that shows dependences with all of the rest of the genes. This
finding perfectly matches the biological function of TCF3, which is the tran-
scription factor 3 or E2A immunoglobulin enhancer binding factors E12/E47.
TCF3 coordinately regulates the expression of genes involved in cell survival,
cell cycle progression, lipid metabolism, stress response, and lymphoid matu-
ration (Schwartz et al., 2006).

In the downstream dependences we find the gene FLJ20539, also known
as GBP. (Lee et al., 2001) describes a physiological regulation of [beta]-
catenin stability by TCF3 and CK1epsilon. Moreover, another of the reported
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genes, CBFB encodes a protein that belongs to the beta subunit of a het-
erodimeric core-binding transcription factor belonging to the PEBP2/CBF
transcription factor family which master-regulates a host of genes specific
to hematopoiesis (Bayly et al., 2004) (e.g. RUNX1) and osteogenesis (e.g.
RUNX2). The expression of CBFB is down regulated in a significant por-
tion of gastric cancer cases, which may be involved in gastric carcinogene-
sis (Sakakura et al., 2005). In addition, several studies suggest that lack of
RUNX3 function is causally related to the genesis and progression of human
gastric cancer, but potential roles of other members of the RUNX family genes
have not yet been reported. Furthermore, CBFB, the gene encoding the co-
factor of RUNX1, -2, -3, was also downregulated in significant fraction (32%,
p < 0.05). The percentage of downregulation of RUNX1, RUNX3 and CBFB
increases as the cancer stage progresses. All these findings and relationships
constitute a serious biological hypothesis between the activity of CBFB and
the gastric or colorectal carcinogenesis.

For its part, SNAI1 gene is present in activated mesenchymal cells indicat-
ing its relevance in the communication between tumor and stroma and this
fact suggests that it can promote the conversion of carcinoma cells to stromal
cells (Franćı et al., 2006). Its expression in colorectal tumors is also associ-
ated with downregulation of E-cadherin (CDH1) and vitamin D receptor gene
products (Peña et al., 2005a). The work by Takahashi et al. (Takahashi et al.,
2004) demonstrated that inhibition in SNAI1 is directly induced by TCF3.
In mice, a human ortholog of human TCF3 is reported as a direct sequence-
specific activator of negative vitamin D response element (Murayama et al.,
2004), which clearly supports the SNAI1 findings in colorectal tumors.

Another dependence found by our method shows a relation between NEU1
and the transcription factor TCF3. The protein encoded by NEU1 encodes the
lysosomal enzyme, which cleaves terminal sialic acid residues from substrates
such as glycoproteins and glycolipids. Upregulation of the NEU1 expression
is important for the primary function of macrophages and there is a link
between NEU1 and the cellular immune response (Liang et al., 2006): data
show that the differentiation of monocytes into macrophages is associated
with the specific up-regulation of the enzyme activity of NEU1 (Stamatos
et al., 2005). Greenbaum et al. (Greenbaum et al., 2004) reported that TCF3
is a negative regulator of a set of genes involved in the development of B
lymphocites, thus, showing the link between TCF3 and NEU1.

Table 11.14 gathers the summary of the dependences that have been previ-
ously reported by biological works. Notice that the confidence levels for these
arcs are very high (t = 400), which corroborates the reliability of these results.
From the rest of these genes, two of them are directly related with colorectal
cancers: ENC1 and NMB. ENC1 (ectodermal-neural cortex) belongs to the
p53-induced gene set and it is also known as PIG10 gene (Polyak et al., 1997).
The influence of this PIG with colorectal cancer was firstly published by (Fu-
jita et al., 2001).This work states that ENC1 is regulated by β-catenin/TCF
pathway and its altered expression contributes to colorectal carcinogenesis by
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suppressing differentiation of colonic cells. NMB (neuromedin B) is associated
with eating behaviors and obesity (Bouchard et al., 2004); NMB and its re-
ceptor are coexpressed by proliferating cells in which they act in an autocrine
fashion with similar and modest potency in both normal and malignant colonic
epithelial cells (Matusiak et al., 2005).

Dependence Confidence level Reference

TCF3 → FLJ20539 oij = 678 (Lee et al., 2001)
TCF3 → CBFB oij = 457 (Bayly et al., 2004)
TCF3 → SNAI1 oij = 426 (Takahashi et al., 2004)

(Murayama et al., 2004)
NEU1 → TCF3 oij = 425 (Greenbaum et al., 2004)

Table 11.14. High confidence (oij > 400) interactions reported by both our method
and also by the biological literature for the CRC array set.

The last two genes are not yet related to the cancer field. ACAT1 (acetyl-
Coenzyme A acetyltransferase 1) is associated with the alpha-methylaceto-
aceticaciduria disorder, an inborn error of isoleucine catabolism characterized
by urinary excretion of 2-methyl-3-hydroxybutyric acid, 2-methylacetoacetic
acid, tiglylglycine, and butanone. The length of ACAT1 is approximately of
27 kb and contains 12 exons. Due to this high dimension, many mutations
have been found for this gene (Fukao et al., 2003) and many of them are un-
der study (Zhang et al., 2006). Regarding its colon activity (Ancona et al.,
2006), ACAT1 has been shown to play a pivotal functional role in the intesti-
nal absorption of cholesterol, the hepatic secretion of VLDL, the biosynthesis
of steroid hormones, the production of cholesterol esters in macrophages in
atheroma and the secretion of biliary cholesterol (Smith et al., 2004). Lastly,
GABPB1 (GA-binding protein transcription factor, beta subunit) stimulates
transcription of target genes. The encoded protein may be involved in acti-
vation of cytochrome oxidase expression and nuclear control of mitochondrial
function. Biologists have identified multiple transcript variants encoding dis-
tinct isoforms of the protein. All of this suggests a general purpose compound
that may be found in many biological processes.

11.4.7 Conclusions

A gene interaction network represents information in a richer way than uni-
variate lists of genes. It describes groups of closely connected genes, unveiling
biological knowledge or work hypothesis for both biologists and physicians.
Hypothesis driven studies can converge with this data driven technique: it
opens the possibility to study how a given gene or dependence interacts with
the rest of the genes included in a study. This way, a beforehand hypothesis
could be corroborated by a ’blind’ data mining approach.
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The biological analysis of the results for the CRC array set has proven
a flawless correspondence between our method’s findings and the evidence
found in the biological state-of-the-art. Besides, reported results have also
shown the potentiality of the induced models in a pure classification task. Re-
duced sets of dependences/variables are able to achieve a competitive degree
of accuracy when performing a class-discrimination procedure, corroborating
previous statements in the microarray analysis field.

As important as the accomplishment of previous hypothesis is the pointing
out of new research targets. This knowledge discovery application brings into
focus a new set of tools to help understand complex diseases that show rela-
tionships of different degrees among the involved genes. Results of this analysis
and the analyses of the augmented experimental design (see Section 11.4.5),
jointly with an in-depth biological discussion and validation, have been sub-
mitted to the European Patent Office (Garćıa et al., 2008).

11.5 New insights in multiple sclerosis on the basis of a

micro RNA bioinformatic analysis

The following study presents a computational biology research in a pioneering
domain: the micro RNA regulation of the gene activity in a complex disease
such as multiple sclerosis or MS. In this study, we report the expression study
of 364 miRNA from three different phenotypes: MS patients during relapse,
MS patients during remission and healthy controls. The main aim of this
research is to enlighten whether miRNA activity interacts with the regulatory
mechanisms of the MS stages.

The work database comprises quantitative expressions of 364 miRNA in
the different available samples. These expression values were obtained by
means of qPCR using a TLDA system from Applied Biosystem (Section 11.5.3
includes the technical details). Roughly speaking, the TLDA (Taqman Low
Density Array) is a high-throughput platform that is able to simultaneously
perform 364 different qPCR reactions in a microfluidic device. This kind of
device allows the practitioner to simultaneously analyse a number of RNA
sequences that were unfeasible to tackle years ago.

As in the case of DNA microarrays, many of the sequences included in
the TLDA device won’t be related with the disease under study. To seek
the relevant sequences, a machine learning approach is again mandatory. The
results obtained suggest the importance of some miRNAs in the molecular
mechanisms implicated in multiple sclerosis. Even more, the machine learn-
ing approach opens new work hypothesis to keep researching on the relation
between miRNA and MS (Otaegui et al., 2009).
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11.5.1 Introduction

Multiple sclerosis is an autoimmune demyelinating disease of the central ner-
vous system (CNS). It begins most commonly during late adolescence, young
adulthood, or mid-life, and it is one of the most incapacitating diseases in this
age range.

MS causes attacks of neurological dysfunction (loss of vision, difficulty in
walking or moving a limb, vertigo, loss of sensation) or progressive dysfunc-
tion in these same areas. These attacks, also known as relapses, typically last
for a few days, and resolve spontaneously. However, patients may not always
completely recover from an attack and are sometimes left with a disability. Al-
though most patients experience attacks with little or no progressive disability,
approximately 10-15% have progressive symptoms from onset, called primary
progressive forms. Furthermore, more than 80% of patients will ultimately de-
velop progressive symptoms after a prolonged period of exacerbations, usually
after 10-20 years.

Etiologically, MS is a complex disease in which both genetic and environ-
mental factors play a role. The genetics of MS is also complex without a clear
inheritance pattern. The most relevant candidate genomic region is the HLA
system (Haines et al., 1996; Sawcer et al., 1996; Oksenberg and Barcellos,
2005), although several other genes are currently being described as impor-
tant risk factors involved in MS, as for example IL2RA (Alcina et al., 2009)
or IL7R genes (Gregory et al., 2007).

Gene expression profiling has been a useful tool to provide information
about the molecular pathways involved in MS pathogenesis (Achiron et al.,
2004; Baranzini et al., 2005b; Ramanathan et al., 2001). Several new stud-
ies have identified different expression patterns between relapses and remis-
sion (Otaegui et al., 2007; Satoh et al., 2008) showing that this clinical differ-
entiation of two states of the disease also has a molecular correlation. Besides
gene expression activity, it has been recently predicted that also micro RNA
molecules (miRNA) may regulate around 30% of all cellular mRNA, so they
should play a critical role in virtually all cellular functions (Lewis et al., 2005).

Although misregulation of miRNA expression has been characterized
mostly in cancer, it has lately been studied in many other diseases. In
these studies, miRNA has been proposed as a regulator of immune cell de-
velopment (Baltimore et al., 2008), playing a role in the inflammatory re-
sponse (O’Connell et al., 2007), and as a key player in the pathogenesis of
neurodegenerative diseases (Nelson et al., 2008).

11.5.2 Study participants

All patients were recruited by the Neurology Department of Hospital Donos-
tia, located in the region of Gipuzkoa (the Basque Country, Spain). The study
was approved by the local institutional review board and all the samples were
obtained with the written informed consent of the subjects. The patients were
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diagnosed as having MS according to the Mc Donald Criteria (McDonald
et al., 2001; Poser, 2006).

As a first sample group (group A), 21 blood samples were obtained: 9 from
patients in remission, 4 from patients during a relapse before the administra-
tion of steroids and 8 from healthy volunteers. Total RNA, including miRNA,
was extracted from these samples to carry out the micro RNA expression
study. Demographic information of the samples is presented in Table 11.15.
Blood extraction was always performed in the early morning and RNA ex-
traction was carried out no more than 2 hours after the blood was collected.

Status Stage Age Sex TEV Onset EDSS

Control – 31 Male – – –
Control – 31 Female – – –
Control – 25 Female – – –
Control – 33 Female – – –
Control – 29 Female – – –
Control – 22 Female – – –
Control – 25 Female – – –
Control – 32 Male – – –
MS Remitting 45 Female 22 23 2.5
MS Remitting 37 Female 7 30 1.5
MS Remitting 54 Female 11 43 2
MS Remitting 45 Female 12 33 6
MS Remitting 69 Female 22 47 2
MS Remitting 41 Female 20 21 3.5
MS Remitting 38 Female 2 36 2
MS Remitting 33 Male 11 21 6
MS Remitting 45 Male 5 40 2
MS Relapse 35 Male 1 34 3
MS Relapse 53 Male 10 43 4.5
MS Relapse 38 Male 11 27 3.5
MS Relapse 46 Female 19 27 5

Table 11.15. Clinical description of the group A cohort of individuals. Columns
Status and Stage show if the individual is a control or if he/she is a MS patient,
in that case, the disease stage is included. Within the MS patients, column TEV
displays the number of years or time of evolution. Column Onset includes at what age
the patient had the first attack and column EDDS presents the expanded disability
status scale or EDSS (Kurtzke, 1983).

Two other cohorts of samples were collected from other non-related groups.
All these samples were used to independently validate some of the results
obtained from the expression analysis of group A samples (see Section 11.5.6).
Group B10 includes mRNA samples of 42 individuals, 14 in remitting stage,
13 in relapse stage and 15 healthy controls. The last group (referred to as

10 Clinical data from groups B and C is not available.
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Group C10) is composed of miRNA samples extracted from 14 individuals, 3
in remitting, 4 in relapse and 7 controls.

11.5.3 RNA extraction, reverse transcription (RT) and
quantitative PCR (qPCR)

Total RNA was extracted from blood using the AM1923 Ambion Leucolock
kit working with the alternative protocol so as to keep the small RNA fraction.
The RNA obtained was quantified in triplicate using a NanoDrop spectropho-
tometer.

A common bias in the interpretation of the miRNA profiles from whole
blood may be introduced by the high concentration of miRNA from erythro-
cytes (Chen et al., 2008b). In order to avoid such a bias, we firstly filtered
out the blood samples, keeping only the peripheral blood mononuclear cells
or PBMCs –a PBMC is a blood cell that has a round nucleus, like the lym-
phocites or the monocytes–. After this separation, the RNA purification was
done.

In the case of group B, the samples came from RNA samples that are being
collected systematically at the Hospital Donostia (San Sebastián, Spain). They
were extracted using a Versagene TM Kit. This kind of extraction method
entails the loss of the small molecules of RNA, e.g. miRNA. Therefore, in
order to detect those possibly lost miRNA, cDNA was synthesized from total
RNA using a Multiplex RT for Taqman array kit. This kit consists of 8 pre-
defined RT primer pools containing up to 48 RT primers each. Each of these
8 pools contains the same endogenous control (RNU48). Unfortunately, this
technology has been developed to detect only full length mature miRNA but
not their precursors or their partially-degraded products.

We performed qPCR using the Taqman Low Density Array (TLDA) Hu-
man MicroRNA Panel v1.0 from Applied Biosystems. This TLDA includes
365 miRNA assays plus an endogenous control. The qPCR was performed
using an Applied Biosystems 7900 Sequence Detection System. CT values
were determined using the automatic threshold in RQ manager v1.1 analysis
software.

Two normalization steps were used: the first normalization consisted of
loading, for all the pools, the same quantity of template RNA and, the second,
of normalizing the data against an endogenous gene. This endogenous control
(RNU48) was chosen for this study as the least variable of all endogenous
genes included in the TLDA assays. Consequently, data collected from each
sample was independently normalized using the associated RNU48 expression,
avoiding in this way bias in the results.

Relative quantification of miRNA expression was calculated with the
2−∆∆CT method (Applied Biosystems, 2001). Quality of the data and quan-
tification was computed using Real-Time Statminer software11.

11 More info about the Statminer software is available at
http://www.integromics.com.
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11.5.4 Supervised experimental design

Understanding the mechanisms by which MS triggers new episodes or attacks
is a crucial task in the medical field. There is no clear evidence of how or
when a remitting MS patient may develop the next crisis. In this scenario,
an experimental design which could mix the three phenotypes at the same
time could lead to unclear conclusions rather than enlighten some biological
mechanism. This is the reason why the experimental design was divided into
two dichotomic supervised problems: the comparison of the miRNA profiles
of relapse and remitting patients (relapse vs remitting) and the comparison
of the miRNA profiles of remitting patients and healthy controls (remitting
vs control).

The aim of the first approach is to look for dysregulations in the miRNA
activity between the MS patients. Some of the dysregulated miRNA could
be involved or be part of other hidden biological mechanisms that may give
clues about the relapse of the disease. The second approach is focussed on
identifying differences between a healthy miRNA expression and the miRNA
expression of a MS patient when the disease is slept or latent. Again, a biolog-
ical clue at the level of miRNA could point to other major body dysfunctions.

In order to get a system biology and multivariate view of these two compar-
isons, we undertook the construction of highly reliable dependence networks
using the algorithms presented in Chapter 9. The group A of samples was
used for inducing the gene networks. Samples of groups B and C were used as
independent samples to biologically validate the remarkable results from the
networks.

11.5.5 Data analysis results

11.5.5.1 Running parameters

The running parameters for building the gene networks were configured with
values similar to the ones used in the application to the CRC dataset (see
Section 11.4.6.1). That is, the feature subset selection is set to the correlation-
based feature selection (CFS) (Hall and Smith, 1997) and the value of k for
the kDB classifiers was set to four.

The only difference was the number of iterations that the bootstrap loop
performs (B). Since the number of samples was very low (4 relapse, 9 remitting
and 8 control), we set B at 10,000 bootstrap iterations, trying to avoid, as far
as possible, false positive dependences.

Similarly to the CRC analysis of Section 11.4, the quantitative expression
values were discretized by the equal width procedure. The number of bins was
as well configured at three bins (see Chapter 8 and Section 11.4.4 for more
details).
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11.5.5.2 Reliable gene-dependence networks

On average, 45% of the analyzed miRNAs were expressed in all the exper-
imental samples. The results from the reliable dependence algorithm show
diverse network topologies. However, the highest cardinalities for the confi-
dence thresholds are not so high, taking into account that the process was
repeated ten-thousand times.

Figure 11.13 shows the network structure of the comparison between re-
mitting and control samples when the confidence threshold t is brought down
to 500. The topology of the network suggested at first sight that the miRNA
with id miR 96 had a key role in a possible jointly regulation.

By exploring the same confidence level in the comparison between relapse
and remitting samples, we found a more complex dependence structure than
in the previous case. Figure 11.14 presents that network, where the miRNA
labeled as miR 18b seems to be playing a prominent role.

The field of miRNA is still under heavy development and the research
is still in its adolescence. In the case of coding genes, there is a wide range
of possibilities to research these dependences. However, in the miRNA case,
the discussion on the biological translation of the statistical dependences is
currently unaffordable. However, the induction of reliable interactions not
only points to possible co-regulations, but also identifies which are the most
relevant variables of the domain.

A total of six miRNAs were selected for an in depth biological study and
validation of their biological relevance. From the network in Figure 11.13,
we selected four miRNA, namely miR 148a, miR 184, miR 193a and miR 96.
miR 184 and miR 193a presented the highest robustness values on their as-
sociated dependences with miR 96 (1,557 and 1,358 respectively). From the
network topology, we also included in the analyses miR 148a because of its
possible downward activity.

In the case of Figure 11.14 the selection was not so straightforward. As
previously mentioned, miR 18b shows to have an important role in the net-
work structure and, thus, it was also included in the list of candidate miRNAs
to explore. Moreover, the most interesting fact was that, inspecting its expres-
sion values, we found that its activity showed an increasing expression in the
relapsing group compared with its expression in the control samples. Similarly,
the second miRNA selected from this network was the miR 599. This miRNA
showed expression both in the relapsing and remitting groups but not in the
control samples.

To ensure the selection of these last two miRNAs, we performed an expres-
sion validation on an independent cohort of 14 unseen samples (group C). The
qPCR was performed in a 7900 sequence detection system using pre-designed
Applied Biosystems Taqman probes. The selection was reinforced by the fact
that miR 18b and miR 599 were four and five times more over-expressed in
the relapse group than in the controls.
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11.5.6 Biological validation of the results

The function of mature miRNA molecules is to down-regulate gene expres-
sion. This is accomplished because their short strands (21-23bp) are partially
or totally complementary to one or more mRNA molecules. It is possible
therefore to establish regulation relationships between each miRNA sequence
and a gene sequence (or target gene). By the comparative analysis of the
genomic sequence, these associations are retrieved in a computational way.
However, there are no clear criteria to state which miRNA could bind with
which target gene. As a result, there are different genomic browsers that have
been proposed to inspect the possible target genes.

In order to provide a biological interpretation of our findings, we searched
the predicted targets of each of our six relevant miRNA in three different
databases: miRBase targets v5 (Griffiths-Jones, 2004; Griffiths-Jones et al.,
2006), TargetScan v4.2 (Lewis et al., 2003, 2005; Grimson et al., 2007) and
Pictar (Krek et al., 2005). As expected, the results reported large differences
in the possible target associations. Table 11.16 lists the number of predicted
targets for the six miRNA according to each database (in the case of miRBase,
two different searches with different confidence thresholds were performed).

miRBase Pictar TargetScan Common
p <0.05 p <0.005

miR 96 909 361 698 592 57
miR 184 819 289 22 17 3
miR 148a 918 353 429 434 46
miR 193a 819 362 134 208 14
miR 18b 775 327 151 149 14
miR 599 783 185 – 173 11

Table 11.16. Predicted target genes for the selected miRNA reported by three
different databases. Column Common represents the number of targets jointly pre-
dicted by the three databases.

Theoretically, these miRNA should inhibit the expression of a certain num-
ber of target genes. The databases offer predicted information about the tar-
gets, but there are few experimental results to support it. So, to be as conser-
vative as possible, in our analysis we selected as target genes only the common
results from the three different prediction algorithms (in the miRBase case we
selected the p < 0.005 column).

To validate the obtained results, we checked the expression in blood of
four of these target genes in an independent cohort of 42 unseen samples
(group B). The expression was analyzed by qPCR using SYBRgreen as fluores-
cent and pre-designed primers from geneglobe (http://www.geneglobe.com).
The assay codes can be found in Table 11.17. We studied the expression of
genes ARHGEF12, CELSR2, TAOK3 and GAB1. Table 11.17 presents the
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miRNA(s) associated to each gene and the group in which it is expected to
be down-regulated.

Gene GeneID micro RNA Down in Assay code

ARHGEF12 23365 96 / 148 / 193 Remitting QT00006762
CELSR2 1952 96 Remitting QT00010948
TAOK3 51347 599 Relapse QT00059843
GAB1 2549 18b Relapse QT00014154

Table 11.17. Target genes studied with their gene ID, the miRNA(s) that binds
to the gene, the group in which these genes are expected to be down-regulated and
the Geneglobe Assay code.

Unfortunately, the results reported no statistical differences in the ex-
pression pattern of the four genes. However, most of the miRNA targets are
predicted from bioinformatic analysis and have not yet been validated in bi-
ological studies. The fact that the hypothesis of under expression influence
of the miRNAs is not directly validated by these four genes could be due to
many factors. Notice that these four genes were randomly selected from the
set of 145 possible common target genes. In addition, the measurement in
blood may be inappropriate to verify their possible repression because not all
dysregulated transcripts can be measured in blood. Another possible cause
could be a regulation of the miRNA at the translational level rather than at
the expression level.

In order to go beyond these limitations, we carried out another experiment,
this time taking all the target genes into account. Since miRNA are highly
conserved across species (Weber, 2005; Ibañez-Ventoso et al., 2008), we used
the murine EAE model to validate our findings. To this end, we mined a
large multi-tissue, longitudinal gene expression profiling dataset in mouse EAE
lymph node (Otaegui et al., 2007) and spinal cord (Baranzini et al., 2005a),
focusing on the same target genes as those reported as common in Table 11.16.
In order to check whether our selected target genes were really related with the
disease, we randomly picked as control a group of 11 miRNA from those that
were not differentially expressed in our first analysis. As in the case of the six
relevant miRNA, we obtained the target genes of the new control 11 randomly
chosen miRNA. The aim is to study how the expression of these target genes
is significantly different between those associated with the relevant and those
associated with the control miRNAs.

We checked the expression of all these target genes at the peak of the
disease and after it. The expressions were then classified in three groups:
up-regulated, down-regulated and equally-expressed. Table 11.18 shows the
percentage of genes that were grouped in each of the three categories for both
groups of target genes (experiment or chance).

Results of Table 11.18 show that the target genes associated to our rele-
vant miRNAs are significantly more dysregulated than the target genes of 11
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EAE lymph node EAE spinal cord
Up-reg Down-reg Equal Up-reg Down-reg Equal

Experiment 15% 28% 57% 24% 29% 47%
Chance 2 % 8% 90% 11% 12% 77%

Table 11.18. Percentage of target genes that showed up-regulated, down-regulated
or equal expression profiles within the two animal models under consideration. Row
Experiment refers to the target genes associated to the relevant miRNAs under
evaluation, whereas row Chance include the values of the target genes associated to
the random control set of miRNAs.

randomly chosen miRNAs. In the case of the lymph node model, 43% were
(de)activated (up- or down-regulation), while, in the case of the spinal cord
model, 53% of them were also activated. These activations contrast with just
10% and 23% respectively in the case of the random selected genes. Of spe-
cial interest is the fact that all these activities were monitored in the relapse
stage of the disease, which reinforced the hypothesis of relevance for our set
of miRNA.

We had hypothesized that if a given miRNA was over-expressed in a par-
ticular group of samples, the targets of this miRNA should be down-regulated.
Results from this last experiment with the models showed that a large number
of the target genes associated to the six differentially expressed miRNA ap-
peared significantly down-regulated more times than the ones from a random
target list. Curiously, the same effect could be seen in the up-regulated genes.
These could be a retroactive regulation of the mRNA that are regulated in a
translational repression form.

Similarly to the enrichment analysis carried out in Section 11.3.6.2, we
also research into the pathway enrichment that the target genes could show
for each relevant miRNA. To do so, we picked the target genes associated to
each of our six relevant miRNA and we conducted a pathway analysis through
the Panther (Mi et al., 2007) database. Again, as a control parameter, the
target genes associated to the random selected miRNA were also included in
the analysis.

Reported results from Panther found only the gene set associated to
miR 96 enriched from the total of 17 gene sets (11 from random and 6 from rel-
evant). Table 11.19 includes the eight pathways found to be enriched. Column
miR 96 in the table includes the number of genes involved in each pathway in
contrast with column NCBI which includes the total number of known genes
included in the pathway.

Within the pathway list of Table 11.19, we found a classic immunologic
associated pathway, the interleukin signaling pathway. Two other pathways,
the metabotropic glutamate receptor group I and the muscarinic acetylcholine
receptor 1 and 3 signaling, both related with glutamate, are also present.
Glutamate has been widely related with pathological mechanisms of the mul-
tiple sclerosis, e.g. exocitotoxicity (Vallejo-Illarramendi et al., 2006; Matute,
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Pathway NCBI miR 96 Expected Ratio p-value

Muscarinic acetylcholine receptor 1
and 3 signaling pathway

62 5 0.14 35.7 5.39e−5

Alpha adrenergic receptor signaling
pathway

29 3 0.06 50.0 6.88e−3

Endothelin signaling pathway 98 4 0.22 18.2 1.23e−2

Interleukin signaling pathway 194 5 0.43 11.6 1.29e−2

Wnt signaling pathway 348 6 0.78 7.7 2.18e−2

Histamine H1 receptor mediated sig-
naling pathway

43 3 0.1 30.0 2.19e−2

Metabotropic glutamate receptor
group I pathway

44 3 0.1 30.0 2.35e−2

Angiotensin II-stimulated signaling
through G proteins and beta-arrestin

53 3 0.12 25.0 4.04e−2

Table 11.19. Pathway enrichment analysis of the target genes associated to miR 96.
Column Expected includes the number of genes that are expected to belong to each
pathway in proportion to the 57 original target genes of miRNA miR 96. Column
miR 96 how many of the target genes of miR 96 belong to each pathway. In the
Ratio column, the proportion between the expected and the found genes is included.
Lastly, the p-value of each enrichment is included.

2007). These mechanisms are related with the central nervous system but the
associated genes could be expressed in blood by the activated T-cells.

The wnt signaling pathway is also present in the found pathways. The
gene WNT has been proposed as an important player in the development of
effector T-cells and in the activation of regulatory T-cell (Staal et al., 2008).
All these pathways may be potential subjects for more in-depth studies but,
at this point, their immunological role makes our data more reliable.

In conclusion, all these results strongly suggest that miR 96 could be play-
ing a key role in multiple sclerosis and constitutes an important candidate for
further studies. The topology structure of the network dependences of Fig-
ure 11.13 corroborates the key role of this miRNA, especially in the remitting
stage. miR 96 seems to be characteristic of the remitting phase of the disease:
it is more expressed in remitting samples than in controls, and less in relapse
samples than in remitting.

11.5.7 Conclusions

A relationship between miRNA expression and MS is expected since some of
the functions attributed to the miRNA include stress response, immunomod-
ulation (de Yébenes et al., 2008; Baltimore et al., 2008) and neuroprotec-
tion (Nelson et al., 2008). Computational predictions propose that 30% of the
human genes are regulated by micro RNAs (Ross et al., 2007). We therefore
hypothesize that a sizeable proportion of the mRNA differentially expressed
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between samples from patients during a relapse and during remission ought
to be regulated by micro RNA.

Throughout this section, a full study on the association between miRNA
and MS has been presented. The methodological tool used to link both fields
was the reliable dependences interaction networks introduced in Section 9.2.1.
From the produced networks, six relevant micro RNAs were selected for fur-
ther bioinformatic research and biological validations. The validation results
were not as good as expected but this could happen in such a new domain
where there is no proven evidence.

The work is still in progress and more validation and experiments are
needed. However, one of the detected miRNA by the network structures
(miR 96) is outstanding as a potential biomarker in multiple sclerosis. And,
at least two more (miR 18b and miR 599) show potential to be good targets
for future biomarker studies to characterize the relapse status.
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Mass spectrometry

Progress is being continually made in the quest for stable biomarkers in com-
plex diseases. Mass spectrometers are one of the devices for tackling this prob-
lem. The data profiles they produce are noisy and unstable and, within these
profiles, biomarkers are detected as signal regions or peaks, where control and
disease samples behave differently (Armañanzas et al., 2009b).

Mass spectrometry (MS) data generally contains a limited number of sam-
ples described by a high number of features. The same problem as in the Ge-
nomics chapter, the curse of dimensionality is again presented in this biologi-
cal data. Throughout the present chapter, we first present a full preprocessing
pipeline to parse the raw data into a classical machine learning dataset.

As the methodological approach to deal with this problem, we collect here
the results obtained by the population consensus in EDAs presented in Chap-
ter 10 of this dissertation. Moreover, an entire data workflow is designed to
yield unbiased results, and interesting findings are discussed about the need to
estimate classification accuracies fairly. As spin-off results of this schema, we
also discuss the consistency and stability of our results and how the classifi-
cation estimation accuracies in a feature subset selection problem may overfit
the training and test sets in use.

Four publicly available MS datasets (two MALDI-TOF and another two
SELDI-TOF) are analyzed. The results are compared with the original works,
and a new plot (PF plot) for graphically inspecting the relevant peaks is
introduced.

12.1 Mass spectrometry data basics

A mass spectrometer is a general-purpose device dedicated mostly to the
elucidation of the elemental composition of a sample or molecule. It is com-
posed of three main parts: an ion source, a mass analyser and a detector.
Its working principle is simple: to ionize chemical compounds, generating
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charged molecules or fragments, and then, measure the ratios between each
molecule/fragment mass and its electrical charge.

Once a sample is introduced into the device, the ion source digests the
molecule(s) and splits them into ions. Then the mass analyzer sorts the ions by
their masses through electromagnetic fields. Lastly, the detector will measure
the abundance of each ion present in the sample.

The mass spectrometry has several uses and it is nowadays of common use
in analytical laboratories that study physical, chemical, or biological proper-
ties of a great variety of compounds. Some aplications of this high-throughput
device are to identify unknown compounds, determining isotopic compositions
of a molecule, identification of the structure of a compound by studying its
fragmentation composition, quantifying the amount of a compound in a sam-
ple, or even study the chemical properties of ions and neutrals in vacuum.
Figure 12.1 includes an example of a typical MS spectra and a zoom to a
portion of it. A didactical review on the MS principles and aplications can be
consulted in (Gross, 2006).

Fig. 12.1. Example and zoom of a mass spectrum. The zoom illustrates the high
amount of noise that the signal includes.

In the bioinformatics discipline, mass spectrometry is an important method
for the characterization of proteins. In this case, the sample is formed by a
single protein compound. The protein is digested into its peptides and the pep-
tides are run through the spectrometer. Each peptide produces what is called
a peptide mass fingerprint (PMF) that individually identifies the peptide. By
inspecting the PMF databases, the sequencing of a protein is retrieved from
the peptides found in its digestion by following a bottom-down scheme.

An emerging application of MS in bioinformatics and biomedicine is the
analysis of metabolites and proteins coming from complex samples. In essence,
the purpose is to find biomarkers whose detection could be done with a mass
spectrometer device. The samples are usually blood or plasma so this method
promises a new and non-invasive facility to help physicians in their daily
work (Inza et al., 2009). Still in consolidation, the main application in this
way is to study cohorts of samples from different diseases. The comparisons
between the findings from control or healthy and disease samples can shed light
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on new key metabolites. Throughout this chapter, we explore the population
consensus on top of the general EDA scheme to deal with the discovery of
biomarkers in MS data. Due to the small sample size of these MS datasets,
the consensus approach is expected to enhance the robustness of the results.

Originally developed by (Karas et al., 1987), matrix-assisted laser des-
orption/ionization (MALDI) technology can simultaneously measure peptide
abundances in a given sample (serum samples in this case) by enzymatically
digesting the sample and running it through a mass spectrometer device. To
the same end, (Hutchens and Yip, 1993) introduced a variation in the way
the sample is attached to the chemical matrix and named it surface-enhanced
laser desorption/ionization (SELDI).

Both techniques are usually coupled by a time-of-flight (TOF) detector.
This detector measures not only the peptide abundance, but also the time
each peptide takes to reach the spectrometer’s detector. Samples analyzed by
this platform produce what is generally known as SELDI-TOF or MALDI-
TOF data spectra. These spectra sort the abundances based on the ratio of
each peptide’s mass to its charge, known as the mass-to-charge (m/z) ratio.

(Petricoin et al., 2002) were the first to use this technology to identify
proteomic biomarkers in complex diseases. Since then, many authors have
followed their example (Hilario et al., 2006; Shin and Markey, 2006), report-
ing promising results for inducing classification systems and even more inter-
esting findings for further research on the biology of such diseases (Ressom
et al., 2008). However, the analysis of this kind of data is still far from be-
ing standardized, and the scientific community is developing robust and novel
methodologies.

The physics of spectrometer devices biases their outcome, adding chemical
noise, signal shifts and artifacts that the subsequent analysis must deal with.
As an initial contribution, we present a full preprocessing pipeline to rem-
edy all these unwanted side-effects (Coombes et al., 2007). The preprocessing
ends with a peak profiling algorithm that identifies possible relevant points
in each spectrum. These points, commonly known as peaks or peakbins, are
the features whose values are used as the input of the feature subset selection
procedure.

12.2 From raw data to machine learning features

The preprocessing stage is an elementary and critical part of the design anal-
ysis protocol (DAP (Barla et al., 2008)). The DAP stage converts the data
from its raw, initial form into a compact and homogeneous matrix forming
the input for subsequent methods, such as machine learning or pattern recog-
nition techniques. Thus, the main objective of the preprocessing task is to
clean the data and detect the true signals in the noisy spectra.

MS data pose similar problems to most classical signal processing prob-
lems. Additionally, since the sample composition is often unknown or overly
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complex, the original signal decomposition is unknown. There have been at-
tempts to mathematically model the true signal in a MS experiment but with
limited or no success. Although far from being perfect, the most accepted
formulation is shown in Equation 12.1:

f(t) = B(t) + N · S(t) + ε(t) . (12.1)

The first term f(t) is the observed signal. B(t) is a visually identifiable
additive baseline component, and S(t) is the expected true signal, which is
modified by a normalization factor N . The last element, ε(t), is an unknown
noise component that groups the remaining variations.

There is no standard preprocessing pipeline for MS data. Although a core
set of preprocessing tasks have already been identified and accepted as a quasi-
standard, pipelines do not all perform the same steps or tackle them neces-
sarily in the same order. The most accepted dataflow core stages are: baseline
removal or correction, inter-spectra normalization, signal noise reduction or
smoothing, peak detection and, finally peak alignment. Other additional tasks
could be outlier detection (Sauve and Speed, 2004; Ressom et al., 2007) and
raw signal binning (Ressom et al., 2007, 2005).

In the following sections, we present and discuss our proposal of a standard
preprocessing pipeline. Notice that, after the preprocessing, our main aim is to
obtain a set of relevant peaks by means of a feature subset selection approach.
This must be taken into account when designing each preprocessing task in an
attempt to obtain as unbiased a dataset as possible. However, the reader can
find other preprocessing compendia in the state-of-the-art literature (Sturm
et al., 2008).

We provide the community with a set of Matlab scripts containing an
implementation of the proposed techniques1.

12.2.1 Baseline removal

At the low range of the spectrum, the intensity values are always found to
be amplified. This side effect is the consequence of chemical noise from the
matrix compounds required to fix the biological sample. The amplification
effect tends to lessen until the m/z values increase (Shin and Markey, 2006).

To minimize this effect, the true signal must be estimated, and the dif-
ference between the observed and estimated signal should be removed. This
can be viewed as a filtering step, in the sense that each spectrum is evaluated
individually and transformed into a (partially) corrected spectrum. To our
knowledge, there is no agreement within the scientific community on which
is the best way to tackle this problem. The most popular techniques include:
smoothing by local linear regression (loess) (Barla et al., 2008; Tibshirani
et al., 2004), multiple shifted windows with spline approximations (Ressom

1 See supplementary content page at
http://www.sc.ehu.es/ccwbayes/members/ruben/ms.
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et al., 2007, 2005) and a non-linear filter approach from the field of morpholog-
ical mathematics: the top-hat operator (Sauve and Speed, 2004; Breen et al.,
2000), and its variations (Prados et al., 2006; Noy and Fasulo, 2007).

They all have the same aim, i.e. to flatten the signal by removing the esti-
mated chemical noise. No significant difference has been reported in the litera-
ture, and there has been no systematic comparison of the different techniques.
Therefore, we propose the use of the top-hat morphological operator (Soille,
1999) since it is the least time consuming and has proven its merits in the
image analysis domain, where it is a filter in widespread use (Zeng et al., 2006;
Liu and Motoda, 2008).

The top-hat filter is a nonlinear positive low pass operator. Also known as
the white tophat, it removes the result of performing a morphological opening
operation using a predefined structuring element from the input signal. For
application to MS data, each spectrum is configured as a binary array of val-
ues, and the neighbourhood element (or mask) should also be a 1-dimensional
array.

12.2.2 Spectra normalization

MS spectra of similar samples are not always quantified within the same am-
plitude range. A normalization step is needed to compare the real intensities
fairly. Using normalization, we convert all the spectra to the same intensity
ranges. Many different approaches have been proposed and used to tackle
this issue. Of these different approaches, one is emerging as a gold standard :
the total ion current (TIC). TIC really encodes the average area under the
curve (Alfassi, 2004).

However, a recent study of eight normalization procedures (Meuleman
et al., 2008) states that it is better to use a local normalization method than
a global one (such as the TIC). In other words, the rescaling parameter of
the spectra should be estimated by windowing the m/z axis rather than a
global computation over all intensities. In addition, median values have proven
to be more robust than averages as scale factors against possible outlying
peaks (de Noo et al., 2005), and their use is also very well-established in other
normalization processes, such as, for example, DNA microarrays (Wit and
McClure, 2004).

Accepting both observations, we propose combining both approaches in
our normalization technique: use local estimators over m/z windows with
rescaling to the median value of the TIC. The window width is a free param-
eter tuned by an expert. As a default value, for MALDI/SELDI spectra we
suggest using 200 m/z units.

12.2.3 Signal smoothing

Once all the spectra have had their baseline corrected and been translated
into the same range of intensities, the next processing step is to smooth the
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signal wave from the input signal. As mentioned before, the original signal is
always perturbed by white noise ε(t) supposedly coming from the detection
instruments. Nevertheless, this preprocessing step has not always been tackled
independently, as some authors prefer to combine the smoothing step with
some of the other preprocessing stages, e.g. with normalization (Prados et al.,
2006).

The main idea of signal smoothing is to avoid the low signal fluctuations. A
great many false-positive peaks are likely to be found if the signal has not been
previously smoothed and all the low resolution peaks removed. Therefore, this
step should be taken before any peak detection algorithm is used. Even after
applying noise reduction, we cannot rule out some of the detected peaks being
due to noise perturbations, although this is minimized.

The most common signal smoothing technique is wavelet denoising pro-
posed by (Coombes et al., 2005, 2007). It makes use of the undecimated
wavelet transformation to estimate the wavelet coefficients. These are then
used to denoise the signal and obtain a smoothed signal. There exists an on-
line library, namely the Cromwell package2, that includes all the denoising
and smoothing functions. Figure 12.2 presents a small portion of the m/z
axis of one illustrative spectrum.
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Fig. 12.2. Graphical example of the first preprocessing tasks in our proposed
pipeline: baseline removal, normalization and wave smoothing. The thin solid line
plots the observed relative intensity in a segment of the m/z axis. The other lines
show how the original data is corrected in each of the three preprocessing stages.

2 http://bioinformatics.mdanderson.org/cromwell.html
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12.2.4 Peak detection

The problem of peak detection we refer to here consists of distinguishing an
m/z position corresponding to a true peak in the spectrum. Many biological
works define a true peak as the peak really associated with a peptide in the
biological sample (Cruz-Marcelo et al., 2008). This could be useful when the
composition of the sample peptides is known beforehand and the spectra size is
small. However, in the case of more complicated mixtures (e.g. blood serum),
the real peaks are generally unknown.

Therefore, our aim at this stage is to prescreen a great many peaks that
could later be grouped into peakbins. Bearing in mind that the machine learn-
ing analysis to be applied afterwards will separate relevant from non-relevant
peaks, the impact of including some artifacts at this early stage is not so
crucial. The peak detection algorithm is thus individually applied to each
separate spectrum, and then, a list of candidate peaks is retrieved for each
spectrum.

Even though it is by far the hottest issue in the MS preprocessing field,
there is agreement only on three conditions that a candidate peak must
meet (Barla et al., 2008):

1. the peak must have higher intensity than its neighbours;
2. the peak must be above a chosen threshold;
3. the peak must have an associated signal-to-noise ratio (SNR) higher than

a set threshold.

We will take the peak detection algorithm proposed in (Prados et al.,
2006) as the starting point. Our algorithm will follow the same top-down
scheme, starting with the highest point of the overall signal and iteratively
evaluating the lower points. To see whether a point p is considered a peak, we
set a stricter criterion: there must exist a point l (respectively, r) on its left
(respectively, right) before the previous (next) peak. This point must satisfy
two conditions. First, the value of the candidate point p must be higher than a
sensitivity threshold T and, second, the candidate point p must have an SNR
higher than or equal to 3 within the intensity window framed by l and r.

To estimate the SNR of a signal window, our algorithm computes the
SNR value as the ratio between the point’s height and the median absolute
deviation (MAD) in the window [l, r] under consideration (Shin et al., 2008).
The criterion that the SNR must be higher than or equal to a value of three
is borrowed from the image analysis field and has been previously mentioned
in the microarray quality metrics (see Section 11.2.2).

The main advantage of this peak detection algorithm is that it takes into
account all the individual characteristics rather than the evaluation of an
average spectrum that could hide independent features (Coombes et al., 2007).
In addition, the spectra maintain their original m/z shape obviating the need
for a shifting or alignment process. On the downside, the computation time
increases linearly with the number of spectra since all spectra are investigated.
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12.2.5 Peakbin assembly and quantification

There is no definite order in which this and the former (peak detection) tasks
should be performed: peak alignment followed by peak detection (Coombes
et al., 2007) or vice versa (Slotta et al., 2003). The peak or spectra alignment
tries to match similar peaks detected across all the spectra. Again due to
measurement-induced noise, the exact m/z value of a peak can differ from
one spectrum to another and there may be slight deviations or shifts over
different runs, even if analyzing the same sample. This shift is widely known
as the mass error effect (Shin and Markey, 2006). In order to align the peaks,
each spectrum is modified by shifting the signal until the peaks match.

All these variations may include signal shifts and potentially hide isotopic
formations or very close compounds. Moreover, this effect is more likely when
dealing with very complex mixtures.

Step 1. For each peak/peakbin pi and for each spectrum sj , compute the intensity
value vij = f(pi, sj).

Step 2. Compute the linear correlation matrix R between each pair of subset
values vi· = f(pi, ·) and vi+1· = f(pi+1, ·).

Step 3. If all values R(i, i + 1) < ρ, then return P = [pi] and V = [vij ].
Else, for each pair pi and pi+1 for which R(i, i + 1) > ρ, combine pi and
pi+1 into a single peakbin. Go to Step 1.

Fig. 12.3. Peakbin assembling algorithm pseudocode. Threshold ρ is the minimum
permitted correlation threshold among two consecutive peaks or peakbins. Matrices
P and V are the computed list of peakbins and the spectra values for those bins
respectively.

To overcome this artificial shifting, we propose to assemble peakbins of
different widths. In this way, a set of close peaks on the m/z axis across dif-
ferent spectra would be clustered into the same peakbin if their intensity levels
are similar. Classical clustering approaches have already been used to tackle
this problem(Barla et al., 2008; Tibshirani et al., 2004; Meuleman et al., 2008;
Slotta et al., 2003). Instead, our preprocessing pipeline uses the Pearson lin-
ear correlation coefficient to group the peaks, as the computation time and
memory demands are much lower. Peakbins are scanned recursively, and their
signal values are quantified as the maximum value found in the bin (Pra-
dos et al., 2006). The stopping criterion is met when there is no single peak
or peakbin that shows a correlation value greater than a given threshold ρ.
Figure 12.3 details the assembling algorithm. The output of this final prepro-
cessing stage is thus composed of a list of peakbins, each one with a starting
and ending point on the m/z axis, coupled with the maximum signal value
within each spectrum.
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12.3 Data analysis workflow for predictive proteomic

profiling

A data analysis workflow (DAW) refers to the whole pipeline of tasks that a
database under research follows (Barla et al., 2008). This workflow is some-
times designed carelessly and without much concern about the side effects it
could have on the final results (Baggerly et al., 2004). Critical DAW aspects
that could potentially bias the results have been identified in the machine
learning field. The most important include:

• Performance of any preprocessing task on the whole dataset instead of
first splitting the training from the test sets. In fact, if a workflow were
to imitate a real scenario, the new cases would arrive at the end of the
analysis (Saeys et al., 2007).

• Setting the learning parameter values. This is especially tricky in wrapper
schemes where the estimations are carried out on the same data that are
afterwards used to train the model (Statnikov et al., 2005). In a wrap-
per approach to feature selection, the feature selector accuracy must be
estimated with a set of previously unseen instances (Reunanen, 2003).

• Previously setting a number of features to be kept could lead to overfitting.
If we set the number of features to be retained, the feature selection algo-
rithm is forced to look not only for the relevant features, but also for the
features that achieve the highest accuracies when classifying phenotypes.
The consequence is that the classification model is accurate in datasets
with not many instances, but generalizability will be lacking when a new
set of instances is provided (Liu and Motoda, 2008).

• Procedures that include stochastic elements in their formulations should
be run on different multistarts. Since stochasticity drifts apart from de-
terministic behaviours, a single run of such techniques does not guarantee
the reliability of the outputs. This effect is usually coupled with the inter-
nal variance shown by different shufflings of the instances in a k-fold cross
validation estimation (Efron, 1983).

Bearing in mind all the mentioned drawbacks, Figure 12.4 introduces the
data analysis workflow for the whole MS profiling experiment. It is designed
to overcome the above issues and can be divided into three main parts. Before
doing anything, the MS database should be baseline corrected. Since this task
is independent for each spectrum (see Section 12.2.1), it can be considered as
a separate task.

The first main part, namely the outer iteration, in Figure 12.4 corresponds
to the first k-fold split. To proceed with a fair estimation in the subsequent
validations, the training and test sets should be completely separated from
the very beginning (Saeys et al., 2007). Therefore, the outer iteration splits
k − 1 folds as the training set and keeps the remaining fold as the outer test
set. This is the set for which the accuracy estimations are computed later on.
After this division, the remaining preprocessing tasks are applied separately
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Fig. 12.4. Data analisys workflow. Tasks performed individually are included in
boxes with dotted lines.

to the outer training and test set. Since the main aim of this first part is to
reproduce a real validation with new unseen instances, peakbins are detected
and assembled only in the training set (left workflow branch), and the resulting
peakbins are then quantified in the test set (right side). This external loop is
repeated k times, and different outer training and test sets are computed for
each one.

The second major part comprises wrapper peakbin selection using the
proposed UMDA consensus approach presented in Chapter 10. We refer to
this part as the internal loop or inner k′-fold split or validation. The wrapper
peakbin selector uses the classification accuracy estimation as the evaluation
function to measure the merit of each individual (subset of peakbins) over
the search. Note that in this internal evaluation only the outer training set
is available and the outer test set remains unseen. In addition to the subset
of selected peakbins, the algorithm also outputs the estimated accuracy but
only on the training set. This accuracy is referred to as the internal or inner
accuracy (estimated only on the inner validation). After the inner search,
a classifier is induced taking into account only the values of the outcome
peakbins and the outer training test. This classifier is then fairly evaluated
with the outer test to output what we call the outer or external accuracy.
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To illustrate this point, Section 12.5.2 shows a comparison between the
inner and outer accuracies. Large differences are observed between the fair
and the inner validations, sometimes as much as 5% in accuracy estimation.

The values of k (outer) and k′ (inner) could be different, but we recommend
a low value for k′ because one inner cross validation procedure is performed
for each individual and each evaluated population. In the internal search, once
the stopping criterion is met, we can keep just the solution produced by the
classical UMDA approach, or we can apply the consensus peakbin approach. A
confidence range T1 < T2 < · · · < Tt is then set, and a group of different solu-
tions ΦT1,Tt

(S) is collected from S: ΦT1,Tt
(S) = {xC

T1
(S),xC

T2
(S), . . . ,xC

Tt
(S)}.

This set of solutions is thus formed by different consensus solutions at different
confidence thresholds (see Section 10.2). As mentioned before, each consensus
solution is evaluated afterwards using the outer test set.

The input for the last part of the data workflow after all the external folds
haven been completed is all the accuracy estimations and the set of consensus
solutions for each fold k, ΦT1,Tt

(Sk). All this collected information can then
be sorted by the confidence threshold values. To this end, for each confidence
threshold Ti ∈ {T1, . . . , Tt}, we have k accuracy estimations achieved by k
consensus solutions xC

Ti
(Sl) with l = 1, . . . , k and i = 1, . . . , t. Note that the

number of peakbins included in each solution is variable due to the intrinsic
stochasticity of the UMDA approach. Thus, for a given confidence degree,
there can exist two solutions with the same mean accuracy over the k folds
but with a different number of peakbins.

The results of this consensus approach suggest using a multiobjective filter
rather than forcing the selection of a single threshold or solution. It is very
worthwhile studying how each confidence level solution behaves. To this end,
there are four different objectives: the mean accuracy, its associated standard
deviation, the average number of peakbins and also its standard deviation.
Since there could be many solutions, we should keep only the really profitable
ones. The next section presents the multiobjective dominance criterion used
as the filter.

12.3.1 Multiobjective sifter

As mentioned earlier, the proposed DAW gives the expert the chance to study
a full range of solutions instead of just one. Moreover, these solutions are
the result of two conflicting criteria: the accuracy estimation and the size of
the peakbin set (feature set). Previous studies on feature selection explored
how the accuracy of the classification models evolves when the number of
features increases or decreases. In general, these tendencies are dependent on
the problem, however, it is generally accepted that the accuracy increases with
the addition of features from an empty set until a size is reached where the
accuracy no longer improves or even decreases.
Therefore, instead of using a single criterion to assess the goodness of a solu-
tion, we propose four different ones:
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1. how large is the mean estimated accuracy;
2. how small is the average peakbin set size;
3. how low is the standard deviation associated with the estimated accuracy;
4. how low is the standard deviation associated with the peakbin set size.

Of two solutions with the same average size and mean accuracy, the one
with the lowest variance for one or both of the objectives should be kept. All
the above perfectly fit the concept of dominance (Handi et al., 2007). Formally,
a solution u can be expressed in terms of all the o objectives to be evaluated,
u = (u1, . . . , uo), where each ui is the evaluation of the elements that form
u in the i-th objective. Within minimization, the dominance criterion states
that a solution u = (u1, . . . , uo) dominates another solution v = (v1, . . . , vo),
u ≺ v, if

u ≺ v ⇐⇒ ∀i ∈ {1, . . . , o} , ui ≤ vi and ∃j ∈ {1, . . . , o} | uj < vj .

The set of non-dominated solutions is known in operational research as the
Pareto frontier or Pareto set (Pareto, 1896; Handi et al., 2007). The Pareto
frontier will only include the set of solutions v that are not dominated by any
other solution u. This Pareto set thus comprises all the solutions that cannot
be improved for any objective without simultaneously degrading some other
objective value.

Table 12.1 contains an example with six different solutions from a solution
set S. Each solution is retrieved at a different confidence level Ti, and the four
objectives are included. The first four solutions are non-dominated, and they
will be output as valid consensus approach solutions, while the last two will
be removed because xC

T5
(S) is dominated by xC

T3
(S) and xC

T6
(S) by the above

four.

Accuracy Std Peakbins Std Pareto front

xC
T1

(S) 94.5 2.3 15 4 X

xC
T2

(S) 80.6 10.1 5 3 X

xC
T3

(S) 96.0 1.8 30 10 X

xC
T4

(S) 80.1 9.0 6 2 X

xC
T5

(S) 96.0 1.8 31 10 ×
xC

T6
(S) 80.0 11.0 40 15 ×

Table 12.1. Example of the multiobjective sifter for a set of six solutions at different
confidence thresholds T1, . . . , T6. The last column indicates which solutions are not
dominated by any other and belong to the Pareto front.

12.4 Mass spectrometry datasets

Four different datasets have been used to illustrate the presented peakbin
selection processing. Two are from a SELDI, whereas the other two are from
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a MALDI spectrometer. The number of samples, phenotypes and available
m/z readings varies noticeably. All these datasets are available at the sites
of their respective authors (Petricoin et al., 2002, 2004; Ressom et al., 2006,
2008). Unfortunately, there is currently no uniform storage protocol for this
kind of data. Thus, we had to use a parsing algorithm to adapt the original raw
data files. None of the provided plain text files for all the datasets share the
same m/z axis, even within the same dataset. So, we had to set a resolution of
0.025 and average all points over their maximum and minimum values using
bins of this width. When there were no values available for an interval, a null
value was assigned. A detailed description of each dataset’s features follows.

• Ovarian cancer profiling (OVA) (Petricoin et al., 2002). Being one of the
pioneering works on MS data profiling from serum samples, the work by
Petricoin et al. (2002) is now one of the most analysed benchmark MS
datasets. The aim is to separate serum samples of a female population
with ovarian cancer from control samples of unaffected women using a
small set of proteomic markers. The available data contain 200 SELDI
spectra of 121 cancer samples and 79 controls. The m/z values range from
700.116 to 12,000 with a total of 45,200 values per spectrum.

• Detection of drug-induced toxicity (TOX) (Petricoin et al., 2004). In
this work, rat models are analysed using a serum proteomic pattern
diagnostic device based on a SELDI-TOF spectrometer. The study in-
tends to find biomarkers able to distinguish between anthracycline- and
anthracenedione-induced cardiotoxicity and control samples. The separa-
tion of the training and test sets in the original work is confusing. Con-
sequently, we just picked the samples diagnosed as definite positive or
definite negative. Our TOX dataset then is composed of 62 samples of two
phenotypes with 28 and 34 samples each. As in the previous dataset, a
total of 45,200 m/z values are configured, ranging from 799.115 to 12,000.

• Hepatocellular carcinoma (HCC) (Ressom et al., 2006). This study sets out
to help discover early markers for hepatocellular carcinomas triggered by
viral infections. The samples were obtained from the Kasr El-Aini Hospital
(Cairo, Egypt), where this carcinoma is a primary health problem. After
removing proteins greater than 50 kDA (including albumin), the spectra
are generated by a MALDI-TOF instrument. The dataset includes 36,802
m/z final readings for 150 samples, 78 affected and 72 non-affected con-
trols.

• Detection of glycan biomarkers (DGB) (Ressom et al., 2008). Ressom et
al. (2008) propose a method for systematically selecting glycan structures
able to distinguish subjects from pre-labeled groups. Over a set of three dif-
ferent phenotypes, the glycans are released from their associated proteins
through an enzymatic treatment and later methylated to avoid solubility.
The available data comprises a total of 128 MALDI-TOF spectra: 78 from
healthy controls, 25 from hepatocellular carcinoma and another 25 from
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chronic liver disease samples. The m/z values are in the 1,499.8 to 5,518.3
interval, with a total of 16,075 points for each sample.

12.5 Results and discussion

Stochastic approaches take advantage of their random search policies to in-
spect the search space. However, this is a drawback rather than an advantage
when a precise result is required: the need to repeat the search approach sev-
eral times (Liu and Motoda, 2008). Usually known as multistart or re-run,
the aim of a systematically run repetition is to find a stable outcome.

In our case, this random component is present in several stages of the
DAW, namely, in each outer and inner fold, in each initial population and
in the stochastic behaviour of the UMDA itself. Thus, the multistart run is
a must rather than a choice. To avoid this intrinsic variance, all the results
presented throughout this section are extracted from a set of 500 multistart
runs for each of the analyzed MS datasets.

12.5.1 Running parameters

For reproducibility purposes, we include here all the parameter settings used
in the experiments. The full DAW can be divided into two main steps: the
preprocessing stage and the UMDA peakbin consensus selection.

Table 12.2 sets out all the running parameters needed to fully configure
the preprocessing stage. Due to the different data distributions, the base-
line removal, normalization, peak detection SNR and correlation threshold ρ
were the same for the four datasets, while the other parameters needed to be
adapted individually. Notice that all the preprocessing steps are performed
for each external fold of the DAW (see Section 12.3).

Top-hat structural mask [0; ones(298,1); 0]*
Window size for normalization scanning 200
Minimum SNR on peak detection 3
Threshold ρ to agglomerate peakbins 0.80

OVA TOX HCC DGB

Smoothing wavelet threshold 5 6 6 6
Power of 2 for wavelet denoising 3 7 10 10
Minimum intensity T on peak detection 5 20 4000 1500

Table 12.2. Running parameters configured for the preprocessing task. Note that
the first four parameters are shared across all the datasets, while the last three need
to be adapted individually. (*) The formulation represents a 300-position binary
array containing ones except for each end position whose value is zero.

Regarding the rest of the running parameters, note that the number of
times the outer loop k is performed produces a large increase in the total
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computational time and, even more so when the number of inner folds k′ is
high. Our running scheme uses k = 5 folds on the outer loop and k′ = 5
inner folds on each individual accuracy estimation. For this wrapper accuracy
estimation, the classification model is a continuous näıve Bayes (John and
Langley, 1995) with conditional normal density distribution for the features
(this Bayesian network classifier is explained in 4.2.1).

The initial population of each UMDA selection is randomly drawn from
a Bernouilli distribution with a success probability p = 0.1 of each peakbin
being initially selected. This was found to be the best value for reaching a
compromise between the number of selected peakbins and their performance in
a wrapper selection. There are two stopping criteria: either to achieve a 100%
accuracy estimation, or to reach a hundred generations. Each population is
formed by 100 individuals and the truncation threshold is set at 50% as usual.

To output the set of consensus solutions, the confidence range is set up
with confidence levels of T1 = 10% and Tt = 100% with a 1% step. This
means that, for the set of best individuals, features selected less than 10% of
the times are rejected. In the outermost case, 100 different best individuals are
collected (one per population), and the total number of consensus solutions
on each outer fold also reaches 100. Since all these solutions are sifted by the
multiobjective filter, only those belonging to the Pareto front will be retained
as valid results.

12.5.2 Differences in the accuracy estimations between the outer
and inner loops

As previously discussed in Section 12.3, some works have already pointed out
the misleading results produced when the same sample set is used to search
relevant features and the same set is used again to estimate a classification
accuracy (Statnikov et al., 2005; Reunanen, 2003). Table 12.3 illustrates this
point numerically. For each dataset, the best solution found by the UMDA
is evaluated both in the internal loop (inner accuracy), which guides the
search, and with the external test set (outer accuracy), the set of new instances
not seen in the search-train process. Values in Table 12.3 reflect the average
estimations in both cases, plus their associated standard deviation.

Inner accuracy Outer accuracy

OVA 99.65±0.54 98.37±1.94
TOX 92.32±6.54 88.35±10.56
HCC 98.31±1.00 93.45±4.17
DGB 95.64±1.24 90.49±5.72

Table 12.3. Average accuracy estimations for the internal and the external evalu-
ations. Estimations are computed for each fold, in both the inner and outer loops
and include their associated standard deviation.
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To see if all these differences are statistically significant, we use a hypoth-
esis t-test of equal means to make comparisons between all fold accuracies
(pairwise combinations of inner fold against outer estimations). The test re-
jects the null hypothesis of equal means in all cases where p-values are always
less than 0.01. These results stress the fact that estimations made based on
inner sets only are always too optimistic and, thus, not fair to the real data.
A fair accuracy estimation by means of an inner-outer scheme is necessary.

These results also show that the inner estimations have a low variance,
whereas the variance in the outer estimation is up to an order of magnitude
greater than the inner ones. This variance is explained by the fact that the
inner models overfit to that fold’s training set and because their generalization
power degrades when unseen instances are tested.

12.5.3 Multistart non-dominated solutions

Like most search procedures, the UMDA-wrapper peakbin selection only out-
puts a single solution. On many occasions, the search procedure could have ex-
plored parts of the search space with good solutions that, however, do slightly
worse on the evaluation and are, thus, discarded. The retrieval of this useful
information is the aim of the population consensus proposed in Section 10.2.
Its first advantage is that whereas the classical scheme only retrieves one so-
lution, the consensus approach may produce as many solutions as populations
have been generated in a single run. Many of these solutions may be similar
or even equal. Hence a filtering process is required to output the really in-
teresting solutions. In our case, this sift is the non-dominance criterion with
respect to the four objectives defined earlier.

The first row of Table 12.4 presents the total number of non-dominated
solutions that have been reported throughout the whole set of multistart runs.
This is tens of thousands for all datasets, whereas the classical UMDA ap-
proach reports only a total of 500 solutions (one per run). The second and
third row show the mean number of solutions per run, as well as the mean
number of peakbins in each solution, of the Pareto front.

The estimated accuracy of every one of the non-dominated solutions is
also computed by the validation on the outer test sets. The difference from
the estimation output by the classical UMDA approach (see Outer acc. col-
umn in Table 12.3) is clear. The consensus approach is able to find solutions
that outperform the UMDA approach accuracy estimations for all datasets
(see the outer accuracies in Table 12.3 for comparison). For the OVA dataset
in particular, the estimated accuracy reaches a value of 100% for the 5-fold
estimator in use. For the other three datasets, the mean estimator also reaches
competitive percentages: 93.84%, 97.33% and 95.29%. Nevertheless, if we take
the standard deviation into consideration, there are some folds for which ac-
curacy is also 100%. Notice that this variance is numerically similar to the
values reported in Table 12.3.
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OVA TOX HCC DGB

Total number of solutions throughout 500
runs

72,744 66,277 62,597 38,735

Mean number of solutions on each Pareto
front

35.15 29.25 27.16 16.26

Mean number of peakbins per Pareto so-
lution

97.64 155.34 25.28 11.74

Maximum accuracy 100±0 93.84±6.43 97.33±2.79 95.29±5.06
Peakbins 39.80±17.06 114.60±60.08 20.60±19.03 8±4

Table 12.4. Descriptive overview of the multistart results produced by the pop-
ulation consensus proposal. The first row indicates the number of non-dominated
solutions collected for all the runs. The mean values represent the mean number of
non-dominated solutions per run and the mean number of peakbins in each solution.
The last two rows show the accuracy and mean number of peakbins associated with
the best solution found by the consensus.

The peakbins row in Table 12.4 shows the average number of peakbins
included in the best consensus solution (maximum accuracy). An in-depth
analysis of this characteristic illustrates another interesting effect: the parsi-
monious behaviour of our consensus approach. Figure 12.5 presents, for each
multistart run and for each non-dominated solution of each of these runs, the
average number of peakbins. The side color map adds a fourth component to
the plot: the mean accuracy achieved by each solution. The first conclusion
from the charts is that the solutions with the fewest peakbins do not achieve
a good classification accuracy. However, when more peaks are added, the so-
lutions achieve significant accuracy levels. It is when this number of newly
added points increases that the parsimonious behaviour (Duda et al., 2001)
is observed: accuracy does not improve as a consequence. Since all the new
peakbins are relevant for the problem, classification accuracy is not harmed.
In terms of phenotype separability, however, the new points add no new infor-
mation. The different number of non-dominated solutions in each run is clearly
explained by the stochasticity discussed at the beginning of this section.

12.5.4 Peakbin stability comparison between the consensus and
the classical UMDA approach

Apart from classification power, it is worthwhile analyzing how stable the non-
dominated solutions are compared with the regular solutions output by the
classical UMDA. A general stability index Σ was introduced in Section 10.3,
and two different consistency measures (IK and IJ ) were also presented.

A consistency measure is used to quantify the (dis)similarity degree be-
tween two subsets of features in a feature subset selection problem. High
levels of consistency between both subsets suggest that the feature selection
approach is highly stable, a desirable behaviour in knowledge discovery tasks.

When there are more than two subsets (solutions), we can compute the
stability degree Σ among all of the subsets as the average of all pairwise
consistency comparisons. Notice that when there is a relatively high number of
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Fig. 12.5. Graphical representation of the non-dominated solutions collected in the
multistart run process for two of the datasets. The top chart represents the DGB
dataset results, whereas the bottom chart shows the results for the OVA dataset.
In both charts, the Z axis presents the mean number of peakbins that each solution
contains. The X and Y axis have been switched between the two charts for clarity.
The color map of the surface represents the average accuracy estimated for each one
of the points (solutions).
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solutions, the combinatorial number of comparisons could lead to an unfeasible
computational time.

The number of solutions that the consensus approach outputs prevents us
from computing the global stability value by inspecting all possible combina-
tions (see the total number of solutions in Table 12.4). Therefore, we propose
analyzing stability by averaging the stability values of each multistart run
rather than mixing the solutions from different runs.

As the multistart runs are based on five external folds, the classical UMDA
solution selects five different peakbin sets for each i-th run, Si = {Si

1, . . . , S
i
5}.

After choosing one of the two consistency measures, we can then compute the
stability of this solution set in the i-th run, using the stability index, Σ(Si).
Assuming B different multistart runs, the mean stability value ℑ is calculated
straightforwardly as

ℑ =

B
∑

i=1

1

B
Σ(Si) .

OVA TOX HCC DGB

ℑIK

S = UMDAconsensus (best accuracy) 0.0721 0.0087 0.2114 0.3678
S = UMDAconsensus (max size) 0.2181 0.1466 0.3696 0.3040
S = UMDAclassical 0.1217 0.0647 0.3045 0.2721

ℑIJ

S = UMDAconsensus (best accuracy) 0.0662 0.0251 0.1722 0.3362
S = UMDAconsensus (max size) 0.1720 0.1406 0.2680 0.2243
S = UMDAclassical 0.0888 0.0680 0.2127 0.1945

Table 12.5. Mean stability values ℑ computed in terms of the IK and IJ consistency
measures. Classical rows present the values for the classical UMDA scheme. Values
in consensus rows show the respective values for the most accurate set of solutions
and for the solutions with the largest number of peakbins in each run, respectively.

In the case of the consensus approach, there is a variable number of non-
dominated solutions per fold and run. To compare all these solutions fairly,
we first need to select a representative solution from each Pareto set. We have
chosen two criteria: i) the solution that achieves the highest accuracy in each
fold (if there is a draw, the one with fewer peakbins is selected), and, ii) the
solution that includes the maximum number of peakbins. Once the solutions
are retrieved, the mean stability value is computed.

Results of all the mean stability values are set out in Table 12.5. Rows
under ℑIK

and ℑIJ
refer, respectively, to the average stability values using IK

and IJ consistency measures. Since all these values are based on averages, it is
possible to statistically compare their differences using a t-test of equal means.
All the comparisons between the classical UMDA and the consensus values
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(the highest accuracy or the maximum number of peakbins) are significant at
a significance level of α = 0.01.

From the results, the first observation is the difference in the stability in-
dex between the consensus solutions in the highest accuracy and the largest
number of peakbins. The low stability for most accurate consensus solutions
is a consequence of the high variance in the number of peakbins in each so-
lution. As discussed previously, the most accurate solutions only include the
features necessary to tackle the classification problem (parsimonious tendency
or Occam’s razor). As a consequence, solutions from different folds can differ
significantly.

Looking at the largest solutions (max size), however, the stability index
improves significantly. Notice that the largest solutions are non-dominated,
so their accuracy performance is mostly expected to be as good as the most
accurate solutions (see Figure 12.5 and discussion on Section 12.5.3). The
stability improvement is due to the fact that the addition of new peakbins in
our consensus approach focuses on increasing the robustness of the selected
set of variables.

Comparing the classical UMDA and the consensus stability results, we find
that, in three out of four datasets, the classical UMDA solutions show higher
consistency values compared with the more accurate but smaller and more
diverse consensus solutions. However, when the classical UMDA solutions are
compared with the largest non-dominated consensus solutions, they are de-
feated in terms of stability for all the four datasets. In the cases of OVA and
TOX, the stability gauged by both Kuncheva’s and Jaccard’s consistencies is
doubled by population consensus, and, as previously pointed out, they always
show statistically significant differences.

12.5.5 Knowledge discovery using the consensus results

The data mining and machine learning disciplines provide computational bi-
ology with powerful tools to help in the analysis, diagnosis, prognosis and new
knowledge discovery within data produced by high-throughput biological de-
vices (Larrañaga et al., 2006). Analysis, diagnosis and prognosis form what is
known as personalized medicine. Although they are all in constant evolution,
knowledge discovery is the topic that is most likely to enrich basic research
and propose new hypotheses about complex biological problems or diseases.

Therefore, we consider that an optimization process, such as the search
for relevant or discriminative peaks in mass spectra data, must also comply
with the proposal of new biological hypotheses for validation. Throughout this
section, all the consensus multistart results will be graphically presented and
discussed with respect to the original author findings.

For quick reference, we have designed a combined plot. This new plot,
referred to as the peak frequential plot or PF plot, is formed by two over-
lapped subplots. The first subplot illustrates the absolute intensity differences
between the mean spectrum of the different phenotypes. The second subplot
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includes the percentage of occurrence of each m/z position being selected as
relevant. Applied to our approach, this percentage shows how many times
each m/z position, in all the non-dominated solutions, is added as a new rel-
evant peakbin. Figures 12.6 and 12.7 are examples of this peak frequential
plot. When there are more than two phenotypes (as is the case of DGB), the
top subplot is computed as the sum of all the pairwise differences between the
mean spectrum of each phenotype.

The top subplot presents what could be considered as the simplest peak
selector, whereas the second subplot sets out the results of the peak selection
method. As we discuss later, the positions showing the largest differences
are expected to be relevant for both methods. Even so, an expert may find
more interesting a peakbin that is selected many times but whose average
behaviours differ little.

Fig. 12.6. Peak frequential plot for the OVA dataset. The top subplot shows the ab-
solute differences among the average spectra of each phenotype. The bottom subplot
sets out the results of the multistart consensus approach. It shows the percentage
of occurrence of each m/z position being selected throughout the whole process
(occurrences below 5% are not shown).

The original paper on the ovarian cancer profiling dataset (Petricoin et al.,
2002) reports a discriminative rule of five peaks that provided an almost per-
fect classification. Figure 12.6 presents the PF plot of our consensus approach
for the OVA dataset. Already shown in Section 12.5.3, we are able to achieve
the highest accuracy value in terms of spectra separability. However, our peak-
bin set did not compare with the set originally reported. The results reported
by Petricoin et al. (2002) have been previously said to contain artifacts sup-
posedly from an unfit denoising (Baggerly et al., 2004, 2005).
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Looking at Figure 12.6, the [7,052-7,061] peakbin has the highest occur-
rence level, and its width could suggest a possible isotopic configuration. Other
interesting values with large occurrences are [1,034-1,036], [3,961-3,963] and
[1,025.9116-1,026.7366]. Lastly, notice that for the peakbin configuration at
[5,131-5,142.6], the associated difference is small, whereas the bin is often
selected.

The authors also aimed for a panel of only five predictive peaks for the
TOX dataset (Petricoin et al., 2004). The original results are calculated based
on a different sample distribution, so the outcome of comparing their panel
and our results might be slightly different. Nevertheless, our results are able
to identify four out of five members of the suggested peakbin panel.

Since the preprocessing proposals are not equal, the observed intervals for
the m/z axis do not exactly match in both studies. For instance, the peak at
810.33765 maps in our data to the bin [810.115-810.365] with an occurrence of
4.20%. Similarly, the peak at 981.8242 matches the [981.615-981.865] bin and
has an occurrence of 3.50%. The original peaks at 1,987.9727 and 2,013.5771
are also detected as relevant by the multistart process but with an insignificant
occurrence level.

The PF plot for this TOX dataset is included in the online Supplementary
content. The phenotype spectra have a high variance in this dataset. As a con-
sequence, the estimators in the classification have a high associated standard
deviation: the classifier is able to achieve up to 100% accuracy in some folds,
whereas, on the same run, accuracy for other folds is only 88%. Either way,
the peak frequential plot shows other m/z values that seem to be of biological
interest.

Results for the HCC hepatocellular carcinoma show a significant match.
(Ressom et al., 2006) presented a MS biomarker panel of six peakbins in the
study of hepatocellular carcinomas triggered by viral infections. Our results
reported a full coincidence with this six peakbin panel. Table 12.6 presents
the original m/z bins, our corresponding m/z bin and the percentage of oc-
currence of each bin. Not only are all six values found to be relevant by our
consensus approach, but the percentage of occurrence for these six is also re-
markably high. Three of them present the highest occurrence values in the
multistart process with a value of around 15%.

Apart from the above six relevant bins, the PF plot (see Figure 12.7) sug-
gests that there are other relevant peakbins that may merit an in-depth analy-
sis. A closer look at these peakbins suggests that, comparing the absolute dif-
ference and the percentage of occurrence, three, namely [1,445.725-1,454.475]
with 10.50%, [3,307.975-3,309.725] with a 12.95% and [4,206.975-4,216.225]
with a 11.80% of occurrence, respectively, are noticeable. The density of bins
surrounding the latter peakbin also may suggest a possible isotopic effect on
that m/z position.

The last dataset was produced with the aim of selecting glycan structures
able to distinguish subjects from pre-labeled groups. The authors (Ressom
et al., 2008) identify a panel of 10 markers with different frequencies in their
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Original m/z bin Current m/z bin Occurrence (%)

933.6 - 938.2 933.475 - 938.225 14.77%
1,378.9 - 1,381.2 1,378.975 - 1,381.225 10.32%
1,737.1 - 1,744.6 1,737.225 - 1,744.475 15.13%
1,863.4 - 1,871.3 1,863.975 - 1,870.225 15.27%
2,528.7 - 2,535.5 2,528.725 - 2,535.475 12.07%
4,085.6 - 4,097.9 4,085.725 - 4,097.975 6.78%

Table 12.6. Original relevant peakbins reported by (Ressom et al., 2006) for the
HCC dataset. For each bin, the second and third column map, respectively, our
correspondent m/z relevant peakbins and the occurrence percentage of each bin in
the multistart.

Fig. 12.7. Peak frequential plot for the HCC dataset. Top subplot shows the abso-
lute differences among the average spectra of each phenotype. The bottom subplot
sets out the results of the multistart consensus approach. It shows the percentage of
occurrence of each m/z position being selected throughout the process (occurrences
below 5% are not shown).

results. When compared with our results, we find that 7 out of the 10 mark-
ers are also identified by the consensus proposal. Moreover, the percentage of
occurrence in our multistart is also high for the most important ones. Fig-
ure 12.8 shows the PF plot of our results. Notice that, of the seven bins in
common, five are highlighted by boxes in the figure.

A careful analysis of Figure 12.8 draws attention to three more peakbins
that, either because of their high occurrence, or because of a large difference
in intensities, may merit further research. The bin at [2,039.7615-2,041.7615]
has the highest percentage of occurrence with 25%, whereas the bin located
at [2,792.0115-2,795.0115] is associated with the largest absolute difference.
We would like to also point out bin [4,400.2615-4,4035.1149], which has both
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Fig. 12.8. Peak frequential plot for the DGB dataset. Top subplot shows the abso-
lute differences among the average spectra of each phenotype. The bottom subplot
sets out the results of the multistart consensus approach. It shows the percentage of
occurrence of each m/z position being selected throughout the process (occurrences
below 5% are not shown).

a sizeable percentage of occurrence and a visible intensity difference among
phenotypes.

All the above peakbins could be of interest for further biological examina-
tion. The peak frequential or PF plots are thus a general and powerful proposal
for graphically identifying relevant peaks. An expert can easily check or point
out some point(s) of interest when inspecting these figures. A PF plot gives
a broader view of the results, and opens up prospects for subsequent wet lab
research.

12.6 Conclusions

On the basis of biomarker discovery in MS data, we find three important ad-
vantages. One is the fact that the sample in use is serum. Consequently the
test for collecting the sample is almost non-invasive for the patient. Another
issue is that the economic cost of a MS run is much cheaper than, for example,
a classical cDNA microarray. Yet another good point is the possibility of look-
ing for early-stage metabolic markers, an unfeasible search in the microarray
field. Nevertheless, there is a big pitfall still to be overcome. This is the fact
that the MS profiling results are intrinsically noisy, non-constant and difficult
to analyze.

As a first step in the search for relevant peaks in MS data, the user encoun-
ters the problem of preprocessing the raw data to minimize all the noisy and



12.6 Conclusions 195

variance-related behaviours. To this end, we have presented a full pipeline of
tasks, including baseline correction, spectra normalization, smoothing, peak
detection and quantification. The preprocessing part of the analysis should be
viewed as separate from the subsequent search for relevant peaks. Therefore,
other preprocessing pipelines could be used.

Once the data is ready for a relevant peak selection task, the classical fea-
ture selectors come up against the curse of dimensionality. In this context, we
propose the use of stochastic policies that are suited to dealing with the high
number of features for evaluation. The low number of samples implies that
the search is not always as robust as it should be. To improve the reliability
of the output relevant peaks, we apply a consensus scheme over the search
population. One straightforward advance in robustness is that an expert can
set a confidence threshold and rely just on findings above this limit. A multi-
objective filter of the solutions outputs only those sets of peaks that are better
in terms of phenotype separability power, small set sizes or low variance in
these two terms.

In addition, all the analysis is embedded into a workflow that imitates
how all the tasks would behave when dealing with new and unseen samples. If
there is no such workflow, results could be overfitted to the available data and
may lose generalizability. Moreover, the results of this workflow also behave
parsimoniously like supervised classification within feature subset selection
procedures: small sets of features achieve good accuracy values, and these
values are not improved when adding more predictive features.

The consensus approach allows us to study how stable the selection is. In
actual fact, stability results quantitatively illustrate how the consensus ap-
proach is able to retrieve significantly more stable solutions than the classical
UMDA approach. As expected, if the practitioner decides to rely on only the
most accurate subsets of peaks (usually of small size) then the variability
component is large and, thus, stability is penalized.

Nevertheless, finding locations of interesting masses should be coupled to
a subsequent knowledge discovery stage in which those peaks are studied and
evaluated. To this end, we have introduced a novel plot, the PF plot, to display
the results of a peak selection method in supervised MS data problems. The
new plot enables an expert to graphically explore the results and identify
peaks of special interest. Although the presented PF plots include the results
from the multistart runs of our consensus UMDA approach, they can be used
by any kind of selection method.

The relevant peaks found by the consensus approach closely match the
peaks reported by the original works. By inspecting the PF plots of our results,
we extended the original findings with a series of peaks that could be of interest
for a more in-depth biological analysis.
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Conclusions and future work

This chapter presents the general conclusions of this dissertation. More specific
conclusions have been exposed in each corresponding chapter. Additionally,
we include a list of publications and some considerations on future work.

Throughout the dissertation, we have presented different data mining and
machine learning techniques to deal with problems within the computational
biology field, especially focused on bioinformatics. In the course of a bioinfor-
matic research, the practitioner usually gets biased results due to the unbal-
anced dimensionality of the datasets. In this scenario, we propose the use of
different consensus approaches in order to minimize those biases and to gain
reliability and robustness.

The first set of analytical tools presents several univariate metrics that are
well fitted to have an initial vision of the features of a particular dataset. No
assumption about the data distribution is made in the metrics computation,
a fact that is ideal when dealing with a low number of cases. For taking the
research to a more complex level, different discretizations are combined with
a correlation feature selection with the aim of finding a nuclear set of high
relevant and non-redundant features. Results from both approaches show their
potentiality when applying them in gene expression problems.

Making use of the Bayesian network classifiers, a new hierarchical and
edge-variable Bayesian classifier have also been presented. This paradigm al-
lows the seeking of high reliable conditional dependences between pairs of
features (and the supervised class variable). The main aim of this classifier is
to assure that if a dependence is repeated in many occasions, that dependence
will seldomly be a false positive dependence. Of course, this statement applies
always to the available dataset but it needs to be experimentally corrobo-
rated when lent to the whole study domain. Its application is not limited to
gene interaction networks and it may be used in any kind of domain where
supervised classification may be applied too.

The last methodological contribution of this thesis is centered on the anal-
ysis of mass spectrometry datasets. To be precise, the analysis of spectra
produced by serum samples of different phenotypes. In this field, there is still
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a lot of work to do for many reasons. First, we can cite that the domain is
extremely noisy; there is also a full pipeline of tasks proposed to remove all
that noise. Second, the search space is extremely huge and classical exhaus-
tive methods are not a feasible solution. The proposed population consensus
in estimation of distribution algorithms aims to obtain a high relevant and
consistent sets of features. One last reason is that there is no standard protocol
to tackle mass spectrometry experiments. This sometimes makes the results
over optimistic; an honest way to estimate the accuracy of a feature set is also
gathered in our work.

All the methodological approaches presented through the dissertation are
put on stage in four different bioinformatics applications. Successful results
are collected in all cases: starting on new pathogenesis findings for two au-
toimmune diseases, the identification of previous findings on colorectal cancer,
the proposal of new research targets in cancer and multiple sclerosis or the
discovery of previously reported and new biomarkers. The collaboration be-
tween bioinformatics and biomedicine is proven to outperform the results that
each part could obtain on its own. Nonetheless, an effort should be made by
both parties to work together as their individual concepts are far apart.

13.1 List of Publications

The work presented in this dissertation has produced the following publica-
tions and submissions:

A. Technical reports

• R. Armañanzas. Solving bioinformatics problems by means of Bayesian
classifiers and feature selection. Technical Report EHU-KZAA-IK-2/06,
University of the Basque Country, 2006.

• R. Santana, C. Echegoyen, A. Mendiburu, C. Bielza, J. A. Lozano, P.
Larrañaga, R. Armañanzas, S. K. Shakya. MATEDA: A suite of EDA
programs in Matlab. Technical Report EHU-KZAA-IK-2/09, University
of the Basque Country, 2009.

B. Book chapters

• R. Armañanzas, B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo,
A. M. Zubiaga. Clasificadores Bayesianos con selección consensuada de
genes en la predicción del lupus eritematoso sistémico. Mineŕıa de Datos:
Técnicas y Aplicaciones, 107–135, 2005.

• I. Inza, R. Armañanzas, G. Santafé. Una aproximación al software WEKA.
In Aprendizaje Automático: Conceptos Básicos y Avanzados, 23, 477–483,
2006.
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• I. Inza, B. Calvo, R. Armañanzas, E. Bengoetxea, P. Larrañaga, J. A.
Lozano. Machine learning: An indispensable tool in bioinformatics. In R.
Matthiesen, editor, Bioinformatics Methods in Clinical Research. Humana
Press, 2009.

C. Conference communications

• R. Armañanzas, B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo,
A. M. Zubiaga. Selección de genes asociados a dos enfermedades autoin-
munes a partir de microarrays de ADN. VI Jornadas de Transferencia
Tecnológica de Inteligencia Artificial, TTIA (AEPIA), 63–70, 2005.

• R. Armañanzas, I. Inza, P. Larrañaga. Consensus gene selection on DNA
microarrays. European Conference on Computational Biology, 2005.

• A. Garćıa, A. Freije, R. Armañanzas, I. Inza, Z. Ispizua, P. Heredia,
P. Larrañaga, G. López Vivanco, T. Suárez, M. Betanzos. Simultaneous
search of genomic and proteomic biomarkers in human colorectal cancer.
Genomes to Systems Conference, 2006.

• A. Garćıa, A. Freije, R. Armañanzas, I. Inza, Z. Ispizua, P. Heredia, P.
Larrañaga, G. López Vivanco, T. Suárez, M. Betanzos. Gene expression
model for the classification of human colorectal cancer and potential CRC
biomarkers search. Drug Discovery Technology, 2007.

• R. Armañanzas, B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo,
A. M. Zubiaga. Bayesian classifiers with consensus gene selection: A case
study in the systemic lupus erythematosus. Progress in Industrial Mathe-
matics at ECMI 2006, 12, 560–565, 2007.

• R. Armañanzas, Y. Saeys, I. Inza, M. Garćıa-Torres, Y. Van de Peer,
C. Bielza, P. Larrañaga. Mass spectrometry data analysis: it’s all in the
preprocessing. In Proceedings of the Benelux Bioinformatics Conference,
page 92, 2008.

• A. Garćıa, R. Armañanzas, A. Freije, Z. Ispizua, F. Goñi, I. Inza, G. López
Vivanco, B. Calvo, M. Betanzos, B. Suárez-Merino. Identification of tu-
moral molecular markers for the diagnosis and prognosis of colorectal car-
cinoma. The Fourth Annual Biomarkers Congress, 2009.

D. Refereed journals

• P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A.
Lozano, R. Armañanzas, G. Santafé, A. Pérez, V. Robles. Machine learning
in bioinformatics. Briefings in Bioinformatics, 7(1), 86–112, 2006.

• I. Zipitria, P. Larrañaga, R. Armañanzas, A. Arruarte, J. A. Elorriaga,
A. Dı́az de Ilarraza. What Is Behind a Summary Evaluation Decision ?.
Behavior Research Methods, 40(2), 597–612, 2008.

• R. Armañanzas, I. Inza, P. Larrañaga. Detecting reliable gene interactions
by a hierarchy of Bayesian network classifiers. Computer Methods and Pro-
grams in Biomedicine, 91(2), 110–121, 2008.
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• R. Armañanzas, I. Inza, R. Santana, Y. Saeys, J. L. Flores, J. A. Lozano,
Y. van de Peer, R. Blanco, V. Robles, C. Bielza, P. Larrañaga. A review of
estimation of distribution algorithms in bioinformatics. BioData Mining,
1(6), 2008.

• A. Sáenz, M. Azpitarte, R. Armañanzas, F. Leturcq, A. Alzualde, I. Inza,
F. Garćıa-Bragado, G. De la Herran, J. Corcuera, A. Cabello, C. Navarro,
C. De la Torre, E. Gallardo, I. Illa, A. López de Munain. Gene expression
profiling in limb-girdle muscular dystrophy 2A. PLoS ONE, 3(11), e3750,
2008.

• R. Armañanzas, B. Calvo, I. Inza, M. López-Hoyos, V. Mart́ınez-Taboada,
E. Ucar, I. Bernales, A. Fullaondo, P. Larrañaga, A. M. Zubiaga. Microar-
ray analysis of autoimmune diseases by machine learning procedures. IEEE
Transactions on Information Technology in Biomedicine, 13(3), 341–350,
2009.

• D. Otaegui, S. E. Baranzini, R. Armañanzas, B. Calvo, M. Muñoz-Culla,
P. Khankhanian, I. Inza, J. A. Lozano, T. Castillo-Triviño, J. Olaskoaga,
A. López de Munain. Differential micro RNA expression in PBMC from
Multiple Sclerosis patients. PLoS ONE. Submitted, 2009.

• R. Armañanzas, Y. Saeys, I. Inza, M. Garćıa-Torres, C. Bielza, Y. Van de
Peer, P. Larrañaga. Peak selection in mass spectrometry data using a con-
sensus approach with estimation of distribution algorithms. IEEE/ACM
Transactions on Computational Biology and Bioinformatics. Submitted,
2009.

E. Patents

• A. Garćıa, B. Suárez, M. Betanzos, G. L. Vivanco, R. Armañanzas, I.
Inza, P. Larrañaga. Methods and kits for the diagnosis and the staging of
colorectal cancer. European Patent No. 08380279.3-2402. Submitted 26th
Sept. 2008.

13.2 Future Work

Computational biology is a discipline in its early beginnings. A large research
effort is continuously made in this emerging field to shed light on the huge
problems that the biomedical and biological disciplines undergo. As it is and
has been proven through the last decade, machine learning and optimization
techniques constitute the key to the analysis and knowledge discovery in ge-
nomics and proteomics fields. And this tendency will grow even more in the
close future. Interdisciplinary researches are now a must on all these fields and
the new created disciplines are here to stay (Stein, 2008).

There is nowadays a battery of new developed high-throughput biological
devices. The gene expression platforms have grown very fast with new full
genome arrays, exon arrays, SNP arrays or microRNA arrays. But the DNA
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sequencing is again opening new frontiers in the genomic biology discipline
with big DNA sequencers such as the ones from Solexa or 454. A lot of compa-
nies are in a constant run to cover more market and the investment in R+D is
always increasing: Affymetrix, Agilent, Applied Biosystems, Beckman Coul-
ter, Bio-Rad, Illumina, Invitrogen, PerkinElmer, Qiagen, Roche, Siemnes and
so on.

The first consequence is that the biological datasets will increase their size
proportionally to this growth. As all these devices gain popularity, their prices
will decrease and personalized medicine will be at hand. From a practical point
of view, this is the first big challenge for the computational biology: to provide
accurate tools and resources to analyze personal data and give suggestions on
diagnosis, treatments, possible adverse reactions or prognosis.

From a pure research point of view all these new amounts of data enable
the research community to look for robust results and conclusions. And this
is where consensus policies could have a great impact. As the computation
power increases, the more robust and consistent a result becomes and the
more reliable it is for the community. If we especially think of life sciences,
this is of crucial importance since a false positive in a treatment or diagnosis
implies a high personal price.

The feature selection has started this path by proposing new algorithms to
increase the stability of the selections. The forseen tendency is that stability
will constitute a criterion at least as important as the predictive accuracy.
This is a new field of application and there is still little work done on it.
Stability, consistency and robustness are three of the most expected subjects
in the feature selection community in the years to come.

The afore mentioned new datasets will also contribute to study the regu-
latory relationships at different levels: genomic, proteomic or metabolomic. In
this field, the regulatory networks will again gain importance in proposing and
revealing biological dependences undiscovered by a pure biological analysis.
Moreover, Bayesian strategies become more robust and reliable as the number
of instances to estimate the probability distributions grows. Bayesian classi-
fiers will follow this path and become an indispensable tool in the systems
biology discipline. If we consider them as tools to support medical decisions,
once the induction stage is fulfilled and the structure and parameters are
learnt, the classification of new cases is straightforward by means of the chain
rule.

Within the biomedical field, non-invasive diagnostic devices are also con-
stantly evolving. The roots for all these devices is the identification of (early
stages) biomarkers in non-invasive samples, such as plasma, serum or urine.
Mass spectrometry is and will be essential in this task. However, since the
data is and will be noisy, robust search methods will be demanded. Estima-
tion of distribution algorithms have demonstrated their effectiveness in several
biodata mining tasks. We envision that, in life sciences, the number of appli-
cations where EDAs get fruitful results will increase. And especially in noisy
or with high uncertainty level domains, the consensus and robust searches
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will prevail. In the short term, the exploitation of population consensus with
probabilistic models more complex than UMDA is a task to tackle.

Lastly, as a general proposal, we envision the integration of the results from
different omics into a single interdisciplinary research. Current studies from
genomics rarely integrate proteomic or metabolomic data and vice versa. The
integration of all these categories in a more complex view will be demanded.
For instance, an interdisciplinary project will consist of performing different
high throughput experiments to recover full datasets from those stored sam-
ples: starting with DNA microarrays, microRNA TLDA arrays, SNP chips
and mass spectrometry runs. After that, all the info would be at hand from
the very beginning and, thus, the combination of all these results could open
a major degree of knowledge discovery in any bioresearch.
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C., and Larrañaga, P. (2008b). Mass spectrometry data analysis: It’s all
in the preprocessing. In Proceedings of the Benelux Bioinformatics Confer-
ence, page 92.
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Coombes, K. R., Tsavachidis, S., Morris, J. S., Baggerly, K. A., Hung, M.-C.,
and Kuerer, H. M. (2005). Improved peak detection and quantification of
mass spectrometry data acquired from surface-enhanced laser desorption
and ionization by denoising spectra with the undecimated discrete wavelet
transform. Proteomics , 5(16), 4107–4117.

Coombes, K. R., Baggerly, K. A., and Morris, J. S. (2007). Pre-processing
mass spectrometry data. In W. Dubitzky, M. Granzow, and D. Berrar,
editors, Fundamentals of Data Mining in Genomics and Proteomics , pages
79–102. Springer.

Correa, P. A., Molina, J. F., Pinto, L. F., Arcos-Burgos, M., Herrera, M., and
Anaya, J. M. (2003). TAP1 and TAP2 polymorphisms analysis in North-
western Colombian patients with systemic lupus erythematosus. Annals of
the Rheumatic Diseases , 62(4), 363–365.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbour pattern classification.
IEEE Transactions on Information Theory, 13, 21–27.



212 References

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory.
Wiley-Interscience.

Crawford, N. P., Colliver, D. W., and Galandiuk, S. (2003). Tumor markers
and colorectal cancer: Utility in management. Journal of Surgical Oncology,
84, 239–248.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines . Cambridge University Press.

Croker, J. A. and Kimberly, R. P. (2005). Genetics of susceptibility and sever-
ity in systemic lupus erythematosus. Current Opinion in Rheumatology,
17(5), 529–537.

Cruz-Marcelo, A., Guerra, R., Vannucci, M., Li, Y., Lau, C. C., and Man, T.
(2008). Comparison of algorithms for pre-processing of SELDI-TOF mass
spectrometry data. Bioinformatics , 24(19), 2129–2136.

Dai, C. and Liu, J. (2005). Inducing pairwise gene interactions from time
series data by EDA based Bayesian network. In Proceedings of the 27th
Annual Conference of IEEE Engineering in Medicine and Biology, pages
7746–7749.

De Bonet, J. S., Isbell, C. L., and Viola, P. (1997). MIMIC: Finding optima
by estimating probability densities. In M. C. Mozer, M. I. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems,
volume 9, pages 424–430.
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Garćıa, A., Armañanzas, R., Freije, A., Ispizua, Z., Goñi, F., Inza, I., López
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P., Oksenberg, J. R., and Baranzini, S. E. (2007). Increased transcriptional
activity of milk-related genes following the active phase of experimental
autoimmune encephalomyelitis and multiple sclerosis. The Journal of Im-
munology, 179, 4074–4082.

Otaegui, D., Baranzini, S. E., Armañanzas, R., Calvo, B., Muñoz-Culla, M.,
Khankhanian, P., Inza, I., Lozano, J. A., Castillo-Triviño, T., Olaskoaga,
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