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Abstract—A novel Quantum-Inspired Estimation of Distribu-
tion Algorithm (QIEDA) is proposed to solve the Travelling
Salesman Problem (TSP). The QIEDA uses a modified version
of the W state quantum circuits to sample new solutions during
the algorithm runtime. The algorithm behaviour is compared
with other state-of-the-art population-based algorithms. QIEDA
convergence is faster than other algorithms, and the obtained
solutions improve as the size of the problem increases. Moreover,
we show that quantum noise enhances the search of an optimal
solution. Because quantum computers differ from each other,
partly due to the topology that distributes the qubits, the
computational cost of executing the QIEDA in different topologies
is analyzed and an ideal topology is proposed for the TSP solved
with the QIEDA.

Index Terms—quantum computing, quantum machine learn-
ing, travelling salesman problem, estimation of distribution algo-
rithm

I. INTRODUCTION

Developing efficient and effective heuristic approaches for

solving optimization problems has become the focus of meta-

heuristic research [1]. Deciding which algorithm is better to

solve a problem is guided by three factors: (i) the quality of

the obtained solutions, (ii) the computational cost, which is the

amount of resources dedicated to executing the algorithm, and

(iii) the running time, which is the time that elapses during

the execution of the algorithm.

TSP is a combinatorial optimization problem widely studied

in the literature in different research areas. In the Quantum

Computing (QC) area [2], [3] several techniques such as

adiabatic QC [4], and quantum approximate optimization

algorithms [5] are used to solve it. In the heuristic optimization

and the machine learning area, several metaheuristics such

as Estimation of Distribution Algorithms (EDAs) [6], genetic

algorithms [7], deep learning [8] and reinforcement learning

[9] have been applied to approach the TSP.

This work has been partially supported by the Spanish Ministry of Science
and Innovation through the PID2019-109247GB-I00 and RTC2019-006871-7
projects, and by Repsol through the ”Batch Reinforcement Learning” project.

The TSP is a well known NP-hard problem. [10]. The

problem corresponds to finding the shortest Hamiltonian cycle

in a graph defined by G = (V,E) of n cities represented as

vertices V in the graph and edges E between the nodes to

represent the interconnections. Each edge between vertices i

and j is associated with a given cost denoted by dij . Thus,

the TSP consists of finding a permutation π of n cities that

minimizes the function of the total cost of visiting the n cities

and going back to the starting point:

C(π) =
n−1
∑

i=1

(

dπ(i),π(i+1)

)

+ dπ(n),π(1) (1)

Evolutionary algorithms (EAs) are bio-inspired metaheuris-

tics based on the natural evolution. There are many types of

EAs: genetic algorithms (GAs) [11], evolutionary strategies

[12], evolutionary programming [13], genetic programming

[14] and estimation of distribution algorithms (EDAs) [15].

EDAs are a type of EAs which reproduce new individuals

by simulation from a probabilistic model built from the best

individuals of the previous generation.
In the last years, the capability of quantum computers

to diminish the execution times and to solve very complex

problems has gained a lot of interest. Quantum Computing

(QC) [2] is based on the principles of quantum theory,

which explains the behaviour of the interactions between

atomic particles. Speed computation improvement is based

on quantum mechanics phenomena such as superposition and

entanglement.
Several well-known companies are working on developing

quantum computers to run quantum algorithms. The main

distinctions among the different quantum devices are the

qubits quantum noise, the quantum topology which distributes

the interrelations among the qubits, and the technology used

to build the device. Different configurations may lead to

different results due to quantum noise or decoherence times

[3] influenced by the redistribution of the qubits to execute

the algorithm in the desired topology.
Previous studies on quantum machine learning [16]–[18]

have focused on exploiting the benefits of the QC to improve978-1-7281-8393-0/21/$31.00 ©2021 European Union
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the performance of the optimization algorithms. With respect

to EAs, quantum machine learning revolves around three

main research areas [19]: (i) quantum-inspired evolutionary

algorithms (QIEA), which take advantage of the concepts and

principles of quantum mechanics to improve the classic EAs;

(ii) evolutionary-designed quantum algorithms, which develop

new quantum algorithms implemented by genetic program-

ming; and (iii) quantum evolutionary algorithms, which de-

velop new evolutionary algorithms to be executed in quantum

devices.

In this paper, we will focus on QIEA. Since the seminal

paper [20] where principles of QC were used in the repro-

duction step of the EA, other works have applied different

modifications to improve the results, or accommodate the

algorithm to specific optimization problems. A matrix quantum

individual representation is used in [21], [22] to solve ordering

optimization problems. A novel quantum-inspired algorithm

is proposed by [23] motivated by the colony behavior of the

leafcutter ants. Other works propose different modifications to

these algorithms in order to improve the smoothing and effi-

ciency of the exploration [24], and compare them to the EDAs

behaviour [25]. However, these works cannot be executed in

a real circuit model-based quantum computer without being

adapted, as mentioned in [26]. Implementing a QIEA in a

quantum computer requires a hybrid implementation between

quantum programming, for the reproduction step, and the clas-

sical programming, for the rest of the EA steps. Running these

algorithms in a quantum computer also includes considering

the quantum noise present in the quantum computers.

In this work, we present a new quantum-inspired approach

for solving the TSP. The Quantum-Inspired Estimation of Dis-

tribution Algorithm (QIEDA) is a population-based algorithm

based on QC for the reproduction of new solutions during

runtime. The solutions obtained by the QIEDA are compet-

itive with other state-of-the-art population-based approaches

in terms of convergence and quality of solutions found. Also,

we measure the impact of running the QIEDA in different

quantum computers with non-identical topologies, and analyse

which would be the ideal quantum topology to solve the

TSP. The novelty of this algorithm, compared to those in

the literature, is that it can be executed without adaptations

in a real quantum computer based on the circuit model

programming. A parameterized quantum circuit is used during

the reproduction step in order to sample new solutions. The

experiments were executed simulating the real IBM quantum

computers.

The paper is organized as follows. Section II explains the

implementation of the QIEDA approach. Section III presents

an empirical comparison of the QIEDA with other optimiza-

tion algorithms and a benchmarking of the computational

cost for the TSP. Finally, Section IV concludes the work and

proposes future research lines.

II. QIEDA

Depending on the relationships between the variables that

are involved in the problem to be solved, the EDA approaches

can be classified into three main groups: (i) univariate EDAs

[27], which do not contemplate dependencies between vari-

ables; (ii) bivariate EDAs [28], which only consider pairwise

dependencies; and (iii) multivariate EDAs, which do not re-

strict the relations among the variables, such as the estimation

of Bayesian network algorithm (EBNA) [29] which uses

Bayesian networks (BNs) [30], [31] to model the relationships

among the variables.

QIEDA is a multivariate EDA which uses probabilistic logic

sampling (PLS) [32] to generate new solutions from a BN.

The algorithm samples new solutions taking advantage from

the QC principles. The QIEDA implementation is a hybrid im-

plementation between classic and quantum implementations.

Qiskit (0.16.0) and IBM platforms [33] have been used to

implement the quantum part.

A. Representation

In each iteration of the evolutionary algorithm, QIEDA

performs a sampling process to obtain a set of solutions.

Before describing the QIEDA implementation, the basics of

QC are addressed briefly.

In the classical computation the minimum unit of informa-

tion found in a computer is a classical bit. It can be set to 1

or 0 to perform different operations with other bits. In QC,

the smallest unit of information is the quantum bit (qubit)

[2]. It can be manipulated to be in the |0〉 or |1〉 states, or

in a superposition of both. When a qubit measurement is

performed, the probabilities make the qubit to collapse to

one of the two states, |0〉 or |1〉. The qubits states can be

represented following Dirac’s notation as,

|Ψ1〉 = α |0〉+ β |1〉 , (2)

where α and β are complex numbers that represent the proba-

bility amplitudes of the corresponding states and |α|2+|β|2=
1. |α|2 and |β|2 are the probabilities of the qubit to be in the

|0〉 and |1〉 states, respectively.

A 2-qubit is represented as |Ψ2〉 = δ1 |00〉 +
δ2 |01〉 + δ3 |10〉 + δ4 |11〉 with probability ampli-

tudes |δ1|2, |δ2|2, |δ3|2, |δ4|2 respectively, such that

|δ1|2+|δ2|2+|δ3|2+|δ4|2= 1.

In general, an n-qubit is represented as,

|Ψn〉 =δ1 |00 . . . 00〉+ δ2 |00 . . . 01〉+ δ3 |00 . . . 10〉+
δ4 |00 . . . 11〉+ · · ·+ δ2n−1 |11 . . . 10〉+
δ2n |11 . . . 11〉

(3)

with probability amplitudes |δ1|2, · · · , |δ2n |2 (
∑2n

i=1|δi|2= 1).

A qubit can be represented geometrically as a sphere, where

the north and south poles represent the |0〉 and |1〉 states

respectively, and a superposition of both states is represented

as a point in the sphere surface named the Bloch sphere [2].

Several operations can be defined on the qubit to modify its

state before a measurement is performed. These operations are

carried out with quantum gates over the qubit. Some relevant

gates used in this approach are the RY (φ) and X(φ) gates,
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which perform a rotation in the Y and X axis of φ radians,

respectively, in the Bloch sphere, among others.

There are a lot of ways to encode the TSP solutions

[7]. In this paper, a matrix representation is used. Assume

a set of cities U = {1, 2, . . . , n} of the TSP. The vector

x = (x1, x2, . . . , xn) is a solution for the problem where

xi ∈ U , and i denotes the city ordering. Every xi assumes

one of the elements of U with a certain probability. The sum

of probabilities of the elements in U must be equal to one. For

example, for a TSP problem of size n = 5, assume for the first

city to be visited (x1) a vector of probabilities for the elements

of U being observed (0.1, 0.2, 0.1, 0.5, 0.1). Thus, the element

x1 takes the fourth city in U with 0.5 probability as it is the

city with the highest probability, and once it is fixed, this city

cannot be selected again by the rest of the elements of x.

When adapting this codification to quantum individuals,

each of the elements of U is translated as a pure state of

an n-qubit. Then, every xi assumes a different pure state with

a certain probability. Each of the pure states that form the n-

qubit have only one qubit in the |1〉 state. The position of the

|1〉 state will be the city that represents that specific state. For

example, in an n-qubit of size n = 5, the only desired pure

states are 10000, 01000, 00100, 00010, 00001 which represent

the cities 1, 2, 3, 4, 5 respectively. Thus, a universe of size n

is represented by an n-qubit with n different states.

The n-qubit that represents the desired states to our problem

codification is,

|Ψ〉 =γ1 |10 . . . 00〉+ γ2 |01 . . . 00〉+ · · ·+
+ γn−1 |00 . . . 10〉+ γn |00 . . . 01〉 ,

(4)

where |γi|2 are the probabilities of each of the desired states

and
∑n

i=1|γi|2= 1. Note that the rest of 2n − n states, which

are not desired to be observed, are set to probability amplitudes

equal to zero.

Therefore, using the matrix quantum codification, each

solution of the TSP is represented as,

Q =







q11 . . . q1n
...

. . .
...

qn1 . . . qnn






, qij ∈ {0, 1},

where rows accounts for city ordering while columns corre-

spond to the position in U , and qij is equal to 1 whenever a

city j is visited in the ordering i position. Thus,

n
∑

j=1

qij = 1, ∀i ∈ 1, . . . , n. (5)

An example of a valid solution for a TSP of size n = 5 is,

Q1 =













0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0













which corresponds to the following ordered city path [5, 3, 4,

1, 2].

B. Algorithm

Algorithm 1 describes the QIEDA algorithm.

Algorithm 1 QIEDA pseudocode

1: p(Q0)← Initialize matrix of statistics

2: G0 ← Generate N individuals from p(Q0)
3: for i = 1, 2, ... until a stopping criterion is met do

4: Gl−1 ← Evaluate the individuals with cost function C

5: GSe
l−1 ← Select Se < N individuals from Gl−1

6: p(Qi)← Update the matrix of statistics from GSe
l−1

7: Gl ← Generate new generation from p(Qi)
8: end for=0

The QIEDA is initialized with a matrix of statistics (step

1) which specifies the relative frequency of appearance of

each city in each ordering position, among the best solutions

selected from the previous generation. In each iteration, the

algorithm generates some new individuals from the matrix of

statistics (step 2). Then the individuals are evaluated according

to the cost function in Eq. 1 we desire to optimize (step 4),

and the best individuals of the generation are selected (step

5) in order to improve the next generation cost. The matrix of

statistics is updated (step 6) in each iteration with the selected

individuals.

1) Initialization: The algorithm must be initialized with

a matrix of statistics which specifies the probability of each

position to take the value 1 when sampled,

p(Q) =







p(q1)
...

p(qn)






=







γ11 . . . γ1n
...

. . .
...

γn1 . . . γnn






(6)

The probabilities of each row verify the restriction of

Eq. (5), and correspond to the probabilities of each of the

pure states described in Eq. (4). This matrix is initialized so

that no solution is favored beforehand and it is updated during

the algorithm runtime until convergence is reached,

p(Q0) =







1
n

. . . 1
n

...
. . .

...
1
n

. . . 1
n







When the QIEDA converges, the matrix of statistics should

be a matrix of 1s and 0s (Eq. 5), which is the optimum solution

found by the algorithm for the proposed TSP.

2) Individuals Generation: As described in Section II-A,

the individuals are coded as matrix of ones and zeros where

each row i specifies the city visited in the i position of the

city ordering. When a city is visited, the following rows must

update the probabilities to do not allow visiting this city again.

The sampling process can be seen as a sequence of dependent

steps in which each step means to sample a row i, and update

rows i+1, i+2, · · · , n according to the i sampling outcome.

Consider a row i of an individual to be sampled in the

QIEDA sampling method, expressed as [qi1, . . . , qin]. The row

sampling consists of a random selection among the pure states

418

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on October 17,2022 at 09:44:29 UTC from IEEE Xplore.  Restrictions apply. 



defined by Eq. (4) with probabilities to be selected p(qi) =
[γi1, . . . , γin] defined in the row i of the matrix of statistics,

Eq. (6), of the corresponding algorithm iteration. Assume that

the pure state c has been selected. Then, the following rows

of the matrix of statistics are updated with zero probability for

state c (γ′

hc = 0, for h > i), as the city cannot be visited more

than once. Also, the remaining probabilities are updated as,

γ′

hj =
γhj

1− γic
(7)

for h > i, j 6= c, where γic is the previous probability value of

row i and column j = c, that is replaced by zero. For example,

assume a row which takes the values [0.2, 0.3, 0.4, 0.1], and

the last probability must be replaced by zero. Then, the row

would result in ( 0.2
1−0.1 ,

0.3
1−0.1 ,

0.4
1−0.1 , 0).

The generation reproduction is arranged as a tree. An

example of the tree building is shown in Fig. 1. Starting from

the root node, we sample the first individual row from p(q1).

As a generation consists of N individuals, the algorithm

performs N samplings that will be distributed among the

possible pure states according to p(q1). For example, in Fig. 1,

N is distributed by approximately 33% for each node. This

is the first level of the tree, whose maximum width is the

number of pure states defined by p(q1). It might occur that

N is distributed in such a way that a node is not sampled, and

thus, the first level width would be lower than expected. After

updating the following rows, probabilities of rows 2 to n, the

next level of the tree is built. Each node of level 1 unfolds its

possible solutions to level 2 depending on the updated p(q2).

If a node is not sampled, it is not unfolded in the next level.

Each node has an independent matrix of statistics depending

on the parent node. The samplings of each node for the same

level are independent, and thus, can be sampled in parallel.

This process continues until reaching the leaf nodes (level n),

where the sampled individuals are obtained. Total tree width

varies depending on how N is distributed along the tree nodes.

The maximum tree width is N !.

If we consider the tree as a directed acyclic graph in which

each level nodes depend on the previous level nodes, the tree

is a BN. There are a great amount of methods for sampling

BNs [30]. In this paper, the process followed is similar to

the probabilistic logic sampling (PLS), in which each node

depends on its parents. PLS defines an ancestral ordering of

nodes, which in this case is the city (row) ordering.

Algorithm 2 shows the adapted PLS for reproduction.

We define a node as a structure with: (i) updated statistics

depending on its parents, (ii) number of samplings (quantum

circuit shots) to distribute among child nodes, (iii) level of the

node, and (iv) the W state quantum circuit used for sampling.

To sample the individuals rows, the W state quantum circuits

have been implemented [34]. The W state is an entangled

quantum state [2] of n qubits, in which all possible pure states

have one of the qubits in the |1〉 state, while all other ones are

Algorithm 2 PLS pseudocode

Input Matrix of statistics, N

Output Set of individuals

0: struct NODE

0: stats← Statistics to sample W state circuit

0: size← Number of shots from the quantum circuit

0: level← Level in the tree structure

0: wstate← W state circuit with stats probabilities

0: end struct

1: root← Node(stats[0], size = N, level = 0)
2: leaf ← [root]
3: for node in leaf do

4: sols← Sample node.wstate node.size times

5: for sol in unique(sols) do

6: levelsol ← node.level + 1
7: sizesol ← Count samplings of sol in sols

8: nodesol ← Node(stats[levelsol], levelsol, sizesol)
9: nodesol.stats ← Update statistics for row levelsol

given nodesol
10: leaf.add(nodesol)← Add node to leaf nodes list

11: end for

12: leaf.remove(node) ← Remove node from leaf nodes

list

13: end for=0

in the |0〉 state,

|Wn〉 =
1√
n
(|10 . . . 00〉+ |01 . . . 00〉+ ....+

+ |00 . . . 10〉+ |00 . . . 01〉)
(8)

The general W state of Eq. (8) has been modified in

order to be able to set different probabilities to the different

qubits. Thus, we can apply this approach to sample solutions

according to Eq. (4). The circuit building is described in

Algorithm 3. The process is divided into two main parts: (i)

probability redistribution, in which, the desired probabilities

of the pure states that constitute the W state are translated to

rotations in the qubit Y axis with RY gates and controlled-

RY gates (CRY ), and (ii) state reshuffling, to ensure that the

number of qubits in the |1〉 state is only one, with controlled-X

gates (CX) and X axis rotation gates (X).

An example of a circuit of size n = 5 in which all pure

states have the same probabilities is shown in Fig. 2.

The influence of noise in the W state circuit samplings is

shown in Fig. 3. Panel (a) shows the histogram of the results

obtained executing the quantum circuit in a quantum simulator

without noise, while panel (b) shows the results obtained

executing the circuit in a real quantum computer. Both exper-

iments were run 1000 times with probabilities [ 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ].

Note that in Fig. 3(b) some not desired solutions are sampled

with a small probability due to the quantum computer noise.

Solutions must be filtered and the probability distribution
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Fig. 1. Example of the quantum individuals sampling of size n = 3. An initial matrix of statistics p(Q) is updated in each node depending on its parents
samplings. In the leaf nodes, the final individuals are obtained. The algorithm samples N individuals. Each node distributes its number of samples among its
child nodes.

Algorithm 3 W state modified building

Input Vector of statistics

Output W state quantum circuit

1: stats← [γ1, . . . , γn]
2: rot1 = 2cos−1(

√
γ1)

3: wstate← Quantum circuit with n qubits q1, . . . , qn
4: wstate← RY in q1 of rot1 rad.

5: for i = 2 . . . n do

6: amp =
√

1−∑i

j=1 γi

7: roti = 2cos−1( (γi)
1/2

amp
)

8: wstate← CRY (roti rad.) target qi and control qi−1

9: end for

10: for i = n, . . . , 1 do

11: wstate← CX with target i and control i− 1
12: end for

13: wstate← X gate q1 =0

among the valid solutions normalized. Valid solutions are the

pure states defined following Eq. (4).

III. RESULTS

In Section III-A the QIEDA performance is compared with

other optimization algorithms, and in Section III-B the QIEDA

is executed for different quantum computing topologies to

Fig. 2. Example of a W state circuit for n = 5. The probabilities are set
to [ 1

5
, 1

5
, 1

5
, 1

5
, 1

5
]. Purple gates are RY and CRY gates, blue ones are CX

gates, green one is X gate, and black ones are the measurement gates.

analyze the computational cost. All the experiments were run

using some quantum computer simulators available in the

Qiskit software [33]. The ideal simulator and some real devices

simulators such as Johannesburg or Tokyo were used to run

the experiments.

A. Algorithm Performance

The performance of the QIEDA has been compared to

other well known state-of-the-art population-based algorithms:

classic genetic algorithm (GA) [35], a binary adaptation

of the particle swarm optimization (PSO) [36], ant colony

optimization (ACO) [37], and a non-quantum estimation of

distribution algorithm (EDA). The non-quantum EDA is a

modification of the QIEDA approach in which, the solutions

are not sampled from a quantum circuit. New solutions are
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Fig. 3. Probability distribution of the W state circuit sampling for n = 5
without (a) and with (b) noise. The quantum circuit was run 1000 times for
each scenario.

sampled from a categorical distribution using a binary random

number generator. Its pseudocode is similar to that described

in the quantum-inspired evolutionary algorithms [19], in which

the number of qubits is not a limitation. See Appendix A for

details of the algorithms.

The QIEDA is executed with the ideal simulator without

quantum noise and in a quantum simulator with the Johannes-

burg quantum computer noise. The latter is the most realistic

simulation as it is executed simulating the behaviour of a real

quantum device. Johannesburg quantum device was chosen

as the case study since it was observed that the quantum

device selection does not influence the results obtained by the

QIEDA.

Different datasets have been used [38] to simulate different

Fig. 4. Mean best cost for the TSP for different number of cities and
different algorithms: QIEDA executed in the Johannesburg quantum simulator
with noise, QIEDA executed in a quantum simulator without quantum noise,
the non-quantum estimation of distribution algorithm (EDA), particle swarm
optimization (PSO), genetic algorithm (GA), and the ant colony optimization
(ACO).

TSP sizes. The experiments have been carried out for sizes

n = [5, 7, 10, 12, 15, 17, 20]. The Qiskit simulators only allow

to simulate up to 25 qubits. Thus, the aim of this analysis

is to study the trend of the results in order to determine the

performance of the algorithm.

Figure 4 shows an analysis of the optimum solutions ob-

tained by the QIEDA compared to other population-based

algorithms. The algorithms were run 100 times and the figure

plots the mean and the deviations of the executions. Note that

the QIEDA executed in the Johannesburg quantum computer

achieves competitive results compared to other optimization

algorithms. In nearly all the experiments, QIEDA achieves

the best results on average compared to others, with a small

deviation. In order to verify if the results are statistically

significant some tests were run. After checking that the data

fit a normal distribution, we calculated the p-value with an

analysis of variance (ANOVA) [39], and the Student’s t-test

[40] of the QIEDA results compared to the other algorithms

for each of the experiments. A significance level of 0.05 was

set. ANOVA p-values are shown in Table I, and all t-tests

yielded p-values lower than 0.05, so we can reject the null

hypothesis of equal means. The QIEDA executed in the ideal

simulator does not reproduce any noise, so the performance of

the algorithm is similar to the non-quantum EDA. Note that

the results obtained by both algorithms are very similar.

TABLE I
ANOVA TEST P-VALUES

n=5 n=7 n=10 n=12 n=15 n=17 n=20
6.1e-56 1.9e-23 0.021 8.8e-09 3.7e-18 1.4e-21 2e-23

It is also noteworthy that when increasing the TSP size,
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Fig. 5. Mean convergence for the TSP for different number of cities and
different algorithms: QIEDA executed in the Johannesburg quantum simulator
with noise, QIEDA executed in a quantum simulator without quantum noise,
the non-quantum estimation of distribution algorithm (EDA), particle swarm
optimization (PSO), genetic algorithm (GA), and the ant colony optimization
(ACO).

the QIEDA performance improves compared to the other al-

gorithms. The trend shows that, for larger (and therefore more

complex) TSPs, the QIEDA will find much better solutions

than the other population-based optimizers.

Figure 5 shows an analysis of the convergence of the

QIEDA. The figure shows the mean and the deviation of 100

executions of the algorithm. The algorithm is compared to

the same population-based algorithms in the same conditions

as before. The EDA approaches have better convergence com-

pared to other algorithms. Note that, regardless of the problem

size, the QIEDA convergence remains approximately constant

and with a small value compared to the other algorithms.

Despite the fact that the QIEDA approach was not able

to be executed for larger TSP sizes, we can observe the

trend of the results. As far as this behavior is concerned, the

QIEDA approach achieves competitive results compared to the

other algorithms. Moreover, the convergence of the algorithm

remains constant independently of the size of the problem. Our

results suggest that intrinsic quantum noise has the ability to

enhance the convergence and the cost of the TSP as noise

modifies the search space in such a way that it prevents the

algorithm from falling into local optimal solutions.

B. Analysis Of Computing Topologies

There exists a large variety of quantum computers among

which the main differences are the quantum topology (Fig. 6)

which distributes the qubits and their relations. Two qubits

A and B can only operate with each other only if there is a

connection between both qubits. Otherwise, the system needs

to swap with other qubits until A and B are connected.

To run a quantum circuit in a specific quantum computer

some aspects must be analyzed:

• Available quantum gates. The circuit might have some

quantum gates not available in the desired computer, so

it must be adapted to execute it.

• Available number of qubits.

• Topology. The qubits of each quantum computer are dis-

tributed following different topologies. The circuit must

adapt so the number of swap operations is minimized.

Executing a circuit without optimizing the number of swap

operations increases the computational cost. Minimizing the

number of quantum gates in the circuit decreases the compu-

tational cost. The aim of this benchmark is to find the ideal

topology to execute the designed approach. Finding the topol-

ogy which minimizes the computational cost of each executed

W state circuit, would mean to reduce the computational cost

of the QIEDA approach. To that end, we study the circuit

depth that refers to the number of time steps (time complexity)

required for the quantum operations making up the circuit to

run on the quantum hardware [41].
The analysis and adaptation of the circuit to the specific

quantum computer is named transpilation. During the tran-

spilation, the circuit can be optimized to minimize the swap

operation. Table II shows an analysis of the circuit depth

with and without optimization for different topologies (Fig. 6).

All the selected quantum computers have the same available

quantum gates (id, u1, u2, u3 and cx), so the differences

between the adapted circuits for each quantum computer are

the number of swap operations added to be able to execute

the circuit. The larger the depth, the larger the computational

cost to execute the circuit in a quantum topology. Each swap

operation is a combination of three sequential controlled-x

gates between the two qubits to be swapped.
Note in Table II that for any topology, optimization im-

proves the circuit depth as expected due to the minimization

of the swap operations.
When, due to the quantum computer topology and the

characteristics of the problem, swap operations must be carried

out to use all the qubits of the quantum computer, the depth

increases considerably in comparison with other topologies, as

for example for Almaden, Singapore and Boebligen for n = 20
(depth of 170). For the same problem size, in a topology which

does not imply doing swap operations, such as Johannesburg

or Poughkeepsie, the depth decreases to less than a half. For

larger problems than the executed in the experiments (for

example N = 50), the best option would be to use the

Manhattan topology due to the number of qubits, 65, and

the multiple qubits distributions available without using swap

operations. However, using such a large quantum computer for

considerably smaller problems is a brute solution.
The topology of some computers limits the number of used

qubits in order to do not increase considerably the depth of the

circuit. As a solution, we have designed an ideal topology for

the problem we are solving. In the W state circuit we are using

the qubits interaction: q0 − q1, q1 − q2, . . . , qn−1 − qn, qn −
qn−1, qn−1 − qn−2, . . . , q1 − q0. Thus, the ideal topology is a

chain qubits distribution, named as chain backend in Table II.

An example is shown in Fig. 7. In the benchmark, for the
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Fig. 6. Quantum computers topologies.

TABLE II
BENCHMARK. DEPTH ANALYSIS OF THE W STATE CIRCUIT FOR DIFFERENT TOPOLOGIES

Simulator n qubits
Without optimization With optimization

10 15 20 50 10 15 20 50 60
Rueschlikon 16 62 98 - - 56 98 - - -
Tokyo 20 57 90 145 - 36 56 122 - -
Almaden 20 48 90 126 - 36 56 170 - -
Johannesburg 20 60 102 139 - 36 56 76 - -
Cambridge 28 72 104 184 - 36 56 76 - -
Manhattan 65 36 116 145 449 36 56 76 196 581
Montreal 27 78 134 196 - 36 56 76 - -
Rochester 53 69 104 181 481 36 56 76 667 -

chain backend - 36 56 76 196 36 56 76 196 236

Fig. 7. Chain topology designed as the ideal topology for the QIEDA
approach for n = 15.

problem of size 60, the chain topology improves Manhattan

topology by a factor of 2.5.

Note that in Table II, the modified version of the W state

circuits depth grows linearly with the size of the problem for

the chain backend topology, so the implemented metaheuristic

is considered to be efficient [26].

IV. CONCLUSIONS

This work presented a new quantum-inspired EDA approach

to solve the TSP problem. The QIEDA uses a modified version

of the W state quantum circuits to adapt the PLS process to

sample new solutions during the algorithm runtime.

The results obtained by the QIEDA were analysed in terms

of convergence and optimum solution found. The algorithm

behaviour was compared to other state-of-the-art population-

based algorithms. The QIEDA number of iterations until

convergence remains constant with increasing number of

cities of the TSP, and is smaller than other algorithms. The

solutions obtained by the QIEDA are competitive with the

other algorithms, and the observed trend justifies the use of

quantum computers to solve the TSP. The presence of quantum

noise in the reproduction step of the algorithm improves its

performance compared to others without noise. The QIEDA

computational cost is also analysed by a benchmark. We

have shown that the algorithm results are independent of the

topology of the quantum computer chosen to be executed on.

However, the topology is critical for the execution time due

to the swap operations carried out by the quantum computers.

We have proposed an ideal topology to solve the TSP although

other technologies as IonQ [42] uses all-to-all connected qubits

configurations that may be as faster as the one proposed here.

However, this technology does not allow all the quantum gates

that the W state circuit involves and further studies should be
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carried out to adapt our approach.

Future work should include the implementation of a W

state quantum circuit able to sample the full individual matrix

instead of executing a W state circuit per matrix row. Also, the

QIEDA approach could be generalized for other combinatorial

optimization problems.

APPENDIX

The hyper-parameters of the population-based algorithms

are shown in Table III. Despite the fact their tunning is out of

the scope of this work, a previous analysis was done to achieve

good solutions for the experiments, and compare them fairly

with the QIEDA. For ACO, α is the relative importance of

the pheromone and β is the relative importance of the trigger

factor. As observed in [37], α < β achieves better results. rho

is the evaporation rate of global pheromone which is equal to

the evaporation rate of the local pheromone. For PSO, α is the

cognitive parameter to control the exploitation component and

β is the social parameter to control the exploration component

of the algorithm. For GA, α is the population percentage

considered as elite selection, and the mutation rate mr is the

parameter which influences how the individuals are modified

in the mutation phase of the algorithm. For EDA, α is the

population percentage considered as elite selection. N and

Gen are the population size and the number of iterations,

respectively.

TABLE III
EXPERIMENTS SETUP

N Gen α β mr rho
ACO 50 40 0.4 0.6 - 0.5
PSO 50 40 0.55 0.45 - -
GA 50 40 0.5 - 0.04 -

EDA 50 40 0.5 - - -
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