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A b s t r a c t . Hidden Markov models have been successfully applied to 
model signals and dynamic data. However, when dealing with many 
variables, traditional hidden Markov models do not take into account 
asymmetric dependencies, leading to models with overfitting and poor 
problem insight. To deal with the previous problem, asymmetric hidden 
Markov models were recently proposed, whose emission probabilities are 
modified to follow a state-dependent graphical model. However, only dis­
crete models have been developed. In this paper we introduce asymmetric 
hidden Markov models with continuous variables using state-dependent 
linear Gaussian Bayesian networks. We propose a parameter and struc­
ture learning algorithm for this new model. We run experiments with 
real data from bearing vibration. Since vibrational data is continuous, 
with the proposed model we can avoid any variable discretization step 
and perform learning and inference in an asymmetric information frame. 

1 Introduction 

Hidden Markov Models (HMMs) have been used to predict and analyse dynamic 
and sequential data, e.g., in speech recognition or gene prediction. These models 
assume a hidden variable which explains an observed variable. However, they 
rely on the assumption of an equal emission probability function for every state 
(except for changes in parameters) of the hidden variable, which for the case of 
multiple observable variables may lead to a huge unnecessary amount of param­
eters to be learned and produce models with data overfitting and poor problem 
insights, specially when few data is available. 

Many attempts have tried to capture asymmetries within probabilistic graph­
ical models. F or example, Bayesian multinets [5] describe different local graph­
ical models depending on the values of certain observed variables; similarity 
net wor k s [7] allow to build independent influence diagrams for subsets of a given 
domain. Context-specific independence in Bayesian networks [1] have tree struc­
tured conditional probability distributions with a d-separation-based algorithm 



to determine statistical dependencies between variables according to contexts. It 
has been shown that the use of these asymmetries within the model can improve 
the inference and learning procedures [2]. 

In HMMs, which can be seen as probabilistic graphical models, asymmetries 
could be emulated to be as those in Bayesian multinets, similarity networks or 
context-specific independence in Bayesian networks. A Chow-Liu tree or a con­
ditional forest is used in [9] to model the observed variables given the hidden 
state. More recently asymmetric hidden Markov models (As-HMMs) are pro­
posed in [2], where a local graphical model (not necessarily a tree or a forest) is 
associated to each state of the hidden variable. However, only models with dis­
crete observable variables were discussed, leaving continuous observable variables 
forced to be discretized. The number of parameters depends upon the discretiza­
tion method which can affect the inference and learning phases. In this paper 
we extend As-HMMs to deal with continuous variables, which permits avoiding 
discretization steps and the errors that may come from this process. 

The structure of this document is the following. Section 2 recalls HMMs in 
a general way. Section 3 covers As-HMMs and introduce the asymmetric linear 
Gaussian hidden Markov models (AsLG-HMMs) which are capable of modelling 
As-HMMs with continuous variables. We also discuss the parameter and struc­
ture learning of AsLG-HMMs. Section 4 presents experiments with real vibra­
tional data from bearings. The results obtained using AsLG-HMM are compared 
against the ones from using mixtures of Gaussian hidden Markov models (HMM-
MoG). The paper is sounded off in Sect. 5 with conclusions and comments on 
possible future research lines. 

2 Hidden Markov Models 

Let X = (x°, ...,xT) be the observed variables X = {Xi, ...,XM} over time, 
where x* = (x\,..., xf

M), t = 0,1,..., T. We assume that the observed variable X 
is influenced by a discrete variable Q which is hidden and has N possible values, 
i.e. dom(Q) = {1, 2,..., N}. A HMM is a double chain stochastic process, where 
the evolution of hidden states Q = (</°,..., qT), of Q is assumed to fulfill the 
Markov property. Moreover x* is assumed to be independent of itself over time 
given </*. 

Definition 1. A HMM is a triplet A = (A,B,ir) where A = [ai,j]fj=i is a 
matrix representing the transition probabilities between the hidden states i, j 
over time t, i.e. aij = P(qt+1 = j\ql = i); B is a vector representing the 
emission probability of the observations given the hidden state, B = [bj(x})W=1, 
where 6j(x') = P(X = x*|</* = j) is a probability density function; and ir is the 
initial distribution of the hidden states ir = [TTJW=1 where TTJ = P(q° = j). 

Given a model A = (A, B , 7r), it is possible to compute the probability of the 
complete information i.e., P(Q ,X |A) as: 

T-l T 

P(Q ,X |A) = 7rqo TT aqtqt+i TT&qt(x*). (1) 
t=0 t=0 



Three main tasks can be performed in the context of HMMs: first, com­
pute the likelihood of X , i.e. P(X |A), which can be done using the forward-
backward algorithm [12]. Second, compute the most probable sequence of states 
i.e., find the value of St(i) = maxqt-i P(X , Q ~~ , </* = i|A), t = 0, ...T, 
i = 1,...,N, which can be solved using the Viterbi algorithm [12]. Third, learn 
the parameters A, which can be done with the expectation maximization (EM) 
algorithm [12]. 

To execute the forward-backward algorithm, the forward and backward vari­
ables are needed, which are defined respectively as at(i) = P(</* = i, x°,..., x*|A), 
i = 1,.., N, t = 0, ...,T, and (3t(i) = P(x*+1, ...,xT|</* = i, A), i = 1,..., N, t = 
0, ...,T. Observe in particular that the forward variable can help us to compute 
the likelihood of X , since: P(X |A) = ~^2i=1 P(X ,qT = i\X) = ~^2i=1 «T (*) -

For the second problem, it is noticeable that the variable St(i) can be seen 
as: St(j) = maxj=ij..jv{(5t_i(«)ajjj}5j(x*+1), j = 1,.., N, t = 0,...,T, which can be 
solved recursively. For more details about this algorithm, see [12]. 

For the third problem, we will recall how to learn the parameters A* using 
the Baum-Welch method or equivalently, the EM algorithm [12]. The algorithm 
consists of two steps, the expectation (E) step and the maximization (M) step. 
We assume that a prior A0 = (A , B , 7r°) is known. In the E step, we compute 
the distribution of the latent variable Q, i.e., P(Q |X , A0). In the M step, we 
find A* as solution of the problem: A* = argmax^ H(X\X°), where H(X\X°) is 
defined as 

H(X\X°)= ^ P ( Q |X ,A°)lnP(Q ,X |A), (2) 
Q 

where Q := dom(QT). In [3] it is shown that P(X |A*) > P(X |A°) with equal­
ity if and only if H(X*\X ) = H(X \X ) and P(Q |X , A ) = P(Q |X ,A*). 
Therefore, iterating the E and the M steps produce improvements in the model 
likelihood. 

The E step for HMMs, for a prior A0, is done by calculating the quantities 
7t(«) = P(<Z* = *|X ,A°) and £t(hj) = P(<f = hQt+1 = i | X ,A°), i,j = 
1,...,N, t = 0, ...,T which can be computed using the forward and backward 
variables in the following way: 

at(i)f3t(i) 
7*W = M J (3) 

S « = i at(u)(3t(u) 

• - at(i)aijbj(xt+1)f3t+i(j) 
i t ( - , 3 ) = j j jj • ( 4 ) 

S « = i Sti=i at(u)auvbv(x
t+1)f3t+i(v) 

The M step for HMM requires to maximize the H(X\X°) function, which is done 
by using Eqs. (1) and (2): 

T-l 

H(X\X°) = \^P(Q |X , A)ln(7rqo)+\^ V^ P(Q |X , A)ln(aq* q*+i) 
Q t=o 

T 

+ / ^ ^ P(Q |X , A)ln(6q*(x*)), 
Q t=0 

(5) •̂  



with restrictions 2^ i = 1 VTJ = 1 and z^ 1 = l t i i , j = 1, « = 1, ...,TV. The updat ing 
formulas for parameters A and 7r can be computed using Lagrange multipliers. 
The resulting formulas are: 

71"̂  ( « ) = 7o(«), « =1 , . . . ,TV , ai • = — „_ 1 , «,_; = 1 , ..., TV. (6) 
S t = o 7t(*) 

The updat ing formula for parameter B relies on the assumptions made over 
the observable variables and the emission probabilities. In the next section we 
develop the formulas to update parameter B in the context of an As-HMM with 
Gaussian variables. 

3 Asymmetr ic Linear Gaussian Hidden Markov Models 

In this section we recall definitions and relevant aspects from As-HMMs men­
tioned in [2]. Then we model the asymmetric emission probabilities using linear 
Gaussian Bayesian networks and deduce the update algorithm for parameter B 
and discuss its complexity. Finally we describe the structure learning procedure. 

3.1 Def in i t ions 

First of all, we recall the definition of linear Gaussian Bayesian network (LGBN), 
see [10]. This model will be used to describe the asymmetries in HMMs with 
continuous variables. 

Def in i t ion 2. Let X = (X i , ...,XM) be a continuous random variable. A linear 
Gaussian Bayesian network over X is a tuple B(R,G), where G is a directed 
acyclic graph (DAG). The parents of Xm are given by G and are represented by 
an ordered vector of length km denoted as Pa(Xm) = (Um^,..., Umij.m), m = 
1,...,M, with Umj G X, I = 1,...,km. R is formed by the local distribution of 
each Xm conditioned on Pa(Xm). The joint density function satisfies: 

M 

P(X)= Y[ N(Xm\(3m,o + I3m,ium,i + • • • + l3m,kmUm,km,a2
m), (7) 

m=l 

where J\f denotes the one-dimensional Gaussian probability density function and 
Pi,k, i = 1, ...,N, k = 0,..., km are real numbers. 

Now, state-specific Bayesian network, As-HMMs and AsLG-HMMs are defined. 
The idea is to give a distinct LGBN to every s tate of the hidden variable. As 
a consequence, in every state the parents of each variable are different. This 
representation captures asymmetries in the data . 

Def in i t ion 3 . Let X = (X i , ...,XM) and Q be random variables. For each q G 
dom(Q), we associate a Bayesian network over X called state-specific Bayesian 
network for q, Bq(Rq,Gq). We define the following conditional distribution: 

M 

Pq(X) := P(X\q) = Y[ Pq(Xm\Paq(Xm)). (8) 
m=l 



Def in i t ion 4. An asymmetric hidden Markov model over the random variables 

(X,Q), being Q the hidden variable, is a model A = (A,B,ir) with initial dis­

tribution 7r = [TTJ];?1I where TTJ = P(q° = j), transition probabilities between the 

hidden states A = [aj,j]fo=i where aij = P(qt+1 = j\ql = i) and the emission 

density function vector B = [& j (x ' ) ]^ 1 where 6j(x') = Pj(x') i.e. a state-specific 

Bayesian network. 

Def in i t ion 5. An asymmetric linear Gaussian hidden Markov model over X = 
(Xi, ...,XM) the continuous random variables and Q the hidden discrete ran­
dom variable, is an As-HMM A = (A,B,ir) with the property that for each 
q G dom(Q) a state-specific linear Gaussian Bayesian network Bq(Rq,Gq) is 
associated. If the parents of variable Xm for the state q are an ordered column 
vector of length k!* denoted as Pa„(Xm) = (U!L -,,..., Uq ,q ) , m = 1, ..., M, with 

U^ [ G X, I = 1,..., k!^, then the emission probabilities B = [6J-(xt)]j^1 have the 
form: 

M 

6j(x') = Pj(x') = I I J^f\xt
m\f3]

m o -V(33
m \U3

m i + • • • -\-(33 - U3 - , {o~3
m) ) , (9) 

m=l 

Observe tha t each linear Gaussian model for each s tate q G dom(Q) is determined 

by the set of coefficients Tq := U m = i { ^ m o> •••J/?9 kq }> s m ce the mean of each 

variable is a function of these coefficients, see [10]. 

3.2 Learning P a r a m e t e r s 

Now tha t we know how to represent the emission probabilities B for the case 
of AsLG-HMMs, we build the parameter upda te formulas. Assume the prior A0 

is known and we execute the E step as in Sect. 2, therefore 7t(i), i = 1,...,N, 
t = 0 ,1 , . . . ,T quantities are defined. Let Dq[F] := 5^t=o /*7*(</)) with F any 
variable and q G dom(Q ) . First, we need the value of / 3^ 0 tha t maximizes the 
H function, hence we derive Eq. (5) with respect to / 3 ^ 0 and equate to zero. 
Observe tha t / 3^ 0 appears in the H function inside 6q*(x*) = Pqt(x*), hence: 

oti{\\\ ) " L t = o L i = i 7 n ' ) ' n M ( x ) ^ u l n r „ ( x ) 
EToQ = EToQ = 'yt(q) 7T7M = 0 , ( 1 0 ) 
" P m , O " P m , O " P m , O 

making the derivation assuming tha t Pq(x*) is defined by an AsLG-HMMs and 
umi *s t n e value of the /-parent of Xm for state q at time t, I = 1,.., k^. Then 
we have: 

^ |A°) =E-2I#(^o+^i^i+---+/3:^^v -^)=o. ai) 
OPrafi t=0 (CT™) ' ' m, m m, m 

This leads to the following expression: 

Dq[Xm] = Pm 0Dq[l\ + / 3^ \Dq\Um l] + ' ' ' + /3? j.q Dq[Uq hi ]• (12) 



If Eq. (5) is derived with respect to the coefficients /3^ k with k = 1,..., k^ as in 
Eq. (10) we obtain the following equations: 

Dq[XmU^]=^mt0Dq[UlA] +•••+&„ Dq[U* UlA] 

Dq[XmUq
mkqJ=pq

mfiDq[U
q
mkqJ + • • • + Pq

mADq[{U
q
mkqy}. 

(13) 

Equations (12) and (13) form a linear system of k^ + 1 unknowns with 
k^ + 1 equations. The solution of this system gives the coefficients 
{/3q

 n, f3q
 1,..., f3q ,q }, for each variable m = 1, 2,..., M and state q G dom(Q). 

Once, these coefficients are known, the mean /J^ = (3^ 0 + /3^ ̂ u^\ + • • • + 

(3q ,q u ,q,q is estimated. To obtain the updating formula of (c^J2 , we must 

derive Eq. (5) with respect (c^J and equate to zero: 

dH(X\X°) <91nP q (x*) 

{o~m) t=Q [o~ 
7t(q) q = 0 . (14) 

Assuming that Pq(x*) is defined by an AsLG-HMM, we have: 

dH(X\X°) x / ( X m —M™9)2 1 x 
lt\l)\ „ ' „ J = 0 , (15) V my t = 0 V m) v 

which leads to the following expression: 

^ T I \( t tq\2 

( ( ^ ) 2 ) * = t=°7t T ^ ^ • (16) 

We discuss now tne complexity ol computing tne 1 := (J i = 1 Jj coefficients. 
Assume that we have N states, M variables and that the factorization for each 
state is the most complex i.e., every variable is dependent of the others. This 

n T M(M+1) Ar , f 

implies tnat |ij| = 1 + 2 + 3 + - - - + M = H p , i = 1, ...,iv, tnerelore 
| Ui=i -**l = 2 • ls known tnat tne complexity ol solving a linear system 
of k variables is at most 0(k3) (using for example Gauss-Jordan algorithm). 
Hence for the worst case scenario the complexity of determining the coefficients 
f n/i3 ^V3 , r^f AJ3 A X / M 2 ( M + 1 ) 2 ™ , 

lor a single state is C(l ) + C(2 ) + • • • + (J[M ) = C ( ^ p ) . Inerelore to 
compute the coefficients for every state, the complexity is 0(NM2(M +1)2) . On 
the other hand, for the simplest factorization i.e., every variable is independent 
of the others given the state, the complexity of determining the coefficients is 
0{NM), since we must solve M linear systems of one variable for N states. 

3.3 Learning Structure 

For the structure learning task the SEM algorithm, proposed in [4] is used. 
Assume the prior model A0'0 = (A ' , B ' ,7r°'°) for the initial model M°. One 



SEM iteration consists of using the EM algorithm to get the parameters A0'* = 
(A '*, B '*, 7T0'*). Next, using the estimation A0'* and P(Q |X ,A0'*) got in 
the E step, we look for a model M1 such that maximizes a given score function, 
usually the Bayesian information criterion (BIC). Once the model M1 has been 
found, we set A1'0 := A0'* i.e., the found parameters are used as prior parameters 
for the next iteration of the SEM algorithm. As noticed in [2] the BIC score can 
be deduced and reduced from Eq. (5) as follows: 

N T 

Score = > > 7t(g)lnPo(x) ln(T)#(Ba(Ra,Ga)), (17) 
q=1 t=0 

where #(Bq(Rq,Gq)) is the number of parameters used for the state-specific 
linear Gaussian Bayesian network for state q. We must also mention that any 
algorithm can be used to optimize the score function. In particular, the simu­
lated annealing introduced in [8] was used for this study. Recall that [6] proved 
the convergence of this method which gives us an ending guarantee of the opti­
mization process. 

4 Experiments 

For the experiments we use a real dataset. The data comes from bearing vibra­
tional information, see [11]. The data is filtered using spectral kurtosis algorithms 
and envelope techniques as in [14]; next, the bearing fundamental frequencies 
and its harmonics are extracted: ball pass frequency outer (BPFO) related to 
the bearings outer race, ball pass frequency inner (BPFI) related to the bearings 
inner race, ball spin frequency (BSF) related to the bearings rollers and the fun­
damental train frequency (FTF) related to the bearings cage. The mechanical 
set-up is shown in Fig. 1. In real life applications, bearings are fundamental com­
ponents inside of tool machines. Is desirable to surveillance the bearing health 
state. However, the health state is a hidden variable; hence, HMMs can be applied 
to estimate the bearing health. In the literature, the health estimation is usually 
done with mixtures of Gaussian hidden Markov model (MoG-HMM) as in [13]. 

Fig . 1 . Graphical representation of the mechanical set-up. A rotomotor spins a shaft 
at a rotational speed of 2000RPM coupled with four Rexnord ZA-2115 double row 
bearings with labels B1, B2, B3 and B4. A constant radial load of 2721.554 kg is 
applied to bearings 2 and 3. Vibrational data is recorded until one of the bearings fails. 
A signal record of 0.1s is taken every twenty minutes. The sampling rate is 20 kHz. 



There is a training and a testing signal. The learning signal consist of 2156 
records and the testing signal of 6324 records. We have information of the funda­
mental frequencies and three harmonics of each frequency, hence 16 variables are 
used in both signals. We will assume that there are four possible health states. In 
the training dataset, B3 fails due to its inner race and B4 due to its rollers. In the 
testing dataset B3 fails due to its outer race. The results of using AsLG-HMMs 
and MoG-HMMs with three mixtures are shown in Table 1. We show results for 
log-likelihood (LL), BIC score, and number of parameters ( # ) . Notice that the 
number of parameters needed by a MoG-HMM is NK((M2 + M ) / 2 + 1), where 
K is the number of mixtures components. 

Table 1 . Likelihood and BIC results for test signal. 

B 

1 

2 

3 

4 

MoG-HMM 

# 
1644.0 

1644.0 

1644.0 

1644.0 

LL 

-170045.02 

-204349.46 

-349099.49 

-84479.32 

BIC 

-177232.72 

-211537.16 

-356287.2 

-91667.03 

AsLG-HMM 

# 
560.0 

560.0 

137.0 

133.0 

LL 

-162654.42 

-178040.19 

-270698.52 

-74495.96 

BIC 

-165028.46 

-180414.23 

-271226.57 

-75006.56 

0 10 !0 30 40 50 60 70 80 0 10 30 30 40 50 «0 70 80 

(a) State sequence MoG-HMM B3. (b) State sequence AsLG-HMM B3 

(c) State sequence MoG-HMM B4. (d) State sequence AsLG-HMM B4. 

Fig. 2. Sequences of states predicted by Viterbi algorithm for B3 and B4 due to B3 is 
the failure bearing and B4 has the lowest BIC score. (a) and (c) are state sequences 
predicted with MoG-HMMS. (b) and (d) are state sequences predicted with AsLG-
HMMs. 

From the results obtained, it can be seen that the BIC scores from AsLG-
HMMs are better than the ones obtained from MoG-HMMs. Also, if we observe 
Fig. 2, we see that the health evolution of the B3 and B4 predicted by the MoG-
HMMs are not easy to read. In (a) at the end of the bearings life the sequence 



(a) LGBN for B3, state 0. (b) LGBN for B3, state 3. 

Fig. 3. Different state specific Gaussian Bayesian network structures obtained for dif­
ferent states. Here, an illustrative model structure is built using only fundamental 
frequencies. 

jumps between all the states and in (c) any relevant information is shown. On 
the other hand, the state sequence predicted by AsLG-HMMs reveals a change in 
the bearings health in its last days of life in (c) and in (d) shows an evolutionary 
sequence. 

On the other hand, to illustrate the better problem insight that As-HMMs 
provide, we train an AsLG-HMMs with only the fundamental frequencies (four 
variables) and observe the obtained state-specific LGBN for B3, see Fig. 3. As 
we see for state 0 (healthy state), FTF frequency determines the others, this was 
expected since FTF is close to the shaft frequency. Meanwhile in state 3 (failure 
state), the BPFI determine the BSF and FTF frequencies, which may indicate 
a failure in the bearings inner race. 

5 Conclusions and Future Work 

In this paper the AsLG-HMM has been introduced in order to deal with contin­
uous variables in asymmetric hidden Markov models. This model is proposed to 
overcome overfitting models and discretization steps. Also AsLG-HMM provides 
useful interpretation of the problem domain, since state-specific LGBN are used. 
Also As-HMMs open a wide range of research lines, there are many possibilities 
and variations of As-HMMs that can be explored. 
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