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Abstract 

In this work w e introduce a methodology based on genetic algorithms for the 
automatic induction of Bayesian networks from a file containing cases and variables 
related to the problem. The structure is learned by applying three different methods: 
The Cooper and Herskovits metric for a general Bayesian network, the Markov 
blanket approach and the relaxed Markov blanket method. The methodologies are 
applied to the problem of predicting survival of people after 1, 3 and 5 years of 
being diagnosed as having malignant skin melanoma. The accuracy of the obtained 
models, measured in terms of the percentage of well-classified subjects, is compared 
to that obtained by the so-called Naive-Bayes. In the four approaches, the 
estimation of the model accuracy is obtained from the 10-fold cross-validation 
method. 

Bayesian network; Genetic algorithm; Structure learning; Model search; 10-Fold cross-
validation 



1. Introduction 

Expert systems, one of the most developed areas in the held of artificial 
intelligence, is that of computer programs designed to help or replace humans tasks 
where human experience and knowledge are scarce and unreliable. Although there 
are domains where tasks can be specified by logic rules, other domains are 
characterized by inherent uncertainty. Probability was not taken into account for 
some time as a reasoning method for expert systems trying to model uncertain 
domains, because the computational requirements were considered to be too 
expensive. At the end of the 1980s, Lauritzen and Spiegelhalter [14] showed that 
these difficulties can be overcome by exploiting the modular character of the 
graphical models associated with the so-called probabilistic expert systems, which in 
this work are called Bayesian networks. 

Bayesian networks (BNs) [9,13,16] constitute a probabilistic framework for 
reasoning under uncertainty. From an informal perspective, B N s are directed 
acyclic graphs (DAGs), where the nodes are random variables and the arcs specify 
the independence assumptions that must be held between the random variables. 
B N s are based upon the concept of conditional independence among variables. This 
concept makes possible a factorization of the probability distribution of the 
M-dimensional random variable (JT¡ J Q in the following way: 

f (X %„) = H f (x,#W) 

where x, represents the value of the random variable _%, and ̂ a (x,) represents the 
value of the random variables parents of JT¿. 

Thus, in order to specify the probability distribution of a B N , one must give 
prior probabilities for all root nodes (nodes with no predecessors) and conditional 
probabilities for all other nodes, given all possible combinations of their direct 
predecessors. These numbers in conjunction with the D A G , specify the B N com­
pletely. Once the network is constructed it constitutes an efficient device to perform 
probabilistic inference. This probabilistic reasoning inside the net can be carried out 
by exact methods, as well as by approximate methods. Nevertheless, the problem of 
building such a network remains. The structure and conditional probabilities 
necessary for characterising the network can be either provided externally by 
experts or obtained from an algorithm which automatically induces them. 

In this paper, a methodology for automatically inducing Bayesian networks is 
introduced. This methodology is based on genetic algorithms (GAB) and attempts 
to obtain from a database of cases the best structure of the Bayesian network. 

The rest of the paper is organized as follows. In Section 2 some structure learning 
methods are reviewed, taking special interest in the method proposed by Cooper 
and Herskovits [5] as well as in the learning of the best Markov blanket (MB) of 
the variable to be classified; the M B concept was proposed by Pearl [16]. Section 3 
introduces GAs, while Section 4 presents the structure learning methodology 
integrating both the Bayesian network model (Cooper and Herskovits, Markov 
blanket, relaxed Markov blanket) and the adaptive searching process characteristic 



of the GAs. In Section 5 we present the results obtained from applying the previous 
methodology to a database of cases, which contains information on 311 patients 
diagnosed as having malignant skin melanoma. The induced Bayesian network is 
used for classifying patients according to their prognosis of survival after one, three 
and ñve years of being diagnosed. These results are compared to those obtained by 
the called Naive-Bayes paradigm. Section 6 presents the conclusions. 

2. Structure learning in Bayesian networks 

27. ./MOWwcfz'oM 

During the last 5 years, a good number of algorithms whose aim is to induce the 
structure of the Bayesian network that better represents the conditional indepen­
dence relationships in a database of cases have been developed. In our opinion, the 
main reason for continuing the research in the structure learning problem is that 
modeling the expert knowledge has become an expensive, unreliable and time-con­
suming job. 

The different approaches to the structure learning mentioned here are related 
with multiple connected networks and have been grouped according to the necessity 
or not of imposing order on the variables. See Heckerman et al. [7] for a good 
review. 

Assuming order among variables means that a variable JT¿ can have the variable 
A} as parent only if, in the established order among the variables, A} precedes AT¿. 
With this restriction, the cardinality of the space that contains all the structures is 
given by 2®, where M is the number of variables in the system. Some methods under 
this restriction are those developed by Cooper and Herskovits [5] and Bouckaert [4]. 

If we do not assume ordering between the nodes the cardinality of the search 
space is bigger and it is given by Robinson's formula [18]: 

/(M)=É(-l)'+'(7)2'("-'y(»-0; /(0) = 1, /(!) = ! 

Several authors have been working under these general assumptions. A m o n g them, 
Bouckaert [3] and Provan and Singh [17]. 

2 2 7%e # 2 a/gonf&m 

As will be seen in Section 4, one of the proposed approaches-based on GAs-use 
the C H metric introduced by Cooper and Herskovits [5] for evaluating the goodness 
of a B N structure, as well as the K 2 algorithm developed by the same authors. K 2 
is an algorithm that creates and evaluates a B N from a database of cases once an 
ordering between the system variables is given. The C H metric is used for the 
evaluation of the network that it constructs. K 2 searches, given a database Z) for 
the B N structure Bg.. with maximal f (Bg, D ) , where f (Bg, D ) is as described in the 
following theorem proved in [5]. 



Theorem 1. Let Z be a set of n discrete variables, where a variable x, in Z has r, 
possible value assignments: (t?,i t;^). Let Z) be a database containing m cases, 
where each case contains a value assignment for each variable in Z Let Bg denote 
a B N structure containing only the variables in Z Each variable x, in Bg has a set 
of parents, which are represented with a list of variables %,. Let t% denote the yth 
unique instantiation of %, relative to Z). Suppose there are #, such unique instantia­
tions of %,, Define A^& to be the number of cases in Z) in which variable x, has the 
value % and %, is instantiated as w¿,. Let ̂  = Zg_ ¡ ̂ f If given a B N model, the 
cases occur independently, there are no cases that have variables with missing 
values and the density function/(B^Bg) is uniform, then it follows that f(Bg|Z)) = 
f (Bg)n^ i g(f, % , ) , where g(f, %,) = ((r, - !)!)/((#,- + r, - !)!)!%_ i & ^ ! 

The K 2 algorithm assumes that an ordering on the variables is available and that, 
a priori, all structures are equally likely. For every node, it searches for the set of 
parent nodes that maximizes g(z, % , ) — C H metric. K 2 is a greedfy heuristic. It starts 
by assuming that a node does not have parents, after which in every step it adds 
incrementally that parent whose addition most increases the probability of the 
resulting structure. K 2 stops adding parents to the nodes when the addition of a 
single parent cannot increase the probability. Obviously, this approach does not 
guarantee the selection of a structure with the highest probability. 

2 J. Mar&ou 6/aM&ef approach 

The Naive-Bayes method takes into account the fact that there is a special 
variable to be classified. However, this approach does not manage in an adequate 
manner the intrinsic semantics of BNs. 

Taking into account that in a B N , any variable is influenced only by its Markov 
blanket (MB), i.e. its parent variables, its children variables and the parent variables 
of its children variables, it seems to be intuitive to do the search in the set of 
structures that are M B of the special variable. This concept of variable associated 
M B has been used to facilitate the simulation of the B N by Gibbs sampling and can 
be formally established by the next theorem [15]. 

Theorem 2. The probability distribution of each variable x, in the network, 
conditioned on the state of all other variables is given by the product: 

f (x,|Z*,) = %f (x,|%*,) H f W i / K W ) 

where % is a normalizing constant, independent of x, and x„ Z*, %,, &)¿, and %(x,) 
denote any consistent instantiations of JT, Z ^ = Z — JT, H^, Í1, and H ^ respectively, 
where Z is the set of all variables, n, the set of X's parents, Í1, the set of X's 
children and n,y the set of parents of Ü,, 

2 4 ZWaxed Mar&ou 6/aM&ef 

Due to the overñtting obtained with the Markov blanket approach during the 
evaluation of the models using 10-fold crossvalidation, we have relaxed the Markov 
blanket concept in order to simplify the requirements and obtain simpler networks. 



This is effected by two relaxations: (1) not all the variables of the model have to 
be part of the Markov blanket of the variable to be classified; and (2) we avoid 
some special structures that could be obtained. Any variable that is a parent of the 
variable to be classified cannot be the parent of one child of the variable to be 
classified and conversely, one variable can be parent of only one child of the 
variable to be classified. 

3. Genetic algorithms 

The computing complexity inherent in a great number of real problems of 
combinatorial optimization has motivated the development of heuristic methods 
that try to tackle these problems successfully. A heuristic is a procedure which will 
give a good solution—not necessarily the optimal—to problems which can be 
catalogued as difficult, if an attempt is made to solve them obtaining the exact 
solution. Although there are heuristics developed for specific problems, in the past 
there has been an explosion in the application of what we could call metaheuristics, 
because their formulation is independent of the problem to solve. A m o n g the most 
studied metaheuristics we quote simulated annealing, Tabu search and GAs. 

G A s [6] are adaptive methods that can be used for solving problems of search 
and optimization. They are based on the genetic processes of living organisms. 
Through generations the populations evolve in nature according to the principles of 
natural selection and survival of the fittest postulated by Darwin. Imitating this 
process, the G A s are capable of creating solutions for real world problems. 

G A s use a direct analogy with the natural behaviour. They work with a 
population of individuals, each individual representing a feasible solution to a given 
problem. T o each individual we assign a value or score according to the goodness 
of that solution. The better the adaptation of the individual to the problem, the 
more probable is that the individual will be selected for reproduction, crossing its 
genetic material with another individual selected in the same way. This cross will 
produce new individuals—offspring of the previous generation—which share some 
of the features of their parents. In this way a new population of feasible solutions 
is produced, replacing the previous one and verifying the interesting property of 
having greater proportion of good features than the previous population. Thus, 
through generations good features are propagated in the population. Favouring the 
cross of the fittest individuals, the most promising areas of the search space are 
being explored. If the G A s are well designed, the population will converge to an 
optimal solution of the problem. 

Fig. 1 summarizes the pseudocode for the so-called abstract genetic algorithm. In 
it the parent selection does not need to be made by aligning to each individual a 
value proportional to its objective function, as is usual in the so-called simple 
genetic algorithm. This selection can be carried out by any function that selects 
parents in a natural way. It is worth noticing that descendants are not necessarily 
the next generation of individuals, but that this generation is made by the union of 
parents and descendants. This is why we need the operations of extension and 
reduction in the cycle. 



4. Genetic algorithms in the induction of Bayesian networks 

In this approach, each individual in the G A will be a B N structure. 

Denoting with D the set of B N structures for a ñxed domain with % variables and 
the alphabet j> being {0,1}, a B N structure can be represented by an % x % 
connectivity matrix C, where its elements, ĉ , verify: 

jl if y is a parent of / 

^} 0 otherwise. 

In this case, the connectivity matrices of the network structures are triangulated 
(i.e. elements under the diagonal are all 0) and therefore the genetic operators are 
closed operators with respect to the D A G conditions. W e represent an individual of 
the population by the string: 

With this representation in mind, we show how the crossover and mutation 
operators work by using simple examples (Fig. 2). 

6<%rm A G A 

Make initial population at random 

W H I L E N O T stop D O 

BEGIN 

5WecZ porenfg from the population. 

Produce cAzMren from the selected parents. 

M w W e the individuals. 

Ez¿encf the population by adding the children to it. 

TWwce the extended population. 

E N D 

Output the best individual found. 

<W AGA 

Fig. 1. The pseudo-code of the abstract genetic algorithm. 



(a) (b) 

Fig. 2. With order assumption: crossing over two B N structures. 

(X3) (X2) >(X3) 

(a) . (b) 

Fig. 3. With order assumption: mutating a B N structure. 

Example 1. Consider a domain of three variables on which the two B N structures 
of Fig. 2(a) are deñned. Using the above described representation, the networks are 
represented by the strings: 110 and 101. Suppose now that the two network 
structures are crossed over and that the crossover point is chosen between the 
second and the third part; this gives the offspring strings 111 and 100. Hence, the 
created offspring structures are those presented in Fig. 2(b). 

Example 2. Consider the D A G of Fig. 3(a); it is represented by the string 100. 
Suppose that the third part is altered by mutation. This gives the string 101, which 
corresponds with the graph of Fig. 3(b). 

If no ordering assumption on the variables is made, we represent an individual of 
the population by the string: 

As can be seen in the following examples, the genetic operators are not closed 
operators with respect to the D A G conditions. 

(a) (b) 

Fig. 4. Without order assumption: the crossover operator is not a closed operator. 



(a) (b) 

Fig. 5. Without order assumption: the mutation operator is not a closed operator. 

Example 3. Consider a domain of three variables on which the two B N 
structures of Fig. 4(a) are deñned. Using the above described representation, the 
networks are represented by the strings: 001001000 and 000000110. Suppose now 
that the two network structures are crossed over and that the crossover point is 
chosen between the sixth and the seventh part. This gives the offspring strings 
001001110 and 000000000. Hence, the created offspring structures are the ones 
presented in Fig. 4(b). W e see that the first offspring structure is not a D A G . 

Example 4. Consider the D A G of Fig. 5(a). It is represented by the string 
010001000. Suppose that the seventh bit is altered by mutation. This gives string 
010001100, which corresponds to the cyclic graph of Fig. 5(b). To assure the 
closeness of the genetic operators we introduce a repair operator, which trans­
forms the child structures that do not satisfy the D A G conditions into D A G s , 
by randomly eliminating the edges that invalidate the D A G conditions. 

This approach has been evaluated empirically with a simulation of the 
A L A R M network [2]. For details see Larranaga et al. [10,11]. Another approach, 
in which the individuals of the population are orderings, has been proposed by 
Larranaga et al. [12]. Table 1 shows the number of individuals evaluated in each 
approach. Obviously, the search space is smaller in the M B and R M B ap­
proaches. 

5. Predicting survival in malignant skin melanoma 

In spite of the advances achieved in recent years in the treatment of cancer, the 
prognosis of patients having developed skin melanoma has changed very little. The 

Table 1 

Number of individuals evaluated by G A s in each approach 

Approach Individuals evaluated 

1 Year 2 Years 3 Years 
C H - G A 181051 180961 146813 
MB 3343 3371 3284 
RMB 3375 3279 3335 
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Fig. 8. The reduced Markov blanket obtained for the 5 year case. 

incidence of the disease has continuously grown over the last decade. Annual 
incidence has increased and the progressive reduction of the ozone layer, if not 
stopped, will increase it even more. 

Experimental data and the results of epidemiological studies suggest two main risk 
factors: sun exposure along with phenotype characteristics of the individual. Thus, 
for example, continuous exposure to the sun represents an odds ratio of 9, while acute 
intermittent exposure has an associated odds ratio of 5.7. 

Malignant skin melanoma is a rather uncommon tumour in our country. It entails 
between 8 and 1 0 % of the total malignant tumours that affect the skin. According 
to the Cancer Register of the Basque Country [8], in 1990 the rate of incidence was 
2.2 for every 100000 people for males and three for every 100000 for females. 

The database contains 311 cases-diagnosed at the Oncological Institute of 
Gipuzkoa in the period between 1 January, 1988 and 31 December, 1995 and for each 

http://melBSUp5.datJ-blanquEt.net


case we have information about eight variables. The ñve predictor variables are: sex 
(two categories), age (ñve categories), stage (four categories), thickness (four 
categories) and number of positive nodes (two categories). The variable to predict 
has two categories taking into account if the person survives or not 1, 3 or 5 years 
after being diagnosed as having malignant skin melanoma. 

J.2 7%e modWj 

Four models have been taken into account. First, we have induced a B N structure 
using GAs, as explained in Section 4. In order to get it, we have searched the space 
of all structures without imposing any order restriction among the variables. 
Therefore, we have tried to ñnd, given a database of cases, the a posteriori most 
probable structure. The second model used is the search of the best Markov blanket 
of the variable to be classified and the goal of the G A is to maximize the percentage 
of correctly classified cases. The third model is a relaxation of the Markov blanket 
concept and again we use the well classified percentage as goal function. The fourth 
model is the so-called Naive-Bayes. This model assumes independence among 
predictor variables. In both models the estimations of the rate of well-classified 
individuals have been obtained using 10-fold cross-validation [19]. The propagation 
of the evidence has been carried out using the H U G I N software [1]. 

Model I. The a posteriori most probable structure. CH-GA. Fig. 6 shows the 
structure of the Bayesian network induced by the genetic algorithm. It corresponds 
to the predictions of survival after one year of being diagnosed. 

Ivlodel II. The Markov blanket of the variable to be classified. IV1B-GA. Fig. 
7 shows the Markov blanket obtained for the three years case. In the proposed 
approach, Markov blanket induced by genetic algorithms M B - G A , individuals in G A 
are B N structures that constitute M B for the variable to be classified. W e have 
introduced to the G A one operator that guarantees that the obtained children comply 
with a M B of the variable to be classified. In order to do this, we have to force every 
variable of the problem to be parent, child or parent of a child of the special variable. 
The accuracy of all generated structures is measured using the well-classified 
percentage obtained by applying the evidence propagation of the H U G I N software. 

Ivlodel III. The relaxed IVlarkov blanket. RIV1B-GA. Fig. 8 shows the relaxed 
Markov blanket obtained for the 5 years case. Not all the variables are part of the 
Markov blanket of the variable to be classified. 

Ivlodel IV. Naive-Bayes classifier. N - B . In spite of the strong assumptions of 
independence upon which the model is built, Naive-Bayes classifier has proved itself 
competitive against other more reñned classifiers. It is assumed that all variables are 
conditionally independent given the value of the variable to predict. Therefore, the 
model ignores the correlations among variables which can prejudice its predictive 
capacity. Fig. 9 gives the structure of the B N corresponding to the Naive-Bayes. This 
structure is c o m m o n to the three classification problems. Table 2 shows that the 
estimations obtained by two of the Naive-Bayes models are inferior to those obtained 
by the other approach. 
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Fig. 9. The Naive-Bayes classiñer. 

Table2 
Distribution of survival/no survival (%) 

Yes No 

1 Year 
3 Years 
5 Years 

3.06 
81.95 
7.28 

6.94 
18.05 
32.72 

Table 3 
Accuracy of the different approaches for the prediction of survival 1, 3 and 5 years after being 
diagnosed 

Survival of malignant skin melanoma (%) 

1 Year 3 Years 5 Years 

C H - G A 
MB 
RMB 
N-B 

93.06 
94.28 
93.47 
91.43 

81.95 
83.90 
83.85 
79.02 

69.57 
78.88 
74.53 
71.43 
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Table 3 gives estimations of the rate of success in classification obtained by each 
of the previous models. Distribution of survival/no survival in the original databases 
are given in Table 2. Table 4 shows the Hamming distance between the different B N s 
obtained. 

6. Conclusions and further research 

Different methods of induction of Bayesian networks has been introduced. These 
methods are based on intelligent search made by genetic algorithms. One method uses 
the C H metric and tries to ñnd the a posterior) most probable Bayesian network 
structure given the database of cases and the other two search for the best-restricted 
model using the well classified percentage as goal function. 

The Bayesian network structures induced by these method have been empirically 
compared to the Naive-Bayes structures in one classification problem consisting of 
the prediction of survival of individuals after 1, 3 or 5 years of being diagnosed as 
having malignant skin melanoma. W e can see that the Markov blanket approach 
seems to be the best once 10-fold crossvalidation is performed. However, in other 
cases, we have obtained some overñtting with this method. 

In the future, we plan to add to the other methods some restrictions in order to 
introduce to the obtained Bayesian network some knowledge given by a human expert 
in the form of conditional dependencies or independencies that the variables should 
obey. 
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