
DEPARTAMENTO DE INTELIGENCIA ARTIFICIAL

Facultad de Informática

Universidad Politécnica de Madrid

PhD THESIS

Contributions to Bayesian network learning

with applications to neuroscience

Author

Pedro L. López-Cruz

MS Computer Science

MS Artificial Intelligence

PhD supervisors

Pedro Larrañaga

PhD Computer Science

Concha Bielza

PhD Computer Science

2013

Thesis Committee

President: Seraf́ın Moral

External Member: Helge Langseth

Member: Javier DeFelipe

Member: Luis de Campos

Secretary: Hanen Borchani

A mis padres, Alcázar y Luis

Acknowledgements

This work would not have been possible without the help and support of many people.

First of all, I would like to thank my supervisors, Pedro Larrañaga and Concha Bielza, for

their trust, encouragement and guidance. Their supervision and hard work have deeply

inspired me during this period.

I am grateful to Javier DeFelipe and Ruth Benavides-Piccione for their help and patience

while introducing me to the neuroscience field and interdisciplinary research. I extend my

gratitude to all the people working in the Cajal Blue Brain project and to the group of

experts who participated in the experiments carried out in this research. Also, I would like

to thank Thomas D. Nielsen and the members of the Machine Intelligence group at Aalborg

University for their warm welcome and hospitality during the cold Danish winter.

I would like to thank my colleagues at the Computational Intelligence Group at UPM for

their help and for providing a friendly and exciting work environment: Rubén Armañanzas,

Diego Vidaurre, Alfonso Ibáñez, Luis Guerra, Hossein Karshenas, Laura Antón, Bojan Mi-

haljevic and Hanen Borchani.

This dissertation would not have been possible without the financial support offered by

the Spanish Ministry of Education through a personal FPU grant AP2009-1772. I would also

like to thank the Cajal Blue Brain (C080020-09), TIN2007-62626 and TIN2010-20900-C04-

04 projects that supported my research during these years. I thankfully acknowledge the

computer resources, technical expertise and assistance provided by the Supercomputing and

Visualization Center of Madrid (CeSViMa).

Lastly, I thank all my family and friends for their support and encouragement. My

greatest gratitude goes to my mother and my father, who are my role models and guiding

lights. This work is dedicated to them.

Abstract

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related

to information processing and functional identification. Neuronal morphology affects the pro-

cess of integration of inputs from other neurons and determines the neurons which receive

the output of the neurons. Different parts of the neurons can operate semi-independently ac-

cording to the spatial location of the synaptic connections. As a result, there is considerable

interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent

tool for better understanding cortical function. However, the morphologies, molecular fea-

tures and electrophysiological properties of neuronal cells are extremely variable. Except for

some special cases, this variability makes it hard to find a set of features that unambiguously

define a neuronal type. In addition, there are distinct types of neurons in particular regions

of the brain. This morphological variability makes the analysis and modeling of neuronal

morphology a challenge.

Uncertainty is a key feature in many complex real-world problems. Probability theory

provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical

models combine statistical theory and graph theory to provide a tool for managing domains

with uncertainty. In particular, we focus on Bayesian networks, the most commonly used

probabilistic graphical model. In this dissertation, we design new methods for learning Bayes-

ian networks and apply them to the problem of modeling and analyzing morphological data

from neurons.

The morphology of a neuron can be quantified using a number of measurements, e.g., the

length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites

and the axon, etc. These measurements can be modeled as discrete or continuous data. The

continuous data can be linear (e.g., the length or the width of a dendrite) or directional

(e.g., the direction of the axon). These data may follow complex probability distributions

and may not fit any known parametric distribution. Modeling this kind of problems using

hybrid Bayesian networks with discrete, linear and directional variables poses a number of

challenges regarding learning from data, inference, etc.

In this dissertation, we propose a method for modeling and simulating basal dendritic

trees from pyramidal neurons using Bayesian networks to capture the interactions between the

variables in the problem domain. A complete set of variables is measured from the dendrites,

and a learning algorithm is applied to find the structure and estimate the parameters of the

probability distributions included in the Bayesian networks. Then, a simulation algorithm

is used to build the virtual dendrites by sampling values from the Bayesian networks, and a

thorough evaluation is performed to show the model’s ability to generate realistic dendrites.

In this first approach, the variables are discretized so that discrete Bayesian networks can be

learned and simulated.

Then, we address the problem of learning hybrid Bayesian networks with different kinds

of variables. Mixtures of polynomials have been proposed as a way of representing proba-

bility densities in hybrid Bayesian networks. We present a method for learning mixtures of

polynomials approximations of one-dimensional, multidimensional and conditional probabil-

ity densities from data. The method is based on basis spline interpolation, where a density

is approximated as a linear combination of basis splines. The proposed algorithms are evalu-

ated using artificial datasets. We also use the proposed methods as a non-parametric density

estimation technique in Bayesian network classifiers.

Next, we address the problem of including directional data in Bayesian networks. These

data have some special properties that rule out the use of classical statistics. Therefore,

different distributions and statistics, such as the univariate von Mises and the multivariate

von Mises–Fisher distributions, should be used to deal with this kind of information. In

particular, we extend the naive Bayes classifier to the case where the conditional probability

distributions of the predictive variables given the class follow either of these distributions.

We consider the simple scenario, where only directional predictive variables are used, and the

hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier

decision functions and their decision surfaces are studied at length. Artificial examples are

used to illustrate the behavior of the classifiers. The proposed classifiers are empirically

evaluated over real datasets.

We also study the problem of interneuron classification. An extensive group of experts

is asked to classify a set of neurons according to their most prominent anatomical features.

A web application is developed to retrieve the experts’ classifications. We compute agree-

ment measures to analyze the consensus between the experts when classifying the neurons.

Using Bayesian networks and clustering algorithms on the resulting data, we investigate the

suitability of the anatomical terms and neuron types commonly used in the literature. Addi-

tionally, we apply supervised learning approaches to automatically classify interneurons using

the values of their morphological measurements.

Then, a methodology for building a model which captures the opinions of all the experts

is presented. First, one Bayesian network is learned for each expert, and we propose an

algorithm for clustering Bayesian networks corresponding to experts with similar behaviors.

Then, a Bayesian network which represents the opinions of each group of experts is induced.

Finally, a consensus Bayesian multinet which models the opinions of the whole group of

experts is built. A thorough analysis of the consensus model identifies different behaviors

between the experts when classifying the interneurons in the experiment. A set of charac-

terizing morphological traits for the neuronal types can be defined by performing inference

in the Bayesian multinet. These findings are used to validate the model and to gain some

insights into neuron morphology.

Finally, we study a classification problem where the true class label of the training in-

stances is not known. Instead, a set of class labels is available for each instance. This is

inspired by the neuron classification problem, where a group of experts is asked to individu-

ally provide a class label for each instance. We propose a novel approach for learning Bayesian

networks using count vectors which represent the number of experts who selected each class

label for each instance. These Bayesian networks are evaluated using artificial datasets from

supervised learning problems.

Resumen

La morfoloǵıa neuronal es una caracteŕıstica clave en el estudio de los circuitos cerebrales,

ya que está altamente relacionada con el procesado de información y con los roles funcionales.

La morfoloǵıa neuronal afecta al proceso de integración de las señales de entrada y determina

las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona

pueden operar de forma semi-independiente de acuerdo a la localización espacial de las cone-

xiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomı́a

de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor

el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, molecu-

lares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en

algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto

de caracteŕısticas que distingan claramente un tipo neuronal. Además, existen diferentes

tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el

análisis y el modelado de la morfoloǵıa neuronal sean un importante reto cient́ıfico.

La incertidumbre es una propiedad clave en muchos problemas reales. La teoŕıa de la

probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos

gráficos probabiĺısticos combinan la teoŕıa estad́ıstica y la teoŕıa de grafos con el objetivo de

proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos

centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos

probabiĺısticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas,

inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de

neuronas.

La morfoloǵıa de una neurona puede ser cuantificada usando una serie de medidas, por

ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de

las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o

discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la

anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos

pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a

ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes

bayesianas h́ıbridas incluyendo variables discretas, lineales y direccionales presenta una serie

de retos en relación al aprendizaje a partir de datos, la inferencia, etc.

En esta tesis se propone un método para modelar y simular árboles dendŕıticos basales

de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las

variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas

y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman

los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas.

Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el

muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evalua-

ción para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta

primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las

redes bayesianas.

A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes

tipos de variables. Las mixturas de polinomios constituyen un método para representar den-

sidades de probabilidad en redes bayesianas h́ıbridas. Presentamos un método para aprender

aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir

de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines,

que aproxima una densidad como una combinación lineal de splines. Los algoritmos propues-

tos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son

utilizadas como un método no paramétrico de estimación de densidades para clasificadores

basados en redes bayesianas.

Después, se estudia el problema de incluir información direccional en redes bayesianas.

Este tipo de datos presenta una serie de caracteŕısticas especiales que impiden el uso de las

técnicas estad́ısticas clásicas. Por ello, para manejar este tipo de información se deben usar

estad́ısticos y distribuciones de probabilidad espećıficos, como la distribución univariante von

Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos

el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de

las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso

base, en el que sólo se utilizan variables direccionales, y el caso h́ıbrido, en el que variables

discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores

desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de

decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de

datos artificiales. Además, los clasificadores son evaluados emṕıricamente utilizando bases

de datos reales.

También se estudia el problema de la clasificación de interneuronas. Desarrollamos una

aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de

acuerdo a sus caracteŕısticas morfológicas más destacadas. Se utilizan medidas de concor-

dancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se

investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados fre-

cuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algo-

ritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo

de clasificar de forma automática las interneuronas a partir de sus valores morfológicos.

A continuación, se presenta una metodoloǵıa para construir un modelo que captura las

opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y

se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos

con comportamientos similares. Después, se induce una red bayesiana que modela la opinión

de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las

opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite

identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas.

Además, permite extraer un conjunto de caracteŕısticas morfológicas relevantes para cada uno

de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos

se utilizan para validar el modelo y constituyen información relevante acerca de la morfoloǵıa

neuronal.

Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los

datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para

cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en

el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera

individual. Se propone un método para aprender redes bayesianas utilizando vectores de

cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para

cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de

problemas de aprendizaje supervisado.

Contents

Contents xix

List of Figures xxiii

Acronyms xxvii

I INTRODUCTION 1

1 Introduction 3

1.1 Hypothesis and objectives . 4

1.2 Document organization . 4

II BACKGROUND 9

2 Machine learning 11

2.1 Introduction . 11

2.2 Dependency modeling . 12

2.3 Supervised learning . 13

2.3.1 Supervised learning approaches . 14

2.3.2 Evaluation . 15

2.4 Unsupervised learning . 16

2.4.1 Unsupervised learning approaches . 18

2.5 Other machine learning problems . 19

2.6 Software . 20

3 Probabilistic graphical models 21

3.1 Introduction . 21

3.2 Notation and definitions . 22

3.3 Bayesian networks . 23

3.3.1 Parameterization . 23

3.3.2 Learning . 29

3.3.3 Inference . 33

xv

xvi CONTENTS

3.4 Bayesian network classifiers . 34

3.4.1 Parameterization . 34

3.4.2 Learning . 35

3.5 Finite mixture models . 39

3.5.1 Parameterization . 39

3.5.2 Learning . 40

3.6 Software . 41

4 Consensus analysis 43

4.1 Introduction . 43

4.2 Agreement indices . 44

4.2.1 Overall observed agreement . 44

4.2.2 Chance-corrected agreement . 44

4.2.3 Category-specific agreement indices . 47

4.3 Statistical tests for agreement indices . 48

5 Directional statistics 51

5.1 Introduction . 51

5.2 Statistics for circular data . 52

5.2.1 Summary statistics and graphical representations 52

5.2.2 Probability densities for circular data 54

5.3 Statistics for directional data . 56

5.3.1 Summary statistics . 57

5.3.2 Probability densities for directional data 58

5.4 Software . 59

6 Neuroscience 61

6.1 Introduction . 61

6.2 Historical note . 62

6.3 Brain organization and neuronal morphology 63

6.3.1 Neuron structure . 64

6.4 Neuron classification . 66

6.4.1 Neuronal variability . 68

6.5 Current research efforts in neuroscience . 70

III CONTRIBUTIONS TO BAYESIAN NETWORK MODELING 73

7 Bayesian network modeling of pyramidal basal dendritic trees 75

7.1 Introduction . 75

7.2 Related work . 77

7.3 Models and simulation of basal dendrites with Bayesian networks 78

7.3.1 Data acquisition and preparation . 79

CONTENTS xvii

7.3.2 Bayesian network learning and model construction 82

7.3.3 Simulation algorithm for generating virtual dendritic trees 84

7.3.4 Evaluation methodology . 85

7.4 Results . 87

7.4.1 Analysis of Bayesian networks . 87

7.4.2 Evaluation of features used in the model 92

7.4.3 Comparison of emergent parameters not used in the model 93

7.4.4 Visual comparison . 97

7.4.5 Supplementary results . 98

7.5 Conclusion . 98

8 Learning mixtures of polynomials from data 103

8.1 Introduction . 103

8.2 Related work . 104

8.3 Mixtures of polynomials . 105

8.4 Learning mixtures of polynomials using B-spline interpolation 106

8.4.1 B-spline interpolation . 106

8.4.2 Learning one-dimensional mixtures of polynomials 107

8.4.3 Learning multidimensional mixtures of polynomials 109

8.4.4 Learning conditional mixtures of polynomials 112

8.4.5 Model selection . 115

8.5 Experiments . 116

8.5.1 Experiments with mixtures of polynomials approximations 116

8.5.2 Experiments with Bayesian classifiers 131

8.5.3 Comparison of evaluation times . 135

8.6 Conclusion . 135

9 Directional naive Bayes classifiers 139

9.1 Introduction . 139

9.2 Naive Bayes classifiers with directional predictive variables 140

9.2.1 The von Mises naive Bayes . 141

9.2.2 The von Mises-Fisher naive Bayes . 145

9.2.3 Hybrid Gaussian - von Mises-Fisher naive Bayes 148

9.2.4 Hybrid discrete - Gaussian - von Mises-Fisher naive Bayes 151

9.2.5 Selective von Mises naive Bayes . 153

9.3 Experiments . 154

9.3.1 Dataset analysis and preprocessing . 155

9.3.2 Results . 157

9.3.3 Goodness-of-fit analysis . 161

9.4 Conclusion . 162

xviii CONTENTS

IV CONTRIBUTIONS TO CONSENSUS ANALYSIS 165

10 Consensus analysis for GABAergic interneuron classification 167

10.1 Introduction . 167

10.2 Interneuron classification by a set of experts 168

10.3 Analysis of raw data . 172

10.4 Experts’ agreement values . 173

10.5 Neuron clustering . 178

10.5.1 Neuron clustering for each feature . 178

10.5.2 Neuron clustering for all the features 188

10.6 Bayesian networks for modeling experts’ opinions 190

10.7 Supervised classification of interneurons . 193

10.7.1 Classifiers for each feature independently 196

10.7.2 Binary classifiers for each interneuron type 198

10.7.3 Classifiers merging interneuron types 199

10.8 Conclusion . 200

11 Bayesian network modeling of the consensus between experts 203

11.1 Introduction . 203

11.2 A methodology for inducing a consensus Bayesian multinet from a set of expert

opinions . 205

11.2.1 Bayesian network modeling of each expert’s behavior 206

11.2.2 Clustering of Bayesian networks . 206

11.2.3 Building the consensus Bayesian network 212

11.3 An application to interneuron classification 212

11.3.1 Validation of the Bayesian network structure learning algorithm . . . 213

11.3.2 Cluster labeling and analysis of the probability distributions 215

11.3.3 Analysis of the Bayesian network structures 217

11.3.4 Finding agreed definitions for neuronal types 217

11.3.5 Clustering visualization with principal component analysis 219

11.3.6 Geographical identification of the clusters 222

11.4 Conclusion . 223

12 Learning conditional linear Gaussian classifiers from class label counts us-

ing finite mixture models 225

12.1 Learning Bayesian classifiers with class count vectors provided by a group of

experts . 227

12.1.1 Obtaining class count vectors for each instance from a group of experts 228

12.1.2 Conditional linear Gaussian classifiers 228

12.1.3 The counts multinomial expectation maximization algorithm 231

12.1.4 Classification of a new instance . 233

12.2 Related work: Modeling probabilistic class labels with belief functions 234

CONTENTS xix

12.3 Experiments . 237

12.3.1 Dataset generation and stratified h-fold cross-validation with experts’

class labels . 238

12.3.2 Evaluation measures . 238

12.3.3 Results . 240

12.4 Conclusion . 245

V CONCLUSIONS 249

13 Conclusions and future work 251

13.1 Summary of contributions . 251

13.2 List of publications . 252

13.3 Future work . 254

VI APPENDICES 257

A Von Mises NB classifier decision function 259

A.1 vMNB with one predictive variable . 259

A.1.1 Particular cases . 260

A.2 vMNB with two predictive variables . 262

B Von Mises-Fisher NB classifier decision function 265

B.1 Particular cases . 265

C Results of the Bayesian classifiers with class label counts 267

Bibliography 276

xx CONTENTS

List of Figures

2.1 The k-fold cross validation scheme . 17

3.1 An example of a discrete Bayesian network 24

3.2 Bayesian network structure of a Bayesian classifier 35

3.3 Bayesian network structure of a naive Bayes classifier 36

3.4 Bayesian network structure of a tree-augmented naive Bayes classifier 37

3.5 Bayesian network structure of the AODE classifier 38

4.1 Different scales for interpreting the values of Cohen’s κ index 46

5.1 Classical linear mean and circular mean . 53

5.2 Circular plot showing a dataset of angles . 54

5.3 Linear histogram and rose diagram of a dataset of angles 54

5.4 Probability density functions defined in a circular domain [−π, π) 55

5.5 Sample from a von Mises density M(π/2, 5) 56

5.6 Equivalence between Cartesian and polar coordinates in the sphere 57

5.7 Sample from a von Mises-Fisher density M3((0, 0, 1)
T , 5) 59

6.1 Confocal microscope image of a pyramidal neuron 63

6.2 Photomicrograph showing a pyramidal cell and an interneuron 66

6.3 Schema of the morphology of a pyramidal neuron 67

6.4 Three cells belonging to different neuron types 69

6.5 Basal dendrites of four pyramidal neurons . 69

7.1 Reconstruction model approach . 78

7.2 Bayesian network modeling and simulation of basal dendritic trees 79

7.3 Basal dendritic arbor of a pyramidal neuron 80

7.4 Scope of the variables used in the model . 82

7.5 Transformation of discrete values to continuous values 85

7.6 Structure of the four Bayesian networks learned from the M2 database . . . 89

7.7 Bayesian networks complexity analysis . 90

7.8 Mean length of intermediate and terminal segments of real dendrites 90

7.9 Angles formed between sibling segments . 91

xxi

xxii LIST OF FIGURES

7.10 Multivariate comparison of variables used in the models 92

7.11 Univariate comparison of variables used in the model 94

7.12 Multivariate comparison of emergent parameters not included in the model . 95

7.13 Univariate comparison of emergent parameters not used in the model 96

7.14 Boxplots for the real and simulated values of the emergent parameters 97

7.15 Examples of real and virtual dendritic trees 98

8.1 Ten uniform B-splines . 108

8.2 Two-dimensional uniform B-splines . 110

8.3 One-dimensional MoP approximations learned from a training dataset 119

8.4 Two-dimensional MoP approximations learned from a training dataset . . . 125

8.5 Three-dimensional MoP approximations learned from a training dataset . . . 127

8.6 Conditional MoPs of X|Y learned using the sampling approach 128

8.7 Conditional MoP of X|Y learned using the interpolation approach 129

8.8 Conditional MoTBFs of X|Y learned from data 130

8.9 Comparison of evaluation time of MoPs with kernel density estimation . . . 135

9.1 True and predicted class for a von Mises naive Bayes classifier 142

9.2 True and predicted class for a von Mises naive Bayes classifier. Case 1 143

9.3 True and predicted class for a von Mises naive Bayes classifier. Case 2 144

9.4 True and predicted class for a von Mises naive Bayes classifier with two pre-

dictive variables . 145

9.5 True and predicted class for a von Mises-Fisher naive Bayes classifier 146

9.6 True and predicted class for a von Mises-Fisher naive Bayes classifier. Case 1 147

9.7 True and predicted class for a von Mises-Fisher naive Bayes classifier. Case 2 148

9.8 True and predicted class for a hybrid Gaussian–von Mises–Fisher naive Bayes

classifier. Case 1 . 150

9.9 True and predicted class for a hybrid Gaussian-von Mises-Fisher naive Bayes

classifier. Case 2 . 151

9.10 True and predicted class for a hybrid discrete-von Mises-Fisher naive Bayes

classifier . 152

9.11 Gaussian and von Mises conditional distributions for variable 11 in Protein10

dataset . 162

9.12 Gaussian and von Mises conditional distributions for an artificial dataset . . 163

10.1 Web application for classifying neurons . 169

10.2 Schematics of the morphological features . 170

10.3 Schematics of the interneuron types . 172

10.4 Relative frequency of each category for each feature 173

10.5 Ratings given to the different categories by the experts 174

10.6 Expert’s feature agreement values . 175

10.7 Expert’s category-specific agreement values 176

LIST OF FIGURES xxiii

10.8 Fleiss’ pi agreement values for subgroups of experts 177

10.9 Boxplots of Cohen’s kappa for pairs of experts 179

10.10 Boxplots of PABAκ for pairs of experts . 180

10.11 Boxplots of the ratio between Cohen’s κ and κmax 181

10.12 Clusters of neurons obtained with the K-modes algorithm for Feature 1 . . . 183

10.13 Clusters of neurons obtained with the K-modes algorithm for Feature 2 . . . 184

10.14 Clusters of neurons obtained with the K-modes algorithm for Feature 3 . . . 184

10.15 Clusters of neurons obtained with the K-modes algorithm for Feature 4 . . . 185

10.16 Clusters of neurons obtained with the K-modes algorithm for Feature 5 . . . 186

10.17 Clusters of neurons obtained with the K-modes algorithm for Feature 6 . . . 187

10.18 Clusters of neurons considering all features simultaneously 189

10.19 Posterior probabilities for Martinotti interneuron type 191

10.20 Posterior probabilities for Common basket interneuron type 192

10.21 Structural analysis of the Bayesian networks 193

11.1 Proposed methodology for building a consensus Bayesian multinet 205

11.2 Procedure for clustering Bayesian networks 207

11.3 Finite mixture of Bayesian networks represented as a Bayesian multinet . . . 212

11.4 Network structures and marginal probabilities of the Bayesian networks . . . 214

11.5 Comparison of Bayesian network learning algorithms 215

11.6 Principal component analysis visualization of clusters 221

11.7 Weights of the third principal component regarding the interneuron type . . 222

12.1 Network structures of the three CLG classifiers learned with the CoMEM

algorithm . 229

xxiv LIST OF FIGURES

List of Tables

2.1 Example of a database with records for weather forecasting 14

2.2 Training dataset Dtrain
X,C for a supervised learning problem 14

2.3 Training dataset Dtrain
X,C for an unsupervised learning problem 18

2.4 Training dataset Dtrain
X,C for a semi-supervised learning problem 19

2.5 Training dataset Dtrain
X,C for a partially supervised learning problem 19

4.1 Cross-classification table for computing Cohen’s κ 45

4.2 Modified cross-classification table for computing PABAκ 46

4.3 Modified cross-classification table for computing κmax 47

7.1 Variables used for learning the model . 83

7.2 Number of dendritic trees in each database 88

7.3 Runtimes of the different algorithms . 88

7.4 Emergent parameters measured from the whole dendritic tree 95

8.1 Artificial datasets for learning mixtures of polynomials 117

8.2 Comparison of MoPs learned using B-splines or LIPs 121

8.3 Goodness of fit of MoPs learned using B-splines or LIPs 122

8.4 Accuracy of the estimates of the polynomial coefficients of the MoPs 124

8.5 Evaluation of the two-dimensional MoPs learned using B-splines 126

8.6 Kullback-Leibler divergences for the conditional MoPs 131

8.7 Datasets used in the Bayesian classifier experiments 132

8.8 Mean accuracy of the classifiers . 134

9.1 Datasets used in this study . 155

9.2 Mean accuracy and standard deviation of the Bayesian classifiers 157

9.3 Complexity analysis of the Bayesian classifiers 158

9.4 Average ranking of the algorithms computed over all the datasets 159

9.5 Pairwise comparisons between classifiers . 160

9.6 Statistical comparison of the classifiers for each dataset individually 160

10.1 Fleiss’ pi values when merging interneuron types 177

10.2 Accuracy of the classifiers trained for each feature independently 197

xxv

xxvi LIST OF TABLES

10.3 Confusion matrix of the best classifier for interneuron types 198

10.4 Accuracy of the binary classifiers induced for the interneuron types 199

10.5 Accuracy of the classifiers when merging confusing interneuron types 200

11.1 Conditional probabilities of each variable given the neuronal type 220

12.1 Example of a dataset where a set of experts have provided a class label for

each instance . 228

12.2 Example of a dataset with the class information modeled as count vectors . . 229

12.3 Example of a dataset with probabilistic class labels 235

12.4 Example of a general and a Bayesian basic belief assignments 235

12.5 Datasets used in the experiments . 237

12.6 Evaluation of the proposed stratified h-fold cross validation method 239

12.7 Average rankings of the learning algorithms 241

12.8 Pairwise comparisons between the learning algorithms 241

12.9 Average rankings of the classifiers . 242

12.10 Pairwise comparisons between the classifiers 242

12.11 Statistical comparison of the proposed methods for µB = 0.1 243

12.12 Statistical comparison of the proposed methods for µB = 0.2 244

12.13 Statistical comparison of the proposed methods for µB = 0.3 245

12.14 Statistical comparison of the proposed methods for µB = 0.4 246

C.1 Mean classification error for µB = 0.1 . 268

C.2 Mean squared error for µB = 0.1 . 269

C.3 Mean classification error for µB = 0.2 . 270

C.4 Mean squared error for µB = 0.2 . 271

C.5 Mean classification error for µB = 0.3 . 272

C.6 Mean squared error for µB = 0.3 . 273

C.7 Mean classification error for µB = 0.4 . 274

C.8 Mean squared error for µB = 0.4 . 275

Acronyms

ANN artificial neural network

BBA basic belief assignment

BIC Bayesian information criterion

BN Bayesian network

BNC Bayesian network classifier

BRAIN Brain Research through Advancing Innovative Neurotechnologies project

CLG conditional linear Gaussian

CoMEM counts multinomial expectation maximization algorithm

CPT conditional probability table

DAG directed acyclic graph

EM expectation maximization

FMM finite mixture model

GTT greedy thick-thinning Bayesian network structure learning algorithm

HBP Human Brain Project

HC hill-climbing algorithm

JPD joint probability distribution

KDD knowledge discovery in databases

KDE kernel density estimation

KL Kullback-Leibler divergence

LIP Lagrange interpolation polynomial

MAP maximum a posteriori

xxvii

xxviii ACRONYMS

MG multivariate Gaussian

MI mutual information

ML maximum likelihood

MM max-min algorithm

MoP mixture of polynomials

MoTBF mixture of truncated basis functions

MPE most probable explanation

MTE mixture of truncated exponentials

NB naive Bayes

PABAκ Prevalence-Adjusted Bias-Adjusted kappa index

PGM probabilistic graphical model

PLEM probabilistic label expectation maximization algorithm

RS 2-phase restricted search max-min algorithm

SEM structural expectation-maximization

SVM support vector machine

TA tabu search algorithm

TAN tree-augmented naive Bayes

TSE Taylor series expansion

vMNB von Mises naive Bayes

vMFNB von Mises–Fisher naive Bayes

Part I

INTRODUCTION

1

Chapter 1
Introduction

The technological advance in the last decades has exponentially increased the amount of data

available for both companies and researchers. Therefore, analyzing this information by hand

using classical statistical tools is not feasible anymore. Machine learning provides the tools

for properly managing and working with these large amounts of data.

The study of the brain is one of the most important scientific challenges nowadays. The

new tools and techniques discovered in the fields of chemistry, physics, etc. have enabled the

acquisition of detailed data about the morphology and the chemical, electrical and physiolog-

ical features of the neurons and other structures in the brain. Additionally, the development

of computer science has provided neuroscientists with tools for visualizing, reconstructing,

measuring and storing a large amount of neurological data. Machine learning tools can be

used for analyzing and studying these data.

We focus on the problem of modeling, analyzing, simulating, classifying, etc. the mor-

phological structure of nervous cells (neurons). The number of neurons in the human brain

is estimated to be in the order of 86.1 × 109 [25]. However, there are no two neurons with

the same morphology. Despite recent advances in molecular biology and new discoveries re-

lated to neuronal development, current knowledge about neuron structure is still incomplete.

Neuronal morphology shows a huge variability across neuron types, brain areas and animal

species [140]. This morphological variability makes it difficult to find the anatomical traits

that define neuron types [413].

In this dissertation, we propose using probabilistic graphical models to address some of

the problems regarding the study of neuronal morphology. Probabilistic graphical models

combine probability theory and graph theory into a single framework that is able to manage

complex real-world domains. The probabilistic part models the variables in the problem

domain and their relationships using probability distributions. The graphical component

represents these variables and their relationships, so experts in the domain can interpret it

to obtain new insights into the problem. In particular, we will focus on Bayesian networks,

the most frequently used type of probabilistic graphical model.

3

4 CHAPTER 1. INTRODUCTION

Chapter outline

This chapter is organized as follows. The main hypothesis and objectives in this dissertation

are presented in Section 1.1. Then, the organization of this manuscript is explained in

Section 1.2.

1.1 Hypothesis and objectives

Based on the evidences and motivation presented above, the main research hypothesis guiding

this dissertation can be stated as follows:

“The variability of neuronal morphology makes it difficult to find a set of anatomical traits

that unambiguously define and describe the different neuron types. The characterization of

the neuronal morphology should be approached from a statistical point of view to overcome

this variability. Within statistics, probabilistic graphical models are appropriate tools for

tackling this problem.”

Based on this hypothesis, the main objectives of this dissertation are:

Proposing methods for modeling neuronal morphology. To accurately model the com-

plete neuronal morphology, the models will need to include different types of variables

(discrete, continuous, directional). Additionally, these variables may not follow any

known parametric densities. Therefore, one objective of this research is studying flexible

hybrid Bayesian networks that are able to accurately model the neuronal morphology.

Analyzing, describing and managing data from the main neuronal types. In particular,

we will focus on the subset of GABAergic interneurons from the neocortex. The main

objective is identifying the main interneuron types. We will ask a group of neurosci-

entists to classify a set of interneurons according to their main morphological traits.

Then, we will analyze the agreement between the experts and analyze the data from

different perspectives: supervised learning, unsupervised learning, statistical modeling,

etc. New Bayesian network models will be designed for solving these machine learning

tasks.

1.2 Document organization

The manuscript includes 13 chapters grouped into six parts:

Part I. Introduction

This is the current part.

– Chapter 1 introduces this dissertation, stating the research hypothesis and objec-

tives and summarizing the document organization.

1.2. DOCUMENT ORGANIZATION 5

Part II. Background

This part includes five chapters introducing the basic concepts, definitions and nomen-

clature used throughout this dissertation. The chapters explain the basic theory behind

the models and tools used in the following chapters. The state-of-the-art is discussed

in each of these chapters.

– Chapter 2 presents an overview of machine learning. The main machine learning

problems addressed in this dissertation are discussed in depth, i.e., dependency

modeling, supervised learning, unsupervised learning, etc. The different methods

and approaches for solving each of these problems are briefly reviewed, and some

notes are given on how to evaluate the performance of the approaches for the

different problems. A list of the machine learning software used in this dissertation

is provided.

– Chapter 3 introduces probabilistic graphical models, with a special focus on Bayes-

ian networks, which are the main topic in this dissertation. The chapter includes

the theoretical foundations of Bayesian networks, and discusses some of the issues

that will be addressed during this dissertation, e.g., parameterization, learning

from data, inference, etc. Specific Bayesian network models for solving supervised

learning problems (Bayesian classifiers) and unsupervised learning problems (fi-

nite mixture models) are also reviewed. A list of the software related to Bayesian

networks and used in this dissertation is included.

– Chapter 4 deals with the problem of analyzing the consensus between a group of

experts on a classification task. This chapter reviews the most commonly used

agreement indices for quantifying the consensus between a group of experts. The

assumptions, advantages and disadvantages of each of these measures are high-

lighted.

– Chapter 5 includes an introduction to directional statistics, which provides the

theoretical background and the techniques for properly analyzing data related to

directions or angles of a given phenomenon. The chapter details how to compute

summary statistics of a dataset of directional data, and introduces the two most

commonly used probability distributions for modeling directional data, i.e., the

von Mises and the von Mises–Fisher distributions.

– Chapter 6 introduces the basic concepts related to neuroscience. The chapter starts

with a brief historical note on the beginnings and the developments of modern

neuroscience. Some notions on brain organization and neuronal morphology are

included for reference. The chapter also discusses the problems regarding neuron

classification and the morphological variability of neurons. Some of the current

efforts in neuroscience research are also highlighted.

6 CHAPTER 1. INTRODUCTION

Part III. Contributions to Bayesian network learning

This part of the dissertation includes our proposals regarding Bayesian network learn-

ing and the application to modeling and analyzing basal dendritic trees in pyramidal

neurons.

– Chapter 7 applies Bayesian networks to the problem of modeling and simulating

basal dendritic trees from pyramidal cells from the mouse neocortex. The Bayes-

ian networks are learned from data and then used to sample virtual dendritic

trees, which are compared to the real dendritic trees to evaluate the model. The

analyses of the models reveal relationships that conform to current neuroanatom-

ical knowledge and support model correctness. At the same time, studying the

relationships in the models helps identifying new interactions between variables

related to dendritic morphology.

– In Chapter 8 we propose methods for learning mixture of polynomials approxima-

tions of one-dimensional, multidimensional and conditional probability densities

from data. The methods are empirically evaluated using artificial datasets and

then used as a non-parametric density estimation technique for solving supervised

learning problems with Bayesian networks.

– Chapter 9 introduces Bayesian classifiers where the predictive variables are defined

in a directional or circular domain. We also study hybrid classifiers with linear,

directional and discrete variables. The decision functions of the classifiers are

derived, analyzed and compared from a geometrical point of view.

Part IV. Contributions to consensus analysis

This part of the dissertation includes our proposals on probabilistic graphical models

for modeling and analyzing the consensus between experts when classifying interneuron

types.

– Chapter 10 studies the problem of the classification of GABAergic interneurons

from the neocortex. The agreement between experts when classifying interneu-

ron types is quantified using the techniques introduced in Chapter 4. The data

collected in the experiment is analyzed from different perspectives, e.g., as a sta-

tistical modeling problem, as a supervised learning problem, as an unsupervised

learning problem, etc.

– In Chapter 11 we propose a method for modeling the consensus between a group

of experts by building a Bayesian multinet. The proposed approach is applied to

the interneuron classification problem.

– Chapter 12 studies the problem of learning Bayesian classifiers when the true class

labels of the training instances are not known. Instead, the class information is

modeled as a count vector modeling the number of votes given by a group of

experts to each class label for each instance.

1.2. DOCUMENT ORGANIZATION 7

Part V. Conclusions

This part concludes this dissertation.

– Chapter 13 summarizes the contributions of this dissertation and the scientific

results derived from it. The chapter also discusses the research lines opened in

this work and summarizes future research topics.

Part VI. Appendices

This part includes three appendices with derivations and supplementary results.

– Appendix A includes the derivations of the decision functions and their corre-

sponding decision surfaces for the von Mises naive Bayes classifiers proposed in

Chapter 9.

– Appendix B includes the derivations of the decision functions and their correspond-

ing decision surfaces for the von Mises–Fisher naive Bayes classifiers proposed in

Chapter 9.

– Appendix C includes supplementary results of the Bayesian network classifiers

proposed in Chapter 12.

8 CHAPTER 1. INTRODUCTION

Part II

BACKGROUND

9

Chapter 2
Machine learning

2.1 Introduction

The amount of data generated and stored in databases has grown exponentially in the last

decades. Therefore, it is not possible to manually handle and analyze such amount of data

using classical statistical techniques. The knowledge discovery in databases (KDD) is the

discipline of Artificial Intelligence defined as [169]:

“The nontrivial process of identifying valid, novel, potentially useful, and ulti-

mately understandable patterns in data. Here, data are a set of facts (for example,

cases in a database), and pattern is an expression in some language describing a

subset of the data or a model applicable to the subset. Hence, in our usage here,

extracting a pattern also designates fitting a model to data; finding structure from

data; or, in general, making any high-level description of a set of data.”

The KDD process is an interactive process and can be divided into nine steps [168]:

1) Understanding the domain of the problem, 2) Generating a dataset, 3) Cleaning and

preprocessing the data, 4) Reducing, projecting and selecting data, 5) Identifying the aim of

the KDD process, 6) Selecting the appropriate methods and algorithms, 7) Data mining, 8)

Interpreting the discovered patterns and 9) Exploiting the new knowledge. Data mining is

the main step of the KDD process. Therefore, the term data mining is frequently used to

refer to the whole process.

Alpaydin [13] defines machine learning as “programming computers to optimize a perfor-

mance criterion using example data or past experience.” Data mining is the application of

machine learning techniques to large databases. Machine learning techniques can be used to

solve different tasks [168]:

Summarization refers to the compact description of the main features of a dataset.

Dependency modeling searches for valuable patterns in the data and models the rela-

tionships between features of objects.

11

12 CHAPTER 2. MACHINE LEARNING

Supervised learning, also known as classification, deals with the problem of assigning a

discrete class label to an object based on a set of predictive features describing its main

properties.

Unsupervised learning, also known as clustering, addresses the problem of grouping a

dataset into clusters of objects with similar properties.

Regression studies the prediction of a continuous value from a set of predictive features.

Time series analysis studies the changes and behavior of some phenomenon over time.

Machine learning techniques can be predictive and/or descriptive. Predictive techniques

can be used to answer questions about unknown information in a problem, e.g., to estimate

the temperature in a weather forecast or to predict how likely it is for a patient to develop

a certain disease. On the other hand, descriptive models can be used to find interesting

relationships between the features or the instances in the datasets, e.g., to find correlations

between abnormal gene expressions and diseases or to group instances or cases with similar

properties. The division into these two groups is not strict, and a lot of techniques can be used

to perform both tasks to some extent. For instance, classification trees can be transformed to

rules that describe relevant relationships between the features. Also, probabilistic graphical

models, which describe the probabilistic relationships between the features of the problem,

can be adapted for solving prediction problems.

Chapter outline

This chapter reviews some of the most popular algorithms and approaches for solving ma-

chine learning tasks. Section 2.2 deals with the problem of finding frequent patterns and

dependencies in datasets. Section 2.3 introduces supervised learning and reviews some of

the available approaches and algorithms. Some methods for unsupervised learning are ex-

plained in Section 2.4. Other machine learning problems are discussed in Section 2.5. Finally,

the chapter ends in Section 2.6 with a brief description of the available software for solving

machine learning tasks.

2.2 Dependency modeling

Dependency modeling searches for frequent patterns and dependencies in the data. Given a

dataset DX = {x1, . . . ,xN} with N objects , where each object xi = (xi1, . . . , xin) is a vector

of values for the variables X = (X1, . . . , Xn) encoding some of their relevant properties,

interesting patterns in the data can be represented as association rules of the form:

IF X1 = x1 THEN X2 = x2.

Association rule mining algorithms find relationships between values of the objects that occur

frequently in the dataset. The aim is finding a set of association rules with high support,

2.3. SUPERVISED LEARNING 13

confidence and interest (also known as lift) [66]. The support of a rule is the proportion of

objects where X1 = x1 and X2 = x2 appear together in the dataset. The confidence of a

rule is the proportion of objects with X2 = x2 out of those where X1 = x1. The lift of a rule

is the support of the rule divided by the product of the supports of X1 = x1 and X2 = x2,

respectively. These three values measure, respectively, the usefulness, certainty and interest

of the rules recovered from the dataset. For an association rule to be considered interesting,

it has to yield high values for these three metrics. Several algorithms have been proposed for

mining association rules from a dataset. Agrawal and Srikant [4] proposed one of the first

algorithms for mining Boolean association rules. Several modifications and enhancements

have been proposed in the literature to apply the same ideas to categorical data, optimizing

the efficiency of the procedures and the quality of the recovered rules, e.g., see [184, 240, 534].

Association rules have also been studied for continuous [24, 512] and temporal data [360, 361].

Recently, metaheuristics such as evolutionary computation or swarm-based approaches have

been used for learning association rules, e.g., see [125] for a review.

Bayesian networks [300, 402] are the other most frequently used techniques for finding

and modeling the dependencies in a problem. A Bayesian network is a kind of probabilistic

graphical model with two main components. The graphical structure of the network encodes

the probabilistic conditional independence relationships between the variables in the domain.

The probabilistic component models the strength of these probabilistic relationships using

probability distributions. These models are the representation of choice in domains with

uncertainty. The graphical structure compactly represents the problem domain and can

be easily interpreted by experts. Moreover, the information encoded in the probabilistic

component can be used to perform inference with mathematically sound methods. These

models will be reviewed in depth in Chapter 3.

2.3 Supervised learning

Supervised learning, also known as classification, addresses the problem of predicting the

class of an object based on a set of features describing its main properties. For instance, an

everyday classification problem can be found in weather forecasting. Let’s imagine that the

goal is predicting whether or not it will rain tomorrow based on what the weather is like today.

That is, we want to select a class label (“rain” or “no rain”) based on some data describing

the weather today, e.g., temperature, humidity, wind direction, wind speed, air pressure,

month of the year, etc. These measurements are collected using meteorological stations and

stored in a database for years, e.g., see Table 2.1. Weather forecasting services analyze these

data and build classification models which are able to predict with high accuracy whether or

not it is going to rain.

Supervised learning [46, 147, 153] is the field of machine learning which studies how to

solve this kind of problems. Formally, the features describing the objects (e.g., temperature,

humidity, etc.) are encoded in a vector of n variables X = (X1, . . . , Xn). The class labels

of the problem (e.g., “rain” or “no rain”) are encoded as a class variable C with values

14 CHAPTER 2. MACHINE LEARNING

Table 2.1: Example of a database with records for weather forecasting

Day Temperature Humidity . . . Wind speed Rain

1/Jan/2000 4.5 10.2 . . . 5 yes
2/Jan/2000 6 7.8 . . . 2.3 no
3/Jan/2000 5.2 20.1 . . . 3.8 no
· · ·

in a set ΩC = {1, . . . ,K}. The training dataset is a set of N objects whose class label is

known Dtrain
X,C = {(xj , cj)}j=1,...,N , where xj = (xj1, . . . , xjn) are the values of the predictive

variables for the jth instance and cj is the true class label for the jth instance. Table 2.2

shows an abstract representation of a training dataset Dtrain
X,C . Then, a classifier is a function

γ : ΩX −→ ΩC that maps the vector of values of the predictive variables x to a class label

c ∈ ΩC , i.e., γ(x) = c. Machine learning proposes algorithms for finding such a function γ

based on the information contained in the training dataset Dtrain
X,C .

Table 2.2: Training dataset Dtrain
X,C for a supervised learning problem

Instance X1 X2 · · · Xn C

1 x11 x12 · · · x1n c1
2 x21 x22 · · · x2n c2
· · · · · · · · ·
N xN1 xN2 · · · xNn cN

2.3.1 Supervised learning approaches

Supervised learning is the most widely studied problem in machine learning. It has been

covered in a number of texts and a huge number of approaches and algorithms have been

proposed, e.g., see [13, 153, 303, 519]. A basic description of the main approaches for super-

vised classification used in this thesis follows.

Bayesian network classifiers (BNCs) [199] are a class of Bayesian networks specially

designed to solve supervised classification problems. BNCs model the joint probability

distribution over the predictive variables and the class (X, C). To classify an instance

x, the Bayes rule is used to compute the posterior probability pC|X(c|x) = pX|C(x|c)pC(c)

pX(x)

of each class label c ∈ ΩC given the values of the predictive variables x. The class

with maximum posterior probability is selected as the class label for the instance x.

Bayesian network classifiers will be studied in depth in Section 3.4.

Decision or classification trees [33, 384, 385] are hierarchical models that sequentially

divide the problem domain into subregions and assign a class label to each subregion.

The inner nodes in a decision tree represent predictive features in the problem, and

branches going out of the nodes represent values of the predictive features. The leaf

nodes of a decision tree contain the class label assigned to each subregion of the problem

2.3. SUPERVISED LEARNING 15

domain. To classify an instance, the instance travels the tree from the root node to

a leaf according to the values of its features, and the class label at the leaf node is

assigned. Decision trees are popular because they are efficient, interpretable, easy to

train and reasonably accurate. Some problems of decision trees include overfitting [421],

replication of subtrees [28] and fragmentation of the data [507].

Decision or classification rules are a kind of association rules (see Section 2.2) for solving

supervised learning problems [204, 486]. The goal is to find the smallest set of rules that

is consistent with the training data. Decision trees can be transformed into classification

rules. However, rule-based classifiers can yield higher accuracies than decision trees in

some problems [332, 335]. Classification rules usually obtain more comprehensive sets

of rules, but they can be more difficult to interpret and can yield inconsistent sets of

rules when more than two class labels are available in the problem [336, 447].

Instance-based learning approaches [7, 111, 344] do not generate a model or classifier.

Instead, they classify a new instance by looking for the most similar instances in the

training dataset and returning their labels. If the most similar instances have different

class labels, combination rules have been proposed [6], e.g., majority vote, weighted

majority vote, etc. Different dissimilarity measures can be used depending on the kind

of data: continuous, categorical, temporal, etc.

Artificial neural networks (ANN) [45, 246, 427] are a learning paradigm based on bio-

logical neural networks. ANNs have one or more layers of processing units (neurons)

connected with each other. Each processing unit aggregates the inputs it receives from

other processing units and sends the result to other processing units. The connections

between processing units are modeled with weights. ANN learning algorithms find an

appropriate structure by establishing connections between the processing units and fit

the weights that model the strength of those connections. ANNs usually provide higher

accuracies than other methods. However, they operate as a black box and they are

difficult to interpret.

Support vector machines (SVM) [1, 69] transform the training dataset by mapping the

observations into high dimensional spaces so that the problem becomes linearly sepa-

rable and can be solved using decision hyperplanes. SVMs have yielded very accurate

results in a lot of different settings and are less prone to overfitting than other meth-

ods. However, training time is very high and, in addition, the models cannot be easily

interpreted.

2.3.2 Evaluation

Correctly evaluating the performance of a classifier is a key step in any machine learning

problem. The aim is to estimate how well the classifier predicts the class values for a new

instance x with an unknown class.

16 CHAPTER 2. MACHINE LEARNING

The classification accuracy is the most frequently used measure for evaluating the per-

formance of a classifier. Given a labeled dataset DX,C = {(xj , cj)}j=1,...,N , the accuracy of a

classifier is the proportion of correctly classified instances in DX,C . Formally,

acc(γ,DX,C) =
Card({j|cj = c∗j , j = 1, . . . , N})

N
,

where c∗j = γ(xj) is the class predicted by the classifier for the jth instance.

Unfortunately, using the same training set Dtrain
X,C for learning γ and estimating its per-

formance yields an optimistic value of the accuracy. That is, if we classify a test dataset

Dtest
X,C different from the one used for training, the accuracy acc(γ,Dtest

X,C) will be lower than

acc(γ,Dtrain
X,C). Therefore, other methods have to be used for honestly evaluating the perfor-

mance of a classifier.

The most frequently used evaluation method is called k-fold cross validation [475]. In

a k-fold cross-validation method, the training dataset Dtrain
X,C is divided into k disjoint sets

called folds: D(m)
X,C ,m = 1, . . . , k, with Dtrain

X,C = ∪km=1D
(m)
X,C . For each fold m, a classifier γ(m)

is learned using the data in the k − 1 folds ∪l 6=mD(l)
X,C . Then, the accuracy is computed over

the mth fold acc
(
γ(m),D(m)

X,C

)
. Finally, an unbiased estimate of the accuracy of the classifier

γ learned over the complete dataset Dtrain
X,C is the mean of the accuracies obtained in the k

folds:

acc(γ,Dtrain
X,C) =

∑k
m=1 acc

(
γ(m),D(m)

X,C

)

k
.

Figure 2.1 graphically represents the k-fold cross-validation process. This process can be

repeated several times to reduce the variance of the estimate. Then, the final estimate of the

accuracy is the mean of the estimates computed in each repetition. Typical schemes of k-fold

cross validations are 10-fold cross-validation, 5 repetitions of 2-fold cross-validation and 10

repetitions of 10-fold cross-validation.

Stratified k-fold cross-validation is recommended when the class labels are imbalanced,

i.e., when the number of instances belonging to each class label is very different. Then, the

dataset is divided trying to preserve the proportion of instances of each class in every fold.

Another popular evaluation technique is the leave-one-out method [379]. Leave-one-out

is a special case of k-fold cross-validation where the number of folds is equal to the number

of instances in the training dataset, i.e., k = N . This method is useful for datasets with few

instances, i.e., where N is small.

2.4 Unsupervised learning

Unsupervised learning, also known as clustering, studies the problem of finding groups of

similar objects in a dataset. This problem appears frequently in machine learning when

working with very large datasets where the training instances are unlabeled because it is

very costly to obtain the true class labels of all the instances. For instance, imagine that

2.4. UNSUPERVISED LEARNING 17

Figure 2.1: The figure shows the k-fold cross validation scheme for honestly estimating the
accuracy of a classifier γ from a training dataset Dtrain

X,C .

the advertising division of a big supermarket chain wants to study their customers’ shopping

habits so that they can design more effective advertising campaigns. The supermarket has

a large database with the products bought by each customer, and the advertising division

would like to group the customers to send them personalized advertisements according to

their preferences. However, they do not know how many groups of customers there are, to

which group do the customers belong a priori, or what are the main features of each group.

This is the typical scenario where unsupervised learning techniques can be applied.

Unsupervised learning methods [165, 525] generate clusters of objects so that the objects

within the same cluster have similar features, whereas objects in different clusters have dif-

ferent features. Formally, the definition of an unsupervised learning problem is similar to

that of a supervised learning problem. The features describing the main properties of the

instances in the dataset are encoded as a vector of variables X = (X1, . . . , Xn). The clusters

of instances are modeled with a cluster variable C, and each value c ∈ ΩC denotes a cluster.

A clustering algorithm is a function γ : ΩX −→ ΩC that maps the vector of values of the

predictive variables x to a cluster c ∈ ΩC , i.e., γ(x) = c. The main difference between an

unsupervised and a supervised learning scenario is that function γ is learned from a dataset

Dtrain
X,C = {(xi, ci)}i=1,...,N where the true cluster ci, i = 1, . . . , N of the instances is unknown.

Table 2.3 shows a typical dataset used for solving an unsupervised learning problem. Un-

supervised learning algorithms analyze the dataset Dtrain
X,C to find a function γ that yields

accurate and meaningful clusters.

18 CHAPTER 2. MACHINE LEARNING

Table 2.3: Training dataset Dtrain
X,C for an unsupervised learning problem

i X1 X2 · · · Xn C

1 x11 x12 · · · x1n ?
2 x21 x22 · · · x2n ?
· · · · · · · · ·
N xN1 xN2 · · · xNn ?

2.4.1 Unsupervised learning approaches

Unsupervised learning is the most frequently studied machine learning problem after super-

vised classification. Therefore, the scientific literature contains many algorithms for unsu-

pervised learning, e.g., see [524] for a review. Some of these approaches adapt supervised

learning techniques to the scenario where the training instances are unlabeled. Also, spe-

cific methods for unsupervised learning have been proposed. Classical unsupervised learning

techniques can be divided into three groups:

Hierarchical paradigms rely on the definition of a distance or dissimilarity measure be-

tween the observations. A classical agglomerative (bottom-up) hierarchical clustering

algorithm starts with one cluster per observation and iteratively merges the two most

similar clusters according to some criterion, called linkage function, which depends on

the distances of the observations in the clusters. Therefore, hierarchical clustering tech-

niques do not generate a single partition but a hierarchy of clusters. Different dissimi-

larity measures and linkage functions yield different hierarchies of clusters. Therefore,

these decision should be carefully made taking into account the nature of the data.

Partitional clustering techniques generate a single partition of the objects into clusters

by applying an optimization process which maximizes/minimizes an objective function.

This objective function usually measures the distances between the objects in the same

cluster (minimization) and/or the distance between objects in different clusters (max-

imization). The number of clusters to be generated is a free parameter that has to be

set by the expert. Usually, solutions with different number of clusters are obtained and

the final solution is selected according to one or more quality measures [18, 227, 371].

Also, an appropriate distance measure has to be chosen depending on the nature of the

data.

Probabilistic clustering deals with the problem of fitting a finite mixture of distributions

[367], where each component is the probability distribution which models the observa-

tions belonging to the cluster. Probabilistic clustering offers a number of advantages.

First, it generates a probabilistic model which describes the data. Using that model,

one can compute the (posterior) probability of a given observation belonging to each

cluster. Also, it is able to formally address the problem of model selection (finding an

appropriate number of clusters). Finite mixture models will be further discussed in

Section 3.5.

2.5. OTHER MACHINE LEARNING PROBLEMS 19

2.5 Other machine learning problems

Supervised and unsupervised learning are the two extremes of a continuum of learning prob-

lems where different amounts of information about the class are available. These problems

are interesting because it is frequently the case that some (partial, noisy, uncertain and/or

incomplete) information about the true class labels can be obtained with less effort. The

development of the Internet has significantly reduced the cost and time needed to obtain

such information, and a number of collaborative and crowdsourcing tools are available for

that purpose [141]. Semi-supervised learning [79] deals with the problem of inducing classi-

fiers when only a (usually small) subset of the training data is labeled. Table 2.4 shows an

example of a dataset Dtrain
X,C where the first i instances are labeled and the last N− i instances

are unlabeled. Semi-supervised learning problems have been solved using a large number of

techniques and by adapting some supervised and unsupervised learning algorithms [2, 539].

Table 2.4: Training dataset Dtrain
X,C for a semi-supervised learning problem

i X1 X2 · · · Xn C

1 x11 x12 · · · x1n c1
· · · · · · · · ·
i xi1 xi2 · · · xin ci
i+ 1 x(i+1)1 x(i+1)2 · · · x(i+1)n ?

· · · · · · · · ·
N xN1 xN2 · · · xNn ?

In partially supervised learning, also known as multi-label learning [99], a subset of all

the possible class labels, which contains the true class, is given for each instance. Table 2.5

shows an example of a dataset Dtrain
X,C used for partially supervised learning, where the class

can take values in the set ΩC = {k1, k2, k3} and a subset ci ⊆ ΩC is given for each instance

i = 1, . . . , N . Different machine learning techniques have been used to solve this problem,

e.g., see [536] for a review.

Table 2.5: Training dataset Dtrain
X,C for a partially supervised learning problem

i X1 X2 · · · Xn C

1 x11 x12 · · · x1n {k1, k2}
2 x21 x22 · · · x2n {k3}
· · · · · · · · ·
N xN1 xN2 · · · xNn {k1, k2, k3}

Multiple instance learning [136] addresses the classification problem when the instances

are grouped into “bags of points”, and each one of those bags is labeled as positive or negative

depending on whether or not it contains any positive instances, respectively.

20 CHAPTER 2. MACHINE LEARNING

2.6 Software

A large number of software packages and suites are available for solving machine learning

problems. A brief description of the software used in this dissertation follows. Software for

working with Bayesian networks will be reviewed in Section 3.6.

WEKA1 [236] is a multi-platform data mining suite written in Java. It includes a large

collection of algorithms for solving supervised and unsupervised learning problems,

and methods for finding association rules. Preprocessing and visualization features are

available to explore and analyze the data. The algorithms can be run using the graphical

user interface, through the command-line interface or called from a Java code. Complex

experiments where different algorithms are run and compared over several datasets can

be defined using the Experimenter module.

KEEL2 [8] is an open-source cross-platform suite written in Java. It focuses on evolu-

tionary algorithms for learning classification and regression models. It includes tech-

niques for preprocessing data and statistical tests to analyze the results.

R3 [422] is a free environment for statistical computing and graphics. A large number of

packages implementing machine learning algorithms are available at the CRAN repos-

itory. Additionally, the Bioconductor project [216] provides more than 600 R packages

for analyzing biological data and includes many machine learning and statistical meth-

ods. Also, R scripts implementing different machine learning algorithms can be found

on the Internet.

Matlab4 is a general numerical computing environment developed by the company

MathWorks. Its statistics toolbox includes machine learning algorithms for supervised

and unsupervised learning. Other toolboxes are available for working with neural net-

works, optimization techniques, etc. Additionally, scientists and researches all over the

world share code implementing machine learning algorithms on the Internet.

GNU Octave5 is a free high-level interpreted language for numerical computations. The

language is similar to Matlab so that most programs are easily portable.

1Available at: http://www.cs.waikato.ac.nz/ml/weka/
2Available at: http://www.keel.es/
3Available at: http://www.r-project.org/
4Available at: http://www.mathworks.com/
5Available at: http://www.gnu.org/software/octave/

http://www.cs.waikato.ac.nz/ml/weka/
http://www.keel.es/
http://www.r-project.org/
http://www.mathworks.com/
http://www.gnu.org/software/octave/

Chapter 3
Probabilistic graphical models

3.1 Introduction

Uncertainty is a key feature in many complex real-world problems. Probability theory pro-

vides a framework for modeling and reasoning with uncertainty. The problem domain is

encoded in terms of a set of random variables, and the aim is to model the joint probability

distribution over the set of random variables. Then, probability theory can be used to reason

about the values of the variables. However, complex domains containing many variables yield

high-dimensional joint probability distributions, and reasoning with it becomes intractable.

Probabilistic graphical models (PGMs) [300, 402] combine probability theory and graph

theory into a single framework that is able to manage complex real-world domains. A PGM

has two components: a graphical component and a probabilistic component. The graphical

component is a graph where the nodes represent the variables in the problem domain and

the edges show the conditional (in)dependence relationships between the variables in the

PGM. The probabilistic component models these dependence relationships using (conditional)

probability distributions. Summing up these two components, a PGM encodes a factorization

of the joint probability distribution over the set of variables. Therefore, PGMs compactly

represent the problem domain and can perform any kind of reasoning (causal, diagnostic,

abductive, bidirectional, etc.) efficiently because of the local computations allowed by the

probability factorization.

There are two families of PGMs: Bayesian networks and Markov networks. Bayesian

networks use a directed acyclic graph in the graphical component of the PGM. On the other

hand, Markov networks use an undirected graph in the graphical component of the PGM.

Bayesian networks are the main focus of this work, as it is the most frequently used model

for reasoning with uncertainty, and they have been successfully applied across a large number

of problems from very different domains [418].

21

22 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Chapter outline

Section 3.2 defines notation and useful concepts. Section 3.3 introduces Bayesian networks

and explains how to learn them from data and use them for inference tasks. Section 3.4

deals with Bayesian network classifiers, a class of Bayesian networks for solving supervised

learning problems. Finally, Section 3.5 briefly discusses finite mixture models, a class of

Bayesian networks for solving unsupervised learning problems.

3.2 Notation and definitions

The following conventions and definitions are used throughout the dissertation:

Random variables are denoted using uppercase letters, e.g., X or Y .

Values of a random variable are denoted using lowercase letters, e.g., x or y.

Multidimensional vectors are denoted using boldfaced letters, either uppercase for vari-

ables (e.g., X) or lowercase for values (e.g., x).

A random variable X is said to be discrete if it may take a countable number of distinct

values.

A random variable X is said to be continuous if it can take values in the real domain

R or a subinterval [a, b] ∈ R.

The domain of a random variable X, i.e., the set of values it can take, is denoted ΩX .

The cardinality of a set Ω, i.e., the number of elements contained in it, is denoted

Card(Ω).

A discrete probability distribution function for a discrete random variable X is denoted

pX(x;θX), x ∈ ΩX , with
∑

x∈ΩX
pX(x;θX) = 1. Parameters θX will be dropped when

they are clear from the context.

A continuous probability density function for a continuous random variableX is denoted

fX(x;θX), x ∈ ΩX , where θX are the parameters of the probability density function. A

continuous probability density function is continuous in ΩX , non-negative and integrates

to one, i.e., fX(x;θX) ≥ 0, x ∈ ΩX , and
∫
ΩX

fX(x;θX)dx = 1. Parameters θX will be

dropped when they are clear from the context.

A general probability distribution function for a random variableX being either discrete

or continuous is denoted as ρX(x;θX), x ∈ ΩX , where θX are the parameters of the

probability distribution. Parameters θX will be dropped when they are clear from the

context.

A graph G is a pair (X,E), where X is the set of nodes and E is the set of edges

connecting the nodes in X.

3.3. BAYESIAN NETWORKS 23

A directed acyclic graph (DAG) is a graph G = (X,A) that contains only directed edges,

called arcs A = {(Xi, Xj) | Xi, Xj ∈ X}, where the ordered pair (Xi, Xj) encodes an

arc from Xi to Xj . Additionally, a DAG cannot have cycles, i.e., there is no directed

path (Xi, Xj) . . . (Xm, Xk) where Xi = Xk.

Given a DAG G = (X,A), the set of parents of a variable Xi contains the variables in

X \ {Xi} with arcs towards Xi: Pa(Xi) = {Xj | j 6= i, (Xj , Xi) ∈ A}.

3.3 Bayesian networks

A Bayesian network (BN) is defined as a pair B = (G,θ), where:

G = (X,A) is the graphical component of the model, i.e., a DAG where the nodes

(X) represent the variables X = (X1, . . . , Xn) in the problem domain, and the arcs (A)

encode the probabilistic conditional (in)dependence relationships between the variables.

θ is the probabilistic component of the model. θ includes the parameters of the (con-

ditional) probability functions of each variable Xi, i = 1, . . . , n given the values of its

parents Pa(Xi) = pa(xi) in G. Therefore, θ =
(
θX1|Pa(X1), . . . ,θXn|Pa(Xn)

)
.

A BN encodes a factorization of the joint probability distribution (JPD) over all the

variables in X according to the structure in G:

ρX(x) =
n∏

i=1

ρXi|Pa(Xi)

(
xi|pa(xi);θXi|Pa(Xi)

)
. (3.1)

Bayesian networks are both interpretable and efficient. The graphical component of a

Bayesian network is a compact representation of the problem domain. Additionally, the fac-

torization of the JPD reduces the computational workload of using high-dimensional proba-

bility distributions.

Figure 3.1 shows an example of a discrete BN with five variables and four arcs. Variables

X1 and X2 have no parents, whereas Pa(X3) = {X1, X2}, Pa(X4) = {X2} and Pa(X5) =

{X3}. The probabilistic component of the BN includes parameters θXi|Pa(Xi) of the discrete

conditional probability distributions for each variable Xi given all the combinations of the

values of its parents Pa(Xi). Variables X1 and X2 are modeled using marginal discrete

probability distributions because they have no parents. The BN in Figure 3.1 encodes the

following factorization of the JPD:

pX(x) = pX1(x1)pX2(x2)pX3|X1X2
(x3|x1, x2)pX4|X2

(x4|x2)pX5|X3
(x5|x3).

3.3.1 Parameterization

The probabilistic component θ determines the kind of probability distributions used in a

Bayesian network B. Different parameterizations of Bayesian networks have been proposed

24 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Figure 3.1: An example of a Bayesian network with five discrete variables X =
(X1, X2, X3, X4, X5) and four arcs A = {(X1, X3), (X2, X3), (X2, X4), (X3, X5)}. The ta-
bles show the probabilistic component of the BN containing the parameters of the discrete
conditional probability distributions pXi|Pa(Xi)

(
xi|pa(xi);θXi|Pa(Xi)

)
.

depending on the nature of the domain of the random variables they include, i.e., discrete,

continuous or hybrid domains including both discrete and continuous variables.

3.3.1.1 Discrete Bayesian networks

Discrete Bayesian networks having all its variables X defined in discrete domains are the

most frequently used Bayesian network models. In this parameterization, the statistical rela-

tionship between a variable Xi and its parents Pa(Xi) is encoded using discrete (conditional)

probability distributions. In a discrete BN, one discrete probability distribution of variable

Xi is defined for each combination of the values of its parents Pa(Xi) = pa(xi). Usually, a

tabular representation known as conditional probability table (CPT) is used to store the pa-

rameters of the discrete (conditional) probability distributions ofXi for all the combinations of

the values of its parents (see Figure 3.1). Let ri = Card(ΩXi
) be the number of possible values

of variable Xi and qi = Card(ΩPa(Xi)) be the number of possible combinations of the val-

ues of the parents. Then, a CPT contains the parameters θijk = pXi|Pa(Xi)

(
x
(j)
i |pa(xi)(k)

)
,

where x
(j)
i is the jth value of variable Xi and pa(xi)

(k) is the kth combination of values of

the parents of Xi. The number of parameters to be estimated in a CPT is

(ri − 1)qi = (ri − 1)

Card(Pa(Xi))∏

m=1

rm.

3.3. BAYESIAN NETWORKS 25

Therefore, the total number of parameters in a discrete Bayesian network is

n∑

i=1

(ri − 1)

Card(Pa(Xi))∏

m=1

rm.

3.3.1.2 Continuous Bayesian networks

Continuous Bayesian networks have all their variables X defined in continuous domains.

Although these continuous domains appear frequently in real-world problems, most of the

Bayesian network learning and inference algorithms only work with discrete variables. Three

main approaches can be distinguished for dealing with continuous variables in Bayesian net-

works [203]: discretization approaches, Gaussian Bayesian networks and other methods.

Discretization-based approaches

Discretization-based approaches transform the continuous variables into discrete variables,

so that classical algorithms for Bayesian network learning and inference can be applied. The

standard approach consists of discretizing the continuous variables into discrete variables

prior to and independently from the learning or inference algorithm. Once the variables

have been discretized, one proceeds as in a regular discrete Bayesian network. Discretization

is one of the preprocessing techniques most broadly used in data mining, and numerous

proposals of discretization procedures can be found in the literature, e.g., see [208] for a

recent review and taxonomy. Some works have studied the effect of discretization procedures

in Bayesian networks [148, 190, 203, 265, 266, 526]. More complex methods can also be found

in the literature. For instance, a number of works have considered the discretization of the

continuous variables inside the learning algorithm, e.g., [197, 374, 471].

Gaussian Bayesian networks

Gaussian Bayesian networks are BNs where all the variables are continuous and their con-

ditional probability distributions are linear Gaussian distributions [454, 516]. These models

are the most commonly used continuous Bayesian networks because the Gaussian assumption

provides interesting properties: exact inference in closed form [321, 322], fast approximate

inference algorithms [151], tractable learning algorithms [212], etc. Given a multivariate

Gaussian (MG) density, it is possible to obtain an equivalent Gaussian BN and vice versa

[454].

Given a vector of n continuous variables X = (X1, . . . , Xn), the conditional density for

variable Xi with parents Pa(Xi) is the linear Gaussian distribution fXi|Pa(Xi)(xi|pa(xi)) =
N

(
β0Xi|Pa(Xi) + βT

Xi|Pa(Xi)
pa(xi), σ

2
Xi|Pa(Xi)

)
, where β0Xi|Pa(Xi) and βXi|Pa(Xi) are the lin-

ear regression coefficients of Xi over Pa(Xi), and σ
2
Xi|Pa(Xi)

is the conditional variance of Xi

26 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

given Pa(Xi). These parameters are computed as

β0Xi|Pa(Xi) = µXi
−ΣXiPa(Xi)Σ

−1
Pa(Xi)

µPa(Xi),

βXi|Pa(Xi) = Σ−1
Pa(Xi)

ΣPa(Xi)Xi
,

σ2Xi|Pa(Xi)
= ΣXi

−ΣXiPa(Xi)Σ
−1
Pa(Xi)

ΣPa(Xi)Xi
,

where µXi
and µPa(Xi) are, respectively, the mean values of variables Xi and Pa(Xi),

ΣXiPa(Xi) is the vector with the covariances of each variable Xi and its parents Pa(Xi),

and ΣPa(Xi) is the covariance matrix between parents Pa(Xi) of Xi. Therefore, only the

means and covariances of each variable Xi and its parents Pa(Xi) and the covariances be-

tween these parents have to be estimated, which is performed by the corresponding sample

means and variances. The joint probability density over variables X (Equation (3.1)) of a

Gaussian BN is given by the product

fX(x) =

n∏

i=1

fXi|Pa(Xi)

(
xi|pa(xi);β0Xi|Pa(Xi),βXi|Pa(Xi), σ

2
Xi|Pa(Xi)

)
. (3.2)

The total number of parameters to be estimated in a Gaussian BN is given by

2n+
n∑

i=1

(
Card(Pa(Xi)) +

1

2
Card(Pa(Xi))(Card(Pa(Xi))− 1)

)
.

Other methods

More complex methods have been proposed for learning continuous Bayesian networks with-

out the need of discretization and avoiding the assumption of Gaussianity. Non-parametric

Bayesian networks based on kernel density estimation (KDE) were studied, e.g., in [26, 259,

279, 409]. Gurwicz and Lerner [230] used spline smoothing to alleviate the computational

burden of kernel-based Bayesian classifiers. Non-parametric regression models were used for

modeling the conditional probability distributions in continuous BNs in [272, 273]. Monti and

Cooper [373] proposed using neural networks for conditional density estimation in continuous

BNs.

3.3.1.3 Hybrid Bayesian networks

Hybrid domains including both discrete and continuous variables occur frequently in science.

Hybrid Bayesian networks are useful for modeling these problems defined in hybrid domains.

However, this class of BNs pose a number of challenges regarding the representation of condi-

tional probability distributions, inference, learning from data, etc. Several approaches using

these networks have been proposed in the literature.

3.3. BAYESIAN NETWORKS 27

Conditional linear Gaussian networks

Conditional linear Gaussian (CLG) networks [324, 390] are the most widely used Bayesian

network models for hybrid domains. The continuous variables are modeled using conditional

linear Gaussian distributions in a CLG network. Also, CLG networks impose some restric-

tions on the network structure, i.e., discrete variables cannot have continuous parents. CLG

networks model the joint probability over the variables in the hybrid domain as a mixture

of MG distributions with one component for each combination of values of the discrete vari-

ables. CLG networks have been studied at length because they provide tractable inference

[321, 322] and learning [52]. Also, they provide a framework including a large number of re-

lated models [433], e.g., mixtures of Gaussian densities, principal component analysis, hidden

Markov models, etc.

In a CLG network with nc continuous variables and nd discrete variables, the vector

of n = nc + nd variables X = (X1, . . . , Xn) is divided into a set of discrete variables X(d)

and a set of continuous variables X(c). The discrete variables Xi ∈ X(d) can only have dis-

crete parents Pa(Xi)
(d) ⊆ X(d) \ {Xi}, and the discrete conditional probability distributions

are categorical distributions pXi|Pa(Xi)(d)

(
xi|pa(xi)(d);θXi|Pa(Xi)(d)

)
that can be represented

using a CPT (see Section 3.3.1.1). The continuous variables Xi ∈ X(c) can have both contin-

uous Pa(Xi)
(c) ⊆ X(c) \ {Xi} and discrete parents Pa(Xi)

(d) ⊆ X(d). Then, the conditional

probability distribution for a continuous variable Xi is defined as a CLG distribution

fXi|Pa(Xi)(c)Pa(Xi)(d)

(
xi|pa(xi)(c),pa(xi)(d);θXi|Pa(Xi)(d),Pa(Xi)(c)

)
=

N
(
β0Xi|Pa(Xi)(c)pa(xi)(d)

+ βT
Xi|Pa(Xi)(c)pa(xi)(d)

pa(xi)
(c), σ2

Xi|Pa(Xi)(c)pa(xi)(d)

)
,

with θXi|Pa(Xi)(d)Pa(Xi)(c)
=

{
β0Xi|Pa(Xi)(c)pa(xi)(d)

,βXi|Pa(Xi)(c)pa(xi)(d)
, σ2

Xi|Pa(Xi)(c)pa(xi)(d)

}
,

pa(xi)
(d) ∈ ΩPa(Xi)(d)

. Parameters β0Xi|Pa(Xi)(c)pa(xi)(d)
and βXi|Pa(Xi)(c)pa(xi)(d)

are the lin-

ear regression coefficients of Xi over Pa(Xi)
(c) for each combination of the values of the

discrete parents pa(xi)
(d), and σ2

Xi|Pa(Xi)(c)pa(xi)(d)
is the conditional variance of Xi given

Pa(Xi)
(c) for Pa(Xi)

(d) = pa(xi)
(d). These parameters are computed as

β0Xi|Pa(Xi)(c)pa(xi)(d)
= µXi|pa(xi)(d)

−ΣXiPa(Xi)(c)|pa(xi)(d)
Σ−1

Pa(Xi)(c)|pa(xi)(d)
µPa(Xi)(c)|pa(xi)(d)

,

βXi|Pa(Xi)(c)pa(xi)(d)
= Σ−1

Pa(Xi)(c)|pa(xi)(d)
ΣPa(Xi)(c)Xi|pa(xi)(d)

,

σ2
Xi|Pa(Xi)(c)pa(xi)(d)

= ΣXi|pa(xi)(d)

−ΣXiPa(Xi)(c)|pa(xi)(d)
Σ−1

Pa(Xi)(c)|pa(xi)(d)
ΣPa(Xi)(c)Xi|pa(xi)(d)

,

where µXi|pa(xi)(d)
and µPa(Xi)(c)|pa(xi)(d)

are, respectively, the mean values of variablesXi and

Pa(Xi)
(c) given Pa(Xi)

(d) = pa(xi)
(d), ΣXiPa(Xi)(c)|pa(xi)(d)

is the vector with the covariances

of each variable Xi and its continuous parents Pa(Xi)
(c) given Pa(Xi)

(d) = pa(xi)
(d), and

ΣPa(Xi)(c)|pa(xi)(d)
is the covariance matrix between the continuous parents Pa(Xi)

(c) of Xi

given Pa(Xi)
(d) = pa(xi)

(d). The joint probability density over variables X (Equation (3.1))

28 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

of a CLG network is given by the product

ρX(x) =
∏

Xi∈X(d)

pXi|Pa(Xi)(d)

(
xi|pa(xi)(d);θXi|Pa(Xi)(d)

)
×

∏

Xi∈X(c)

fXi|Pa(Xi)(c),Pa(Xi)(d)

(
xi|pa(xi)(c),pa(xi)(d);θXi|Pa(Xi)(d),Pa(Xi)(c)

)
.

The total number of parameters to be estimated in a CLG network is given by

2nc +
∑

Xi∈X(d)

(Card(ΩXi

)− 1)
∏

Xj∈Pa(Xi)(d)

Card(ΩXj
)

+

∑

Xi∈X(c)

[
Card

(
ΩPa(Xi)(d)

)

(
Card

(
Pa(Xi)

(c)
)
+

1

2
Card

(
Pa(Xi)

(c)
)(

Card
(
Pa(Xi)

(c)
)
− 1

))]
.

The parametric assumption of Gaussian distributions in CLG networks might not hold

in real domains. Also, the constraints on the network structure might limit their applicabil-

ity in some problems. Therefore, other methods have been studied to avoid the structural

constraints of CLG networks, e.g., see [274, 312, 381, 382].

Mixtures of truncated basis functions

Recently, a family of related models including mixtures of truncated basis functions (MoTBFs)

[315], mixtures of truncated exponentials (MTEs) [376] and mixtures of polynomials (MoPs)

[458] have been proposed for probability estimation in hybrid Bayesian networks. Given a

continuous random variable X with a probability density function fX(x), the goal is to find

an approximation of fX(x) over a closed domain ΩX ⊂ R. MoTBFs approximate fX(x) as a

(piecewise) linear combination of truncated basis functions. MTEs and MoPs are particular

scenarios of MoTBFs when using exponential or polynomial functions, respectively, as basis

functions. MoTBFs, MTEs and MoPs are closed under multiplication, addition and integra-

tion. Therefore, exact probabilistic inference can be performed using algorithms based on

the Shenoy-Shafer architecture [457]. These methods provide a more flexible approach than

discretization for dealing with hybrid Bayesian networks in domains with both continuous

and discrete variables. MoTBFs, MTEs and MoPs can model both continuous and discrete

variables in a unified fashion. Therefore, unlike CLG networks, no constraints are set on the

structure of the networks. Also, they provide a non-parametric density estimation technique

and can model domains where the Gaussian assumption of CLG networks does not hold.

First, different methods have been proposed for approximating with MTEs. Cobb et al.

[93] provided MTE approximations of seven standard parametric probability density func-

tions. Rumı́ et al. [435] proposed an iterative least squares algorithm for learning MTE

approximations of one-dimensional and conditional probability densities from data. This ap-

proach used exponential regression and empirical histograms for density estimation. Romero

et al. [432] enhanced the algorithm by applying a Gaussian kernel smoothing of the proba-

bility densities obtained with the empirical histograms. Langseth et al. [314] provided a ML

3.3. BAYESIAN NETWORKS 29

estimation approach for MTE approximations. Second, polynomial approximation and inter-

polation techniques have been used to obtain MoPs. Thus, Shenoy and West [458] found MoP

approximations of known parametric densities by computing their Taylor series expansions

(TSE). Later, Lagrange interpolating polynomials (LIPs) were used to obtain MoPs [456].

Third, regarding MoTBFs, Langseth et al. [315] proposed a method for finding approxi-

mations of one-dimensional and conditional densities by minimizing the Kullback-Leibler

divergence (KL) from the MoTBF to the true distribution. Recently, the KL approach was

combined with kernel density estimation techniques to approximate MoTBFs from data [316].

A more detailed study of these models will be given in Chapter 8.

3.3.2 Learning

Bayesian network learning is a two-step procedure [68, 108, 247]: structural search and pa-

rameter fitting. These two steps correspond to the specification of the graphical component

G and the parameters in the probabilistic component θ of B, respectively. Both the structure

and the parameters of the probability distributions can be obtained in two ways. First, one

can elicit both the structure [192] and the parameters [209] of B using expert knowledge.

Second, if a dataset with observations of the random variables is available, one can learn a

BN from the data. The combination of both approaches has also been explored [248, 362].

Eliciting BNs from expert knowledge is out of the scope of this dissertation. Therefore, the

remaining of the section focuses on methods for learning BNs from data.

3.3.2.1 Structure learning

Learning Bayesian network structures has been proven to be NP-hard [85, 86]. There are two

main methods for learning the structure G of a Bayesian network: constraint-based methods

and score+search methods.

Constraint-based methods rely on performing statistical tests to find conditional inde-

pendence relationships between groups of variables in the network. Then, an undirected

independence graph is built, and edge orientation discovers a Bayesian network struc-

ture which encodes those conditional independence relationships. A large number of

constraint-based algorithms for learning the structure of a BN can be found in the

literature, e.g., see Chapter 5 in [466].

Score+search methods approach the structure learning problem as an optimization

problem. They use a heuristic search algorithm to explore the space of network struc-

tures, and a score function to evaluate the candidate network structures and guide the

search procedure.

The rest of the section focuses on score+search approaches. Using a score+search ap-

proach to structure learning requires the specification of two elements: the score function

which evaluates the candidate structures and the search procedure which explores the space

of network structures.

30 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Score functions

Given a dataset of observations DX = {x1, . . . ,xN} ,xj = (xj1, . . . , xjn), j = 1, . . . , N ,

the score function evaluates how good a candidate network structure G models the dataset.

Several score functions have been proposed in the literature:

The log-likelihood of dataset DX given model B = (G,θ) is the most natural choice for

a scoring function. The log-likelihood measures the probability that dataset DX has

been sampled from model B:

ℓ (DX|B) =
N∑

j=1

ln ρX(xj). (3.3)

The log-likelihood monotonically increases with the complexity of the network structure.

Therefore, using the log-likelihood ℓ (DX|B) as a score for structure learning tends to

select complex models and overfit the data.

The Bayesian information criterion (BIC) score [443] avoids the overfitting problem

by penalizing the log-likelihood according to the size of the dataset and the number of

parameters in the model:

BIC (DX,B) =
N∑

j=1

ln ρX(xj)−
1

2
Dim(B) lnN, (3.4)

where Dim(B) refers to the dimension of the model, i.e., the number of independent

parameters that have to be estimated from DX. This criterion is a special case of the

minimum description length criterion. The BIC score is asymptotically optimal, i.e., it

is guaranteed to retrieve the true model when enough data are available.

For a discrete BN, the K2 scoring function [97] measures the joint probability of the

network structure G and the dataset DX as

p(DX,B) = p(G)
n∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk!, (3.5)

where p(G) is the prior probability of the network structure G, ri = Card(ΩXi
) is

the number of distinct values of Xi, qi = Card(ΩPa(Xi)) is the number of possible

configurations of Pa(Xi), Nij is the number of instances in dataset DX where the

set of parents Pa(Xi) takes it jth configuration, and Nijk is the number of instances

where variable Xi takes the kth value and Pa(Xi) takes it jth configuration (Nij =∑ri
k=1Nijk).

3.3. BAYESIAN NETWORKS 31

Search procedures

The search procedure explores the space of network structures and tries to find a high-

scoring network structure. The search can be performed in three different spaces: DAGs,

partial DAGs or variable orderings. We focus on search procedures in the space of DAGs.

The number of possible DAGs increases exponentially with the number of variables and an

exhaustive evaluation becomes infeasible. Two search procedures are reviewed here:

The K2 search algorithm [97] implements a greedy search that adds one arc in each

iteration of the procedure (see Algorithm 3.1). K2 needs the variables in X to be or-

dered (step 1). Leray and Francois [327] proposed using the maximum weight spanning

tree algorithm to compute such ordering. First, each possible edge is given a weight

that corresponds to the score variation when the variables are related. Then, Prim’s

algorithm uses those weights to build an undirected tree, and a root node is selected

so that the edges can be oriented. Finally, a topological sorting method is applied to

partially order the variables. Other approaches for finding an ordering of the variables

can be found in [54, 115, 229, 267, 319].

After ordering the variables, the K2 algorithm incrementally builds the Bayesian net-

work. At each iteration, one variable is selected according to the ordering of variables

(step 4 of Algorithm 3.1). All the previous variables in the ordering are considered

as candidate parents. The candidate variable that gives the highest score is selected

as a parent, until the score decreases or the maximum number of parents allowed per

variable is reached. The process is repeated until all variables have been considered.

Algorithm 3.1 (K2 search algorithm)

Inputs:

• DX = {x1, . . . ,xN}: A dataset

• u: The maximum number of parents allowed for each variable

Output: A DAG G = (X,A) learned from DX

Steps:

1. Order(X).

2. Create an empty Bayesian network B = (G = (X,A),θ) ,A = ∅.
3. Scoremax = Score(DX,B).
4. Repeat for each variable Xi following Order(X):

(a) If the number of parents of Xi is equal to u, go to next variable in Order(X)

(step 4).

(b) Find Xj , j = 1, . . . , i−1 that maximizes Score (D,B′ = (G = (X,A′),θ)) where

A′ = A ∪ {(Xj , Xi)}.

32 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

(c) If Score(D,B′) < Scoremax, go to next variable in Order(X) (step 4). Else,

set B = B′, Scoremax = Score(D,B′) and go to step 4.(a).

The greedy thick-thinning (GTT) algorithm [112] implements a two-step procedure for

discovering a Bayesian network structure (see Algorithm 3.2). Given an initial (empty)

graph G, it iteratively adds the arc which maximizes the increase in the score function

(thicking step). When no further increment is possible by adding arcs, the algorithm

iteratively removes arcs until no arc deletion yields a positive increase in the score

function (thinning step). Then, the algorithm stops and the resulting Bayesian network

structure is returned. The GTT algorithm has a number of advantages, e.g., unlike other

methods [97, 198] it does not require an ordering of the variables. Also, it is simple,

computationally efficient and avoids overfitting by removing arcs in the thinning step.

Algorithm 3.2 (Greedy thick thinning algorithm)

Inputs:

• DX = {x1, . . . ,xN}: A dataset

• G = (X,A): An initial graph

Output: A DAG G = (X,A) learned from DX

Steps:

1. Thicking step: While the score function increases:

(a) Find the arc (Xi, Xj) which maximizes the score function when included in

G′ = (X,A′) with A′ = A ∪ {(Xi, Xj)}.
(b) Set G ← G′.

2. Thinning step: While the K2 score function increases:

(a) Find the arc (Xi, Xj) which maximizes the score function when deleted in

G′ = (X,A′) with A′ = A \ {(Xi, Xj)}.
(b) Set G ← G′.

3. Return G.

3.3.2.2 Parameter fitting

Once the network structure G has been found, parameters θ have to be estimated from dataset

DX. There are two main approaches for estimating parameters: maximum likelihood and

Bayesian estimation.

The maximum likelihood (ML) approach looks for the values of the parameters θ̂ from

the set of possible parameter values ΩΘ which maximize the log-likelihood of the dataset

given the model (Equation (3.3)):

θ̂ = arg max
θ∈ΩΘ

ℓ (DX|B = (G,θ)).

3.3. BAYESIAN NETWORKS 33

The Bayesian estimation approach is able to include prior knowledge into the parameter

estimation problem. Parameters θ are modeled with a random variable Θ, and a

probability distribution fΘ(θ) is used to encode our prior knowledge about the value

of θ. Then, the joint probability of the parameters and the dataset ρDX,Θ(DX,θ)

is specified. The aim is to find the value of the parameters θ̂ which maximizes the

posterior distribution of Θ given the dataset DX:

θ̂ = arg max
θ∈ΩΘ

fΘ|DX
(θ|DX).

3.3.3 Inference

Bayesian networks provide a powerful tool for modeling and reasoning in domains with un-

certainty. Any kind of reasoning task can be performed using Bayesian networks: causal,

diagnostic, abductive, bidirectional, etc. Therefore, any kind of probabilistic query can be

answered using BNs.

The most common inference task is evidence propagation. In evidence propagation, we

identify a subset of variables Xe ⊂ X (called evidence variables) whose values xe have been

observed, and the goal is to reason about another subset of variables Xq ⊆ X \Xe (called

query variables) given the observed values of the evidence variables. Therefore, the goal is

obtaining the conditional probability

ρXq |Xe
(xq|xe) =

ρXq ,Xe(xq,xe)

ρXe(xe)
.

Computing the conditional probability ρXq |Xe
(xq|xe) involves the computation of the joint

probability ρXq ,Xe(xq,xe) and then marginalizing out all the variables in X \Xq [457].

Another interesting inference task is the most probable explanation (MPE) problem.

The MPE problem deals with the problem of finding the values x∗
q of a subset of variables

Xq = X \Xe which yield the maximum posterior probability

x∗
q = arg max

xq∈ΩXq

ρXq |Xe
(xq|xe),

given the observed values xe for the evidence variablesXe ⊂ X\Xe. An easier but related task

is called the maximum a posteriori (MAP) problem. MAP inference deals with the problem

of finding the values x∗
q of only a subset of the unobserved variables Xq ⊂ X which yield

the maximum posterior probability given the observed values xe for the evidence variables

Xe ∈ X \Xq.

Unfortunately, these approaches to inference are exponential in the worst case scenario,

and it has been proved that both exact and approximate inference in Bayesian networks is

NP-hard [98, 107]. However, this worst case scenario is not common, and the inference task is

tractable and efficient for many real-world applications. Exact and approximate methods have

been proposed for performing inference in Bayesian networks [108, 228, 252]. Exact methods

34 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

are available when the Bayesian network structure is a polytree [222, 295, 401, 402]. When the

BN structure is not a polytree, different approaches have been proposed for tackling the exact

inference problem: global conditioning methods [479, 480], local conditioning methods [137],

variable elimination methods [451–453], clique methods [277, 278, 323, 457, 465], polynomial

compilation [110, 393], etc. Approximate inference methods have been proposed when the

previous exact inference methods are not suitable, e.g., see [56, 75, 250, 253].

3.4 Bayesian network classifiers

Bayesian network classifiers (BNCs) [199] are a kind of Bayesian networks specially designed

to solve supervised classification problems. In a BNC, the class labels in the supervised

classification problem are modeled with a discrete random variable C (called class variable)

with values ΩC = {1, . . . ,K} representing the class labels. The prior probability of the class

labels is modeled using a discrete categorical probability distribution over the class values

pC(c) > 0,
∑

c pC(c) = 1, c ∈ ΩC . The features describing the object properties which are

used for classification are called predictive variables and modeled using a vector of random

variables X = (X1, . . . , Xn), where each variable Xi takes values xi ∈ ΩXi
, i = 1, . . . , n. Like

in a regular BN, the BNC structure encodes the conditional (in)dependencies between the

variables in X.

When classifying a new instance x ∈ ΩX, a BNC yields a posterior probability pC|X(c|x)
for each class label c ∈ ΩC . Then, the maximum a posteriori decision rule is used so that x

is assigned to the class c∗ with maximum posterior probability

c∗ = arg max
c∈ΩC

pC|X(c|x) = arg max
c∈ΩC

pC(c)ρX|C(x|c),

where ρX|C(x|c) factorizes according to the BNC structure as in a regular BN (see Equa-

tion (3.1)).

3.4.1 Parameterization

Most of the proposals for BNCs, like in regular BNs, are focused on problems where all

the predictive variables are discrete. Empirical studies show that discretizing continuous

predictive variables can yield higher accuracies than assuming Gaussian densities like in CLG

networks [148]. Some theoretical analysis of this phenomenon has been given in [265, 266, 526].

Also, it has been shown that the discretization algorithm used does not affect the ranking of

the Bayesian classifiers [190]. Bayesian networks with continuous predictive variables modeled

using CLG distributions and conforming to the CLG network structure (see Section 3.3.1.2)

have been studied, e.g., in [408]. Extensions of the AODE classifier (see next Section 3.4.2) to

problems with continuous and discrete predictive variables can be found in [189, 359]. Non-

parametric KDE has been used for modeling the continuous variables in BNCs in [279, 409].

Bayesian classifiers using MTEs for modeling the continuous predictive variables have been

studied in [188, 191].

3.4. BAYESIAN NETWORK CLASSIFIERS 35

3.4.2 Learning

3.4.2.1 Structure learning

Different BNCs can be identified according to the network structure encoding the conditional

independence relationships between the predictive variables and the class variable.

The Bayesian classifier

A general multivariate Bayesian classifier [153] jointly models the predictive variables X

using a multidimensional conditional probability distribution ρX|C(x|c) for each class value

c ∈ ΩC . Figure 3.2 shows the graphical structure of the Bayesian classifier. This Bayesian

classifier does not exploit the conditional independence relationships between the predictive

variables X given the class variable C. When the number of predictive variables n increases,

the number of parameters to estimate also increases and using this classifier may become

infeasible.

Figure 3.2: Bayesian network structure of a Bayesian classifier.

Duda et al. [153] showed that the decision surface of the Bayesian classifier is a hyperplane

when the conditional joint probability distributions of the predictive variables ρX|C(x|c) is

modeled with a MG with class-independent covariance matrices, i.e., the covariance matrices

are the same for each class value. On the other hand, the decision surfaces are hyperquadrics

when the covariance matrices are different for each class value c ∈ ΩC .

The naive Bayes classifier

The naive Bayes (NB) classifier [372] is one of the most popular methods for supervised

classification. It assumes the predictive variables to be conditionally independent given the

class. Figure 3.3 shows the network structure for a NB classifier. Although the conditional

independence assumption in NB classifiers seems very restrictive, it has shown competitive

results against other BNCs and supervised classification approaches in a number of real-world

problems [142, 199, 241, 310, 330]. The MAP decision rule for classifying an observation

x = (x1, . . . , xn) according to the NB classifier structure is given by

c∗ = arg max
c∈ΩC

pC|X(c|x) = arg max
c∈ΩC

pC(c)
n∏

i=1

ρXi|C(xi|c).

36 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Figure 3.3: Bayesian network structure of a naive Bayes classifier.

The decision function of a NB classifier with two class values ΩC = {1, 2} is given by the

function r(x) [153]:

pC|X(1|x) = pC|X(2|x),
r(x)=pC|X(1|x)− pC|X(2|x)

=pC(1)
n∏

i=1

ρXi|C(xi|1)

−pC(2)
n∏

i=1

ρXi|C(xi|2).

(3.6)

If the class has more than two values, a decision surface is considered for each pair of

values, and the subregions defined by all the surfaces are labeled accordingly. The decision

surfaces of a NB classifier with binary predictive variables are hyperplanes [372]. Later

on, the same result was shown for general discrete variables [407]. Duda and Hart [152]

found polynomial decision surfaces when the NB classifier has ordinal predictive variables.

Duda et al. [153] showed that the decision surface is also a hyperplane when the conditional

joint probability distributions of the predictive variables is modeled with a MG with class-

independent covariance matrices, i.e., the covariance matrices are the same for each class

value. On the other hand, the decision surfaces are hyperquadrics when the covariance

matrices are different for each class value.

The tree-augmented naive Bayes classifier

The tree-augmented naive Bayes (TAN) classifier [199] tries to alleviate the conditional inde-

pendence assumption in the NB classifier while avoiding the high complexity of the general

Bayesian classifier. The TAN classifier allows relationships between pairs of predictive vari-

ables in the network. At the same time, it controls the complexity of the learning algorithm

by imposing a tree structure over the subgraph structure of the predictive variables. In a

TAN classifier, the class variable C is a parent of all the predictive variables Xi, i = 1, . . . , n

as in the NB classifier. However, unlike the NB classifier, each predictive variable (except

for the root node of the tree) has one additional predictive variable as a parent. Figure 3.4

shows a possible network structure for a TAN classifier, where the root node of the tree is

X1.

3.4. BAYESIAN NETWORK CLASSIFIERS 37

Figure 3.4: Bayesian network structure of a tree-augmented naive Bayes classifier.

Friedman et al. [199] proposed a procedure based on the Chow-Liu algorithm [88] for

learning TAN classifiers. The conditional mutual information (MI) between two variables X1

and X2 given the class C is computed as a measure of the strength of their dependence:

MI(X1, X2|C) =
∫

ΩX1

∫

ΩX2

∑

c∈ΩC

ρX1,X2|C(x1, x2|c)pC(c) log
ρX1,X2|C(x1, x2|c)

ρX1|C(x1|c)ρX2|C(x2|c)
dx1 dx2,

(3.7)

where ρX1,X2|C(x1, x2|c) is the joint conditional probability distribution of (X1, X2) given the

class label C = c and ρX1|C(x1|c) and ρX2|C(x2|c) are the conditional probability distributions

of X1 given C = c and X2 given C = c, respectively. If X1 or X2 (or both) variables are

discrete, then the integrals in Equation (3.7) are changed to sums over all the values in

their domains, ΩX1 and ΩX2 , respectively. First, the algorithm builds a maximum weight

spanning tree using the conditional MI values MI(X1, X2|C) as edge weights. Then, a root

variable Xu, u ∈ {1, . . . , n} is chosen, and the arcs are directed away from the root variable.

Finally, the directed arcs of this tree are combined with a NB structure to obtain the final

TAN classifier structure. Therefore, the root variable Xu has only one parent, i.e., the class

variable, whereas the other predictive variables Xv, v 6= u, have two parents, i.e., the class

variable and another predictive variable.

Once the TAN classifier has been built, a new instance x is classified by applying the

MAP rule:

c∗ = arg max
c∈ΩC

pC(c)ρXu|C(xu|c)
∏

v=1,...,n
v 6=u

ρXv |Xw,C(xv|xw, c),

where Xu is the predictive variable selected as the root of the tree during the TAN learning

algorithm, and Xw, w 6= v, is the predictive variable which is a parent of variable Xv, v 6= u.

The aggregated one-dependence estimator classifier

The aggregated one-dependence estimator (AODE) classifier [513] learns n Bayesian classifiers

with a specific TAN structure. The ith TAN classifier has variable Xi as a parent of all the

other predictive variables Xj , j 6= i. Figure 3.5 shows a TAN classifier where variable X1 is

a parent of all the other variables Xj , j = 2, . . . , n. When classifying a new instance, AODE

computes the posterior probability of each class label as the mean of the posterior probabilities

38 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

yielded by each individual TAN classifier. Webb et al. [513] showed that the AODE classifier

yielded low variances and competitive accuracies against state-of-the-art Bayesian classifiers.

Figure 3.5: Bayesian network structure of the first tree-augmented naive Bayes classifier in an
aggregated one-dependence estimator classifier where the predictive variable X1 is a parent
of all the other predictive variables {X2, . . . , Xn}.

Other Bayesian network classifier structures

Other proposals for Bayesian network classifiers can be found in the literature. The semi-

naive Bayes [302, 394] considers statistical relationships between subsets of predictive features

by joining them into a multidimensional variable. An extension to the TAN classifier is the

k-dependence Bayesian classifier [299, 438, 538], that allows a predictive variable to have at

most k other predictive variables as parents. Hierarchical naive Bayes classifiers including

latent variables are studied in [311]. Naive Bayes and feature subset selection have been jointly

studied in [309]. Full BNCs [477] do not exploit the conditional independence relationships

between the predictive variables, but use decision trees to efficiently encode the big CPTs.

Cheng and Greiner [84] studied unconstrained Bayesian classifiers that can adopt any BN

structure. They also propose Bayesian multinet-based classifiers in [84].

3.4.2.2 Parameter fitting

Two main approaches can be identified for fitting the parameters in Bayesian classifiers: the

generative approach and the discriminative approach. The generative approach is the classi-

cal approach to parameter fitting in BNCs. In the generative approach, the parameters of the

Bayesian classifiers are found as in a regular BN, i.e, using ML estimates or Bayesian estimates

(see Section 3.3.2.2). However, BNCs are designed to solve different tasks than BNs. BN

learning is interested in accurately modeling the data and, thus, looks for parameters maxi-

mizing the log-likelihood of the dataset given the BN. In supervised classification, however,

the aim is to maximize classification accuracy, not likelihood. Discriminative approaches to

parameter fitting in BNCs look for parameters which maximize the classification accuracy or,

alternatively, the conditional log-likelihood of the class variable given the predictive variables

[77, 225, 226, 410, 478].

3.5. FINITE MIXTURE MODELS 39

3.5 Finite mixture models

Finite mixture models (FMM) [367] are a formalism for modeling probability distributions

as a weighted sum of K parameterized probability distributions:

ρX(x) =
K∑

i=1

πiρX(x;θX|i), (3.8)

where πi > 0,
∑K

i=1 πi = 1 are the weights of the components of the finite mixture model

and ρX(x;θX|i) are the multidimensional probability distributions for each component i =

1, . . . ,K with parameters θX|i. The FMM in Equation (3.8) can be seen as a special case of

a Bayesian classifier (see Section 3.4.2.1) [395]. In that representation, the class variable C

encodes the number of components (K) of the FMM, i.e., ΩC = {1, . . . ,K}. The probabilities
of the class values pC(c) represent the weights πi of each component in the FMM. The

multidimensional probability distribution for each component ρX(x;θX|c) is the conditional

probability distribution of X given C = c. Using the BN notation and the BN structure

of the Bayesian classifier in Figure 3.2, the joint probability of the predictive variables X is

given by

ρX(x) =
∑

c∈ΩC

pC(c;θC)ρX|C(x|c;θX|c). (3.9)

FMMs are one of the most popular models for solving unsupervised learning tasks (clus-

tering). Each component of the FMM models the features of a cluster of objects, and the

probability distribution for the class variable encodes the prior probabilities of the clusters.

FMMs are a method for probabilistic clustering, where the posterior distribution pC|X(c|x)
yields the probability that an object x belongs to cluster c ∈ ΩC . FMMs have a number of

advantages over other clustering algorithms. First, FMMs provide a descriptive model of the

clusters through the conditional probability distributions ρX|C(x|c). Second, the objects are

not assigned to a single cluster. FMMs assign a probability that an object belongs to each one

of the clusters. Third, the problem of identifying a correct number of clusters can be formally

addressed by fitting FMMs with different number of components and selecting the final model

according to a penalized log-likelihood score, e.g., the BIC score (Equation (3.4)). Recently,

infinite mixtures of distributions have been proposed as a way to automatically select the

number of components in an FMM, e.g., see [61, 425, 482, 485].

3.5.1 Parameterization

Different FMMs have been proposed to model different kinds of data depending on their

nature. FMMs usually differ in the kind of conditional probability distributions used for

modeling each component ρX|C(x|c). For discrete data, FMMs have been studied using

different distributions: Bernoulli [285], Poisson [90], multinomial [388], Dirichlet compound

multinomial [59], etc. FMMs with continuous predictive variables most commonly use MG

densities [367, 395, 503], although other distributions have also been studied, e.g., Student’s t

40 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

[404], Weibull [493], generalized Dirichlet [63], inverted Dirichlet [36]. In the special scenario

where directional data are considered (see Chapter 5), mixture models have been proposed

using von Mises [71, 356], von Mises-Fisher [30] or Kent [405] distributions.

3.5.2 Learning

3.5.2.1 Structure learning

The conditional independence relationships between the predictive variables X given the

class variable C can be exploited in FMMs in a similar way to BNCs (see Section 3.4.2.1).

Therefore, clustering problems have been solved using BNs with different structures: naive

Bayes [80], tree-augmented naive Bayes [397], etc. More complex BN models have been

used recently, e.g., Bayesian multinets [399, 415], estimation of distribution algorithms [400].

The structural expectation-maximization (SEM) algorithm [196] can be used to learn the

BN structure when it is not set a priori. Some modifications and refinements to the SEM

algorithm have been proposed, e.g., in [399].

3.5.2.2 Parameter fitting

In a clustering problem, the cluster labels of the objects are not available in the training

dataset, and the aim is to group similar objects into clusters. Classical ML estimation tech-

niques for fitting the parameters of a BNC or a regular BN cannot be applied in this setting,

because the values of the hidden class variable C are missing in the training dataset. The

expectation maximization (EM) algorithm [128] is usually applied to find the ML parameters

of an FMM. We consider a Bayesian network B with a fixed network structure G and un-

known parameter values θ. Since the network structure is fixed, the complete log-likelihood

of a dataset DX = {x1, . . . ,xN} given the parameters θ = {θC ,θX|1, . . . ,θX|K} is

ℓ (DX|θ) = ln(ρ(DX|θ)) =
N∑

j=1

ln

 ∑

c∈ΩC

pC(c;θC)ρX|C(xj |c;θX|c)

.

The EM algorithm iterates between two steps (the expectation step and the maximization

step) maximizing the log-likelihood of the dataset given the parameters, ℓ (DX|θ). The

expectation step at iteration q computes the posterior probability that the jth instance xj

belongs to class c given parameters θ(q) as

t
(q)
jc = pC|X

(
c|xj ;θ

(q)
)
=

pC

(
c;θ

(q)
C

)
ρX|C

(
xj |c;θ(q)

X|c

)

∑
k∈ΩC

pC

(
k;θ

(q)
C

)
ρX|C

(
xj |k;θ(q)

X|k

) .

Then, the expected log-likelihood of the complete data Q
(
θ;θ(q)

)
is computed as the sum

3.6. SOFTWARE 41

of the expected log-likelihood of each instance Qj

(
θ;θ(q)

)
, j = 1, . . . , N :

Q
(
θ;θ(q)

)
=

N∑

j=1

Qj

(
θ;θ(q)

)
=

N∑

j=1

∑

c∈ΩC

t
(q)
jc

[
ln pC

(
c;θ

(q)
C

)
+ ln ρX|C

(
xj |c;θ(q)

X|c

)]
.

Finally, the maximization step computes the parameters θ(q+1) which maximize the ex-

pected log-likelihood of the complete data Q
(
θ;θ(q)

)
:

θ(q+1) = arg max
θ∈ΩΘ

Q
(
θ;θ(q)

)
.

The EM algorithm iteratively computes the expectation and maximization steps until

it reaches a local maximum in the log-likelihood. Therefore, there is no guarantee that

the algorithm will find the global maximum. Usually, several runs of the algorithm are

performed with different initial values of parameters θ(1) =
{
θ
(1)
C ,θ

(1)
X|1, . . . ,θ

(1)
X|K

}
in the first

expectation step of the algorithm, and the model with the highest log-likelihood in all the

runs is returned.

3.6 Software

Computer tools and software solutions are available for working with PGMs. A brief descrip-

tion of the programs used in this work follows.

SMILE and GeNIe1 are developed by the Decision Systems Laboratory of the Univer-

sity of Pittsburgh. SMILE (Structural Modeling, Inference, and Learning Engine) is a

platform-independent library of C++ classes implementing graphical probabilistic and

decision-theoretic models, such as Bayesian networks, influence diagrams, and struc-

tural equation models. Wrappers for Java and .NET are also available. GeNIe is the

graphical interface to SMILE. Probabilistic graphical models can be created using the

graphical editor and inference can be performed interactively using GeNIe.

The Bayes net toolbox for Matlab2 was written by Kevin Murphy [383]. It supports

discrete and continuous (Gaussian) nodes as well as deterministic and decision nodes. It

implements several methods for learning the structure and the parameters of PGMs, and

both exact and approximate algorithms for performing inference. The BNT structure

learning package [327] implements a large number of structure learning algorithms for

Murphy’s toolbox. The probabilistic modeling toolkit3 extends the functionality of the

Bayes net toolbox to other probabilistic models, e.g., linear and logistic regression.

Implementing PGMs in R has been extensively covered in two recent books [262, 386].

Packages gRbase [133], gRain [260] and gRim [261] provide methods for building and

1Available at http://genie.sis.pitt.edu/
2Available at http://bnt.googlecode.com/
3Available at https://code.google.com/p/pmtk3/

http://genie.sis.pitt.edu/
http://bnt.googlecode.com/
https://code.google.com/p/pmtk3/

42 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

making inference with discrete PGMs and other probabilistic models, e.g., log-linear

models. Algorithms for learning Bayesian networks can be found in packages deal [53]

and bnlearn [446]. Additionally, several packages are available for implementing and

analyzing graphs, e.g., see [101, 215].

Chapter 4
Consensus analysis

4.1 Introduction

Supervised learning tasks are by far the most commonly studied problems in machine learning.

Supervised learning deals with the problem of learning classifiers when the true class label

for all the training instances is available. However, obtaining the true class label of all the

training instances can be both difficult, time-consuming, expensive or even impossible. For

example, in a medical setting, the diagnostic test to know if a patient suffers from a given

disease may be unaffordably costly, have undesirable side effects or be too invasive for the

patient. Also, different tests may yield different conclusions. In supervised learning settings,

it is customary to manually label the training instances by asking an expert to provide class

labels for all the instances in the training dataset. However, the class labels provided by

one expert can be subjective, e.g., in medical practice, several physicians could have different

opinions about the diagnosis, prognosis or the most appropriate treatment for a given patient.

Therefore, a set of class labels including the opinion of each expert could be generated for

that instance. This is a common scenario in sentiment analysis, where different people tend

to label documents differently according to their subjective opinions [19]. A similar scenario

arises frequently in document, image and video categorization, where a set of class labels can

be automatically obtained from captions, titles and other sources of information [32]. The

development of the Internet has significantly reduced the cost and time needed to obtain

such information, and a number of collaborative and crowdsourcing tools are available for

that purpose [141].

Consensus analysis [19, 31, 187, 234, 387] provides the statistical tools to analyze the

level of agreement between a group of experts when labeling a dataset. These techniques

have been used in a wide range of different fields: medicine [264, 461], content analysis [19],

clinical practice [65], image classification [193], etc. They have also been used as a measure

of accuracy in supervised learning scenarios, e.g., the machine learning suite WEKA [236]

reports Cohen’s kappa values when testing classification algorithms.

43

44 CHAPTER 4. CONSENSUS ANALYSIS

Chapter outline

This chapter reviews some of the most commonly used techniques for analyzing agreement

between experts in a classification experiment. Section 4.2 details expert agreement mea-

sures and discusses some of their advantages, disadvantages and modifications. Section 4.3

describes statistical tests for checking whether or not the agreement values obtained in a

classification experiment are higher than those expected by chance.

4.2 Agreement indices

In an expert classification experiment, a group of R experts classifies a set of N items accord-

ing to a feature X of interest. The values ΩX = {1, . . . , Q} of feature X are called categories.

Each expert i has to assign a category q ∈ {1, . . . , Q} to each item j. agreement indices are

used to measure and analyze the degree of agreement between experts when categorizing the

items. We denote Rjq as the number of experts who assigned the jth item to category q. We

denote Rj as the number of experts who classified the jth item:

Rj =

Q∑

q=1

Rjq.

The number of items out of N that expert i assigned to category q is denoted Niq.

4.2.1 Overall observed agreement

The most straightforward way to assess consensus is by computing the observed agreement:

Po =

∑Q
q=1

∑N
j=1Rjq(Rjq − 1)

∑N
j=1Rj(Rj − 1)

. (4.1)

The observed agreement takes values in the interval [0, 1]. An observed agreement value

Po = 1 means perfect agreement, whereas Po = 0 means complete disagreement. This overall

observed agreement has been widely criticized in the literature, e.g., see [19, 76, 445]. The

observed agreement favors experiments with a low number of categories, Q. In addition,

it does not take into account the different distributions of items among categories. Two

solutions have been proposed to this problem: First, adjusting the observed agreement for

chance agreement; and second, computing category-specific observed agreement.

4.2.2 Chance-corrected agreement

A solution to the problem of analyzing the agreement between experts in a classification

study is correcting the observed value to erase the influence of chance agreements. According

to Hayes and Krippendorff [245], Popping [417] identified more than 40 different proposals

of chance-corrected agreement indices. In general, most of the chance-corrected agreement

4.2. AGREEMENT INDICES 45

indices have the following expression:

A =
Ao −Ae

1−Ae
, (4.2)

where Ao is the observed agreement and Ae is the expected agreement by chance. The

numerator encodes the observed agreement beyond chance, and the denominator encodes the

maximum agreement that can be achieved beyond chance. An index value of A = 1 means

perfect agreement, whereas a value of A = 0 shows chance agreement. Negative values of A

indicate agreement below chance. The two most frequently used chance-corrected agreement

indices are reviewed next: Cohen’s kappa (and some of its variants) and Fleiss’ pi indices.

4.2.2.1 Cohen’s kappa

Cohen’s kappa index [94] is defined for a two-expert (R = 2) and two-category (Q = 2)

experiment. Only those items classified by both experts are considered. The results of the

experiment can be reported as a cross-classification table (Table 4.1).

Table 4.1: Cross-classification table for an experiment with two experts and two categories
(+ and −)

Expert 2
Frequency

+ −
Expert 1

+ a b N1+

− c d N1−

Frequency N2+ N2− N

Cohen’s kappa index Aκ has the structure of Equation (4.2), with

Aκ
o =

a+ d

N
,

and

Aκ
e =

N1+N2+ +N1−N2−

N2
. (4.3)

Cohen’s kappa index is developed under three assumptions: 1) the classified items are

independent, 2) the categories are independent, exhaustive, and mutually exclusive, and 3)

the experts operate independently and have different distributions for the categories. Cohen’s

kappa index is negatively affected by the different prevalence of the categories (prevalence

problem) and by the degree of disagreement between the two experts (bias problem), e.g.,

see [171]. Interpreting the magnitude of Cohen’s kappa index is challenging because of these

effects. Several standards have been proposed for interpreting the strength of agreement

(see Figure 4.1). Note that important differences can be identified between the scales: Some

scales set κ ≈ 0.4 as the minimum value for considering moderate agreement [14, 31, 158, 308],

whereas other scales consider higher values for an acceptable agreement [243, 387]. These

approaches are necessarily subjective and arbitrary, since the interpretation of Cohen’s index

46 CHAPTER 4. CONSENSUS ANALYSIS

depends on the field of science, the nature of the experiment, and the prevalence and bias

effects in the data [19, 387]. Some variants of Cohen’s kappa index follow.

Figure 4.1: Different scales for interpreting the values of Cohen’s κ index.

Prevalence-Adjusted Bias-Adjusted kappa index

Byrt et al. [70] propose a Prevalence-Adjusted Bias-Adjusted kappa index (PABAκ) to min-

imize the effects of prevalence and bias. This value can be reported alongside Cohen’s kappa

to show the effects of prevalence and bias on the index value and to determine the sources of

disagreement. To compute PABAκ, the cross-classification table is modified as in Table 4.2.

The agreement cells a and d (main diagonal in Table 4.1) are changed to their mean (a+d)/2,

removing the prevalence effect. The disagreement cells c and b (secondary diagonal in Ta-

ble 4.1) are also changed to their mean value (b+ c)/2, adjusting for the bias effect. PABAκ

is Cohen’s kappa index computed with the values in the modified Table 4.2.

Table 4.2: Modified cross-classification table for minimizing prevalence and bias effects and
computing PABAκ

Expert 2
Frequency

+ −
Expert 1

+ (a+ d)/2 (b+ c)/2 N ′
1+

− (b+ c)/2 (a+ d)/2 N ′
1−

Frequency N ′
2+ N ′

2− N

Maximum kappa index

Another approach for interpreting Cohen’s kappa value is comparing it to the maximum

value κmax that can be achieved when the marginal frequencies of each expert are fixed [463].

4.2. AGREEMENT INDICES 47

To compute κmax, a modified cross-classification table is used, where the agreement cells

(main diagonal) are set to the minimum of the marginal frequencies for their corresponding

categories, as in Table 4.3. The disagreement cells (secondary diagonal) are adjusted to

maintain the marginal frequencies. The value of κmax shows the maximum possible agreement

taking into account the different prevalence and bias of the experts. The ratio κ/κmax is

usually computed as a measure of the proportion of agreement that was achieved in the

experiment taking into account the differences between experts.

Table 4.3: Modified cross-classification table for computing κmax

Expert 2

Frequency
+ −

Expert 1
+ min(N1+, N2+) N1+ −min(N1+, N2+) N1+

− N2+ −min(N1+, N2+) min(N1−, N2−) N1−

Frequency N2+ N2− N

4.2.2.2 Fleiss’ pi

When more than two experts join the experiment (R > 2), Fleiss’ [185] generalization of

Scott’s [445] pi index is the most commonly used chance-corrected agreement coefficient.

When missing values are allowed (not all the experts have to classify all the items), Fleiss’ pi

(Aπ) can be adapted to give equal weight to each judgment or equal weight to each item [19].

Here, we focus on giving an equal weight to each item. Then, Fleiss’ pi follows the structure

in Equation (4.2) with

Aπ
o =

1

N

N∑

j=1

Q∑

q=1

Rjq(Rjq − 1)

Rj(Rj − 1)
,

and

Aπ
e =

Q∑

q=1

 1

N

N∑

j=1

Rjq

Rj

2

.

Fleiss’ pi assumes that the marginal distribution of the categories is the same for each ex-

pert given the assumption that they are operating by chance. This is the main difference with

Cohen’s kappa index, where it is assumed that the marginal distributions of the categories

for each expert are different.

4.2.3 Category-specific agreement indices

The inter-expert agreement (observed and chance-corrected Fleiss’ pi index) can also be

studied for each category individually.

48 CHAPTER 4. CONSENSUS ANALYSIS

4.2.3.1 Observed agreement

We can compute specific observed agreement values for each category q = 1, . . . , Q, using a

similar approach as with specificity and sensitivity:

Poq =

∑N
j=1Rjq(Rjq − 1)

∑N
j=1Rj(Rj − 1)

.

Several authors advocate the use of these category-specific indices, e.g., see [91, 317, 467].

Reporting these category-specific indices overcomes the problems of the overall observed

agreement and avoids the need to correct for chance agreement.

4.2.3.2 Chance-corrected Fleiss’ pi index

A different chance-corrected agreement index can be computed for each category using Fleiss’

pi index. The chance-corrected Fleiss’ pi index (πq) for a category q = 1, . . . , Q is given by

Equation (4.2) with

A
πq
o =

∑N
j=1Rjq(Rjq − 1)

∑N
j=1Rj(Rj − 1)

,

and

A
πq
e =

1

N

N∑

j=1

Rjq

Rj
.

4.3 Statistical tests for agreement indices

Statistical tests have been proposed for testing whether or not the values reported by different

agreement measures are significant.

Cohen’s kappa

For large N →∞, the standard error of κ is estimated by [186]:

SE(κ) =
1

(1−Aκ
e)
√
N

√√√√Aκ
e + (Aκ

e)
2 −

Q∑

q=1

N1qN2q(N1q +N2q),

where Aκ
e is the expected agreement in Equation (4.3), N is the number of items in the

classification experiment, and N1q and N2q are the number of items classified by the first and

second experts into category q = 1, . . . , Q, respectively. Then, under the null hypothesis of

no agreement H0 : κ = 0, the statistic

z =
κ

SE(κ)

approximately follows a standard Gaussian density N (0, 1) by the central limit theorem. This

statistic can be used to test whether or not the agreement is higher than that expected by

4.3. STATISTICAL TESTS FOR AGREEMENT INDICES 49

chance. According to [187], a one-sided test is more appropriate here than a two-sided test,

i.e., H1 : κ > 0.

In most real-world classification experiments an agreement beyond chance is expected,

and some authors discuss that specifying a value of κ = 0 is not very meaningful, e.g., see

[463]. Therefore, it is customary to test whether or not the agreement values are higher

than a given value taken as the minimum value for considering significant agreement (see

Figure 4.1). The standard error of κ for testing H0 : κ = κ0 is estimated by [186]:

SE(κ) =

√
A+B − C

(1−Aκ
e)
√
N
,

A =

Q∑

q=1

N1q,2q [1− (N1q +N2q)(1− κ)]2,

B = (1− κ)2
Q−1∑

q=1

Q∑

k=1
k 6=q

N1q,2k(N1q +N2k)
2,

C = [κ−Aκ
e (1− κ)]2 ,

where N1q,2q is the number of items classified by both experts in category q, and n1q,2k is the

number of items classified by the first expert in category q and the second expert in category

k. Then, the null hypothesis H0 : κ = κ0 is tested by computing

z =
|κ− κ0|
SE(κ)

,

which approximately follows a standard Gaussian density N (0, 1).

Fleiss’ pi

Statistical tests have also been proposed for Fleiss’ pi agreement measure. Fleiss [185] showed

that the variance of π can be estimated by

V ar(π) =
2

NR(R− 1)

∑Q
q=1 p

2
q − (2R− 3)

(∑Q
q=1 p

2
q

)2
+ 2(R− 2)

∑Q
q=1 p

3
q

(
1−∑Q

q=1 p
2
q

)2 ,

where pq =
1

NR

∑N
i=1Rjq. Then, the statistic

z =
π√

V ar(π)

is approximately distributed according to a standard Gaussian density N (0, 1). This statistic

can be used to test the null hypothesis H0 : π = 0. Recently, Gwet [233] proposed two

non-parametric estimators of the variance of π obtained using a linearization technique and

a jackknife technique, respectively.

50 CHAPTER 4. CONSENSUS ANALYSIS

Fleiss [185] estimated the variance of the category-specific Fleiss’ π index by

V ar(πq) =
(1 + 2(R− 1)pq)

2 + 2(R− 1)pq(1− pq)
NR(R− 1)2pq(1− pq)

.

Then, the null hypothesis H0 : πq = 0 can be tested using the statistic

z =
πq√

V ar(πq)
,

which approximately follows a standard Gaussian density N (0, 1).

Permutation tests

Permutation and resampling tests based on bootstrapping approaches can be used to assess

how significant the values of the agreement indices are [156, 329]. For performing such a

test, a random classification experiment is generated by randomly sampling a category q

for each one of the N items in the experiment. The categories are sampled according to

their relative frequency in the classifications provided by the experts. Then, the agreement

index value (e.g., Cohen’s κ) is computed for that randomly sampled classification dataset.

The sampling procedure is repeated a large number of times M . Thus, M agreement index

values κi, i = 1, . . . ,M are computed and stored. The cumulative distribution of the values

of the agreement index obtained with the randomly generated experiments is computed. The

value of the agreement index computed using the experts’ classifications κ is compared with

the cumulative distribution of the agreement index values κi, i = 1, . . . ,M obtained with

the sampled classification experiments. A p-value is estimated by computing the proportion

of agreement index values with a value κi ≥ κ. Finally, the p-value is compared with a

significance level α. If p-value < α then the null hypothesis that the experts classified the

items randomly is rejected.

Chapter 5
Directional statistics

5.1 Introduction

Directional data can be found in almost every field of science [35, 180, 181]. Information

measured as angles is commonly used to capture the direction of some phenomenon of in-

terest, e.g., biologists study the movement of animals, meteorologists measure the direction

of air currents, geologists observe the orientation of magnetic fields in rocks, etc. Modern

visualization techniques manifest valuable three-dimensional information in a number of do-

mains, e.g., neuroscientists are interested in the direction of neuronal axons and dendrites,

microbiologists analyze the angles formed by protein structures and astrologists study the

position and movement of celestial bodies. Directional statistics [276, 355] provides the theo-

retical background and the techniques to successfully work with this information. The roots

of directional statistics can be found in the beginnings of the classical linear statistics, as

explained by R. A. Fisher on a historical note reported in [355]:

“The theory of errors was developed by Gauss primarily in relation to the needs

of astronomers and surveyors, making rather accurate angular measurements.

Because of this accuracy it was appropriate to develop the theory in relation to an

infinite linear continuum, or, as multivariate errors came into view, to a Euclidean

space of the required dimensionality. The actual topological framework of such

measurements, the surface of a sphere, is ignored in the theory as developed, with

a certain gain in simplicity.

It is, therefore, of some little mathematical interest to consider how the theory

would have had to be developed if the observations under discussion had in fact

involved errors so large that the actual topology had had to be taken into account.

The question is not, however, entirely academic, for there are in nature vectors

with such large natural dispersions.”

Directional information can be captured in two ways: angular or directional data. An-

gular or circular data refers to information measured in radians (or compass degrees) [325].

51

52 CHAPTER 5. DIRECTIONAL STATISTICS

Directional data is a more general term which refers to information measured as directional

vectors in an n-dimensional Euclidean space. We should note that there is a correspondence

between the two representations by transforming the Cartesian coordinates of a point in the

circumference or the sphere to its polar coordinates. We will use the term linear, as opposed

to directional, circular or angular, to refer to common continuous information, e.g., wind

speed measured in kilometers per hour, mass measured in kilograms, etc.

Chapter outline

Section 5.2 introduces the basic techniques for analyzing circular data and reviews the von

Mises density function for modeling angles. Section 5.3 focuses on the statistical analysis of

directional vectors. It includes a brief discussion of summary statistics for directional vectors

and reviews the von Mises-Fisher density function.

5.2 Statistics for circular data

Circular data can arise in two basic ways [355]: angles measured with the compass or time

measured with the clock. These two ways have in common that the domain in which they are

defined is circular. A random variable Φ is called “angular” or “circular” if it is defined in the

unit circumference, i.e., the domain of the random variable is ΩΦ = [−π, π). Alternatively,

we can work on the domain [0, 2π). The main property of a circular domain is that it is

periodic, e.g., the values 0 and 2π refer to the same point in the circle. Therefore, it is

standard to work with angular data after applying modulo 2π. The periodical behavior that

comes from having a directional domain makes linear statistics unsuitable for this kind of

data. Special techniques are necessary to work with circular information due to its distinctive

properties [276, 355]. For instance, the classical linear mean of angles 5π/6 and −5π/6 is

0 (see dashed line in Figure 5.1), which points in exactly the opposite direction. It is clear

that the mean angle should be π (see solid line in Figure 5.1). Also, different visualization

tools are necessary to convey directional information. In this section, some basic notions of

statistics for analyzing circular data are introduced.

5.2.1 Summary statistics and graphical representations

Given a set of N angular values {φ1, ..., φN} defined in the unit circle φi ∈ [−π, π) , i =

1, . . . , N and having vectors of Cartesian coordinates xi = (cosφi, sinφi), the mean angle

φ ∈ [−π, π) is defined as the angle given by the center of mass x =
(
C, S

)
:

φ = arctan
C

S
, (5.1)

5.2. STATISTICS FOR CIRCULAR DATA 53

5π

6

−
5π

6

Linear
mean = 0

Directional
mean = π

0

π/2

±π

−π/2
Φ

Figure 5.1: Classical linear mean (dashed) and circular mean (solid) of angles 5π/6 and
−5π/6.

where

C =
1

N

N∑

i=1

cosφi,

S =
1

N

N∑

i=1

sinφi.

(5.2)

The mean resultant length R is the length of the center of mass x =
(
C, S

)
, i.e.,

R =

√
C

2
+ S

2
. (5.3)

The mean resultant length R is defined in the interval [0, 1] and can be used as a measure

of the concentration of a dataset. Values of R close to one show tightly clustered values,

whereas values of R close to zero show uniformly distributed values. For a perfectly uniformly

distributed dataset, the center of mass is not defined x = (0, 0), so R = 0 and φ is not defined.

Directional statistics provides specific visualization tools to convey angular data. The

most basic representation of a set of circular data is the circular plot. A circular plot shows

the angular observations in a dataset as points in a unit circumference. Figure 5.2 shows the

circular plot of the following set of angles: {0, π/6, π/4, 10π/24, π/2}.
Rose diagrams are used instead of classical linear histograms to show the distribution

around the circle of a set of angular observations. In a rose diagram, the circle is divided

into equal-width sectors. The radius of each sector is proportional to the square root of the

number of observations in the bin. This ensures that the area of the sector is proportional to

the frequency of the observations. Like in linear histograms, selecting an appropriate number

of bins in a rose diagram is important to accurately convey the underlying distribution of the

data. Figure 5.3 shows a classical histogram (a) and a rose diagram (b) of a set of angles

defined in [0, 2π) with the mean angle at φ = 0. The classical histogram ignores the periodical

54 CHAPTER 5. DIRECTIONAL STATISTICS

0

π
2

π

3π
2

+

Figure 5.2: Circular plot showing a dataset of angles {0, π/6, π/4, 10π/24, π/2}.

Angles

F
re

qu
en

cy

0 π 2 π 3 π 2 2 π

0
50

10
0

15
0

20
0

(a)

0

π
2

π

3π
2

+

(b)

Figure 5.3: Linear histogram (a) and rose diagram (b) of a symmetric dataset of angles with
the mean at φ = 0.

nature of the domain and shows a U shaped distribution with two modes (Figure 5.3(a)).

On the other hand, the rose diagram clearly portrays that the dataset has only one mode

(Figure 5.3(b)).

5.2.2 Probability densities for circular data

A number of probability densities have been proposed for modeling circular data (see Fig-

ure 5.4). The most straightforward way to model directional data is to adjust linear densities

by wrapping them around the circle. Several probability densities have been proposed using

this approach, e.g., the wrapped normal density [124, 411] or the wrapped Cauchy density

[328]. However, the interest in this kind of information has led statisticians to propose special

probability densities for angular data. The von Mises density [508] is the most frequently

used probability density for modeling angular data. It is unimodal, symmetric and it is the

maximum entropy density on the circle given the mean φ and the mean resultant length R.

Recently, more flexible densities for modeling angular data have been proposed in the liter-

5.2. STATISTICS FOR CIRCULAR DATA 55

Angles (radians)

D
en

si
ty

− π − π 2 0 π 2 π

0.
0

0.
2

0.
4

0.
6

0.
8

von Mises
Wrapped Cauchy
Wrapped Normal
Cardioid
Mixture von Mises
Jones & Pewsey (2005)
Kato & Jones (2011)
Generalized von Mises

Figure 5.4: Probability density functions defined in a circular domain [−π, π).

ature. Jones and Pewsey [282] proposed a family of symmetric densities on the circle that

includes the uniform, von Mises, cardioid and wrapped Cauchy densities as special cases.

Probability densities adopting both symmetric and asymmetric shapes in the circle can be

found in a number of works, e.g., [211, 289, 290, 414, 528]. Also, probability densities for

modeling both unimodal and bimodal angular data are available [211, 289, 290, 528]. Sec-

tion 5.2.2.1 reviews the von Mises density and discusses the maximum likelihood estimates

of its parameters.

5.2.2.1 The von Mises density

The one-dimensional von Mises density [508] is the best known angular density, as it is the

circular analogue of the Gaussian density. A circular variable Φ which follows the von Mises

density on the unit circle is denoted by Φ ∼ M(µΦ, κΦ) and its probability density function

for a given angle φ is

fΦ(φ;θΦ) =
exp(κΦ cos(φ− µΦ))

2πI0(κΦ)
, (5.4)

where θΦ = {µΦ, κΦ} are the parameters of the distribution, µΦ is the mean direction angle,

κΦ ≥ 0 is the concentration of the values around µΦ, and Iν(x) is the modified Bessel function

of the first kind of order ν ∈ R:

Iν(x) =
1

2π

∫ 2π

0
cos(νφ) exp(x cosφ)dφ. (5.5)

The density of the points in the circle becomes uniform when κΦ = 0, whereas high

values of κΦ yield points tightly clustered around µΦ. The von Mises density is unimodal

and symmetric around the mean direction. The mean direction is also the mode, and the

antimode is at µΦ ± π. The von Mises density is close to the Gaussian density when the

concentration κΦ is high and to the Cauchy density when κΦ is low. The von Mises density

arises naturally in several ways, e.g., as the maximum entropy density on the circle given µΦ

56 CHAPTER 5. DIRECTIONAL STATISTICS

0

π/2

±π

−π/2
Φ

Figure 5.5: Sample of N = 100 points from a von Mises density M(π/2, 5). The black line
shows the sample mean direction µ̂Φ and its length is the mean resultant length R.

and R [355]. Figure 5.5 shows a random sample of N = 100 points from a von Mises density.

We used the functions provided in the Circular Statistics Toolbox for Matlab [41] to sample

the set of angles from the von Mises densities (see Section 5.4).

Given a set of N values {φ1, ..., φN} randomly sampled from Φ ∼ M(µΦ, κΦ), the max-

imum likelihood estimator of the parameters of the density are the sample mean direction

(Equation 5.1)

µ̂Φ = φ. (5.6)

and the concentration parameter κ̂Φ = A−1(R), where

A(κ̂Φ) =
I1(κ̂Φ)

I0(κ̂Φ)
= R =

√
C

2
+ S

2
.

Unfortunately, the value of κ̂Φ cannot be found analytically, and approximations have to

be computed numerically [469]. For instance, Fisher [181] proposed the following approxima-

tion:

κ̂Φ =

2R+R
3
+ 5R

5

6 0 ≤ R < 0.53,

−0.4 + 1.39R+ 0.43
1−R

0.51 ≤ R < 0.85,

1

R
3
−4R

2
+3R

0.85 ≤ R ≤ 1.

5.3 Statistics for directional data

Directional data can be modeled using unit vectors in a sphere [180, 355]. The unit hy-

persphere centered at the origin is defined by the set of n-dimensional vectors S
n−1 ={

x ∈ R
n | xTx = 1

}
. When n = 2, the sphere reduces to the unit circle. Directional data

can be represented using circular data by transforming the Cartesian coordinates of the unit

vectors into their spherical or polar coordinates, e.g., for a unit vector x = (x1, x2, x3) in the

sphere S
2 we have (Figure 5.6):

5.3. STATISTICS FOR DIRECTIONAL DATA 57

1

0

−1

1

0

−1
−1

0

1

(x1, x2, x3)
(r, θ,φ)

X
1

θ

φ

X
2

X
3

Figure 5.6: Equivalence between Cartesian and polar coordinates in the sphere.

x1 = r sin θ cosφ,

x2 = r sin θ sinφ,

x3 = r cos θ,

with r = 1. Basic concepts regarding the modeling of spherical data are introduced in the

remaining of the section.

5.3.1 Summary statistics

Given a set of n-dimensional unit vectors {x1, . . . ,xN} ,xi = (xi1, . . . , xin) , i = 1, . . . , N

defining points in the hypersphere S
n−1, the mean direction vector x ∈ S

n−1 is defined as

x =

∑N
i=1 xi∥∥∥

∑N
i=1 xi

∥∥∥
, (5.7)

where ‖‖ denotes the ℓ2-norm. Equation (5.7) sums all the unit vectors and then normalizes

the result so that ‖x‖ = 1. Similarly to Equation (5.3), the mean resultant length R is the

length of the mean vector computed over the set of unit vectors:

R =
R

N
=

∥∥∥
∑N

i=1 xi

∥∥∥
N

.

The mean resultant length R ∈ [0, 1] is a bounded measure of the concentration of the set

of unit vectors. When the set of unit vectors is uniformly distributed around the sphere, the

mean resultant length R becomes zero and the mean direction x is not defined.

58 CHAPTER 5. DIRECTIONAL STATISTICS

5.3.2 Probability densities for directional data

Like the circular scenario, a number of probability densities have been proposed for modeling

directional unit vectors in the sphere S
2, e.g., see Table 9.2 in [355]. The von Mises-Fisher

density is the most frequently used probability density in this scenario. It is unimodal, sym-

metric and isomorphic. Densities with more flexible shapes have been proposed for modeling

directional vectors in the three-dimensional sphere S
2, e.g., the Kent density and the Fisher-

Bingham densities [294]. However, these densities need more parameters and their extension

to high dimensions is challenging [30].

5.3.2.1 The von Mises-Fisher density

A directional variable X = (X1, X2, ..., Xn) which follows a multivariate von Mises-Fisher

density on the unit hypersphere S
n−1 is denoted by X ∼ Mn(µX, κX), and its probability

density function for a given unit n-dimensional vector x is

fX(x;θX) =
κ

n
2
−1

X√
(2π)nIn

2
−1(κX)

exp(κXµT
Xx), (5.8)

where θX = {µX, κX} are the parameters of the distribution, µX is the population mean

direction vector satisfying µT
XµX = 1 (i.e., ‖µX‖ = 1), κX ≥ 0 is the concentration parameter

around µX, and Iν(x) is the modified Bessel function of the first kind and order ν ∈ R

(Equation (5.5)).

The von Mises-Fisher density reduces to the von Mises density when n = 2 and to the

Fisher density [183] when n = 3. Like the von Mises density, the von Mises-Fisher density

is also unimodal and symmetric around µX, having the mode at µX and the antimode at

−µX. The von Mises-Fisher density is the spherical analogue to an isomorphic multivariate

Gaussian density, i.e., the equal-density lines of a von Mises-Fisher density are concentric

circumferences in the surface of the sphere. Figure 5.7 shows a set of N = 100 points from

the density M3((0, 0, 1)
T , 5) defined in S

2 and sampled using Jung’s implementation1 of the

algorithm proposed in [521].

The maximum likelihood estimators of the parameters of the density Mn(µX, κX) given

a sample of unit vectors {x1, . . . ,xN} are the sample mean direction (Equation (5.7))

µ̂X = x,

and the concentration parameter κ̂X = A−1
n (R), where

An(κ̂X) =
In

2
(κ̂X)

In
2
−1(κ̂X)

= R =
R

N
=

∥∥∥
∑N

i=1 xi

∥∥∥
N

.

Like in the von Mises density, κ̂X cannot be found analytically, and approximations have

1The source code is available at: http://www.unc.edu/~sungkyu

http://www.unc.edu/~sungkyu

5.4. SOFTWARE 59

−1

0

1

−1

0

1
−1

0

1

XY

Z

Figure 5.7: Sample of N = 100 points from a von Mises-Fisher density M3((0, 0, 1)
T , 5). The

black arrow shows the sample mean direction µ̂X.

been proposed in [30, 469, 484].

5.4 Software

The following list briefly reviews the software used in this dissertation for working with

directional statistics.

The CircStat toolbox for Matlab [41] implements several summary statistics and plot-

ting methods for angular data. The von Mises density function is implemented, and

parameter fitting functions are provided. Also, it includes several correlation measures

and a large collection of statistical tests for angular data.

The circular package for R [3] is available at CRAN repository. It implements several

probability density functions for angular data, including the von Mises density and

other more flexible densities (see Section 5.2.2). It provides methods for computing

summary statistics, plotting data and testing different hypotheses.

Finally, Oriana2 is a statistical software for analyzing circular data written for Microsoft

Windows. It provides a graphical user interface that allows you to import, analyze and

work with angular data in a similar way as other frequently used statistical suites.

2Available at http://www.kovcomp.co.uk/oriana

http://www.kovcomp.co.uk/oriana

60 CHAPTER 5. DIRECTIONAL STATISTICS

Chapter 6
Neuroscience

6.1 Introduction

Reverse engineering the human brain has been identified as one of the main challenges in

science by the National Academy of Engineering in USA1. Neuroscience is the field of science

which studies the nervous system. The technological development in the last decades has

boosted the research in neuroscience and our understanding of the brain has greatly improved.

However, this knowledge is still very limited due to the huge complexity of the brain: neurons

receive information from thousands of other neurons, they show very different activation

behaviors, they form complex circuits with feedback and synchronization patterns, etc.

Computational neuroscience [113, 174, 442, 448, 492] has been defined as “the theoretical

study of the brain used to uncover the principles and mechanisms that guide the development,

organization, information-processing and mental abilities of the nervous system”. Modern

computing technologies have enabled important advances in our understanding of how the

brain works. Software suites have been developed for semi-automating some time-consuming

processes, e.g., the reconstruction of neuronal morphologies from microscope images, obtain-

ing counts of neuron somas from tissue images, etc. Data mining methods have been used

for analyzing the large amounts of data produced by neuroscientists with those new tech-

niques. The morphology, electrical properties and activation behaviors of the neurons have

been encoded and simulated using computer models. Powerful visualization tools have been

designed to graphically represent the models and results obtained.

The work developed in this dissertation has been mainly applied to the study of neuronal

morphology. Neuronal morphology shows a huge variability across neuron types, brain areas

and animal species. Therefore, statistical analysis and machine learning tools seem like a

promising approach for modeling and analyzing neuron morphology. This chapter provides

an introduction to the biological notions used throughout this dissertation.

1Website available at: http://www.engineeringchallenges.com/

61

http://www.engineeringchallenges.com/

62 CHAPTER 6. NEUROSCIENCE

Chapter outline

Section 6.2 starts with a brief note about the history of modern neuroscience. Some basic

concepts on the organization of the brain and the structure of neuronal cells are included

in Section 6.3. The problem of the morphological variability of neurons and how it affects

the classification of neurons in the cortex are reviewed in Section 6.4. Finally, Section 6.5

enumerates some of the most prominent research efforts that have been developed by the

neuroscience community in the last decade.

6.2 Historical note

The first theories of neuronal organization were postulated in the 1830s, but it was not until

the second half of the XIX century when the advances in citohistology allowed neuroscientists

to start studying the neuron’s structure [345]. Christian G. Ehrenberg (1795–1876) and

Johannes E. Purkinje (1787–1869) provided the first descriptions of cells in the nervous

systems. Later, the German scientist Joseph von Gerlach (1820–1896) proposed the first

widely accepted neuronal theory, the reticular theory. This theory postulated that the brain

was formed by a continuum of nervous fibers and that there was no physical separation

between one neuron and the next one.

The technological advances in the construction of microscopes, combined with new tech-

niques for cell staining, allowed the identification of the different parts of a neuron. In 1883,

Camillo Golgi (1843–1926) discovered the method known as Golgi’s method or black reac-

tion. This method was based on hardening the cellular tissue by introducing it in potassium

dichromate and osmic acid. Then, the tissue was stained using a silver nitrate solution. As

a result, a small number of neurons appeared stained in black over a yellow background.

One of the main advantages of this method was that only few neurons were stained ran-

domly (only 1% of the neurons in a specific area of the tissue). Otherwise, the huge density

of neuronal branches in the brain would have made it impossible to clearly distinguish the

neuronal morphology. Also, the level of detail offered by the new technique was higher than

in previous methods [118]. Golgi received, along with the Spanish neuroscientist Santiago

Ramón y Cajal, the Nobel Prize in Medicine in 1906 for his neuroanatomy studies.

Wilhelm His (1831–1904), Fridtjof Nansen (1861–1930) or Auguste H. Forel (1848–1931)

were some of the first scientists who criticized the reticular theory at the end of the XIX cen-

tury. However, Santiago Ramón y Cajal was the first scientist who gave evidence suggesting

that neurons were independent units and they did not form a continuous net. He improved

Golgi’s method and applied it to neuronal tissue from different areas in the brain. Cajal

introduced the basic concepts of a new neuron doctrine. Also, he established the roots of the

dynamic polarization law, the specific connectivity principle and he foresaw the concept of

synapsis [345].

From Cajal’s discoveries, most of the scientific community adopted the new theory and

helped spreading it with new research. The electronic microscope, invented in the middle

of the XX century, was able to obtain more detailed images of the nervous tissue. These

6.3. BRAIN ORGANIZATION AND NEURONAL MORPHOLOGY 63

Figure 6.1: Confocal microscope image of a pyramidal neuron from the rat’s neocortex.
Source: Instituto Cajal (CSIC).

new tools and research works confirmed the Cajal’s neuronal theory and allowed the in-depth

study of the synaptic connections.

Nowadays, the confocal microscope is the most commonly used tool for studying the

neuronal structure. This microscope takes a set of pictures of a given neuron using different

angles and different depths (see Figure 6.1). Then, the neuronal morphology is traced using a

(semi-)automatic software tool [146, 235, 483]. Once the neuron structure has been obtained,

the different parts of the neuron can be visualized, labeled, edited, etc.

6.3 Brain organization and neuronal morphology

The central nervous system can be divided into seven main parts [288]: the spinal cord,

the medulla oblongata, the pons, the cerebellum, the midbrain, the diencephalon and the

cerebral hemispheres. These parts can be subdivided according to different criteria, e.g.,

their anatomic features, their location, etc. In general, each one of these distinguished parts

can be assigned a specific functional role. All cognitive functions, such as the ability to talk,

the movement of each part of the body or the memory, are located in different areas of the

cerebral cortex, which is placed in the outer part of the hemispheres.

The cerebral cortex is a structure divided in layers and including a great variety of neu-

rons. This structure can be found in several types of non-mammals vertebrates, although

it has greatly evolved and differentiated in mammals. The differences in the size and the

organization of the neocortex, the newest and most complex part of the cerebral brain, is

believed to allow the wide range of behaviors and abilities in mammals [37].

In general, the cerebral cortex can be divided into six layers enumerated from I (the most

64 CHAPTER 6. NEUROSCIENCE

superficial) to VI (the deepest). Also, the cortex is divided into cortical areas according

to their main features. However, different researchers have identified very different cortical

areas. All the cortical areas studied in the literature seem to include the same basic elements:

neurons, glial cells, fibers and blood vessels. The characterization of the different types of

neurons is one of the main goals in the study of the cerebral cortex.

The cortical column has been shown to be the basic organization and functional circuit

in the neocortex. The term column is vague [122, 423, 431], since it can refer to small-scale

minicolumns (diameter ∼ 50µm), to larger-scale macrocolumns (diameter ∼ 300 − 500µm),

and to multiple different structures within both categories (including barrel columns and oc-

ular dominance columns, extent of arborization of single thalamic afferent fibers, cytochrome

oxidase blobs, individual dendritic arbors of pyramidal cells, and tangential widths of axonal

patches originated from pyramidal cells). However, a diameter of ∼ 300µm remains rather

similar across several species and cortical areas for many of these cortical columns [350, 380].

6.3.1 Neuron structure

The neuron is the basic structural unit in the brain. The number of neurons in the human

brain is estimated to be in the order of 86.1× 109 [25]. Neuron morphology exhibits a huge

variability across areas and species [140, 413]. A neuron can be structurally divided into

three parts: the soma, the dendrites and the axon.

The soma or cell body includes the cell nucleus, along with other cellular structures

such as ribosomes, mitochondria, lysosomes, etc. The neurites grow away from the

soma and can be classified into: dendrites and axon. The morphology of the soma

greatly varies depending on the number and the orientation of the neurites, although

it is usually modeled as a sphere or an ovaloid. The soma can appear centered with

respect to the rest of the neuron morphology or displaced. Its size can greatly vary,

with diameters between 4 and 135µm.

Most of the chemical activity in the neuron takes place in the soma. Therefore, the

soma has traditionally been given the role of receiving and processing the information

that goes into the neuron through the dendrites and sending the result to other neurons

through the axon. However, neuronal behavior is extremely complex and depends on a

lot of other factors, e.g., dendrite and axonal morphology, the cell environment, etc.

The dendrites are prolongations that profusely bifurcate forming branched structures

called dendritic trees. These structures increase the neuronal surface for receiving

synapses from other neurons. The dendritic branching patterns greatly differs between

neuron types, species and areas [39, 163, 275, 301]. Some dendrites extend away from

the soma without bifurcating until they reach a specific area where they frequently

branch. Other dendrites bifurcate close to the soma, whereas other dendrites grow away

from the soma and end without bifurcating. Recent studies have postulated the idea

that dendritic branching patterns follow optimal dendritic wiring [102–105, 499, 515].

6.3. BRAIN ORGANIZATION AND NEURONAL MORPHOLOGY 65

However, the principles that determine the geometric shapes of dendrites are currently

unknown.

In general, dendritic branching nodes give raise to two branches, although branching

nodes with three or more branches have been observed. These multifurcations can

represent up to 10% of the total branching nodes in some neuronal types [44]. However,

it is not clear whether these multifurcations are indeed branching nodes with more than

two branches, or if they should be considered as several bifurcations located at a minimal

distance [504].

Some kinds of neurons show dendritic spines in the surface of their dendrites [424, 531].

The function of these spines is not known [532], although it has been proposed that their

main goal is to increase the dendritic surface so that a higher number of connections can

be achieved. It has also been shown that the position, shape and number of dendritic

spines changes in time. This morphological plasticity is said to be related to memory,

learning or neurodegenerative diseases [12, 40, 126, 529].

The functional role of dendrites is receiving and integrating the information coming

from other neurons. The shape and size of the dendritic tree determine which neurons

are connected to a given neuron and the place where the synapses occur. Traditionally,

the study and simulation of neurons considered dendrites as indivisible nodes that did

not perform any kind of information processing. Thus, the dendritic morphology was

not taken into account. However, it has been proved that the branch geometry and the

spatial location of the synapses allow different parts of the dendritic tree to work in a

semi-independent way [459]. Therefore, dendritic morphology is a relevant element to

understand neuronal behavior [244, 296, 297, 349, 506].

The axon is a neurite that can extend very long distances away from the soma. Its

length can hugely vary and its diameter is usually small (between 0.2 and 20µm).

Axons are covered by myelin sheaths which are regularly interrupted by the Rainver

nodes [288]. Usually, the axon grows away from the soma until it reaches a specific

area where it branches to connect with the dendrites of other neurons in the same

or a different region. Also, axons can grow collateral branches to connect with closer

neurons. The main function of the axon is sending the information to other neurons.

This information is codified in electric pulses called action potentials or spikes. The

action potentials are generated in the initial part of the axon and propagate through

it until they reach the axon terminals where the synapses occur. Therefore, the axon

morphology also defines which neurons are communicated and their functional roles.

Notably, some neurons are axonless, such as retina amacrine cells and olfactory granule

cells [522].

66 CHAPTER 6. NEUROSCIENCE

Figure 6.2: Photomicrograph from Cajal’s preparation of the occipital pole of a cat stained
with the Golgi method, showing a pyramidal cell (one arrow) and an interneuron (neurogli-
aform cell) (two arrows). From DeFelipe and Jones [118].

6.4 Neuron classification

The morphologies, molecular features and electrophysiological properties of neuronal cells are

extremely variable [140, 413, 436, 472]. Neuronal morphology is a key feature in the study of

brain circuits, as it is highly related to information processing and functional identification.

Except for some special cases, this variability makes it hard to find a set of features that

unambiguously define a neuronal type [413]. In addition, there are distinct types of neurons

in particular regions of the brain. Indeed, neurons in the cerebral cortex can be classified

into two main categories based on their morphology: pyramidal neurons and interneurons

(Figure 6.2):

Pyramidal neurons are excitatory (glutamatergic) cells which display spines in their

dendrites and have an axon which projects out of the white matter. Their name refers

to the pyramidal shape of their soma and was introduced by Rudolf Berlin in 1958.

Pyramidal neurons are key elements in the functional organization of the cerebral cor-

tex, where they are the most frequent neuronal type (70-85%) and the main source of

cortical excitatory synapses. Pyramidal neurons show a characteristic morphology (see

Figure 6.3). A big apical dendrite grows from the apex of the soma towards the cortical

surface, usually extending until it reaches layer I, where it frequently branches forming

a dendritic tuft. A set of radially oriented basal dendrites grow from the base of the

soma. The basal dendritic arbors of pyramidal cells represent about 90% of the den-

dritic length of cortical pyramidal neurons from layers II/III and V [318]. A single axon

6.4. NEURON CLASSIFICATION 67

Figure 6.3: Schema of the morphology of
a pyramidal neuron. The schema shows
the main properties defining this kind of
neuron: a pyramidally-shaped soma, an as-
cending apical dendrite, radially-oriented
basal dendrites and a descending axon.
Source: Benavides-Piccione [37].

grows from the base of the soma. Another important feature of pyramidal cells is that

their dendritic surfaces are covered by spines, which represent the major postsynaptic

elements of excitatory synapses [121, 172, 468, 517, 533].

Interneurons are cells with short axons that do not leave the white matter and their

dendrites show few or no spines. These interneurons appear to be mostly GABAergic

(inhibitory) and constitute ∼15–30% of the total neuron population, but they display

chemical, physiological and synaptic heterogeneity [413]. Most cortical interneurons

lack the typical somatodendritic morphological characteristics used to identify projec-

tion neurons, namely a pyramidal-shaped cell body and an apical dendritic tree that is

distinct from and lies opposite to the basal dendritic arbor. However, the absence of

these features should not be used to define interneurons, as they are neither necessary

nor sufficient for distinguishing interneurons from projection neurons. Indeed, there

are interneurons that have a somatodendritic morphology resembling that of pyramidal

cells, e.g., the so-called “pyramidal basket cells” [15], and projection neurons that have

a non-pyramidal appearance in their somata and dendrites [412].

Traditionally, interneurons have been subdivided into two main groups [412]: spiny non-

pyramidal cells and aspiny or sparsely spiny non-pyramidal cells. Spiny non-pyramidal

cells are located in the middle cortical layers, especially in layer IV of primary sen-

sory cortices. They comprise a morphologically heterogeneous group of interneurons

with ovoid, fusiform, and triangular somata. Most spiny non-pyramidal cells are exci-

tatory (glutamatergic [173]), and their axons are distributed within layer IV or in the

68 CHAPTER 6. NEUROSCIENCE

adjacent layers above or below the somatic location [470]. Aspiny or sparsely spiny

non-pyramidal cells usually have axons that remain near the parent cell, although some

run prominent collaterals in the horizontal (parallel to the cortical surface) or verti-

cal dimension (ascending and/or descending, reaching other cortical layers). These

interneurons appear to be mostly GABAergic and constitute 10-30% of the total neu-

ron population, the percentage varying substantially between cortical layers, areas and

species [118, 369]. They are the main component of inhibitory cortical circuits. The

identification of classes and subclasses of interneurons is clearly critical for gaining a

better understanding of how these cell shapes relate to cortical functions in both health

and disease. GABAergic interneurons also show a remarkable morphological variability

between species, layers and areas [117].

6.4.1 Neuronal variability

The Internet has made it possible for researchers to share digital three-dimensional recon-

structions of neuronal morphology in publicly accessible databases [20, 23]. With such amount

of available data, a common nomenclature for naming cortical neurons is a crucial prereq-

uisite for advancing in our knowledge of neuronal structure [51]. However, the wide neuron

morphological variability makes it difficult to find a set of morphological properties which

clearly define neuronal types [413]. Therefore, the characterization of the different neuronal

types should be statistical in nature [143].

With few exceptions, no general consensus has emerged for naming cortical neurons. For

example, at present most neuroscientists agree on the usage of terms such as pyramidal neu-

ron, non-pyramidal neuron, interneuron, and chandelier (or axo-axonic) cell. These cell types

are readily distinguished by their clear morphological attributes. However, other common

names, such as double bouquet cell, Martinotti cell, neurogliaform cell, and basket cell, seem

to lack a consensual definition. In these cases, the same name is often assigned to neurons of

varying morphologies by different authors, and a variety of terms are inconsistently adopted

in different laboratories to represent the same cell classification. As a consequence, virtually

every author has his/her own classification scheme and neuron terms, making the comparison

and exchange of information among laboratories rather difficult, if not impossible. In fact, it

is not possible to find two neurons with the same exact morphology.

Two types of variability can be identified: interclass variability and intraclass variability.

Figure 6.4 shows the three-dimensional reconstructions of three neurons corresponding to

very different morphological classes as an example of interclass variability. Chandelier cells

(Figure 6.4(a)) are neurons with the soma in layers II-VI; multipolar or bitufted dendritic

arbors; and distinguished by pre-terminal axon branches that form short vertical rows of bou-

tons resembling candlesticks. Double-bouquet or horse-tail cells (Figure 6.4(b)) are neurons

with the soma in layers II-III; multipolar or bitufted dendrites; and distinguished by their

“horse-tail” axons forming tightly intertwined bundles of long descending vertical collaterals.

Finally, Martinotti cells (Figure 6.4(c)) are neurons with the soma in layers III-VI; multipo-

lar, bitufted or bipolar dendrites; and distinguished by their ascending axons that give rise to

6.4. NEURON CLASSIFICATION 69

two axonal arborizations, one near the cell body and the other at a variable distance above

the cell body. This second plexus may be very dense (axonal tuft) or more diffuse, and it

can be found either in the same cortical layer as the cell body of origin or in the layers above

(ascending axons can travel from layer VI to layer I). We can also observe how the dendritic

morphology also varies in the different neurons.

(a) (b) (c)

Figure 6.4: Three cells belonging to different neuron types. The axon is shown in blue
whereas the dendrites are shown in red. (a) Chandelier cell from the rat neocortex [249]. (b)
Horse-tail cell from the rat neocortex [511]. (c) Martinotti cell from the mouse neocortex
[221]. Source: NeuroMorpho.Org [23].

Figure 6.5 shows the three-dimensional reconstructions of the basal dendrites of four

pyramidal neurons from the primary motor cortex of the mouse. Some similarities can be

identified between the reconstructions, e.g., there are dendritic trees oriented in all directions,

dendrites bifurcate close to the soma and they have long ending segments which do not

intertwine. However, there are differences in the number of dendritic trees, their sizes or the

number of branching nodes in each tree.

Figure 6.5: Basal dendrites of four pyramidal neurons from the primary motor cortex of the
mouse. Source: Instituto Cajal (CSIC).

70 CHAPTER 6. NEUROSCIENCE

6.5 Current research efforts in neuroscience

The beginning of the XXI century is seeing a renewed interest in the study of the brain.

The Blue Brain project2 [358] is an international project launched on 1st July 2005 by the

Brain Mind Institute at the École Polytechnique Fédérale de Lausanne and IBM (Interna-

tional Business Machines). The aim of this initiative is to use the enormous computing power

of IBM’s supercomputers to simulate the brains of mammals with a high level of biological

accuracy. To achieve this goal, highly detailed computer models of neurons are generated

including three-dimensional reconstructions of their morphology, the distribution and compo-

sition of their ion channels, the number and the location of their synapses, their physiological

and pharmacological properties, etc. Then, the number and locations of the different types

of neurons are studied. The first model of a rat’s neocortical column was announced in the

summer of 2006. This virtual cortical column included 10000 units of a simplified neuronal

model. This computer model was used to simulate the electrical activity in the cortical

column.

The Cajal Blue Brain project3 is the Spanish participation in the Blue Brain project,

involving the Universidad Politécnica de Madrid and the Centro Superior de Investigaciones

Cient́ıficas among other partners. The Cajal Blue Brain project officially started in 2008.

It focuses on two topics: the study of the functional and anatomical microorganization of

the cortical column, and the development of new biomedical technology with potential ap-

plications in other fields. The main long term goals in the Cajal Blue Brain project can be

summarized in four points:

Studying the synaptome [120], i.e., the detailed map of the synaptic connections in the

cortical column.

Understanding how the cortical column works, both in health and disease, specially

focusing on Alzheimer disease.

Developing new methods for processing and analyzing biological data.

Developing new graphical methods for visualizing and simulating brain function.

In 2013, two big projects focusing on the study of the brain have been announced. In

january 2013, the European Research Commission announced the Human Brain Project4 as

one of the two projects selected for the EU FET Flagship Program. The project goals can be

grouped into four topics: First, generating complete and accurate brain atlases and building

brain models from them. Second, identifying the mathematical principles underlying the

relationships between different levels of brain organization. Third, building a system that

integrates all the knowledge about the human brain. Fourth, developing new technologies and

tools to produce results with immediate value for basic neuroscience, medicine and computing

technology.

2Website available at: http://bluebrain.epfl.ch/
3Website available at: http://cajalbbp.cesvima.upm.es/
4Website available at: http://www.humanbrainproject.eu/

http://bluebrain.epfl.ch/
http://cajalbbp.cesvima.upm.es/
http://www.humanbrainproject.eu/

6.5. CURRENT RESEARCH EFFORTS IN NEUROSCIENCE 71

Almost simultaneously, the Brain Research through Advancing Innovative Neurotech-

nologies (BRAIN) project, formerly known as the Brain Activity Map project [10, 11], was

announced by the United States of America’s President Obama in february 2013 as a decade-

long large-scale effort to study the functional mapping and neural activity in brains. It has

three main goals [11]: First, building tools to simultaneously record the activity of all neurons

in a circuit. Second, developing methods for influencing the activity of individual neurons in

the circuit. Third, understanding the circuits’ function.

Computer science and statistics lay at the core of these new research projects. These

projects serve as an example of the kind of synergies stemming from multidisciplinary research

when real problems drive research in artificial intelligence. Indeed, we expect statistics and

machine learning methods to play a major role in solving some of the most challenging

problems in neuroscience and medicine, such as the study of low-level interactions between

neurons in the brain and their relationships to perception, learning or brain diseases.

72 CHAPTER 6. NEUROSCIENCE

Part III

CONTRIBUTIONS TO

BAYESIAN NETWORK

MODELING

73

Chapter 7
Bayesian network modeling of

pyramidal basal dendritic trees

7.1 Introduction

In Chapter 6 we saw that dendritic morphology is essential for understanding neuronal con-

nectivity and is a crucial feature in information processing and brain function. Pyramidal

neurons are key elements in the functional organization of the cerebral cortex and the struc-

ture of their dendritic trees affects the process of information integration, whereas their size

influences the mixing of inputs [515]. The branching patterns of the dendritic trees are re-

lated to the processing of synaptic inputs [244, 296, 297] and define the electric behavior of

the neurons [82, 349, 506]. Different parts of the dendrites can operate semi-independently

according to the spatial location of synaptic connections [459]. As a result, there is consid-

erable interest in the analysis of the microanatomy of pyramidal cells since it constitutes an

excellent tool for better understanding cortical information processing.

Despite recent advances in molecular biology and new discoveries related to neuronal

development, current knowledge about neuron structure is still incomplete, and it is hard

to find a set of anatomical traits that unambiguously define a neuron type (see Section 6.4

for a discussion on neuronal morphological variability and the problem of neuron classifica-

tion). Computational stochastic models have been used for the last two decades to measure

geometric parameters of real neuronal arborizations and simulate virtual neuron morpholo-

gies. These simulations can be used to identify the basic structures and important features

in neuronal classes, to study neuronal development and neurite outgrowth, or to examine

relationships between morphology and neuronal function. As 3D reconstruction of real cells

is a time- and resource-consuming process, the data compression and amplification that can

be achieved with these techniques are also important advantages [20, 22]. However, a major

obstacle to the creation of virtual neurons is method validation because data on the complete

dendritic tree of real neurons is rather scarce. Indeed, labeled processes are frequently in-

complete because, during the tissue slicing procedures some parts of the neuron morphology

75

76 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

are missing in a varying degree, depending on the thickness of the sections and the relative

localization of the labeled neuron within the slice. Usually, this problem can only be overcome

using serial sections to reconstruct the cell in 3D. However, neuronal processes are not always

easy to trace and they may at times get lost in the background noise [119]. Together, these

obstacles make it very laborious and time-consuming to obtain meaningful measurements

from neurons. In the study of this chapter, we have used data from fully reconstructed basal

dendrites of pyramidal cells. The basal dendritic arbors of pyramidal cells represent about

90% of the dendritic length of cortical pyramidal neurons from layers II/III and V [318].

The whole basal dendritic arbor can be fully reconstructed in single horizontal sections [162].

Thus, they are particularly valuable for validating the simulated virtual neurons.

In this chapter, we present a novel methodology for the 3D simulation of dendritic trees

using BNs. The goal is to simulate virtual dendrites that are visually and statistically indis-

tinguishable from real ones. This approach has a number of advantages over previous models.

First, BNs use the conditional (in)dependencies between the variables defining the dendritic

morphology to model their JPD. In fact, the possible use of BNs to consider the relation-

ships between morphological variables has already been noted [491]. Since these statistical

relationships are found automatically by analyzing the data, the whole process is data-driven

and widely applicable. Thus, instead of changing the model to consider different kinds of

relationships and analyzing the results to gather relevant information, we let the data speak.

The resulting model is studied to gain insights into the processes underlying dendritic mor-

phology. We believe that this approach is less constrained by a priori assumptions based on

current biological knowledge and is not affected by disagreements between domain experts.

Second, the model learns and uses a BN for each part of the dendrite. This way, the

relationships can change to take into account the dendritic tree location. This is an important

characteristic, since there is evidence supporting the idea that heterogeneous parts of the

dendrites could be regulated by different developmental factors [144]. The model is flexible

enough to capture and exploit low-level relationships.

Third, the model uses an extensive set of variables that include commonly used dendritic

tree measurements along with new features to model context factors, such as the morphology

of the subdendrite or the distance to the nearest segment. Finally, the use of several univariate

tests and a novel multivariate test makes the evaluation more robust and reliable.

The research included in this chapter has been published in López-Cruz et al. [338].

Chapter outline

The chapter is organized as follows. Section 7.2 reviews computational models for analyz-

ing and simulating neuronal morphology. Section 7.3 details the proposed methodology for

modeling and simulating basal dendritic trees from pyramidal neurons. Section 7.4 shows the

results of the extensive evaluation of the methodology. Discussion and final comments are

included in Section 7.5.

7.2. RELATED WORK 77

7.2 Related work

Existing models for simulating dendritic morphology can be grouped into two categories:

growth and reconstruction models [498]. Growth models try to capture the behavior of

growth cones during neuron development and, thus, are able to simulate dendritic structure

at its different stages of maturity. These models usually consider that the neurite tips elongate

and taper as they grow away from the soma until a bifurcation occurs or the neurite ends.

They estimate the probabilities for each of these events taking into account some of the

different factors involved in neuron development, e.g., molecular gradients [251], electric field

presence [429], neuritic tension [331], segment length or centrifugal order [500], neurotrophic

particles [346], etc. One of the recent works that implements this kind of model [298] has

simulated complete networks of neurons. The probability functions include complex elements,

e.g., the influence of competition between dendrites when deciding if a bifurcation should

occur, the distance between dendrites and axons when establishing synaptic connections, etc.

On the other hand, reconstruction models measure relevant variables from real neurons

and use their statistical distributions to describe the dendritic tree structure. Then, a sim-

ulation algorithm samples the distributions to output virtual dendrites that should be in-

distinguishable from real ones. Donohue and Ascoli [143, 144] propose an algorithm that

samples 2D virtual dendrites from the univariate marginal probability distributions of some

basic parameters (segment length, width and bifurcation probability). Later, they consider

conditional relationships between the variables and three other fundamental parameters (cen-

trifugal order, segment radius and path length) and compare the models at length [145]. They

use common predefined parametric distributions, like Gaussian, Gamma or uniform distribu-

tions, to fit the data.

Parametric distributions might not accurately fit the real distributions, and other mod-

els use non-parametric approaches to avoid that problem. KDE is used in [334] to simu-

late 2D dendritic structures taking into account conditional relationships between features.

Torben-Nielsen et al. [491] use conditional KDE to generate dendrites and angle information

is included to obtain 3D simulations.

Variations of L-Systems [434] have also been used in neuronal morphology simulations

because of their ability to create branching structures [21, 239]. Recently, evolutionary com-

putation has been used to output L-Systems that generate virtual neurons that are similar

to a single real one [488–490]. They also include a postprocessing step to filter out non-

biologically plausible neurons.

The above models only measure univariate marginal probability distributions or define

a priori conditional relationships ad hoc, e.g., see [17, 334]. Considering variables to be

independent keeps models simpler, which makes them easy to analyze. However, the inde-

pendence assumption does not hold since complex interactions with extracellular elements

and intrinsic factors have been widely reported for real neurons [366, 444]. Other works

define relationships between model parameters according to some predefined criterion and

study the simulated neurons to check whether or not the hypotheses are correct, e.g., see

78 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

[145, 439]. This methodology is more likely to be biased towards expert knowledge and

disregards important information that could be inferred from the data.

7.3 Models and simulation of basal dendrites with Bayesian

networks

Our proposal can be classed as a reconstruction model. The whole process is summarized in

Figure 7.1. First, we measure key features in 3D reconstructions of real pyramidal neurons

and estimate their JPD to define the BNs used to build up the model. We then simulate from

the BNs to output a set of virtual dendrites, which we compare with the original data to verify

the model’s ability to capture the dendritic tree structures. In the evaluation step, statistical

tests are performed to check whether or not the variables included in the model have the same

distribution in the original and simulated data. Other emergent features measured from the

whole dendritic trees and branches, not used in model learning, are also compared, e.g., total

dendritic length, asymmetry index, etc. Wilcoxon rank-sum, Kolmogorov-Smirnov and KL-

based tests are used to compare each variable independently. We also propose a multivariate

test that uses a KL estimation technique to compare the JPD over a set of variables. Finally,

examples of real and simulated dendrites are visually compared.

Figure 7.1: Our reconstruction model approach.

The following sections provide details about each of the steps involved in the method-

ology. First, Section 7.3.1 explains the data acquisition and preparation process, i.e., how

the variables used in the model were measured from the real dendrites and the data were

preprocessed. Then, the model is built by learning one BN for each part of the dendritic tree

in Section 7.3.2. Then, the simulation algorithm that uses the BNs to generate virtual 3D

dendrites is shown in Section 7.3.3. Finally, the evaluation methodology comparing virtual

and real dendrites is presented in Section 7.3.4. Figure 7.2 shows a schematic overview of the

whole process.

7.3. MODELS AND SIMULATION OF BASAL DENDRITES WITH BNS 79

Figure 7.2: Application of BNs to the modeling and simulation of basal dendritic trees. The
figure shows the measuring of variables from the real trees, the learning of the BNs and the
sampling of values to simulate the virtual dendritic trees.

7.3.1 Data acquisition and preparation

We have used a set of 3D reconstructions of 90 pyramidal neurons from the mouse neocortex

(two BC57 Black mice, 2 months old). These neurons were labeled with Lucifer Yellow using

an intracellular injection method that covers the full extent of the basal dendritic arbor. The

neurons were located in layer III of different cortical regions: the secondary motor cortex

(M2), the secondary somatosensory cortex (S2) and the lateral secondary visual cortex and

association temporal cortex (V2L/TeA). Therefore, three databases1 of reconstructions were

built according to their cortical area. The whole basal dendritic trees of the neurons were

traced using the Neurolucida package [219] and stored in digital files in the ASC Neurolucida

format. The tissue preparation and injection process are detailed in [39]. The reconstructions

are publicly available at www.neuromorpho.org [23] as part of DeFelipe’s laboratory archive.

Each basal dendritic arbor is made up of approximately 6 (mean ± SD, 5.7± 0.9, range 4-8)

main trunks, which are in turn made up of several dendrites, as shown in Figure 7.3. For the

sake of simplicity and unless otherwise stated, we called these single trunks of basal dendritic

arbors dendritic trees.

The 3D reconstructions were made up of the Cartesian coordinates of the points where

1The term “database” refers to the sets of 3D reconstructions of basal dendrites from each of the three
cortical areas. The term “dataset” is used to refer to the values of the variables measured for each pair of
sibling segments in those reconstructions.

www.neuromorpho.org

80 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

Figure 7.3: Basal dendritic arbor of a pyramidal neuron from the secondary motor cortex.
Each dendritic tree is drawn in a different color.

the dendrites branched. Each dendritic tree was isolated and its coordinates were moved and

rotated such that the root point was placed at the coordinate system origin and the root

segment was on the vertical axis. We considered a segment as the straight line between two

branch points. The dendritic trees with multifurcations (branch points that are the source

of three or more segments) were discarded.

A set of 41 variables was measured for each pair of sibling segments (Table 7.1). Some of

the variables were selected because they have been widely used to describe dendritic morphol-

ogy [67, 257, 494, 505], whereas other new variables have been included to capture context

influence and neuritic competition. Two types of variables were identified: evidence (E) and

construction (C) variables. Construction variables define the morphology of a segment. In

the simulation step, construction variables are sampled by the model to incrementally build

the virtual dendritic trees. On the other hand, evidence variables measure the part of the

dendritic tree morphology previous to a pair of sibling segments. Evidence variables are

measured during the simulation process and used as information to accurately sample the

construction variable values.

Evidence variables (E), which provide information about the context of the segments

and how the dendritic tree is constructed (variables 1-33). These features include

(Figure 7.4):

– Morphological data from the subtree (variables 1-13). Given two sibling segments

with order = x, the subtree is defined as the part of the dendritic tree considering

all the segments with order < x. For example, Figures 7.4(a) and (b) show a pair

of sibling segments with a centrifugal order value of 5 (in red). The subtree (blue

area) includes all the segments with an order value from 0 to 4. This information

could be interesting for considering dendritic size when deciding if a segment should

branch or to control the spread and direction of the dendritic tree.

– Variables that describe the subdendrite (variables 14-21). Given two sibling seg-

7.3. MODELS AND SIMULATION OF BASAL DENDRITES WITH BNS 81

ments, the subdendrite is the path from the soma to the segments’ branching

point. The dotted area in Figure 7.4(a) represents the subdendrite for the two

sibling segments (in red), including the segments along the path with lower cen-

trifugal order, i.e., the segments in the path with order 0 to 4. These data could

be used as a way to capture neuron tropism and determine segment direction or

to bound segment length.

– Information about the nearest segment (neighbor in Figure 7.4(c)) in the den-

dritic tree that is not a part of the subdendrite (22-26). These variables have

been inspired by previous studies about the branching patterns of trees in the field

of ecology [370, 481], where several competition indexes and measures are given

to model tree growth when the influence of neighboring trees is acknowledged.

Following these approaches, we calculated five variables to take into account pos-

sible competition for resources between different branches, e.g., distance to the

neighboring segment, angle between the subbranches of the two segments, etc.

– Variables 27-29 describe parent segment morphology and enable interactions be-

tween the three segments that are involved in a bifurcation (Figure 7.4(a)). These

variables are included to consider relationships between consecutive segments.

– Root segment variables (30-32) correspond to the first segment of the dendrite

that grows away from the soma (Figure 7.4(a)). These variables could also help to

capture dendritic tropism. Subdendrite information, along with parent and root

segment measures, have already been used to model neurite growth direction [439].

– The centrifugal order of the segment (branch order), i.e. the number of bifurcations

along the path to the soma (variable 33).

Construction variables (C) completely specify segment morphology (variables 34-41).

This group determines whether or not the segments branch, as well as the spherical

coordinates of each end point taking the starting point as the origin (Figure 7.4(d)). A

distinction between the two segments in a bifurcation was made based on the azimuth

angle of their end points. We defined the left segment in a bifurcation as the one having

a higher absolute azimuth value. Therefore, the right segment is the one with a smaller

absolute value of the azimuth angle.

We formed four datasets by centrifugal order of segments: root segments (order 0), first-

order segments (order 1), second-order segments (order 2) and segments with a higher order

(order > 2). Finally, each of the 41 variables in each dataset was discretized by mimicking

their histograms. Two or three discrete values were defined for each variable trying to preserve

the shape of the empirical distributions while ensuring that enough data was available in each

interval to accurately estimate BN parameters.

82 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

(a) (b)

(c) (d)

Figure 7.4: Scope of the variables used in the model. (a) Subtree (blue area), subdendrite
(dotted area), parent and root segments for the two sibling segments (in red). The num-
bers refer to the centrifugal order of the segments. (b) Variables measured from the sibling
segments subtree. (c) Variables related to the segment closest to the segment starting point
(neighbor). (d) A spherical coordinate system where a segment is defined by the spherical
coordinates (r, θ, ϕ) of its end point taking the starting point as the origin: r is the Euclidean
distance between the two points, θ is the inclination angle and ϕ is the azimuth angle.

7.3.2 Bayesian network learning and model construction

The proposed model is made up of a BN (see Chapter 3) with discrete variables for each

one of the four datasets. The BNs were learned from data using a score+search approach

(see Section 3.3.2). The BIC score (Equation (3.4) on page 30) was used as a score function

to evaluate the network structures. The K2 heuristic search algorithm [97] was applied to

efficiently examine the space of network structures. Algorithm 3.1 on page 31 outlines the

K2 procedure at a high level.

7.3. MODELS AND SIMULATION OF BASAL DENDRITES WITH BNS 83

Table 7.1: Variables measured from the real dendritic trees and used for learning the model.
Two types of variables are considered: evidence variables (E), which provide information
about the subtree and subdendrite; and construction variables (C), which describe the seg-
ment length, orientation and bifurcation.

No. Type Variable No. Type Variable

1 E subtree degree (no. endings) 22 E neighbor distance
2 E subtree no. bifurcations (no.

nodes)
23 E neighbor inclination

3 E subtree total length 24 E neighbor azimuth
4 E subtree width 25 E neighbor extension
5 E subtree height 26 E neighbor angle
6 E subtree depth 27 E parent segment length
7 E subtree box volume 28 E parent segment inclination
8 E subtree max distance be-

tween nodes
29 E parent segment azimuth

9 E subtree max distance to soma 30 E root segment length
10 E subtree max length 31 E root segment inclination
11 E subtree min length 32 E root segment azimuth
12 E subtree max order 33 E segment centrifugal order
13 E subtree min order 34 C left segment length
14 E subdendrite length 35 C left segment inclination
15 E subdendrite width 36 C left segment azimuth
16 E subdendrite height 37 C left segment bifurcates
17 E subdendrite depth 38 C right/root segment length
18 E subdendrite box volume 39 C right/root segment inclina-

tion
19 E subdendrite distance to soma 40 C right/root segment azimuth
20 E subdendrite inclination 41 C right/root segment bifurcates
21 E subdendrite azimuth

The maximum number of parents (u) allowed for each variable was set to three in our

experiments. K2 needs the variables in X to be ordered (step 1). The maximum weight

spanning tree algorithm was used to compute such ordering. The centrifugal order (variable

33) was always used as the root node of the tree. Then, a topological sorting method was

applied to partially order the variables. Evidence variables were forcibly placed at the top of

the list, followed by the construction attributes.

Once the structures were known, the probabilistic components of the BNs were found by

computing the maximum likelihood estimates of the CPTs in the nodes of the BNs. The Bayes

Net Toolbox for Matlab was used to run these algorithms [383], and a BN was learned for

each of the four datasets. Thus, the model comprises four BNs that capture the relationships

between the variables at the different levels of the dendritic trees (see Figure 7.2).

84 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

7.3.3 Simulation algorithm for generating virtual dendritic trees

The simulation process uses the BNs included in the model to generate the virtual dendritic

trees. Algorithm 7.1 shows the main steps of the procedure. The iterative algorithm measures

the evidence variables and uses that information to increasingly build the virtual dendrite.

The algorithm simulates the dendritic tree in a breadth-first way according to the centrifugal

order (see Figure 7.2), i.e. first the root segment is created, then first order segments are

generated, followed by second order segments for the previous branching segments, etc.

Algorithm 7.1 (Simulation algorithm for generating virtual dendritic trees)

Repeat while there are incomplete dendrites:

1. Select the appropriate BN depending on the centrifugal order of the segment to be sam-

pled.

2. Measure evidence variables from the dendritic tree built so far.

3. Discretize the variables and set their values in the BN.

4. Sample the construction variable values from the BN.

5. Transform the spherical coordinates of the segments back to Cartesian coordinates to

build the segments.

6. If a segment bifurcates, consider that the dendrite is still incomplete. Else, the dendrite

has ended.

During the data acquisition and preparation step (Section 7.3.1), the variables were dis-

cretized and the BNs were learned with those discrete values. Therefore, the values sampled

from the BNs were also discrete (step 4 in Algorithm 7.1). These discrete values had to be

converted back to continuous values in order to build a virtual dendritic tree.

BN learning prevents the discretization process from making a high number of bins and

ensures that enough data is available for accurately estimating the probability distributions.

However, a low number of discrete values produces wide intervals with complex and heteroge-

neous data distributions. Therefore, it is not appropriate to use a central tendency measure

as the mean or the median to convert a discrete into a continuous value. Parametric fitting of

the data to some theoretical distribution was also avoided because of the high complexity of

the models that work with such distributions and a low goodness of fit due to unusual data

shapes.

Thus, we applied a method that samples a continuous value exploiting the original data

without making any assumption about its shape. Figure 7.5 shows an example where, as the

result of the sampling, the construction variable segment length is given the value short

and the parent variable subdendrite length has the value long. The method was based

on the conditional histograms of the real continuous values. For each simulated construction

variable Xi, i = 34, . . . , 41 that takes the discrete value xi and whose parents values are

7.3. MODELS AND SIMULATION OF BASAL DENDRITES WITH BNS 85

Figure 7.5: Example of the transformation of discrete values to continuous values. The
conditional histogram of the real continuous values that were discretized to the values
subdendrite length=long and segment length=short is calculated. Then, one bin is se-
lected randomly and the median of its values is the corresponding continuous value.

Pa(Xi) = pa(xi), the values (Xi = xi,Pa(Xi) = pa(xi)) were found in the discretized real

dataset. Then, the corresponding continuous real values were retrieved (M is the number of

selected samples). We built a histogram with those continuous values using
√
M equal-width

bins. One bin was then selected randomly, where the bin probability was proportional to

the number of data in the interval. The final continuous value corresponding to the discrete

value xi was the median of the data in the selected bin.

The continuous values were finally converted to the Cartesian coordinates used to simulate

the virtual dendrites (step 5 in Algorithm 7.1).

7.3.4 Evaluation methodology

The last step in the methodology is to check if the virtual dendrites are statistically and

visually indistinguishable from the real ones. This would mean that the model is able to

accurately capture the processes underlying dendritic morphology and can be analyzed to

extract relevant knowledge. Van Pelt and Uylings [497] compared real and simulated dendritic

trees using both optimized parameters included in the model and predicted variables that

emerged as an outcome of their growth model. Later on, Ascoli et al. [22] proposed three ways

of validating a reconstruction model: comparing real and simulated probability distributions

86 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

of the variables used in the model, comparing real and simulated emergent parameters not

included in the model, and performing a visual inspection by experts in neuroanatomy.

We can evaluate each variable independently using univariate statistical tests. However,

since BNs model the JPD over all the variables in the problem, a method that compares

this multivariate distribution in real and simulated data would be desirable. Therefore, a

test based on KL that can be applied to both univariate and multivariate data was designed.

KL [305] measures the “distance” from a true probability distribution pX(x) to a reference

distribution qX(x). It is a frequently used technique to quantify the difference between

distributions. We refer to these tests as the univariate and multivariate KL tests, respectively.

In this research, we counted the number of dendritic trees in the original database and

simulated the same number of virtual dendritic trees from the model. Each run was repeated

100 times to consider statistical variability. After that, a sign test was performed for each

test to check if the number of rejections was significant in the 100 repetitions. A significance

level of α = 0.05 was used for all statistical tests.

7.3.4.1 Univariate analysis

For each feature, we applied three univariate statistical tests to assess whether or not the sim-

ulated and original variables were significantly different. The three tests are non-parametric

so they can be applied without making any assumption about the shape of data:

The two-sample Wilcoxon rank-sum test checks if two samples have an equal median,

and can also be used to test for equal distribution of samples [167, 518].

The Kolmogorov-Smirnov test checks the hypothesis that two samples come from the

same underlying distribution.

The univariate KL test uses the KL value to compare two univariate marginal proba-

bility distributions pX(x) and qX(x) on R. The KL divergence is

KL(pX , qX) =

∫ ∞

−∞
pX(x) log

pX(x)

qX(x)
dx. (7.1)

Computing the expression in Equation (7.1) when a closed form cannot be found is not

a trivial task, so we used the bioDist package [139] for R to estimate the KL for each

continuous feature. The design of the statistical test that uses the divergence values is

detailed below in this section.

7.3.4.2 Multivariate analysis

The above tests are univariate, i.e., they only consider each variable independently. However,

a test using all the variables at the same time would be useful as we could compare the JPDs

on real and simulated data. We used the multivariate KL estimator for continuous data

7.4. RESULTS 87

proposed in [510], which is based on k nearest neighbors density estimation:

K̂L(pX, qX) =
n

Np

Np∑

j=1

log
υDq

X

(j)

ρDp
X

(j)
+ log

Nq

Np − 1
. (7.2)

This expression estimates the divergence between the densities pX(x) and qX(x) from two

datasets Dp
X and Dq

X with n-dimensional samples of sizes Np and Nq, respectively. The term

ρDp
X

(j) represents the Euclidean distance from the sample xj ∈ Dp
X to its nearest neighbor in

Dp
X \ {xj}. On the other hand, υDq

X

(j) is the Euclidean distance from xj ∈ Dp
X to its nearest

neighbor in Dq
X. Each feature was first scaled to the interval [0, 1] to avoid the different scales

in the features affecting the Euclidean distance measure.

We performed a statistical test based on a bootstrap method [157] that uses the KL to

check whether or not the simulated and real distributions are different. If the real dataset

Dr
X contains N samples, two datasets Dr1

X and Dr2
X of size N are sampled with replacement

from Dr
X, and both univariate (Equation (7.1)) and multivariate (Equation (7.2)) KL values

are calculated. This process was repeated 100 times and the 95-percentile was stored as a

threshold for each set of KL values. When applying the KL-based test, the divergence value

between the simulated and real dataset had to be higher than the threshold for the null

hypothesis stating distributions are equal to be rejected. A sign-test was applied to check if

the number of rejections was significant.

Finally, the model can be visually validated by comparing the pictures of real and virtual

dendritic trees. Since it is not possible to portray 3D data through 2D projections, a website

has been set up with examples of real and simulated dendritic trees (see Section 7.4.5).

7.4 Results

This section examines simulation results with different databases of basal dendritic trees. We

established three databases of neurons according to their cortical area, and each dendritic

tree was considered independently. Table 7.2 shows the number of dendritic trees included

in each database. This section illustrates the statistical comparison for the three areas. The

analysis of the BN structures focused on the M2 area, since the basal trees in this area have

more complex branching patterns and dimensions [39]. The BN structures for the S2 and

V2L/TeA areas are available at the supplementary results webpage (see Section 7.4.5).

These experiments were run on an Intel Core2 Quad CPU at 2.49Ghz with 6GB RAM.

The algorithms were implemented in Matlab under Windows Vista. Table 7.3 shows runtime

intervals for each algorithm, i.e., the minimum and maximum runtime in the 12 runs (4 BNs

for each one of the three cortical areas).

7.4.1 Analysis of Bayesian networks

The BN structure learned from the data encodes the conditional (in)dependence relationships

between the variables in the problem. The model can be validated by verifying if those

88 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

Table 7.2: Number of trees included in each database according to the cortical region from
where the neurons were sampled.

Region Database #Dendritic trees

Motor cortex M2 104
Somatosensory cortex S2 103
Lateral visual and association temporal cortex V2L/TeA 156

Table 7.3: Runtimes of the different algorithms implemented in Section 7.3.

Algorithm Runtime (seconds)

MWST algorithm 3.02 - 4.52
K2 search algorithm 4.29 - 9.76
Simulation algorithm (100 virtual dendritic trees) 1.53 - 3.86

relationships conform to current biological knowledge. On the other hand, a thorough analysis

of the relationships could help to discover new factors involved in neuron development and

dendritic morphology. Figure 7.6 shows the structure of the four BNs built from the M2

database, corresponding to the root segments, first-order segments, second-order segments

and the other segments with higher centrifugal order. As described earlier (see Section 7.3.2),

the ordering established during BN learning ensured that the construction variables (shaded)

were always influenced by either evidence variables or other construction variables. On the

other hand, evidence variables (with a white background) could only be influenced by other

evidence variables.

In the first BN (Figure 7.6(a)) only four construction variables and the centrifugal order

evidence variable are shown. This BN was used to generate the root segment of the dendrite.

There were no evidence variables to measure because no dendritic segment had yet been

simulated. At this level, only one segment (the root segment) has to be sampled, and it is

not possible to distinguish between left and right segments. Therefore, we decided to use

variables 38-41 to encode the root segment morphology. Variables 38-41 refer to the right

segment in the other BN structures (Figures 7.6(b), (c) and (d)). In the BN for first-order

segments (Figure 7.6(b)) only variables 22 to 26 were unavailable. Those variables could not

be measured at this level because the neighboring segment could not be defined, since the

root segment was the only segment that had so far been simulated. On the other hand, the

other two structures (Figures 7.6(c) and (d)) contained all the variables in Table 7.1 because

the simulated part of the dendritic tree was complex enough to measure all the evidence

features.

At first sight, it is clear that network complexity grew as we considered segments of a

higher centrifugal order. For example, the number of relationships (line plot in Figure 7.7)

steadily increased from three relationships in the first to 55 relationships in the last BN.

When we counted the number of variables with 0 to 3 parents (bars in Figure 7.7), we found

that variables with a higher number of parents were also more frequent in the higher-order

networks. Since 0 and first-order BNs did not include all the variables, fewer relationships

7.4. RESULTS 89

(a) Root segments (b) First-order segments

(c) Second-order segments (d) Segments with higher order

Figure 7.6: Structure of the four BNs learned from the M2 database. The numbers in the
nodes refer to the variables in Table 7.1. Shaded nodes represent construction variables and
evidence variables are shown on a white background.

were expected. However, the complexity growth was higher than the number of variables

added, and it also increased in the last two networks, including all the variables. The subtree

from where the evidence attributes were measured grows and gets more complex as we con-

sider high-order segments. Thus, a more widely connected network was necessary to model

the relationships in the dendritic tree structure. Besides, the last BN was learned for seg-

ments with different centrifugal order and a higher variability in the data was observed. The

BN needs more information to model this variability. This is a possible explanation for why

variables had more parents.

One way to distinguish between global and centrifugal order-specific relationships is to

count the number of times two variables are connected in the different networks, without

taking into account the direction of the relationship. Frequent edges could represent order-

independent global relationships and scarce edges could encode context-specific interactions

that only appear at a certain level. Additionally, the conditional probability distributions in

each variable (not shown) could be analyzed to check how the variable values change depend-

90 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

Network (a) Network (b) Network (c) Network (d)
0

10

20

30

40

50

60

 No. nodes without parents
No. nodes with 1 parent
No. nodes with 2 parents
No. nodes with 3 parents
Total number of arcs

Figure 7.7: BNs complexity analysis. The line plot shows the number of arcs in each BN from
Figure 7.6. The bars represent the number of variables with different numbers of parents in
each network.

Order 0 Order 1 Order 2 Order 3 Order 4
0

20

40

60

80

100

120

Centrifugal order of the segments

M
ea

n
le

ng
th

 o
f t

he
 s

eg
m

en
ts

Intermediate
Terminal

Figure 7.8: Mean length of intermediate and terminal segments of real dendrites. The figure
shows the mean length of the intermediate (black) and terminal (white) segments of each
centrifugal order in real basal dendrites of pyramidal neurons from the M2 area. Differences
between intermediate and terminal segments can be identified.

ing on the parent values. The only edge that appeared in all BNs (Figure 7.6) was the one

that related segment length and bifurcation occurrence for both the left (variables 34 and 37)

and the right segments (variables 38 and 41) in a bifurcation. This relationship encoded the

knowledge that terminal segments in basal dendrites were longer than intermediate segments.

In fact, dendrites usually branch when they are close to the soma, producing short segments;

whereas the segments that do not branch spread away from the soma. Figure 7.8 confirms

this relationship, as there is a clear difference between terminal and intermediate segments

at each branch order.

Segment angles also exhibited consistent relationships in the different BNs. Segment

azimuth (variables 36 and 40) was related in different ways to the subdendrite azimuth

(variable 21) and the parent segment azimuth (variable 29). Subdendrite inclination (variable

20) and parent segment inclination (variable 28) also influenced segment inclination (variables

35 and 39). Parent and subdendrite angles (variables 28-29 and 20-21) were frequently

interrelated too. Samsonovich and Ascoli [439] used both parent and subdendrite vectors

7.4. RESULTS 91

1st Order 2nd Order 3rd Order 4th Order 5th Order

30

40

50

60

70

A
ng

le
s

va
lu

es
 (

in
 d

eg
re

es
)

1st Order Trees
2nd Order Trees
3rd Order Trees
4th Order Trees
5th Order Trees

Angles

Figure 7.9: Angles formed between sibling segments. Mean values of the angles formed
between the two sibling segments in a bifurcation for real M2 basal dendrites. The dendritic
trees are grouped by their maximum centrifugal order. Each data point shows the mean value
of the angles (in degrees) between segments at each bifurcation node.

to successfully model dendritic tropism. They hypothesize that dendritic guidance might be

controlled by the host cell rather than by exclusively external factors, so our model found

relationships that had already been shown to be relevant. We show that segment orientation

is mainly controlled by the orientation of the previous segments, reflecting how the dendrites

extend away from the soma without making any sharp change of direction. We believe that

the fact that our model simultaneously considers and makes a distinction between the two

sibling segments at a bifurcation is possibly a key strength. Segment angles in a bifurcation

are assumed to be related since they do not grow in the same direction. Thus, it could

be important to consider these interactions when modeling dendritic orientation, e.g., the

azimuth and inclination of different segments were related (arc from 36 to 39 in Figure 7.6(c)).

Other subdendrite measurements can also directly influence some construction variables.

In Figure 7.6(c), the width component of the subdendrite (variable 15) influenced segment

bifurcation (variable 37), preventing it from splitting when this parameter showed high values.

This helped to constrain tree size and could be related to resource division and competition

between branches. In the above BN again, inclination angles (variable 35) were more likely to

be small when subdendrite height (variable 16) took higher values. This makes the dendrite

grow straight in one direction instead of the branches spreading when the segments are far

from the soma and helps to model dendritic tropism. On the other hand, the subdendrite

width was used to regulate segment azimuth (variable 36) and control the dendritic tree

spread in the next network structure (Figure 7.6(d)). Therefore, the dendritic trees tend

to first spread rapidly when they are close to the soma and then, once they have reached

a minimum size, grow straight away from the soma. Figure 7.9 shows two interesting facts

that support these explanations. First, when considering bifurcations of the same order,

complex dendritic trees with a high maximum centrifugal order (fourth and fifth order trees)

have wider angles than less complex trees (first, second and third order trees). Second, when

considering dendritic trees of the same complexity, the mean angle between sibling segments

steadily decreases as we consider higher order bifurcations. Therefore, sibling segments grow

92 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

to fill up the area defined by the angle of the first-order segment.

Subdendrite length also bounded dendritic size (arcs 14→ 41 in Figure 7.6(d) and 3→ 38

in Figure 7.6(b)). Note that variable 3 equaled variable 14 in Figure 7.6(b) since only the root

segment had been simulated. When the subdendrite is short, the simulation is still near the

soma and more bifurcations are supposed to occur. On the other hand, a long subdendrite

tends to stop the simulation by ending the dendrite with a long terminal segment.

In general, information related to the subdendrite appears to be more important for the

simulation process than the whole subtree measurements because construction variables were

almost always related to subdendrite variables. Summing up, segment orientation was defined

by the orientation of previous segments (subdendrite) to ensure that the dendrites showed

no angles causing a rough change of direction. On the other hand, the length of the path to

the soma was used to control segment size and whether or not it bifurcated, bounding the

total length of the dendrites. Although this could lead to the understanding that dendrites

grow independently from each other, influences from other branches could be important for

modeling competition and resource availability factors.

7.4.2 Evaluation of features used in the model

We compared the original and simulated values of the features included in the BNs to check

if the model accurately reproduces those variables. Figure 7.10 shows the results in the

three areas for the datasets compared using the multivariate KL-based test designed in Sec-

tion 7.3.4. At least 61 rejections were considered to be significant, as this corresponded to

the rejection region limit of a sign test with 100 observations. In the three cortical areas, a

significant number of rejections was found when comparing the real and simulated values in

the last dataset. This could be caused by its higher data variability. This dataset was the

only one that contained segments with different centrifugal order (from three to five) so the

subtrees and subdendrites where evidence features were measured are also more diverse.

Order 0 Order 1 Order 2 Order >2
0

10
20
30
40
50
60
70
80
90

100

Datasets of variables used in the model

N
um

be
r

of
 r

ej
ec

tio
ns

M2 area
S2 area
V2L/TeA area

Figure 7.10: Multivariate comparison of variables used in the models. The number of rejec-
tions in the KL-based multivariate test is shown for each of the four datasets according to the
centrifugal order of the segments. The horizontal line represents the threshold (61 rejections)
for rejections to be considered significant.

7.4. RESULTS 93

The univariate comparison of features could help to analyze which variables were causing

such a result. The number of rejections in the three univariate tests are summarized in

Figure 7.11(a) for the M2 database. Only 14 variables out of the 123 variables (11.38%) used

in the four BNs had a significant number of rejections in at least one of the tests: the rejected

variables correspond to variables 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 26 and 30 in Table 7.1.

If we only count the variables where at least two tests gave a significant number of rejections,

nine variables are selected: 9, 10, 11, 14, 16, 18, 19, 26 and 30. All those variables belong to

the fourth dataset, so they might have decreased the performance of the whole dataset when

multivariate comparison was applied (Figure 7.10).

The variables with rejections were evidence features, mostly from the subtree and the

subdendrite. As previously mentioned, this dataset includes information from different orders,

and the higher variability could be an obstacle to their simulation. We tried to decrease this

variability by further dividing this dataset according to the centrifugal order of the segments.

We created a dataset for each order, and learned as many BNs as the maximum order value.

However, this was not a feasible solution due to the low number of higher order segments, as

there has to be enough data to accurately estimate the probabilities included in the BNs.

Despite the rejections in evidence variables, the number of rejections for construction

variables was never significant. In fact, only two of the rejected variables, i.e., subdendrite

length (14) and subdendrite box volume (18), were directly related to any construction vari-

able in Figure 7.6(d). Moreover, the simulated dendritic trees with a maximum order value

greater than two were indistinguishable from real ones (see the following Section 7.4.3). This

means that the model was robust against false or heterogeneous evidence and was still able

to simulate correct values for the variables used to build the virtual dendrites.

The results for the S2 area were quite similar (Figure 7.11(b)), where 21 of 123 variables

(17.07%) had a significant amount of rejections. Most of these rejections appeared in the last

dataset, like M2 results. On the other hand, the tests in the V2L/TeA area (Figure 7.11(c))

gave 20 variables with significant rejections (16.26%). Note, however, that in the first-order

dataset, the subdendrite, subbranch, parent segment and root segment refer to the same

information, since only one segment has been simulated. Thus, rejections for variables 21,

29 and 32 in that dataset were interrelated and also related to the azimuth rejections in the

zero order dataset (variable 40). Similarly, pairs of variables 4-15, 5-16 and 7-18 represent

the same values. Moreover, when we analyzed the meaning of these variables, we could see

that they were related to the azimuth value that was rejected in the root segments dataset,

i.e. width, height and box volume closely depend on the azimuth value. Azimuth angle is

defined in a circular domain so it is a difficult feature to model, specially when considering

discrete values, and could be contributing to the rejections. However, it was the only case in

which a construction variable had a significant number of rejections.

7.4.3 Comparison of emergent parameters not used in the model

A set of 12 new variables was measured from the complete real and simulated dendritic trees

(see Table 7.4). Ascoli et al. [22] proposed the term “emergent parameter” to refer to these

94 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

(a) M2 area

(b) S2 area

(c) V2L/TeA area

Figure 7.11: Univariate comparison of variables used in the model. The number of rejections
for the KL-based test (blue squares), Kolmogorov-Smirnov test (green circles) and Wilcoxon
rank-sum test (red crosses) are shown. The horizontal axis represents the variables in each
BN ordered according to their number in Table 7.1. The numbers at the top of the graph
indicate the rejected variables. At least 61 rejections are considered to be significant as
indicated by the horizontal line.

global variables not included in the model that can be used to describe and compare the

dendritic morphology. Model variables and “predicted variables” were previously compared

in [497].

In this work, the emergent parameters are variables that can be measured at the level

of the whole tree, as opposed to subdendrite or subtree variables, which are measured from

7.4. RESULTS 95

Table 7.4: Emergent parameters not included in the model. The values of these features are
used to describe and compare the morphology of the whole dendritic trees.

No. Variable No. Variable

1 degree (no. endings) 7 dendritic tree depth
2 no. of bifurcations 8 box volume
3 total length 9 max distance between nodes
4 mean asymmetry index 10 max distance to soma
5 dendritic tree width 11 max centrifugal order
6 dendritic tree height 12 min centrifugal order

a part of the tree. First, these emergent parameters are measured from the real dendritic

trees. Then, the simulation step generates a set of virtual dendritic trees. Finally, the

emergent parameters are calculated for the virtual dendritic trees, and both the multivariate

and univariate statistical analyses are conducted again.

The number of rejections when all the real and virtual dendritic trees were tested was

very high in the three areas. We hypothesized that it might be wrong to consider all the

dendrites together since we could find a high diversity of dendritic morphologies. For ex-

ample, comparing a dendritic tree that extends away from the soma without branching (has

only a root segment) with a complex dendritic tree that branches extensively is expected

to return a high number of mismatches. To check that statement we repeated the analyses

comparing only real and virtual trees with the same maximum centrifugal order. The bars in

Figure 7.12 show a low number of rejections when we compared these subgroups of dendritic

trees, suggesting that simulated dendrites were in fact similar to real ones.

Order 0 Order 1 Order 2 Order 3 Order 4 Order 5
0

10
20
30
40
50
60
70
80
90

100

Sets of emergent parameters of dendritic trees

N
um

be
r

of
 r

ej
ec

tio
ns

M2 area
S2 area
V2L/TeA area

Figure 7.12: Multivariate comparison of emergent parameters not included in the model. The
number of rejections in the KL-based multivariate test is shown when only trees with the
same maximum centrifugal order are compared. The horizontal line represents the threshold
as of which the rejections are considered significant.

The horizontal line in Figure 7.12 shows the rejection threshold (61 in a sign test with

100 observations). However, there were some runs in the 100 repetitions where no dendritic

trees with a given centrifugal order value were simulated. In the M2 area, only 94 repetitions

generated dendritic trees with order 5 and the rejection threshold was decreased to 57. In

96 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

(a) M2 area

(b) S2 area

(c) V2L/TeA area

Figure 7.13: Univariate comparison of emergent parameters not used in the model. Re-
sults for 12 emergent parameters (Table 7.4) using univariate tests: KL-based (blue squares),
Kolmogorov-Smirnov (green circles) and Wilcoxon rank-sum (red crosses). This figure shows
the number of rejections when the dendritic trees are grouped according to their maximum
centrifugal order. The horizontal line indicates the number as of which rejections are consid-
ered significant.

the S2 area, dendritic trees with a maximum centrifugal order value of 0 were simulated in 81

repetitions and trees with order 5 were generated in 90 repetitions. Therefore, the rejection

threshold was set to 50 and 55, respectively. The breaks in the horizontal line in Figure 7.12

(and Figure 7.13) show the above changes in the rejection threshold.

The analysis of each feature independently (Figure 7.13) showed that the number of

rejections also decreased when grouping the dendritic trees by their centrifugal order. The

7.4. RESULTS 97

Figure 7.14: Boxplots for the real and simulated values of the emergent parameters. The
boxes show the values when all the dendritic trees from the M2 area are compared and no
subgroups are considered. The numbers refer to the variables in Table 7.4, whereas R and S
stand for real (with white background) and simulated (shaded) data, respectively.

most rejected variable in the three areas and in the different groups was the dendritic tree

depth (variable 7 in Table 7.4). Dendritic depth is highly dependent on the resolution of the

z-dimension when tracing the neurons, which is lower than the x and y dimensions. Thus, the

z-dimension measurements are a common source of uncertainty and errors [473] that could

also be limiting the model’s ability to accurately capture dendritic depth.

In the M2 database, dendritic depth (7) and maximum Euclidean distance from the soma

to the terminal tips (10) were the only variables with a significant number of rejections

(Figure 7.13(a)). Although there were more rejections for these two features than for the

other features in the three tests, only the KL-based test yielded a significant number of

rejections. Figure 7.14 shows that, while the median value in real and simulated data was

quite similar, the whiskers in the simulated data were wider, and the number of outliers was

also higher. These mismatches could be due to the discretization process, since it might

attach a higher probability to some infrequent data.

In the S2 and V2L/TeA areas (Figures 7.13(b) and (c)), a high number of rejections were

identified in zero-order dendrites. There were very few such dendrites in the S2 area, where

only 3 out of 103 dendritic trees were selected (2.91%), so the tests might be influenced by

this shortage of data. On the other hand, zero-order dendrites were more frequent in the

V2L/TeA area (27 out of 156, 17.31%). As previously noted in the evaluation of the model

variables, the difficulty of modeling root segment azimuth in this area might be causing these

rejections.

7.4.4 Visual comparison

A visual comparison between real and simulated dendrites (Figure 7.15) confirms that the

model is able to generate virtual dendrites that show some of the defining features of pyrami-

dal basal dendritic trees, e.g., long terminal segments or more frequent bifurcations at closer

distances from the soma. 3D morphologies can be accessed (see Section 7.4.5) to further

98 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

Figure 7.15: Examples of real and virtual dendritic trees. The figure shows 2D projections
of real (top) and simulated (bottom) main trunks of basal dendrites from M2 pyramidal
neurons. Virtual dendrites are similar to the real ones and show some distinctive traits of
basal dendritic trees from pyramidal cells.

check this correspondence and allow for a qualitative validation of the simulated dendritic

trees.

7.4.5 Supplementary results

A website2 has been set up containing all the information about the experiments reported

in this chapter. The BNs learned for the different cortical areas (M2, S2 and V2L/TeA)

and the results of the statistical evaluation of the models are available. An analysis of the

stability of the network structures obtained by the learning algorithm and the study of the

sample size are included. The results of the tests performed to assess the quality of the real

and simulated data and to evaluate the multivariate KL test can also be accessed. Examples

of the 3D dendritic morphologies of real and virtual dendrites from the three areas can be

explored online using an applet based on CVAPP software [74]. The code has mainly been

developed using Matlab.

7.5 Conclusion

This chapter has presented a new reconstruction approach for the simulation of 3D dendritic

morphology. The methodology uses BNs to capture the interactions between the variables

in the problem domain. A complete set of evidence and construction variables is measured

from the dendrites, and a learning algorithm is applied to find the structure and estimate

the probability distributions included in the BNs. Then, a simulation algorithm is used to

build the virtual dendrites by sampling values from the BNs, and a thorough evaluation is

performed to show the model’s ability to generate realistic dendrites.

2Available at: http://www.dia.fi.upm.es/~concha/dendriticsimulation/

http://www.dia.fi.upm.es/~concha/dendriticsimulation/

7.5. CONCLUSION 99

This proposal has an important advantage over previous research because the relation-

ships between the variables in the model are found by directly mining the data. Therefore, it

is not necessary to previously specify all the interactions between the morphological features.

Instead, we have a computer algorithm find the model that best fits the data. Applying

machine learning algorithms to discover dependencies between parameters and simulate vir-

tual morphologies is useful when complete information on the structure of the problem is not

available. Since the model is learned from the data, the methodology can be applied to any

neuronal class without the need for any modification. We should note that the model pre-

sented here is implicitly conditioned by the centrifugal order of the segments. The datasets

are split during the data acquisition and preparation step. This means that different BNs

(different relationships and probability distributions) are learned for different orders. This is

a commonly used feature in the literature, e.g., see [17, 134, 145]. However, once the datasets

have been created, the BN learning process is completely data-driven.

Other reconstruction models either do not explicitly include relationships between vari-

ables, which is an overly simplistic approach, or include predefined relationships, e.g., see

[17, 145, 298, 334]. However, it is very difficult to find common relationships that apply to

every neuronal class, and, if this is possible, their validity would have to be checked every

time a new class is modeled. On the other hand, if a model has explicit relationships to

accurately represent a neuronal class, changes will have to be made to fit the model to other

classes that do not comply with those hypotheses. The methodology proposed here is gener-

ally applicable, whereas the models are data specific. Common interactions among neuronal

classes can be identified by looking for similarities between the different models, whereas

rare relationships could capture unique features in a given class. This approach addresses

knowledge extraction from the models in a more straightforward way.

Furthermore, although reconstructions of neurons from diverse classes are available online

in several public databases [23], the high tracing process heterogeneity between labs and

researchers can negatively affect the model’s behavior [20]. In our study, we have used data

from basal dendritic arbors of pyramidal cells from the same laboratory. Additionally, they

are fully reconstructed basal dendritic arbors, so they are particularly valuable for validating

simulated virtual neurons. On the other hand, segment diameter is commonly used in the

literature to determine segment length or branching probability, as it is highly correlated

with structural factors like the microtubule density [257]. Since measuring segment diameter

is prone to errors and noise [473], diameter values were not considered in the reconstruction

of the real neurons; and, consequently, have not been included in our simulation model. All

these factors will have to be taken into account when we study dendrites from other neuronal

classes traced in different labs.

Our model comprises four BNs that encode the relationships between the variables at

different levels of the dendritic tree. A number of stages have been described during neuron

development, and different parts might have different morphologies and be regulated by

different factors [144]. Making a distinction between segments at different centrifugal orders

is useful for identifying context-specific interactions. In fact, the BNs found for the different

100 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

levels are quite different (see Section 7.4.1). Bayesian multinets [213], a generalization of BNs

where different relationships can be considered depending on the values of some variables are

also worth investigating for this problem. These models can identify the changes in the

problem structure for different parts of the dendrites without the need for more than one

BN.

The analysis of the BNs showed some interesting results. Segment length is always related

to the branching probability, indicating a statistical difference between intermediate and

terminal segments [318, 495, 501]. In fact, some of the models in previous works separate

root, intermediate and terminal segments when modeling or evaluating segment length, e.g.,

see [17, 334, 491]. In our case, that distinction was inferred automatically from the data

by the learning algorithm and not predefined on the model. Segment orientation is mainly

controlled by parent segment and subbranch azimuth and inclination angles to successfully

capture dendritic tropism. Other relationships with subbranch measurements were found,

supporting the idea that host cell influence might be more important in neuron development

and neurite outgrowth than expected. It is important to keep in mind that the pattern of

dendritic arborization is the result of a complex interaction between intrinsic genetic programs

and external modulators, e.g., neurotransmitters or patterns of activity [29, 38, 92, 292, 515].

Thus, adding variables to model some environmental factors and checking the relationships

that are established with them will help to clarify this issue [491]. If relationships between

construction variables and subdendrite or subtree evidence variables still occur in the model

when environmental features are included, it will suggest that intrinsic factors are relevant

and cannot be ignored.

The results were fully evaluated to verify that the virtual dendrites were accurate. Uni-

variate and multivariate analyses were conducted to compare model variables and emergent

features. A statistical test using KL was designed based on a bootstrapping method to com-

pare both univariate and JPDs over the variables. Applying several statistical tests proved to

be useful because some of the mismatches were only detected by one method. The univariate

KL test was applied along with Kolmogorov-Smirnov test and Wilcoxon rank-sum test to

check if the values of the real and virtual dendrites came from the same distribution. On

the other hand, the multivariate KL test allows for a comparison of the JPD over all the

features at the same time. As far as we know, this is the first time that such a multivari-

ate test has been used to evaluate the JPD over a set of variables that describe dendritic

morphology. Usually, univariate statistical tests that compare each variable independently

are used [334, 491], or plots are visually inspected to evaluate bivariate or conditional den-

sities [144, 298]. More complex evaluation methods are still needed in order to accurately

compare dendritic morphology. Measures for quantifying dendritic branching patterns and

tree structures are rather simple and not very informative, although some efforts are being

made to propose such advanced measures, as in [255].

The analyses of the robustness of the network structures [200] and the minimum sample

size that guarantees that there is a high probability of the learned and the true distributions

being close to each other [197] confirmed the stability of the models (see Section 7.4.5).

7.5. CONCLUSION 101

Future work will focus on using BNs that can directly manage continuous features without

the need for discretization. Hybrid BNs, which include both discrete and continuous vari-

ables, usually impose some assumptions on the shape of the data, e.g., CLG networks (see

Section 3.3.1.3). However, our data may not fit any of these distributions, so non-parametric

alternatives will also be considered, e.g., mixtures of polynomials. Learning and simulating

from this kind of models are difficult and interesting tasks. Therefore, in Chapter 8 we pro-

pose a method for learning mixtures of polynomials from data that can be used in hybrid

BNs.

102 CHAPTER 7. BAYESIAN NETWORK MODELING OF BASAL DENDRITES

Chapter 8
Learning mixtures of polynomials

from data

8.1 Introduction

In real life problems, continuous data may not fit any standard parametric distribution.

Therefore, the assumption of a parametric shape might yield misleading conclusions or re-

sults. Non-parametric density estimation is used to avoid the parametric assumptions in

probabilistic modeling and reasoning [218, 462]. Non-parametric estimation techniques can

be classified in four categories [201]: histograms, orthogonal series, kernels and splines. His-

tograms are based on transforming the continuous data into discrete data. Discretization is

one of the most widely used approaches for data transformation, and a large number of dis-

cretization techniques have been proposed in the literature [208, 527]. However, important

information can be lost during the discretization process. A different approach approxi-

mates probability densities by an orthogonal series expansion using, e.g., Hermite, Fourier or

trigonometric orthonormal systems of functions. Their main drawback is that the resulting

estimate is frequently not a proper density (non-negative and integrating to one). Recently,

KDE has received a lot of attention because it provides a flexible and powerful tool for non-

parametric density estimation. However, KDE has to save and analyze the complete training

dataset to evaluate the density of each data point. Also, bandwidth selection for KDE can be

challenging and a lot of different approaches have been proposed for finding bandwidth values

that accurately model the data without overfitting [87, 283]. Finally, splines are piecewise

polynomial curves frequently used for approximating arbitrary functions.

Also, we saw in Section 3.3.1.3 that hybrid BNs pose a number of challenges regarding

the representation of conditional probability distributions, inference, learning from data, etc.

CLG networks model the variables using CLG distributions and impose some restrictions

on the network structure. However, the parametric assumption of Gaussian distributions in

CLG networks might not hold in real domains. Also, the constraints on the network structure

might limit their applicability in some problems.

103

104 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

Here, we focus on a family of related models including mixtures of truncated exponen-

tials (MTEs) [376], mixtures of polynomials (MoPs) [458] and mixtures of truncated basis

functions (MoTBFs) [315]. Given a continuous random variable X with a probability density

function fX(x), the goal is to find an approximation of fX(x) over a closed domain ΩX ⊂ R.

Additionally, the domain of approximation ΩX can be divided into subintervals, and fX(x) is

approximated (piecewise) in each subinterval. MoTBFs approximate fX(x) as a (piecewise)

linear combination of truncated basis functions. MTEs and MoPs are particular scenarios

of MoTBFs when using exponential or polynomial functions, respectively, as basis functions.

MoTBFs, MTEs and MoPs are closed under multiplication, addition and integration. There-

fore, exact probabilistic inference can be performed using the Shenoy-Shafer architecture

[457].

In this chapter, we present a method for learning MoP approximations of one-dimensional,

multidimensional and conditional probability densities directly from data. The proposed

method is based on a probability density estimation technique [540, 541] that uses basis spline

(B-spline) interpolation [441]. Then, MoPs are used as a non-parametric density estimation

technique in BNCs. We study the use of MoPs for density estimation in two of the best-known

BNCs analyzed in Section 3.4, i.e., the NB classifier [372] and the TAN classifier [199]. The

proposed BNCs using MoPs as a non-parametric density estimation technique are compared

to other BNCs using CLG networks [408], KDE [409] or discretization.

The research included in this chapter has been published in López-Cruz et al. [339, 343].

Chapter outline

The remainder of the chapter is organized as follows. Section 8.2 reviews the methods re-

ported in the literature for learning MoPs, MTEs and MoTBFs. Section 8.3 introduces

notation and definitions for MoPs. Section 8.4 details the proposed method for learning

MoP approximations of probability densities from data. Section 8.5 reports the experimental

evaluation of the proposed methods. Finally, Section 8.6 ends with some conclusions.

8.2 Related work

Different methods have been proposed for approximating with MTEs. Cobb et al. [93] pro-

vided MTE approximations of seven standard parametric probability density functions. Rumı́

et al. [435] proposed an iterative least squares algorithm for learning MTE approximations

of one-dimensional and conditional probability densities from data. This approach used ex-

ponential regression and empirical histograms for density estimation. Romero et al. [432]

enhanced the algorithm by applying a Gaussian kernel smoothing of the probability densi-

ties obtained with the empirical histograms. Langseth et al. [314] provided a ML estimation

approach for MTE approximations.

Regarding MoTBFs, Langseth et al. [315] proposed a method for finding approximations

of one-dimensional and conditional densities by minimizing the KL from the MoTBF to the

8.3. MIXTURES OF POLYNOMIALS 105

true distribution. Recently, the KL-based approach was combined with KDE techniques to

approximate MoTBFs from data [316].

Polynomial approximation and interpolation techniques have been used to obtain MoPs.

Shenoy and West [458] found MoP approximations of parametric probability density func-

tions by computing the TSE around the middle point of each subinterval in the MoP. The

mathematical expression of the probability density fX(x) needs to be known for comput-

ing the TSE. However, real data might not fit any known parametric density, so the TSE

cannot be used in practice. Also, TSE cannot ensure that MoP approximations are valid

densities, i.e., they are continuous, non-negative and integrate to one. Later, Shenoy [456]

proposed estimating MoPs using the LIPs over the Chebyshev points defined in each subinter-

val. However, the true probability densities of the Chebyshev points in each subinterval need

to be known or estimated beforehand (e.g., using empirical histograms or KDE techniques).

LIPs can ensure non-negativity by increasing the order of the polynomials, and continuity

by putting interpolation points at the limits of the intervals. However, it cannot ensure that

the resulting MoP integrates to one.

Learning approximations of conditional densities has only been given limited attention

[313, 316]. The general approach shared by existing methods for learning conditional densities

is that the conditioning variables are discretized, and a one-dimensional approximation of the

density of the conditional variable is found for each combination of the (discretized) values

of the conditioning variables. Thus, the estimation of a conditional density reduces to the

estimation of a collection of marginal densities, where the correlation between the variable

and the conditioning variables is captured by the discretization procedure.

Regarding the use of the proposed methods as a non-parametric density estimation tech-

nique, BNCs have traditionally dealt with problems where the predictive features are discrete.

Pérez et al. [408] studied hybrid BNCs with both continuous and discrete predictive features

using CLG-based BNCs. Later, they proposed a non-parametric alternative by using KDE

in BNCs [409]. BNCs using MTEs have been studied in [188, 192].

8.3 Mixtures of polynomials

Let X be a one-dimensional continuous random variable with probability density fX(x).

Shenoy and West [458] defined a one-dimensional MoP approximation of fX(x) over a closed

domain ΩX = [ǫX , ξX] ⊂ R as an LX -piece dX -degree piecewise function of the form

ϕX(x) =

pollX (x) for x ∈ AlX , lX = 1, . . . , LX

0 otherwise,
(8.1)

where pollX (x) = b0,lX +b1,lXx+b2,lXx
2+ · · ·+bdX ,lXx

dX is a polynomial function with degree

dX (and order rX = dX + 1), {b0,lX , . . . , bdX ,lX} are constants and A1, . . . , ALX
are disjoint

intervals in ΩX , which do not depend on x with ΩX = ∪LX

lX=1AlX , Ai ∩Aj = ∅, i 6= j.

Given a vector of n random variables X = (X1, . . . , Xn) and an approximation domain

106 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

ΩX = ΩX1 ×· · ·×ΩXn , Shenoy and West [458] defined an n-dimensional MoP as the product

of one-dimensional MoPs as defined in (8.1):

ϕX(x) =
n∏

i=1

ϕXi
(xi). (8.2)

We should note that the product in Equation (8.2) assumes that the variables of the muldimen-

sional MoP are independent. MoPs are closed under multiplication, integration, differentia-

tion and addition. Therefore, the Shenoy-Shafer architecture [457] can be used to perform

exact inference in the associated hybrid BN.

8.4 Learning mixtures of polynomials using B-spline interpo-

lation

In this section we detail a method for learning MoP approximations of one-dimensional, mul-

tidimensional and conditional probability densities from data. The proposal does not assume

any prior knowledge about the true density underlying the data, as opposed to previously

proposed methods such as TSE or LIPs. Also, it ensures that the resulting MoP approxi-

mation is continuous, non-negative and integrates to one. Finally, it provides ML estimators

of some of the parameters in the approximation. The BIC is used as a score for finding

appropriate values for the other parameters in a principled way. Section 8.4.1 introduces

B-spline interpolation. Section 8.4.2 studies MoP approximations of one-dimensional proba-

bility densities. Section 8.4.3 extends the proposed approach to multidimensional densities.

Section 8.4.4 proposes two methods for learning MoP approximations of conditional densi-

ties. Section 8.4.5 addresses the model selection problem for finding appropriate values for

the order and the number of intervals of a MoP.

8.4.1 B-spline interpolation

B-splines or basis splines [441] are polynomial curves that form a basis for the space of

piecewise polynomial functions over a closed domain ΩX = [ǫX , ξX] ⊂ R [166]. Therefore,

any piecewise polynomial function can be written as a linear combination of B-splines. Zong

[540] proposed a method for finding B-spline approximations of one-dimensional and two-

dimensional probability density functions from data.

Given a non-decreasing knot sequence of LX+1 real numbers δX = {aX,0, aX,1, . . . , aX,LX
}

in the approximation domain ΩX = [ǫX , ξX] with aX,i−1 < aX,i, ǫX = aX,0 and ξX = aX,LX
,

one can define MX = LX + rX − 1 different B-splines with order rX spanning the whole

8.4. LEARNING MIXTURES OF POLYNOMIALS USING B-SPLINES 107

domain ΩX . The jXth B-spline BrX
X,jX

(x), jX = 1, . . . ,MX is written as

BrX
X,jX

(x) = (aX,jX − aX,jX−rX)H(x− aX,jX−rX)×
rX∑

t=0

(aX,jX−rX+t − x)rX−1H(aX,jX−rX+t − x)
w′
jX−rX

(aX,jX−rX+t)
, x ∈ ΩX , (8.3)

where w′
jX−rX

(x) is the first derivative of wjX−rX (x) =
∏rX

u=0(x − aX,jX−rX+u) and H(x) is

the Heaviside function

H(x) =

1 x ≥ 0,

0 x < 0.

A recursive definition of B-splines and an efficient and well conditioned evaluation algorithm

are available, e.g., in [114]. B-splines have a number of interesting properties for learning MoP

approximations of probability densities, e.g., BrX
X,jX

(x) is right-side continuous, differentiable,

positive in and zero outside (aX,jX , aX,jX−rX) [419]. B-splines form a basis in the space of

piecewise polynomials and MoPs are piecewise polynomials. Therefore, every MoP can be

written as a linear combination of B-splines. Also, given a continuous function fX(x) defined

in a closed domain ΩX = [ǫX , ξX] ⊂ R, the Stone-Weierstrass approximation theorem [476]

states that there is a polynomial function polX(x) that uniformly converges to fX(x) with

an error less than ζ, i.e., there is a polynomial function polX(x) so that supx∈ΩX
|fX(x) −

polX(x)| < ζ.

When the points in the knot sequence δX are equally spaced, the B-splines are called

uniform. A B-spline BrX
X,jX

(x) can be written as a MoP function (Equation (8.1)) with LX

pieces, where each piece pollX (x) is defined as the expansion of Equation (8.3) in the interval

AlX = [aX,lX−1, aX,lX), lX = 1, . . . , LX . Figure 8.1 shows ten uniform B-splines defined in

ΩX = [0, 10] for orders (a) rX = 3 and (b) rX = 4. With the exception of the B-splines in

the limits of ΩX , we find that each B-spline is non-zero in rX intervals and zero in the rest.

Also, for each interval AlX , we find rX non-zero B-splines.

8.4.2 Learning one-dimensional mixtures of polynomials

Zong [540] proposed using B-spline interpolation to find an approximation of the density

fX(x) as a linear combination of MX = LX + rX − 1 B-splines

ϕX(x ; α) =

MX∑

jX=1

αjXB
rX
X,jX

(x), x ∈ ΩX , (8.4)

where α = (α1, . . . , αMX
) are the mixing coefficients and BrX

X,jX
(x), jX = 1, . . . ,MX are B-

splines with order rX (degree dX = rX − 1) as defined in Equation (8.3). MoPs are closed

under multiplication and addition. Thus, the linear combination of MX B-splines with order

108 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

X

(a) B-splines with rX = 3

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

X

(b) B-splines with rX = 4

Figure 8.1: Ten uniform B-splines defined in the domain ΩX = [0, 10]. Each B-spline is shown
in a different color. The vertical dashed lines show the knot sequence δ = (a0, . . . , aLX

), where
LX =MX − rX + 1 and MX = 10 B-splines.

rX (Equation (8.4)) yields a MoP function with LX pieces, where each piece pollX (x) is a

polynomial with order rX defined in the interval AlX : pollX (x) =
∑MX

jX=1 αjXB
rX
X,jX

(x), ∀x ∈
AlX = [aX,lX−1, aX,lX).

Therefore, four elements need to be specified to define a MoP using B-spline interpolation:

the order (rX), the number of intervals/pieces (LX), the knot sequence (δX) and the mixing

coefficients (α). We used uniform B-splines so the intervals AlX have an equal width of

aX,lX − aX,lX−1 = ξX−ǫX
LX

, and δX is easily found. The values of the order (rX) and the

number of intervals (LX) of the MoP were found by testing different values and selecting

the ones with the highest BIC score (see Section 8.4.5). Zong [540] derived an iterative

procedure for computing the ML estimators of the mixing coefficients, α̂, in Equation (8.4).

To ensure that the resulting linear combination of B-splines is a valid density (continuous,

non-negative and integrating to one), the optimization procedure introduces two constraints:∑MX

jX=1 αjX cjX = 1 and αjX ≥ 0, jX = 1, . . . ,MX , where

cjX =

∫ aX,jX

aX,jX−rX

BrX
X,jX

(x)dx =
aX,jX − aX,jX−rX

rX
.

Given a dataset DX = {x1, . . . , xN} with N observations of variable X, the ML estimates

of the mixing coefficients are computed using the formula:

α̂
(q)
jX

=
1

NcjX

∑

x∈DX

α̂
(q−1)
jX

BrX
X,jX

(x)

ϕX

(
x; α̂(q−1)

) , jX = 1, . . . ,MX , (8.5)

where q is the iteration number in the optimization process. Zong showed that Equation (8.5)

yields the only maximum of the log-likelihood ℓ(DX |ϕX(x;α)) (Equation (3.3)) of DX given

the approximation ϕX(x;α) (Equation (8.4)). The initial values α̂
(0)
jX

are set to 1/
∑MX

jX=1 cjX .

The relative change in the log-likelihood of DX given ϕX

(
x; α̂(q)

)
is used as a stopping crite-

8.4. LEARNING MIXTURES OF POLYNOMIALS USING B-SPLINES 109

rion, i.e., Equation (8.5) iterates until
∣∣∣ ℓ(q)−ℓ(q−1)

ℓ(q)

∣∣∣ < e, where ℓ(q) = ℓ
(
DX |ϕX(x; α̂(q)

)
is the

log-likelihood at iteration q. We used e = 10−6 in our experiments. The computational com-

plexity of this optimization process is O(MXNqmax), where qmax is the number of iterations

of Equation (8.5) performed until the optimization converges. Algorithm 8.1 summarizes the

whole process for obtaining a MoP approximation of a one-dimensional probability density

function using a dataset.

Algorithm 8.1 (Learning a MoP approximation of a one-dimensional probability

density from data)

Inputs:

DX : A dataset with N observations DX = {x1, . . . , xN}

LX : The number of pieces of the MoP

rX : The order of the polynomials

Output: An LX-piece (rX − 1)-degree MoP approximation ϕX(x; α̂) of the probability density

underlying the dataset DX

Steps:

1. Compute the domain of the approximation ΩX = [ǫX , ξX] , where the limits of the

domain are defined as ǫX = min {x1, . . . , xN} and ξX = max{x1, . . . , xN}.

2. Compute the knot sequence δX = {aX,0, aX,1, . . . , aX,LX
} and define the intervals AlX =

[aX,lX−1, aX,lX), lX = 1, . . . , LX .

3. Apply Equation (8.3) to build the MX = LX + rX − 1 B-splines BrX
X,jX

(x).

4. Apply Equation (8.5) iteratively to compute the ML estimators of the mixing coefficients

α̂.

5. Compute the polynomials pollX (x) from Equation (8.1) as the linear combination of the

B-splines defined for each interval AlX , and build the MoP.

8.4.3 Learning multidimensional mixtures of polynomials

The approach in Section 8.4.2 can be intuitively extended to learn MoP approximations of

multidimensional joint probability densities. Zong and Lam [541] and Zong [540] studied

B-spline approximations of two-dimensional joint probability density functions. Here, we

extend their work to general n-dimensional joint probability density functions. Given a

vector of n random variables X = (X1, . . . , Xn), we can approximate the joint probability

density function fX(x) with a multidimensional linear combination of B-splines:

ϕX(x;α) =
∑

jX1
=1,...,MX1

...
jXn=1,...,MXn

αjX1
,...,jXn

n∏

i=1

B
rXi

Xi,jXi
(xi), x ∈ ΩX, (8.6)

110 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

0

2

4

6 0

1.5

3

0

0.5

1

X
2

X
1

(a) Two-dimensional ap-
proximation by a linear
combination of the prod-
uct of one-dimensional B-
splines

0 1 2 3 4 5 6
0

0.5

1

X
1

(b) One-dimensional B-
splines for X1 with rX1

=
3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

X
2

(c) One-dimensional B-
splines for X2 with rX2

=
4

Figure 8.2: (a) Two-dimensional B-splines defined as the product of one-dimensional B-
splines. The domain of the approximation is ΩX = [0, 6]× [0, 3]. Five B-splines are used for
each dimension (MX1 = MX2 = 5). Different orders are used for dimensions X1 (rX1 = 3)
and X2 (rX2 = 4). Therefore, the number of intervals for each dimension is different, i.e.,
LX1 = 3 and LX2 = 2. The dashed lines show the two-dimensional subintervals (rectangles
Al) in which the two-dimensional B-splines are defined. (b) One-dimensional B-splines for
X1. (c) One-dimensional B-splines for X2.

where rXi
is the order of the B-splines for variable Xi, MXi

= LXi
+ rXi

− 1 is the number

of B-splines for variable Xi, LXi
is the number of intervals for variable Xi, and αjX1

,...,jXn

is the mixing coefficient for the combination of B-splines given by the indices jX1 , . . . , jXn .

Figure 8.2(a) shows an example of two-dimensional B-splines defined as a linear combination

of the product of one-dimensional B-splines as in Equation (8.6). The corresponding one-

dimensional B-splines are shown in Figures 8.2(b) and (c). As in the one-dimensional scenario,

each B-spline B
rXi

Xi,jXi
(xi) can be written as a MoP, and each product of one-dimensional

B-splines in Equation (8.6) yields a multidimensional MoP as defined in Equation (8.2).

However, as opposed to Equation (8.2), the multidimensional MoP ϕX(x;α) in Equation (8.6)

does not assume that the variables X1, . . . , Xn are independent. The dimensions of the final

MoP are related through the mixing coefficients αjX1
,...,jXn

, one for each combination of

B-splines.

As in the one-dimensional scenario, we have to specify the number of intervals for each di-

mension (LX1 , . . . , LXn), the order of the polynomials for each dimension (rX1 , . . . , rXn), the

knot sequence (δX) and the mixing coefficients (α) in order to completely define a multidimen-

sional MoP. Here, we found the knot sequence as the Cartesian product of the knot sequences

of each dimension δX = δX1×· · ·×δXn , where δXi
are defined to yield equal-width intervals as

in the one-dimensional case (see Section 8.4.2). Similarly, the mixing coefficient vector has one

value for each combination of one-dimensional B-splines, i.e., α = (α1,...,1, . . . , αMX1
,...,MXn

).

The resulting MoP has
∏n

i=1 LXi
pieces, where each piece pollX1

,...,lXn
(x) is defined in an

n-dimensional hyperrectangle AlX1
,...,lXn

=
[
aX1,lX1

−1, aX1,lX1

]
× · · · ×

[
aXn,lXn−1, aXn,lXn

]
.

8.4. LEARNING MIXTURES OF POLYNOMIALS USING B-SPLINES 111

Given a dataset with N observations of n-dimensional vectors DX = {x1, . . . ,xN} ,xz =

(xz,1, . . . , xz,n) , z = 1, . . . , N , the ML estimates of the mixing coefficients α̂ in Equation (8.6)

are approached by the iteration formula

α̂
(q)
jX1

,...,jXn
=

1

NcjX1
,...,jXn

N∑

z=1

α̂
(q)
jX1

,...,jXn

∏n
i=1B

rXi

Xi,jXi
(xz,i)

ϕX

(
xz ; α̂(q−1)

) , (8.7)

subject to the constraints
∑

jX1
=1,...,MX1...

jXn=1,...,MXn

αjX1
,...,jXn

cjX1
,...,jXn

= 1 and αjX1
,...,jXn

≥ 0, where

jXi
= 1, . . . ,MXi

, i = 1, . . . , n and

cjX1
,...,jXn

=
n∏

i=1

∫ aXi,jXi

aXi,jXi
−rXi

B
rXi

Xi,jXi
(xi)dxi =

n∏

i=1

aXi,jXi
− aXi,jXi

−rXi

rXi

.

Algorithm 8.2 details the steps for learning a MoP approximation of a multidimensional joint

density from a dataset of observations.

Algorithm 8.2 (Learning a MoP approximation of a multidimensional joint prob-

ability density from data)

Inputs:

DX: A dataset with N observations DX = {x1, . . . ,xN}

LX1 , . . . , LXn: The number of intervals of the MoP for each dimension

rX1 , . . . , rXn: The order of the polynomials for each dimension

Output: A multidimensional MoP approximation ϕX(x; α̂) of the joint probability density

underlying the dataset DX

Steps:

1. Compute the domain of the approximation for each dimension ΩXi
= [ǫXi

, ξXi
], i =

1, . . . , n where ǫXi
= min{x1,i, . . . , xN,i} and ξXi

= max{x1,i, . . . , xN,i}.

2. Compute the multidimensional domain of the approximation ΩX = ΩX1 × · · · × ΩXn.

3. Compute the knot sequence for each dimension δXi
= {aXi,0, aXi,1, . . . , aXi,LXi

} and

define the hyperrectangles AlX1
,...,lXn

=
[
aX1,lX1

−1, aX1,lX1

]
× · · · ×

[
aXn,lXn−1, aXn,lXn

]

for each piece.

4. Apply Equation (8.3) to build the MXi
= LXi

+ rXi
− 1 B-splines B

rXi

Xi,jXi
(xi) for each

dimension i = 1, . . . , n.

5. Apply Equation (8.7) to compute the ML estimators of the mixing coefficients α̂.

6. Compute the polynomials pollX1
,...,lXn

(x) from Equation (8.2) as the linear combination

of the B-splines in Equation (8.6) and build the MoP.

112 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

8.4.4 Learning conditional mixtures of polynomials

This section addresses the problem of learning MoPs of conditional densities from data.

Following the terminology used for BNs, we consider the conditional random variable X as

the child variable and the vector of conditioning random variables Y = (Y1, . . . , Yn) as the

parent variables. Given a sample DX,Y = {(xj ,yj)}, j = 1, . . . , N from the joint density

of (X,Y), the aim is to learn a MoP approximation ϕX|Y(x|y) of the conditional density

fX|Y(x|y) of X|Y from DX,Y. We propose two methods for learning a MoP approximation

of the conditional density of X|Y from data. Both approaches are based on learning MoP

approximations of the joint density and the marginal density of the conditioning variables,

but they differ as to how the MoP approximation of the quotient of the two densities is

found. First, the method proposed in Section 8.4.4.1 is based on obtaining a sample from the

conditional density of X|Y and learning a conditional MoP from it. Second, Section 8.4.4.2

reports a method based on multidimensional polynomial interpolation of the estimated values

of the conditional density of X|Y.

Our approach differs from previous methods in several ways. As opposed to [315, 456, 458],

we learn conditional MoPs directly from data without any parametric assumptions. Also, we

do not rely on a discretization of the conditioning variables to capture the correlation among

the variables [313, 316]. On the other hand, our conditional MoPs are not proper conditional

densities, hence posterior distributions established during inference have to be normalized so

that they integrate to 1.

8.4.4.1 Learning conditional MoPs using sampling

The proposed method is based on first obtaining a sample from the conditional density of

X|Y and then learning a conditional MoP density from the sampled values. Algorithm 8.3

shows the main steps of the procedure. First, we find a MoP representation of the joint den-

sity ϕX,Y(x,y) (step 1) using the B-spline interpolation approach (Algorithm 8.2). Second,

we obtain a MoP of the marginal density of the parents ϕY(y) by marginalization (step 2).

Next, we use a sampling algorithm to obtain a sample DX|Y from the conditional density of

X|Y (step 3), where the conditional density values are obtained by evaluating the quotient

ϕX,Y(x,y)/ϕY(y). More specifically, we have used a standard Metropolis-Hastings sampler

for the reported experimental results. For the sampling process we generate uniformly dis-

tributed values over ΩY for the parent variables Y, whereas the proposed distribution for

the child variable is a linear Gaussian distribution N (βTy, σ2), where β is an n-dimensional

vector with all components equal to 1/n. We used σ2 = 0.5 in our experiments. Next, we

find an (unnormalized) MoP approximation of the conditional density X|Y from DX|Y (step

4). Finally, we apply the partial normalization procedure proposed in [458] to obtain a MoP

approximation ϕX|Y(x|y) of the conditional density (steps 5 and 6). The complexity of the

algorithm is dominated by the complexity of the multidimensional MoP learning method

(Algorithm 8.2).

8.4. LEARNING MIXTURES OF POLYNOMIALS USING B-SPLINES 113

This method has some interesting properties. Algorithm 8.2 guarantees that the approxi-

mations are continuous, non-negative and integrate to one. Therefore, the conditional MoPs

obtained with Algorithm 8.3 are also continuous and non-negative. Continuity is not required

for inference in BNs, but it usually is a desirable property, e.g., for visualization purposes.

The algorithm provides ML estimates of the mixing coefficients of the linear combination

of B-splines when learning MoPs of the joint density ϕX,Y(x,y) and the marginal density

ϕY(y), hence the quotient ϕX,Y(x,y)/ϕY(y) corresponds to a ML model of the conditional

distribution. It should be noted, though, that this property is not shared by the final learned

model as the partial normalization (steps 5 and 6) does not ensure that the learned MoP is

a proper conditional density. Therefore, the MoP approximations of the posterior densities

should be normalized to integrate to 1. Note that the same orders rX , rY1 , . . . , rYn and num-

ber of intervals LX , LY1 , . . . , LYn are used for learning the MoP of the joint density ϕX,Y(x,y)

in step 1 and the unnormalized conditional MoP in step 4 ϕ
(u)
X|Y(x|y). This is an heuristic to

reduce the number of parameters to find and decrease the number of models to fit. However,

we should note that different orders and numbers of intervals could be considered in steps 1

and 4 without changing the outline of Algorithm 8.3.

Algorithm 8.3 (Learning conditional MoPs using sampling)

Inputs:

DX,Y: A training dataset DX,Y = {(xj ,yj)}, j = 1, . . . , N

rX , rY1 , . . . , rYn: The order of the MoP for each dimension

LX , LY1 , . . . , LYn: The number of intervals of the MoP for each dimension

Output: The MoP approximation ϕX|Y(x|y) of the conditional density of X|Y
Steps:

1. Learn a MoP ϕX,Y(x,y) of the joint density of (X,Y) from the dataset DX,Y using

polynomials with orders rX , rY1 , . . . , rYn and LX , LY1 , . . . , LYn pieces (Algorithm 8.2).

2. Marginalize out X from ϕX,Y(x,y) to yield a MoP ϕY(y) of the marginal density of

the parent variables Y:

ϕY(y) =

∫

ΩX

ϕX,Y(x,y)dx.

3. Use a Metropolis-Hastings algorithm to yield a sample DX|Y with M observations from

the conditional density ϕX,Y(x,y)/ϕY(y).

4. Learn an unnormalized conditional MoP ϕ
(u)
X|Y(x|y) from DX|Y using polynomials with

orders rX , rY1 , . . . , rYn and LX , LY1 , . . . , LYn pieces (Algorithm 8.2).

5. Compute the partial normalization constant:

c =

∫

ΩX

∫

ΩY

ϕY(y)ϕ
(u)
X|Y(x|y)dydx .

114 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

6. Find the partially normalized MoP of the conditional density:

ϕX|Y(x|y) = 1

c
ϕ
(u)
X|Y(x|y) .

8.4.4.2 Learning conditional MoPs using interpolation

The preliminary empirical results obtained with Algorithm 8.3 show that the sampling ap-

proach can produce good approximations (see Section 8.5.1.6). However, it is difficult to

control or obtain any guarantees about the quality of the approximation due to the partial

normalization.

This shortcoming has motivated an alternative method for learning a MoP approximation

of a conditional probability density forX|Y. The main steps of the procedure are summarized

in Algorithm 8.4. First, we find MoP approximations of both the joint density of (X,Y) and

the marginal density of Y in the same way as in Algorithm 8.3 (steps 1 and 2). Next, we

build the conditional MoP ϕX|Y(x|y) by finding, for each piece pollX ,lY1 ,...,lYn
(x,y) defined in

the hyperrectangle AlX ,lY1 ,...,lYn
, a multidimensional interpolation polynomial of the function

given by the quotient of the joint and the marginal densities ϕX,Y(x,y)/ϕY(y).

Algorithm 8.4 (Learning conditional MoPs using interpolation)

Inputs:

DX,Y: A training dataset DX,Y = {(xj ,yj)}, j = 1, . . . , N

rX , rY1 , . . . , rYn: The order of the MoP for each dimension

LX , LY1 , . . . , LYn: The number of intervals of the MoP for each dimension

Output: The MoP approximation ϕX|Y(x|y) of the conditional density of X|Y
Steps:

1. Learn a MoP ϕX,Y(x,y) of the joint density of (X,Y) from the dataset DX,Y using

polynomials with orders rX , rY1 , . . . , rYn and LX , LY1 , . . . , LYn pieces (Algorithm 8.2).

2. Marginalize out X from ϕX,Y(x,y) to yield a MoP ϕY(y) of the marginal density of

the parent variables Y:

ϕY(y) =

∫

ΩX

ϕX,Y(x,y)dx.

3. For piece pollX ,lY1 ,...,lYn
(x,y) in the conditional MoP ϕX|Y(x|y), defined in AlX ,lY1 ,...,lYn

with lX = 1, . . . , LX and lYi
= 1, . . . , LYi

, i = 1, . . . , n:

Find a multi-dimensional polynomial approximation pollX ,lY1 ,...,lYn
(x,y) of function

g(x,y) = ϕX,Y(x,y)/ϕY(y) using an interpolation method.

We consider two multidimensional interpolation methods, which can be used to obtain

the polynomials of the pieces pollX ,lY1 ,...,lYn
(x,y) in step 3 of Algorithm 8.4:

8.4. LEARNING MIXTURES OF POLYNOMIALS USING B-SPLINES 115

The multidimensional TSE around a point yields a polynomial approximation of any

differentiable function g. The quotient of any two functions is differentiable as long as

the two functions are also differentiable. In our scenario, polynomials are differentiable

functions and, thus, we can compute the TSE of the quotient of two polynomials.

Consequently, we can use multidimensional TSEs to find a polynomial approximation

pollX ,lY1 ,...,lYn
(x,y) of g(x,y) = ϕX,Y(x,y)/ϕY(y) for each piece. We computed these

TSEs of g(x,y) around the midpoint of the hyperrectangle AlX ,lY1 ,...,lYn
.

LIPs can approximate any function g. Before finding the LIP, we need to evaluate

function g on a set of interpolation points. In the one dimensional scenario, the set of

Chebyshev points are frequently used as interpolation points [242]. However, finding

multidimensional LIPs is not a trivial task because it is difficult to find good interpo-

lation points in a multidimensional space. Some works have been recently proposed

in the two-dimensional scenario [73, 242]. To find a conditional MoP using LIPs, we

first find and evaluate the conditional density function g(x,y) = ϕX,Y(x,y)/ϕY(y)

on the set of interpolation points in AlX ,lY1 ,...,lYn
. Next, we compute the polynomial

pollX ,lY1 ,...,lYn
(x,y) for the piece as the LIP over the interpolation points defined in

AlX ,lY1 ,...,lYn
. Note that other approaches can also be used to evaluate the conditional

density g(x,y) on the set of interpolation points, e.g., kernel-based conditional estima-

tion methods [34, 116, 202].

Compared with Algorithm 8.3, there are some apparent (dis)advantages. First, the condi-

tional MoPs produced by Algorithm 8.4 are not necessarily continuous. Second, interpolation

methods cannot in general ensure non-negativity, although LIPs can be used to ensure it by

increasing the order of the polynomials. On the other hand, the learning method in Algo-

rithm 8.4 does not need a partial normalization step. Thus, if the polynomial approximations

are close to the conditional density ϕX,Y(x,y)/ϕY(y), then the conditional MoP using these

polynomial interpolations is expected to be close to normalized. As a result, we can more

directly control the quality of the approximation by varying the order of the polynomials and

the number of hyperrectangles.

8.4.5 Model selection

The number of pieces LX and the order of the polynomials rX have to be specified a priori in

Algorithm 8.1. Similarly, the parameters LXi
and rXi

have to be specified for each variable

Xi, i = 1, . . . , n in Algorithm 8.2. Also, the parameters LX , LY1 , . . . , LYn and rX , rY1 , . . . , rYn

have to be provided as inputs in Algorithms 8.3 and 8.4. Since the ML estimators of the

mixing coefficients, α̂, are computed in Equations (8.5) and (8.7), we can use a penalized

likelihood score to perform model selection in a principled way. Here, we used the BIC score

(Equation (3.4)) to find appropriate values for the order of the polynomials and the number

of pieces of the MoP. Given the knot sequence δX, the order rX1 , . . . , rXn of the B-splines and

the number of pieces LX1 , . . . , LXn , the only free parameters that need to be estimated for

approximating one-dimensional (Section 8.4.2) and multidimensional (Section 8.4.3) MoPs

116 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

are the mixing coefficients α of the linear combination of B-splines. Therefore, we used

the number of mixing coefficients as a measure of the dimension of the MoP when approx-

imating one-dimensional and multidimensional densities with Algorithms 8.1 and 8.2, i.e.,

dim(ϕX(x)) = (
∏n

i=1MXi
). For learning conditional MoPs (Section 8.4.4) we used the num-

ber of polynomial coefficients different from zero as a measure of the dimension of the MoP

dim(ϕX|Y(x|y)). In all our experiments, we selected the MoP approximation with the highest

BIC score.

8.5 Experiments

In this section, we report the results of the experiments to evaluate the proposed methods.

Section 8.5.1 includes the experiments related to MoP learning of probability densities from

data. Section 8.5.2 reports the results of the BNCs using MoPs as a non-parametric density

estimation technique. Section 8.5.3 shows a comparison of the evaluation time of MoPs vs.

KDE.

8.5.1 Experiments with mixtures of polynomials approximations

In this section we report the experiments on the MoP approximations of one-dimensional,

multidimensional and conditional probability densities from data.

8.5.1.1 Artificial datasets

We sampled datasets with different number of observations N from known densities with dif-

ferent shapes. The study included both known parametric probability densities and mixtures

of densities. Table 8.1 shows the name of the datasets, the respective probability distributions

and the domains of approximation.

8.5.1.2 Comparison measures

We used different measures to evaluate the quality of the MoPs learned from the datasets.

First, two measures are reported to analyze the goodness of fit of the MoPs to the datasets

from which they were learned:

The log-likelihood ℓ(DX|ϕX(x)) of the dataset DX given the MoP ϕX(x) (see Equa-

tion (3.3)). We computed the log-likelihood using both the training dataset and a test

dataset with the same size.

The BIC score BIC(DX, ϕX(x)) of the dataset DX given the MoP ϕX(x) (Equa-

tion (3.4)). We computed the BIC score using both the training dataset and a test

dataset with the same size.

Additionally, we report three measures for evaluating how close the MoP approximation

is to the true density which generated the training datasets (Table 8.1):

8.5. EXPERIMENTS 117

Table 8.1: Probability density functions used to sample artificial datasets and for learning
mixtures of polynomials

Name n Distribution Domain
One-dimensional probability densities

Gauss 1 N (0, 1) [−3, 3]
Exp 1 Exp [0, 3]
Chisq 1 χ2

3 [0, 8]
MixGauss 1 0.5N (0, 1) + 0.5N (4, 1) [−3, 7]
Mix1d 1 0.8χ2(3) + 0.2N (7, 1) [0, 10]

Multidimensional probability densities

Gauss2d 2 N
(
(0, 0) ,

(
1 0
0 1

))
[−3, 3]× [−3, 3]

Mix2d 2 0.7N
(
(5, 6) ,

(
0.5 0.3
0.3 0.5

))
[3, 8]× [4, 8]

+0.3N
(
(7, 6.5) ,

(
0.4 −0.2
−0.2 0.4

))

Mix3d 3 0.4N

(3, 5.5, 4) ,

1 0.5 0.3
0.5 0.5 0
0.3 0 1

 [2, 7]× [1, 7]× [0, 8]

+0.6N

(4, 4, 2) ,

1 0.75 −0.1
0.75 1.5 −0.2
−0.1 −0.2 2

Conditional probability densities

LinGauss 2 N
(
(0, 0) ,

(
2 1
1 1

))
corresponding to [−3, 3]× [−2, 2]

Y ∼ N (0, 1) and X|Y ∼ N (y, 1)

The Kullback-Leibler (KL) divergence [305] of the MoP ϕX(x) from the true density

fX(x):

KL(fX(x), ϕX(x)) =

∫

ΩX

fX(x) log
fX(x)

ϕX(x)
dx.

The mean squared error (MSE) between the MoP ϕX(x) and the true density fX(x):

MSE (fX(x), ϕX(x)) =

∫

ΩX

fX(x)(fX(x)− ϕX(x))2dx.

The maximum absolute error (MAE) between the MoP ϕX(x) and the true density

fX(x):

MAE (fX(x), ϕX(x)) = max
x∈ΩX

|fX(x)− ϕX(x)|.

The MoP ϕX(x) needs to be a proper density (non-negative and integrating to one in ΩX) to

compute the log-likelihood and the BIC scores. Similarly, both the MoP ϕX(x) and the true

118 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

density fX(x) need to be proper densities in the domain ΩX to compute the KL divergence.

MoPs using B-splines learned with Algorithms 8.1 and 8.2 are ensured to be non-negative

and integrate to one in ΩX (see Sections 8.4.2 and 8.4.3). Also, non-negative MoPs learned

using LIPs were considered and normalized to integrate to one in ΩX (see Section 8.5.1.3).

Finally, the true probability densities fX(x) also need to be normalized because a (small) part

of the density mass lays outside the domain of approximation ΩX. Thus, a normalization

constant T =
∫
ΩX

fX(x)dx was computed and the true density values fX(x) were normalized

by multiplying them by 1/T when computing KL, MSE and MAE.

The integrals in the KL divergence and the MSE were computed using an adaptive quadra-

ture integration procedure available in R [281, 422]. To avoid local maxima, the MAE was

computed from the density differences on 1000 equally-spaced points defined in the domain

ΩX. Then, the 50 points yielding the maximum values of |fX(x)− ϕX(x)| in the equally-

spaced grid were used as starting values of a non-linear optimization algorithm bounded to

the interval ΩX (nlminb function in R) to find the global maximum.

8.5.1.3 MoP approximation using Lagrange interpolating polynomials

The results were compared with the MoPs obtained by computing the LIP over the Chebyshev

points defined in each interval independently [456]. The density at the Chebyshev points

was estimated using KDE. Gaussian kernels with the normal scale bandwidth were computed

using the ks package [154]. We considered different values for the order rX and the number of

pieces LX of the MoP. Equal-width intervals AlX were assumed for each piece lX = 1, . . . , LX .

The BIC score (see Section 8.4.5) was used to select appropriate values for the order rX and

the number of pieces LX of the MoPs. Here, the number of polynomial coefficients different

from zero was used as a measure of the dimension of the model dim (ϕX(x)) in Equation (3.4).

We checked whether or not the MoP approximations learned with LIPs yielded negative

values. To check this situation, the values of ϕX(x) were computed at 1000 equally spaced

points in ΩX . Then, the points corresponding to local minima values of ϕX(x) were found.

These points were used as the starting points for a non-linear optimization procedure (nlminb

function in R) to find the global minimum υ = minx∈ΩX
ϕX(x). If the MoP yielded negative

values, the minimum value of the function was added to the MoP: ϕX(x) ← ϕX(x) − υ.

Then, the normalization constant was computed as T =
∫
ΩX

ϕX(x)dx and the MoP was

normalized by computing ϕX(x) ← 1
T ϕX(x). These two steps (finding the minimum value

and normalizing) were repeated until the final MoP ϕX(x) was non-negative. Thus, we

ensured that ϕX(x) learned with LIPs was non-negative and integrated to one in ΩX .

As opposed to the one-dimensional scenario, multidimensional LIPs are more challeng-

ing [210], although some approaches have been proposed for two-dimensional scenarios, e.g.,

see [50, 72, 242]. Additionally, estimating the densities at the interpolation nodes is more

difficult in multidimensional domains than in the one-dimensional scenario.

8.5. EXPERIMENTS 119

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

(a) Gauss

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

(b) Exp

D
en

si
ty

0 2 4 6 8

0.
00

0.
10

0.
20

0.
30

(c) Chisq

D
en

si
ty

−2 0 2 4 6

0.
00

0.
10

0.
20

(d) MixGauss

D
en

si
ty

0 2 4 6 8 10

0.
00

0.
10

0.
20

(e) Mix1d

Figure 8.3: One-dimensional MoP approximations learned from a training dataset of N =
1000 observations. The MoPs with the highest BIC score for the first training dataset learned
with Algorithm 8.1 (dashed lines) and using LIPs (thin solid lines) are shown. A thick solid
line represents the true density used to generate the training datasets. An equal-frequency
histogram of the training dataset is displayed. Crosses along the horizontal axis mark the
limits of the intervals for the MoPs learned with Algorithm 8.1, whereas circles mark the
intervals for the MoPs learned with LIPs.

8.5.1.4 Results for one-dimensional densities

We analyzed the behavior of Algorithm 8.1 used to build MoP approximations of probability

densities from data using artificial examples. For each one of the datasets in Table 8.1,

we sampled ten training sets and ten test sets with N = 50, 100, 500, 1000 observations

each. From each training dataset, we found a MoP approximation of the probability density

underlying the data using Algorithm 8.1. We considered different values for the order of the

120 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

polynomials rX = 2, . . . , 5 and the number of intervals/pieces LX = 1, . . . , 10.

Figure 8.3 shows the MoP approximations for each of the one-dimensional datasets in

Table 8.1. For the first repetition, the MoPs with the highest BIC score in the training dataset

with N = 1000 are shown. The MoPs learned with the proposed Algorithm 8.1 (dashed lines)

are continuous, non-negative and integrate to one. Equation (8.8) is an example of the MoP

with the highest BIC score learned with Algorithm 8.1 for the Mix1d dataset (LX = 5 and

rX = 3) in Figure 8.3(e):

ϕX(x) =

0.1006 + 0.1266x− 0.0451x2 0 ≤ x ≤ 2,

0.3038− 0.0766x+ 0.0057x2 2 ≤ x ≤ 4,

0.4843− 0.1668x+ 0.0169x2 4 ≤ x ≤ 6,

−1.0028 + 0.3289x− 0.0244x2 6 ≤ x ≤ 8,

1.6187− 0.3265x+ 0.0166x2 8 ≤ x ≤ 10.

(8.8)

It is easy to check that the MoP in Equation (8.8) is continuous for x = 2, 4, 6, 8 and that

the integral of ϕX(x) in ΩX = [0, 10] is 1.

Table 8.2 shows the numerical comparison of the MoPs learned using B-splines and LIPs

for the one-dimensional datasets in Table 8.1. For each of the ten experiments, we selected

the MoP with the highest BIC score in training (see Section 8.4.5). Table 8.2 reports the

mean of the ten values for the number of pieces (LX), order of the polynomials (rX), number

of free parameters to be estimated from data (#par), KL, MSE and MAE. The best results

are highlighted in bold. We performed a non-parametric Wilcoxon paired signed-rank test to

check whether or not the differences between the two methods, B-splines and LIPs, in the ten

repetitions were significant. Statistically significant differences between the two methods at a

significance level α = 0.05 are marked with an asterisk. We can see that MoPs learned using

B-spline interpolation with Algorithm 8.1 clearly outperformed MoPs learned using LIPs

in datasets with high sample sizes (N = 500, 1000), whereas the two methods performed

similarly in datasets with fewer observations (N = 50, 100). According to the KL and MSE,

MoPs learned with LIPs did not significantly outperform MoPs learned with B-splines in any

experiment. On the other hand, MoPs learned with B-splines frequently outperformed MoPs

learned with LIPs, specially in datasets with higher sample sizes (N = 500, 1000). Regarding

the MAE values, MoPs learned with LIPs significantly outperformed MoPs learned with B-

splines in only one scenario (Mix1d dataset with N = 50). On the other hand, MoPs learned

with B-splines significantly outperformed MoPs learned with LIPs according to MAE in

three scenarios (Gauss dataset with N = 500, 1000 and MixGauss dataset with N = 1000).

In general, MoPs learned with B-splines had a lower order rX than MoPs learned with LIPs,

whereas MoPs learned with LIPs had less pieces LX than MoPs learned with B-splines.

MoPs learned with B-splines frequently outperformed MoPs learned with LIPs regarding the

number of free parameters that need to be estimated from data (#par). MoPs learned with

LIPs did not significantly outperform MoPs learned with B-splines in any scenario according

to #par.

8
.5
.

E
X
P
E
R
IM

E
N
T
S

121
Table 8.2: Comparison of MoPs learned from data using B-splines (Algorithm 8.1) or LIPs (Section 8.5.1.3). For each of the ten
repetitions, the MoP with the highest BIC score in training was selected, and the mean values of the performance measures were
reported: order of the polynomials (rX), number of pieces (LX), number of free parameters to estimate (#par), Kullback-Leibler
divergence (KL), mean squared error (MSE) and maximum absolute error (MAE). The best (lowest) value for each dataset, training
size and performance measure is shown in bold. Statistically significant results of one method with respect to the other one at α = 0.05
are marked with an asterisk.

B-splines LIP
Gauss Exp Chisq MixGauss Mix1d Gauss Exp Chisq MixGauss Mix1d

N = 50

rX 2.1* 2.3* 2 2.6 2 3.8 3.5 2.3 3 2

LX 2.7 1.1 1 2.9 1.2 1.4* 1.2 1 1.3 1

#par 3.8 2.4* 2 4.5 2.2 4.6 3.9 2.3 3.8 2

KL 0.2303 0.0342 0.0259* 0.1606 0.0434 0.0728 0.0555 0.0384 0.1205 0.0417

MSE 0.0045 0.0199 0.0010 0.0024 0.0008 0.0045 0.0148 0.0013 0.0028 0.0008

MAE 0.1064 0.3018 0.2461 0.0922 0.1889 0.1049 0.2564 0.2330 0.0880 0.1715*

N = 100

rX 2.3* 2.1* 2 2.4 2 3.9 3.4 2.1 3 2

LX 3.6 1.5 1.4 4.1 1.2 1.5* 1.1 1.1 2.1* 1

#par 4.9 2.6* 2.4 5.5 2.2 5.3 3.6 2.3 6 2

KL 0.0359 0.0265* 0.0311 0.0623 0.0410 0.0356 0.0551 0.0301 0.0715 0.0416
MSE 0.0019 0.0159 0.0013 0.0015 0.0008 0.0019 0.0186 0.0012 0.0018 0.0008

MAE 0.0880 0.2670 0.2368 0.0707 0.1909 0.0948 0.3041 0.2397 0.0821 0.1825

N = 500

rX 2.8 2.7 2.6 2.8* 2.9 3.5 3.4 3.1 3.8 2.4

LX 3.2 1.3 1.4 5.6 2.9 1.8* 1.9 1 2.7* 1.4*

#par 5* 3* 3 7.4* 4.8 6 5.3 3.1 9.8 3.6

KL 0.0069* 0.0041* 0.0190 0.0078* 0.0205 0.0148 0.0131 0.0215 0.0201 0.0305
MSE 0.0003* 0.0030 0.0009 0.0002 0.0004 0.0008 0.0039 0.0009 0.0005 0.0006
MAE 0.0336* 0.1434 0.2079 0.0277 0.1389 0.0552 0.1486 0.1926 0.0401 0.1657

N = 1000

rX 2.9 2.8* 3.6 2.9* 3.3 3.3 4.2 4 3.8 3.3

LX 3.2 1.6 2.7 5.2 4.2 2.2* 1.5 1* 3.1* 2.5*

#par 5.1* 3.4* 5.3 7.1* 6.5* 7.2 5.6 4 11.1 7.7
KL 0.0043* 0.0031* 0.0071* 0.0047* 0.0068* 0.0087 0.0074 0.0151 0.0115 0.0120
MSE 0.0003* 0.0022 0.0003* 0.0001* 0.0002* 0.0006 0.0018 0.0006 0.0002 0.0004
MAE 0.0311* 0.1199 0.1551 0.0188* 0.0982 0.0511 0.0927 0.1724 0.0288 0.0995

12
2

C
H
A
P
T
E
R

8
.

L
E
A
R
N
IN

G
M
IX

T
U
R
E
S
O
F
P
O
L
Y
N
O
M
IA

L
S
F
R
O
M

D
A
T
A

Table 8.3: Goodness of fit of MoPs learned from data using B-splines (Algorithm 8.1) or LIPs (Section 8.5.1.3). For each of the ten
repetitions, the MoP with the highest BIC score in training was selected. The mean of the BIC and the log-likelihood values for both
the training and the test datasets were reported. The best (highest) value for each dataset, training size and performance measure is
shown in bold. Statistically significant results of one method with respect to the other one at α = 0.05 are marked with an asterisk.

B-splines LIP
Gauss Exp Chisq MixGauss Mix1d Gauss Exp Chisq MixGauss Mix1d

N = 50

ℓ training -74.24 -92.92 -129.81 -105.46* -121.86* -75.23 -56.92* -129.56 -108.87 -122.43
BIC training -81.68* -97.61 -133.72 -114.26* -126.17* -84.23 -64.54* -134.06 -116.30 -126.34
ℓ test -79.58 -93.26 -129.87 -114.77 -123.34 -77.70 -58.95* -129.95 -110.73 -122.69

BIC test -87.01 -97.96 -133.79 -123.57 -127.64 -86.70 -66.58* -134.44 -118.17 -126.60

N = 100

ℓ training -140.39* -202.99 -298.30* -204.59* -238.32* -141.46 -107.77* -298.90 -207.82 -238.96
BIC training -151.68* -208.98 -303.82* -217.26* -243.38* -153.67 -116.06* -304.19 -221.64 -243.56
ℓ test -146.34 -204.18 -301.20 -209.87 -239.94 -146.66 -111.99* -300.92 -211.39 -239.51

BIC test -157.62 -210.16 -306.73 -222.54* -245.01 -158.87 -120.28* -306.22 -225.20 -244.12

N = 500

ℓ training -742.09* -936.48 -1430.24* -1034.89* -1251.60* -744.45 -505.79* -1431.03 -1039.73 -1259.12
BIC training -757.62* -945.80 -1439.56* -1057.88* -1266.51* -763.09 -522.26* -1440.67 -1070.18 -1270.31
ℓ test -746.29 -936.57 -1435.59 -1039.93* -1259.30* -748.06 -511.83* -1436.60 -1049.00 -1265.48
BIC test -761.82* -945.89 -1444.91 -1062.93* -1274.22 -766.70 -528.30* -1446.23 -1079.46 -1276.67

N = 1000

ℓ training -1465.49 -1894.64 -2820.43* -2086.03* -2432.05 -1467.97 -1026.93* -2828.60 -2089.98 -2435.64
BIC training -1483.10* -1906.39 -2838.74* -2110.55* -2454.50* -1492.84 -1046.27* -2842.42 -2128.32 -2462.23
ℓ test -1469.70* -1896.43 -2824.97* -2091.79 -2435.90* -1473.61 -1029.49* -2832.55 -2099.55 -2440.96
BIC test -1487.32* -1908.17 -2843.28* -2116.31* -2458.35* -1498.47 -1048.84* -2846.36 -2137.89 -2467.56

8.5. EXPERIMENTS 123

Additionally, Table 8.3 shows the mean log-likelihood and mean BIC values in the train-

ing and the test datasets for both methods. The best results are highlighted in bold, and

statistically significant results according to a Wilcoxon signed-rank test are marked with an

asterisk. MoPs obtained using LIPs yielded significantly better log-likelihood and BIC scores

in training and test datasets for the Exp dataset. On the other hand, MoPs computed using

B-spline interpolation yielded significantly better results in the other four datasets. There

were few statistically significant differences between the two methods for datasets with small

sample sizes (N = 50, 100). MoPs learned with B-splines outperformed those learned with

LIPs more frequently in datasets with large sample sizes (N = 500, 1000).

Finally, we assessed the accuracy of the coefficients of the polynomial functions in the MoP

approximations learned with Algorithm 8.1. We considered the following one-dimensional

polynomial functions:

gX(x) = 2.25− 7.5x+ 7.5x2, 0 ≤ x ≤ 1,

and

hX(x) = 1.0746 + 0.8955x− 3.5821x2 + 2.6866x3, 0 ≤ x ≤ 1.

These two polynomial functions are non-negative and integrate to one in the domain ΩX =

[0, 1]. Therefore, they are valid densities in ΩX . We used an acceptance-rejection sam-

pling algorithm to generate datasets from gX(x) and hX(x) with different sample sizes

(N = 100, 1000, 10000, 100000, 1000000). We learned MoP approximations from the datasets

by applying Algorithm 8.1. We considered different values for the order rX = 2, . . . , 5 and

the number of intervals LX = 1, . . . , 10, and selected the MoP with the highest BIC score.

Ten independent repetitions were performed for each polynomial function (gX(x) and hX(x))

and each sample size N . Table 8.4 shows the mean and the standard deviation of the ab-

solute value of the difference between the coefficients bi of the true polynomials (gX(x) and

hX(x)) and the coefficients b̂i, i = 0, . . . , rX − 1 of the polynomial functions in the MoP

approximations. We observe that both the means and the standard deviations decrease as

we consider higher sample sizes N . This reduction is clearer for the coefficients of higher

order monomials bi, i > 1. These coefficients are the most important because they control

the shape of the polynomial functions. For instance, the MoP approximations computed for

the first repetition with N = 1,000,000 are

ϕg,X(x) =

2.2402− 7.4484x+ 7.4547x2 0 ≤ x ≤ 0.5,

2.2344− 7.4251x+ 7.4315x2 0.5 ≤ x ≤ 1,

for the gX(x) polynomial density, and

ϕh,X(x) = 1.0687 + 0.9352x− 3.5967x2 + 2.6505x3, 0 ≤ x ≤ 1,

for the hX(x) polynomial density. We observe that the selected MoP approximation ϕg,X(x)

124 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

Table 8.4: Accuracy of the estimates of the polynomial coefficients of the MoPs learned with
Algorithm 8.1. The table shows the mean and the standard deviation of the absolute value
of the difference between the true coefficients bi of the polynomials and the coefficients b̂i of
the MoP approximations learned from data. Each coefficient bi corresponds to the monomial
term xi−1, i = 1, . . . , rX in the polynomial.

N = 100 N = 1,000 N = 10,000 N = 100,000 N = 1,000,000

gX(x) = 2.25− 7.5x+ 7.5x2, 0 ≤ x ≤ 1

|b0 − b̂0| 1.8962 ± 1.7411 0.5547 ± 1.1966 0.0636 ± 0.0618 0.0181 ± 0.0105 0.011 ± 0.0059

|b1 − b̂1| 6.7028 ± 3.8739 1.8805 ± 3.0029 0.2435 ± 0.1909 0.0767 ± 0.0526 0.0586 ± 0.0238

|b2 − b̂2| 6.4774 ± 2.3707 1.8563 ± 2.4548 0.2321 ± 0.1444 0.0714 ± 0.0547 0.0552 ± 0.0242

hX(x) = 1.0746 + 0.8955x− 3.5821x2 + 2.6866x3, 0 ≤ x ≤ 1

|b0 − b̂0| 0.0653 ± 0.0482 0.3546 ± 0.7428 0.3612 ± 0.4977 0.2747 ± 0.4189 0.0141 ± 0.0039

|b1 − b̂1| 1.1466 ± 0.1293 1.3046 ± 0.6223 1.6654 ± 2.0572 1.3534 ± 1.7715 0.0815 ± 0.0263

|b2 − b̂2| 3.5821 ± 0.0000 3.5821 ± 0.0000 2.9182 ± 2.4737 2.3931 ± 2.3841 0.0689 ± 0.0544

|b3 − b̂3| 2.6866 ± 0.0000 2.6866 ± 0.0000 2.007 ± 1.0685 1.5805 ± 1.3263 0.0353 ± 0.0143

for the polynomial density gX(x) has two pieces (LX = 2) instead of only one as it would be

expected. However, both pieces have very similar coefficients to the true polynomial gX(x).

We could use this kind of comparisons to simplify the MoP approximations obtained with

Algorithm 8.1. On the other hand, the MoP approximation ϕh,X(x) has only one piece, and

its polynomial coefficients are very close to the coefficients of the true polynomial hX(x). We

empirically conclude that the proposed Algorithm 8.1 asymptotically converges to the true

probability density functions for these two polynomial densities, gX(x) and hX(x). Therefore,

Algorithm 8.1 is able to retrieve these true polynomial models from the data.

8.5.1.5 Results for multidimensional densities

We analyzed the behavior of Algorithm 8.2 for learning MoP approximations of two-di-

mensional densities from data (see Table 8.1). For each probability density, we sampled

ten datasets for each sample size N = 50, 100, 500, 1000. We only considered MoPs that

had the same order and number of intervals for each dimension, i.e., rX1 = rX2 = rX

and LX1 = LX2 = LX . The values considered for these parameters were rX = 2, . . . , 5 and

LX = 1, . . . , 10. For each combination of values of these parameters, we applied Algorithm 8.2

to learn a MoP approximation of the two-dimensional density from each of the ten training

sets. As in the one-dimensional scenario, the multidimensional TSE cannot be used unless

the mathematical expression of the true multidimensional joint density is known, so it is

not applicable to learning directly from data. Additionally, estimating the densities at the

interpolation nodes for LIPs is more difficult in multidimensional domains than in the one-

dimensional scenario.

Figure 8.4 shows contour plots of the MoP approximations with the highest BIC score of

one of the training sets and the respective true densities. Table 8.5 reports the values of the

performance measures for the two-dimensional MoP approximations learned using B-splines.

For the Gauss2d dataset, the proposed method yielded good results even with very small

8.5. EXPERIMENTS 125

0.00

0.05

0.10

0.15

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X1

X
2

(a) Gauss2d. True density

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X1

X
2

(b) Gauss2d. MoP approximation

0.00

0.05

0.10

0.15

0.20

0.25

3 4 5 6 7 8

4

5

6

7

8

X1

X
2

(c) Mix2d. True density

0.00

0.05

0.10

0.15

0.20

0.25

3 4 5 6 7 8

4

5

6

7

8

X1

X
2

(d) Mix2d. MoP approximation

Figure 8.4: Contour plots of the two-dimensional MoP approximations learned from a training
dataset of N = 1000 observations. The true densities used to generate the training datasets
are shown in (a) and (c). The MoPs with the highest BIC score learned with Algorithm 8.2
are shown in (b) and (d).

sample sizes (N = 50, 100), as the low KL divergence, MSE and MAE values show. On

the other hand, the Mix2d dataset is more complex, and the algorithm needed more samples

(N = 500, 1000) to yield good approximations to the true probability density. As expected,

better approximations are obtained as we increase the training sample size. Regarding the

complexity of the approximations, we observe that the MoPs frequently have low orders

(rX), whereas the number of parameters (#par) and the number of intervals (LX) in each

dimension increases with the sample size (N). We also observe that more parameters (#par)

and intervals (LX) are necessary to find MoPs approximations for the Mix2d dataset than

for the Gauss2d dataset because the former is more complex than the latter.

We also show an example of a three-dimensional MoP learned with Algorithm 8.2. We

used a dataset with N = 1000 observations sampled from the Mix3d density in Table 8.1.

Figure 8.5 shows the contour plots of the true density and the MoP approximation for the

domain ΩX1×ΩX2 and three different values of X3. We can see that the MoP approximation

clearly replicates the two modes and is similar to the true multidimensional density.

126 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

Table 8.5: Evaluation of the two-dimensional MoPs learned from data using B-splines (Algo-
rithm 8.2). The MoP with the highest BIC score was selected for each of the ten repetitions,
and the mean values of the performance measures were reported: order of the polynomials
(rX), number of pieces (LX), number of free parameters (#par), Kullback-Leibler divergence
(KL), mean squared error (MSE) and maximum absolute error (MAE).

N = 50 N = 100 N = 500 N = 1000
Gauss2d Mix2d Gauss2d Mix2d Gauss2d Mix2d Gauss2d Mix2d

rX 2 2 2 2 2.6 2 2.9 2
LX 2 2 2 2.3 2.8 4.4 3.1 5.1
#par 9 9 9 11.1 20.2 29.8 25 37.3
KL 0.1182 0.3226 0.1127 0.2782 0.0433 0.1103 0.0116 0.0517
MSE 0.0010 0.0049 0.0010 0.0050 0.0003 0.0020 0.0001 0.0007
MAE 0.0583 0.1531 0.0574 0.1625 0.0364 0.1079 0.0276 0.0673

8.5.1.6 Results for conditional densities

In this section the two methods proposed for learning MoP approximations of conditional

densities are shown. First, we show an example with two variables X and Y . We sampled a

training datasetDX,Y withN = 5000 observations from the two-dimensional Gaussian density

corresponding to the LinGauss dataset in Table 8.1. Next, we applied Algorithm 8.3 to learn

the MoP approximation of the conditional density of X|Y . The domain of the approximation

was set to ΩX,Y = [−3, 3] × [−2, 2], which includes 0.9331 of the total Gaussian density

mass. Note that σ2Y = 1 is smaller than σ2X = 2, thus the domain ΩY = [−2, 2] is smaller

than ΩX . We used the BIC score to greedily find the number of pieces (LX , LY) and the

order (rX , rY) of the MoP. The number of pieces is considered to be the same for the two

dimensions, i.e., LX = LY = L. Similarly, the order is the same in the two dimensions

(rX = rY = r). We start considering one interval for each dimension (L = 1) and order r = 2

(linear polynomials). Then, we either increase the number of intervals to L = 2 or increase

the order of the polynomials to r = 3. Finally, we choose the MoP with the highest BIC score

out of the two MoPs (increasing L or r) and iterate until the BIC score does not increase.

The conditional MoP ϕX|Y (x|y) learned with Algorithm 8.3 is shown in Figure 8.6(a). The

conditional MoP ϕX|Y (x|y) had a total of 16 pieces (LX = LY = 4) and order rX = rY = 2,

i.e., 64 polynomial coefficients. The true conditional density fX|Y (x|y) of X|Y is the linear

Gaussian density N (y, 1) shown in Figure 8.6(b). We can see that the conditional MoP

ϕX|Y (x|y) in Figure 8.6(a) is continuous and close to the true conditional density fX|Y (x|y).
We observe high peaks at the “corners” of the domain ΩX,Y . These are due to numerical

instabilities when evaluating the quotient ϕX,Y (x, y)/ϕY (y), caused by both the joint and

the marginal MoPs yielding small values (close to zero) at the limits of the approximation

domain.

Next, we performed inference based on the conditional MoP learned with Algorithm 8.3.

Figures 8.6(c), (d) and (e) show the MoPs approximations ϕY |X(y|x) (solid) of the true

posterior densities fY |X(y|x) (dashed) for Y given three different values for X. The three

8.5. EXPERIMENTS 127

0.000

0.005

0.010

0.015

2 3 4 5 6 7

1

2

3

4

5

6

7

X1

X
2

(a) X3 = 0.67. True density

0.000

0.005

0.010

0.015

2 3 4 5 6 7

1

2

3

4

5

6

7

X1

X
2

(b) X3 = 0.67. MoP approximation

0.000

0.005

0.010

0.015

0.020

2 3 4 5 6 7

1

2

3

4

5

6

7

X1

X
2

(c) X3 = 2.50. True density

0.000

0.005

0.010

0.015

0.020

0.025

2 3 4 5 6 7

1

2

3

4

5

6

7

X1

X
2

(d) X3 = 2.50. MoP approximation

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

2 3 4 5 6 7

1

2

3

4

5

6

7

X1

X
2

(e) X3 = 4.33. True density

0.000

0.005

0.010

0.015

0.020

0.025

0.030

2 3 4 5 6 7

1

2

3

4

5

6

7

X1

X
2

(f) X3 = 4.33. MoP approximation

Figure 8.5: Contour plots of the three-dimensional MoP approximation learned from a train-
ing dataset of N = 1000 observations sampled from the Mix3d dataset. The true densities
are shown in (a), (c) and (e). The respective densities of the MoP approximation with
rX1 = rX2 = rX3 = 3 and LX1 = LX2 = LX3 = 5 are shown in (b), (d) and (f) for different
values of X3.

values x = {−1.81, 0, 1.81} correspond to the percentiles 10, 50 and 90 of X ∼ N (0, 2).

Both the MoPs and the true posterior densities shown in Figures 8.6(c), (d) and (e) were

normalized in the domain ΩX so that they integrate to one. We can see that the MoPs of

the posterior densities are also continuous and close to the true posterior densities.

We also applied Algorithm 8.4 to the LinGauss dataset (Table 8.1). We used the two-

dimensional LIPs over the Padua points [73] as the polynomials pollX ,lY (x, y) of the condi-

tional MoP ϕX|Y (x|y) (see Figure 8.7(a)). Algorithm 8.4 was used inside a greedy search to

find the values of L and r as explained above. The conditional MoP with the highest BIC

128 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

0.0

0.1

0.2

0.3

0.4

0.5

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

X

(a) Conditional MoP ϕX|Y (x|y)

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

X

Y
(b) True conditional density fX|Y (x|y)

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

(c) Posterior MoP
ϕY |X(y| − 1.81)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

Y

D
en

si
ty

(d) Posterior MoP
ϕY |X(y|0)

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

(e) Posterior MoP
ϕY |X(y|1.81)

Figure 8.6: (a) Conditional MoP of X|Y learned with Algorithm 8.3. (b) True conditional
density of X|Y ∼ N (y, 1). (c,d,e) MoP approximations (solid) and true posterior densities
(dashed) of Y |X for three values of X.

score had 16 pieces (LX = LY = L = 4) and order rX = rY = r = 3, i.e., 144 polynomial

coefficients. We observe that the conditional MoP in Figure 8.7(a) is not continuous. Also,

the MoPs of the posterior density in Figures 8.7(c), (d) and (e) are not continuous either.

Next, we compare the approaches proposed in this paper with that proposed in [316] for

learning conditional MoTBFs from data. Figure 8.8(a) shows the MoTBFs of the conditional,

and Figures 8.8(c), (d) and (e) show the posterior densities approximated using the LinGauss

dataset (Table 8.1). The conditional MoTBF had LX = 6 pieces and each piece defined a MoP

with at most six parameters. MoTBF approximations of conditional densities are obtained by

discretizing the parent variables and fitting a one-dimensional MoTBF for each combination

of the discrete values of the parents. Compared with the two learning methods proposed

in Algorithms 8.3 and 8.4, the method in [316] captures the correlation between the parent

8.5. EXPERIMENTS 129

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

X

(a) Conditional MoP ϕX|Y (x|y)

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

X
Y

(b) True conditional density fX|Y (x|y)

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

(c) Posterior MoP
ϕY |X(y| − 1.81)

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

(d) Posterior MoP
ϕY |X(y|0)

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

(e) Posterior MoP
ϕY |X(y|1.81)

Figure 8.7: (a) Conditional MoP of X|Y learned with Algorithm 8.4 using LIPs over the
Padua points. (b) True conditional density of X|Y ∼ N (y, 1). (c, d, e) MoP approximations
(solid) and true posterior densities (dashed) of Y |X for three values of X.

variables and the child variable through the discretization instead of directly in the functional

polynomial expressions. Also, we observe that the posterior MoTBFs in Figures 8.8(c), (d)

and (e) have LY = 6 pieces, whereas the posterior MoPs computed with Algorithms 8.3 and

8.4 in Figures 8.6 and 8.7, respectively, have only LY = 4.

If there is a weak correlation between the child and parent variables, then the conditional

MoTBF approach in [316] is expected to yield approximations with few pieces. On the

other hand, as the variables become more strongly correlated additional subintervals will be

introduced by the learning algorithm. The MoTBF learning algorithm does not rely on a

discretization of the child variable, but it rather approximates the density using a higher-order

polynomial/exponential function. In contrast, Algorithms 8.3 and 8.4 yield conditional MoPs

with more pieces because the domain of approximation ΩX,Y is split into hyperrectangles

130 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

X

Y

(a) Conditional MoTBF ϕX|Y (x|y)

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

X

Y
(b) True conditional density fX|Y (x|y)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

Y

D
en

si
ty

(c) Posterior MoTBF
ϕY |X(y| − 1.81)

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Y

D
en

si
ty

(d) Posterior MoTBF
ϕY |X(y|0)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

Y

D
en

si
ty

(e) Posterior MoTBF
ϕY |X(y|1.81)

Figure 8.8: (a) Conditional MoTBF of X|Y learned with the approach in [316]. (b) True
conditional density of X|Y ∼ N (y, 1). (c, d, e) MoTBF approximations (solid) and true
posterior densities (dashed) of Y |X for three values of X.

in all the dimensions. However, with the more fine-grained division of the domain into

hyperrectangles, the polynomial functions of the conditional MoPs will usually have a low

order.

We empirically compared the results of Algorithm 8.3, Algorithm 8.4 (using both TSEs

and LIPs) and the method proposed in [316] for learning MoTBFs from data. We sampled ten

datasets for each sample size (N = 25, 500, 2500, 5000) from the two-dimensional Gaussian

density corresponding to the LinGauss dataset in Table 8.1. Table 8.6 shows the KL from the

MoPs ϕY |X(y|x) to the true posterior densities Y |X for three values ofX. We applied a paired

Wilcoxon signed-rank test and report statistically significant differences at a significance level

α = 0.05. The null hypothesis is that the two methods perform similarly. The alternative

hypothesis is that the algorithm in the column outperforms the algorithm shown with a

8.5. EXPERIMENTS 131

Table 8.6: Kullback-Leibler divergences from the MoP approximations to the true posterior
densities for the BN where Y ∼ N (0, 1) and X|Y ∼ N (y, 1). The best results for each sample
size are highlighted in bold. Statistically significant results of a Wilcoxon paired signed-ranks
test (α = 0.05) are shown with symbols (∗, †, ‡, ⋆) indicating that the algorithm in the column
outperforms the algorithm corresponding to the symbol.

Y |X Alg. 8.3 (∗) Alg. 8.4 TSE (†) Alg. 8.4 LIP (‡) MoTBF (⋆)

N = 25

X = −1.81 0.5032 †⋆ 0.7297 0.3487 ∗†⋆ 0.7084 †
X = 0.00 0.0746 ‡⋆ 0.0745 ∗‡⋆ 0.1510 0.0939 ‡
X = 1.81 0.4952 †‡⋆ 0.7297 ‡ 1.4582 0.7084 †‡

N = 500

X = −1.81 0.4194 0.2321 ∗‡ 0.3161 ∗ 0.2191 ∗‡
X = 0.00 0.0239 †‡⋆ 0.0646 ⋆ 0.0453 †⋆ 0.0950
X = 1.81 0.4141 0.2311 ∗‡ 0.3701 ∗ 0.2170 ∗‡

N = 2500

X = −1.81 0.1045 0.0850 0.1128 0.0728 ∗‡
X = 0.00 0.0387 0.0441 0.0097 ∗†⋆ 0.0272 ∗†
X = 1.81 0.0984 0.0978 0.1041 0.0695 ∗‡

N = 5000

X = −1.81 0.0575 0.0413 0.0341 ∗ 0.0308 ∗
X = 0.00 0.0196 0.0262 0.0221 0.0210
X = 1.81 0.0556 0.0425 0.0383 0.0322 ∗

symbol: ∗ for Algorithm 8.3, † for Algorithm 8.4 with TSE, ‡ for Algorithm 8.4 with LIPs, and

⋆ for conditional MoTBFs. For instance, a ⋆ in the column corresponding to Algorithm 8.3

in Table 1 shows that Algorithm 8.3 significantly outperformed MoTBFs for a given value of

N and X. Algorithms 8.3 and 8.4 yielded competitive results against conditional MoTBFs.

8.5.1.7 Rmop: An R package for multidimensional mixture of polynomials

learning from data

The proposed Algorithms 8.1 and 8.2 have been implemented in a freely available R package

called Rmop. The package offers methods for learning multidimensional MoPs from data

using B-spline interpolation. Also, it includes methods for managing MoPs, e.g., operations

(sum, product, integration, marginalization, etc.), computation of statistics (mean, variance

and covariance), comparison (KL divergence, MSE and MAE), plotting, etc. The package is

available at http://cig.fi.upm.es/index.php/members/151-rmop/.

8.5.2 Experiments with Bayesian classifiers

In this section, we illustrate how to use the proposed methods for learning one-dimensional

and multidimensional MoPs from data as a non-parametric density estimation technique in

http://cig.fi.upm.es/index.php/members/151-rmop/

132 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

Table 8.7: Datasets used in the BNC experiments.

Name No. instances N No. pred. variables n No. class labels K

appendicitis 106 7 2
fourclass 862 2 2
glass 214 9 2
haberman 306 3 2
ion 351 32 2
iris 150 4 3
liver 341 6 2
newthyroid 215 5 3
phoneme 5,404 5 2
svmguide1 7,089 4 2
vehicle 846 18 4
waveform 5,000 21 3
wdbc 569 30 2
wine 178 13 3

BNCs. We retrieved 14 datasets from the UCI [27] and KEEL [9] repositories. We deleted

the first variable in the ion dataset because it was discrete, i.e., it only took values 0 or 1.

The values of the predictive variables were scaled to the domain ΩXi
= [0, 1], i = 1, . . . , n.

Table 8.7 shows the main features of the final datasets used in the experimentation.

NB [372] and TAN [199] classifiers were induced for each dataset. The probability of the

class labels was modeled as a categorical distribution pC(c), c ∈ ΩC . On the other hand, the

conditional density of the predictive variables X given the class label C = c was modeled

using six different density estimation techniques, yielding twelve BNCs for comparison:

NBMoP and TANMoP use MoPs for non-parametric density estimation. The MoPs approx-

imations ϕXi|C(xi|c), i = 1, . . . , n were obtained using Algorithm 8.1 for NB classifiers.

We considered different number of pieces LX = 1, . . . , 10 and orders rX = 2, . . . , 5, and

we chose the MoP approximation with the highest BIC score (see Section 8.4.5). Simi-

larly, the MoPs ϕXiXj |C(xi, xj |c), i 6= j were approximated using Algorithm 8.2 for TAN

classifiers. In TAN classifiers, we computed ϕXi|C(xi|c) by marginalizing out Xj from

ϕXiXj |C(xi, xj |c). Note that we did not find explicit MoP approximations of the condi-

tional densities ϕXi|XjC(xi|xj , c) for TAN classifiers. Instead, we computed the values

of the conditional densities by dividing the evaluation of the MoP ϕXiXj |C(xi, xj |c)
by the evaluation of the MoP ϕXj |C(xj |c). We only considered two-dimensional MoPs

ϕXi|XjC(xi|xj , c) that had the same order and number of intervals for each dimension,

i.e., rXi
= rXj

= rX and LXi
= LXj

= LX . The values considered for these parameters

were rX = 2, . . . , 5 and LX = 1, . . . , 10. The MoP approximation with highest BIC

score was selected (see Section 8.4.5).

NBKernel and TANKernel use a Gaussian KDE technique as proposed by Pérez et al.

[409]. The parameters and the densities of the one-dimensional and the multidimen-

8.5. EXPERIMENTS 133

sional Gaussian kernels were computed using the ks [154] and KernSmooth [509] R

packages. A normal scale bandwidth was used for KDE.

NBGauss and TANGauss use Gaussian distributions to model the conditional densities

as in a CLG network [408].

NBFI and TANFI use Fayyad and Irani’s supervised discretization method [170] to dis-

cretize the continuous variables. ML estimates with Laplace correction were computed

to fill in the CPTs in the NB and TAN classifiers.

NBEF5 and TANEF5 use an equal-frequency unsupervised discretization technique. Each

variable is discretized into five bins. The parameters of the probability distributions

were estimated using ML with Laplace correction.

NBEF10 and TANEF10 discretized each variable into ten equal-frequency bins, and the

CPTs were filled in using the ML estimates with Laplace correction.

Once the probability distributions have been estimated, a new instance x is classified by

applying the maximum a posteriori rule: c∗ = argmaxc∈ΩC
pC(c)fX|C(x|c), where fX|C(x|c)

depends on the probability distribution used for modeling the predictive variables X and

factorizes according to the graphical structure of the classifier (either NB or TAN).

Table 8.8 shows the mean accuracy achieved by each classifier in each dataset estimated

using a stratified 10-fold cross-validation. The results show a clear example of the “no free

lunch” theorem [520], as there is no algorithm that significantly outperforms the others

in all the datasets. KDE-based classifiers (NBKernel and TANKernel) achieved the best

results in five out of fourteen datasets, whereas the parametric Gaussian BNCs (NBGauss and

TANGauss) and the proposed classifiers using MoPs (NBMoP and TANMoP) obtained the best

result in three datasets. The null hypothesis of equal performance of all algorithms could

not be rejected at a significance level α = 0.05 using Friedman’s test (p-value = 0.0524)

[195]. On the other hand, Iman and Davenport’s test [271] rejected the null hypothesis of

equal performance of all algorithms (p-value = 0.0456). However, we found no significant

differences when we studied all pairwise comparisons between algorithms [207]. Similarly, we

found no significant differences between the algorithms when we analyzed NB classifiers and

TAN classifiers separately. Most of the datasets included in the study had few instances for

the different class values. This makes it difficult for the proposed methods to obtain MoPs

that can model complex probability distributions, as we saw when fitting MoPs to samples

from the Mix2d dataset (Section 8.5.1.5). Additionally, for small samples, the BIC score tends

to select simple MoP models with fewer intervals.

NBMoP’s accuracy was higher than NBKernel’s accuracy in four datasets, whereas NBKernel

outperformed NBMoP in nine datasets. However, we found no significant differences between

the two methods when we considered all the datasets using a Friedman’s and Iman-Davenpot.

Additionally, we compared MoPs with KDE for each dataset independently. We applied a

non-parametric paired Wilcoxon signed-rank test using the accuracy of the classifiers in the

10 folds of the cross-validation procedure. NBMoP significantly outperformed NBKernel in two

134 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

Table 8.8: Mean accuracy of the classifiers estimated using a stratified 10-fold cross-validation.
The best result for each dataset is highlighted in boldface.

NBMoP NBKernel NBGauss NBFI NBEF5 NBEF10

appendicitis 84.82 84.82 84.82 83.91 82.00 85.00
fourclass 85.49 83.87 75.41 78.18 76.91 83.41
glass 92.51 91.10 90.61 91.10 90.63 92.51
haberman 72.91 73.55 74.85 72.24 73.88 75.85
ion 86.06 90.87 81.17 89.16 88.59 88.87
iris 94.67 96.00 95.33 93.33 93.33 94.00
liver 62.76 67.45 57.18 57.75 63.94 61.29
newthyroid 94.87 96.77 96.77 94.89 95.41 95.87
phoneme 77.90 78.11 76.02 77.20 77.09 77.07
svmguide1 95.67 95.82 93.13 96.42 96.01 96.25
vehicle 64.06 60.51 46.21 61.22 58.63 63.23
waveform 81.08 80.70 80.90 80.78 80.82 80.64
wdbc 94.38 94.55 93.49 94.55 93.50 94.73
wine 96.60 98.33 98.33 98.33 98.33 96.67

TANMoP TANKernel TANGauss TANFI TANEF5 TANEF10

appendicitis 82.91 81.91 79.09 84.91 86.64 80.91
fourclass 98.84 96.64 79.70 86.76 90.83 96.87
glass 90.17 92.47 92.49 92.03 91.13 93.94
haberman 75.85 74.18 74.84 72.24 69.97 73.52
ion 92.29 91.45 90.87 91.72 92.29 91.72
iris 88.00 97.33 97.33 93.33 94.00 91.33
liver 60.14 70.69 59.22 57.75 64.82 59.84
newthyroid 91.67 95.84 95.84 93.51 93.53 92.62
phoneme 80.53 80.31 77.87 80.46 80.64 83.22
svmguide1 95.70 95.97 93.75 96.67 96.23 96.39
vehicle 61.46 77.90 75.89 72.45 71.88 72.11
waveform 80.96 80.74 82.28 81.60 81.22 80.96
wdbc 94.02 95.25 95.43 94.37 94.91 95.44
wine 93.89 100.00 99.44 96.11 97.22 93.30

datasets (vehicle and waveform). On the other hand, TANMoP significantly outperformed

TANKernel in only one dataset (fourclass), whereas TANKernel significantly outperformed

TANMoP in four datasets (iris, liver, vehicle and wine). We could not find significant

differences between MoP-based and KDE-based classifiers in most of the datasets. Therefore,

we can conclude that NB and TAN classifiers using MoPs perform competitively against

KDE-based NB and TAN classifiers.

BNCs with Gaussian densities and the three discretization algorithms yielded good perfor-

mances. Discretization can help to reduce the noise in a dataset, specially when few training

instances are available. We could not find significant differences between the BNCs using

the three discretization algorithms. In fact, it has been shown that there is no discretization

method that yields better BNCs in terms of accuracy for an extensive set of problems [190].

8.6. CONCLUSION 135

8.5.3 Comparison of evaluation times

We studied the evaluation time of the non-parametric density estimation techniques, i.e.,

MoPs and KDE. Other density estimation techniques such as discretization or assuming

Gaussian densities were considered parametric alternatives and are expected to yield shorter

evaluation times. Figure 8.9 shows the evaluation time of MoPs and KDE for two artifi-

cial datasets (see Table 8.1): the one-dimensional Gauss dataset and the two-dimensional

Gauss2d dataset. Different training and test sizes were considered, and the evaluation times

were averaged over 10 repetitions. Algorithms 8.1 and 8.2 were applied to learn the MoPs

from the data and the BIC score was used to find appropriate values for the order and the

number of intervals of the MoPs. We can see that the evaluation times for MoPs (solid lines)

were almost constant, independently of the sizes of the training and test sets. On the con-

trary, the evaluation time for KDE (dashed lines) increased with both the training and test

sizes. We can also see that the evaluation time for KDE increased from the one-dimensional

(Figure 8.9(a)) to the two-dimensional scenario (Figure 8.9(b)). Additionally, MoPs are more

efficient than KDE regarding storage. A MoP provides an explicit model of a probability den-

sity. Therefore, it only needs to store the coefficients of the polynomials and the limits of

the intervals/hyperrectangles for each piece. On the other hand, KDE does not provide an

explicit model, so it needs to save and analyze the complete training dataset to estimate the

density of a new observation.

0.
0

0.
4

0.
8

1.
2

Test dataset size

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

s)

50 100 500 1000 5000 10000

(a) One-dimensional Norm dataset

0.
0

1.
0

2.
0

Test dataset size

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

s)

50 100 500 1000 5000 10000

(b) Two-dimensional Norm2d dataset

Figure 8.9: Comparison of evaluation time of MoPs (solid lines) with KDE (dashed lines)
for: (a) the one-dimensional Norm dataset and (b) the two-dimensional Norm2d dataset (see
Table 8.1). One line is shown for each training dataset size N : 50 (�), 100 (△), 500 (+) and
1000 (×). The mean evaluation time (in seconds) over ten repetitions is shown.

8.6 Conclusion

This chapter has presented a method for learning MoP approximations of the probability

density underlying a dataset using B-spline interpolation. One-dimensional, multidimensional

and conditional MoP approximations of probability densities were learned from data. A MoP

was approximated as a linear combination of B-splines, since B-splines can be written as

136 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

MoPs, and MoPs are closed under multiplication and addition. The mixing coefficients of

the linear combination were found using a ML approach. Thus we were able to perform

model selection in a principled way by using a penalized likelihood criterion like the BIC

score. Appropriate values for the order of the polynomials and the number of pieces of the

MoPs were selected based on the BIC score of the MoPs. MoPs learned with B-splines have a

number of advantages over other methods proposed in the literature, i.e., they are continuous,

non-negative and integrate to one. These properties are important in some settings, e.g.,

for performing inference tasks. One-dimensional MoPs learned with B-spline interpolation

were compared with MoPs using LIPs as proposed in [456]. Artificial datasets were used

to evaluate the proposed method for learning MoP approximations. MoPs learned using B-

spline interpolation outperformed MoPs learned with LIPs according to the Kullback-Leibler

divergence, the mean squared error and the maximum absolute error between the MoPs

and the true generating distributions. Also, the proposed method yielded MoPs with better

generalization behavior according to the log-likelihood and BIC values computed in the test

datasets. Conditional MoPs were compared with the approach proposed for learning MoTBFs

in [316].

We also studied the use of MoPs as a non-parametric density estimation technique for

BNCs for the first time. In particular, we studied and implemented two well-known BNCs: the

NB classifier and the TAN classifier. NB and TAN classifiers using MoPs yielded competitive

results against other state-of-the-art BNCs. MoPs offer some advantages over KDEs as

non-parametric density estimators. First, MoPs provide an explicit model of the generating

probability density. Second, the evaluation time for MoPs is shorter than for KDE. Therefore,

BNCs using MoPs have faster classification times than those using KDE. Additionally, MoPs

only need to store the model parameters (coefficients of the polynomials and limits of the

intervals/hyperrectangles), whereas KDE has to save the complete training dataset. On

the other hand, training time is longer for MoPs because the approach includes parameter

estimation and model selection, although Equations (8.5) and (8.7) converge in few iterations

[540]. Gaussian and discretization-based classifiers also yielded competitive results compared

with the other methods. The parametric assumption of Gaussian densities may not hold in

some settings. On the other hand, MoPs are a more flexible approach since they provide a

non-parametric density estimation technique that can model any probability density without

the need for discretization.

Future work will study the problem of finding the limits of the intervals/hyperrectangles

AlX when they do not have the same width (non-uniform B-splines). Finding the best knot

sequence given a dataset is expected to reduce the number of pieces necessary to find accurate

MoPs. Some heuristics can be used to find a set of candidate points defining the limits of the

intervals AlX , e.g., considering the local maxima, the local minima and the inflection points

of the probability density function yielded good results for approximating with MTEs [435].

Then, a greedy search procedure could be used to split or merge adjacent intervals defined

at these candidate points. Also, more complex methods can be found in the literature, for

instance, knot density estimation [100], bootstrapping techniques [326], statistical testing

8.6. CONCLUSION 137

[474], regularization [391], Bayesian estimation [130, 138], etc.

Regarding the use of MoPs as a non-parametric density estimation technique in super-

vised learning problems, extensions to more complex BNCs will be considered, e.g., semi-naive

Bayes classifiers, k-dependence BNCs, etc. Here, we followed a generative approach and com-

puted ML estimates of the mixing coefficients of the linear combination of B-splines to build

the MoPs that were used in the BNCs. However, the main goal in supervised learning prob-

lems is obtaining models that correctly classify the instances. Discriminative approaches to

parameter fitting in BNCs look for parameters which maximize the classification accuracy or,

alternatively, the conditional log-likelihood of the class variable given the predictive variables,

e.g., see [77, 225]. We intend to investigate this discriminative approach for fitting BNCs with

MoPs in the future.

Finally, we plan to perform a thorough comparison of the methods proposed for ap-

proximating with MoPs, MTEs and MoTBFs in hybrid BNs. These comparisons can be

performed at different levels: quality of the approximations, modeling power, efficiency and

computational complexity of the learning algorithms, discriminative power when used inside

BNCs, etc. Also, BNs using MTEs have been applied to clustering [177, 205] and regres-

sion [175, 176, 377] problems. We would like to study and compare the use of MoPs for

solving these different machine learning problems.

138 CHAPTER 8. LEARNING MIXTURES OF POLYNOMIALS FROM DATA

Chapter 9
Directional naive Bayes classifiers

9.1 Introduction

In Chapter 5 we highlighted the distinctive properties of directional data and the special

techniques necessary to accurately manage them. Although directional data can be found in

a lot of different domains, supervised classification problems including directional information

as predictive variables have not been systematically studied by the machine learning research

community. In fact, only 5 out of the 135 datasets for supervised learning available in the UCI

Machine Learning Repository [27] include some variable measured in angles (see Section 9.3).

To the best of our knowledge, the directional variables in those problems have been treated

as linear continuous variables without taking into account the characterizing properties of

the data.

In this chapter, we extend the NB classifier (see Section 3.4.2.1) for use with directional

predictive variables. We study the decision functions of NB classifiers using von Mises distri-

butions (see Section 5.2.2.1) or von Mises-Fisher distributions (see Section 5.3.2.1) to model

directional data. We also consider hybrid scenarios with directional, linear and discrete pre-

dictive variables. The selective NB classifier [309] is adapted to work with these hybrid

domains. We evaluate the proposed methods on a set of real problems and compare them

with other BNCs that use Gaussian or discrete probability distributions for modeling the

angular variables. A thorough analysis of the results is performed.

Classification problems using directional probability distributions have mainly been stud-

ied in the field of discriminant analysis. Morris and Laycock [378] studied the discriminant

analysis of von Mises and Fisher distributions. Eben [155] analyzed the discriminant analysis

of two von Mises distributions with unknown means and equal concentrations. Recently,

discriminant analysis for von Mises-Fisher distributions was studied in [178], and misclas-

sification probabilities for the von Mises distribution were estimated in two scenarios, i.e.,

considering populations with equal or different concentrations. Discriminant analysis has

been studied for other directional distributions as well, e.g., Watson’s, Selby’s and Arnold’s

distributions in the sphere [159, 179]. In a related paper, SenGupta and Roy [449] proposed a

classification rule based on the mean chord-length between an observation and two different

139

140 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

populations of angular data belonging to two different class labels. More recently, SenGupta

and Ugwuowo [450] proposed a likelihood ratio test based on a bootstrapping approach to

classify angular and linear data. These approaches show several differences to the one studied

in this chapter. First, discriminant analysis focuses on the computation of misclassification

probabilities. Here, we derive the decision functions of the NB classifiers and study them

from a geometric point of view by analyzing the shape of the decision surfaces they induce.

Second, these works only consider one predictive variable for classification. We study the

decision functions for NB classifiers with two angular variables modeled with conditional (to

the class) von Mises distributions. We also study NB classifiers with conditional von Mises-

Fisher distributions. Additionally, we consider hybrid NB classifiers including linear, angular

and discrete predictive variables at the same time. We also address the feature subset selec-

tion problem by adapting the selective NB classifier [309]. Finally, previous works only show

the application of the techniques to one problem or dataset. In this paper, we perform an

extensive evaluation of the proposed models on a set of real problems. This provides insights

on the behavior of the directional NB classifiers and more general conclusions can be drawn.

Here, we only consider ML estimates of the parameters for the (conditional) von Mises

and von Mises-Fisher probability densities. However, Bayesian parameter estimation for

directional densities has received much interest, see e.g., [109, 231, 263, 353, 354].

The research included in this chapter has been published in López-Cruz et al. [337, 340].

Chapter outline

Section 9.2 introduces several extensions of the NB classifier including directional predictive

variables, and their behavior is studied from a theoretical point of view. Section 9.3 includes

the evaluation of these models using eight datasets and the statistical comparisons with other

classifiers. Finally, conclusions and future research lines are discussed in Section 9.4.

9.2 Naive Bayes classifiers with directional predictive vari-

ables

In this section the von Mises naive Bayes (vMNB) classifier is introduced, which uses uni-

variate von Mises distributions to model the conditional probability density functions of the

angular variables. Next, the von Mises-Fisher naive Bayes (vMFNB) classifier is presented,

where the conditional density functions of directional variables are modeled using multivari-

ate von Mises-Fisher distributions. We derive the decision functions for each case and study

the decision surfaces. Derivations of the decision functions and the surfaces that they induce

are detailed in Appendices A and B. Hybrid scenarios with continuous and discrete predictive

variables modeled using different probability distributions are a frequent occurrence in super-

vised classification. Therefore, we investigate the hybrid NB classifier in Sections 9.2.3 and

9.2.4, where the predictive variables are modeled using directional distributions and discrete

or Gaussian distributions. Finally, the selective naive Bayes (SelNB) classifier is adapted to

9.2. NAIVE BAYES CLASSIFIERS WITH DIRECTIONAL VARIABLES 141

work with directional distributions in Section 9.2.5.

9.2.1 The von Mises naive Bayes

In this section, we derive the decision surfaces of the vMNB, where the conditional probability

densities of the predictive variables are modeled using von Mises distributions. First, in

Section 9.2.1.1 we study the simplest approach where one predictive variable is considered.

Then, we extend our analysis to the scenario where two predictive variables are used (Section

9.2.1.2).

9.2.1.1 vMNB with one predictive angular variable

We start with the simplest scenario, where vMNB has a binary class and only one predictive

angular variable Φ.

Theorem 9.1. Let C be a binary class variable with values ΩC = {1, 2}. Let Φ be one

predictive angular variable defined in the domain Ω(Φ) = (−π, π], with conditional probability

density functions modeled as von Mises distributionsM(µΦ|c, κΦ|c) for each class value c ∈ ΩC .

Then, vMNB finds the two following decision angles that separate the class subregions

φ′ = α+ arccos(D/T),

φ′′ = α− arccos(D/T),
(9.1)

with the constants

D = − ln
pC(1)I0(κΦ|2)

pC(2)I0(κΦ|1)
,

cosα = a/T,

sinα = b/T,

T =
√
a2 + b2,

a = κΦ|1 cosµΦ|1 − κΦ|2 cosµΦ|2,

b = κΦ|2 sinµΦ|1 − κΦ|2 sinµΦ|2.

Proof. See Appendix A.1.

Corollary 9.1. The vMNB classifier with a binary class and one predictive angular variable

Φ is a linear classifier using the decision line

r(x, y) = (κΦ|1 cosµΦ|1 − κΦ|2 cosµΦ|2)x+ (κΦ|2 sinµΦ|1 − κΦ|2 sinµΦ|2)y −D = 0,

where (x, y) = (cosφ, sinφ) are the Cartesian coordinates in R
2 of the point defined by the

angle φ on the unit circle.

Proof. The proof is straightforward from Theorem 9.1 (see Appendix A.1).

142 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

The vMNB classifier with one predictive circular variable modeled using von Mises con-

ditional distributions divides the circle into two regions using two angles. Also, we can see

vMNB as a linear classifier finding the line that goes through the points on the circumference

defined by φ′ and φ′′. Angle α in (9.1) can be interpreted as a weighted average of the mean

directions µΦ|c for each class, using the values of the concentration parameters as weights. On

the other hand, the length of the arc between the two angles (the distance that defines the

size of the regions) is given by arccos(D/T), which depends on the concentrations, the mean

directions and the prior probabilities of the class values. These prior probabilities are used

in the logarithm in D. They influence the “size” of the class regions, moving the decision

bounds so that more likely classes are given a larger subregion.

Figure 9.1a shows an example of a set of 100 points sampled from the conditional prob-

ability density distributions Φ|C = 1 ∼ M(π/2, 2) and Φ|C = 2 ∼ M(π, 5). The classes are

considered equiprobable, i.e., pC(1) = pC(2) = 0.5. Figure 9.1b shows the class assigned to

each angle by vMNB and the angles (φ′ = 2.43 and φ′′ = −1.67 radians) that define the class

regions.

0

π/2

±π

−π/2
Φ

(a)

0

π/2

±π

−π/2
Φ

(b)

Figure 9.1: True (a) and predicted (b) class for a set of 100 angles sampled from the condi-
tional probability density distributions Φ|C = 1 ∼M(π/2, 2) and Φ|C = 2 ∼M(π, 5). Dark
blue circles represent points for class C = 1 and light blue circles represent angles for class
C = 2. The solid lines in (b) show the angles defining the bounds of each class region. The
dashed line is the decision line induced by vMNB.

Particular cases To gain a thorough understanding of the classifier, we now study how

these decision surfaces are defined for different values of parameters µΦ|c and κΦ|c. To study

the decision bounds we consider that the classes are equiprobable, i.e., pC(1) = pC(2) = 0.5.

This erases the influence of the prior probabilities of the class values.

Case 1: κΦ|1 = κΦ|2 and µΦ|1 6= µΦ|2. When the two distributions share the same

concentration value but have different mean directions, the decision angles are (see

9.2. NAIVE BAYES CLASSIFIERS WITH DIRECTIONAL VARIABLES 143

Appendix A.1.1)

φ′ =
1

2
(µΦ|1 + µΦ|2),

φ′′ =
1

2
(µΦ|1 + µΦ|2) + π.

In this scenario, the decision surface is an axis that divides the circle into two semicircles

(the angles are π radians apart). The axis goes through the center of the circle and

is the bisector of the angle defined by the two mean directions. Figure 9.2a shows an

example with a sample of 100 points drawn from the distributions Φ|C = 1 ∼ M(0, 5)

and Φ|C = 2 ∼ M(π/2, 5). The classes are equiprobable a priori. vMNB finds an axis

that forms an angle of π/4 with the horizontal axis and yields a semicircle for each class

value (Figure 9.2b).

0

π/2

±π

−π/2
Φ

(a)

0

π/2

±π

−π/2
Φ

(b)

Figure 9.2: True (a) and predicted (b) class for a sample of 100 angles where the conditional
densities share the same concentration (Case 1). Dark blue circles represent points for class
C = 1 and light blue circles represent angles for class C = 2. The green axis separates each
class region in (b).

Case 2: κΦ|1 6= κΦ|2 and µΦ|1 = µΦ|2 = µΦ. vMNB finds the following angles when the

mean directions are equal but the concentrations of the conditional distributions are

different (see Appendix A.1.1)

φ′ = µΦ + arccos
D

κΦ|1 − κΦ|2
,

φ′′ = µΦ − arccos
D

κΦ|1 − κΦ|2
.

The two angles are defined according to the shared mean direction µΦ, and the “spread”

of the arc that they form is determined by the difference in the concentration param-

eters. The region including the mean direction always corresponds to the class with a

144 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

larger concentration. Figure 9.3a shows a set of 100 points sampled from the distribu-

tionsM(π/2, 2) andM(π/2, 10). The two classes are equiprobable a priori. Figure 9.3b

shows the classification provided by vMNB and the decision angles, which are both 0.47

radians away from the mean direction µΦ = π/2 (2.04 and 1.10 radians). The decision

line is orthogonal to the mean direction µΦ and its position depends on the difference

of the concentration values.

0

π/2

±π

−π/2
Φ

(a)

0

π/2

±π

−π/2
Φ

(b)

Figure 9.3: True (a) and predicted (b) class for a sample of 100 angles when the conditional
densities share the same mean direction (Case 2). Dark blue circles represent points for class
C = 1 and light blue circles represent angles for class C = 2. The solid lines in (b) show the
angles defining each class region. The dashed line is the decision line induced by vMNB.

9.2.1.2 vMNB with two predictive angular variables

We now study the more complex scenario where two angular predictive variables Φ and Ψ are

used in vMNB. The domain defined by the predictive variables is a torus (−π, π]× (−π, π].

Theorem 9.2. Let C be a binary class with values in ΩC = {1, 2}. Let Φ and Ψ be two angular

variables defined in the domain (−π, π]. Let the conditional probability density functions of

the variables Φ and Ψ be von Mises distributions M(µΦ|c, κΦ|c) and M(µΨ|c, κΨ|c). Then,

the decision surface induced by the vMNB classifier is given by the 2-degree multivariate

polynomials

clx+ dly − az2 + bz
√
l2 − z2 + bLz + (aL+Dl)

√
l2 − z2 + al2 +DLl = 0,

clx+ dly − az2 − bz
√
l2 − z2 + bLz − (aL+Dl)

√
l2 − z2 + al2 +DLl = 0,

(9.2)

where (x, y, z) are the Cartesian coordinates in R
3 of the points lying on the surface of the

torus, and a, b, c, d, l, L and D are constants (see Appendix A.2).

The decision surfaces in (9.2) are quadratic in z, so vMNB is not a linear classifier when

two predictive angular variables are used. The complexity of the classifier increases from the

base scenario with one predictive variable (Section 9.2.1.1). This behavior differs from the

9.2. NAIVE BAYES CLASSIFIERS WITH DIRECTIONAL VARIABLES 145

NB classifier with discrete variables, where the decision surfaces are always linear no matter

the number of predictive variables.

We illustrate this scenario with an artificial example. Figure 9.4a shows a set of 1000

points sampled from the distributions Φ|C = 1 ∼ M(π, 2) and Ψ|C = 1 ∼ M(−2π/3, 6)
(shown in dark blue) and Φ|C = 2 ∼ M(π/2, 5) and Ψ|C = 2 ∼ M(π, 3) (shown in light

blue), and mapped into a torus. The two classes are equiprobable a priori. Figure 9.4b shows

the classification provided by vMNB and the complex decision bounds induced by it, where

we can see the non-linear behavior of the classifier.

−1
0

1

−1

0

1

−0.2

0

0.2

XY

Z

(a)

−1
0

1

−1

0

1

−0.2

0

0.2

XY

Z

(b)

Figure 9.4: True (a) and predicted (b) class using vMNB for a sample of 1000 points. Points
with C = 1 are shown in dark blue, whereas points with C = 2 are shaded light blue. The
decision boundaries in (b) are drawn in green.

9.2.2 The von Mises-Fisher naive Bayes

The same approach can be used when the data in our problem are directional unit vectors

in R
n. These directional vectors can also be represented as points in the unit hypersphere

S
n−1 = {x ∈ R

n| ‖x‖ = 1} and modeled using the von Mises-Fisher distribution. Then, the

classifier has only one n-dimensional predictive variable X.

Theorem 9.3. Let C be a binary class variable with values ΩC = {1, 2}. Let X be a n-

dimensional variable defined in the unit hypersphere Sn−1 = {x ∈ R
n| ‖x‖ = 1}. Let the con-

ditional probability densities X|C = c follow a von Mises-Fisher distribution Mn(µX|c, κX|c).

Then, vMFNB is a linear classifier yielding the decision hyperplane

(κX|1µX|1 − κX|2µX|2)
Tx+ ln

pC(1)(κX|1)
n
2
−1In

2
−1(κX|2)

pC(2)(κX|2)
n
2
−1In

2
−1(κX|1)

= 0. (9.3)

Proof. See Appendix B.

Therefore, the decision surface in (9.3) is a hyperplane in R
n that divides the space into

the two regions for classification. The intersection of the hyperplane and the hypersphere is

146 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

a circumference with the points that have the same posterior probability of being assigned

to either class. The hyperplane can also be characterized by a non-zero normal vector and

a point x0 belonging to the hyperplane. That characterization is easier to interpret. The

hyperplane found by vMFNB is given by

(κX|1µX|1 − κX|2µX|2)
T (x− x0) = 0. (9.4)

Figure 9.5a shows an example in the sphere S
2 of a set with 1000 points sampled from

X|C = 1 ∼ M3((−1, 0,−0.2)T , 10) (dark blue) and X|C = 2 ∼ M3((−0.5,−0.5, 1)T , 20)
(light blue). The classes are considered equiprobable a priori. If we replace the values of

the parameters in the hyperplane expression (9.3), we get the plane 10x2 − 22x3 = −9.3069.
Alternatively, if we use the equation with the normal vector and the point (9.4), the plane

that we get has the normal vector (0, 10,−22)T and contains the point x0 = (0, 0, 0.4230)T .

Figure 9.5b shows the classification given by vMFNB, the decision hyperplane and the cir-

cumference that bounds the class regions.

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

X
1

X
2

X
3

(a)

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

X
1

X
2

X
3

(b)

Figure 9.5: True class (a) and class predicted (b) using the von Mises-Fisher NB for a sample
of 1000 points. Class C = 1 points are shown in dark blue, whereas class C = 2 data are
drawn in light blue.

Figueiredo [178] also derived the decision function in (9.3). However, as far as we know,

it is the first time that the geometric interpretation of the induced decision surface is studied

at length, and the following special scenarios are analyzed.

9.2.2.1 Particular cases

We study the shape of the decision hyperplanes for some special cases when the conditional

probability distributions share the value of one parameter. Like the analysis for the vMNB

(Section 9.2.1.1), the classes are assumed to be equiprobable a priori.

9.2. NAIVE BAYES CLASSIFIERS WITH DIRECTIONAL VARIABLES 147

Case 1: κX|1 = κX|2 and µX|1 6= µX|2. When the concentration parameter values are

the same but the mean directions are different, the hyperplane equation simplifies to

(see Appendix B.1)

(µX|1 − µX|2)
Tx = 0. (9.5)

Equation (9.5) defines a hyperplane that goes through the origin (center of the sphere),

dividing it into two hemispheres. The plane goes through the “middle point” of the

segment that contains the points in the hypersphere corresponding to the mean di-

rections, like the bisector in vMNB. In fact, we can write the hyperplane equation as

(µX|1 − µX|2)
T (x − 0) = 0. Accordingly, vMFNB finds a hyperplane with the normal

vector (µX|1 − µX|2)
T , which is the vector connecting the points in the hypersphere

defined by the two mean directions. Additionally, the hyperplane contains the origin

point (0). In this case, since the plane goes through the center of the sphere, the inter-

section is a great circle (a.k.a. Riemannian circle), that is, one of the circles with the

same radius as the sphere. The great circle and the hypersphere share the same center.

Figure 9.6a shows a set of 1000 points sampled from the distributions X|C = 1 ∼
M3((0, 0, 1)

T , 7) (dark blue) and X|C = 2 ∼ M3((0, 1, 0)
T , 7) (light blue). The classes

have the same probability a priori. The classification provided by vMFNB can be seen

in Figure 9.6b, where the decision hyperplane is given by the equation −x2 + x3 = 0.

−1
0

1

−1−0.500.51
−1

−0.5

0

0.5

1

X
1X

2

X
3

(a)

−1
0

1

−1−0.500.51
−1

−0.5

0

0.5

1

X
1X

2

X
3

(b)

Figure 9.6: True class (a) and class predicted (b) when the conditional densities share the
same concentration (Case 1). Class C = 1 points are shown in dark blue, whereas class C = 2
data are represented in light blue.

Case 2: κX|1 6= κX|2,µX|1 = µX|2 = µX. In the scenario where the concentration

parameters have different values but the mean directions are the same, vMFNB finds

148 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

the hyperplane (see Appendix B.1)

µT
X(x− x0) = 0,

with x0 =µX

1

κX|1 − κX|2
ln

(κX|1)
n
2
−1In

2
−1(κX|2)

(κX|2)
n
2
−1In

2
−1(κX|1)

.

Therefore, vMFNB finds a hyperplane perpendicular to the mean direction and con-

taining point x0. Point x0 is also located in the direction of the mean and its exact

position depends on the values of the concentration parameters κX|1 and κX|2.

Figure 9.7a shows a set of 1000 points sampled from the distributions X|C = 1 ∼
M3((−1, 0, 0)T , 20) (dark blue) and X|C = 2 ∼ M3((−1, 0, 0)T , 5) (light blue). The

two class values are equiprobable a priori. If we replace the values of the parameters

in the hyperplane expression, we get the plane x1 = −0.9076. Alternatively, if we

use the equation with the normal vector and the point, the plane that we get has the

normal vector (−1, 0, 0)T and contains the point x0 = (−0.9076, 0, 0)T . Figure 9.7b

shows the classification given by the vMFNB classifier, the decision hyperplane and the

circumference that bounds the class regions.

−1 −0.5 0 0.5 1
−1

0
1

−1

−0.5

0

0.5

1

X
1

X
2

X
3

(a)

−1 −0.5 0 0.5 1
−1

0
1

−1

−0.5

0

0.5

1

X
1

X
2

X
3

(b)

Figure 9.7: True class (a) and class predicted (b) when the conditional densities share the
same mean direction (Case 2). Dark blue circles refer to class C = 1 points and class C = 2
data are drawn in light blue.

9.2.3 Hybrid Gaussian - von Mises-Fisher naive Bayes

A very interesting scenario arises when combining directional and non-directional data. This

is a frequent situation when we can measure both the magnitude and the direction of a given

phenomenon, e.g., the direction and the velocity of wind currents or the strength and orien-

tation of a magnetic field. We study the hybrid NB classifier where the directional variable

X is modeled using von Mises-Fisher distributions and the linear variable Y is modeled using

9.2. NAIVE BAYES CLASSIFIERS WITH DIRECTIONAL VARIABLES 149

MG distributions. The conditional probability distributions of the predictive variables given

the class value c are X|C = c ∼Mn(µX|c, κX|c) and Y|C = c ∼ N (µY|c,ΣY|c).

The MG distribution N (µ,Σ) is defined by its two parameters: the mean µ and the

covariance matrixΣ. The decision function r(y) of a Gaussian NB [408] found by substituting

this probability density function in (3.6) is:

r(y) =−1

2
(y − µY|1)

T (ΣY|1)
−1(y − µY|1)

+
1

2
(y − µY|2)

T (ΣY|2)
−1(y − µY|2)

+ ln
pC(1)

∣∣ΣY|2

∣∣1/2

pC(2)
∣∣ΣY|1

∣∣1/2 .

(9.6)

Duda et al. [153] showed that the surfaces induced by that function are hyperplanes when

ΣY|1 = ΣY|2 and general hyperquadrics when ΣY|1 6= ΣY|2.

To compute the decision function for the hybrid Gaussian - von Mises-Fisher NB we have

to substitute the von Mises-Fisher (5.8) and the Gaussian probability density functions in

the decision function expression (3.6). Assuming conditional independence between X and

Y given the class C, the decision function obtained after operating is the sum of two decision

functions r(x,y) = r(x) + r(y), obtained in (9.3) and (9.6), but considering the prior proba-

bilities pC(c) in only one of the components. Therefore, the shape of the surface induced by

the function r(x,y) is determined by the most complex of the two components in the sum.

We have shown that the decision surfaces defined by r(x) are hyperplanes. Therefore, if the

conditional probability distributions of the linear variable Y have the same covariance matri-

ces, we have that the hybrid Gaussian - von Mises-Fisher NB finds a hyperplane to bound the

class regions. On the other hand, if the covariance matrices are different, the decision surface

is a general hyperquadric, ranging from simple hyperplanes to complex hyperhyperboloids

[153]. We use an artificial example to illustrate this behavior.

The simplest model of this hybrid NB includes one circular variable X = (X1, X2) defined

in the unit circumference S1 =
{
(x1, x2) ∈ R

2|x21 + x22 = 1
}
and one linear variable Y defined

in R. The domain of the problem is the Cartesian product S1 × R, which defines a cylinder

with unit radius. In this example the variable Y is 1-dimensional, so the covariance matrix

is just the variance ΣY|c = σ2
Y|c, c ∈ {1, 2}.

9.2.3.1 Particular Cases:

We analyzed the two cases described above for this model.

Case 1: σ2Y |1 = σ2Y |2 = σ2. Substituting the probability density functions of the von

Mises-Fisher and Gaussian distributions in the decision function (3.6) and arranging

150 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

all the terms, we get the following expression defining a hyperplane:

r(x1, x2, y) = (κX|1µX1|1 − κX|2µX1|2)x1 + (κX|1µX2|1 − κX|2µX2|2)x2

+
µY |1 − µY |2

σ2
y +

µ2Y |2 − µ2Y |1

2σ2
+ ln

pC(1)I0(κX|2)

pC(2)I0(κX|1)
.

Figure 9.8a shows the true classification for 1000 points sampled using the distributions

X|C = 1 ∼ M2((0.2,−0.8)T , 5) and Y |C = 1 ∼ N (0, 1) for points in class 1, and the

distributions X|C = 2 ∼ M2((−0.8,−0.5)T , 10) and Y |C = 2 ∼ N (2, 1) for points

with C = 2. Figure 9.8b shows the classes predicted by the hybrid Gaussian - von

Mises-Fisher NB classifier and the hyperplane that separates the two class regions.

−1 −0.5 0 0.5 1
−1

0
1

−2

0

2

4

X
1

X
2

Y

(a)

−1 −0.5 0 0.5 1
−1

0
1

−2

0

2

4

X
1

X
2

Y

(b)

Figure 9.8: True class (a) and class predicted (b) using the hybrid Gaussian - von Mises-
Fisher NB classifier for a sample of 1000 points when the conditional Gaussian distributions
share the same variance. Dark blue circles refer to class C = 1 points, whereas class C = 2
data are drawn in light blue.

Case 2: σ2Y |1 6= σ2Y |2. In this scenario, the decision function obtained by the hybrid

Gaussian - von Mises-Fisher NB is given by the following expression, which is quadratic

for y:

r(x1, x2, y) = (κX|1µX1|1 − κX|2µX1|2)x1 + (κX|1µX2|1 − κX|2µX2|2)x2

+
σ2Y |1 − σ2Y |2

2σ2Y |1σ
2
Y |2

y2 +
σ2Y |2µY |1 − σ2Y |1µY |2

σ2Y |1σ
2
Y |2

y −
µ2Y |1

2σ2Y |1

+
µ2Y |2

2σ2Y |2

+ ln
pC(1)I0(κX|2)σY |2

pC(2)I0(κX|1)σY |1
.

Figure 9.9a shows a set of 1000 points sampled from the distributions X|C = 1 ∼
M2((0.2,−0.8)T , 5) and Y |C = 1 ∼ N (0, 0.25) for points in class 1, and the distributions

9.2. NAIVE BAYES CLASSIFIERS WITH DIRECTIONAL VARIABLES 151

X|C = 2 ∼ M2((−0.8,−0.5)T , 10) and Y |C = 2 ∼ N (2, 4) for the points in the class

2. The classes are considered equiprobable a priori. The classification provided by the

hybrid NB and the hyperquadratic decision surface that bounds the class regions are

shown in Figure 9.9b.

−1 −0.5 0 0.5 1−1
0

1

−4

−2

0

2

4

6

8

X
1

X
2

Y

(a)

−1 −0.5 0 0.5 1−1
0

1

−4

−2

0

2

4

6

8

X
1

X
2

Y

(b)

Figure 9.9: True class (a) and class predicted (b) using the hybrid Gaussian - von Mises-
Fisher NB classifier for a sample of 1000 points when the conditional Gaussian distributions
have different variances. Dark blue circles refer to class C = 1 points, whereas class C = 2
data are drawn in light blue.

9.2.4 Hybrid discrete - Gaussian - von Mises-Fisher naive Bayes

Categorical data is also commonly found in different fields of science [5]. For example, binary

variables can be used to indicate the presence or absence of a given trait in the phenomenon

whose direction we are measuring. Discrete variables coding some qualitative aspect of the

phenomenon can also be interesting for classification. Additionally, continuous variables with

arbitrary distributions are usually discretized to make their analysis easier.

The NB classifiers presented above can be directly extended to the case including categori-

cal predictive variables. Assuming that there are d discrete predictive variables (X1, · · · , Xd),

the classifier induces a set of decision surfaces, one for each possible combination of the values

of the discrete variables. When analyzing a new instance z, we first have to check the values

of the discrete values to select the corresponding decision surface and use the values of the

continuous variables for classification purposes.

Adding discrete predictive variables would modify the independent term of the equation

that specifies the decision surface, i.e., the probabilities of the discrete conditional distribu-

tions change the position of the decision surface but not its shape. Therefore, in the case

of linear classifiers (vMNB, vMFNB and hybrid NB with equal covariance matrices), the

decision hyperplanes found for every combination of values for the discrete predictors are all

parallel to each other.

We use a simple artificial example of a NB classifier with two predictive variables to

152 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

−1 0 1

−1

0

1

X
1

X
2

(a) True classification of
the points.

−1 0 1

−1

0

1

X
1

X
2

(b) Predicted classifica-
tion using the hybrid NB
classifier.

−1 0 1

−1

0

1

X
1

X
2

(c) Predicted classifica-
tion of the points and de-
cision line for Y = 1.

−1 0 1

−1

0

1

X
1

X
2

(d) Predicted classifica-
tion of the points and de-
cision line for Y = 2.

Figure 9.10: True class and class predicted by the hybrid discrete - von Mises-Fisher NB
classifier. Class C = 1 data are highlighted in dark blue, whereas class C = 2 data are
highlighted in light blue. Circles are used to represent data with Y = 1 and crosses refer to
data with Y = 2.

illustrate this point. We have a circular variable X = (X1, X2) defined in the unit circumfer-

ence S
1 =

{
(x1, x2) ∈ R

2|x21 + x22 = 1
}
and one categorical variable Y that takes two values,

e.g., Y ∈ {1, 2}. The class variable C is binary and its values are considered equiproba-

ble. The conditional probability distributions of the predictive variables for class C = 1 are:

X|C = 1 ∼ M2((0.2,−0.8)T , 5) and pY |C(1|1) = 0.15. The conditional probability distribu-

tions for points with C = 2 are X|C = 2 ∼M2((−0.8,−0.5)T , 10) and pY |C(1|2) = 0.6.

A set of 50 points are drawn from those distributions and the true and predicted classi-

fications are shown in Figures 9.10a and 9.10b, respectively. Figure 9.10c shows the points

where Y = 1 and the decision line that bounds the class regions, whereas Figure 9.10d shows

the same information for points Y = 2. The decision lines are clearly parallel. Note that the

above analysis is also valid including linear MG distributions, although they have not been

included in the artificial example for simplicity’s sake.

9.2. NAIVE BAYES CLASSIFIERS WITH DIRECTIONAL VARIABLES 153

9.2.5 Selective von Mises naive Bayes

NB classifiers are affected by redundant variables [309]. Finding good predictive variables

can significantly increase the accuracy of NB. Langley and Sage [309] proposed the SelNB

algorithm. SelNB finds the variables inducing the most accurate NB structure in a wrapper

fashion. Pérez et al. [408] proposed a filter-wrapper approach to induce SelNB classifiers.

First, the filter algorithm ranks the predictive variables using the MI between each variable

and the class. Then each step of the wrapper algorithm induces a new classifier including

the next predictive variable in the ranking. The algorithm uses the classification accuracy

(computed with an inner 10-fold cross-validation procedure) to evaluate the models and

selects the best classifier.

SelNB computes the MI between each predictive variable Xi and the class variable C.

MI(Xi, C) is the reduction of the entropy of the class given that we know the value of Xi.

This measure represents the information that variable Xi gives about C. Therefore, higher

values of MI relate to more informative variables. The MI between two variables X and Y is

defined as

MI(X,Y) =

∫

X

∫

Y
ρX,Y (x, y) log

ρX,Y (x, y)

ρX(x)ρY (y)
dxdy = E(X,Y)

[
log

ρX,Y (x, y)

ρX(x)ρY (y)

]
, (9.7)

where ρ is a generalized probability function.

In supervised classification problems, we have to estimate MI(Xi, C) from a set of data

pairs (xji, cj), j = 1, . . . , N . When Xi is a discrete variable, an estimator of the MI in (9.7)

is given by

MI(Xi, C) =
1

N

N∑

j=1

log
pXi,C

(
xji, c

(j); θ̂Xi,C

)

pXi

(
xji; θ̂Xi

)
pC

(
cj ; θ̂C

) , (9.8)

where θ̂Xi,C , θ̂Xi
and θ̂C are the parameters of the probability distributions estimated from

the counts in the dataset.

When the predictive variable Xi is continuous, we take an approach consistent with

conditional independence assumptions and we model the conditional probability densities of

Xi|C = c as Gaussian or von Mises distributions, depending on the nature of the variable,

i.e., linear or angular. Therefore, the marginal density of Xi is a mixture of Gaussian or von

Mises distributions, respectively. Algorithm 9.1 shows the process for computing MI(Xi, C).

Algorithm 9.1 (Estimation of MI(Xi, C) with continuous Xi)

Inputs:

DXi,C : A dataset with N observations DXi,C = {(x1i, c1), . . . , (xNi, cN)}.

Output: The estimated value of MI(Xi, C)

Steps:

154 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

1. Estimate the ML parameters θ̂C of the prior probability for each class value pC(c) =

Nc/N , where Nc is the number of instances in the dataset DXi,C belonging to class

c ∈ ΩC .

2. Compute the ML estimates θ̂Xi|C of the parameters of the conditional density functions

of Xi given each c ∈ ΩC :

If Xi is a linear variable, fit a Gaussian probability density fXi|C(x|c; θ̂Xi|C) where

θ̂Xi|C =
{
µ̂Xi|c, σ̂

2
Xi|c

}
c∈ΩC

.

If Xi is an angular variable, fit a von Mises probability density fXi|C(x|c; θ̂Xi|C)

where θ̂Xi|C =
{
µ̂Xi|c, κ̂Xi|c

}
c∈ΩC

.

3. Sample M pairs of points
(
x∗ji, c

∗
j

)
from the joint probability distribution ρXi,C(xi, c) =

fXi|C(xi|c; θ̂Xi|C)pC(c; θ̂C). For each class value c ∈ ΩC , sampleM pC(c; θ̂C) instances

from the density fXi|C(xi|c; θ̂Xi|C) and build the pairs (x∗ji, c
∗
j).

4. Compute the mutual information as

MI(Xi, C) =
1

M

M∑

j=1

log
fXi|C

(
x∗ji|c∗j ; θ̂Xi|C

)
pC

(
c∗j ; θ̂C

)

fXi

(
x∗ji; θ̂Xi

)
pC

(
c∗j ; θ̂C

)

=
1

M

M∑

j=1

log
fXi|C

(
x∗ji|c∗j ; θ̂Xi|C

)

∑
k∈ΩC

pC(k; θ̂C)fXi|C

(
x∗ji|k; θ̂Xi|C

) .

(9.9)

The classifier learned by SelNB is a NB classifier which does not include all the predictive

variables. This algorithm can discard irrelevant variables but still suffers from redundant

variables. On the other hand, the wrapper algorithm proposed in [309] can discard both

irrelevant and redundant variables. On the downside, however, it is less computationally

efficient, since n2 combinations of n predictive variables have to be tested in the worst-

case scenario. The filter-wrapper algorithm uses a greedy heuristic to rank the variables

according to the information they provide about the class. Accordingly, it has to test at most

n classifiers. If the number of variables n is very large, we can limit the number of variables

by setting nmax < n in the wrapper step, and only nmax subsets of variables are tested.

The complexity of the decision surfaces induced by SelNB depends on the number and the

type of the variables selected in the final NB structure, as discussed in the previous sections.

9.3 Experiments

This section reports the results of the experimental evaluation of the classifiers presented

in this chapter. Eight datasets were considered for evaluation (see Section 9.3.1). The

performance of the different algorithms and the statistical comparison of the results are

9.3. EXPERIMENTS 155

Table 9.1: Datasets used in this study.

Dataset # angular vars # linear vars # discrete vars # class values # instances

Megaspores 1 0 0 2 960
Protein1 2 0 0 2 49,676
Protein10 30 0 0 4 49,314
Temperature 1 1 1 3 8,753

Auslan 60 60 0 95 2,565
MAGIC 1 10 0 2 19,020
Arrhythmia 5 175 73 2 430
Covertype 2 8 44 7 100,000

included in Section 9.3.2. Section 9.3.3 illustrates the differences between using Gaussian

and von Mises distributions to model angular data.

9.3.1 Dataset analysis and preprocessing

A thorough inspection of the datasets for supervised classification available in the UCI Ma-

chine Learning Repository [27] reported only five out of 135 datasets containing some variable

measured in angles (bottom half of Table 9.1). We found no reference to these directional

data having be given special treatment. For this reason we assume that they have been stud-

ied as linear continuous variables without taking into account their special properties. We

omitted the Breast Tissue dataset [106, 284] from the study because it was not clear whether

the “PhaseAngle” variable really represents an angle and how it was measured. Additionally,

another four datasets not included in the UCI repository were considered for evaluation (top

half of Table 9.1).

A description of the datasets used in this study follows:

9.3.1.1 UCI datasets

Australian sign language (Auslan): Identification of 95 Australian sign language

signs using position (x, y, z) and orientation angles (roll, pitch, yaw) of both hands [287].

Therefore, 12 measurements are studied. According to [287], the bending measurements

are not very reliable and they were omitted as predictive variables. This is a time series

classification problem. The position and orientation of the hands are measured at

different times, yielding approximately 54 data frames for each sign. We resampled a

set of 10 evenly distributed frames and used them as predictive variables. According

to the description, there are 95 different signs (class values), and each sign is repeated

27 times. However, the her sign only appears three times, whereas the his-hers sign

appears 24 times. Therefore, we have assumed that they are the same sign and have

considered them all as his-hers signs.

MAGIC gamma telescope (MAGIC): Discrimination of the images of hadronic show-

ers initiated by primary gammas from those caused by cosmic rays in the upper at-

mosphere [48]. The images of the hadronic showers captured by the telescope are

preprocessed and modeled as ellipses. The predictive variables describe the shape of

156 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

the ellipses. The dataset includes one angular variable that captures the angle of the

major axis in the ellipse with the vector that connects the center of the ellipse with the

center of the camera.

Arrhythmia: Identification of the presence and absence of cardiac arrhythmia from

electrocardiograms (ECG). The original dataset has 16 class values: one for healthy

items, 14 types of cardiac arrhythmias and one class value for unclassified items [232].

We erased the unclassified items and built a binary class (normal vs. arrhythmia). The

predictive variables describe clinical measurements, patient data and ECG recordings.

The angular variables describe the vector angles from the front plane of four ECG

waves. We removed variable 14, which had more than 83% missing values, and used

Weka’s ReplaceMissingValues filter [236] to fill in the missing values of variables 11-13

and 15 with the mode. We also removed some non-informative discrete and continuous

variables.

Covertype: Prediction of the kind of trees that grow in a specific area given some

attributes describing the geography of the land [47]. The two angular variables describe

the aspect (orientation) of the land from the true north and the slope of the ground.

The original dataset has 581,012 instances and we used a Weka supervised resampling

method (without replacement) to reduce the dimensionality of the dataset to 100,000

instances.

9.3.1.2 Other datasets

Megaspores: Classification of megaspores into two classes (their group in the biological

taxonomy) according to the angle of their wall elements [304]. The dataset is an example

included in Oriana software (see Section 5.4).

Protein1: Prediction of secondary structure including one aminoacid, using the dihe-

dral angles (φ, ψ) of the residue as predictive information. We only considered α-helix

and β-sheet structures, making the class binary. The data were retrieved from the

protein geometry database [43].

Protein10: Prediction of secondary structure including one aminoacid, using the di-

hedral angles (φ, ψ) and the planarity angle (ω). We considered the three angles in

ten consecutive residues. We classified the four most common structures: α-helices,

β-sheets, bends and turns. The data were retrieved from [43].

Temperature: Prediction of the outdoor temperature from the season, wind speed and

wind direction. We used hourly measurements from a weather station located in the

city of Houston. Data for the year 2010 were retrieved, and we removed the hours

with missing values for any of the four variables. The information was collected from

the Texas commission on environmental quality website1. The class variable (outdoor

1The Texas commission on environmental quality website is available at: www.tceq.state.tx.us/

www.tceq.state.tx.us/

9.3. EXPERIMENTS 157

temperature) was measured in degrees Fahrenheit and discretized into the following

three values: low (T ≤ 50), medium (50 < T < 70) and high (T ≥ 70).

9.3.2 Results

In this section we evaluate the performance of vMNB against other NB classifiers which

ignore the angular nature of the data. We compared the following algorithms:

vMNB: NB classifier using Gaussian distributions for linear continuous variables and

von Mises distributions for angular variables.

SelvMNB: Selective NB classifier, where the linear variables are modeled using Gaussian

distributions and the angular variables are modeled using von Mises distributions.

GNB: Gaussian NB classifier where the probability density functions of all the contin-

uous variables given the class values are modeled using Gaussian distributions.

SelGNB: Selective Gaussian NB classifier that uses Gaussian distributions for all the

continuous predictive variables.

dNB: Discrete NB classifier where all the continuous variables are discretized using

Fayyad and Irani’s algorithm [170]. This classifier was run in Weka [236].

We use a stratified 10-fold cross validation technique to estimate the accuracy of the

classifiers (see Section 2.3.2). The cross-validation procedure was run ten times independently.

Therefore, 100 accuracy values are obtained. Table 9.2 shows the mean accuracy and the

standard deviation for each dataset and each method. Table 9.3 shows the complexity of the

final BNCs induced by the methods in the complete datasets averaged over ten independent

runs, i.e., the number of parameters in the models, the number of predictive variables, the

percentage of angular variables in the final classifier, and the elapsed time needed to learn the

BNCs. We find that the performance of the classifiers using von Mises distributions for the

angular predictive variables (vMNB and SelvMNB) is similar to or better than when Gaussian

conditional probability distributions are used for those variables (GNB and SelGNB). dNB

Table 9.2: Mean accuracy and standard deviation of the BNCs evaluated on different datasets
using ten runs of a stratified 10-fold cross validation.

Algorithm vMNB SelvMNB GNB SelGNB dNB

Megaspores 76.50±3.56 76.50±3.56 76.60±3.58 76.60±3.58 75.22±3.37
Protein1 98.04±0.16 98.39±0.15 97.63±0.18 97.96±0.17 97.78±0.21
Protein10 83.98±0.55 86.14±0.54 80.77±0.60 82.11±0.48 86.91±0.50
Temperature 74.08±1.40 74.07±1.38 72.47±1.26 72.47±1.26 72.80±1.33
Auslan 64.47±3.01 81.72±2.80 64.39±3.03 82.24±2.44 78.24±2.81
MAGIC 72.75±0.92 75.26±0.82 72.68±0.92 74.92±0.88 77.73±0.81
Arrhythmia 76.52±6.63 78.19±6.09 76.47±6.56 78.17±6.16 78.93±6.30
Covertype 65.43±0.46 67.07±0.41 65.56±0.45 67.07±0.41 68.49±0.44

15
8

C
H
A
P
T
E
R

9
.

D
IR

E
C
T
IO

N
A
L
N
A
IV

E
B
A
Y
E
S
C
L
A
S
S
IF

IE
R
S

Table 9.3: Complexity analysis of the BNCs. For each dataset and each BNC, the table shows the number of parameters of the classifier
(# par), the number of predictive variables (# vars), the percentage of angular variables out of the total number (# vars) of variables (%
ang) and the elapsed time in seconds (time) used to learn the BNC. The results are averaged over ten runs. The complete datasets were
used to learn the BNCs. We used Weka sofware to learn dNB, so the learning times are not comparable and have not been included.

Megaspores Protein1 Protein10 Temperature Auslan MAGIC Arrhythmia Covertype

vMNB
par 5 9 243 23 22894 41 685 454
vars 1 2 30 3 120 10 174 54
% ang 100 100 100 33.33 50 10 2.30 3.70
time 0.0006 0.0103 0.1494 0.0074 0.7274 0.0089 0.0496 0.8598

SelvMNB
par 5 5 71 23 6687 13 363.40 20
vars 1 1 8.50 3 34.70 3 90.60 1
% ang 100 100 100 33.33 58.98 33.33 1.60 0
time 0.1009 0.2375 9.4965 0.1113 159.7019 0.2860 8.8707 61.9942

GNB
par 5 9 243 23 22894 41 685 454
vars 1 2 30 3 120 10 174 54
% ang 100 100 100 33.33 50 10 2.30 3.70
time 0.0004 0.0052 0.0618 0.0029 0.4881 0.0075 0.0493 0.8449

SelGNB
par 5 5 51.80 23 5832 13.40 469.20 20
vars 1 1 6.10 3 30.20 3.10 117.10 1
% ang 100 100 100 33.33 60.26 32.50 2.57 0
time 0.0031 0.0300 4.3668 0.0206 127.4423 0.1692 8.3954 61.6814

dNB
par 5 9 243 23 22894 41 685 454
vars 1 2 31 3 120 10 174 54
% ang 100 100 96.77 33.33 50 10 2.30 3.70

9.3. EXPERIMENTS 159

using supervised discretization achieves competitive results against SelvMNB and SelGNB

and yields the best results in four datasets (Protein10, MAGIC, Arrhythmia and Covertype).

Note that the discretization algorithm can inherently perform some sort of feature selection

by discretizing a variable in only one value. This could explain why dNB achieves such good

results. Note also that dNB needs to estimate more parameters than SelvMNB and SelGNB

in all the datasets but two (Megaspores and Temperature). For Covertype, SelvMNB and

SelGNB achieved the same accuracy in all the folds. Neither algorithm selected either of

the two angular variables (see Table 9.3), so SelvMNB and SelGNB induce exactly the same

classifier for this problem and no significant differences can be found between them. The

number of parameters in vMNB and GNB are the same because both Gaussian and von Mises

distributions have two parameters and no feature subset selection is performed. However,

GNB is slightly faster than vMNB because estimating the concentration of a von Mises density

involves more operations than variance estimation for Gaussian densities. SelvMNB is also

slower than SelGNB even when the number of selected variables is the same. Apart from

having slower parameter estimation equations, the method used for sampling a von Mises

density is computationally less efficient than the sampling algorithms for Gaussian densities.

These sampling methods are used when computing the mutual information between each

predictive variable and the class (see Algorithm 9.1). vMNB frequently outperforms GNB

in those datasets with a higher percentage of angular variables, e.g., Protein1, Protein10

or Auslan. This highlights the importance of using von Mises distributions for modeling

angular data. SelvMNB and SelGNB included a similar percentage of angular variables in

the final BNCs. In most scenarios, the same variables were selected by both SelvMNB and

SelGNB. Therefore, when SelvMNB yields better results than SelGNB, it means that von

Mises densities model the data in a better way than Gaussian densities (see Section 9.3.3).

Table 9.4 shows how each algorithm ranked on average across all datasets. SelvMNB is

the highest-ranking algorithm, and we find that both vMNB and SelvMNB rank higher than

their linear counterparts, GNB and SelGNB, respectively.

Table 9.4: Average ranking of the algorithms computed over all the datasets.

Algorithm Average Ranking

SelvMNB 2.125
dNB 2.375
SelGNB 2.8125
vMNB 3.3125
GNB 4.375

Statistical methods for comparing algorithms over a set of problems were proposed in

[129, 207]. We performed Nemenyi, Holm, Shaffer and Bergmann-Hommel post-hoc tests

as computed in [207] to find statistical differences in the performance of all pairs of algo-

rithms. Table 9.5 shows the adjusted p-values reported by these methods. Considering all

the datasets, only the differences between the performance of GNB and SelvMNB are statis-

tically significant (significance level α = 0.05).

160 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

Table 9.5: Adjusted p-values of post-hoc tests when performing all pairwise comparisons
between classifiers. Statistically significant results at α = 0.05 are highlighted in bold.

H1 pNeme pHolm pShaf pBerg

SelvMNB 6= GNB 0.0443 0.0443 0.0443 0.0443
GNB 6= dNB 0.1141 0.1027 0.0685 0.0685
GNB 6= SelGNB 0.4811 0.3849 0.2886 0.1924
vMNB 6= SelvMNB 1.0000 0.9315 0.7985 0.7985
vMNB 6= GNB 1.0000 1.0000 1.0000 0.7985
vMNB 6= dNB 1.0000 1.0000 1.0000 0.7985
SelvMNB 6= SelGNB 1.0000 1.0000 1.0000 1.0000
vMNB 6= SelGNB 1.0000 1.0000 1.0000 1.0000
SelGNB 6= dNB 1.0000 1.0000 1.0000 1.0000
SelvMNB 6= dNB 1.0000 1.0000 1.0000 1.0000

Table 9.6: Results of a Wilcoxon signed-ranks test using the sorted difference in a 10-fold
cross-validation averaged over 10 runs.

vMNB vs. GNB vMNB vs. dNB GNB vs. dNB
H1 p-value H1 p-value H1 p-value

Megaspores < 0.2734 > ∗ 0.0420 > ∗ 0.0244
Protein1 > ∗ 0.0010 > ∗ 0.0010 < ∗ 0.0068
Protein10 > ∗ 0.0010 < ∗ 0.0010 < ∗ 0.0010
Temperature > ∗ 0.0020 > ∗ 0.0098 < 0.1875
Auslan > 0.3125 < ∗ 0.0010 < ∗ 0.0010
MAGIC > ∗ 0.0195 < ∗ 0.0010 < ∗ 0.0010
Arrhythmia > 0.4375 < 0.1611 < 0.1377
Covertype < ∗ 0.0186 < ∗ 0.0010 < ∗ 0.0010

SelvMNB vs. SelGNB SelvMNB vs. dNB SelGNB vs. dNB
H1 p-value H1 p-value H1 p-value

Megaspores < 0.2734 > ∗ 0.0420 > ∗ 0.0244
Protein1 > ∗ 0.0010 > ∗ 0.0010 > ∗ 0.0098
Protein10 > ∗ 0.0010 < ∗ 0.0020 < ∗ 0.0010
Temperature > ∗ 0.0020 > ∗ 0.0098 < 0.1875
Auslan < 0.2461 > ∗ 0.0020 > ∗ 0.0020
MAGIC > ∗ 0.0098 < ∗ 0.0010 < ∗ 0.0010
Arrhythmia > 0.5098 < 0.4229 < 0.3477
Covertype 6= 1.0000 < ∗ 0.0010 < ∗ 0.0010

Some datasets (see Table 9.1) include few angular variables (Covertype, Arrhythmia,

MAGIC). Modeling these variables with a von Mises distribution or a Gaussian distribution

is likely to have little impact on classifier accuracy. Therefore, it is worthwhile comparing

algorithm performance on each dataset individually. Bouckaert [55] recommends using a t-test

with a sorted runs sampling scheme to evaluate replicability of classifier learning experiments.

He also states that this procedure yields an acceptable type I error and good power. We used

a non-parametric alternative and applied a Wilcoxon signed-ranks test with the sorted runs

9.3. EXPERIMENTS 161

sampling scheme. Table 9.6 shows the p-values of the Wilcoxon signed-ranks test over the

sorted difference of accuracies for a 10-fold cross-validation averaged over 10 runs. The

null hypothesis is that the median of the averaged differences is zero, i.e., both algorithms

perform similarly. The alternative hypotheses (H1) were selected according to the results

reported in Table 9.2. Statistically significant results at a significance level α = 0.05 are

highlighted with an asterisk (∗). vMNB significantly outperformed GNB in four datasets

(Protein1, Protein10, Temperature and MAGIC), whereas GNB only outperformed vMNB in

the Covertype problem. We found no statistical differences between the two classifiers for the

Megaspores, Auslan and Arrhythmia datasets. Similar results were found when comparing

SelvMNB and SelGNB. However, SelGNB did not significantly outperform SelvMNB in any

dataset, whereas SelvMNB outperformed SelGNB in four datasets. These two algorithms

induced the same classifier for the Covertype dataset, so there were no statistical differences

between the two methods for that dataset (p-value = 1.0 in Table 9.6). The dNB classifier with

discretized predictive variables yielded very good results. dNB significantly outperformed

vMNB in four datasets, whereas vMNB significantly outperformed dNB in three datasets.

On the other hand, SelvMNB significantly outperformed dNB in four datasets, whereas dNB

significantly outperformed SelvMNB in three datasets. vMNB and SelvMNB performed

better against dNB than their linear counterparts, GNB and SelGNB, respectively.

9.3.3 Goodness-of-fit analysis

To understand why vMNB performs better, we illustrate the differences between using linear

and angular distributions to model directional data. We took variable 11 in the Protein10

dataset, which was selected by both SelvMNB and SelGNB as an important predictive vari-

able for classification. Protein10 has four class values. NB fits one conditional probability

density for each class value c. Figure 9.11 plots the Gaussian (dashed lines) and the von Mises

(solid lines) conditional distributions fitted from the data. We can see important mismatches

for class values C = 2 and C = 3. Figure 9.11b shows how the Gaussian distribution ignores

the periodicity of the data and yields a density of 3.97 10−5 for an angle of −180◦ degrees,

and a density of 0.2049 for 180◦ degrees. Therefore, Gaussian distributions yield two different

densities for the same angle. On the other hand, the von Mises distribution in Figure 9.11c

is more peaked and yields higher densities than the Gaussian distribution for values close to

the mean.

The legends in Figure 9.11 include the log-likelihood of the models given the data:

LL = ℓ
(
DΦ|c|fΦ|c(φ|c)

)
. Von Mises distributions always yield higher log-likelihood than

Gaussian distributions. In fact, the highest differences in the log-likelihood between von

Mises and Gaussian distributions can be found for class values 2 and 3 (Figures 9.11(b) and

(c), respectively).

Gaussian and von Mises distributions are very similar when the concentration of the

values is high. However, using Gaussian distributions to model angles can negatively af-

fect NB’s behavior. We use an artificial example to illustrate this point. We generate a

dataset with one angular predictive variable and a binary class with values ΩC = {1, 2}.

162 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

−π 0 π
0

0.1

0.2

0.3

0.4

Angles

D
en

si
ty

 o
f

Φ
|C

=
1

von Mises
LL = −9310.44
Gaussian
LL = −9771.96

(a) Class C = 1

−π 0 π
0

0.2

0.4

0.6

0.8

Angles

D
en

si
ty

 o
f

Φ
|C

=
2

von Mises
LL = −16015.33
Gaussian
LL = −22462.26

(b) Class C = 2

−π 0 π
0

0.2

0.4

0.6

0.8

Angles

D
en

si
ty

 o
f

Φ
|C

=
3

von Mises
LL = −15723.91
Gaussian
LL = −23558.54

(c) Class C = 3

−π 0 π
0

0.1

0.2

0.3

0.4

Angles

D
en

si
ty

 o
f

Φ
|C

=
4

von Mises
LL = −12364.82
Gaussian
LL = −12714.13

(d) Class C = 4

Figure 9.11: Von Mises (solid) and Gaussian (dashed) conditional distributions fitted for
variable 11 in Protein10 dataset.

The classes are equiprobable a priori. Instances from class C = 1 follow the distribu-

tion Φ|C = 1 ∼ M(π, 2.5), whereas instances from class C = 2 follow the distribution

Φ|C = 2 ∼M(π/2, 2.5). Figure 9.12 shows the conditional density functions of the von Mises

and the Gaussian distributions fitted to a sample of 2,000 instances. Figure 9.12a shows

that the Gaussian distribution ignores the periodicity of the data, overestimates the variance

and incorrectly estimates the mean direction. This yields errors in NB’s classification. For

example, GNB classifies angle φ = π with class C = 2, whereas it should apparently belong

to class C = 1 because the mean direction of the distribution that generates class C = 1 is

µΦ|1 = π. On the other hand, GNB labels the angle φ = 0 with the class C = 1. The angle

φ = 0 is closer to the mean direction of the distribution with class C = 2 (µΦ|2 = π/2), so it

should be classified with C = 2.

9.4 Conclusion

Directional data can be found everywhere in science. Directional information has a number

of properties that make it necessary to develop and use different techniques than the ones

used with linear information.

In this chapter, we extended one of the simplest and best known models for classifica-

9.4. CONCLUSION 163

−π 0 π
0

0.2

0.4

0.6

0.8

Angles

D
en

si
ty

 o
f Φ

|C
=

1

vM(−3.14,2.47)
N(0.02,6.79)

(a) Class C = 1

−π 0 π
0

0.2

0.4

0.6

0.8

Angles

D
en

si
ty

 o
f Φ

|C
=

2

vM(1.57,2.50)
N(1.43,0.88)

(b) Class C = 2

Figure 9.12: Von Mises (solid) and Gaussian (dashed) conditional distributions fitted for the
artificial dataset.

tion, the NB classifier, to the case where directional data are used as predictive variables.

Understanding the implications of the NB assumption and the theoretical properties of the

classifier is the key to interpreting its behavior and establishing its problem-solving potential

[407]. Therefore, we analyzed the decision functions of the NB classifiers using directional

predictive variables and studied the surfaces induced by those decision functions at length for

different values of the parameters. We also studied the more general scenarios where a hybrid

NB classifier accounts for discrete, linear (Gaussian) and directional predictive variables.

We showed that the NB classifier with one directional predictive variable, using either the

univariate von Mises or the multivariate von Mises-Fisher distribution, is a linear classifier.

The decision surface induced by the classifier is a hyperplane (or a set of hyperplanes if more

than two class values are considered) that separates the class regions. Therefore, it should be

especially well suited for solving problems with linearly separable classes. When two angular

predictive variables are considered, the vMNB classifier induces more complex quadratic

decision surfaces. In the hybrid setting where von Mises-Fisher and Gaussian distributions

are used to model the predictive variables, we showed that the complexity of the decision

surfaces depends on the parameters of the Gaussian distribution. Thus, the decision surfaces

are hyperplanes when the covariance matrices of the conditional predictive distributions are

equal and hyperquadrics when they are not [153]. Artificial examples were used to illustrate

the behavior of the different classifiers and to show the decision surfaces they induce.

NB performance is reduced when redundant predictive variables are used [309]. Therefore,

we adapted the SelNB algorithm to the use of directional distributions.

We evaluated the vMNB classifier over eight datasets and compared it against the corre-

sponding NB classifiers that use Gaussian distributions or discretization for modeling angular

variables. SelvMNB was the best ranking algorithm. Statistical tests were performed to find

significant differences in the performance of the classifiers. vMNB and SelvMNB performed

similarly or better than the classifiers using linear distributions in all but one dataset.

The NB classifier’s conditional independence assumption is quite restrictive and clearly

limits the kind of problems that these models can solve. Several BNCs that relax the con-

164 CHAPTER 9. DIRECTIONAL NAIVE BAYES CLASSIFIERS

ditional independence assumption have been proposed in the literature, e.g., the TAN [199],

the seminaive Bayes [394], the k-dependence Bayesian classifier [438], etc. Extending these

models to the use of directional variables is by no means trivial, since it has been shown that

both marginal and conditional distributions cannot be von Mises distributions [352, 354].

Therefore, this is an open and interesting research field.

Directional data can be found in other machine learning scenarios, e.g., clustering and

regression problems. Clustering with directional data has been extensively studied in recent

papers, see e.g., [16, 30, 375]. Also, a lot of work is available on regression models where the

target variable to predict is angular and the predictive variables are either angular [291] or

linear [150, 182]. Regression models with spherical target and predictive variables have also

been studied in [149, 428]. Recently, circular ordinal regression, where the target variable is

discrete but defined in a circular ordered domain, has been approached in [135] using support

vector machines. Directional information has also been used in neural networks, where Zemel

et al. [535] proposed an extension of the Boltzmann machine with angular units.

On the other hand, BNs have also been applied to classical regression problems [194,

377]. Hybrid models that include different types of probability distributions have attracted

much interest, and different approaches have been proposed [52, 274, 432, 458]. Directional

distributions add yet another possibility to the range of distributions that can be considered

in hybrid BNs. Hybrid probability distributions for modeling the joint density of angular

and linear variables [280] could be used in hybrid BNs for regression. When several angular

variables are included in the BN, the fact that we cannot model both marginal and conditional

distributions as von Mises distributions is again a crucial problem in these models.

Directional statistics opens a number of interesting challenges and opportunities within

machine learning research, particularly for PGMs. We hope that further research in this area

and the implementation of more complex models will provide an excellent tool for solving

difficult problems in a wide range of fields.

Part IV

CONTRIBUTIONS TO

CONSENSUS ANALYSIS

165

Chapter 10
Consensus analysis for GABAergic

interneuron classification

10.1 Introduction

As introduced in Chapter 6, the problem of classifying and naming neurons has been a topic of

debate for over a hundred years. Nevertheless, a satisfactory consensus remains to be reached,

even for restricted neuronal populations such as the GABAergic interneurons of the cerebral

cortex. Over the last two decades, the amount of morphological, molecular, physiological

and developmental data has grown rapidly, making classification harder rather than easier.

A consistent neuronal classification and terminology would help researchers manage this

multidisciplinary knowledge, and is needed for specialists in neuroscience subfields to establish

and maintain effective communication and data sharing [413]. As in other domains of science,

taxonomies can be empirical or scientific [269]: The aim of an empirical classification is

the direct application of knowledge to utilitarian purposes. The scientific classification is

the organization of existing knowledge, and its principles are methodical guides to further

investigation.

In spite of the many studies performed since the original findings of Santiago Ramón

y Cajal, we still lack a catalog of neuron types and names that is accepted by the general

scientific community. Recognizing this problem, the International Neuroinformatics Coordi-

nating Facility has recently established a Neuron Registry within the Program on Ontologies

of Neural Structures1, with the aim to identify known neuron types on the basis of their

defining properties [238]. A collation of terms referring to neuron types is available as part

of the Neuroscience Information Framework from NeuroLex2 [320].

A milestone towards a future classification of the GABAergic interneurons in the cerebral

cortex (neocortex, hippocampus, and related areas) was the standardization of the nomen-

clature of their properties [413]. However, at that time it was not possible to identify a

1Available at http://incf.org/core/programs/pons
2Available at http://neurolex.org/wiki/Category:Neuron

167

http://incf.org/core/programs/pons
http://neurolex.org/wiki/Category:Neuron

168 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

set of anatomical traits that unambiguously define an interneuron class. In this chapter, a

limited number of neuron types and morphological properties were selected based on studies

performed over the years in many laboratories. Then, a group of 48 experts in the field were

asked to individually classify 320 cortical interneurons based on their most prominent mor-

phological features. Finally, we extensively analyzed the level of agreement between experts

when classifying the selected set of interneurons.

The research included in this chapter has been published in DeFelipe et al. [123].

Chapter outline

Section 10.2 introduces the interneuron classification problem and explains the data acqui-

sition process. The preliminary analyses of the raw data are reported in Section 10.3. The

agreement between experts when classifying the interneurons is quantified and analyzed in

Section 10.4. Section 10.5 reports the results of the clustering of the interneurons attending

to the classifications of the experts. The behaviors of the experts when classifying the in-

terneurons are modeled and compared using BNs in Section 10.6. Supervised learning models

are induced from data in Section 10.7. Finally, the chapter ends with discussion and future

work in Section 10.8.

10.2 Interneuron classification by a set of experts

We selected N = 320 cortical GABAergic interneurons from different species: cat, human,

monkey, mouse, rabbit and rat. Three-dimensional reconstructions of 241 of those interneu-

rons were retrieved from http://www.neuromorpho.org [23], whereas the rest were scanned

from relatively old papers with no data on the three-dimensional distribution of their den-

drites and axons. A set of 48 experts were asked to classify each one of the neurons ac-

cording to their most prominent morphological features. A web application3 was specifically

built to display the neuronal morphologies for the participants and to retrieve their clas-

sifications. Two-dimensional projections of all the neurons were available. Additionally, a

three-dimensional visualization applet based on Cvapp software [74] was provided for the

neurons taken from NeuroMorpho.org, which experts could use to navigate, rotate and zoom

the neuronal morphologies. Figure 10.1 shows a screenshot of the web application. Addi-

tional data about the location of the neuron, such as the cortical area, the layer and the

thickness of the layer were included when available. Other web application features included

a help page with instructions and definitions of the neuronal types, and a search engine which

showed other neurons previously classified by the expert in the same category. Each expert

was administered the form in Figure 10.1 for each neuron.

The experts who participated in the experiment were asked to classify the neurons accord-

ing to six axonal features describing the main morphological characteristics of the neurons:

3Available at http://cajalbbp.cesvima.upm.es/gardenerclassification/

http://www.neuromorpho.org
http://cajalbbp.cesvima.upm.es/gardenerclassification/

10.2. INTERNEURON CLASSIFICATION BY A SET OF EXPERTS 169

Figure 10.1: Web application showing one of the 320 neurons to be classified by each expert.

1. Feature 1 (F1) refers to the distribution of the interneuron axonal arborization relative

to cortical layers (Figure 10.2(a-d)). Within this feature, two categories are proposed:

Intralaminar, which refers to interneurons with axonal arbors distributed predomi-

nantly in the layer of the parent soma (Figures 10.2(a, b)); and Translaminar, which

refers to interneurons with axonal arbors distributed mainly above and/or below the

cortical layer of the parent soma (Figures 10.2(c, d)).

2. Feature 2 (F2) refers to the distribution of the axonal arborization relative to the size

of cortical columns, from a broad anatomical point of view (Figure 10.2(e-h)). We

have arbitrarily set the size of a cortical column at a diameter of 300µm, a value that

remains rather similar across several species and cortical areas for many of these struc-

tures [350, 380] (see Section 6.3). Within this feature, two categories are considered:

Intracolumnar, which refers to interneurons with axonal arbors primarily distributed

at a distance from the parent soma that does not exceed 300µm in the horizontal di-

mension (Figures 10.2(e, g)); and Transcolumnar, which refers to interneurons with

horizontal axonal collaterals exceeding a distance of 300µm from the parent soma in

the horizontal dimension (Figures 10.2(f, h)).

3. Feature 3 (F3) refers to the relative location of the axonal and dendritic arbors (Fig-

ure 10.2(i-p)). Within this feature, the following categories are distinguished: Centered,

which refers to interneurons whose dendritic arbor is located mostly in the center of

the axonal arborization (Figure 10.2(i-l)); and Displaced, which refers to interneurons

whose dendritic arbor is shifted with respect to the axonal arborization (Figure 10.2(m-

p)).

4. Feature 4 (F4): If a neuron is categorized as being both Translaminar (for the first

axonal feature) and Displaced (for the third axonal feature), it can be further dis-

170 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

Figure 10.2: Schematics of the morphological Features 1 to 4. Dashed horizontal lines indicate
the extent of the layer. Vertical grey shadows indicate the extent of the column. Axonal
arborization is represented by blue dots. Soma and dendritic arborization are represented
in red. Possible variations on the relative position of the somata with respect to the axonal
arborization of displaced neurons are represented by red dotted ovals.

tinguished into the following categories [413]: Ascending, which refers to interneurons

whose axonal arborization is distributed mostly towards the cortical surface; Descend-

ing, which refers to interneurons whose axonal arborization is distributed mostly to-

wards the white matter (Figure 10.2(o, p)); or Both, which refers to interneurons whose

axonal arborization is distributed towards both the cortical surface and the white mat-

ter.

5. Feature 5 (F5) refers to a limited number of cell types (Figure 10.3) defined for clas-

sification on the basis of recognizable morphological characteristics and the common

usage of their name in the literature [412].

(a) Common type denotes neurons with somata in layers I-VI, multipolar, bipolar or

bitufted dendritic arbors, and axon collaterals without any apparent target or

orientation preference.

(b) Horse-tail cells denote neurons with somata mostly in layers II-III, multipolar,

bitufted or bipolar dendrites, and axons forming tightly intertwined bundles of

long descending vertical collaterals.

(c) Chandelier cells denote neurons with somata in layers II-VI, multipolar or bi-

tufted dendritic arbors, and terminal axon branches that form short vertical rows

of boutons resembling candlesticks. These interneurons are also referred to as

axo-axonic cells as they synapse on the axonal initial segment of their pyramidal

targets.

(d) Martinotti cells denote neurons with somata in layers II-VI, multipolar, bitufted

or bipolar dendrites, and ascending axons that give rise to two axonal arbors, one

near the soma and another at a variable distance above. This second plexus may

be dense (axonal tuft) or diffuse, and it can be either in the same layer as the

soma of origin or in the layers above (ascending axons can travel from layer VI to

layer I).

10.2. INTERNEURON CLASSIFICATION BY A SET OF EXPERTS 171

(e) Common basket cells denote neurons with somata in layers II-VI, multipolar or

bitufted dendritic arbors and axon collaterals that have numerous curved pre-

terminal axon branches.

(f) Arcade or willow cells denote neurons with somata in layers II-VI, multipolar or

bitufted dendrites, and axons that give rise to axonal arcades, with predominantly

vertical arbors and relatively long descending collaterals.

(g) Large basket cells denote neurons with somata in layers II-VI, multipolar or

bitufted dendrites, and horizontally oriented axon collaterals that can reach a

length of several hundred micrometers. These collaterals show numerous curved

pre-terminal axon branches that innervate the somata and proximal dendrites of

neurons. Frequently, these cells display one or several long descending axonal

branches.

(h) Cajal-Retzius cells denote neurons with an axon plexus that is restricted to layer

I and long dendrites with ascending branchlets to the pia. These neurons are not

present in adult neocortex and in rodents persist only during the two first postna-

tal weeks [89, 357]. Proper Cajal-Retzius cells do not contain GABA or express

GABA-synthesizing enzymes GAD65/GAD67 [256, 369]. There are also GABAer-

gic neurons with somata in layer I and prominent long horizontal axon collaterals

and/or dendrites [369], and these are often also named Cajal-Retzius neurons in

the developing neocortex, in spite of their different molecular characteristics from

proper Cajal-Retzius neurons [256]. Given the purely morphological nature of the

present study, most of the authors practically considered any GABAergic neuron

in layer I with horizontally oriented axonal arborization as putative Cajal-Retzius

cells.

(i) Neurogliaform cells denote neurons with somata in layers I-VI, with multipo-

lar dendritic arbors, and are characterized by very small and dense local axonal

arborization around the parent cell body.

(j) Also, we added the option Other to label any given neuron with an alternative

name in case the expert considered another term more appropriate.

6. Feature 6 (F6): Interneurons that are uniquely characterized by peculiar morphological

features can often be easily recognized, even when their axon is rather incompletely

labeled. However, in many other cases the axon needs to be fully labeled and recon-

structed in order to distinguish the neuronal identity unequivocally. Thus, although

it is not always necessary to visualize the full axonal and dendritic arborization to

distinguish a given neuron, this is the preferred situation. Pragmatically, “sufficiently

complete” labeling simply means “clear enough” to allow for the identification of a

given morphological type. We use the term Characterized to refer to that situation.

When an insufficient number of morphological axonal features are visualized for a given

interneuron (because of incomplete staining, tissue slicing, etc.), we propose that the

cell should be deemed an anatomically Uncharacterized interneuron.

172 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

Figure 10.3: Schematics of the interneuron types. Axonal arborization is shown in blue. Soma
and dendritic arborization are shown in red. Interneuron types Common type and Other are
not shown.

10.3 Analysis of raw data

Forty-two out of the 48 experts classified the 320 neurons included in the experiment, and

only data from these 42 experts are considered in the remainder of the analysis.

First, we performed a preliminary exploratory analysis of the raw data to study how

the votes of the experts were distributed for the different features. We assessed the relative

frequency of each category in the experiment, i.e., of each possible value for each feature

(Figure 10.4). Less than 10% of neurons were rated as Uncharacterized. Thus, the vast

majority of the neurons in the experiment were considered as Characterized. The most

frequently assigned categories of Features 1 to 3 proposed in this study were Translaminar,

Intracolumnar, and Displaced. The categories Ascending and Descending received a

similar percentage of the ratings, whereas fewer neurons were assigned to the category Both.

We then assessed the frequency with which interneurons were assigned to specific interneu-

ron types (F5 in Figure 10.4). The most commonly assigned interneuron types were Common

type, Common basket and Large basket. The interneuron types Martinotti, Horse-tail

and Neurogliaform received an intermediate percentage of ratings, whereas Chandelier

and Arcade received the lowest percentage of ratings. Only three cells were classified as

Cajal-Retzius by six experts, whereas the remaining experts classified these neurons as

Uncharacterized, Common type, Common basket, Large basket, Martinotti or Other.

We compared the categories assigned by the individual experts for each one of the six fea-

tures (Figure 10.5). Some experts were “outliers” in terms of their selections, e.g., one expert

categorized all the neurons as Intralaminar in Feature 1 (last expert in Figure 10.5(a)), and

the same rater categorized almost all the neurons as Centered in Feature 3 (last expert in

Figure 10.5(c)). Regarding Feature 5, high bars in Figure 10.5(e) indicate that a high number

of experts selected a particular category for a particular neuron. On the other hand, short

10.4. EXPERTS’ AGREEMENT VALUES 173

F1 F2 F3 F4 F5 F6
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
fr

eq
ue

nc
y

In
tr

al
am

in
ar

T
ra

ns
la

m
in

ar

In
tr

ac
ol

um
na

r
T

ra
ns

co
lu

m
na

r

C
en

te
re

d
D

is
pl

ac
ed

A
sc

en
di

ng
D

es
ce

nd
in

g
B

ot
h

C
om

m
on

 ty
pe

H
or

se
−

ta
il

C
ha

nd
el

ie
r

M
ar

tin
ot

ti
C

om
m

on
 b

as
ke

t
A

rc
ad

e La
rg

e
ba

sk
et

C
aj

al
−

R
et

zi
us

N
eu

ro
gl

ia
fo

rm
O

th
er

C
ha

ra
ct

er
iz

ed

U
nc

ha
ra

ct
er

iz
ed

Figure 10.4: Relative frequency of each category for each feature (F1 to F6), i.e., the number
of times a category was selected divided by the total amount of ratings for the feature.

bars for a particular category and a particular neuron indicate that the corresponding neurons

received very few votes in that neuron type. For example, it is possible to distinguish seven

high bars for the Chandelier category indicating that experts agreed when assigning this

particular category for those specific neurons. With regard to Feature 6 (Figure 10.5(f)), the

majority of the experts considered that most of the neurons were Characterized and tried

to classify them. Indeed, 35 out of 42 experts (83.33%) characterized more than 280 neurons,

whereas two experts characterized less than 200 neurons (first two experts in Figure 10.5(f)).

Finally, we checked whether the names given to the 79 neurons that were scanned from

original publications were maintained in the present experiment by the authors of those

publications. Interestingly, the authors were frequently inconsistent for certain neurons. For

example, some neurons named Neurogliaform cells in the publication were classified as

Uncharacterized in the current experiment by the same author.

10.4 Experts’ agreement values

We computed statistical measures of inter-expert agreement to analyze the degree of concor-

dance between the ratings given by the experts (see Chapter 4). The goal was to quantify

the agreement among experts for each feature independently. We studied the agreement for

both features and categories using the two most studied agreement indices: Fleiss’ pi and

Cohen’s kappa indices.

Figure 10.6 shows the values of the observed agreement (Section 4.2.1) and the chance-

corrected Fleiss’pi values (crosses) for each one of the six features (Section 4.2.2.2). We found

a high level of observed agreement between experts in the classification of neurons according

to Features 1-4 and 6 (observed agreement values exceeding 0.7 in Figure 10.6). The lowest

level of inter-expert agreement (below 0.5) was found for Feature 5.

After correcting for chance agreement, the highest chance-corrected Fleiss’ pi inter-expert

174 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

0

100

200

300

Experts

N
um

be
r

of
 n

eu
ro

ns

Intralaminar Translaminar

(a) Feature 1

0

100

200

300

Experts

N
um

be
r

of
 n

eu
ro

ns

Intracolumnar Transcolumnar

(b) Feature 2

0

100

200

300

Experts

N
um

be
r

of
 n

eu
ro

ns

Centered Displaced

(c) Feature 3

0

100

200

300

Experts

N
um

be
r

of
 n

eu
ro

ns

Ascending Descending Both

(d) Feature 4

0 50 100 150 200 250 300
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

Neurons

(e) Feature 5

0

100

200

300

Experts

N
um

be
r

of
 n

eu
ro

ns

Characterized Uncharacterized

(f) Feature 6

Figure 10.5: Graphical representation of the ratings given to the different categories of the six
features by the 42 experts who completed the experiment. Experts are sorted in ascending
order (in the horizontal axis) based on the number of votes of the categories Intralaminar
(a), Intracolumnar (b), Centered (c), Ascending (d) and Characterized (f). A vertical
bar is shown in (e) for each neuron and each category, representing the number of experts
who selected that category for that neuron. High bars (e.g., for categories Chandelier,
Horse-tail and Martinotti) show high agreement when classifying the neurons in these
neuronal types, whereas short bars (e.g., for categories Common type, Common basket, Large
basket, Other, Arcade, etc.) represent low agreement.

agreement was found for Feature 4 (Figure 10.6). Features 1, 2, and 3 yielded intermediate

chance-corrected agreement values, whereas Features 5 and 6 had low agreement. The dif-

ference between observed agreement and Fleiss’ pi index was particularly high for Feature 6,

i.e., for the decision on whether or not a neuron could be characterized. This feature had the

highest observed agreement and the lowest Fleiss’ pi value. This was due to the fact that the

10.4. EXPERTS’ AGREEMENT VALUES 175

F1 F2 F3 F4 F5 F6
0

0.2

0.4

0.6

0.8

1

A
gr

ee
m

en
t

Observed agreement
Fleiss’ pi

Figure 10.6: Expert’s feature agreement values.

category prevalence of this feature was very unbalanced, such that Characterized neurons

were much more frequent than Uncharacterized ones, reducing the values of the agreement

measures (see Section 4.2.2). A permutation test reported statistically significant differences

from chance agreement (uncorrected p-value < 0.0001) for all the features (see Section 4.3).

Figure 10.7 shows the observed agreement and Fleiss’ pi values for each category of every

feature (Section 4.2.3). The observed agreement for all categories in Features 1 to 3 was high

(Figure 10.7(a)), whereas Fleiss’ pi values were lower (Figure 10.7(b)). We also observed a

high agreement for categories Ascending and Descending in Feature 4, whereas agreement

was lower for category Both. Regarding Feature 5, we found that the Chandelier category

yielded the highest consensus, with similar values for Fleiss’ pi (Figure 10.7(b)) and the

observed agreement (Figure 10.7(a)). The level of agreement was also high or medium for

Martinotti, Horse-tail and Neurogliaform cells, whereas it was lower for the rest of the

proposed interneuron types (Large basket, Common basket, Common type, Cajal-Retzius,

Arcade and Other). As in the above agreement analysis for Feature 6, Characterized

and Uncharacterized yielded a low level of chance-corrected Fleiss’ pi agreement (Fig-

ure 10.7(b)). Some experts tried to characterize all the neurons whereas other experts

frequently categorized them as Uncharacterized (see Figure 10.5(f)). The differences in

experts’ biases and the unbalanced prevalence of the two categories explain the very low

Fleiss’ pi values for both Characterized and Uncharacterized categories. The values of

the observed agreement and the category-specific Fleiss’ pi indices for all the categories of

all the features significantly differed from chance agreement according to a permutation test

(uncorrected p-value < 0.0001).

In a separate analysis, we tried to identify possible outliers in the group of experts by

studying the influence of every one of the experts in the chance-corrected Fleiss’ pi index

computed for each feature (Figure 10.8(a)). Additionally, we also removed groups of three

experts in all possible combinations to further identify possible sets of experts contributing

176 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

F1 F2 F3 F4 F5 F6
0

0.2

0.4

0.6

0.8

1

O
bs

er
ve

d
ag

re
em

en
t

In
tra

la
m

in
ar Tr

an
sla

m
in

ar

In
tra

co
lu

m
na

r
Tr

an
sc

ol
um

na
r

Ce
nt

er
ed

Di
sp

la
ce

d

As
ce

nd
in

g

De
sc

en
di

ng
Bo

th

Co
m

m
on

 ty
pe

Ho
rs

e−
ta

il
Ch

an
de

lie
r

M
ar

tin
ot

ti
Co

m
m

on
 b

as
ke

t
Ar

ca
de

La
rg

e
ba

sk
et

Ca
ja

l−
Re

tz
iu

s
Ne

ur
og

lia
fo

rm
O

th
er

Ch
ar

ac
te

riz
ed

Un
ch

ar
ac

te
riz

ed
(a) Observed agreement

F1 F2 F3 F4 F5 F6
0

0.2

0.4

0.6

0.8

1

Fl
ei

ss
’ p

i in
de

x

In
tra

la
m

in
ar

Tr
an

sla
m

in
ar

In
tra

co
lu

m
na

r
Tr

an
sc

ol
um

na
r

Ce
nt

er
ed

Di
sp

la
ce

d

As
ce

nd
in

g
De

sc
en

di
ng

Bo
th

Co
m

m
on

 ty
pe

Ho
rs

e−
ta

il
Ch

an
de

lie
r

M
ar

tin
ot

ti
Co

m
m

on
 b

as
ke

t
Ar

ca
de

La
rg

e
ba

sk
et

Ca
ja

l−
Re

tz
iu

s
Ne

ur
og

lia
fo

rm
O

th
er

Ch
ar

ac
te

riz
ed

Un
ch

ar
ac

te
riz

ed

(b) Fleiss’ pi

Figure 10.7: Experts’ agreement values for each category of each feature.

to low Fleiss’ pi index values (Figure 10.8(b)). Agreement increased for Features 1 and 3

when expert 33 was removed (as revealed by the small peak in the blue and red curves).

This is consistent with the different selection of categories by this expert for these features

(see rightmost expert in Figures 10.5(a) and (c)). Similarly, removing expert 23 increased

the agreement for Feature 6, as shown by the peak in the ochre curve. The peaks in Figure

10.8(b) corresponded to the subgroups of experts excluding expert 33 in Features 1 and 3,

and expert 23 in Feature 6. For instance, this means that expert 33 selected categories for

Features 1 and 3 in a different way than the rest of the experts. The agreement for Features 2,

4 and 5 did not vary when one or three experts were removed. The largest difference in Fleiss’

pi index corresponded to the scenario where experts 23, 24 and 29 were removed in Feature 6.

In this case, the agreement increased from 0.269 (when the 42 experts were considered) to

0.3628 (when 39 experts were considered). However, we did not remove any expert from the

remainder of the analysis since there was not an expert (or a group of three experts) whose

removal produced statistically significant Fleiss’ pi index differences for all features.

Next, we investigated whether the Fleiss’ pi values increased or decreased when merging

two categories of Feature 5. The rationale for this was to study possible overlapping between

interneuron types. Table 10.1 shows the values obtained in the analyses where a particular

category (rows) was merged with another category (columns). The reference value obtained

when all the interneuron types were considered as different categories was 0.2963 (purple

cross in Figure 10.6). Thus, Fleiss’ pi values above this number will indicate categories

that were confused with each other. Merging category Martinotti with any other category

decreased Fleiss’ pi value, with one exception, namely when categories Martinotti and Other

were merged. The lowest Fleiss’ pi value (0.2645) in Table 10.1 was achieved when category

Martinotti was merged with category Common basket. The Fleiss’ pi value was also lower in

all analyses in which category Chandelier was merged with any other category. These results

suggest that these interneuron types are well defined and easily distinguishable. Extending

10.4. EXPERTS’ AGREEMENT VALUES 177

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Subgroups of experts when removing 1 expert

F
le

is
s’

 p
i i

nd
ex

(a)

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Subgroups of experts when removing 3 experts

F
le

is
s’

 p
i i

nd
ex

(b)

Figure 10.8: Fleiss’ pi values for all the groups of experts obtained (a) when removing one
expert (42 possible subgroups) and (b) when three experts were removed (11480 possible
subgroups).

Table 10.1: Fleiss’ pi index values when a category of Feature 5 is merged with another
category. The numbers in columns refer to the number of the interneuron types in rows.

2 3 4 5 6 7 8 9 10. Other

1. Common Type 0.2973 0.2891 0.2876 0.3444 0.3040 0.3187 0.2970 0.2836 0.3158
2. Horse-tail 0.2937 0.2854 0.2790 0.2969 0.2844 0.2962 0.2862 0.3102
3. Chandelier 0.2910 0.2922 0.2959 0.2909 0.2963 0.2944 0.2945
4. Martinotti 0.2645 0.2941 0.2916 0.2961 0.2803 0.2984
5. Common basket 0.3006 0.3170 0.2959 0.3259 0.2977
6. Arcade 0.3003 0.2963 0.2953 0.2982
7. Large basket 0.2973 0.2839 0.2961
8. Cajal-Retzius 0.2962 0.2965
9. Neurogliaform 0.2952

this analysis beyond pairwise merges, the Fleiss’ pi value was lowest (0.2312) when categories

Horse-tail, Martinotti and Common basket were all merged together into a single category

(not shown).

The highest Fleiss’ pi value (0.3444) was achieved when categories Common type and

Common basket were merged, revealing ill-defined neuron types. Fleiss’ pi value also increased

when merging categories Common basket and Neurogliaform (0.3259), Common type and

Large basket (0.3187), and Common basket and Large basket (0.3170). When we consid-

ered combinations of three neuronal types, the highest Fleiss’ pi value (0.4110) was achieved

when categories Common type, Common basket, and Large basket were merged into a single

category (not shown).

Furthermore, the above results were confirmed in a separate analysis using Cohen’s kappa

index. This index is defined for scenarios with two experts and two categories (see Sec-

tion 4.2.2.1). Additionally, two of its variants were computed (see Section 4.2.2.1): the ratio

between Cohen’s kappa and its maximum value taking into account fixed marginals (κ/κmax),

and the PABAκ index. Thus, we assessed the level of agreement between all possible pairs of

experts resulting in a comparison of each expert with all the other 41 experts (Figures 10.9,

178 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

10.10 and 10.11). For example, the first blue box in Figure 10.9(c) summarizes the Cohen’s

kappa values between the first expert and the other 41 experts regarding the categorization

of a neuron as Chandelier. Thus, this high-valued box means that this expert categorized

as Chandelier the same neurons as the majority of the remaining experts. Also, we can

conclude that there was a high agreement between experts for category Chandelier, since

all boxplots (excluding expert #20) showed high Cohen’s kappa index values. Other cate-

gories showing high agreement were Martinotti and Horse-tail. In contrast, a low level of

agreement was found for Common type (Figures 10.9(a)), Common basket (Figures 10.9(e)),

and Large basket cells (Figures 10.9(g)), as reflected by the low values of the boxplots. The

agreement values of PABAκ and the ratio κ/κmax were similarly low for these categories

(Figures 10.10 and 10.11). However, Arcade and Other categories yielded low agreements for

Cohen’s kappa (Figures 10.9(f) and (j)) and the ratio between Cohen’s kappa and its max-

imum value (Figures 10.11(f) and (j)), whereas the agreement values of PABAκ were high

(Figures 10.10(f) and (j)). The low agreement found in these two categories is probably due

to the low number of votes assigned by the experts to these categories. In fact, Arcade was

the second category (after Cajal-Retzius) with fewest votes. Since PABAκ corrects for the

differences in the number of votes, it yields much higher values (Figure 10.10) than Cohen’s

kappa or the ratio between Cohen’s kappa and its maximum value. Similar conclusions can

be drawn for category Other.

10.5 Neuron clustering

We ran clustering algorithms to find groups of neurons at two levels: neuron clustering

for each feature independently and neuron clustering for all features simultaneously. These

algorithms find clusters of neurons with similar properties. Then, we studied whether or not

all the neurons in a cluster were assigned the same categories by the experts. The goal was

to check whether or not the experts’ votes for a given feature could separate neurons into

clear groups.

10.5.1 Neuron clustering for each feature

First, we wanted to generate clusters for the set of N neurons considering each feature

independently. For a given feature, we used the category assigned for each expert to each

neuron (category value q = 1, . . . , Q) as information for the clustering. Therefore, the dataset

used for the clustering algorithm had N = 320 instances (neurons), where each instance is

an n-dimensional vector (n = 42 experts).

We applied the K-modes algorithm [268], an extension of the K-means algorithm [347]

that manages categorical data. Algorithm 10.1 sketches the main steps of the K-means

algorithm, which are the same as in the K-modes algorithm. The goal of the K-means

algorithm is to find the K cluster centers C = {c1, . . . , cK} that minimize a measure of

dissimilarity, where K > 1 is a parameter of the algorithm indicating the number of clusters.

For Features 1-3 and 6 a number of clusters K = 2 was used. For Feature 4, three clusters

10.5. NEURON CLUSTERING 179

1 10 20 30 40
0

0.5

1

(a) Common type

1 10 20 30 40
0

0.5

1

(b) Horse-tail

1 10 20 30 40
0

0.5

1

(c) Chandelier

1 10 20 30 40
0

0.5

1

(d) Martinotti

1 10 20 30 40

0

0.5

1

(e) Common basket

1 10 20 30 40
0

0.5

1

(f) Arcade

1 10 20 30 40
0

0.5

1

(g) Large basket

1 10 20 30 40
0

0.5

1

(h) Cajal-Retzius

1 10 20 30 40
0

0.5

1

(i) Neurogliaform

1 10 20 30 40
0

0.5

1

(j) Other

Figure 10.9: Boxplots showing Cohen’s kappa values for each pair of experts when comparing
one category against all other categories in Feature 5. For example, the first box in panel
(a) shows the agreement between the first expert (X-axis) and the rest of the experts for
category Common type.

180 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

1 10 20 30 40

0

0.5

1

(a) Common type

1 10 20 30 40
0

0.5

1

(b) Horse-tail

1 10 20 30 40
0

0.5

1

(c) Chandelier

1 10 20 30 40
0

0.5

1

(d) Martinotti

1 10 20 30 40

0

0.5

1

(e) Common basket

1 10 20 30 40
0

0.5

1

(f) Arcade

1 10 20 30 40
0

0.5

1

(g) Large basket

1 10 20 30 40
0

0.5

1

(h) Cajal-Retzius

1 10 20 30 40
0

0.5

1

(i) Neurogliaform

1 10 20 30 40

0

0.5

1

(j) Other

Figure 10.10: Boxplots showing Cohen’s Prevalence-Adjusted Bias-Adjusted kappa (PABAκ)
values for each pair of experts when comparing one category against all other categories in
Feature 5. For example, the first box in panel (a) shows the agreement between the first
expert (X-axis) and the rest of the experts for category Common type.

10.5. NEURON CLUSTERING 181

1 10 20 30 40
−0.5

0

0.5

1

(a) Common type

1 10 20 30 40
0

0.5

1

(b) Horse-tail

1 10 20 30 40
0

0.5

1

(c) Chandelier

1 10 20 30 40
0

0.5

1

(d) Martinotti

1 10 20 30 40

0

0.5

1

(e) Common basket

1 10 20 30 40

0

0.5

1

(f) Arcade

1 10 20 30 40

0

0.5

1

(g) Large basket

1 10 20 30 40
0

0.5

1

(h) Cajal-Retzius

1 10 20 30 40

0

0.5

1

(i) Neurogliaform

1 10 20 30 40

−0.5

0

0.5

1

(j) Other

Figure 10.11: Boxplots showing the ratio between Cohen’ kappa and its maximum value given
fixed marginal frequencies for each pair of experts when comparing one category against all
other categories in Feature 5. For example, the first box in panel (a) shows the agreement
between the first expert (X-axis) and the rest of the experts for category Common type.

182 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

(K = 3) were selected. Different numbers of clusters (six to ten) were analyzed for Feature 5.

The clearest results from a biological interpretation point of view were obtained with K = 8.

A neuron is assigned to the cluster with the closest center. Therefore, the fitness function to

minimize is the sum of the distance of each item to the center of its cluster.

For categorical data, K-modes uses the Hamming distance to measure the distance be-

tween two items (neurons) or between an item and a cluster center d(xi, ck). The set of cluster

centers C is found by computing the modes of the items belonging to the cluster (Combine

operation in step 2.(c)). Ties when computing the modes or when assigning items to clusters

are broken randomly. In our implementation, the algorithm stopped when no change in the

cluster centers occurred or when the fitness function had the same value for 100 consecutive

iterations.

Algorithm 10.1 (K-means clustering algorithm)

Inputs:

DX: A dataset with N observations DX = {x1, . . . ,xN}, xj = (xj1, . . . , xjn), j =

1, . . . , N .

K: The number of clusters

Output: The set of cluster centers C = {c1, . . . , cK}
Steps:

1. Initialize the K cluster centers C = {c1, . . . , cK} to K random observations in DX

without replacement.

2. While the cluster centers C change

(a) For each observation xj, j = 1, . . . , N , compute the dissimilarity between xj and

each cluster center ck: d(xj , ck).

(b) Assign each observation xj to cluster k∗j ∈ {1, . . . ,K} with the closest center:

k∗j ← argmink=1,...,K d(xj , ck).

(c) Recompute the cluster centers C from the observations in each cluster: ck ←
Combine({xj ∈ DX|k∗j = k}).

3. Return the cluster centers C.

TheK-means algorithm iteratively minimizes the sum of the distances of each observation

to its cluster center: J(DX,C) =
∑N

j=1 d(xj , ck∗j). K-means (and also K-modes) is guaran-

teed to find a local minimum of J(DX,C). Therefore, they can yield suboptimal solutions if

it gets stuck in local minima. To avoid this situation, the algorithm was run several times (25

in our case) with different initial values for the cluster centers in step 1 of Algorithm 10.1.

The best result (minimum fitness function value) is reported.

For Feature 1, the K-modes algorithm (with K = 2) separated neurons into one clus-

ter of neurons mainly categorized by the experts as Translaminar (Figure 10.12(a)), and

10.5. NEURON CLUSTERING 183

another cluster of neurons mainly categorized as Intralaminar (Figure 10.12(b)). The ver-

tical bars in the graphs show the number of experts who selected each category for each

neuron in the cluster. However, note that the K-modes algorithm does not use this sum-

marized information. Instead, it clusters the neurons using the category selected by each

expert individually. Similarly, single clusters were easily identified for every category of Fea-

ture 2 (Figure 10.13) and 3 (Figure 10.14). Regarding Feature 4, the K-modes algorithm

(K = 3) found two clusters of neurons mainly categorized by the experts as Ascending (Fig-

ure 10.15(a)) and Descending (Figure 10.15(b)), respectively. However, the third cluster

(Figure 10.15(c)) contains neurons categorized by the experts as Ascending, Descending or

Both, showing confusion about the Both category. With respect to Feature 5, the K-modes

algorithm (K = 8) identified individual clusters containing neurons mainly categorized by

the experts as Martinotti (Figure 10.16(a)), Horse-tail (Figure 10.16(b)), Chandelier

(Figure 10.16(f)) or Neurogliaform (Figure 10.16(g)). However, category Neurogliaform

was sometimes confused with categories Common type and Common basket (Figures 10.16(c),

(e) and (g)). Other clusters included neurons that the experts categorized as Common type,

Common basket, and Large basket (Figure 10.16(d), (e) and (h)). Thus, the K-modes clus-

tering algorithm identified clusters where these three interneuron types were intermingled.

The algorithm also showed that the Arcade category appeared distributed in all clusters,

although this category was more frequent in clusters in which Common type, Common basket,

and Large basket categories were also frequent (Figure 10.16(h)). As for Feature 6, the K-

modes (K = 2) identified a cluster with neurons mainly categorized as Characterized (Fig-

ure 10.17(a)), whereas Figure 10.17(b) contains neurons categorized as either Characterized

or Uncharacterized by different experts, showing disagreements for these neurons.

0

42
0

42

Neurons (N = 224)

Intralaminar

Translaminar

(a)

0

42
0

42

Neurons (N = 96)

Intralaminar

Translaminar

(b)

Figure 10.12: Clusters of neurons obtained with the K-modes algorithm (K = 2) for Fea-
ture 1. Vertical bars show the number of experts who selected each category for each neuron
in the cluster. Neurons have been sorted in ascending order by the number of votes in the
Intralaminar category for clarity. Panels (a) and (b) clearly correspond to Translaminar

and Intralaminar categories, respectively. The number of neurons (N) for each cluster is
shown at the bottom of each panel.

184 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

0

42
0

42

Neurons (N = 131)

Intracolumnar

Transcolumnar

(a)

0

42
0

42

Neurons (N = 189)

Intracolumnar

Transcolumnar

(b)

Figure 10.13: Clusters of neurons obtained with the K-modes algorithm (K = 2) for Fea-
ture 2. Vertical bars show the number of experts who selected each category for each neuron
in the cluster. Neurons have been sorted in ascending order by the number of votes in the
Intracolumnar category for clarity. Panel (a) clearly corresponds to neurons mainly catego-
rized as Transcolumnar, whereas panel (b) clearly corresponds to Intracolumnar.

0

42
0

42

Neurons (N = 171)

Centered

Displaced

(a)

0

42
0

42

Neurons (N = 149)

Centered

Displaced

(b)

Figure 10.14: Clusters of neurons obtained with the K-modes algorithm (K = 2) for Fea-
ture 3. Vertical bars show the number of experts who selected each category for each neuron
in the cluster. Neurons have been sorted in ascending order by the number of votes in
the Centered category for clarity. Panels (a) and (b) clearly correspond to Displaced and
Centered categories, respectively.

10.5. NEURON CLUSTERING 185

0

420

420

42

Neurons (N = 66)

Ascending

Descending

Both

(a)

0

420

420

42

Neurons (N = 60)

Ascending

Descending

Both

(b)

0

420

420

42

Neurons (N = 194)

Ascending

Descending

Both

(c)

Figure 10.15: Clusters of neurons obtained with the K-modes algorithm (K = 3) for Fea-
ture 4. Vertical bars show the number of experts who selected each category for each neuron
in the cluster. Neurons have been sorted in ascending order by the number of votes in the
Ascending category for clarity. Panels (a) and (b) correspond to neurons mainly categorized
as Ascending and Descending, respectively. Panel (c) shows neurons where different experts
disagreed, categorizing them as Ascending, Descending or Both.

186 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

Neurons (N = 44)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(a)

Neurons (N = 35)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(b)

Neurons (N = 24)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(c)

Neurons (N = 54)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(d)

Neurons (N = 54)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(e)

Neurons (N = 9)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(f)

Neurons (N = 20)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(g)

Neurons (N = 80)
Common type

Horse−tail
Chandelier

Martinotti
Common basket

Arcade
Large basket

Cajal−Retzius
Neurogliaform

Other

(h)

Figure 10.16: Clusters of neurons obtained with the K-modes algorithm (K = 8) for Fea-
ture 5. Vertical bars show the number of experts who selected each category for each neuron
in the cluster. Neurons have been sorted in ascending order by the number of votes in the
Common type for clarity. Panels (a) and (f) show clusters of neurons clearly corresponding
to Martinotti and Chandelier cells, respectively. Other panels (e.g., (e)) show clusters of
neurons that did not correspond to a single category.

10.5. NEURON CLUSTERING 187

0

42
0

42

Neurons (N = 297)

Characterized

Uncharacterized

(a)

0

42
0

42

Neurons (N = 23)

Characterized

Uncharacterized

(b)

Figure 10.17: Clusters of neurons obtained with the K-modes algorithm (K = 2) for Fea-
ture 6. Vertical bars show the number of experts who selected each category for each neuron
in the cluster. Neurons have been sorted in ascending order by the number of votes in
the Characterized category for clarity. Panel (a) contains neurons mainly categorized as
Characterized, whereas panel (b) contains neurons where different experts disagreed, cate-
gorizing them as either Characterized or Uncharacterized.

188 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

10.5.2 Neuron clustering for all the features

We wanted to generate clusters of cells taking into account the agreement of the experts in

all the features at the same time. For every neuron, we computed the number of experts that

assigned the neuron to each category of every feature. Therefore, the dataset used in the clus-

tering algorithm had N = 320 instances (neurons), and each instance was an n-dimensional

vector (n = 21), corresponding to all the categories of the six features: Intralaminar,

Translaminar, Intracolumnar, Transcolumnar, Centered, Displaced, Ascending, De-

scending, Both, Common type, Horse-tail, Chandelier, Martinotti, Common basket, Ar-

cade, Large basket, Cajal-Retzius, Neurogliaform, Other, Characterized, and Unchar-

acterized.

We used the K-means algorithm to cluster cells according to the number of votes each

neuron had in each category. Different numbers of clusters (six to ten) were analyzed. The

clearest results for biological interpretation were obtained with K = 6. For continuous data,

K-means uses Euclidean distance to compute the distance between every two items d(xi,xj),

i 6= j. Every time step 2.(c) in Algorithm 10.1 is performed, K-means computes the cluster

centers as the centroid of the items in the cluster (Combine operation).

The algorithm was run 25 times with different initial values for the cluster centers to

avoid local optima, similarly to K-modes, and the best result was shown. The clusters were

illustrated using parallel coordinate diagrams [514]. Each line represents one neuron in the

cluster and its height shows the number of experts who selected each category for that neuron.

A small amount of noise drawn from a normal distribution N (0, 0.75) was added to the values

to ensure that all lines were visible.

Figure 10.18 represents the clusters obtained in the analysis. We found some clusters

containing neurons with clearly identified categories. For example, Figure 10.18(c) shows a

cluster of neurons that were clearly categorized as Intralaminar, Intracolumnar, Centered,

and Characterized. Furthermore, some of these neurons were mainly categorized as either

Common type, Chandelier, Common basket or Neurogliaform. Similarly, Figure 10.18(e)

shows neurons that were mainly categorized as Translaminar, Transcolumnar, Displaced,

Ascending, Martinotti, and Characterized. On the other hand, Figure 10.18(a) shows

a cluster of neurons mainly categorized as Translaminar and Intracolumnar, but were

not clearly categorized for the rest of the features. The cluster in Figure 10.18(d) includes

neurons mainly categorized as Characterized, Translaminar, Intracolumnar, Displaced,

Descending and Horse-tail. Figure 10.18(f) shows a cluster with low agreement, where

categories Common type, Common basket and Large basket received most of the votes. Fi-

nally, Figure 10.18(b) shows a cluster of neurons showing no clearly identified categories,

corresponding mainly to Uncharacterized neurons.

10.5. NEURON CLUSTERING 189

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)11)12)13)14)15)16)17)18)19)20)21)

0

10

20

30

40

N
um

be
r

of
 e

xp
er

ts

(a) N = 55

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)11)12)13)14)15)16)17)18)19)20)21)

0

10

20

30

40

N
um

be
r

of
 e

xp
er

ts

(b) N = 21

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)11)12)13)14)15)16)17)18)19)20)21)

0

10

20

30

40

N
um

be
r

of
 e

xp
er

ts

(c) N = 68

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)11)12)13)14)15)16)17)18)19)20)21)

0

10

20

30

40

N
um

be
r

of
 e

xp
er

ts

(d) N = 44

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)11)12)13)14)15)16)17)18)19)20)21)

0

10

20

30

40

N
um

be
r

of
 e

xp
er

ts

(e) N = 60

 1) 2) 3) 4) 5) 6) 7) 8) 9) 10)11)12)13)14)15)16)17)18)19)20)21)

0

10

20

30

40

N
um

be
r

of
 e

xp
er

ts

(f) N = 72

Figure 10.18: Clusters of neurons considering all features simultaneously. (a-f) Parallel co-
ordinates diagrams of clusters of neurons obtained with the K-means algorithm (K = 6)
considering all the features at the same time. Each line represents one neuron, showing
the number of experts who selected each category of every feature when classifying that
neuron. For example, panel (b) shows a cluster where the majority of neurons were catego-
rized by many experts as Translaminar (blue), Transcolumnar (red), Displaced (green),
Ascending (light blue), Martinotti (purple) and Characterized (ochre). The categories
are numbered: 1) Intralaminar, 2) Translaminar, 3) Intracolumnar, 4) Transcolumnar,
5) Centered, 6) Displaced, 7) Ascending, 8) Descending, 9) Both, 10) Common type, 11)
Horse-tail, 12) Chandelier, 13) Martinotti, 14) Common basket, 15) Arcade, 16) Large
basket, 17) Cajal-Retzius, 18) Neurogliaform, 19) Other, 20) Characterized, and 21)
Uncharacterized.

190 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

10.6 Bayesian networks for modeling experts’ opinions

A BN was learned for each one of the R = 42 experts who completed the experiment.

The goal was to build a model which captures how each expert understands the values of

the morphological attributes and their relationships. The graphical representation of the

BN structures offers a compact and easy way for the experts in the domain to interpret their

models. The BNs were learned independently for each expert, so they do not capture whether

or not the experts classified the same neurons in the same way. However, since the experts

classified the same set of interneurons, we can use the BNs to systematically analyze their

opinions and behaviors. One would expect that if two experts differed in their opinions (as

encoded in their BNs), then they would also classify the neurons differently.

Therefore, one dataset for each expert was generated with the classifications provided in

the experiment. The resulting dataset had N = 320 observations (the number of interneurons

in the experiment) and n = 6 variables, which corresponded to the features that the experts

were asked to classify. Some restrictions on different combinations of feature values were im-

posed in the experiment design, e.g., selecting Uncharacterized in the first feature disabled

all the other variables. Therefore, when a neuron was classified as Uncharacterized, the

values for the other variables were empty. Similarly, Feature 4 was only available for classifi-

cation when Translaminar and Displaced were selected for Features 1 and 3, respectively.

To build the dataset for each expert, we filled in incomplete observations with a new cate-

gory named Dummy. Therefore, for each expert, we had a dataset with categorical variables

Xi, i = 1, . . . , 6 with ri values, respectively:

X1 (r1 = 3): Intralaminar, Translaminar, Dummy.

X2 (r2 = 3): Intracolumnar, Transcolumnar, Dummy.

X3 (r3 = 3): Centered, Displaced, Dummy.

X4 (r4 = 4): Ascending, Descending, Both, Dummy.

X5 (r5 = 11): Common type, Horse-tail, Chandelier, Martinotti, Common basket,

Arcade, Large basket, Cajal-Retzius, Neurogliaform, Other, Dummy.

X6 (r6 = 2): Characterized, Uncharacterized.

We used the data provided by each expert in the experiment to learn a BN which en-

coded the conditional independence relationships between the variables for that expert. The

BNs were learned from data using a score+search approach (see Section 3.3.2). The GTT

algorithm (see Algorithm 3.2 on page 32) was used to search the space of DAGs, and the

K2 score (Equation (3.5) on page 30) was used to evaluate the candidate network structures.

The parameters of the BNs were fitted using maximum likelihood estimates with Laplace

correction. We did not allow any variable to be a parent of variable X6, corresponding to

Feature 6. This restriction encoded the knowledge that the decision of classifying a neuron

10.6. BAYESIAN NETWORKS FOR MODELING EXPERTS’ OPINIONS 191

(a) (b)

(c) (d)

Figure 10.19: BNs for experts 16 (a), 17 (b), 27 (c) and 32 (d). Martinotti was selected in
Feature 5 and the probabilities were propagated through the four BNs. Bar charts show the
propagated probabilities of the remaining features conditioned on the Martinotti category.

as Characterized or Uncharacterized should be taken before classifying all the other fea-

tures (modeled with variables X1 to X5). We limited the complexity of the BNs by imposing

a maximum of three parents for each variable. This allowed us to control the size of the

conditional probability distributions and to compute robust estimates of their parameters.

However, this was not a very restrictive constraint since only 5 out of 6× 42 = 252 variables

in all the BNs had three parents.

As an example, Figures 10.19 and 10.20 show four BNs corresponding to four different

experts. The BNs for experts 16 (Figure 10.19(a)) and 17 (Figure 10.19(b)) had the same

structure and similar propagated probabilities when these experts assigned a neuron as a

Martinotti cell in X5. The greatest difference between the two networks occurred in X2,

where the probabilities of Intracolumnar and Transcolumnar were respectively 0.34 and

0.64 for expert 16, and 0.56 and 0.42 for expert 17. The BNs for experts 27 (Figure 10.19(c))

and 32 (Figure 10.19(d)) had a different structure from each other and from experts 16 and

192 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

(a) (b)

(c) (d)

Figure 10.20: BNs for experts 16 (a), 17 (b), 27 (c) and 32 (d). Common basket was selected
in Feature 5 and the probabilities were propagated through the four BNs. Bar charts show
the propagated probabilities of the remaining features conditioned on the Common basket

category.

17. However, the probabilistic reasoning on X1 and on X3 when the four experts considered a

neuron as a Martinotti cell was similar, e.g., these four experts agreed (assigning probabili-

ties higher than 0.86) that Martinotti cells were Translaminar and Displaced. Differences

between the experts could also be identified in the BNs, e.g., X5 in Figure 10.19(c) did not

include as possible categories Arcade or Horse-tail cells, but included category Other. That

means that expert 27 did not categorize any neuron as Arcade or Horse-tail.

We also used BNs to analyze the disagreements between experts about the classification

of interneuron types. Figure 10.20 shows the BNs for the same four experts when Common

basket was selected as evidence in X5 and the probabilities were propagated. The posterior

probabilities for expert 16 (Figure 10.20(a)) and expert 17 (Figure 10.20(b)) were similar

but they were different for expert 27 (Figure 10.20(c)) and expert 32 (Figure 10.20(d)). For

example, regarding X1, the probability of Translaminar was 0.78 in Figure 10.20(c) and

10.7. SUPERVISED CLASSIFICATION OF INTERNEURONS 193

0.32 in Figure 10.20(d). With respect to X2, the probability of a Common basket being

Transcolumnar was 0.71 in Figure 10.20(c), whereas in the other three BNs the probability

was below 0.24. For X3, Centered was the most probable value in Figure 10.20(d) and

Displaced had the highest probability in Figure 10.20(c). Also, Figure 10.20(c) shows a

higher probability for the category Both in X4 than the other BNs.

The analysis of the 42 BN structures is summarized in Figure 10.21, including frequent

relationships (high numbers) and rare relationships between features. X1, X3 and X4 ap-

peared frequently related. This could be explained by the fact that categories Ascending,

Descending and Both are associated to categories Translaminar and Displaced, describing

the vertical orientation of the neuron. X5 was frequently linked to X1, X2, and X4 in more

than half of the BN structures. Therefore, these three features (laminar, columnar, and as-

cending/descending) are identified in this analysis as relevant when describing morphological

properties of interneuron types (X5).

Figure 10.21: Number of BNs out of 42 that include the possible (undirected) edge between
the nodes in the corresponding row and column. The presence of an edge in the BN indicates
that the choices of categories in those features by that expert are related. Frequency of
relationships is highlighted with a gradient of color shades from red (most frequent) to white
(non-existent or rare).

10.7 Supervised classification of interneurons

We aimed to build a model that could automatically classify the neurons in each of the six

features on the basis of a set of morphological measurements of the digital 3D reconstructions.

From the total of 320 neurons, we used the 241 neurons for which digital 3D morphological

reconstructions were available. We loaded the neurons in Neurolucida Explorer software

and performed the branched structure, convex hull, Sholl, fractal, vertex and branch angle

analyses. These analyses were conducted for the complete neuronal morphology as well

as separately for the dendritic and axonal arbors. These analyses yielded a set of 2,886

morphological measures of each neuron, including:

General information about the dendrites and the axons, e.g., the number of endings,

the number of nodes (branching points), the total length and the mean length of each

dendritic arbor, etc.

Morphometric measures of the soma such as the area, aspect ratio, compactness, con-

194 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

vexity, contour size (maximum and minimum feret), form factor, perimeter, roundness

and solidity.

The total, mean, median and standard deviation of the length of the segments belonging

to dendritic arbors and axons independently. Also, we performed these analyses dividing

the segments by their centrifugal order from the soma.

Number of nodes and segments of the complete dendrites and axons, and number of

nodes and segments measured by centrifugal order.

Convex hull analysis. We performed 2D and 3D convex hull analysis of the dendrites

and the axon independently to obtain measures of the area, perimeter, volume and

surface of the neuronal morphology.

Sholl analysis. We computed the number of intersections in concentric spheres centered

at the soma with increasing radii of 20 µm. We also used the number of endings, nodes

and the total length of the segments included in those spheres.

Fractal analysis. We computed the fractal dimension for the dendrites and the axon

independently using the box-counting method [351]. The fractal dimension is a quantity

that indicates how completely the neuron fills space.

Vertex analysis of the connectivity of the nodes in the branches to describe the topo-

logical and metric properties of the arbors. We used the number of nodes of each one of

the three types: Va (branching points where the two child segments end), Vb (branching

points where one of the child segments end) and Vc (branching points where the two

child segments bifurcate). We also used the ratio Va/Vb and computed the number of

nodes of each type by centrifugal order.

Branch angle analysis. We used planar, local and spline angles that measure the direc-

tion of the branches at different levels. We computed the mean, standard deviation,

and median of the three angles for dendrites and axon individually. Additionally, we

computed the mean, standard deviation, and median of the angles of the segments

grouped by centrifugal order.

Many variables were measured according to the centrifugal order of the segments they

belonged to. Since neurons have different maximum centrifugal order, length, etc., each

neuron had a different number of computable variables. For example, one neuron might have

dendrites with a maximum centrifugal order of 9 and another neuron could have dendrites

with a maximum centrifugal order of 5. Variables that measured neuron morphology at orders

6, 7, 8 and 9 were not computable in the second neuron, so we set those values to 0 to be

manageable by the algorithms. Variables concerning the complete neuron morphology are

not affected by this issue, since they were obtained from the data directly coming from the

3D reconstructions. For each one of the features in the experiment, we had to assign a single

“true category” (true class label) to each neuron. We used the most frequently occurring

10.7. SUPERVISED CLASSIFICATION OF INTERNEURONS 195

value in the 42 assignments made by the experts who completed the experiment, i.e., we

applied a simple majority vote to assign a class label to each neuron for each feature. Using

this approach, there were no neurons categorized as Arcade, Cajal-Retzius or Other by the

majority of the experts.

We applied the following 10 classification algorithms available in Weka [236] using their

default parameters [519] (see Section 2.3.1 for a brief description of the supervised learning

approaches).

NB: Naive Bayes classifier, where the conditional distributions of the continuous variables

given the class values are modeled using Gaussian distributions [408].

NBdis: Discrete naive Bayes classifier [372]. The continuous variables are discretized

using Fayyad and Irani’s supervised discretization technique [170].

RBFN: Artificial neural network for classification tasks with one single hidden layer that

uses Gaussian radial basis functions as activation functions [45].

SMO: Support vector machine with polynomial kernels implementing the sequential min-

imal optimization algorithm [293, 416].

IB1: Nearest neighbor classifier [7].

IB3: Nearest neighbor classifier using 3 neighbors.

JRip: Rule induction technique using RIPPER algorithm [95].

J48: Classification tree using C4.5 algorithm [421].

RForest: Classification technique using a set of random tree classifiers [64].

RTree: Classification tree that chooses the variables at each node randomly.

Additionally, two variable selection methods were studied:

GainRatio: A univariate filter algorithm that ranks the predictive variables according

to their information gain ratio [420] with the class label and keeps the best 500 variables.

CfsSubset: This algorithm tries to find a subset of predictive variables that is highly

correlated with the class, but has low intercorrelation between the predictive variables.

It starts with an empty subset and iteratively adds the variable that yields a subset

with the highest correlation value. The correlation measures the symmetric uncertainty

of each variable in the subset with the class (to maximize), and adjusts it to take into

account the symmetric uncertainty between the predictive variables (to minimize). The

symmetric uncertainty is a measure of correlation based on the marginal entropies and

the joint entropies between pairs of variables [237].

196 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

The accuracy of the classifiers was estimated using the leave-one-out technique (see Sec-

tion 2.3.2). Additionally, we performed an exact binomial test to test the hypothesis that

the number of correctly classified neurons is greater than that expected with a base classi-

fier always assigning the class with maximum prior probability. To estimate the number of

correctly classified neurons, we multiplied the accuracy reported by the leave-one-out tech-

nique by 241. The null hypothesis is that the number of correctly classified neurons matches

241 times the maximum prior probability. The alternative hypothesis is that the number of

correctly classified neurons is higher than 241 times the maximum prior probability. Statis-

tical significance was established when the p-values were smaller than the significance level

α = 0.05.

These classification algorithms were applied in three different settings. Section 10.7.1

reports the results for the classifiers for each feature independently. The results of the binary

classifiers for each category in Feature 5 are shown in Section 10.7.2. Finally, we learned

classifiers merging confusing interneuron types in Section 10.7.3.

10.7.1 Classifiers for each feature independently

Each one of the features in the experiment was considered independently. The number of

class values was the same as the number of categories in the features, i.e., two class values

for Features 1-3 and 6; and three class values for Feature 4. There were no neurons classified

as Arcade, Cajal-Retzius or Other, so the classifiers for Feature 5 had 7 class values.

Table 10.2 shows the accuracy of the classifiers. The classifiers were able to distinguish

whether or not a neuron was Characterized, as the best result in accuracy is 99.17% (2 neu-

rons misclassified). The best performing classifiers for Feature 1 and Feature 2 yielded an

accuracy over 80%, whereas the best result for Feature 3 was 73.86%. The accuracy of the

classifiers was below 70% for both Feature 4 and Feature 5. One explanation for the low

accuracy for Feature 5 is that the class labels were not very reliable because the experts

frequently disagreed when classifying the neurons in this feature. However, it is also pos-

sible that the interneuron classes could not be distinguished using the set of morphological

measurements included in the study. Moreover, according to majority votes, the number of

neurons assigned by the experts to the different interneuron types were unbalanced, with only

three Chandelier cells and four Neurogliaform cells, but as many as 77 Common type cells

and 68 Common basket cells. This makes it especially difficult for the classifiers to distinguish

the least frequent neuronal types. Surprisingly, the classifiers achieved the lowest accuracy

for Feature 4. This may be explained by the same two factors indicated above: the Both

category was confusing to the experts, so the neurons might have been assigned to the wrong

category. Also, there may be no morphological variables that capture the orientation of the

axon. To test the significance of these results, we computed the category with maximum

prior probability for the classifier induced for each feature independently:

Feature 1: 0.7718 (achieved at Translaminar)

Feature 2: 0.5187 (Transcolumnar)

10.7. SUPERVISED CLASSIFICATION OF INTERNEURONS 197

Table 10.2: Accuracy (%) of the classifiers trained for each feature independently using ten
different classification algorithms (in columns) and three variable selection methods (in rows):
NoFSS (no feature subset selection, i.e., all variables selected), GainRatio, and CfsSubset.
The highest accuracy for each feature and variable selection method is highlighted in bold.
Additionally, the overall highest accuracy for each feature is shaded in gray. A binomial test
was used to check whether or not the classifiers outperformed a base classifier always selecting
the category with maximum prior probability. Asterisks indicate a p-value < 0.05.

NB NBdisc RBFN SMO IB1 IB3 JRip J48 RForest RTree

Feature 1: Intralaminar vs. Translaminar
NoFSS 57.68 58.51 77.59 82.16∗ 72.20 73.44 82.57∗ 85.48∗ 82.16∗ 75.93
GainRatio 64.73 54.36 79.67 82.99∗ 69.71 75.93 83.82∗ 85.48∗ 84.23∗ 79.67
CfsSubset 75.93 75.10 81.33 84.23∗ 73.86 80.08 84.65∗ 80.08 82.16∗ 80.08

Feature 2: Intracolumnar vs. Transcolumnar
NoFSS 59.75∗ 62.66∗ 52.28 75.52∗ 57.68∗ 65.56∗ 74.27∗ 68.46∗ 66.39∗ 58.09∗
GainRatio 66.39∗ 63.07∗ 53.11 76.35∗ 64.32∗ 65.98∗ 75.52∗ 68.88∗ 70.12∗ 65.98∗
CfsSubset 72.61∗ 65.56∗ 76.76∗ 81.33∗ 73.86∗ 73.03∗ 74.69∗ 70.54∗ 76.35∗ 69.29∗

Feature 3: Centered vs. Displaced
NoFSS 62.24 53.94 54.77 68.88∗ 64.73∗ 68.05∗ 66.80∗ 67.63∗ 68.46∗ 62.24
GainRatio 64.73∗ 73.03∗ 65.98∗ 70.54∗ 65.56∗ 71.37∗ 70.54∗ 66.39∗ 72.20∗ 68.46∗
CfsSubset 68.88∗ 73.86∗ 70.54∗ 73.03∗ 65.15∗ 68.05∗ 63.90∗ 71.78∗ 68.46∗ 65.15∗

Feature 4: Ascending vs. Descending vs. Both
NoFSS 34.44 27.80 44.40∗ 49.38∗ 41.91 38.59 33.61 54.36∗ 40.25 37.76
GainRatio 43.57∗ 33.20 43.98∗ 49.79∗ 41.91 42.32 43.57∗ 46.89∗ 45.64∗ 42.74
CfsSubset 47.30∗ 51.87∗ 47.30∗ 58.51∗ 47.30∗ 52.28∗ 48.13∗ 42.32 60.17∗ 47.30∗

Feature 5: Interneuron type (7 classes)
NoFSS 56.02∗ 19.09 45.23∗ 58.51∗ 50.62∗ 53.94∗ 50.62∗ 47.72∗ 52.28∗ 40.25∗
GainRatio 60.17∗ 26.14 58.92∗ 62.24∗ 49.79∗ 51.87∗ 48.55∗ 43.15∗ 58.09∗ 43.98∗
CfsSubset 61.00∗ 43.57∗ 61.41∗ 60.58∗ 58.09∗ 56.85∗ 53.94∗ 49.38∗ 56.85∗ 51.45∗

Feature 6: Characterized vs. Uncharacterized
NoFSS 77.18 88.38 95.85 97.93∗ 97.51 97.51 97.93∗ 97.51 96.27 95.85
GainRatio 98.34∗ 73.86 97.51 96.68 97.10 97.51 97.93∗ 97.93∗ 97.51 98.34∗
CfsSubset 97.51 89.63 96.27 97.10 95.44 95.02 97.93∗ 96.27 97.51 99.17∗

Feature 3: 0.5809 (Displaced)

Feature 4: 0.3817 (Ascending)

Feature 5: 0.3195 (Common type)

Feature 6: 0.9544 (Characterized)

For every feature, the best classifier in Table 10.2 significantly outperformed a base classifier

which always selects the class with maximum prior probability according to an exact binomial

test (see asterisks in Table 10.2).

To further analyze the results for Feature 5, Table 10.3 shows the confusion matrix of the

best performing algorithm (SMO), which achieved an accuracy of 62.24% (Table 10.2). The

confusion matrix shows the performance of an algorithm by displaying the number of neurons

of each true category (rows) matched to the categories predicted by the classifier (columns).

Some Martinotti cells were wrongly classified as Common type (9 cases), Large basket (4)

and Chandelier (1). This was similar to the results shown by the clustering algorithms.

Horse-tail cells were wrongly classified as Common type cells. Also, the classifier often

198 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

Table 10.3: Confusion matrix for the SMO classifier and the GainRatio variable selection
method using Feature 5 data. The numbers in columns refer to the number of the interneuron
types in rows. The main diagonal of the matrix (shaded) indicate the number of correctly
classified neurons, whereas non-zero values outside the main diagonal show the number of
wrongly classified neurons.

True class
Predicted class

1 2 3 4 5 6 7

1. Common type 55 1 0 5 11 5 0
2. Horse-tail 7 5 0 2 0 0 0
3. Chandelier 0 0 1 0 2 0 0
4. Martinotti 9 0 1 24 0 4 0
5. Common basket 15 1 0 0 49 3 0
6. Large basket 11 0 0 3 7 16 0
7. Neurogliaform 0 0 0 0 4 0 0

confused Common type, Common basket and Large basket neuron types (Table 10.3). The

four Neurogliaform cells and two out of the three Chandelier cells were wrongly classified

as Common basket.

10.7.2 Binary classifiers for each interneuron type

We induced a binary classifier (with two class values) to identify each category in Feature 5

versus all the other categories merged together. The goal was to check whether a particular

interneuron type could be distinguished from all the other interneuron types. Neurons clas-

sified as Chandelier (3 neurons) or Neurogliaform (4 neurons) were very rare. Therefore,

we did not induce binary classifiers for these two categories, because the class values would

be too unbalanced for the classifiers to find the characterizing properties of these interneuron

types. Table 10.4 shows the accuracies of the binary classifiers for each category. The clas-

sifiers for Horse-tail and Martinotti cells achieved high accuracies, whereas the classifiers

for Common type, Common basket, and Large basket cells yielded lower accuracies. The

maximum prior probabilities for these binary classifiers were:

Common type vs. the rest: 0.6805 (achieved at the rest)

Horse-tail vs. the rest: 0.9419 (the rest)

Martinotti vs. the rest: 0.8423 (the rest)

Common basket vs. the rest: 0.7178 (the rest)

Large basket vs. the rest: 0.8465 (the rest)

The induced classifiers were not able to significantly outperform the base classifier for

Horse-tail and Large basket categories. Few neurons were categorized as Horse-tail by

the majority of the experts, so it was difficult to induce classifiers able to distinguish this

10.7. SUPERVISED CLASSIFICATION OF INTERNEURONS 199

Table 10.4: Accuracy (%) of the binary classifiers (in columns) induced for the categories
in Feature 5 and two variable selection methods (in rows). Each classifier tried to identify
whether a neuron belonged to a particular category vs. all other categories, and this was
repeated for each category separately. The best results for each category and variable selection
method are highlighted with bold face. The highest accuracy for a given category is shaded
in gray. A binomial test was used to check whether or not the classifiers outperformed a base
classifier always selecting the category with maximum prior probability. Asterisks indicate a
p-value < 0.05.

NB NBdisc RBFN SMO IB1 IB3 JRip J48 RForest RTree

Common type vs. the rest
NoFSS 61.83 54.36 71.37 70.95 69.29 75.52∗ 77.59∗ 76.76∗ 78.84∗ 68.88
GainRatio 67.22 63.49 75.10∗ 69.71 71.37 74.27∗ 75.10∗ 77.18∗ 75.10∗ 68.88
CfsSubset 74.69∗ 64.32 75.10∗ 74.27∗ 76.76∗ 78.84∗ 71.78 69.29 70.95 68.88

Horse-tail vs. the rest
NoFSS 91.70 51.87 93.36 94.19 90.87 94.19 92.53 90.87 94.61 92.53
GainRatio 86.31 88.38 90.46 94.61 92.95 94.19 92.12 90.87 95.02 93.78
CfsSubset 92.53 72.61 93.36 95.02 94.61 93.36 92.12 93.78 93.78 94.19

Martinotti vs. the rest
NoFSS 84.23 65.56 82.99 88.80∗ 85.48 86.72 82.57 84.23 85.48 83.82
GainRatio 84.65 67.63 81.33 88.38∗ 84.65 87.14 84.23 80.91 85.89 83.40
CfsSubset 85.89 77.18 86.31 87.97 87.97 90.46∗ 84.65 84.23 87.55 85.48

Common basket vs. the rest
NoFSS 68.46 54.77 71.78 79.25∗ 77.18∗ 78.01∗ 78.84∗ 77.18∗ 78.42∗ 76.76∗
GainRatio 72.61 51.87 75.52 79.25∗ 76.76∗ 77.59∗ 76.35 74.27 83.40∗ 78.42∗
CfsSubset 78.01∗ 78.84∗ 80.91∗ 81.33∗ 77.59∗ 77.18∗ 79.25∗ 74.69 80.91∗ 79.25∗

Large basket vs. the rest
NoFSS 54.77 67.63 84.65 80.50 83.40 85.06 83.40 79.67 82.57 74.69
GainRatio 70.95 66.39 84.23 80.50 79.25 80.08 84.65 81.74 82.99 79.67
CfsSubset 81.74 59.34 81.33 82.99 80.91 82.57 84.23 82.57 84.65 80.08

category, even though it was easily distinguishable for the experts. This limitation should

vanish when more data become available. On the other hand, neurons categorized as Large

basket were difficult to distinguish for both experts and supervised classifiers.

10.7.3 Classifiers merging interneuron types

Following the agreement results observed in the previous analyses, we decided to check

whether the classification algorithms performed better when interneuron types that are diffi-

cult to distinguish were merged into one category. Therefore, we trained classifiers after hav-

ing merged the categories corresponding to Common type, Common basket and Large basket

into a single category, as these three interneuron types were frequently confused with each

other. The rest of the categories were considered individually. Table 10.5 shows the accuracy

of these supervised classifiers. When merging the three categories (Common type, Common

basket, and Large basket) into one single category, the accuracy of the best classifier in-

creased from 62.24% (Table 10.2) to 83.40%. When we only merged Common type and Common

basket cells, the best classifier accuracy was 73.86%. When only merging Common type and

Large basket, the best classifier accuracy was 69.29%. Lastly, only merging Common basket

and Large basket cells resulted in the best accuracy among classifiers of 70.12%. These re-

200 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

Table 10.5: Accuracy (%) of the classifiers (in columns) for Feature 5 in an analysis in which
Common type, Common basket, and Large basket or pairs among them were merged into
one category. Two variable selection methods are used (in rows). The best results for each
combination of categories and variable selection method are highlighted with bold face. The
highest accuracy for a given combinations of categories is shaded in gray. A binomial test was
used to check whether or not the classifiers outperformed a base classifier always selecting
the category with maximum prior probability. Asterisks indicate a p-value < 0.05.

NB NBdisc RBFN SMO IB1 IB3 JRip J48 RForest RTree

Common type + Common basket + Large basket vs. each neuron type
NoFSS 79.25 20.75 78.42 82.57∗ 74.69 79.67 77.18 69.29 79.25 70.12
GainRatio 77.18 32.37 73.86 80.91∗ 77.59 82.16∗ 73.44 73.44 78.84 73.03
CfsSubset 80.91∗ 50.21 80.91∗ 80.91∗ 80.50∗ 83.40∗ 74.27 75.10 83.40∗ 74.69

Common type + Common basket vs. each neuron type
NoFSS 67.22∗ 21.99 58.51 66.80∗ 60.58 66.80∗ 58.51 53.53 62.66 59.75
GainRatio 64.32 27.39 63.49 73.03∗ 63.07 65.56∗ 61.83 51.45 69.71∗ 61.83
CfsSubset 68.88∗ 39.83 68.88∗ 73.03∗ 70.12∗ 73.86∗ 64.73 63.90 69.71∗ 63.07

Common type + Large basket vs. each neuron type
NoFSS 60.17∗ 19.92 49.38 64.73∗ 57.26∗ 59.75∗ 56.02∗ 51.45 59.34∗ 51.45
GainRatio 64.73∗ 27.80 59.75∗ 68.46∗ 59.34∗ 63.07∗ 55.60 50.62 64.32∗ 54.36∗
CfsSubset 65.56∗ 39.83 69.71∗ 64.73∗ 65.98∗ 69.29∗ 57.68∗ 59.75∗ 64.73∗ 54.36∗

Common basket + Large basket vs. each neuron type
NoFSS 60.17∗ 16.60 54.36∗ 65.56∗ 58.09∗ 61.00∗ 55.60∗ 52.70∗ 62.66∗ 54.36∗
GainRatio 61.41∗ 51.45∗ 65.98∗ 64.32∗ 61.00∗ 65.56∗ 55.60∗ 49.79∗ 67.63∗ 53.53∗
CfsSubset 66.39∗ 41.08 68.46∗ 70.12∗ 64.73∗ 66.80∗ 52.70∗ 58.09∗ 68.46∗ 55.19∗

sults suggest that Common type, Common basket, and Large basket are not well-defined

categories. For all these experiments, the induced classifiers significantly outperformed the

base classifiers using the maximum prior probabilities:

Common type + Common basket + Large basket vs. each neuron type: 0.7552 (at

Common type + Common basket + Large basket)

Common type + Common basket vs. each neuron type: 0.6017 (Common type + Common

basket)

Common type + Large basket vs. each neuron type: 0.4730 (Common type + Large

basket)

Common basket + Large basket vs. each neuron type: 0.4357 (Common basket +

Large basket)

10.8 Conclusion

In this chapter we empirically and quantitatively demonstrated that the utilitarian approach

to neuron classification is problematic at this time, confirming the impression that differ-

ent researchers use their own, mutually inconsistent schemes for classifying neurons based

on morphological criteria. Many ambiguities are independent of the relative reconstruction

quality and completeness of the tested neurons. A striking indication of the problem is that,

10.8. CONCLUSION 201

in several cases, experts assigned different names to a neuron in this classification experi-

ment and in their own original publication from which that same neuron was taken. The

analyses of inter-expert agreement, application of BNs, and different clustering and classifica-

tion algorithms revealed readily distinguishable interneuron types and apparently confusing

interneuron names. High-consensus terms included Chandelier and Martinotti cells, indi-

cating that these are more easily identifiable interneuron types. Low-consensus terms included

Arcade, Common basket, Large basket and Cajal-Retzius cells, suggesting that these are

potentially less useful names. Researchers generally agreed on specific morphological features,

such as Ascending vs. Descending and Intracolumnar vs. Transcolumnar axonal arbor.

It should be kept in mind that the present analysis is limited to neurons from a small

number of species, representing mammals commonly used in brain research. These include:

rabbit, rat, mouse, cat, human and monkey. Although the results from our analysis may

be consistent among these mammalian orders, the level of inter-expert agreement was not

compared between species. Furthermore, the selection of interneurons from these species does

not cover the likely variability of interneuronal morphologies among all mammalian families.

In fact, except for the cat, the species in our study all belong to only one mammalian

superorder. Although several “canonical” neuronal morphologies are doubtlessly common

to all placental mammals, some species depart from the commonly observed neuron types

[258, 460]. Future inclusion of other species in the study will allow detailed analysis of

evolutionary conservation and species-specific neuron types.

The data collected for this research and the classifications provided by the experts for

each interneuron may be used in very different ways. BNs are the representation of choice for

uncertainty in artificial intelligence. BN fusion and aggregation is a topic of intense research.

In Chapter 11 we propose a method for learning a consensus BN that accurately represents

the opinions of a group of experts, and apply it to this data set of interneurons. Also, in this

chapter we used majority voting to aggregate the opinions of the experts and assign a single

category (class label) to each interneuron. However, more flexible approaches like the ones

mentioned in Section 2.5 could be used to analyze these data, e.g., semi-supervised learning,

partially supervised learning, etc. In Chapter 12 we propose a method for learning BNCs

when the true class label of the training instances is not known. Instead, for each training

instance, we have a vector with counts that model the number of experts who selected each

class label, and we use that information for learning the BNCs.

202 CHAPTER 10. CONSENSUS ANALYSIS FOR INTERNEURON CLASSIFICATION

Chapter 11
Bayesian network modeling of the

consensus between experts

11.1 Introduction

In Chapter 6 we highlighted the extreme morphological, molecular and electrophysiological

variability of neuronal cells [140, 413, 436, 472]. Neuronal morphology is a key feature in

the study of brain circuits, as it is highly related to information processing and functional

identification. However, except for some special cases, this variability makes it hard to find

a set of features that unambiguously define a neuronal type [413]. In Chapter 10 we saw

that the classification of GABAergic interneurons in particular has been a challenge for some

time.

In this chapter, we present a methodology for building a BN that models the opinions of

a group of experts when performing a classification experiment. In Section 10.6, a BN was

learned for each one of the 42 experts, representing his/her behavior in the classification task.

Here, we retrieve those BNs and run a clustering algorithm to find groups of experts with

similar behaviors. Then, a representative BN is induced for each cluster of experts. Expert

behavior when classifying the set of interneurons was extremely variable. Therefore, experts

with similar behaviors have to first be clustered and then combined. Otherwise, combining

all experts behaviors into a single consensus model would presumably hide some of these

differing behaviors [164, 223, 224]. In this way, we explicitly model each group of similar

experts as a representative BN for the cluster. The final consensus model is a Bayesian

multinet [213] encoding a mixture of BNs [368, 487], where each component is the BN which

represents the opinions of a cluster of experts. A similar idea was proposed for case-based

BNs [270, 440], where the authors clustered the observations before learning a BN which

captures the different properties of each cluster. Bayesian multinets are a kind of asymmetric

BN which allows to model different statistical (in)dependencies between the variables for

different values of a distinguished variable. Bayesian multinets can capture local differences

between variables and model the problem domain more closely, allowing for sparser models

203

204 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

and more robust parameter estimation. For instance, they have been shown to outperform

other BN models in some supervised learning problems [84].

We apply the proposed methodology to the problem of the morphological classification

of GABAergic interneurons from the cerebral cortex (see Chapter 10). The final model is

studied at length to validate the proposed methodology and to gather useful knowledge for

neuroscience research. The resulting consensus Bayesian multinet is used to analyze the

behavior of a set of experts and to reason about the underlying classification task. The

representative BNs for each cluster are compared to find similarities and differences between

groups of experts and to identify different behaviors or currents of opinion. Also, we use the

consensus model to reason about the task the experts were asked to perform. For instance,

we introduce some evidence into the consensus Bayesian multinet and infer “agreed” answers

to those queries. These “agreed” answers are compared to those obtained by each represen-

tative BNs to find clusters of experts with outlying behaviors against experts with moderate

opinions.

The methodology presented in this study can be applied to a wide range of scientific

fields. For instance, in a medical setting, it may be interesting to model and analyze the

different opinions of a group of physicians regarding the diagnosis, prognosis or the most

appropriate treatment for a given disease. Another example can be found in a risk assessment

scenario, where different people could have different opinions on a given matter depending

on their personal preferences, risk perception, etc. The process of obtaining the opinions of

different experts on a given task (here, the morphological classification of interneurons) is

challenging because it can be difficult, costly and time-consuming. However, new Internet

tools and crowd-sourcing techniques have alleviated some of these problems, and obtaining

classification data from different experts is now affordable for a lot of problems [141]. The

proposed methodology is not restricted to the scenario where class labels are given by experts.

For instance, in the medical setting, different diagnostic tests can yield conflicting outputs

on the condition of a given patient. Also, in the field of web mining, several class labels can

be automatically assigned to an object (image, video, document, etc.) based on, e.g., titles,

captions or user comments [426].

The research included in this chapter is being published in López-Cruz et al. [342].

Chapter outline

The chapter is organized as follows. Section 11.2 details the proposed methodology for

building a consensus Bayesian multinet which models experts’ opinions. Section 11.3 includes

the evaluation of the model and the biological interpretation of the results. Finally, Section

11.4 ends with conclusions and suggestions for future work.

11.2. INDUCING A CONSENSUS BAYESIAN MULTINET 205

Figure 11.1: Proposed methodology for building a consensus Bayesian multinet which repre-
sents the behavior of a set of experts.

11.2 A methodology for inducing a consensus Bayesian multi-

net from a set of expert opinions

In this section, we detail the process for obtaining a Bayesian multinet representing the con-

sensus among the experts who completed the classification experiment. Figure 11.1 visually

represents the whole methodology, which can be summarized in three main steps:

1. Learn one BN for each expert using the classifications provided in the experiment.

2. Cluster the BNs into groups and induce a new representative BN for each cluster, which

models the opinions of the experts in the cluster.

3. Combine the representative BNs of each cluster into one consensus Bayesian multinet.

The following sections describe each step in the previous methodology. In Section 11.2.1

we retrieve the BNs representing the experts behavior in the classification experiment. Section

11.2.2 explains how to discover groups of similar BNs by applying clustering algorithms and

how to induce a representative BN for each group. In Section 11.2.3, the final consensus

Bayesian multinet model is built from the representative BNs of each cluster.

206 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

11.2.1 Bayesian network modeling of each expert’s behavior

In Section 10.6, one dataset for each expert was generated with the classifications provided in

the experiment. The resulting dataset had N = 320 observations (the number of interneurons

in the experiment) and n = 6 categorical variables, which corresponded to the features that

the experts were asked to classify. Then, a BN was learned for each one of the Ne = 42 experts

who completed the experiment. The goal was to build a model which captures how each expert

understands the values of the morphological attributes and their relationships. Having an

individual BN for each expert makes it easier to analyze and validate the representative BNs

for each cluster and the final consensus Bayesian multinet, because the inputs (BNs) and the

output (Bayesian multinet) share the same representation.

11.2.2 Clustering of Bayesian networks

The experiment was designed to find groups of BNs corresponding to experts with similar

behaviors. In this section, we detail the process of finding groups of BNs which define similar

JPDs and inducing a representative BN for each cluster. To the best of our knowledge,

the problem of clustering BNs had not been studied before. Note that this is not the same

problem as using BNs to cluster data [398, 415] or clustering variables in BN learning for

high-dimensional problems [81, 286]. A BN B = (G,θ) has two main components (see Section

3.3): the graphical part and the probabilistic part. Therefore, we could consider clustering

at the two levels:

Clustering of BN structures: The graphical component G = (X,A) of a BN is a DAG

which encodes the conditional (in)dependence relationships between the variables in

the problem domain. Therefore, we could use existing approaches for clustering graphs

[206, 430] and, in particular, clustering DAGs [217] to find groups of structurally similar

BNs. Another approach could be to list the conditional independence relationships

encoded in a BN and then apply a clustering algorithm to group BNs which share the

same set of conditional independences.

Clustering of BN probabilities: The probabilistic component in a BN contains the pa-

rameters θXi|Pa(Xi) of the conditional probability distributions of each variable Xi

given its parents Pa(Xi), i = 1, . . . , n. Clustering of probability distributions has

not received much attention in the statistics and machine learning fields. The ap-

proaches in [220, 496] cannot be directly applied to our problem because B includes

several (conditional) probability distributions: one probability distribution for each

variable given its parents’ values. Comparing the conditional probability distributions

ρXi|PaXi

(
xi|pa(xi);θXi|Pa(Xi)

)
of the same variable in two different BNs is challenging

because each variable can have a different number of parents, and the set of parents

may be different. Therefore, the conditional probability distributions cannot be directly

compared. A simple approach, which could also be useful in problem domains with a

lot of variables, would be to compute the marginal probability distribution ρXi
(xi;θXi

)

11.2. INDUCING A CONSENSUS BAYESIAN MULTINET 207

Figure 11.2: Procedure for clustering BNs. In step 3, the solid line represents the proposed
workflow for inducing a representative BN for each cluster, whereas the dashed lines show
alternative ways of achieving this goal.

for each variable Xi in each BN and to cluster the BNs based on these marginal distri-

butions.

Here, we propose clustering the BNs based on the JPDs that they encode. Therefore, our

approach is included in the second group of techniques. Figure 11.2 outlines the proposed

methodology, which can be summarized in three steps. First, the JPD encoded by each

BN is computed. These JPDs also model the experts’ behavior in the experiment. Second,

groups of similar experts/BNs are found by clustering their corresponding JPDs. Third, a

representative BN is induced for each cluster, which represents the common behavior of the

experts in the cluster. The following sections detail each one of these three steps.

11.2.2.1 Computation and preprocessing of the joint probability distributions

For each expert, we computed the JPD over the six variables encoded by the BN learned

in the previous step. Not all the experts selected all the possible values when completing

the experiment, e.g., some experts did not classify any neuron as Arcade, Cajal-Retzius or

Other in variable X5. Therefore, not all the BNs contained all the values for all the variables.

However, we wanted all the JPDs to have the same number of values for the purposes of

comparison. Therefore, we completed the conditional probability tables in the BNs learned

with GeNIe using ML estimates with Laplace correction, so that all the BNs had all the values

for all the variables. Then, the JPD over all the variables encoded by each BN was computed

by multiplying the conditional probability distributions ρXi|PaXi

(
xi|pa(xi);θXi|Pa(Xi)

)
, as in

Equation (3.1). The resulting JPD had 2 × 3 × 3 × 3 × 4 × 11 = 2,376 values. However,

208 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

most of these values corresponded to inadmissible combinations of the values of the variables

(see Section 10.6). For example, when Uncharacterized was selected, all the other variables

should have the value Dummy, and any other combination of values was not valid. Similarly,

variable X4 could only take a value different from Dummy when X1 = Translaminar and X3 =

Displaced. We erased the values in the JPDs corresponding to these forbidden combinations.

The resulting JPDs had 121 values each.

11.2.2.2 Clustering of joint probability distributions

We approached the problem of finding groups of similar BNs by clustering the JPDs obtained

in the previous step (Section 11.2.2.1). We generated a dataset with Ne = 42 observations

and r = 121 variables, where each observation (row) was a JPD corresponding to the BN

of each expert and each variable (column) was a value of the JPD. There are three main

paradigms which can be used for clustering (see Section 2.4.1): hierarchical, partitional and

probabilistic clustering.

Hierarchical and partitional paradigms are the classical approaches to clustering. In both

hierarchical and partitional approaches, the number of clusters to be generated is a free

parameter that has to be set by the expert. Also, an appropriate distance measure has to be

chosen depending on the nature of the data. Probabilistic clustering deals with the problem of

fitting an FMM [367]. Probabilistic clustering generates an explicit probabilistic model which

describes the data. Also, an appropriate number of clusters can be found using statistically

sound techniques. Since each of our observations is a JPD, the Dirichlet distribution [62]

could be a suitable choice of a probability density function for each component. However,

the low number of observations (Ne = 42) over the number of variables (r = 121) ruled out

the use of this approach, because it is difficult to obtain accurate estimators of an FMM with

so few data.

Here, we chose to adapt the classical K-means algorithm [347] to characterize properties

of our data. Algorithm 10.1 (see page 182) shows a general outline of the algorithm. The

algorithm alternates two steps. First, the observations are assigned to the cluster with the

closest center. Second, the cluster centers are recomputed taking into account only the

observations in the clusters. A similar approach was used in [223, 224] in the context of

decision making in influence diagrams. Also, Etminani et al. [164] aggregate probability

distributions by clustering them first and averaging them afterwards. In order to apply

the K-means algorithm to the problem of clustering JPDs we have to choose a suitable

dissimilarity measure d(xj , ck) and a method for computing the cluster centers from the

observations in the cluster (Combine function in step 2.(c) of Algorithm 10.1).

Dissimilarity measures for probability distributions In general, our choice of a dis-

similarity measure d(xj , ck) should be, at least, symmetric. Therefore, one could consider

using the symmetric KL measure,

dKL(x1,x2) = KL(x1,x2) +KL(x2,x1),

11.2. INDUCING A CONSENSUS BAYESIAN MULTINET 209

where KL(x1,x2) is the KL [305] from an empirical probability distribution x1 to the true

distribution x2

KL(x1,x2) =
r∑

i=1

x1i log
x1i
x2i

,

where r is the number of values of the probability distribution xj , and xji is the probability

of the ith value in the probability distribution xj . One disadvantage of the KL is that it is

not upper bounded. However, other measures can be considered, such as the Jensen-Shanon

divergence,

dJS(x1,x2) =
1

2
KL(x1,m) +

1

2
KL(x2,m), (11.1)

where m is the mean probability distribution m = 0.5(x1 + x2). The Jensen-Shannon diver-

gence has a number of interesting properties [333]: it is symmetric, its square root is a metric

and it is bounded 0 ≤ dJS ≤ 1. Therefore, we chose dJS as the dissimilarity measure for the

K-means algorithm. Additionally, the fact that dJS is a bounded measure was also useful

when computing the representative BN for each cluster (Section 11.2.2.3).

Combination of probability distributions Two main methods can be found in the liter-

ature to compute an average probability distribution x from a set of probability distributions

[214]: the linear combination pool (LinOp) and the logarithmic combination pool (LogOp).

If we have Nk probability distributions {x1, . . . ,xNk
} in a cluster, the linear combination

pool is defined as the weighted arithmetic mean

xLinOp =

Nk∑

j=1

ωjxj , (11.2)

where
∑Nk

j=1 ωj = 1 and ωj > 0 is the weight for the probability distribution xj . The

logarithmic combination pool is defined as the weighted geometric mean

xiLogOp =

∏Nk

j=1 x
ωj

ji∑r
v=1

∏Nk

j=1 x
ωj

jv

. (11.3)

Genest and Zideck [214] give a number of reasons for choosing LogOp over LinOp, the most

compelling being that it is externally Bayesian, i.e., it can be derived from joint probabilities

[49]. Also, it is known that LinOp does not preserve independences [530], i.e., combining

probability distributions which share a common independence does not guarantee that the

resulting distribution will be equally independent. Heskes [254] showed that using LogOp is

equivalent to finding the probability distribution x which minimizes the weighted sum of the

KL values to each probability distribution xj

xLogOp = argmin
x

Nk∑

j=1

ωjKL(x,xj).

210 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

Therefore, we chose LogOp as a combination method for computing the cluster centers in the

K-means algorithm (step 2.(c) of Algorithm 10.1). All the experts were considered as equals,

so the weights ωj were all set to 1/Nk for each cluster.

11.2.2.3 Finding a representative Bayesian network for each cluster

Once the JPDs have been clustered and K cluster centers (JPDs) have been obtained, the

next step is to induce a BN which represents the common features of the corresponding BNs

(and experts) in the cluster. Step 3 in Figure 11.2 shows four possible approaches for find-

ing a representative BN for each cluster. In the following, we discuss the four approaches

for performing this task, we review the works related to each one and analyze their advan-

tages and disadvantages for modeling experts’ opinions on the problem of the morphological

classification of GABAergic interneurons.

The first approach consists of directly combining a set of BNs into a single representa-

tive one (Figure 11.2, step 3.1.1). Learning BNs from a set of expert opinions has been a

recurrent interest in the field. However, Pennock and Wellman [406] showed that even when

the BNs share the same structure, there is no way of combining the parameters to preserve

that structure. They proposed a methodology for combining both the BN structures and the

parameters. The algorithm finds a common network structure by transforming the DAGs

into moral graphs, performing the union of the edges and transforming the resulting moral

graph back into a DAG. The CPTs are combined by applying the LogOp combination pool

of Equation (11.3). This approach is expected to yield highly connected BNs because of the

union of the edges of the moral graphs. Therefore, the conditional probability distributions

will have a lot of parameters and their estimates will not very robust when there are few

training instances (in our scenario, 320 neurons). Sagrado and Moral [437] studied the theo-

retical properties of BNs obtained by performing either the intersection or the union of the

arcs of the network structures, and proposed ways for finding the consensus BN structure.

However, they left the combination of the CPTs as a matter for future research. Zhang et al.

[537] built on the work by Sagrado and Moral [437] and proposed a score+search method

for fusing the BN structures. However, they applied Bayesian inference not data to combine

the parameters of the BNs and to compute the scores of the network structures. Peña [396]

derived a correction of the algorithms proposed by Matzkevich and Abramson [363, 364] for

finding the consensus BN structure with a minimum number of parameters. It represents

only the common independences appearing in all the BN structures. He outlined some ideas

for combining the parameters of the BNs, but this issue was mainly left for future research.

Later, Etminani et al. [164] clustered the experts and aggregated the probability distributions

of the cluster with the highest number of observations, following a “democratic majority” ap-

proach. On the other hand, we did not discard the probability distributions in small clusters

(“minorities”). Instead, all the differing opinions were included in the consensus mixture of

BNs. Finally, other methods for BN aggregation have been proposed in the context of model

averaging (for a review, see Section 4.13 in [108]). These methods combine the probabilities

inferred with a set of BNs but they do not obtain a single representative BN which models the

11.2. INDUCING A CONSENSUS BAYESIAN MULTINET 211

opinions of a set of experts. In the neuron classification problem, obtaining the representative

BN explicitly was important because the experts would like to analyze and interpret these

models and not only their outputs.

The second approach deals with the problem of learning a consensus BN from data.

Maynard-Reich II and Chajewska [365] assumed that the differences between experts are

the result of observing different subsets of data. This is related to the problem of learning

BNs from distributed datasets, e.g., see [83]. In our experiment, however, all the experts

classified the same 320 interneurons, so this assumption did not apply. Steps 3.2.1 and 3.2.2

show another possibility which conformed to our problem: joining the original datasets for

each expert in the cluster and learning a BN from this cluster’s dataset. We could consider

different degrees of membership of each expert to his cluster by only including a subset of

interneurons from his dataset in the cluster’s dataset. However, there were some neuronal

morphologies which did not appear frequently in the data. Therefore, this approach could

erase some important information about the experts.

The third approach is based on sampling the JPDs and learning a BN from the generated

data as explained in Section 11.2.1 (Figure 11.2, steps 3.3.1 to 3.3.3). First, we compute a

representative JPD for each cluster, then we sample the JPD to obtain a dataset and, finally,

we learn a BN from that dataset. Again, one could consider using the LinOp (Equation (11.2))

or the LogOp (Equation (11.3)) combination pools for computing the representative JPD,

and different weights could be applied to each expert’s JPD. However, if the cluster center

JPD does not accurately represent all the experts in the cluster, the resulting representative

BN for the cluster would not model all the experts’ opinions either.

Here, we implemented another approach based on proportional sampling of the individual

JPDs of each expert (Figure 11.2, steps 3.4.1 and 3.4.2). The goal was to obtain a sample

of data for each cluster k, taking into account the dissimilarity between each JPD and the

cluster center ck to decide the number of samples to draw from each JPD. The fact that

dJS(xj , ck) (Equation (11.1)) is upper bounded facilitates the computation of these expert

degrees of membership. For a given cluster k, we found the JPDs included in the cluster and

computed a degree of membership µj for each one as

µj =
1− dJS(xj , ck)∑Nk

j=1 (1− dJS(xj , ck))
.

Then, to obtain a sample with size M for cluster k, µj ×M observations were drawn from

each JPD xj in cluster k. Finally, both the structure and the parameters of the representative

BN were learned (see Sections 10.6 and 11.2.1) from that sample of size M obtained for each

cluster.

This approach tries to avoid some of the disadvantages of the other three approaches.

The learning algorithm allows to fully specify the BNs as opposed to the methods in the

first approach (step 3.1.1), which can have problems when computing the parameters of the

conditional probability distributions. An advantage of this method over the second approach

(steps 3.2.1 and 3.2.2) is that our approach uses the BNs themselves (through their JPDs)

212 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

Figure 11.3: Finite mixture of BNs represented as a Bayesian multinet with the cluster
variable as the distinguished variable.

to compute the representative BN for the cluster. The second approach, on the other hand,

assumes that the BNs were learned from data and that experts’ data is still available. This

may not be the case in some scenarios where BNs are elicited from experts’ knowledge and

not induced from data. Finally, as opposed to the third approach, we consider each BN

in the cluster individually through its JPD while taking into account different degrees of

membership to the cluster.

11.2.3 Building the consensus Bayesian network

The final step in the methodology (see Figure 11.1) deals with the problem of building a

PGM that represents all the experts who participated in the experiment and also takes into

account their differing behaviors. We modeled the whole problem as a finite mixture of BNs

[487]

pX(x) =
K∑

k=1

pC(k;θC)pX|C(x|k,Gk,θX|k), (11.4)

where pC(k;θC) was set to the proportion of experts in the kth cluster (Nk/Ne), and each

component pX|C(x|k,Gk,θX|k) was the representative BN for the kth cluster with structural

component Gk and probabilistic component θX|k. Finite mixtures of BNs form a kind of

Bayesian multinet [213] with a distinguished variable C which represents the cluster variable.

In principle, the cluster variable C is hidden but we found it previously by clustering the BNs

(Section 11.2.2). Figure 11.3 is a diagram of the final consensus Bayesian multinet.

11.3 An application to interneuron classification

This section includes the results corresponding to one run of the whole process as described

in Section 11.2 (see Figure 11.1). First, one BN was learned for each one of the 42 experts

who completed the experiment (Section 11.2.1). Then we clustered the BNs following the

11.3. AN APPLICATION TO INTERNEURON CLASSIFICATION 213

procedure described in Section 11.2.2. We started the process by computing the JPD encoded

by each BN and generating a data matrix with dimensions 42 × 121, where each row was a

JPD corresponding to an expert and each column corresponded to a value of the JPD, i.e.,

a combination of possible values of the variables in the experiment. We used the K-means

algorithm with Jensen-Shanon distance (Equation (11.1)) and the LogOp combination pool

(Equation (11.3)) to cluster the JPDs. We used K = 6 clusters because we were thus able to

find distinguishable clusters with characterizing properties. We used proportional sampling

to get a dataset for each cluster, and a representative BN was learned from that sample using

GeNIe. Finally, a consensus PGM was built as a finite mixture of BNs represented with a

Bayesian multinet (Section 11.2.3). In the consensus Bayesian multinet, the cluster variable

was the distinguished variable and each component of the mixture was the representative BN

for a cluster (see Figure 11.3).

In the following sections, we analyze the results by studying the consensus Bayesian

multinet at different levels. Figure 11.4 shows the representative BNs learned for each cluster

of experts. These BNs can be downloaded in GeNIe format from the supplementary material

website1. First, the BNs for each expert learned with the GTT algorithm were compared

with other algorithms for learning BN structures from data (Section 11.3.1). Then, we

tried to characterize each one of the clusters by studying the marginal probabilities of their

representative BNs (Section 11.3.2). Also, a structural analysis of the BNs was performed to

validate the results and to find agreements and differences between clusters (Section 11.3.3).

We extracted agreed definitions of the different neuronal types proposed in the experiment

by performing inferences in both the consensus Bayesian multinet and the representative

BNs for each cluster (Section 11.3.4). A principal component analysis was performed to

visually inspect a low-dimensional representation of the clusters (Section 11.3.5). Finally, we

looked for possible currents of opinion by studying correlations between the clusters and the

geographical location of the experts’ workplace (Section 11.3.6).

11.3.1 Validation of the Bayesian network structure learning algorithm

We studied the influence of the structure learning algorithm when finding the BNs for each

expert (see Section 11.2.1). We compared the BNs learned with the GTT algorithm (Algo-

rithm 3.2) with other four algorithms for learning BN structures available in the bnlearn

package [446] for R statistical software [422]: a hill-climbing algorithm (HC), a tabu search

algorithm (TA), a max-min algorithm (MM) and the 2-phase restricted search max-min

algorithm (RS). HC and TA are score + search algorithms, whereas MM and RS are hy-

brid algorithms combining score + search with constraint-based approaches. 100 restarts

were computed for the hill-climbing algorithm and the best scoring network structure was

returned. Additionally, we considered two scoring functions: K2 [97] and BIC [443] (see Sec-

tion 3.3.2.1). Thus, for each expert, we learned eight BN structures using the four algorithms

and the two scoring functions. ML estimates of the parameters with Laplace correction were

1Available at http://cig.fi.upm.es/index.php/members/138-supplementary-material/

http://cig.fi.upm.es/index.php/members/138-supplementary-material/

214 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

(a) BN for cluster 1 (3 experts) (b) BN for cluster 2 (15 experts)

(c) BN for cluster 3 (4 experts) (d) BN for cluster 4 (12 experts)

(e) BN for cluster 5 (7 experts) (f) BN for cluster 6 (1 expert)

Figure 11.4: Network structures and marginal probabilities of the representative BNs for each
cluster. Each one of the BNs corresponds to a component in the finite mixture of BNs that
builds up the consensus Bayesian multinet.

11.3. AN APPLICATION TO INTERNEURON CLASSIFICATION 215

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Structure learning algorithms

JS
 d

iv
er

ge
nc

e

Figure 11.5: Comparison between the GTT algorithm and eight algorithms for learning the
BN structures: 1) HC-K2, 2) TA-K2, 3) MM-K2, 4) RS-K2, 5) HC-BIC, 6) TA-BIC, 7) MM-
BIC and 8) RS-BIC. Each boxplot summarizes the 41 Jensen-Shanon divergence values (42
experts minus expert #33) between the JPDs of the BNs obtained with the GTT algorithm
and the JPDs obtained with each one of the eight alternative methods.

computed for filling in the CPTs. The JPD encoded by each BN was computed and simplified

to a 121-dimensional JPD as explained in Section 11.2.2.1. The Jensen-Shanon divergence

(Equation (11.1)) between the JPD corresponding to the BN learned with the GTT algorithm

and the eight alternative structure learning methods was computed. The structure learning

algorithms could not be applied for expert #33 because he/she classified all the neurons as

X1 = Intralaminar and the algorithms could not handle variables with only one value.

Figure 11.5 shows boxplots of the Jensen-Shanon divergence values (Y axis) between the

GTT algorithm and the other eight algorithms (X axis) obtained for the 41 experts (42 minus

expert #33). Note that the JS divergence is both lower and upper bounded: 0 ≤ dJS ≤ 1.

We can see that the JS divergence yielded very low values, being almost all of them below 0.2.

On the one hand, the TA-K2 algorithm (second boxplot in Figure 11.5) yielded the lowest

JS divergence values. On the other hand, the RS algorithm (fourth and eighth boxplots in

Figure 11.5) learned BNs which yielded JPDs differing the most compared to those obtained

with the GTT algorithm. As expected, we can see that algorithms using K2 scoring function

yielded lower JS divergences than those using BIC, because the GTT algorithm also used the

K2 scoring function. We concluded that the algorithm used for learning the BN structures

did not have an important influence in the proposed methodology because we used the JPDs

for clustering the BNs and they were similar regardless of the applied algorithm.

11.3.2 Cluster labeling and analysis of the probability distributions

We identified differences between the groups of experts by studying the marginal (or prior)

probabilities in the representative BNs for each cluster (see Figure 11.4). We used these

216 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

marginal probabilities to characterize each group of experts and we interpreted these differ-

ences as different approaches when classifying the neurons:

Cluster 1 (including three experts) represented experts who considered that half of

the neurons in the experiment did not have enough reconstructed axonal processes

for it to be feasible to actually try to classify them. Thus, they assigned the neu-

rons to the Uncharacterized category in X6 (probability 0.51). The probability

of Uncharacterized was much lower in all the other BNs (≤ 0.07). In fact, the

combination of values of the variables with higher probability (mode) corresponded

to X1 = Dummy, X2 = Dummy, X3 = Dummy, X4 = Dummy, X5 = Dummy and X6 =

Uncharacterized.

Cluster 2 included 15 experts with a coarse classification scheme. In this BN, most of

the neurons were classified as Common basket (0.30). The mode of the JPD encoded in

the representative BN wasX1 = Intralaminar, X2 = Intracolumnar, X3 = Centered,

X4 = Dummy, X5 = Common basket and X6 = Characterized.

Cluster 3 (including four experts) represented experts who stuck to the fine-grained

classification scheme proposed in the experiment and tried to distinguish between the

different neuronal types, including the difficult ones such as Common basket, Common

type, Large basket and Arcade cells. Experts in this cluster found more Arcade

cells (0.07) than the experts in the other clusters. In this cluster, Common type (0.17),

Common basket (0.14) and Large basket (0.20) cells had similar probabilities. The

mode of the JPD encoded by the representative BN was the same as in cluster 2.

Similarly to cluster 2, experts in cluster 4 (including 12 experts) showed a less detailed

classification scheme than those in clusters 3 or 5. However, experts in cluster 4 assigned

a high probability to the Common type class (0.40), whereas the most likely neuronal

type in cluster 2 was Common basket. Accordingly, the mode of the JPD of the repre-

sentative BN was X1 = Translaminar, X2 = Intracolumnar, X3 = Centered, X4 =

Dummy, X5 = Common type and X6 = Characterized.

Cluster 5 represented a group of seven experts with a detailed classification scheme,

since they distinguished between Common type, Common basket and Large basket

cells. However, the experts did not seem to agree with the nomenclature included

in the experiment or found it incomplete. This was observed in the high probability of

the category Other (0.22) in X5, where they could propose an alternative name for that

class of neurons. Interestingly, the mode of the JPD of the representative BN for this

cluster was X1 = Dummy, X2 = Dummy, X3 = Dummy, X4 = Dummy, X5 = Dummy and X6

= Uncharacterized. In fact, we can see that this cluster assigned the second highest

probability to Uncharacterized in all the clusters.

Cluster 6 included only one expert with a remarkably different behavior than the other

experts. This expert did not classify any neuron as Translaminar in X1, so the prob-

ability of that value in the representative BN is almost 0. Also, this expert assigned a

11.3. AN APPLICATION TO INTERNEURON CLASSIFICATION 217

very high probability to Centered in X3 (0.96). Therefore, X4 was disabled for all the

neurons (recall that X4 was only available when Translaminar and Displaced were

set as values in X1 and X3, respectively). Therefore, X4 had a constant Dummy value

in Figure 11.4(f). The conclusions of the analysis of the mode of the JPD were the

same, as the combination of values of the variables with highest probability was X1

= Intralaminar, X2 = Transcolumnar, X3 = Centered, X4 = Dummy, X5 = Large

basket and X6 = Characterized.

11.3.3 Analysis of the Bayesian network structures

Similarities in the behaviors of all the group of experts were identified by analyzing the repre-

sentative BN structures. Variables X2 and X5 were the only two variables which were directly

related in all the BNs. Variable X2 describes the neuronal morphology in the horizontal di-

mension. This feature encodes whether or not the axonal arborization of the neuron extends

more than 300 µm from the soma. This means that the interneuron contacts with neurons

inside and outside its cortical column, so we could conclude that some neuronal types mainly

connect with other neurons from the same cortical column, whereas other neuronal types

connect additionally with neurons from different cortical columns.

VariablesX1, X3 andX4 were related in all but one BN, the one corresponding to cluster 6.

Also, there was an edge between X4 and X5 in all the BNs but the one for cluster 6. Note that

cluster 6 contained only the outlying expert 33. Variables X1, X3 and X4 are mainly related

to the neuronal morphology in the vertical dimension. These relationships could determine

whether a given neuronal type sends the information to other neurons in the same cortical

layer or in different (either upper or lower) layers. We also analyzed the Markov properties of

the representative BN structures to identify conditional independence relationships between

the variables. X2 was conditionally independent of variables (X1, X3, X4) given the value

of X5 and X6. Therefore, the morphological properties of GABAergic interneurons in the

horizontal and vertical dimensions seemed to be independent given the neuronal type.

11.3.4 Finding agreed definitions for neuronal types using inference in

Bayesian networks

The representative BNs were used to infer the main properties of the different neuronal

types in X5 by setting evidence in some variables and updating the probabilities in the

unobserved variables. We studied the propagated probabilities and identified differences

and similarities between clusters. Cluster 6 corresponded to an outlier expert which has

already been analyzed, so we focused on the other five clusters. First, the main morphological

properties of the neuronal types were found by setting every value in X5 as evidence and

propagating the probabilities using the clustering algorithm [277, 323] in GeNIe:

Martinotti cells were defined as Translaminar (≥ 0.94), Displaced (≥ 0.83) and

Ascending (≥ 0.57) cells. Experts in cluster 5 classified these neurons as mostly

218 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

Transcolumnar (0.73), whereas they were classified in clusters 1, 2, 3 and 4 as either

Intracolumnar or Transcolumnar with similar probabilities.

Horse-tail cells seem to have a common and easily recognizable morphology, since

the most likely values achieved high probabilities in all the clusters: Translaminar

(≥ 0.92), Intracolumnar (≥ 0.80), Displaced (≥ 0.88) and Descending (≥ 0.50).

Chandelier cells seemed to be mainly Intracolumnar (≥ 0.72). However, they were

classified as either Intralaminar or Translaminar and Centered or Displaced in dif-

ferent clusters. Clusters 2 and 4 assigned a higher probability to Translaminar, cluster

3 assigned a higher probability to Intralaminar and the probabilities were almost uni-

form in the X1 variable in clusters 1 and 5. Centered received a higher probability in

cluster 3, whereas the probabilities were more uniform in the other clusters.

Neurogliaform cells were defined as mainly Intracolumnar (≥ 0.83). Experts in

clusters 3, 4 and 5 classified them as Intralaminar (≥ 0.76), whereas experts in clusters

1 and 2 assigned more uniform probabilities in variable X1. For experts in cluster 5,

Neurogliaform cells could be either Centered or Displaced, whereas Centered was

more likely in all the other clusters (≥ 0.75).

Common type cells were characterized as Translaminar (≥ 0.62) cells. Experts in clus-

ters 4 and 5 classified them as either Intracolumnar or Transcolumnar, whereas ex-

perts in clusters 1, 2 and 3 selected Intracolumnar as the most likely value (≥ 0.66).

The properties for Common basket cells could not be easily identified. Experts in cluster

2 and 4 classified most of them as Translaminar (≥ 0.63), cluster 3 assigned the highest

probability to Intralaminar (0.82), whereas in the other clusters they were classified

as either Translaminar or Intralaminar. Intracolumnar was always more likely than

Transcolumnar, although the differences in the probability values greatly varied in the

clusters. We also found major disagreements in X4: Clusters 1 and 3 assigned Centered

with a high probability (≥ 0.86), whereas the probabilities of Centered and Displaced

were similar in the other clusters.

Large basket cells were characterized as Translaminar (≥ 0.58) and Transcolumnar

(≥ 0.63) cells. Clusters 1 and 3 defined them as mainly Centered (≥ 0.74), cluster 5

assigned a higher probability to Displaced (0.6), whereas in the other clusters Centered

and Displaced had more uniform probabilities.

Arcade cells were frequently classified as Translaminar (≥ 0.65), Intracolumnar (≥
0.55) and, when Translaminar and Displaced were selected, as Descending cells.

Most of the neurons classified as Other were characterized as Translaminar (≥ 0.62).

Intracolumnar was more likely than Transcolumnar in all the clusters. Displaced had

a higher probability than Centered in all the clusters, except for cluster 6. However,

the differences between the probabilities of these values greatly varied from cluster to

11.3. AN APPLICATION TO INTERNEURON CLASSIFICATION 219

cluster. Cluster 3 yielded a high probability for Both category in X4 (0.50), whereas

cluster 1 assigned a greater probability to Descending (0.38). The probabilities in X4

were more uniform in the other clusters.

Setting evidence in the other variables also highlighted some differences between groups

of experts. For example, setting Intralaminar as evidence in X1 yielded Common basket as

the most likely value for X5 in all the BNs, except for the one corresponding to cluster 4,

where Common type and Neurogliaform got higher probabilities. Setting Translaminar as

evidence in X1 yielded very different propagated probabilities in the clusters. When setting

Intracolumnar as evidence in X2, the most likely values in X5 were Common basket (clusters

1 and 2), Common type (clusters 3 and 4) and Other (cluster 5).

The consensus Bayesian multinet was used to perform inferences taking into account all

the representative BNs at the same time. The probability of a given query was computed

using the finite mixture of BNs expression (Equation (11.4)). Table 11.1 shows the conditional

probabilities of each variable given the neuronal type in X6. We used these conditional

probabilities to infer a set of agreed definitions for some neuronal types:

Martinotti cells were usually classified as Translaminar, Displaced and Ascending.

Horse-tail cells were commonly defined as Translaminar, Intracolumnar, Displaced

and Descending neurons.

A common feature of Chandelier neurons was that they were Intracolumnar.

Neurogliaform cells were mainly Intralaminar, Intracolumnar and Centered cells.

Common type cells were primarily Translaminar.

Large basket neurons were characterized as Translaminar and Transcolumnar.

Arcade neurons were usually classified as Translaminar.

Neurons classified as Other were commonly classified as Translaminar and Intraco-

lumnar cells.

11.3.5 Clustering visualization with principal component analysis

The clusters obtained with K-means were visually inspected using a representation in a

lower-dimensional space. The goal was to obtain a three-dimensional representation that

approximates the 121-dimensional JPDs and check whether or not the clusters were visually

distinguishable. A principal component analysis was performed, and the three principal

components (PCs) which account for the highest proportion of variance (67.14%) were studied

[403]. Figure 11.6 plots the values of the JPDs for each expert in the transformed three-

dimensional space. Different symbols and colors were used to show the cluster assigned by

the K-means algorithm to each expert. Two-dimensional projections were also included for

22
0

C
H
A
P
T
E
R

1
1
.

B
A
Y
E
S
IA

N
N
E
T
W
O
R
K

M
O
D
E
L
IN

G
O
F
E
X
P
E
R
T
S
C
O
N
S
E
N
S
U
S

Table 11.1: Conditional probabilities of each variable given the neuronal type (X5), computed with the consensus Bayesian multinet.
The largest value for each conditional probability distribution is highlighted in boldface.

Common type Horse-tail Chandelier Martinotti Common basket Arcade Large basket Cajal-Retzius Neurogliaform Other Dummy

Conditional probabilities pX1|X5
(x1|x5)

Intralaminar 0.2847 0.0720 0.4270 0.0632 0.4477 0.2863 0.2642 0.2947 0.6806 0.2423 0.0072
Translaminar 0.7136 0.9254 0.5671 0.9350 0.5511 0.7057 0.7342 0.6817 0.3170 0.7491 0.0081
Dummy 0.0017 0.0026 0.0059 0.0018 0.0012 0.0080 0.0016 0.0236 0.0024 0.0086 0.9847

Conditional probabilities pX2|X5
(x2|x5)

Intracolumnar 0.6190 0.8639 0.7903 0.4001 0.6862 0.6365 0.1874 0.4687 0.8589 0.7242 0.0030
Transcolumnar 0.3802 0.1346 0.2065 0.5990 0.3132 0.3579 0.8117 0.5165 0.1398 0.2716 0.0030
Dummy 0.0008 0.0015 0.0032 0.0009 0.0006 0.0056 0.0009 0.0148 0.0013 0.0042 0.9940

Conditional probabilities pX3|X5
(x3|x5)

Centered 0.4293 0.1088 0.5292 0.1151 0.6075 0.4078 0.5126 0.3833 0.7524 0.3410 0.0052
Displaced 0.5696 0.8893 0.4668 0.8837 0.3917 0.5856 0.4862 0.5997 0.2459 0.6540 0.0055
Dummy 0.0011 0.0019 0.0040 0.0012 0.0008 0.0066 0.0012 0.0170 0.0017 0.0050 0.9893

Conditional probabilities pX4|X5
(x4|x5)

Ascending 0.1623 0.1244 0.0950 0.6479 0.1008 0.1290 0.1630 0.1852 0.0400 0.1859 0.0036
Descending 0.2169 0.6439 0.1961 0.1103 0.1270 0.2606 0.1762 0.2259 0.0369 0.2106 0.0036
Both 0.1296 0.1119 0.0754 0.1187 0.0790 0.1311 0.1096 0.1553 0.0302 0.2252 0.0036
Dummy 0.4912 0.1198 0.6335 0.1231 0.6932 0.4793 0.5512 0.4336 0.8929 0.3783 0.9892

Conditional probabilities pX6|X5
(x6|x5)

Characterized 0.9989 0.9981 0.9962 0.9988 0.9992 0.9937 0.9988 0.9835 0.9983 0.9950 0.0115
Uncharacterized 0.0011 0.0019 0.0038 0.0012 0.0008 0.0063 0.0012 0.0165 0.0017 0.0050 0.9885

11.3. AN APPLICATION TO INTERNEURON CLASSIFICATION 221

1st PC

3r
d

P
C

−0.2 0.2 0.6
−0.2

−0.1

0

0.1

0.2

−0.4

−0.2

0

2nd PC

0.0 0.2 0.4 0.6

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

1st PC

3r
d

P
C

0.0 0.2 0.4 0.6

−
0.

3
−

0.
2

−
0.

1
0.

0

1st PC

2n
d

P
C

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

Figure 11.6: Visualization of the clusters computed with K-means (K = 6) in three and
two-dimensional spaces obtained with principal component analysis. The three-dimensional
coordinates of the experts correspond to the values of the three principal components with
highest proportion of variance.

ease of interpretation. Also, we studied the weights associated with each JPD value in each

one of the PCs:

The first PC, which accounted for 47.32% of the variance, distinguished the experts

in cluster 1 from the other clusters. In this PC, the value of the JPD with highest

(absolute) weight wasX1 = Dummy, X2 = Dummy, X3 = Dummy, X4 = Dummy, X5 = Dummy,

X6 = Uncharacterized (weight = 0.9828). The second weight with the largest absolute

value had a value equal to -0.06119. This PC primarily separated experts with different

behaviors when classifying the neurons as either Characterized or Uncharacterized in

variable X6. Therefore, the three experts in cluster 1 (Figure 11.4(a)), which classified

a lot of neurons as Uncharacterized, were easily distinguished using this PC.

The second PC distinguished the outlying expert in cluster 6 and accounted for 10.74%

of the variance. This PC yielded the largest weight (in absolute terms) for the value of

the JPD corresponding to X1 = Intralaminar, X2 = Transcolumnar, X3 = Centered,

X4 = Dummy, X5 = Large basket, X6 = Characterized (weight = -0.7385). Fig-

ure 11.4(f) shows that the representative BN of the outlying expert in cluster 6 had a

very high probability (0.46) for Large Basket cells. Therefore, this PC separated the

expert in cluster 6 from the rest of the clusters.

222 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Weights of the 3rd PC

Dummy

Common type

Horse−tail

Chandelier

Martinotti

Common basket

Arcade

Large basket

Cajal−Retzius

Neurogliaform

Other

Va
lu

es
 o

f X
5

Figure 11.7: Weights of the third principal component according to the value of the variable
X5 in the JPD.

The third PC accounted for 9.08% of the variance and could not easily separate the

rest of the clusters. However, this PC seemed to be able to distinguish between experts

in cluster 2 and experts in cluster 4. These two clusters contained experts with two

different behaviors. Figure 11.4(d) shows that the experts in cluster 4 classified most of

the neurons as Common type (0.40), whereas the experts in cluster 2 (Figure 11.4(b))

classified most of the neurons as Common basket (0.30). Clusters 3 and 5 were less

distinguishable because the probability was more uniformly distributed across the values

in X5 (Figures 11.4(c) and (e)). The weights in the third PC were also harder to

interpret. However, cluster 4 and cluster 2 could be distinguished. All the values of the

JPD with X5 = Common type had weights smaller or equal than −0.02859, whereas all
the values with X5 = Common basket had weights greater or equal than −0.0102 (see

Figure 11.7). Therefore, the set of values with X5 = Common type (cluster 4) and X5

= Common basket (cluster 2) were disjoint according to the third PC.

We concluded that the behavior of experts in clusters 1 and 6 was remarkably different

from the behavior of the rest of the experts. The K-means algorithm was able to identify

those characterizing behaviors and generated two different clusters for them. Additionally,

differences between the experts in clusters 2 and 4 were also correctly identified. The differ-

ences between clusters 3 and 5 were more subtle and it was difficult to find a three-dimensional

representation of the JPDs which separated these experts.

11.3.6 Geographical identification of the clusters

We studied possible correlations between the experts’ workplace and the cluster they were

assigned to. The goal was to try to identify different approaches or currents of opinion

regarding interneuron classification in different regions, cities or laboratories in the world.

We studied the statistical significance of some of the groups of experts according to the

country or the city where they worked. A bootstrapping approach was used, where a sample

of experts was selected without replacement and we estimated the probability of some of

11.4. CONCLUSION 223

them belonging to the same clusters. The sampling procedure was repeated 100,000 times for

different sample sizes. We could not find any statistically significant result using a significance

level of α = 0.05. Therefore, we concluded that there is no geographical correlation between

the experts and the cluster they were assigned to.

11.4 Conclusion

In this chapter, we have presented a methodology for building a consensus Bayesian multinet

that represents the opinions of a set of experts. The methodology can be summarized in

three steps. First, a BN was learned for each expert. Second, the BNs corresponding to

experts with similar behaviors were clustered. Third, a consensus Bayesian multinet was

built which models the behavior of all experts. To the best of our knowledge, the problem of

clustering BNs had not been studied in the literature before. Therefore, we also addressed an

interesting problem in BN research. Our proposal consisted of computing the JPD encoded

by each BN and applying a partitional clustering approach to find groups of similar JPDs.

The K-means algorithm with logarithmic combination pool and Jensen-Shanon divergence

was used to cluster the JPDs. Then, a representative BN was induced for each cluster by

proportional sampling of the JPDs in the cluster and applying a BN learning algorithm on

the generated dataset. The final model was a consensus Bayesian multinet which encoded

a finite mixture of BNs, where each component was the representative BN for a cluster of

experts.

We applied the proposed methodology to a problem of modeling experts’ opinions when

classifying a set of cortical GABAergic interneurons based on the morphological features

of their reconstructions (see Chapter 10). This is a difficult task because neuroscientists

do not have a set of commonly agreed definitions which clearly distinguish the different

neuronal types [413]. The consensus Bayesian multinet built in this work was analyzed to

gain some insights into the problem of classifying GABAergic interneurons. We analyzed

the representative BN structures to identify common conditional independence relationships

between the groups of experts, which had a direct biological interpretation. We also managed

to find some easily distinguishable clusters of experts, which behaved differently from the rest

of the clusters. By studying the marginal probabilities in the representative BNs, we were

able to identify different approaches to neuron classification. This highlighted the importance

of clustering the experts before building the consensus model. Directly combining experts

with such differing behaviors would presumably hide some of these opinions, and the final

model would not represent all the experts thoughts. Additionally, we performed inference

with the model to provide agreed definitions of the neuronal types.

We proposed many different approaches that could be considered for performing each

one of the tasks and motivated our decisions in each step. One advantage of the proposed

methodology is that it is data independent, i.e., we only used experts’ data for learning

the initial BNs in Section 10.6, and the clustering algorithm and the construction of the

consensus Bayesian multinet are only based on these BNs. Therefore, the methodology can

224 CHAPTER 11. BAYESIAN NETWORK MODELING OF EXPERTS CONSENSUS

still be applied when experts’ data is not available, e.g., when BNs are elicited from experts’

knowledge.

Future work includes the application of different techniques for clustering JPDs. In par-

ticular, model-based clustering using FMMs was discarded because of the low number of ob-

servations (42 experts) and the high dimensionality of the JPDs (121 values). We discussed

the possible use of finite mixtures of Dirichlet distributions [62] as the most straightforward

model for clustering probability distributions. However, the Dirichlet distribution has some

constraints, e.g., its covariance matrix is strictly negative so it cannot model positive correla-

tions between variables. Finite mixtures of generalized Dirichlet distributions [60] overcome

some of these constraints. However, the generalized Dirichlet distribution has more param-

eters than the Dirichlet distribution, so the problem of high-dimensionality combined with

few data is even more challenging. L1-regularization approaches in finite mixture modeling

[392, 523] could be used to perform feature subset selection and reduce data dimensionality.

Another point for future research is the use of different techniques for finding a representative

BN for each cluster. Some of the possibilities for achieving this goal were discussed in Sec-

tion 11.2.2.3. Finding a consensus BN from a set of BNs which represent different experts’

opinions has been a recurring interest in the field [363, 396, 406, 437, 537]. Combining these

methods with the proposed clustering approach and studying the differences and similarities

in the representative BNs obtained for each cluster in a real problem could give some insights

into the relative merits of each technique.

Chapter 12
Learning conditional linear

Gaussian classifiers from class label

counts using finite mixture models

Pattern classification is one of the main problems studied in artificial intelligence [153]. In

Chapter 2 we saw that a classifier can be defined as a function which uses a set of distinctive

features of an object to select a label for this object from a set of class labels. Different

machine learning problems were identified depending on the type of information available

about the class labels of the training instances: supervised (see Section 2.3), unsupervised

(see Section 2.4), semi-supervised (see Section 2.5), etc.

In this chapter, we study a different problem. The information about the class of each

training instance is given as a set of (possibly repeated) class labels. This scenario is motivated

by the interneuron classification problem (see Chapter 10), where the true class labels of the

training instances are not known, perhaps because the class labels are not clearly defined.

Therefore, selecting one class label for each instance based on only one source of information

can yield wrong or biased class information. One solution is to ask a set of experts to

individually provide a class label for each instance. This scenario occurs naturally, e.g., in

medical practice, where several physicians could have different opinions about the diagnosis,

prognosis or the most appropriate treatment for a given patient. Therefore, a set of class

labels including the opinion of each expert could be generated for that instance. Partially

supervised learning is a particular case of our problem, where at most one observation of

each class label is allowed for each instance. However, our problem is more general because

class labels can be repeated for the same instance, and such information is used as a way to

measure our certainty about the class labels.

The simplest approach for solving this problem would be to transform it into a regular

supervised learning problem by labeling each instance with its most voted class label. This is

the standard procedure in ensembles of classifiers [306, 307]. However, our goal is to learn a

single classifier which takes into account the class labels of all the experts. Learning classifiers

225

226 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

with uncertain class labels has attracted considerable interest [96, 131, 132, 161, 502]. These

researchers induce classifiers where the uncertain class labels of each instance are encoded

using belief functions [127, 455]. However, these uncertain class labels do not appear in the

final classifiers, i.e., the uncertain class labels are used to fit, but are not explicitly modeled

in, the classifiers. This can be a drawback in real applications where the interpretation of

the resulting classifiers is important.

In this chapter, we propose modeling the number of votes received by each class label

for a given instance. Therefore, the information about the class for each instance is encoded

as a count vector with the number of experts who assigned that instance to each class la-

bel. We induce BNCs (see Section 3.4) by including the class count vectors as predictive

variables modeled using conditional multinomial distributions. The joint distribution over

the predictive variables of a BNC can be defined as an FMM. The EM algorithm [128] is

used to find the ML parameters of the FMM for the classifier. The estimated parameters of

the probability distributions in the FMM are plugged into the BNCs, and three classification

rules are proposed for labeling a previously unseen instance. We term our proposal the counts

multinomial expectation maximization (CoMEM) algorithm.

FMMs for count data have been previously studied in the literature, e.g., see [57, 58,

388, 389]. Those works focused on clustering problems where the features describing the

instances were modeled as count vectors. On the other hand, our proposal focuses on a

partially supervised learning problem where the predictive features describing the instances

are modeled with Gaussian distributions, and the class count vectors encoding the experts’

opinions for each instance are modeled with multinomial distributions. Therefore, we fit

hybrid FMMs with Gaussian (continuous data) and multinomial (count data) distributions.

We compare our proposal to Côme et al.’s method [96]. They presented a framework for

learning MG classifiers (see Section 3.4.2.1) where the uncertain class labels were codified as

belief functions. A generalized likelihood criterion based on the belief function theory was

derived, and the EM algorithm was used to find the parameters of the FMM which maximize

the generalized likelihood. Here, we particularize their EM algorithm to the case where

the information about the class for each instance is given as a probability distribution over

the class labels. We name this algorithm the probabilistic label expectation maximization

(PLEM) algorithm. Additionally, we compare the proposed approach to the classical EM

algorithm for unsupervised learning (see Section 3.5.2.2). The final classifiers obtained with

the PLEM and EM algorithms are regular BNCs which do not explicitly model the uncertain

class labels. On the contrary, the count vectors encoding the uncertain class labels in CoMEM

are included as random multinomial variables in the BNCs.

Côme et al. [96] only considered MG classifiers, which need a full covariance matrix of the

predictive variables to be estimated for each class label. However, (conditional) independence

relationships between the predictive variables frequently occur in real problems. Therefore,

we can successfully model our problem domain using sparser models which do not need

full covariance matrices to be estimated from data. It is also worthwhile to capture these

independence relationships when model interpretation is important. Moreover, when a high

12.1. LEARNING BAYESIAN CLASSIFIERS WITH CLASS COUNT VECTORS 227

number of variables n and/or a small number of training instances N are available, the

estimated covariance matrices in MG classifiers might not be very accurate. BNCs exploit

some conditional independence relationships between the predictive variables and the class

variable. Therefore, fewer parameters need to be estimated when learning BNCs. In this

chapter, three kinds of CLG classifiers with different structural complexities are induced and

compared (see Section 3.4.2.1): MG, NB and AODE classifiers.

Part of this research has been published in López-Cruz et al. [341].

Chapter outline

This chapter is organized as follows. Section 12.1 presents the proposed approach (CoMEM)

for inducing CLG classifiers when the information about the class is encoded as a count

vector for each instance and modeled with multinomial distributions. Section 12.2 introduces

the PLEM algorithm as a particularization of [96] for the case where the information about

the class for each instance is provided as a probability distribution over the class labels.

Experimental results over 16 datasets and a thorough comparison of the proposed approach

(CoMEM) to the PLEM and the classical EM algorithms are reported in Section 12.3. Finally,

Section 12.4 concludes with some discussion and outlines future work.

12.1 Learning Bayesian classifiers with class count vectors

provided by a group of experts

In this section, we introduce the proposed approach for learning BNCs when the true class

labels of the training instances are not available, but a group of experts provide a set of class

labels individually. This is a three-step process, as follows:

1. We obtain a count vector for each instance, representing the number of experts who

assigned each possible class label to the instance.

2. We find the FMM defining the joint probability over the predictive variables, and use

the EM algorithm to compute the ML estimates of the parameters of the probability

distributions in the FMM.

3. We set the estimated ML parameters in the respective probability distributions of the

BNC, and apply the classification rules to assign a class label to previously unseen

instances.

The following sections detail each one of these steps. First, Section 12.1.1 shows the compu-

tation of the class count vectors. Section 12.1.2 analyzes the structure and parameters of the

BNCs and their FMMs defining the JPD over the predictive variables. Section 12.1.3 details

the ML estimation of the parameters of the BNCs using the EM algorithm. Section 12.1.4

explains how to use the proposed models to classify a previously unseen instance.

228 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

Table 12.1: Example of a dataset DX,L with N instances characterized by n = 4 predictive
variables. The unknown class variable has three values ΩC = {1, 2, 3}. A set of Ne = 10
experts have provided a class label for each instance, where l m refers to the class labels
selected by the mth expert.

j X1 X2 X3 X4 l 1 l 2 l 3 l 4 l 5 l 6 l 7 l 8 l 9 l 10 C

1 5.1 3.5 1.4 0.2 1 3 3 2 1 3 2 3 3 1 ?
2 7 3.2 4.7 1.4 2 2 3 3 2 3 2 2 2 1 ?
· · ·
N 5.9 3.0 5.1 1.8 3 3 3 3 2 2 3 3 2 3 ?

12.1.1 Obtaining class count vectors for each instance from a group of

experts

Our problem domain is modeled with a vector of n predictive variables X = (X1, . . . , Xn)

and a class variable C. The predictive variables are continuous ΩXi
⊆ R, i = 1, . . . , n, and

the class variable is discrete with values in ΩC = {1, . . . ,K}. We have a dataset with N

instances DX,L = {(x1, l1), . . . , (xN , lN)}. The jth instance is characterized by a set of values

xj = (xj1, . . . , xjn) for the vector of n predictive variables X = (X1, . . . , Xn). The true class

label of the instances in DX,L is unknown. Instead, a set of Ne experts are asked to provide a

single class label for each instance xj in DX,L, and a label vector is built: lj = (lj1, . . . , ljNe)

with ljm ∈ ΩC , m = 1, . . . , Ne. Table 12.1 shows an example of a dataset with n = 4 variables

and Ne = 10 experts for a problem with three class labels ΩC = {1, 2, 3}.
In our problem, a set of class labels lj is available for each training instance. These class

labels are summarized in a count vector encoding the number of experts who selected each

class label for each instance. These count vectors are explicitly included in the model using

conditional multinomial distributions. The training dataset DX,L is transformed into a new

dataset DX,V = {(x1,v1), . . . , (xN ,vN)} with vj = (vj1, . . . , vjK), where vjc is the number

of votes that class c, c ∈ ΩC , received in the jth instance

vjc =

Ne∑

m=1

δ(ljm, c), (12.1)

with δ(x, y) = 1 if x = y and zero otherwise, and
∑

c∈ΩC
vjc = Ne. Table 12.2 shows the

transformed dataset DX,V for dataset DX,L shown in Table 12.1. Our goal is to learn BNCs

using the information in Table 12.2.

12.1.2 Conditional linear Gaussian classifiers

We studied three BNCs with different structures (see Section 3.4.2.1): MG, NB and AODE

classifiers. The class is modeled with a categorical probability distribution pC(c;θC), c ∈ ΩC ,

where θC = {θ1, . . . , θK}. The vector of predictive variables X is modeled with multivariate,

univariate or CLG distributions depending on the complexity of the classifiers. The number

of votes received by each class is encoded in a vector of random variables V = (V1, . . . , VK),

12.1. LEARNING BAYESIAN CLASSIFIERS WITH CLASS COUNT VECTORS 229

Table 12.2: Example of a dataset DX,V corresponding to dataset DX,L in Table 12.1 with the
information about the class modeled as count vectors. The N instances are characterized by
n = 4 predictive variables, and a count vector vj has been derived for each instance.

j X1 X2 X3 X4 V1 V2 V3 C

1 5.1 3.5 1.4 0.2 3 2 5 ?
2 7 3.2 4.7 1.4 1 6 3 ?
· · ·
N 5.9 3.0 5.1 1.8 0 3 7 ?

where ΩV is the K-part composition of Ne, i.e., the simplex-lattice design containing all

the vectors v = (v1, . . . , vK) such that vc ∈ {0, 1, . . . , Ne} and
∑

c∈ΩC
vc = Ne. These count

variablesV are modeled using conditional multinomial distributions pV|C

(
v|c ; θV|C

)
, where

θV|C =
{
θV1|c, . . . , θVK |c

}
c∈ΩC

are the parameters of the conditional multinomial distribution

for each class label c and
∑

k∈ΩC
θVk|c = 1. The goal is to use the information in V as

predictive information in the model. Therefore, the number of votes V received for each

class are considered independent of the values of the predictive variables in X given the class

variable C. Figure 12.1 shows the structures of the three BNCs studied in this chapter, where

the count variables V are included in the model.

(a) MG classifier (b) NB classifier (c) TAN classifier, as
the first classifier of an
AODE classifier

Figure 12.1: Network structures of the three CLG classifiers learned with the CoMEM al-
gorithm. Class C is discrete, and the vector of predictive variables X = (X1, . . . , Xn) is
continuous. The number of votes received by each instance for each class label are codified
in V.

12.1.2.1 Multivariate Gaussian classifier

MG classifiers (see also Section 3.4.2.1) model the features which describe the instances be-

longing to each class as a MG distribution (see Figure 12.1a) with conditional MG probability

density functions fX|C(x|c ; θX|C) for c ∈ ΩC , where θX|C =
{
µX|c,ΣX|c

}
c∈ΩC

are the pa-

rameters of the MG distribution with mean µX|c and covariance matrix ΣX|c for c ∈ ΩC .

230 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

The joint probability density over the variables (X,V) of an MG classifier is the FMM

fX,V(x,v) =
∑

c∈ΩC

pC(c;θC)pV|C

(
v|c ; θV|C

)
fX|C

(
x|c ; θX|C

)
. (12.2)

The number of parameters which need to be fitted from data in this MG classifier is K − 1+

K(K − 1)+ 2Kn+K 1
2n(n− 1). When the number of variables n is very high or the number

of training data N available is low, estimating the full covariance matrix ΣX|c for each class

label c can yield inaccurate values.

12.1.2.2 Naive Bayes classifier

The NB classifier (see also Section 3.4.2.1) assumes that all the predictive variables in X

are conditionally independent given the class variable. In a NB classifier, we fit a univariate

conditional Gaussian density function fXi|c(xi ; θXi|C) for each variable Xi and each class

label c, where θXi|C =
{
µXi|c, σ

2
Xi|c

}
c∈ΩC

, and µXi|c and σ
2
Xi|c

are the mean and the variance

of variable Xi given C = c, respectively. The conditional independence assumption in the

NB classifier simplifies Equation (12.2) so that the joint probability density over the variables

(X,V) is the FMM

fX,V(x,v) =
∑

c∈ΩC

pC(c;θC)pV|C

(
v|c ; θV|C

) n∏

i=1

fXi|C

(
xi|c ; θXj |C

)
. (12.3)

The NB classifier only needs to estimate the main diagonal of the covariance matrix ΣX|c

for each class label c in Equation (12.2), so the final number of parameters in this model is

K − 1 +K(K − 1) + 2Kn.

12.1.2.3 Aggregated one-dependence estimator classifier

Here, we use CLGs as BNCs with a discrete class variable C and a vector of n continuous

predictive variables X = (X1, . . . , Xn) (see Figure 12.1c). The conditional density function

for a continuous variableXi having parents {Yi, C}, whereYi ⊆ X\{Xi}, is defined as a CLG

distribution fXi|Yi,C(xi|yi, c;θXi|Yi,C), where θXi|Yi,C =
{
β0Xi|Yi,c,β

T
Xi|Yi,c

, σ2Xi|Yi,c

}
c∈ΩC

,

where β0Xi|Yic and βXi|Yic are the regression coefficients of Xi over Yi and C = c, and

σ2Xi|Yic
is the conditional variance of Xi given Yi for C = c. The joint probability density

over the variables (X,V) (Equation (12.2)) of a CLG classifier is given by the FMM

fX,V(x,v) =
∑

c∈ΩC

pC(c;θC)pV|C

(
v|c ; θV|C

) n∏

i=1

fXi|Yi,C

(
xi|yi, c ; θXi|Yi,C

)
. (12.4)

The total number of parameters to be estimated in a CLG classifier depends on the cardinality

Card(Yi) of the set of parents Yi of each variable Xi, and is given by K − 1 +K(K − 1) +

2Kn+K
∑n

i=1

(
Card(Yi) +

1
2Card(Yi)(Card(Yi)− 1)

)
.

12.1. LEARNING BAYESIAN CLASSIFIERS WITH CLASS COUNT VECTORS 231

Here, we implemented the AODE classifier (see Section 3.4.2.1). Figure 12.1(c) shows one

of the TAN classifier included in the AODE classifier, where variable X1 is a parent of all the

other variables (X2, . . . , Xn). For the ith TAN classifier in AODE, the joint density over the

variables (X,V) in Equation (12.4) further simplifies to the FMM

fX,V(x,v) =
∑

c∈ΩC

pC(c;θC)pV|C

(
v|c ; θV|C

)
fXi|C

(
xi|c ; θXi|C

)
×

n∏

s=1,s6=i

fXs|Xi,C

(
xs|xi, c ; θXs|Xi,C

)
. (12.5)

The number of parameters to be estimated in this specific TAN classifier is K − 1 +K(K −
1) + 2Kn+K(n− 1). Then, the final number of parameters of an AODE classifier is n(K −
1 +K(K − 1) + 2Kn +K(n − 1)). When classifying a new instance, AODE computes the

posterior probability of each class label as the mean of the posterior probabilities yielded by

each individual TAN classifier.

12.1.3 The counts multinomial expectation maximization algorithm

The EM algorithm is suited for estimating the parameters Θ of the FMMs defined for each

classifier in Section 12.1.2. We illustrate the model for an MG classifier (Section 12.1.2.1),

although it can be straightforwardly adapted for NB (Section 12.1.2.2) and AODE classifiers

(Section 12.1.2.3). The log-likelihood of a dataset DX,V = {(x1,v1), . . . , (xN ,vN)} (as in

Table 12.2) given the FMM in Equation (12.2) with parameters Θ =
{
θC ,θV|C ,θX|C

}
is

ℓ(DX,V|Θ) =
N∑

j=1

ln

 ∑

c∈ΩC

pC(c;θC)pV|C

(
vj |c ; θV|C

)
fX|C

(
xj |c ; θX|C

)

. (12.6)

The expectation step at iteration q computes the posterior probability that the jth in-

stance belongs to class c given parameters Θ(q) as

t
(q)
jc =

pC

(
c ; θ

(q)
C

)
pV|C

(
vj |c ; θ

(q)
V|C

)
fX|C

(
xj |c ; θ

(q)
X|C

)

∑
k∈ΩC

pC

(
k ; θ

(q)
C

)
pV|C

(
vj |k ; θ

(q)
V|C

)
fX|C

(
xj |k ; θ

(q)
X|C

) . (12.7)

Then, the expected log-likelihood of the complete data Q
(
Θ;Θ(q)

)
is computed as the

sum of the expected log-likelihood of each instance j, Qj

(
Θ;Θ(q)

)
:

Q
(
Θ;Θ(q)

)
=

N∑

j=1

Qj

(
Θ;Θ(q)

)
=

N∑

j=1

∑

c∈ΩC

t
(q)
jc

[
ln pC

(
c ; θ

(q)
C

)
+ ln pV|C

(
vj |c ; θ

(q)
V|C

)
+ ln fX|C

(
xj |c ; θ

(q)
X|C

)]
. (12.8)

232 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

In the maximization step at iteration q, we have to find the parameters for the next iter-

ation Θ(q+1) which maximize Equation (12.8). Therefore, we have to derive Equation (12.8)

with respect to every parameter in Θ(q) and solve for zero. Since X and V are assumed to

be independent given C, these parameters can be easily computed. The parameters of the

class prior probability distribution θ
(q)
C = {θ1, . . . , θK} and the parameters of the conditional

MG distributions θX|C =
{
µX|c,ΣX|c

}
c∈ΩC

are computed as in the classical EM algorithm

for fitting a finite mixture of Gaussian distributions:

θ(q+1)
c =

1

N

N∑

j=1

t
(q)
jc ,

µ
(q+1)
X|c =

1
∑N

j=1 t
(q)
jc

N∑

j=1

t
(q)
jc xj ,

Σ
(q+1)
X|c =

1
∑N

j=1 t
(q)
jc

N∑

j=1

t
(q)
jc

(
xj − µ

(q+1)
X|c

)(
xj − µ

(q+1)
X|c

)T
.

(12.9)

The parameters of the conditional multinomial distributions of the count variables V

given the class label c are obtained using Lagrange multipliers and including the restriction∑
k∈ΩC

θVk|c
(q+1) = 1 [388, 389]:

θ
(q+1)
Vk|c

=

∑N
j=1 t

(q)
jc vjk∑K

k′=1

∑N
j=1 t

(q)
jc vjk′

. (12.10)

The EM algorithm iteratively computes the expectation and maximization steps until

it reaches a local maximum in the log-likelihood (Equation (12.6)). Therefore, there is no

guarantee that the algorithm will find the global maximum. Usually, several runs of the

algorithm are performed with different initial values of parametersΘ(1) in the first expectation

step (Equation (12.7)) of the algorithm, and the model with the highest log-likelihood in all

the runs is returned. Instead, in our CoMEM algorithm, we initialize the values of t
(1)
ic to

the proportion of experts who classified the jth item as belonging to class c: vjc/Ne. The

first maximization step (Equations (12.9) and (12.10)) is computed using those values, and

the algorithm is run until convergence. Therefore, instead of running the CoMEM algorithm

several times with different initializations, we use the information about the class provided

by the experts for each instance to initialize the expected posterior probabilities t
(1)
jc and only

one complete run of the algorithm is performed. The stopping criterion used to check the

convergence of the algorithm is

ℓ(DX,V|Θ(q))− ℓ(DX,V|Θ(q−1))∣∣ℓ(DX,V|Θ(q−1))
∣∣ < ǫ. (12.11)

We set the convergence parameter to ǫ = 10−6.

The CoMEM algorithm can be easily particularized for learning NB (Section 12.1.2.2)

12.1. LEARNING BAYESIAN CLASSIFIERS WITH CLASS COUNT VECTORS 233

or AODE classifiers (Section 12.1.2.3). In the FMM for the NB classifier (Equation (12.3)),

only the main diagonal of the covariance matrix Σ
(q+1)
X|c (Equation (12.9)) has to be estimated

for each class label c. In the AODE classifier, only the variance of each variable Σ
(q+1)
Xi|c

and the covariance between each variable and its parent Σ
(q+1)
XiYi|c

have to be estimated in

Equation (12.9). These covariances are then used to compute the parameters β0Xs|Xic, βXs|Xic

and σ2Xs|Xic
of the CLG distributions in the FMM of the TAN classifiers (Equation (12.5))

that build up the AODE classifier.

12.1.4 Classification of a new instance

The CoMEM algorithm is used to find the ML estimates of the FMM for each classifier in

Section 12.1.2. These parameters can be directly plugged into the (conditional) probability

distributions making up the BNCs, so that they can be used for classification. In traditional

BNCs, we use the maximum a posteriori decision rule so that x is assigned to the class c∗

with maximum posterior probability

c∗ = arg max
c∈ΩC

pC|X(c|x) = arg max
c∈ΩC

pC(c)fX|C(x|c).

The BNCs studied here also include the vector of count variables V as predictive in-

formation, and, applying the Bayes rule, they yield pC|X,V(c|x,v). However, values v are

not available for a new instance x to classify. Here, we investigate three approximations of

pC|X(c|x):

The independence classification rule (CoMEM-IND) ignores variables V when

classifying x and computes the posterior probability pC|X(c|x) as

pC|X(c|x) =
∑

v∈ΩV

pC|X,V(c|x,v)pV|X(v|x) =
pC(c)fX|C(x|c)∑

k∈ΩC
pC(k)fX|C(x|k)

. (12.12)

The multinomial maximum classification rule (CoMEM-MUL) classifies a new

instance x taking into account all the possible combinations of votes v for the class

labels. Here, we approximate pC|X(c|x) with the maximum of the addends in Equa-

tion (12.12):

pC|X(c|x) ≈ max
v∈ΩV

pC|X,V(c|x,v)pV|X(v|x) = max
v∈ΩV

pC(c)fX|C(x|c)pV|C(v|c)∑
k∈ΩC

pC(k)fX|C(x|k)
,

where ΩV is the domain of all vectors v = (v1, . . . , vK) such that vc ∈ {0, 1, . . . , Ne}
and

∑
c∈ΩC

vc = Ne.

The binomial maximum classification rule (CoMEM-BIN) assumes that the only

relevant information for computing the posterior probability pC|X(c|x) is the number

of votes vc that instance x could have received for class label c, independently of the

234 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

number of votes received by the other class labels. The posterior probability pC|X(c|x)
is approximated by the maximum:

pC|X(c|x) ≈ max
vc∈ΩVc

pC|X,Vc
(c|x, vc)pVc|X(vc|x) = max

vc∈ΩVc

pC(c)fX|C(x|C)pVc|C(vc|c)∑
k∈ΩC

pC(k)fX|C(x|k)
,

where ΩVc = {0, 1, . . . , Ne}. The probability distribution of V given the class label c

was modeled as a multinomial distribution pV|C(v|c ; θV|C). Therefore, the conditional

probability of a single variable Vc given the class label k is a binomial distribution:

pVc|C(vc|k ; θVc|k).

In real applications, the class labels are usually related, e.g., some classes are frequently

confused whereas others are easily distinguishable. The CoMEM-MUL classification rule can

take into account these relationships between class labels because it considers all the possible

combinations of votes v ∈ ΩV. However, the cardinality of ΩV is
(
Ne+K−1

K−1

)
, so it rapidly

increases with the number of experts Ne and the number of class labels K. Therefore, these

classification rules can become extremely inefficient in real applications. The CoMEM-BIN

classification rule considers partial information about the class labels because only the number

of votes vc are used for computing pC|X(c|x). This rule ignores possible relationships between
the class labels. However, the cardinality of ΩVc is Ne + 1, so this classification rule is much

more efficient than CoMEM-MUL. Note also that the multinomial distribution reduces to

the binomial distribution for binary classes. Therefore, CoMEM-MUL and CoMEM-BIN are

equivalent when the classification problem has two class labels.

12.2 Related work: Modeling probabilistic class labels with

belief functions

Côme et al. [96] proposed a framework for learning MG classifiers where the information

about the class for each instance is modeled with belief functions in the context of the

transferable belief model. We tailor their approach to our problem, where a set of class

labels is available for each training instance. Here, the information about the class for each

instance is summarized as a probability distribution over the class labels. Therefore, the

training dataset DX,L is transformed into a new dataset DX,Π = {(x1,π1), . . . , (xN ,πN)},
where πj = (πj1, . . . , πjK) is a probability distribution over ΩC so that πjc is the probability

of instance j belonging to class c

πjc =

∑Ne

m=1 δ(ℓjm, c)

Ne
, (12.13)

with 0 ≤ πjc ≤ 1 and
∑

c∈ΩC
πjc = 1. Table 12.3 shows the transformed dataset DX,Π for

dataset DX,L shown in Table 12.1.

In [96], the information about the class of each instance xj is modeled as a basic belief

assignment (BBA) [455, 464]. A BBA is a function mΩC

j : 2ΩC → [0, 1] over the powerset

12.2. MODELING PROBABILISTIC CLASS LABELS 235

Table 12.3: Example of a datasetDX,Π with probabilistic class labels corresponding to dataset
DX,L in Table 12.1. The N instances are characterized by n = 4 predictive variables and a
probability π c for each class label c ∈ ΩC = {1, 2, 3}.

j X1 X2 X3 X4 π 1 π 2 π 3 C

1 5.1 3.5 1.4 0.2 0.3 0.2 0.5 ?
2 7 3.2 4.7 1.4 0.1 0.6 0.3 ?
· · ·
N 5.9 3.0 5.1 1.8 0.0 0.3 0.7 ?

Table 12.4: Example of a general BBA mΩC

j (ω) in [502] (left) and a Bayesian BBA (right),

and the corresponding plausibility functions plΩC

j (ω). The class variable C has three values
ΩC = {1, 2, 3}. The Bayesian BBA (right) corresponds to the class information of the first
instance in DX,L (Table 12.1) and DX,Π (Table 12.3).

ω
General BBA Bayesian BBA

mΩC

j (ω) plΩC

j (ω) mΩC

j (ω) plΩC

j (ω)

∅ 0.0 0.0 0.0 0.0
{1} 0.1 0.7 0.3 0.3
{2} 0.0 0.3 0.2 0.2
{3} 0.3 0.7 0.5 0.5
{1, 2} 0.2 0.7 0.0 0.5
{1, 3} 0.3 1.0 0.0 0.8
{2, 3} 0.0 0.9 0.0 0.7
ΩC 0.1 1.0 0.0 1.0

2ΩC , verifying
∑

ω⊆ΩC
mΩC

j (ω) = 1. Table 12.4 shows an example of a general BBA (left) in

[502], where different beliefs are assigned to each possible subset ω ⊆ ΩC . In our scenario,

each BBA is a probability distribution over ΩC , so all the focal sets (subsets ω ⊆ 2ΩC with

mΩC

j (ω) > 0) are singletons, and the BBA is called a Bayesian BBA (rightmost column in

Table 12.4). Therefore, mΩC

j ({c}) = πjc for each singleton set {c} ⊆ 2ΩC and mΩC

j (ω) = 0

for all the non-singleton sets ω ⊆ 2ΩC , Card(ω) 6= 1.

For each instance, a plausibility function plΩC

j (ω) can be built from the BBA mΩC

j (ω) as

plΩC

j (ω) =
∑

γ⊆ΩC ,
γ∩ω 6=∅

mΩC

j (γ), ∀ω ⊆ ΩC .

Since our mΩC

j (ω) are Bayesian, the plausibility functions plΩC

j (ω) are probability measures.

Table 12.4 shows the plausibilities for a general BBA and a Bayesian BBA.

The PLEM algorithm is a generalization of the EM algorithm [128]. PLEM uses the belief

function theory in the context of the transferable belief model [464] for fitting a finite mixture

of MG distributions with K components, one for each class label c ∈ ΩC :

fX(x) =
∑

c∈ΩC

pC(c ; θC)fX|C

(
x|c ; θX|C

)
. (12.14)

236 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

Côme et al. [96] derived a generalized likelihood criterion which measures the plausibil-

ity plΘ(DX,Π|Θ) of a dataset DX,Π given the FMM (Equation (12.14)) with parameters

Θ =
{
θC ,θX|C

}
. Then, the PLEM algorithm finds the parameters Θ which maximize the

generalized log-likelihood criterion

ln(plΘ(DX,Π|Θ)) =
N∑

j=1

ln

 ∑

c∈ΩC

pljcpC(c ; θC)fX|C

(
xj |c ; θX|C

)

, (12.15)

where pljc = plΩC

j ({c}) are the plausibilities of the jth instance for the set {c}. For Bayesian
BBAs we have that pljc = plΩC

j ({c}) = mΩC

j ({c}) = πjc, so the generalized log-likelihood

criterion (Equation (12.15)) simplifies to

ℓ(DX,Π|Θ)) =
N∑

j=1

ln

 ∑

c∈ΩC

πjcpC(c ; θC)fX|C

(
xj |c ; θX|C

)

. (12.16)

The PLEM algorithm is then particularized to maximize the expected generalized log-

likelihood criterion (Equation (12.16)) by alternating the two steps:

Expectation step in iteration q: compute the expected posterior probabilities

t
(q)
jc =

πjcpC

(
c ; θ

(q)
C

)
fX|C

(
xj |c ; θ

(q)
X|C

)

∑
k∈ΩC

πjkpC

(
k ; θ

(q)
C

)
fX|C

(
xj |k ; θ

(q)
X|C

) . (12.17)

Maximization step in iteration q: find the parameters which maximize the expected

generalized log-likelihood of the complete data. The parameters of the class prior

probability distribution θ
(q+1)
C and the parameters of the conditional MG distributions

θ
(q+1)
X|C for the next iteration are computed as in Equation (12.9).

The PLEM algorithm, like the EM algorithm, iteratively maximizes Equation (12.16) until

a local maximum is achieved. The same convergence criterion as in the CoMEM algorithm

was used (Equation (12.11)). As before, the expected posterior probabilities t
(1)
jc in the first

iteration (Equation (12.17)) are initialized to πjc and the first maximization step is performed

with those initial values. Then, the algorithm is run until convergence.

This approach does not explicitly model the class probabilities πj for each instance. In

fact, these class probabilities stay constant throughout the whole algorithm and do not appear

in the final model (see Figures 3.2, 3.3 and 3.5). Therefore, this particularized PLEM algo-

rithm could be seen as a weighted version of the classical EM algorithm, where probabilities

πj are used as weights in the log-likelihood of the model (Equation (12.16)).

Fitting the parameters of NB or AODE classifiers is straightforward by computing the

necessary covariances in Equation (12.9) and using the factorization of the joint probability

over X in a similar way to Equations (12.3) and (12.4), respectively.

12.3. EXPERIMENTS 237

12.3 Experiments

This section includes the evaluation of the classifiers over 16 datasets taken from the UCI [27],

KEEL [9] and LibSVM [78] repositories. Each variable in the datasets was standardized by

subtracting the mean and dividing by the standard deviation. We deleted the eighth variable

in the glass dataset because 82.24% of the values were zero and the estimated covariance

matrices were not positive definite in some runs. Similarly, we deleted the first variable in

the ion dataset because 89.17% of its values were equal to 1. Table 12.5 shows the main

features of the final datasets used in the experimentation.

Table 12.5: Datasets used in the experiments.

Name No. instances N No. pred. variables n No. class labels K

appendicitis 106 7 2
fourclass 862 2 2
glass 214 8 2
haberman 306 3 2
ion 351 32 2
iris 150 4 3
liver 341 6 2
newthyroid 215 5 3
phoneme 5,404 5 2
ring 7,400 20 2
svmguide1 7,089 4 2
twonorm 7,400 20 2
vehicle 846 18 4
waveform 5,000 21 3
wdbc 569 30 2
wine 178 13 3

Three different classifiers were considered (see Section 12.1.2): MG, NB and AODE. The

parameters of the probability distributions for each classifier were found by fitting FMMs

using three algorithms: PLEM, CoMEM and EM. Additionally, three classification rules

were provided for CoMEM (see Section 12.1.4). The probability distributions for the class

labels πj were used to initialize the posterior probabilities t
(1)
jc in the expectation step of the

first iteration of the three algorithms. Therefore, the following classification scenarios were

studied:

CoMEM: The information about the class was codified as count vectors and explicitly

modeled in the BNCs as conditional multinomial distributions. The CoMEM algo-

rithm was used to find the ML estimates of the parameters of the model as explained

in Section 12.1. We studied the three classification rules proposed in Section 12.1.4:

CoMEM-IND, CoMEM-MUL and CoMEM-BIN.

PLEM: The information about the class is encoded as probability distributions over

the class labels modeled with belief functions. The parameters of the BNCs were found

using the PLEM algorithm (see Section 12.2).

EM: The BNCs were fitted as in an unsupervised learning scenario, i.e., no information

238 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

about the true class labels is available. The classical EM algorithm [128] was used for

estimating the parameters of the probability distributions in the classifiers.

12.3.1 Dataset generation and stratified h-fold cross-validation with ex-

perts’ class labels

We took the original datasets in Table 12.5 and generated a dataset DX,L with experts’ class

labels. For each instance xj , a set of experts’ class labels lj = {lj1, . . . , ljNe} was generated.
The mistakes made by the experts were modeled using a beta distribution with mean µB

and standard deviation σB. For the jth instance and the mth expert, we sampled a value

bjm from the beta distribution B(µB, σB). Then, a value ujm was drawn from a uniform

distribution in [0, 1]. If ujm ≥ bjm, the expert’s label ljm was set to the true class label cj of

the jth instance. Otherwise, the expert’s label ljm was set to any other class label in ΩC \{cj}
with equal probability. The beta distribution models the mistakes made by an expert when

classifying the instances. Low values of µB yielded a low number of mistakes and most of the

experts assigned the correct label to the instances, whereas high values of µB yielded a lot of

mistakes when labeling the instances.

Stratified h-fold cross-validation was used to honestly evaluate the models, taking into

account the different number of instances belonging to each class (see Section 2.3.2). The true

class label of the instances was not available in DX,L (see Table 12.1), so the stratified cross-

validation process was based on the number of votes vjc received by each class label for each

instance (see Equation (12.1)). A simple greedy algorithm was designed for generating the

folds in the cross-validation process. The goal was to generate folds with the same proportion

of instances of each class label as the dataset with experts’ class labels DX,L. An instance was

randomly drawn from the dataset DX,L without replacement. The class label which yielded

the maximum number of votes for that instance was found, and the instance was introduced

in the fold which had the lowest number of votes for that class label (adding the votes of

the instances already included in the fold). Ties were broken randomly. Table 12.6 shows

the probabilities for each class label in each dataset in Table 12.5, the mean class probability

in the transformed dataset DX,L with experts’ labels and the mean and standard deviation

of the mean probabilities of each class label averaged over the h folds obtained with the

proposed stratified h-fold cross-validation procedure. The proposed algorithm yielded folds

with similar proportions to the transformed dataset DX,L, even when the class labels were

unbalanced (e.g., appendicitis or glass datasets). Also, the cross-validation generated

folds with a low standard deviation in the class probabilities. Once the folds were generated,

we proceeded as in a classical cross-validation setting. Each fold was considered once for

testing the classifier learned using the other h− 1 training folds.

12.3.2 Evaluation measures

Two measures were considered for evaluating the quality of the classifiers. First, we computed

the error of the classifiers with respect to the true class labels of the instances in the dataset

12.3. EXPERIMENTS 239

Table 12.6: Comparison between the class probability in the original datasets in Table 12.5,
the class probabilities in the transformed dataset DX,L with experts’ class labels generated
using a beta distribution B(0.1, 0.01) and the mean and standard deviation of the class
probabilities in one run of the stratified h-fold cross validation (h = 10).

Dataset Class label Class probability in
the original dataset

Mean class proba-
bility in the trans-
formed dataset with
experts labels DX,L

Mean class probabil-
ity and standard de-
viation in the h folds

appendicitis
1 0.8019 0.7396 0.7400 ± 0.0201
2 0.1981 0.2604 0.2600 ± 0.0201

fourclass
1 0.3561 0.3819 0.3819 ± 0.0022
2 0.6439 0.6181 0.6181 ± 0.0022

glass
1 0.2383 0.2958 0.2956 ± 0.0095
2 0.7617 0.7042 0.7044 ± 0.0095

haberman
1 0.7353 0.6817 0.6817 ± 0.0058
2 0.2647 0.3183 0.3183 ± 0.0058

ion
1 0.6410 0.6091 0.6091 ± 0.0066
2 0.3590 0.3909 0.3909 ± 0.0066

iris

1 0.3333 0.3367 0.3368 ± 0.0140
2 0.3333 0.3160 0.3159 ± 0.0138
3 0.3333 0.3473 0.3473 ± 0.0114

liver
1 0.4164 0.4358 0.4358 ± 0.0048
2 0.5836 0.5642 0.5642 ± 0.0048

newthyroid

1 0.6977 0.6433 0.6434 ± 0.0118
2 0.1628 0.1874 0.1873 ± 0.0109
3 0.1395 0.1693 0.1693 ± 0.0075

phoneme
1 0.7065 0.6675 0.6675 ± 0.0002
2 0.2935 0.3325 0.3325 ± 0.0002

ring
1 0.4951 0.4950 0.4950 ± 0.0003
2 0.5049 0.5050 0.5050 ± 0.0003

svmguide1
1 0.5643 0.5506 0.5506 ± 0.0004
2 0.4357 0.4494 0.4494 ± 0.0004

twonorm
1 0.5004 0.5013 0.5013 ± 0.0004
2 0.4996 0.4987 0.4987 ± 0.0004

vehicle

1 0.2577 0.2537 0.2537 ± 0.0030
2 0.2352 0.2384 0.2384 ± 0.0029
3 0.2506 0.2511 0.2511 ± 0.0027
4 0.2565 0.2569 0.2569 ± 0.0028

waveform

1 0.3294 0.3304 0.3304 ± 0.0003
2 0.3392 0.3359 0.3359 ± 0.0005
3 0.3314 0.3338 0.3338 ± 0.0006

wdbc
1 0.3726 0.4018 0.4018 ± 0.0033
2 0.6274 0.5982 0.5982 ± 0.0033

wine

1 0.3315 0.3275 0.3276 ± 0.0141
2 0.3989 0.3933 0.3933 ± 0.0136
3 0.2697 0.2792 0.2792 ± 0.0156

(see Section 2.3.2). However, in a real problem, the true class label of the instances is not

known and the error cannot be computed. Moreover, even if the true class labels are available,

we could define the goal of a classifier as being to reproduce the information given by the set of

experts. Thus, we could compare the proportion of experts πj = (πj1, . . . , πjK) who classify

the jth instance with a given class label (Equation (12.13)) and the posterior probability

yielded by the BNC
(
pC|X(1|xj), . . . , pC|X(K|xj)

)
. For each instance xj , the mean squared

240 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

error (MSE) was used to measure the difference between the “true probability” πj and the

posterior probability yielded by the BNC:

MSEj =
1

K

∑

c∈ΩC

(
πjc − pC|X(c|xj)

)2
. (12.18)

12.3.3 Results

This section reports the results of the experimental evaluation of the models proposed in this

paper. For each one of the 16 datasets in Table 12.5, three classifiers (MG, NB and AODE)

were induced with the studied algorithms and classification rules: CoMEM-IND, CoMEM-

MUL, CoMEM-BIN, PLEM and EM. For each original dataset in Table 12.5, we generated ten

datasets with experts’ class labels DX,L using beta distributions with µB = 0.1, 0.2, 0.3, 0.4

and σB = 0.01 (Section 12.3.1). A stratified 10-fold cross-validation was performed with each

dataset with experts’ class labels DX,L. Appendix C reports the mean and the standard

deviation of the classification error and the MSE (Equation (12.18)) computed over the 10

folds and the 10 datasets DX,L. The goal was to minimize the two evaluation measures, so

lower values of the evaluation measures yielded better classifiers.

First, we looked for statistically significant differences between the algorithms (CoMEM-

IND, CoMEM-MUL, CoMEM-BIN, PLEM and EM) using all the combinations of datasets,

classifiers and values of µB as input information for the tests. Table 12.7 shows the aver-

age ranking obtained by each algorithm for each evaluation measure. Higher values of the

ranking yielded better performances. CoMEM-MUL and CoMEM-BIN were ranked highest

and second highest, respectively, in terms of both classification error and MSE. EM yielded

the worst average rank for classification error and MSE. CoMEM-IND outperformed PLEM

on MSE, whereas PLEM outperformed CoMEM-IND on classification error. Friedman’s test

[195] and Iman-Davenport’s test [271] were performed to check the null hypothesis that all

the algorithms performed similarly. Boldface numbers indicate statistically significant results

at a significance level α = 0.05. This null hypothesis was rejected for the two evaluation mea-

sures with both tests (all p-values < 0.0001). Garćıa and Herrera [207] extended the tests

proposed by Demšar [129] for performing all pairwise comparisons between several algorithms

on a collection of datasets. Therefore, we performed Bergmann-Hommel’s [42] post-hoc test

as computed in [207] to find statistical differences in the performance of all pairs of algo-

rithms. Table 12.8 shows the adjusted p-values of the tests for every pair of algorithms and

each evaluation measure. Looking at the ordered rankings in Table 12.7, we can conclude

from the statistically significant differences detected in Table 12.8 that all the algorithms out-

performed EM for the two evaluation measures. We found no significant differences between

CoMEM-MUL and CoMEM-BIN. CoMEM-MUL and CoMEM-BIN outperformed PLEM on

both accuracy and MSE. CoMEM-IND outperformed PLEM according to the MSE evalua-

tion measure, whereas the two algorithms performed similarly with respect to classification

error.

We also compared the three classifiers (MG, NB and AODE) by studying their perfor-

12.3. EXPERIMENTS 241

Table 12.7: Average rankings of the five algorithms for each evaluation measure, and p-values
of Friedman’s and Iman-Davenport’s tests of equal performance between all algorithms.

Classification error Mean squared error
Algorithm Ranking Algorithm Ranking

CoMEM-MUL 3.5182 CoMEM-MUL 3.7292
CoMEM-BIN 3.4661 CoMEM-BIN 3.6927
PLEM 3.1198 CoMEM-IND 3.5781
CoMEM-IND 3.0599 PLEM 2.6406
EM 1.8359 EM 1.3594

Friedman’s test p-value < 0.0001 p-value < 0.0001
Iman-Davenport’s test p-value < 0.0001 p-value < 0.0001

Table 12.8: Adjusted p-values of Bergmann-Hommel’s post-hoc tests for all pairwise compar-
isons between the five algorithms (CoMEM-IND, CoMEM-MUL, CoMEM-BIN, PLEM and
EM) when all the datasets (16), classifiers (3) and values of µB (4) are considered.

H1
Classification error Mean squared error

p-value p-value

CoMEM-MUL 6= CoMEM-BIN 1.0000 1.0000
CoMEM-MUL 6= CoMEM-IND 0.0271 1.0000
CoMEM-MUL 6= PLEM 0.0406 <0.0001
CoMEM-MUL 6= EM <0.0001 <0.0001
CoMEM-BIN 6= CoMEM-IND 0.0355 1.0000
CoMEM-BIN 6= PLEM 0.0406 <0.0001
CoMEM-BIN 6= EM <0.0001 <0.0001
CoMEM-IND 6= PLEM 1.0000 <0.0001
CoMEM-IND 6= EM <0.0001 <0.0001
PLEM 6= EM <0.0001 <0.0001

mances in the 16 datasets, the five algorithms and the four possible values of µB. Table 12.9

shows the three algorithms ordered according to their average ranking for each evaluation

measure. MG yielded the highest ranking for classification error, whereas AODE achieved

the highest ranking for MSE. NB yielded the worst ranking for both evaluation measures.

Friedman’s and Iman-Davenport’s tests (all p-values < 0.0001) reveal significant differences

between the classifiers for the two evaluation measures. We performed all the pairwise com-

parisons between the three classifiers and reported the adjusted p-values of the Bergmann-

Hommel’s post-hoc tests in Table 12.10. MG and AODE outperformed NB for both evaluation

measures. No significant differences between MG and AODE were found when considering

the classification error. However, AODE outperformed MG on MSE.

We also studied the differences between the algorithms taking each individual classifier

and each value of µB = 0.1, 0.2, 0.3, 0.4 independently. This way, we were able to analyze the

behavior of each algorithm and each classifier as we increased the errors in the class labels

provided by the experts. Tables 12.11 to 12.14 show the pairwise comparisons between the

algorithms for each value of µB = 0.1, 0.2, 0.3, 0.4. The number of datasets out of 16 in which

242 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

Table 12.9: Average rankings of the three classifiers for each evaluation measure, and p-values
of Friedman’s and Iman-Davenport’s tests of equal performance between all classifiers.

Classification error Mean squared error
Algorithm Ranking Algorithm Ranking

MG 2.2062 AODE 2.4687
AODE 2.0969 MG 2.0563
NB 1.6969 NB 1.4750

Friedman’s test p-value < 0.0001 p-value < 0.0001
Iman-Davenport’s test p-value < 0.0001 p-value < 0.0001

Table 12.10: Adjusted p-values of Bergmann-Hommel’s post-hoc tests for all pairwise com-
parisons between the three classifiers (MG, NB and AODE) when all the datasets (16),
algorithms (5) and values of µB (4) are considered.

H1
Classification error Mean squared error

pBerg pBerg

MG 6= NB <0.0001 <0.0001
AODE 6= MG 0.1665 <0.0001
AODE 6= NB <0.0001 <0.0001

the first algorithm won, tied or lost against the second algorithm is shown for each pair of

algorithms (W/T/L column). Also, the tables include the p-values of a two-tailed binomial

test and the Bergmann-Hommel’s post-hoc test to look for significant differences between the

performance of the algorithms. Boldface numbers indicate statistically significant results at

a significance level α = 0.05. For each pair of algorithms in the test, the algorithm’s name

is highlighted in boldface if it significantly outperforms the other classifier in any test or

evaluation measure.

First, we compared the three classification rules of the proposed method (CoMEM-IND,

CoMEM-MUL and CoMEM-BIN) against PLEM. PLEM never outperformed any of the

proposed classification rules on either classification error or MSE. For low values of µB = 0.1

(Table 12.11), the MG classifier learned with CoMEM-IND, CoMEM-MUL and CoMEM-

BIN outperformed PLEM on classification error according to both the binomial test and the

Bergmann-Hommel’s test. Also, for µB = 0.2 (Table 12.12), the MG classifiers learned with

these proposed rules outperformed PLEM on classification error according to the binomial

test. According to MSE, MG classifiers learned with the proposed approach outperformed

PLEM for low values of µB = 0.1, 0.2. AODE classifiers learned with CoMEM-IND, CoMEM-

MUL and CoMEM-BIN outperformed PLEM on MSE for all values of µB, whereas there were

no significant differences in accuracy. In NB classifiers, no significant differences between

PLEM and the proposed classification rules could be found.

Second, we compared the classification rules for the proposed model. On the one hand,

CoMEM-IND never outperformed CoMEM-MUL or CoMEM-BIN for any value of µB and

any classifier. On the other hand, CoMEM-MUL and CoMEM-BIN outperformed CoMEM-

IND in classification error for some specific scenarios, e.g., for NB and AODE classifiers

12.3. EXPERIMENTS 243

Table 12.11: Comparison of the proposed methods (CoMEM-MUL, CoMEM-BIN, CoMEM-
IND, PLEM and EM) considering 3 classifiers (MG, NB, AODE), all the datasets (16) and
µB = 0.1.

H1
Classification error Mean squared error

W/T/L Binomial Bergmann W/T/L Binomial Bergmann

MG

CoMEM-MUL 6= CoMEM-BIN 2/13/1 1.0000 1.0000 2/10/4 0.6875 1.0000
CoMEM-MUL 6= CoMEM-IND 6/5/5 1.0000 1.0000 6/0/10 0.4545 1.0000
CoMEM-MUL 6= PLEM 14/0/2 0.0042 0.0437 15/0/1 0.0005 0.0087

CoMEM-MUL 6= EM 14/0/2 0.0042 0.0004 16/0/0 <0.0001 <0.0001

CoMEM-BIN 6= CoMEM-IND 4/6/6 0.7539 1.0000 5/0/11 0.2101 1.0000
CoMEM-BIN 6= PLEM 13/1/2 0.0074 0.0437 16/0/0 <0.0001 0.0043

CoMEM-BIN 6= EM 14/0/2 0.0042 0.0006 16/0/0 <0.0001 <0.0001

CoMEM-IND 6= PLEM 13/1/2 0.0074 0.0437 15/0/1 0.0005 0.0009

CoMEM-IND 6= EM 14/0/2 0.0042 0.0004 16/0/0 <0.0001 <0.0001

PLEM 6= EM 14/0/2 0.0042 0.5844 16/0/0 <0.0001 0.1767

NB

CoMEM-MUL 6= CoMEM-BIN 3/11/2 1.0000 1.0000 5/10/1 0.2188 1.0000
CoMEM-MUL 6= CoMEM-IND 8/5/3 0.2266 1.0000 10/0/6 0.4545 1.0000
CoMEM-MUL 6= PLEM 9/0/7 0.8036 1.0000 12/0/4 0.0768 0.2316
CoMEM-MUL 6= EM 13/0/3 0.0213 0.0175 15/0/1 0.0005 <0.0001

CoMEM-BIN 6= CoMEM-IND 7/8/1 0.0703 1.0000 9/0/7 0.8036 1.0000
CoMEM-BIN 6= PLEM 9/0/7 0.8036 1.0000 12/0/4 0.0768 0.3150
CoMEM-BIN 6= EM 13/0/3 0.0213 0.0175 15/0/1 0.0005 <0.0001

CoMEM-IND 6= PLEM 9/0/7 0.8036 1.0000 12/0/4 0.0768 0.3594
CoMEM-IND 6= EM 13/0/3 0.0213 0.1170 15/0/1 0.0005 0.0001

PLEM 6= EM 12/0/4 0.0768 0.1014 16/0/0 <0.0001 0.0208

AODE

CoMEM-MUL 6= CoMEM-BIN 2/11/3 1.0000 1.0000 2/11/3 1.0000 1.0000
CoMEM-MUL 6= CoMEM-IND 7/3/6 1.0000 1.0000 7/0/9 0.8036 1.0000
CoMEM-MUL 6= PLEM 9/0/7 0.8036 1.0000 13/0/3 0.0213 0.1158
CoMEM-MUL 6= EM 13/0/3 0.0213 0.0211 16/0/0 <0.0001 <0.0001

CoMEM-BIN 6= CoMEM-IND 6/4/6 1.0000 1.0000 6/0/10 0.4545 1.0000
CoMEM-BIN 6= PLEM 9/0/7 0.8036 1.0000 13/0/3 0.0213 0.1158
CoMEM-BIN 6= EM 13/0/3 0.0213 0.0211 16/0/0 <0.0001 <0.0001

CoMEM-IND 6= PLEM 8/0/8 1.0000 1.0000 13/0/3 0.0213 0.0608
CoMEM-IND 6= EM 13/0/3 0.0213 0.0211 16/0/0 <0.0001 <0.0001

PLEM 6= EM 14/0/2 0.0042 0.0211 16/0/0 <0.0001 0.0208

when µB = 0.2 (Table 12.12) or NB classifiers when µB = 0.3 (Table 12.13). No significant

differences between CoMEM-MUL and CoMEM-BIN were found in any experiment.

Third, the classical EM algorithm never outperformed any of the other methods studied

in this paper. EM was frequently outperformed by PLEM, CoMEM-IND, CoMEM-MUL and

CoMEM-BIN in all the classifiers, evaluation measures and values of µB, and specially for MG

classifiers. NB classifiers learned with EM were outperformed on classification error for low

values of µB, whereas the algorithms performed more similarly for higher values of µB. Also,

on MSE, NB classifiers learned with EM were outperformed for values of µB = 0.1, 0.2, 0.3.

Similarly, AODE classifiers learned with PLEM or the proposed classification rules usually

outperformed those learned with EM on both classification error and MSE for lower values

of µB. For higher values of µB, significant differences could only be found on MSE.

244 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

Table 12.12: Comparison of the proposed methods (CoMEM-MUL, CoMEM-BIN, CoMEM-
IND, PLEM and EM) considering 3 classifiers (MG, NB, AODE), all the datasets (16) and
µB = 0.2.

H1
Classification error Mean squared error

W/T/L Binomial Bergmann W/T/L Binomial Bergmann

MG

CoMEM-MUL 6= CoMEM-BIN 1/14/1 1.0000 1.0000 2/10/4 0.6875 1.0000
CoMEM-MUL 6= CoMEM-IND 9/3/4 0.2668 1.0000 8/0/8 1.0000 1.0000
CoMEM-MUL 6= PLEM 12/1/3 0.0352 0.1521 15/0/1 0.0005 0.0043

CoMEM-MUL 6= EM 14/0/2 0.0042 0.0002 16/0/0 <0.0001 <0.0001

CoMEM-BIN 6= CoMEM-IND 9/4/3 0.1460 1.0000 9/0/7 0.8036 1.0000
CoMEM-BIN 6= PLEM 12/1/3 0.0352 0.1521 15/0/1 0.0005 0.0039

CoMEM-BIN 6= EM 14/0/2 0.0042 0.0002 16/0/0 <0.0001 <0.0001

CoMEM-IND 6= PLEM 12/1/3 0.0352 0.3971 15/0/1 0.0005 0.0043

CoMEM-IND 6= EM 14/0/2 0.0042 0.0032 16/0/0 <0.0001 <0.0001

PLEM 6= EM 15/0/1 0.0005 0.1544 15/0/1 0.0005 0.2294

NB

CoMEM-MUL 6= CoMEM-BIN 1/13/2 1.0000 1.0000 4/9/3 1.0000 0.9110
CoMEM-MUL 6= CoMEM-IND 10/4/2 0.0386 0.4986 10/0/6 0.4545 0.8645
CoMEM-MUL 6= PLEM 9/0/7 0.8036 1.0000 12/0/4 0.0768 0.1314
CoMEM-MUL 6= EM 14/0/2 0.0042 0.0007 15/0/1 0.0005 <0.0001

CoMEM-BIN 6= CoMEM-IND 10/6/0 0.0020 0.4986 12/0/4 0.0768 0.8645
CoMEM-BIN 6= PLEM 9/0/7 0.8036 1.0000 12/0/4 0.0768 0.1314
CoMEM-BIN 6= EM 14/0/2 0.0042 0.0004 15/0/1 0.0005 <0.0001

CoMEM-IND 6= PLEM 8/0/8 1.0000 1.0000 12/0/4 0.0768 0.4375
CoMEM-IND 6= EM 14/0/2 0.0042 0.0755 15/0/1 0.0005 0.0014

PLEM 6= EM 14/0/2 0.0042 0.0070 14/0/2 0.0042 0.0755

AODE

CoMEM-MUL 6= CoMEM-BIN 3/12/1 0.6250 1.0000 2/11/3 1.0000 1.0000
CoMEM-MUL 6= CoMEM-IND 10/5/1 0.0117 0.4986 9/0/7 0.8036 1.0000
CoMEM-MUL 6= PLEM 9/0/7 0.8036 1.0000 15/0/1 0.0005 0.0029

CoMEM-MUL 6= EM 12/0/4 0.0768 0.0144 15/0/1 0.0005 <0.0001

CoMEM-BIN 6= CoMEM-IND 9/7/0 0.0039 0.5844 10/0/6 0.4545 1.0000
CoMEM-BIN 6= PLEM 8/0/8 1.0000 1.0000 15/0/1 0.0005 0.0026

CoMEM-BIN 6= EM 12/0/4 0.0768 0.0262 15/0/1 0.0005 <0.0001

CoMEM-IND 6= PLEM 8/0/8 1.0000 0.5844 15/0/1 0.0005 0.0073

CoMEM-IND 6= EM 12/0/4 0.0768 0.5844 15/0/1 0.0005 <0.0001

PLEM 6= EM 14/0/2 0.0042 0.0405 14/0/2 0.0042 0.7188

Finally, we observed that the number of statistically significant differences between algo-

rithms decreased with higher values of µB. Low values of µB yielded more information about

the true class labels of the training instances, because a higher number of votes vj in CoMEM

and a higher probability πj in PLEM were simulated for the true class label of each instance

xj . In these scenarios, the different ways of managing the uncertain class data of CoMEM

and PLEM yield significantly different performances. On the other hand, little information

about the true class labels of the training instances is available with high values of µB. In

these settings, the number of votes vj and the class probabilities πj are more uniform for

each class label, so CoMEM and PLEM performances are more alike.

12.4. CONCLUSION 245

Table 12.13: Comparison of the proposed methods (CoMEM-MUL, CoMEM-BIN, CoMEM-
IND, PLEM and EM) considering 3 classifiers (MG, NB, AODE), all the datasets (16) and
µB = 0.3.

H1
Classification error Mean squared error

W/T/L Binomial Bergmann W/T/L Binomial Bergmann

MG

CoMEM-MUL 6= CoMEM-BIN 1/12/3 0.6250 1.0000 4/9/3 1.0000 1.0000
CoMEM-MUL 6= CoMEM-IND 4/10/2 0.6875 1.0000 9/0/7 0.8036 1.0000
CoMEM-MUL 6= PLEM 11/0/5 0.2101 0.7907 11/0/5 0.2101 0.4986
CoMEM-MUL 6= EM 13/0/3 0.0213 0.0048 16/0/0 <0.0001 <0.0001

CoMEM-BIN 6= CoMEM-IND 5/11/0 0.0625 1.0000 9/0/7 0.8036 1.0000
CoMEM-BIN 6= PLEM 11/0/5 0.2101 0.7873 11/0/5 0.2101 0.4986
CoMEM-BIN 6= EM 13/0/3 0.0213 0.0018 16/0/0 <0.0001 <0.0001

CoMEM-IND 6= PLEM 11/0/5 0.2101 1.0000 11/0/5 0.2101 0.4986
CoMEM-IND 6= EM 13/0/3 0.0213 0.0122 16/0/0 <0.0001 <0.0001

PLEM 6= EM 15/0/1 0.0005 0.1014 14/0/2 0.0042 0.0102

NB

CoMEM-MUL 6= CoMEM-BIN 1/13/2 1.0000 1.0000 5/11/0 0.0625 1.0000
CoMEM-MUL 6= CoMEM-IND 8/7/1 0.0391 0.4868 12/0/4 0.0768 0.6299
CoMEM-MUL 6= PLEM 5/0/11 0.2101 0.8750 9/0/7 0.8036 0.8645
CoMEM-MUL 6= EM 10/2/4 0.1796 0.2650 13/0/3 0.0213 0.0018

CoMEM-BIN 6= CoMEM-IND 8/8/0 0.0078 0.4868 12/0/4 0.0768 0.8645
CoMEM-BIN 6= PLEM 5/0/11 0.2101 0.8750 9/0/7 0.8036 1.0000
CoMEM-BIN 6= EM 10/2/4 0.1796 0.2650 13/0/3 0.0213 0.0086

CoMEM-IND 6= PLEM 5/0/11 0.2101 0.0834 9/0/7 0.8036 1.0000
CoMEM-IND 6= EM 10/1/5 0.3018 1.0000 13/0/3 0.0213 0.1346
PLEM 6= EM 13/0/3 0.0213 0.0211 14/0/2 0.0042 0.0292

AODE

CoMEM-MUL 6= CoMEM-BIN 3/13/0 0.2500 1.0000 4/11/1 0.3750 1.0000
CoMEM-MUL 6= CoMEM-IND 6/7/3 0.5078 1.0000 10/0/6 0.4545 1.0000
CoMEM-MUL 6= PLEM 7/0/9 0.8036 1.0000 14/0/2 0.0042 0.0026

CoMEM-MUL 6= EM 9/0/7 0.8036 0.8766 16/0/0 <0.0001 <0.0001

CoMEM-BIN 6= CoMEM-IND 5/7/4 1.0000 1.0000 9/0/7 0.8036 1.0000
CoMEM-BIN 6= PLEM 7/0/9 0.8036 1.0000 14/0/2 0.0042 0.0063

CoMEM-BIN 6= EM 9/0/7 0.8036 1.0000 16/0/0 <0.0001 <0.0001

CoMEM-IND 6= PLEM 8/0/8 1.0000 1.0000 14/0/2 0.0042 0.0104

CoMEM-IND 6= EM 10/0/6 0.4545 1.0000 16/0/0 <0.0001 <0.0001

PLEM 6= EM 14/0/2 0.0042 0.4417 12/0/4 0.0768 0.4701

12.4 Conclusion

In this chapter, we studied the problem of learning BNCs when the true class label of the

instances is not known. Instead, a set of class labels provided by a group of experts individ-

ually are available for each instance. This is a naturally occurring scenario in a number of

fields, e.g., it is common in medical practice that several physicians are asked to give their

opinion on a diagnosis, prognosis or treatment. Therefore, a set of experts’ class labels is

obtained for each instance.

We proposed a novel approach for learning BNCs using that class information. We mod-

eled the information about the class for each instance as a count vector containing the number

of experts who assigned each class label for the given instance. This information was explic-

246 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

Table 12.14: Comparison of the proposed methods (CoMEM-MUL, CoMEM-BIN, CoMEM-
IND, PLEM and EM) considering 3 classifiers (MG, NB, AODE), all the datasets (16) and
µB = 0.4.

H1
Classification error Mean squared error

W/T/L Binomial Bergmann W/T/L Binomial Bergmann

MG

CoMEM-MUL 6= CoMEM-BIN 2/13/1 1.0000 1.0000 3/11/2 1.0000 1.0000
CoMEM-MUL 6= CoMEM-IND 6/10/0 0.0313 1.0000 6/0/10 0.4545 1.0000
CoMEM-MUL 6= PLEM 11/0/5 0.2101 0.5612 7/0/9 0.8036 1.0000
CoMEM-MUL 6= EM 13/1/2 0.0074 0.0011 13/0/3 0.0213 0.0246

CoMEM-BIN 6= CoMEM-IND 4/12/0 0.1250 1.0000 7/0/9 0.8036 1.0000
CoMEM-BIN 6= PLEM 11/0/5 0.2101 0.5612 7/0/9 0.8036 1.0000
CoMEM-BIN 6= EM 13/1/2 0.0074 0.0017 13/0/3 0.0213 0.0246

CoMEM-IND 6= PLEM 11/0/5 0.2101 1.0000 7/0/9 0.8036 1.0000
CoMEM-IND 6= EM 13/1/2 0.0074 0.0146 14/0/2 0.0042 0.0053

PLEM 6= EM 14/0/2 0.0042 0.1170 14/0/2 0.0042 0.0053

NB

CoMEM-MUL 6= CoMEM-BIN 2/13/1 1.0000 1.0000 4/11/1 0.3750 1.0000
CoMEM-MUL 6= CoMEM-IND 4/10/2 0.6875 1.0000 11/0/5 0.2101 0.7213
CoMEM-MUL 6= PLEM 6/0/10 0.4545 1.0000 6/0/10 0.4545 1.0000
CoMEM-MUL 6= EM 9/2/5 0.4240 1.0000 12/0/4 0.0768 0.0713
CoMEM-BIN 6= CoMEM-IND 3/12/1 0.6250 1.0000 11/0/5 0.2101 0.8035
CoMEM-BIN 6= PLEM 6/0/10 0.4545 1.0000 6/0/10 0.4545 1.0000
CoMEM-BIN 6= EM 9/2/5 0.4240 1.0000 12/0/4 0.0768 0.1170
CoMEM-IND 6= PLEM 6/0/10 0.4545 0.9735 6/0/10 0.4545 0.7051
CoMEM-IND 6= EM 9/2/5 0.4240 1.0000 12/0/4 0.0768 0.7188
PLEM 6= EM 12/1/3 0.0352 0.1888 12/0/4 0.0768 0.0365

AODE

CoMEM-MUL 6= CoMEM-BIN 3/13/0 0.2500 1.0000 2/11/3 1.0000 1.0000
CoMEM-MUL 6= CoMEM-IND 7/9/0 0.0156 1.0000 6/0/10 0.4545 1.0000
CoMEM-MUL 6= PLEM 10/0/6 0.4545 1.0000 13/0/3 0.0213 0.0238

CoMEM-MUL 6= EM 10/2/4 0.1796 0.0729 14/0/2 0.0042 0.0071

CoMEM-BIN 6= CoMEM-IND 6/8/2 0.2891 1.0000 7/0/9 0.8036 1.0000
CoMEM-BIN 6= PLEM 10/0/6 0.4545 1.0000 13/0/3 0.0213 0.0185

CoMEM-BIN 6= EM 10/2/4 0.1796 0.1755 14/0/2 0.0042 0.0039

CoMEM-IND 6= PLEM 10/0/6 0.4545 1.0000 13/0/3 0.0213 0.0071

CoMEM-IND 6= EM 10/2/4 0.1796 0.5248 15/0/1 0.0005 0.0009

PLEM 6= EM 13/0/3 0.0213 0.5844 9/0/7 0.8036 1.0000

itly added to the model using conditional multinomial distributions. Therefore, the induced

models more closely fit the original experiment setting. Also, the multinomial distributions

take into account the number of experts who provide the class labels for each training in-

stance. The CoMEM algorithm, an adaptation of the EM algorithm [128], was proposed to

find the parameters of the probability distributions in the BNCs by fitting an FMM. Three

CLG classifiers with different complexities were studied: MG, NB and AODE classifiers.

Three classification rules were proposed for assigning a class label to a previously unseen

(and unlabeled) instance.

We compared the proposed models against the approach in [96] and the classical EM

algorithm for unsupervised learning. The PLEM algorithm, a particularization of the algo-

rithm method in [96], was considered for the scenario where the class information for each

12.4. CONCLUSION 247

instance is given as a probability distribution over the class labels by encoding the propor-

tion of experts who selected each class label for the given instance. An extensive evaluation

was performed on 16 datasets. A greedy algorithm was proposed to perform stratified h-fold

cross-validation when the true class labels of the training instances were not known, but a set

of experts’ class labels was available for each instance. This algorithm generated folds with

similar proportions of instances of each class label to the original datasets. Two evaluation

measures were considered for studying the performance of the classifiers and the algorithms.

The accuracy (classification error) depends on the true class label of the instances being

known in order to evaluate the classifier. In a real setting, however, these class labels are not

available and the goal might be to accurately reproduce the experts’ opinions. Therefore, we

also evaluated the classifiers using the mean squared error between the “true” probability

of each class label (proportion of experts who classified the instances with each given class

label) and the posterior probability predicted by the classifiers.

We found statistically significant differences between the methods studied in this pa-

per (CoMEM, PLEM and EM). In general, CoMEM-MUL and CoMEM-BIN were the best

methods for both evaluation measures. CoMEM-IND never outperformed CoMEM-MUL or

CoMEM-BIN. Additionally, we studied the differences between the three classifiers: MG, NB

and AODE. MG and AODE outperformed NB for both evaluation measures. We could not

find statistically significant differences between MG and AODE regarding classification error.

However, AODE outperformed MG in terms of MSE. The combination of TAN classifiers in

AODE reduces the classifier variance [513] and that might be why it is able to reproduce the

true probability distributions over the class labels.

Therefore, we can conclude that explicitly adding the uncertain information about the

class labels to the model yielded better results than using PLEM or the classical EM al-

gorithm. Moreover, modeling this uncertain information can be an advantage when model

interpretation is important. When applied to a real problem, it would be possible to study

the relationships between the class labels by analyzing the conditional probability distribu-

tions for the class count vectors and thus understand the causes of the disagreements between

experts.

Future work includes applying these approaches to learn other BNCs with different struc-

tures. The classifiers considered in this work (MG, NB and AODE) had fixed structures.

We could use the structural EM [196] and extend the PLEM and CoMEM algorithms to

find the conditional independence relationships between the predictive variables X given the

class variable. Also, we jointly modeled the number of votes V received by the class labels.

However, we could also exploit the conditional independences between the variables Vc ∈ V.

This could be interesting when the number of class labels is high and the cardinality of V

increases. Additionally, we could extend this work to other BNCs such as the TAN [199],

the k-DB [438] or the semi-naive Bayes [394] classifiers. Both the TAN and k-DB algorithms

for inducing BNCs are based on the computation of the conditional MI between each pair

of variables given the class variable. However, estimating this conditional MI when the true

class labels are not available is a matter of open research.

248 CHAPTER 12. LEARNING CLG CLASSIFIERS FROM CLASS LABEL COUNTS

BNCs are known to suffer from redundant variables [309]. Therefore, feature subset

selection methods are expected to improve the performance of these classifiers. On the one

hand, wrapper approaches could be easily applied to the proposed models. However, these

methods are computationally expensive because a classifier has to be induced and evaluated to

estimate the quality of each subset of predictive variables. On the other hand, filter methods

compute the quality of a subset of predictive variables by measuring the information that

they provide about the class, e.g., using MI or correlation measures. Adapting these measures

to the scenario where the information about the class is provided as a group of experts’ class

labels is another challenge.

Different distributions could be considered when modeling the class count vectors in the

proposed approach. For instance, the multinomial Dirichlet distribution, also known as the

Polya distribution, was proposed for modeling word counts in the context of document classi-

fication [160, 348], and has been successfully applied in other domains [60]. This distribution

is useful for modeling the phenomenon known as “word burstiness”, which refers to the fact

that, when a rare word appears in a document, the probability of it appearing again in

that same document increases. A similar phenomenon is likely to occur when a group of

experts assign class labels to the training instances, i.e., the probability of a class label is

higher if other experts have already classified the instance with that class label. Therefore,

modeling the class count vectors with multinomial Dirichlet distributions could yield better

results. One drawback of both the multinomial distribution and the multinomial Dirichlet

distribution is that their covariance matrix is strictly negative [57], i.e., no positive correla-

tions between class labels can be modeled. Other distributions for count data which allow for

positive correlations between the variables have been recently proposed, such as the multi-

nomial generalized Dirichlet distribution [59] or the multinomial beta-Liouville distribution

[58]. Investigating the ability of these distributions for modeling expert class labels is also

interesting.

Finally, in this chapter, we have assumed that all the experts are equally reliable when

providing a class label for the instances. However, significant differences between experts can

be identified in real problems [426] (see also Chapter 10). Extending the proposed models

to take into account the distinctive behavior of each expert might increase classifier accu-

racy. Additionally, explicitly modeling the individual experts might provide some interesting

insights into the problem domain by studying the differences between experts.

Part V

CONCLUSIONS

249

Chapter 13
Conclusions and future work

13.1 Summary of contributions

The contributions in this dissertation have been divided into two parts:

Part III includes the research on BN learning. BNs are used in Chapter 7 for modeling

and simulating basal dendritic trees from pyramidal cells from the mouse neocortex.

A large number of variables encoding information about the dendritic trees, subtrees,

branches, neighboring segments, etc. are measured from 3D reconstructions of real

dendritic trees, and BNs are learned from these data. The relationships between the

variables are encoded in the BN structures, and the models are interpreted to obtain

interesting insights into the dendritic structure. A simulation algorithm is proposed for

sampling virtual dendrites from the BNs. A multidimensional test based on the KL

divergence is used to compare the virtual and real dendritic trees.

Chapter 8 proposes methods for learning MoP approximations of one-dimensional, mul-

tidimensional and conditional probability densities from data using B-spline interpo-

lation. The methods are evaluated by sampling datasets from known probability dis-

tributions (including complex mixtures of distributions) and by comparing the MoP

approximations with the true generating densities. Also, we empirically compare the

proposed methods for learning MoPs using B-splines with the previous proposals based

on LIPs. The proposed methods are used as a non-parametric density estimation tech-

nique in BNCs.

Chapter 9 studies the supervised learning problem when the predictive variables are

angular or directional. We introduce directional NB classifiers using von Mises or von

Mises–Fisher densities. We also study hybrid classifiers with linear, directional and

discrete variables. The classifiers are studied from a theoretical point of view by ana-

lyzing the decision functions they induce. Also, the directional classifiers are empirically

compared with classical NB classifiers using Gaussian densities or discretization. Ap-

pendices A and B include the detailed derivations of the decision surfaces studied in

Chapter 9.

251

252 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

Part IV includes our work on statistical methods for analyzing and modeling the consen-

sus between experts. Chapter 10 explains the problem of the classification of GABAer-

gic interneurons from the neocortex. A web application is designed to retrieve the

classification of a set of interneurons by a group of experts from laboratories all around

the world. Then, the class labels provided by the group of experts are analyzed using

statistical tools. The consensus between experts is measured using agreement indices.

Then, we cluster the neurons according to the classifications provided by the group

of experts. Additionally, we induce one BN representing the behavior of each expert,

and we analyze and compare the BNs of the experts. Finally, automatic classifiers are

learned using the most frequently voted class label for each neuron. All these analyses

helped identifying agreed neuronal types and confusing terms commonly used in the

literature.

Based on the data collected in Chapter 10, we propose in Chapter 11 a method for

building a BN that models the opinions of the group of experts regarding the classifica-

tion of the GABAergic interneurons. One BN is learned for each expert, representing

his/her behavior in the classification experiment. Then, we propose a method for clus-

tering the BNs into groups corresponding to experts with similar behaviors. We induce

a representative BN for each cluster, modeling the common behavior of the experts in

the same cluster. Finally, a consensus BN is built as a finite mixture of BNs and rep-

resented as a Bayesian multinet. The proposed method is able to confirm and extend

our findings regarding the classification of GABAergic interneurons.

Inspired by the interneuron classification problem, in Chapter 12 we propose a method

for learning BNCs when the true class labels of the training instances are not known.

Instead, a vector of class labels provided by a group of experts is available for each

instance. We summarize the experts class labels as a count vector modeling the number

of votes received by each class label for each instance. We consider different BNC

structures and use the EM algorithm for finding the parameters of the probability

distributions in the BNCs. The proposed BNCs are empirically studied using artificial

datasets. Appendix C includes the detailed results of the classifiers.

13.2 List of publications

The research reported in this dissertation has produced the following list of publications and

submissions.

1. Peer-reviewed journals

P. L. López-Cruz, C. Bielza, P. Larrañaga, R. Benavides-Piccione, and J. DeFelipe.

Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

Neuroinformatics, 9(4):347–369, 2011. Impact factor (JCR 2011): 2.973. Ranking:

13/99. Category: Computer science, interdisciplinary applications.

13.2. LIST OF PUBLICATIONS 253

J. DeFelipe, P. L. López-Cruz, R. Benavides-Piccione, C. Bielza, P. Larrañaga,

S. Anderson, A. Burkhalter, B. Cauli, A. Fairén, D. Feldmeyer, G. Fishell, D.

Fitzpatrick, T. F. Freund, G. González-Burgos, S. Hestrin, S. Hill, P. R. Hof, J.

Huang, E. G. Jones, Y. Kawaguchi, Z. Kisvárday, Y. Kubota, D. A. Lewis, O.

Maŕın, H. Markram, C. J. McBain, H. S. Meyer, H. Monyer, S. B. Nelson, K.

Rockland, J. Rossier, J. L. R. Rubenstein, B. Rudy, M. Scanziani, G. M. Shep-

herd, C. C. Sherwood, J. F. Staiger, G. Tamás, A. Thomson, Y. Weng, R. Yuste,

and G. A. Ascoli. New insights into the classification and nomenclature of corti-

cal GABAergic interneurons. Nature Reviews Neuroscience, 14(3):202–216, 2013.

Impact factor (JCR 2012): 31.673. Ranking: 1/251. Category: Neurosciences.

P. L. López-Cruz, P. Larrañaga, J. DeFelipe, and C. Bielza. Bayesian network

modeling of the consensus between experts: An application to neuron classifica-

tion. International Journal of Approximate Reasoning, in press, 2013. Impact

Factor (JCR 2012): 1.729. Ranking: 35/114. Category: Computer science, artifi-

cial intelligence.

P. L. López-Cruz, C. Bielza, and P. Larrañaga. Directional naive Bayes classifiers.

Pattern Analysis and Applications, in press, 2013. Impact factor (JCR 2012):

0.814. Ranking: 78/114. Category: Computer science, artificial intelligence.

P. L. López-Cruz, P. Larrañaga, and C. Bielza. Learning mixtures of polynomials

of multidimensional densities from data. International Journal of Approximate

Reasoning, submitted, 2013. Impact Factor (JCR 2012): 1.729. Ranking: 35/114.

Category: Computer science, artificial intelligence.

2. Congress contributions and communications

P. L. López-Cruz, C. Bielza, P. Larrañaga, R. Benavides-Piccione, and J. DeFelipe.

3D simulation of dendritic morphology using Bayesian networks. 16th Annual

Meeting of the Organization for Human Brain Mapping (HBM 2010). Barcelona,

Spain, 6–10 June 2010.

P. L. López-Cruz, C. Bielza, P. Larrañaga, R. Benavides-Piccione, and J. DeFelipe.

3D simulation of dendritic morphology using Bayesian networks. Single Neuron

Morphology and Function Workshop. Amsterdam, Netherlands, 8–9 July 2010.

P. L. López-Cruz, C. Bielza, and P. Larrañaga. The von Mises naive Bayes classifier

for angular data. In J. A. Lozano, J. A. Gámez, and J. A. Moreno, editors, Ad-

vances in Artificial Intelligence, Proceedings of the 14th Conference of the Spanish

Association for Artificial Intelligence, volume 7023 of Lecture Notes in Computer

Science, pages 145–154. Springer, 2011.

P. L. López-Cruz, C. Bielza, and P. Larrañaga. Learning mixtures of polynomials

from data using B-spline interpolation. In A. Cano, M. Gómez-Olmedo, and T.

D. Nielsen, editors, Proceedings of the 6th European Workshop on Probabilistic

Graphical Models (PGM 2012), pages 211–218, 2012.

254 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

P. L. López-Cruz, C. Bielza, and P. Larrañaga. Learning conditional linear Gaus-

sian classifiers with probabilistic class labels. In C. Bielza et al., editors, Advances

in Artificial Intelligence, Proceedings of the 15th MultiConference of the Spanish

Association for Artificial Intelligence, volume 8109 of Lecture Notes in Computer

Science, pages 139–148. Springer, 2013.

P. L. López-Cruz, T. D. Nielsen, C. Bielza, and P. Larrañaga. Learning mixtures

of polynomials of conditional densities from data. In C. Bielza et al., editors,

Advances in Artificial Intelligence, Proceedings of the 15th MultiConference of the

Spanish Association for Artificial Intelligence, volume 8109 of Lecture Notes in

Computer Science, pages 363–372. Springer, 2013.

13.3 Future work

This section summarizes the most relevant research topics and open issues that will be studied

in the future. The reader can find a more thorough discussion of each one of these topics in

the specific conclusions sections of each chapter.

We studied how to learn MoP approximations of one-dimensional, multidimensional and

conditional probability densities from data (Chapter 8). We intend to study how to use

the proposed methods for working with hybrid BNs. This includes challenging tasks such

as: proposing new BN learning algorithms, designing computationally efficient methods for

inference in hybrid BNs, etc. We intend to use the proposed methods for solving problems

different from supervised learning, e.g., clustering problems, regression problems, etc.

We also intend to extend our work in PGMs using directional random variables (Chap-

ter 9). The family of von Mises densities is not closed under conditioning and marginalization.

Therefore, BNs using directional or angular variables are difficult to work with, and specific

learning and inference methods have to be studied. Hybrid BNs including linear, directional

and discrete variables are even more challenging. We foresee that approximation methods

will be required for working with these complex hybrid BNs.

A number of interesting research topics have been addressed in this dissertation regarding

the analysis and modeling of the consensus between experts (Chapter 11) and the generation

of BNCs for partially supervised learning problems with uncertain class labels provided by a

group of experts (Chapter 12). We intend to extend these works in different ways. Regarding

Chapter 11, we plan to further study the problem of clustering BNs. One option includes

applying probabilistic clustering using FMMs for clustering the JPDs encoded by the BNs.

Also, different methods for combining and aggregating the BN structures and parameters

into a consensus model will be studied. Regarding Chapter 12, we intend to further study

the problem of learning BNCs with uncertain class labels. Different probability distributions

will be used for modeling the count vectors and/or the probability distributions encoding the

uncertain class information.

Finally, we will design and apply more complex models to some of the neuroscience

problems addressed in this dissertation. Regarding Chapter 7, we want to to design complex

13.3. FUTURE WORK 255

BNs for modeling and simulating complete neuronal morphologies of pyramidal cells including

basal dendrites, apical dendrites and axons. Hybrid BNs including linear, directional and

discrete variables with flexible probability distributions will be crucial for solving this research

line. Regarding Chapter 10, we intend to keep studying the neuron classification problem

for GABAergic interneurons. This will require methods for managing uncertain information

provided by different sources and experts such as the ones proposed in this dissertation, as

well as the new methods mentioned in the previous paragraph.

256 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

Part VI

APPENDICES

257

Appendix A
Von Mises NB classifier decision

function

A.1 vMNB with one predictive variable

We start by equaling the posterior probability of each class value using the probability density

function of the von Mises distribution (5.4):

p(C = 1)
1

2πI0(κΦ|1)
exp(κΦ|1 cos (φ− µΦ|1)) = p(C = 2)

1

2πI0(κΦ|2)
exp(κΦ|2 cos (φ− µΦ|2)).

Simplify the constant 2π, take logarithms and arrange all terms on the same side of the

equation:

κΦ|1 cos(φ− µΦ|1)− κΦ|2 cos(φ− µΦ|2) + ln
p(C = 1)

I0(κΦ|1)
− ln

p(C = 2)

I0(κΦ|2)
= 0.

Substitute cos(β − γ) = cos(β) cos(γ) + sin(β) sin(γ) and operate the logarithms:

κΦ|1

[
cosφ cosµΦ|1 + sinφ sinµΦ|1

]
− κΦ|2

[
cosφ cosµΦ|2 + sinφ sinµΦ|2

]

+ ln
p(C = 1)I0(κΦ|2)

p(C = 2)I0(κΦ|1)
= 0.

Arrange using cosφ and sinφ as common terms:

(κΦ|1 cosµΦ|1 − κΦ|2 cosµΦ|2) cosφ+ (κΦ|1 sinµΦ|1 − κΦ|2 sinµΦ|2) sinφ

+ ln
p(C = 1)I0(κΦ|2)

p(C = 2)I0(κΦ|1)
= 0.

259

260 APPENDIX A. VON MISES NB CLASSIFIER DECISION FUNCTION

Substitute

a = κΦ|1 cosµΦ|1 − κΦ|2 cosµΦ|2,

b = κΦ|1 sinµΦ|1 − κΦ|2 sinµΦ|2,

D = − ln
p(C = 1)I0(κΦ|2)

p(C = 2)I0(κΦ|1)
,

and get:

a cosφ+ b sinφ = D.

Trigonometrically, this is equivalent to:

T cos(φ− α) = D,

where T =
√
a2 + b2, cosα = a/T, sinα = b/T, tanα = b/a.

Isolating φ from the equation, we get:

φ′ = α+ arccos(D/T),

φ′′ = α− arccos(D/T).

The NB classifier finds two angles that bound the class regions.

A.1.1 Particular cases

We have also derived these angles when the conditional probability distributions share one

of the parameters. We consider that the classes are equiprobable. If they are not equiprob-

able, the prior probabilities of the class values influence the value of D, modifying the class

subregions so that more likely classes have larger subregions.

Case 1: κΦ|1 = κΦ|2 = κΦ and µΦ|1 6= µΦ|2. When the concentration parameter is the

same in the two distributions, we have the following values for the constants:

a = κΦ(cosµΦ|1 − cosµΦ|2),

b = κΦ(sinµΦ|1 − sinµΦ|1),

D = − ln
p(C = 1)I0(κΦ|2)

p(C = 2)I0(κΦ|1)
= − ln 1 = 0.

Substituting in the expression of the arccosine, we get:

arccos(D/T) = arccos 0 = π/2.

A.1. VMNB WITH ONE PREDICTIVE VARIABLE 261

To compute α, we take the trigonometric identities:

cosβ − cos γ = −2 sin
(
1

2
(β + γ)

)
sin

(
1

2
(β − γ)

)
,

sinβ − sin γ = 2 sin

(
1

2
(β − γ)

)
cos

(
1

2
(β + γ)

)
,

which we substitute in the following expression:

tanα =
b

a
=
κΦ(sinµΦ|1 − sinµΦ|2)

κΦ(cosµΦ|1 − cosµΦ|2)

=
2 sin

(
1
2(µΦ|1 − µΦ|2)

)
cos

(
1
2(µΦ|1 + µΦ|2)

)

−2 sin
(
1
2(µΦ|1 + µΦ|2)

)
sin

(
1
2(µΦ|1 − µΦ|2)

)

= −
cos

(
1
2(µΦ|1 + µΦ|2)

)

sin
(
1
2(µΦ|1 + µΦ|2)

)

= − cot

(
1

2
(µΦ|1 + µΦ|2)

)

= tan

(
1

2
(µΦ|1 + µΦ|2) +

π

2

)
.

Thus,

α =
1

2
(µΦ|1 + µΦ|2) +

π

2
.

Now we can compute the decision angles found by the classifier:

φ = α± arccos(D/T) =
1

2
(µΦ|1 + µΦ|2) +

π

2
± π

2
.

The two decision angles are:

φ′ =
1

2
(µΦ|1 + µΦ|2),

φ′′ =
1

2
(µΦ|1 + µΦ|2) + π.

These two angles correspond to the bisector angle of the two mean directions.

Case 2: κΦ|1 6= κΦ|2 and µΦ|1 = µΦ|2 = µΦ. In this scenario the mean directions are

262 APPENDIX A. VON MISES NB CLASSIFIER DECISION FUNCTION

equal, so the constants reduce to:

a = (κΦ|1 − κΦ|2) cosµΦ,

b = (κΦ|1 − κΦ|2) sinµΦ,

D = − ln
p(C = 1)I0(κΦ|2)

p(C = 2)I0(κΦ|1)
= − ln

I0(κΦ|2)

I0(κΦ|1)
,

T =
√
a2 + b2

=
√
(κΦ|1 − κΦ|2)2 cos2 µΦ + (κΦ|1 − κΦ|2)2 sin

2 µΦ

=
√
(κΦ|1 − κΦ|2)2(cos2 µΦ + sin2 µΦ)

= κΦ|1 − κΦ|2.

We compute α by substituting in the expression:

tanα =
b

a
=

(κΦ|1 − κΦ|2) sinµΦ

(κΦ|1 − κΦ|2) cosµΦ
= tanµΦ,

α = µΦ.

Therefore, the resulting decision angles are given by:

φ = α± arccos(D/T),

φ′ = µΦ + arccos
D

κΦ|1 − κΦ|2
,

φ′′ = µΦ − arccos
D

κΦ|1 − κΦ|2
.

Clearly, the two angles are defined with respect to the common mean direction, and

their distance to that mean direction depends on the concentration parameter values.

A.2 vMNB with two predictive variables

In this scenario, we have two circular predictive variables Φ and Ψ. The domain defined by

these variables is a torus (−π, π] × (−π, π]. As in the simpler case above, we compute the

decision surfaces induced by the classifier by equaling the posterior probability of the two

class values

p(C = 1|Φ = φ,Ψ = ψ) = p(C = 2|Φ = φ,Ψ = ψ).

Using Bayes’ rule and the conditional independence assumption, we get

p(C = 1)fΦ|C=1(φ;µΦ|1, κΦ|1)fΨ|C=1(ψ;µΨ|1, κΨ|1)

= p(C = 2)fΦ|C=2(φ;µΦ|2, κΦ|2)fΨ|C=2(ψ;µΨ|2, κΨ|2).

A.2. VMNB WITH TWO PREDICTIVE VARIABLES 263

We substitute the von Mises density (5.4) and get:

p(C = 1)
exp(κΦ|1 cos(φ− µΦ|1))

2πI0(κΦ|1)

exp(κΨ|1 cos(ψ − µΨ|1))

2πI0(κΨ|1)

= p(C = 2)
exp(κΦ|2 cos(φ− µΦ|2))

2πI0(κΦ|2)

exp(κΨ|2 cos(ψ − µΨ|2))

2πI0(κΨ|2)
.

We simplify the constant 2π, take logarithms and arrange all the terms on the same side

of the equation:

κΦ|1 cos(φ− µΦ|1) + κΨ|1 cos(ψ − µΨ|1)− κΦ|2 cos(φ− µΦ|2)− κΨ|2 cos(ψ − µΨ|2)

+ ln
p(C = 1)I0(κΦ|2)I0(κΨ|2)

p(C = 2)I0(κΦ|1)I0(κΨ|1)
= 0.

We substitute the trigonometric identity cos(β − γ) = cos(β) cos(γ) + sin(β) sin(γ) and

arrange the terms:

(κΦ|1 cosµΦ|1 − κΦ|2 cosµΦ|2) cosφ+ (κΦ|1 sinµΦ|1 − κΦ|2 sinµΦ|2) sinφ+

(κΨ|1 cosµΨ|1 − κΨ|2 cosµΨ|2) cosψ + (κΨ|1 sinµΨ|1 − κΨ|2 sinµΨ|2) sinψ+

ln
p(C = 1)I0(κΦ|2)I0(κΨ|2)

p(C = 2)I0(κΦ|1)I0(κΨ|1)
= 0.

We define the following constants:

a = κΦ|1 cosµΦ|1 − κΦ|2 cosµΦ|2,

b = κΦ|1 sinµΦ|1 − κΦ|2 sinµΦ|2,

c = κΨ|1 cosµΨ|1 − κΨ|2 cosµΨ|2,

d = κΨ|1 sinµΨ|1 − κΨ|2 sinµΨ|2,

D = − ln
p(C = 1)I0(κΦ|2)I0(κΨ|2)

p(C = 2)I0(κΦ|1)I0(κΨ|1)
,

and substitute them to get

a cosφ+ b sinφ+ c cosψ + d sinψ = D.

The Cartesian coordinates of the points defined by the angles φ and ψ on the surface of

a torus are

x = (L+ l cosφ) cosψ,

y = (L+ l cosφ) sinψ,

z = l sinφ,

where L is the distance from the center of the torus to the center of the revolving circumference

264 APPENDIX A. VON MISES NB CLASSIFIER DECISION FUNCTION

that generates the torus, and l is the radius of the revolving circumference. We isolate the

trigonometric functions and get

sinφ = z/l,

cosφ = ±
√
1− sin2 φ = ±

√
1−

(z
l

)2
= ±1

l

√
l2 − z2,

sinψ =
y

L+ l cosφ
,

cosψ =
x

L+ l cosφ
.

Substituting these expressions, we get the two following equations corresponding to the

two signs of cosφ:

a

l

√
l2 − z2 + b

l
z +

c

L+
√
l2 − z2

x+
d

L+
√
l2 − z2

y +D = 0,

−a
l

√
l2 − z2 + b

l
z +

c

L−
√
l2 − z2

x+
d

L−
√
l2 − z2

y +D = 0.

Operating and arranging the terms, we get

clx+ dly − az2 + bz
√
l2 − z2 + bLz + (aL+Dl)

√
l2 − z2 + al2 +DLl = 0,

clx+ dly − az2 − bz
√
l2 − z2 + bLz − (aL+Dl)

√
l2 − z2 + al2 +DLl = 0.

These expressions are quadratic in z. Therefore, we conclude that von Mises NB with

two predictive variables is a much more complex and flexible classifier than von Mises NB

with one predictive variable.

Appendix B
Von Mises-Fisher NB classifier

decision function

To study the decision function for the von Mises-Fisher NB classifier we proceed as in Ap-

pendix A. We equal the posterior probabilities of the class values using the probability density

function in Equation (5.8):

r(x) = 0⇔p(C = 1)
(κX|1)

n
2
−1

√
(2π)nIn

2
−1(κX|1)

exp(κX|1µ
T
X|1x)

=p(C = 2)
(κX|2)

n
2
−1

√
(2π)nIn

2
−1(κX|2)

exp(κX|2µ
T
X|2x).

Simplify the constants and take logarithms:

ln
p(C = 1)(κX|1)

n
2
−1

In
2
−1(κX|1)

+ κX|1µ
T
X|1x = ln

p(C = 2)(κX|2)
n
2
−1

In
2
−1(κX|2)

+ κX|2µ
T
X|2x.

Arrange all the terms on the same side of the equation and operate the logarithms to get

the following hyperplane equation:

(κX|1µX|1 − κX|2µX|2)
Tx+ ln

p(C = 1)(κX|1)
n
2
−1In

2
−1(κX|2)

p(C = 2)(κX|2)
n
2
−1In

2
−1(κX|1)

= 0.

B.1 Particular cases

Considering that both class values have the same prior probability and that one of the pa-

rameters has the same value in both distributions, Case 1 and Case 2 can be simplified as

follows. When the prior probabilities are different, the hyperplanes move away from the mean

direction of the most likely class value, making their subregions larger.

265

266 APPENDIX B. VON MISES-FISHER NB CLASSIFIER DECISION FUNCTION

Case 1: κX|1 = κX|2 = κX and µX|1 6= µX|2. When the distributions share the concen-

tration parameter, we get the expression:

(κXµX|1 − κXµX|2)
Tx+ ln

p(C = 1)κ
n
2
−1

X In
2
−1(κX)

p(C = 2)κ
n
2
−1

X In
2
−1(κX)

= 0.

The logarithm reduces to 0 and we can take κX as common term:

κX(µX|1 − µX|2)
Tx = 0.

Therefore, given that κ > 0 (otherwise the distributions are uniform), the hyperplane

equation reduces to:

(µX|1 − µX|2)
Tx = 0.

That equation specifies a hyperplane that contains the origin point (0) and goes through

the middle point of the sector that connects the points of the hypersphere defined by

the mean directions µX|1 and µX|2.

Case 2: κX|1 6= κX|2 and µX|1 = µX|2 = µX. In the case where the mean directions

have the same value, we can derive the following equation:

(κX|1µ
T
X − κX|2µ

T
X)x+ ln

p(C = 1)(κX|1)
n
2
−1In

2
−1(κX|2)

p(C = 2)(κX|2)
n
2
−1In

2
−1(κX|1)

= 0.

We can take µT
X as a common term:

(κX|1 − κX|2)µ
T
Xx+ ln

(κX|1)
n
2
−1In

2
−1(κX|2)

(κX|2)
n
2
−1In

2
−1(κX|1)

= 0.

Dividing by (κX|1 − κX|2), we get:

µT
Xx+

1

κX|1 − κX|2
ln

(κX|1)
n
2
−1In

2
−1(κX|2)

(κX|2)
n
2
−1In

2
−1(κX|1)

= 0.

The hyperplane defined by this equation is perpendicular to the shared mean direction

vector µX, and its position is given by the relationships between the concentration

parameters.

Appendix C
Results of the Bayesian classifiers

with class label counts

This appendix includes the detailed results of the experiments reported in Chapter 12. The

BNCs with uncertain class labels were evaluated over 16 datasets taken from the UCI [27],

KEEL [9] and LibSVM [78] repositories (see Table 12.5). We generated ten datasets with

experts’ class labels and applied the stratified 10-fold cross-validation procedure described in

Section 12.3.1. The parameters of the beta distributions used for generating the datasets were:

µB ∈ {0.1, 0.2, 0.3, 0.4} and σB = 0.01. We considered three classifiers (MG, NB and AODE)

and induced them with the studied algorithms and classification rules (see Section 12.1):

CoMEM-IND, CoMEM-MUL, CoMEM-BIN, PLEM and EM. The tables in this appendix

report the mean and standard deviation of the accuracy and the mean squared error computed

over the 10 repetitions of the 10-fold stratified cross-validation procedure.

267

268 APPENDIX C. RESULTS OF THE BNCS WITH CLASS LABEL COUNTS

Table C.1: Mean classification error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.1, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.1770 ± 0.1038 0.1770 ± 0.1038 0.1790 ± 0.1026 0.1791 ± 0.1034 0.2515 ± 0.1878
fourclass 0.2063 ± 0.0407 0.2063 ± 0.0407 0.2064 ± 0.0407 0.2074 ± 0.0418 0.2669 ± 0.0401
glass2 0.0936 ± 0.0766 0.0936 ± 0.0766 0.0940 ± 0.0762 0.0911 ± 0.0714 0.1034 ± 0.0700
haberman 0.2479 ± 0.0528 0.2479 ± 0.0528 0.2475 ± 0.0534 0.2492 ± 0.0607 0.3334 ± 0.0840
ion 0.1245 ± 0.0614 0.1245 ± 0.0614 0.1240 ± 0.0617 0.1302 ± 0.0655 0.1402 ± 0.0658
iris 0.0274 ± 0.0392 0.0274 ± 0.0392 0.0266 ± 0.0391 0.0286 ± 0.0394 0.0355 ± 0.0443
liver 0.3937 ± 0.0810 0.3937 ± 0.0810 0.3937 ± 0.0813 0.4565 ± 0.0835 0.5045 ± 0.0686
newthyroid 0.0381 ± 0.0382 0.0381 ± 0.0382 0.0376 ± 0.0377 0.0371 ± 0.0384 0.0409 ± 0.0392
phoneme 0.2134 ± 0.0165 0.2134 ± 0.0165 0.2134 ± 0.0165 0.2212 ± 0.0171 0.3008 ± 0.0211
ring 0.0206 ± 0.0045 0.0206 ± 0.0045 0.0206 ± 0.0045 0.0207 ± 0.0044 0.0206 ± 0.0046
svmguide1 0.0578 ± 0.0089 0.0578 ± 0.0089 0.0578 ± 0.0089 0.0621 ± 0.0090 0.2205 ± 0.0129
twonorm 0.0221 ± 0.0046 0.0221 ± 0.0046 0.0221 ± 0.0046 0.0225 ± 0.0050 0.0235 ± 0.0051
vehicle 0.1466 ± 0.0358 0.1455 ± 0.0368 0.1454 ± 0.0368 0.1550 ± 0.0383 0.4366 ± 0.0728
waveform 0.1488 ± 0.0151 0.1488 ± 0.0150 0.1488 ± 0.0149 0.1498 ± 0.0150 0.1620 ± 0.0148
wdbc 0.0441 ± 0.0290 0.0441 ± 0.0290 0.0441 ± 0.0290 0.0481 ± 0.0306 0.0550 ± 0.0294
wine 0.0097 ± 0.0245 0.0102 ± 0.0249 0.0102 ± 0.0249 0.0102 ± 0.0249 0.0096 ± 0.0245

NB
appendicitis 0.1513 ± 0.0906 0.1513 ± 0.0906 0.1550 ± 0.0946 0.1392 ± 0.0900 0.1422 ± 0.0971
fourclass 0.2446 ± 0.0452 0.2446 ± 0.0452 0.2447 ± 0.0454 0.2443 ± 0.0442 0.2689 ± 0.0331
glass2 0.0944 ± 0.0725 0.0944 ± 0.0725 0.0958 ± 0.0726 0.0997 ± 0.0759 0.2231 ± 0.0900
haberman 0.2485 ± 0.0519 0.2485 ± 0.0519 0.2485 ± 0.0517 0.2465 ± 0.0589 0.3334 ± 0.0840
ion 0.2579 ± 0.0869 0.2579 ± 0.0869 0.2591 ± 0.0858 0.2445 ± 0.0675 0.3201 ± 0.0703
iris 0.0432 ± 0.0498 0.0438 ± 0.0523 0.0438 ± 0.0523 0.0465 ± 0.0517 0.0736 ± 0.0666
liver 0.4412 ± 0.0935 0.4412 ± 0.0935 0.4409 ± 0.0930 0.5095 ± 0.0729 0.5071 ± 0.0684
newthyroid 0.0358 ± 0.0373 0.0349 ± 0.0347 0.0349 ± 0.0347 0.0330 ± 0.0332 0.0311 ± 0.0344
phoneme 0.2400 ± 0.0186 0.2400 ± 0.0186 0.2400 ± 0.0185 0.2637 ± 0.0209 0.3491 ± 0.0220
ring 0.0204 ± 0.0046 0.0204 ± 0.0046 0.0204 ± 0.0046 0.0203 ± 0.0046 0.0201 ± 0.0045
svmguide1 0.0631 ± 0.0088 0.0631 ± 0.0088 0.0631 ± 0.0088 0.0674 ± 0.0092 0.1186 ± 0.0107
twonorm 0.0213 ± 0.0049 0.0213 ± 0.0049 0.0213 ± 0.0049 0.0214 ± 0.0050 0.0215 ± 0.0050
vehicle 0.5148 ± 0.0570 0.5141 ± 0.0570 0.5145 ± 0.0569 0.5963 ± 0.0455 0.5678 ± 0.0629
waveform 0.1908 ± 0.0153 0.1909 ± 0.0153 0.1909 ± 0.0153 0.2020 ± 0.0149 0.2550 ± 0.0167
wdbc 0.0859 ± 0.0365 0.0859 ± 0.0365 0.0859 ± 0.0363 0.0808 ± 0.0348 0.0885 ± 0.0362
wine 0.0214 ± 0.0297 0.0219 ± 0.0309 0.0219 ± 0.0309 0.0247 ± 0.0331 0.0355 ± 0.0374

AODE
appendicitis 0.1435 ± 0.0921 0.1435 ± 0.0921 0.1435 ± 0.0929 0.2614 ± 0.1266 0.4543 ± 0.1582
fourclass 0.2063 ± 0.0407 0.2063 ± 0.0407 0.2064 ± 0.0407 0.2074 ± 0.0418 0.2669 ± 0.0401
glass2 0.0856 ± 0.0584 0.0856 ± 0.0584 0.0875 ± 0.0597 0.0855 ± 0.0658 0.0974 ± 0.0660
haberman 0.2476 ± 0.0529 0.2476 ± 0.0529 0.2479 ± 0.0527 0.2478 ± 0.0597 0.3334 ± 0.0840
ion 0.2317 ± 0.0653 0.2317 ± 0.0653 0.2320 ± 0.0665 0.1088 ± 0.0567 0.1365 ± 0.0553
iris 0.0241 ± 0.0377 0.0220 ± 0.0343 0.0220 ± 0.0343 0.0200 ± 0.0322 0.0342 ± 0.0434
liver 0.4410 ± 0.0953 0.4410 ± 0.0953 0.4416 ± 0.0955 0.4981 ± 0.0697 0.5042 ± 0.0675
newthyroid 0.0381 ± 0.0363 0.0377 ± 0.0366 0.0372 ± 0.0368 0.0367 ± 0.0369 0.0358 ± 0.0366
phoneme 0.2216 ± 0.0173 0.2216 ± 0.0173 0.2215 ± 0.0173 0.2550 ± 0.0217 0.3137 ± 0.0219
ring 0.0203 ± 0.0046 0.0203 ± 0.0046 0.0203 ± 0.0046 0.0203 ± 0.0046 0.0202 ± 0.0046
svmguide1 0.0588 ± 0.0087 0.0588 ± 0.0087 0.0588 ± 0.0087 0.0638 ± 0.0090 0.1950 ± 0.0127
twonorm 0.0213 ± 0.0049 0.0213 ± 0.0049 0.0213 ± 0.0049 0.0215 ± 0.0049 0.0217 ± 0.0050
vehicle 0.3009 ± 0.0464 0.3092 ± 0.0482 0.3102 ± 0.0479 0.3508 ± 0.0441 0.5535 ± 0.0453
waveform 0.1558 ± 0.0135 0.1560 ± 0.0136 0.1560 ± 0.0136 0.1489 ± 0.0161 0.2139 ± 0.0169
wdbc 0.0669 ± 0.0337 0.0669 ± 0.0337 0.0669 ± 0.0337 0.0956 ± 0.0378 0.1603 ± 0.0506
wine 0.0158 ± 0.0268 0.0152 ± 0.0265 0.0146 ± 0.0262 0.0107 ± 0.0238 0.0224 ± 0.0288

269

Table C.2: Mean squared error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.1, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.1382 ± 0.0749 0.1382 ± 0.0749 0.1394 ± 0.0754 0.1430 ± 0.0729 0.2026 ± 0.1419
fourclass 0.1034 ± 0.0155 0.1034 ± 0.0155 0.1034 ± 0.0155 0.1089 ± 0.0171 0.2013 ± 0.0318
glass2 0.0872 ± 0.0571 0.0872 ± 0.0571 0.0874 ± 0.0573 0.0873 ± 0.0571 0.0984 ± 0.0566
haberman 0.1477 ± 0.0361 0.1477 ± 0.0361 0.1474 ± 0.0360 0.1706 ± 0.0456 0.2708 ± 0.0657
ion 0.1152 ± 0.0520 0.1152 ± 0.0520 0.1150 ± 0.0520 0.1198 ± 0.0540 0.1273 ± 0.0538
iris 0.0206 ± 0.0161 0.0205 ± 0.0160 0.0204 ± 0.0157 0.0206 ± 0.0158 0.0268 ± 0.0216
liver 0.1702 ± 0.0346 0.1702 ± 0.0346 0.1702 ± 0.0346 0.2495 ± 0.0630 0.3956 ± 0.0565
newthyroid 0.0284 ± 0.0167 0.0284 ± 0.0168 0.0284 ± 0.0168 0.0289 ± 0.0169 0.0308 ± 0.0185
phoneme 0.1360 ± 0.0103 0.1360 ± 0.0103 0.1361 ± 0.0103 0.1646 ± 0.0123 0.2449 ± 0.0165
ring 0.0291 ± 0.0029 0.0291 ± 0.0029 0.0291 ± 0.0029 0.0292 ± 0.0029 0.0292 ± 0.0029
svmguide1 0.0471 ± 0.0050 0.0471 ± 0.0050 0.0471 ± 0.0050 0.0502 ± 0.0051 0.1574 ± 0.0091
twonorm 0.0291 ± 0.0027 0.0291 ± 0.0027 0.0291 ± 0.0027 0.0292 ± 0.0028 0.0295 ± 0.0027
vehicle 0.0510 ± 0.0108 0.0510 ± 0.0109 0.0510 ± 0.0109 0.0552 ± 0.0127 0.1943 ± 0.0315
waveform 0.0581 ± 0.0042 0.0581 ± 0.0042 0.0581 ± 0.0042 0.0585 ± 0.0043 0.0635 ± 0.0046
wdbc 0.0499 ± 0.0212 0.0499 ± 0.0212 0.0499 ± 0.0212 0.0532 ± 0.0229 0.0572 ± 0.0224
wine 0.0142 ± 0.0087 0.0142 ± 0.0085 0.0141 ± 0.0085 0.0142 ± 0.0086 0.0145 ± 0.0089

NB
appendicitis 0.1240 ± 0.0673 0.1240 ± 0.0673 0.1253 ± 0.0676 0.1209 ± 0.0665 0.1233 ± 0.0741
fourclass 0.1143 ± 0.0161 0.1143 ± 0.0161 0.1143 ± 0.0161 0.1209 ± 0.0185 0.2173 ± 0.0234
glass2 0.0894 ± 0.0557 0.0894 ± 0.0557 0.0902 ± 0.0563 0.0892 ± 0.0582 0.1911 ± 0.0713
haberman 0.1503 ± 0.0366 0.1503 ± 0.0366 0.1499 ± 0.0365 0.1716 ± 0.0448 0.2721 ± 0.0658
ion 0.2188 ± 0.0742 0.2188 ± 0.0742 0.2194 ± 0.0742 0.2114 ± 0.0559 0.2727 ± 0.0582
iris 0.0302 ± 0.0238 0.0302 ± 0.0238 0.0301 ± 0.0237 0.0307 ± 0.0239 0.0387 ± 0.0271
liver 0.1883 ± 0.0374 0.1883 ± 0.0374 0.1882 ± 0.0374 0.3443 ± 0.0577 0.4001 ± 0.0534
newthyroid 0.0271 ± 0.0162 0.0271 ± 0.0162 0.0271 ± 0.0162 0.0272 ± 0.0162 0.0273 ± 0.0168
phoneme 0.1476 ± 0.0107 0.1476 ± 0.0107 0.1476 ± 0.0107 0.1729 ± 0.0127 0.2696 ± 0.0171
ring 0.0288 ± 0.0028 0.0288 ± 0.0028 0.0288 ± 0.0028 0.0289 ± 0.0029 0.0290 ± 0.0029
svmguide1 0.0516 ± 0.0052 0.0516 ± 0.0052 0.0516 ± 0.0052 0.0560 ± 0.0055 0.0878 ± 0.0067
twonorm 0.0289 ± 0.0027 0.0289 ± 0.0027 0.0289 ± 0.0027 0.0289 ± 0.0027 0.0289 ± 0.0027
vehicle 0.1699 ± 0.0197 0.1713 ± 0.0193 0.1716 ± 0.0192 0.2314 ± 0.0205 0.2485 ± 0.0269
waveform 0.1008 ± 0.0072 0.1009 ± 0.0072 0.1009 ± 0.0072 0.1100 ± 0.0073 0.1454 ± 0.0087
wdbc 0.0841 ± 0.0284 0.0841 ± 0.0284 0.0841 ± 0.0283 0.0801 ± 0.0270 0.0867 ± 0.0282
wine 0.0209 ± 0.0143 0.0209 ± 0.0144 0.0209 ± 0.0144 0.0215 ± 0.0145 0.0260 ± 0.0168

AODE
appendicitis 0.1073 ± 0.0612 0.1073 ± 0.0612 0.1078 ± 0.0612 0.1726 ± 0.0799 0.2821 ± 0.0952
fourclass 0.1034 ± 0.0155 0.1034 ± 0.0155 0.1034 ± 0.0155 0.1089 ± 0.0171 0.2013 ± 0.0318
glass2 0.0687 ± 0.0410 0.0687 ± 0.0410 0.0690 ± 0.0410 0.0766 ± 0.0492 0.0908 ± 0.0504
haberman 0.1481 ± 0.0361 0.1481 ± 0.0361 0.1478 ± 0.0360 0.1709 ± 0.0454 0.2712 ± 0.0658
ion 0.1220 ± 0.0378 0.1220 ± 0.0378 0.1226 ± 0.0378 0.1000 ± 0.0427 0.1249 ± 0.0467
iris 0.0190 ± 0.0128 0.0190 ± 0.0127 0.0189 ± 0.0127 0.0188 ± 0.0140 0.0227 ± 0.0175
liver 0.1796 ± 0.0350 0.1796 ± 0.0350 0.1796 ± 0.0350 0.2956 ± 0.0612 0.3950 ± 0.0545
newthyroid 0.0276 ± 0.0163 0.0276 ± 0.0163 0.0276 ± 0.0163 0.0283 ± 0.0170 0.0283 ± 0.0176
phoneme 0.1412 ± 0.0105 0.1412 ± 0.0105 0.1412 ± 0.0105 0.1705 ± 0.0127 0.2344 ± 0.0157
ring 0.0288 ± 0.0028 0.0288 ± 0.0028 0.0288 ± 0.0028 0.0289 ± 0.0029 0.0290 ± 0.0029
svmguide1 0.0480 ± 0.0050 0.0480 ± 0.0050 0.0480 ± 0.0050 0.0517 ± 0.0053 0.1343 ± 0.0085
twonorm 0.0289 ± 0.0027 0.0289 ± 0.0027 0.0289 ± 0.0027 0.0289 ± 0.0027 0.0289 ± 0.0027
vehicle 0.0838 ± 0.0098 0.0847 ± 0.0099 0.0849 ± 0.0099 0.1153 ± 0.0161 0.1999 ± 0.0189
waveform 0.0594 ± 0.0041 0.0594 ± 0.0040 0.0594 ± 0.0040 0.0599 ± 0.0045 0.0777 ± 0.0046
wdbc 0.0472 ± 0.0151 0.0472 ± 0.0151 0.0471 ± 0.0151 0.0871 ± 0.0277 0.1352 ± 0.0390
wine 0.0164 ± 0.0095 0.0164 ± 0.0096 0.0164 ± 0.0096 0.0160 ± 0.0105 0.0195 ± 0.0123

270 APPENDIX C. RESULTS OF THE BNCS WITH CLASS LABEL COUNTS

Table C.3: Mean classification error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.2, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.1930 ± 0.1125 0.1930 ± 0.1125 0.1950 ± 0.1148 0.1928 ± 0.1095 0.2655 ± 0.1504
fourclass 0.2070 ± 0.0433 0.2070 ± 0.0433 0.2072 ± 0.0436 0.2298 ± 0.0473 0.2749 ± 0.0546
glass2 0.1059 ± 0.0646 0.1059 ± 0.0646 0.1069 ± 0.0647 0.0971 ± 0.0642 0.1018 ± 0.0622
haberman 0.2693 ± 0.0616 0.2693 ± 0.0616 0.2709 ± 0.0619 0.2555 ± 0.0639 0.3334 ± 0.0840
ion 0.1266 ± 0.0518 0.1266 ± 0.0518 0.1266 ± 0.0518 0.1314 ± 0.0518 0.1379 ± 0.0513
iris 0.0286 ± 0.0446 0.0286 ± 0.0446 0.0280 ± 0.0445 0.0326 ± 0.0476 0.0473 ± 0.0648
liver 0.4088 ± 0.0719 0.4088 ± 0.0719 0.4091 ± 0.0719 0.4964 ± 0.0731 0.5055 ± 0.0638
newthyroid 0.0382 ± 0.0370 0.0377 ± 0.0372 0.0377 ± 0.0372 0.0391 ± 0.0378 0.0414 ± 0.0397
phoneme 0.2190 ± 0.0193 0.2190 ± 0.0193 0.2199 ± 0.0186 0.2268 ± 0.0196 0.3009 ± 0.0207
ring 0.0209 ± 0.0044 0.0209 ± 0.0044 0.0209 ± 0.0044 0.0211 ± 0.0043 0.0208 ± 0.0044
svmguide1 0.0576 ± 0.0072 0.0576 ± 0.0072 0.0576 ± 0.0073 0.0675 ± 0.0083 0.2265 ± 0.0107
twonorm 0.0223 ± 0.0053 0.0223 ± 0.0053 0.0223 ± 0.0053 0.0226 ± 0.0055 0.0232 ± 0.0056
vehicle 0.1496 ± 0.0342 0.1497 ± 0.0334 0.1497 ± 0.0332 0.1680 ± 0.0360 0.4365 ± 0.0788
waveform 0.1472 ± 0.0155 0.1472 ± 0.0155 0.1472 ± 0.0156 0.1502 ± 0.0150 0.1602 ± 0.0146
wdbc 0.0494 ± 0.0288 0.0494 ± 0.0288 0.0496 ± 0.0286 0.0499 ± 0.0293 0.0543 ± 0.0294
wine 0.0089 ± 0.0206 0.0089 ± 0.0206 0.0089 ± 0.0206 0.0089 ± 0.0206 0.0095 ± 0.0211

NB
appendicitis 0.1417 ± 0.0957 0.1417 ± 0.0957 0.1437 ± 0.0985 0.1350 ± 0.1010 0.1809 ± 0.1032
fourclass 0.2453 ± 0.0470 0.2453 ± 0.0470 0.2457 ± 0.0467 0.2557 ± 0.0442 0.2701 ± 0.0379
glass2 0.1683 ± 0.0889 0.1683 ± 0.0889 0.1692 ± 0.0894 0.1378 ± 0.0769 0.2246 ± 0.0739
haberman 0.2725 ± 0.0653 0.2725 ± 0.0653 0.2735 ± 0.0647 0.2558 ± 0.0631 0.3334 ± 0.0840
ion 0.2976 ± 0.0682 0.2976 ± 0.0682 0.2996 ± 0.0673 0.2592 ± 0.0706 0.3171 ± 0.0736
iris 0.0476 ± 0.0530 0.0470 ± 0.0531 0.0470 ± 0.0531 0.0491 ± 0.0544 0.0766 ± 0.0572
liver 0.4788 ± 0.0769 0.4788 ± 0.0769 0.4788 ± 0.0769 0.5029 ± 0.0743 0.5041 ± 0.0674
newthyroid 0.0372 ± 0.0362 0.0372 ± 0.0362 0.0376 ± 0.0360 0.0372 ± 0.0369 0.0339 ± 0.0341
phoneme 0.2390 ± 0.0183 0.2390 ± 0.0183 0.2422 ± 0.0186 0.2790 ± 0.0197 0.3490 ± 0.0245
ring 0.0203 ± 0.0044 0.0203 ± 0.0044 0.0203 ± 0.0044 0.0200 ± 0.0042 0.0201 ± 0.0043
svmguide1 0.0622 ± 0.0075 0.0622 ± 0.0075 0.0622 ± 0.0075 0.0709 ± 0.0080 0.1185 ± 0.0088
twonorm 0.0215 ± 0.0052 0.0215 ± 0.0052 0.0215 ± 0.0052 0.0215 ± 0.0053 0.0216 ± 0.0052
vehicle 0.4983 ± 0.0419 0.5109 ± 0.0392 0.5146 ± 0.0395 0.5657 ± 0.0544 0.5597 ± 0.0572
waveform 0.1921 ± 0.0156 0.1921 ± 0.0156 0.1921 ± 0.0156 0.2109 ± 0.0152 0.2567 ± 0.0177
wdbc 0.0880 ± 0.0348 0.0880 ± 0.0348 0.0880 ± 0.0348 0.0854 ± 0.0332 0.0882 ± 0.0343
wine 0.0253 ± 0.0312 0.0247 ± 0.0311 0.0247 ± 0.0311 0.0303 ± 0.0349 0.0359 ± 0.0377

AODE
appendicitis 0.1607 ± 0.1062 0.1607 ± 0.1062 0.1636 ± 0.1065 0.3108 ± 0.1472 0.4338 ± 0.1406
fourclass 0.2070 ± 0.0433 0.2070 ± 0.0433 0.2072 ± 0.0436 0.2298 ± 0.0473 0.2749 ± 0.0546
glass2 0.0958 ± 0.0587 0.0958 ± 0.0587 0.0958 ± 0.0587 0.0874 ± 0.0559 0.0949 ± 0.0606
haberman 0.2699 ± 0.0606 0.2699 ± 0.0606 0.2709 ± 0.0602 0.2552 ± 0.0637 0.3334 ± 0.0840
ion 0.2543 ± 0.0650 0.2543 ± 0.0650 0.2552 ± 0.0653 0.1194 ± 0.0522 0.1459 ± 0.0635
iris 0.0226 ± 0.0391 0.0226 ± 0.0391 0.0226 ± 0.0391 0.0245 ± 0.0405 0.0531 ± 0.0593
liver 0.4636 ± 0.0771 0.4636 ± 0.0771 0.4642 ± 0.0769 0.5017 ± 0.0710 0.5015 ± 0.0676
newthyroid 0.0386 ± 0.0381 0.0396 ± 0.0394 0.0396 ± 0.0394 0.0391 ± 0.0389 0.0358 ± 0.0366
phoneme 0.2238 ± 0.0186 0.2238 ± 0.0186 0.2277 ± 0.0190 0.2844 ± 0.0199 0.3179 ± 0.0234
ring 0.0204 ± 0.0044 0.0204 ± 0.0044 0.0204 ± 0.0044 0.0201 ± 0.0043 0.0203 ± 0.0044
svmguide1 0.0586 ± 0.0073 0.0586 ± 0.0073 0.0587 ± 0.0073 0.0678 ± 0.0084 0.1973 ± 0.0108
twonorm 0.0215 ± 0.0051 0.0215 ± 0.0051 0.0215 ± 0.0051 0.0215 ± 0.0051 0.0217 ± 0.0051
vehicle 0.2885 ± 0.0429 0.2949 ± 0.0438 0.2959 ± 0.0449 0.3913 ± 0.0486 0.5595 ± 0.0579
waveform 0.1564 ± 0.0140 0.1565 ± 0.0140 0.1565 ± 0.0139 0.1560 ± 0.0162 0.2149 ± 0.0178
wdbc 0.0801 ± 0.0360 0.0801 ± 0.0360 0.0801 ± 0.0364 0.1172 ± 0.0415 0.1738 ± 0.0405
wine 0.0168 ± 0.0269 0.0157 ± 0.0264 0.0157 ± 0.0264 0.0151 ± 0.0261 0.0258 ± 0.0302

271

Table C.4: Mean squared error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.2, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.1581 ± 0.0675 0.1581 ± 0.0675 0.1591 ± 0.0680 0.1604 ± 0.0675 0.1953 ± 0.0882
fourclass 0.0856 ± 0.0130 0.0856 ± 0.0130 0.0856 ± 0.0130 0.1068 ± 0.0175 0.1863 ± 0.0320
glass2 0.1136 ± 0.0423 0.1136 ± 0.0423 0.1137 ± 0.0424 0.1091 ± 0.0410 0.1138 ± 0.0434
haberman 0.1724 ± 0.0409 0.1724 ± 0.0409 0.1697 ± 0.0413 0.1781 ± 0.0370 0.2385 ± 0.0559
ion 0.1302 ± 0.0367 0.1302 ± 0.0367 0.1302 ± 0.0366 0.1337 ± 0.0376 0.1370 ± 0.0372
iris 0.0387 ± 0.0149 0.0386 ± 0.0148 0.0386 ± 0.0148 0.0401 ± 0.0168 0.0460 ± 0.0246
liver 0.1430 ± 0.0315 0.1430 ± 0.0315 0.1433 ± 0.0316 0.3043 ± 0.0455 0.3369 ± 0.0433
newthyroid 0.0446 ± 0.0166 0.0445 ± 0.0165 0.0445 ± 0.0165 0.0451 ± 0.0168 0.0467 ± 0.0178
phoneme 0.1387 ± 0.0100 0.1387 ± 0.0100 0.1396 ± 0.0100 0.1684 ± 0.0111 0.2219 ± 0.0134
ring 0.0607 ± 0.0028 0.0607 ± 0.0028 0.0607 ± 0.0028 0.0607 ± 0.0028 0.0607 ± 0.0029
svmguide1 0.0688 ± 0.0036 0.0688 ± 0.0036 0.0688 ± 0.0036 0.0737 ± 0.0039 0.1534 ± 0.0065
twonorm 0.0592 ± 0.0030 0.0592 ± 0.0030 0.0592 ± 0.0030 0.0595 ± 0.0030 0.0594 ± 0.0030
vehicle 0.0559 ± 0.0089 0.0558 ± 0.0089 0.0558 ± 0.0089 0.0647 ± 0.0112 0.1775 ± 0.0291
waveform 0.0598 ± 0.0042 0.0598 ± 0.0042 0.0598 ± 0.0042 0.0610 ± 0.0043 0.0648 ± 0.0044
wdbc 0.0819 ± 0.0175 0.0819 ± 0.0175 0.0819 ± 0.0175 0.0824 ± 0.0178 0.0843 ± 0.0174
wine 0.0329 ± 0.0085 0.0329 ± 0.0085 0.0329 ± 0.0085 0.0329 ± 0.0085 0.0331 ± 0.0088

NB
appendicitis 0.1360 ± 0.0628 0.1360 ± 0.0628 0.1365 ± 0.0629 0.1310 ± 0.0636 0.1531 ± 0.0665
fourclass 0.0918 ± 0.0139 0.0918 ± 0.0139 0.0918 ± 0.0139 0.1225 ± 0.0206 0.1987 ± 0.0199
glass2 0.1513 ± 0.0565 0.1513 ± 0.0565 0.1518 ± 0.0568 0.1293 ± 0.0515 0.1880 ± 0.0490
haberman 0.1756 ± 0.0414 0.1756 ± 0.0414 0.1729 ± 0.0417 0.1792 ± 0.0368 0.2395 ± 0.0558
ion 0.2322 ± 0.0429 0.2322 ± 0.0429 0.2326 ± 0.0428 0.2076 ± 0.0463 0.2436 ± 0.0441
iris 0.0454 ± 0.0179 0.0453 ± 0.0178 0.0453 ± 0.0179 0.0459 ± 0.0176 0.0533 ± 0.0210
liver 0.2144 ± 0.0685 0.2144 ± 0.0685 0.2142 ± 0.0683 0.3282 ± 0.0472 0.3388 ± 0.0450
newthyroid 0.0435 ± 0.0157 0.0435 ± 0.0157 0.0435 ± 0.0157 0.0436 ± 0.0158 0.0435 ± 0.0159
phoneme 0.1380 ± 0.0097 0.1380 ± 0.0097 0.1386 ± 0.0098 0.1843 ± 0.0122 0.2368 ± 0.0153
ring 0.0604 ± 0.0028 0.0604 ± 0.0028 0.0604 ± 0.0028 0.0605 ± 0.0029 0.0606 ± 0.0028
svmguide1 0.0737 ± 0.0038 0.0737 ± 0.0038 0.0737 ± 0.0038 0.0790 ± 0.0042 0.1005 ± 0.0047
twonorm 0.0590 ± 0.0030 0.0590 ± 0.0030 0.0590 ± 0.0030 0.0590 ± 0.0030 0.0590 ± 0.0030
vehicle 0.1717 ± 0.0148 0.1796 ± 0.0141 0.1813 ± 0.0140 0.2057 ± 0.0208 0.2229 ± 0.0217
waveform 0.1027 ± 0.0062 0.1027 ± 0.0062 0.1027 ± 0.0062 0.1155 ± 0.0065 0.1405 ± 0.0080
wdbc 0.1081 ± 0.0236 0.1081 ± 0.0236 0.1082 ± 0.0237 0.1051 ± 0.0223 0.1078 ± 0.0233
wine 0.0389 ± 0.0137 0.0389 ± 0.0137 0.0389 ± 0.0137 0.0400 ± 0.0138 0.0417 ± 0.0145

AODE
appendicitis 0.1075 ± 0.0508 0.1075 ± 0.0508 0.1079 ± 0.0509 0.1803 ± 0.0785 0.2316 ± 0.0754
fourclass 0.0856 ± 0.0130 0.0856 ± 0.0130 0.0856 ± 0.0130 0.1068 ± 0.0175 0.1863 ± 0.0320
glass2 0.0941 ± 0.0352 0.0941 ± 0.0352 0.0942 ± 0.0353 0.1006 ± 0.0376 0.1064 ± 0.0390
haberman 0.1726 ± 0.0400 0.1726 ± 0.0400 0.1699 ± 0.0404 0.1784 ± 0.0369 0.2388 ± 0.0559
ion 0.1446 ± 0.0321 0.1446 ± 0.0321 0.1449 ± 0.0322 0.1258 ± 0.0353 0.1403 ± 0.0412
iris 0.0367 ± 0.0130 0.0367 ± 0.0129 0.0367 ± 0.0129 0.0379 ± 0.0148 0.0417 ± 0.0167
liver 0.1620 ± 0.0358 0.1620 ± 0.0358 0.1621 ± 0.0359 0.3147 ± 0.0469 0.3346 ± 0.0443
newthyroid 0.0438 ± 0.0160 0.0438 ± 0.0159 0.0438 ± 0.0159 0.0445 ± 0.0163 0.0443 ± 0.0165
phoneme 0.1347 ± 0.0097 0.1347 ± 0.0097 0.1357 ± 0.0098 0.1910 ± 0.0123 0.2084 ± 0.0130
ring 0.0604 ± 0.0028 0.0604 ± 0.0028 0.0604 ± 0.0028 0.0605 ± 0.0028 0.0606 ± 0.0028
svmguide1 0.0698 ± 0.0036 0.0698 ± 0.0036 0.0698 ± 0.0036 0.0749 ± 0.0039 0.1341 ± 0.0061
twonorm 0.0590 ± 0.0030 0.0590 ± 0.0030 0.0590 ± 0.0030 0.0591 ± 0.0030 0.0590 ± 0.0030
vehicle 0.0706 ± 0.0089 0.0716 ± 0.0090 0.0718 ± 0.0090 0.1222 ± 0.0151 0.1803 ± 0.0207
waveform 0.0586 ± 0.0038 0.0586 ± 0.0038 0.0586 ± 0.0038 0.0611 ± 0.0043 0.0673 ± 0.0037
wdbc 0.0716 ± 0.0138 0.0716 ± 0.0138 0.0716 ± 0.0138 0.1194 ± 0.0267 0.1499 ± 0.0270
wine 0.0345 ± 0.0103 0.0345 ± 0.0103 0.0345 ± 0.0103 0.0351 ± 0.0110 0.0381 ± 0.0130

272 APPENDIX C. RESULTS OF THE BNCS WITH CLASS LABEL COUNTS

Table C.5: Mean classification error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.3, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.2534 ± 0.1449 0.2534 ± 0.1449 0.2534 ± 0.1449 0.2121 ± 0.1217 0.2935 ± 0.1781
fourclass 0.2135 ± 0.0396 0.2135 ± 0.0396 0.2135 ± 0.0398 0.2581 ± 0.0433 0.3482 ± 0.0822
glass2 0.1082 ± 0.0570 0.1082 ± 0.0570 0.1082 ± 0.0570 0.1029 ± 0.0577 0.1076 ± 0.0595
haberman 0.3335 ± 0.0811 0.3335 ± 0.0811 0.3335 ± 0.0806 0.2761 ± 0.0836 0.3332 ± 0.0813
ion 0.1310 ± 0.0468 0.1310 ± 0.0468 0.1310 ± 0.0468 0.1329 ± 0.0466 0.1401 ± 0.0478
iris 0.0278 ± 0.0401 0.0271 ± 0.0400 0.0271 ± 0.0400 0.0278 ± 0.0380 0.1126 ± 0.0960
liver 0.4988 ± 0.0759 0.4988 ± 0.0759 0.4991 ± 0.0758 0.4885 ± 0.0797 0.5032 ± 0.0713
newthyroid 0.0367 ± 0.0381 0.0362 ± 0.0383 0.0367 ± 0.0381 0.0399 ± 0.0391 0.0413 ± 0.0427
phoneme 0.2877 ± 0.0334 0.2877 ± 0.0334 0.2890 ± 0.0328 0.2902 ± 0.0180 0.3009 ± 0.0181
ring 0.0208 ± 0.0047 0.0208 ± 0.0047 0.0208 ± 0.0047 0.0207 ± 0.0048 0.0207 ± 0.0046
svmguide1 0.0620 ± 0.0085 0.0620 ± 0.0085 0.0620 ± 0.0085 0.0813 ± 0.0092 0.2262 ± 0.0127
twonorm 0.0226 ± 0.0058 0.0226 ± 0.0058 0.0226 ± 0.0058 0.0229 ± 0.0062 0.0234 ± 0.0061
vehicle 0.1508 ± 0.0351 0.1508 ± 0.0349 0.1508 ± 0.0349 0.1938 ± 0.0480 0.4341 ± 0.0836
waveform 0.1485 ± 0.0161 0.1485 ± 0.0162 0.1485 ± 0.0162 0.1524 ± 0.0169 0.1621 ± 0.0158
wdbc 0.0522 ± 0.0275 0.0522 ± 0.0275 0.0523 ± 0.0274 0.0548 ± 0.0290 0.0587 ± 0.0306
wine 0.0119 ± 0.0245 0.0119 ± 0.0245 0.0119 ± 0.0245 0.0125 ± 0.0236 0.0141 ± 0.0258

NB
appendicitis 0.1730 ± 0.1278 0.1730 ± 0.1278 0.1730 ± 0.1278 0.1367 ± 0.0980 0.2162 ± 0.1220
fourclass 0.2470 ± 0.0408 0.2470 ± 0.0408 0.2473 ± 0.0409 0.2576 ± 0.0403 0.2711 ± 0.0469
glass2 0.2235 ± 0.0783 0.2235 ± 0.0783 0.2240 ± 0.0782 0.2044 ± 0.0786 0.2235 ± 0.0763
haberman 0.3332 ± 0.0811 0.3332 ± 0.0811 0.3332 ± 0.0811 0.2761 ± 0.0847 0.3332 ± 0.0813
ion 0.3080 ± 0.0634 0.3080 ± 0.0634 0.3085 ± 0.0631 0.2789 ± 0.0640 0.3179 ± 0.0682
iris 0.0460 ± 0.0442 0.0460 ± 0.0442 0.0460 ± 0.0442 0.0467 ± 0.0450 0.0818 ± 0.0642
liver 0.5117 ± 0.0757 0.5117 ± 0.0757 0.5117 ± 0.0757 0.4947 ± 0.0776 0.5064 ± 0.0760
newthyroid 0.0353 ± 0.0350 0.0348 ± 0.0358 0.0348 ± 0.0358 0.0343 ± 0.0352 0.0324 ± 0.0344
phoneme 0.3333 ± 0.0172 0.3333 ± 0.0172 0.3352 ± 0.0172 0.2935 ± 0.0187 0.3492 ± 0.0188
ring 0.0203 ± 0.0046 0.0203 ± 0.0046 0.0203 ± 0.0046 0.0201 ± 0.0046 0.0201 ± 0.0045
svmguide1 0.0651 ± 0.0088 0.0651 ± 0.0088 0.0651 ± 0.0088 0.0761 ± 0.0094 0.1187 ± 0.0092
twonorm 0.0217 ± 0.0053 0.0217 ± 0.0053 0.0217 ± 0.0053 0.0216 ± 0.0054 0.0216 ± 0.0053
vehicle 0.5369 ± 0.0505 0.5388 ± 0.0498 0.5389 ± 0.0500 0.5741 ± 0.0548 0.5561 ± 0.0587
waveform 0.2247 ± 0.0170 0.2246 ± 0.0163 0.2247 ± 0.0162 0.2192 ± 0.0153 0.2567 ± 0.0204
wdbc 0.0884 ± 0.0337 0.0884 ± 0.0337 0.0884 ± 0.0337 0.0882 ± 0.0336 0.0884 ± 0.0337
wine 0.0252 ± 0.0405 0.0252 ± 0.0412 0.0258 ± 0.0412 0.0303 ± 0.0442 0.0336 ± 0.0447

AODE
appendicitis 0.2954 ± 0.1484 0.2954 ± 0.1484 0.2954 ± 0.1484 0.3539 ± 0.1619 0.4142 ± 0.1675
fourclass 0.2135 ± 0.0396 0.2135 ± 0.0396 0.2135 ± 0.0398 0.2581 ± 0.0433 0.3482 ± 0.0822
glass2 0.1089 ± 0.0588 0.1089 ± 0.0588 0.1089 ± 0.0588 0.0913 ± 0.0561 0.0950 ± 0.0592
haberman 0.3335 ± 0.0811 0.3335 ± 0.0811 0.3332 ± 0.0816 0.2757 ± 0.0848 0.3332 ± 0.0813
ion 0.2621 ± 0.0674 0.2621 ± 0.0674 0.2623 ± 0.0676 0.1251 ± 0.0545 0.1382 ± 0.0587
iris 0.0218 ± 0.0366 0.0218 ± 0.0366 0.0218 ± 0.0366 0.0199 ± 0.0360 0.0836 ± 0.0680
liver 0.5014 ± 0.0765 0.5014 ± 0.0765 0.5014 ± 0.0762 0.4950 ± 0.0838 0.5008 ± 0.0776
newthyroid 0.0363 ± 0.0378 0.0377 ± 0.0379 0.0372 ± 0.0368 0.0386 ± 0.0386 0.0353 ± 0.0375
phoneme 0.3250 ± 0.0160 0.3250 ± 0.0160 0.3259 ± 0.0159 0.2948 ± 0.0175 0.3228 ± 0.0183
ring 0.0203 ± 0.0045 0.0203 ± 0.0045 0.0203 ± 0.0045 0.0202 ± 0.0046 0.0201 ± 0.0045
svmguide1 0.0624 ± 0.0086 0.0624 ± 0.0086 0.0624 ± 0.0086 0.0772 ± 0.0088 0.1972 ± 0.0120
twonorm 0.0217 ± 0.0054 0.0217 ± 0.0054 0.0217 ± 0.0054 0.0217 ± 0.0054 0.0219 ± 0.0055
vehicle 0.3472 ± 0.0559 0.3495 ± 0.0569 0.3499 ± 0.0570 0.4335 ± 0.0547 0.5683 ± 0.0529
waveform 0.1559 ± 0.0159 0.1572 ± 0.0158 0.1573 ± 0.0159 0.1629 ± 0.0154 0.2163 ± 0.0179
wdbc 0.0879 ± 0.0320 0.0879 ± 0.0320 0.0880 ± 0.0321 0.1501 ± 0.0418 0.1759 ± 0.0413
wine 0.0152 ± 0.0287 0.0152 ± 0.0287 0.0152 ± 0.0287 0.0140 ± 0.0292 0.0354 ± 0.0391

273

Table C.6: Mean squared error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.3, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.1957 ± 0.0631 0.1957 ± 0.0631 0.1961 ± 0.0632 0.1793 ± 0.0523 0.2089 ± 0.0750
fourclass 0.0865 ± 0.0126 0.0865 ± 0.0126 0.0864 ± 0.0126 0.1567 ± 0.0179 0.2076 ± 0.0319
glass2 0.1513 ± 0.0294 0.1513 ± 0.0294 0.1513 ± 0.0294 0.1481 ± 0.0293 0.1514 ± 0.0304
haberman 0.2239 ± 0.0423 0.2239 ± 0.0423 0.2229 ± 0.0421 0.1919 ± 0.0406 0.2253 ± 0.0432
ion 0.1581 ± 0.0265 0.1581 ± 0.0265 0.1581 ± 0.0265 0.1595 ± 0.0260 0.1621 ± 0.0262
iris 0.0636 ± 0.0163 0.0637 ± 0.0164 0.0637 ± 0.0164 0.0646 ± 0.0168 0.0876 ± 0.0285
liver 0.2773 ± 0.0511 0.2773 ± 0.0511 0.2776 ± 0.0511 0.2722 ± 0.0376 0.2872 ± 0.0351
newthyroid 0.0696 ± 0.0153 0.0696 ± 0.0153 0.0696 ± 0.0153 0.0705 ± 0.0154 0.0714 ± 0.0159
phoneme 0.2039 ± 0.0197 0.2039 ± 0.0197 0.2042 ± 0.0196 0.2106 ± 0.0082 0.2171 ± 0.0078
ring 0.1098 ± 0.0036 0.1098 ± 0.0036 0.1098 ± 0.0036 0.1099 ± 0.0036 0.1099 ± 0.0036
svmguide1 0.1108 ± 0.0042 0.1108 ± 0.0042 0.1108 ± 0.0042 0.1162 ± 0.0044 0.1638 ± 0.0057
twonorm 0.1074 ± 0.0033 0.1074 ± 0.0033 0.1074 ± 0.0033 0.1077 ± 0.0033 0.1075 ± 0.0033
vehicle 0.0658 ± 0.0087 0.0658 ± 0.0087 0.0658 ± 0.0087 0.0822 ± 0.0134 0.1672 ± 0.0254
waveform 0.0706 ± 0.0032 0.0707 ± 0.0032 0.0707 ± 0.0032 0.0725 ± 0.0034 0.0751 ± 0.0035
wdbc 0.1277 ± 0.0162 0.1277 ± 0.0162 0.1277 ± 0.0162 0.1282 ± 0.0166 0.1295 ± 0.0169
wine 0.0616 ± 0.0129 0.0616 ± 0.0129 0.0616 ± 0.0129 0.0615 ± 0.0128 0.0619 ± 0.0131

NB
appendicitis 0.1704 ± 0.0519 0.1704 ± 0.0519 0.1708 ± 0.0519 0.1598 ± 0.0460 0.1864 ± 0.0622
fourclass 0.0888 ± 0.0132 0.0888 ± 0.0132 0.0888 ± 0.0132 0.1501 ± 0.0180 0.1972 ± 0.0228
glass2 0.1921 ± 0.0365 0.1921 ± 0.0365 0.1922 ± 0.0366 0.1845 ± 0.0375 0.1920 ± 0.0365
haberman 0.2252 ± 0.0434 0.2252 ± 0.0434 0.2242 ± 0.0433 0.1920 ± 0.0400 0.2259 ± 0.0433
ion 0.2282 ± 0.0295 0.2282 ± 0.0295 0.2282 ± 0.0296 0.2161 ± 0.0310 0.2322 ± 0.0330
iris 0.0667 ± 0.0176 0.0667 ± 0.0176 0.0667 ± 0.0176 0.0672 ± 0.0178 0.0749 ± 0.0226
liver 0.2926 ± 0.0366 0.2926 ± 0.0366 0.2927 ± 0.0366 0.2837 ± 0.0385 0.2914 ± 0.0369
newthyroid 0.0684 ± 0.0140 0.0684 ± 0.0139 0.0684 ± 0.0139 0.0687 ± 0.0140 0.0685 ± 0.0140
phoneme 0.2134 ± 0.0079 0.2134 ± 0.0079 0.2140 ± 0.0079 0.1969 ± 0.0080 0.2211 ± 0.0092
ring 0.1098 ± 0.0037 0.1098 ± 0.0037 0.1098 ± 0.0037 0.1099 ± 0.0037 0.1099 ± 0.0037
svmguide1 0.1165 ± 0.0045 0.1165 ± 0.0045 0.1165 ± 0.0045 0.1203 ± 0.0047 0.1317 ± 0.0051
twonorm 0.1072 ± 0.0032 0.1072 ± 0.0032 0.1072 ± 0.0032 0.1072 ± 0.0032 0.1072 ± 0.0032
vehicle 0.1853 ± 0.0205 0.1866 ± 0.0196 0.1867 ± 0.0195 0.2000 ± 0.0178 0.2040 ± 0.0181
waveform 0.1227 ± 0.0055 0.1227 ± 0.0054 0.1228 ± 0.0054 0.1271 ± 0.0049 0.1438 ± 0.0072
wdbc 0.1437 ± 0.0184 0.1437 ± 0.0184 0.1437 ± 0.0184 0.1429 ± 0.0188 0.1435 ± 0.0185
wine 0.0648 ± 0.0150 0.0648 ± 0.0150 0.0649 ± 0.0150 0.0660 ± 0.0170 0.0672 ± 0.0174

AODE
appendicitis 0.1083 ± 0.0435 0.1083 ± 0.0435 0.1084 ± 0.0436 0.1857 ± 0.0564 0.1995 ± 0.0577
fourclass 0.0865 ± 0.0126 0.0865 ± 0.0126 0.0864 ± 0.0126 0.1567 ± 0.0179 0.2076 ± 0.0319
glass2 0.1268 ± 0.0269 0.1268 ± 0.0269 0.1268 ± 0.0268 0.1404 ± 0.0275 0.1429 ± 0.0296
haberman 0.2236 ± 0.0427 0.2236 ± 0.0427 0.2227 ± 0.0426 0.1919 ± 0.0403 0.2255 ± 0.0432
ion 0.1524 ± 0.0280 0.1524 ± 0.0280 0.1525 ± 0.0280 0.1539 ± 0.0255 0.1584 ± 0.0268
iris 0.0614 ± 0.0153 0.0614 ± 0.0153 0.0614 ± 0.0153 0.0627 ± 0.0164 0.0691 ± 0.0180
liver 0.2660 ± 0.0562 0.2660 ± 0.0562 0.2661 ± 0.0562 0.2618 ± 0.0607 0.2744 ± 0.0617
newthyroid 0.0686 ± 0.0143 0.0686 ± 0.0143 0.0686 ± 0.0143 0.0693 ± 0.0145 0.0690 ± 0.0145
phoneme 0.1930 ± 0.0070 0.1930 ± 0.0070 0.1934 ± 0.0071 0.2021 ± 0.0076 0.1995 ± 0.0070
ring 0.1098 ± 0.0036 0.1098 ± 0.0036 0.1098 ± 0.0036 0.1099 ± 0.0036 0.1099 ± 0.0036
svmguide1 0.1119 ± 0.0042 0.1119 ± 0.0042 0.1119 ± 0.0042 0.1167 ± 0.0044 0.1504 ± 0.0055
twonorm 0.1072 ± 0.0032 0.1072 ± 0.0032 0.1072 ± 0.0032 0.1073 ± 0.0032 0.1072 ± 0.0032
vehicle 0.0708 ± 0.0101 0.0710 ± 0.0102 0.0711 ± 0.0102 0.1240 ± 0.0175 0.1627 ± 0.0179
waveform 0.0640 ± 0.0028 0.0643 ± 0.0028 0.0643 ± 0.0028 0.0703 ± 0.0031 0.0668 ± 0.0036
wdbc 0.1071 ± 0.0121 0.1071 ± 0.0121 0.1070 ± 0.0121 0.1609 ± 0.0207 0.1698 ± 0.0202
wine 0.0610 ± 0.0127 0.0610 ± 0.0127 0.0610 ± 0.0127 0.0617 ± 0.0133 0.0631 ± 0.0144

274 APPENDIX C. RESULTS OF THE BNCS WITH CLASS LABEL COUNTS

Table C.7: Mean classification error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.4, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.3528 ± 0.1967 0.3528 ± 0.1967 0.3528 ± 0.1967 0.3253 ± 0.1815 0.3872 ± 0.2117
fourclass 0.2635 ± 0.0535 0.2635 ± 0.0535 0.2644 ± 0.0544 0.2736 ± 0.0576 0.4512 ± 0.0975
glass2 0.1002 ± 0.0685 0.1002 ± 0.0685 0.1002 ± 0.0685 0.1026 ± 0.0684 0.1049 ± 0.0706
haberman 0.3333 ± 0.0831 0.3333 ± 0.0831 0.3333 ± 0.0831 0.2990 ± 0.0802 0.3333 ± 0.0831
ion 0.1413 ± 0.0589 0.1413 ± 0.0589 0.1413 ± 0.0589 0.1425 ± 0.0595 0.1450 ± 0.0590
iris 0.0273 ± 0.0445 0.0280 ± 0.0446 0.0280 ± 0.0446 0.0307 ± 0.0428 0.1430 ± 0.1100
liver 0.5088 ± 0.0718 0.5088 ± 0.0718 0.5088 ± 0.0718 0.5044 ± 0.0732 0.5088 ± 0.0689
newthyroid 0.0372 ± 0.0374 0.0372 ± 0.0374 0.0372 ± 0.0374 0.0386 ± 0.0374 0.0410 ± 0.0388
phoneme 0.3013 ± 0.0188 0.3013 ± 0.0188 0.3013 ± 0.0188 0.2972 ± 0.0172 0.3017 ± 0.0193
ring 0.0208 ± 0.0049 0.0208 ± 0.0049 0.0208 ± 0.0049 0.0208 ± 0.0049 0.0207 ± 0.0048
svmguide1 0.1195 ± 0.0137 0.1195 ± 0.0137 0.1197 ± 0.0138 0.1365 ± 0.0138 0.2264 ± 0.0136
twonorm 0.0231 ± 0.0057 0.0231 ± 0.0057 0.0231 ± 0.0057 0.0233 ± 0.0057 0.0717 ± 0.1235
vehicle 0.1601 ± 0.0369 0.1603 ± 0.0372 0.1603 ± 0.0372 0.2415 ± 0.0549 0.4173 ± 0.1094
waveform 0.1498 ± 0.0135 0.1497 ± 0.0135 0.1498 ± 0.0135 0.1531 ± 0.0141 0.1606 ± 0.0145
wdbc 0.0643 ± 0.0364 0.0643 ± 0.0364 0.0643 ± 0.0364 0.0647 ± 0.0364 0.0643 ± 0.0369
wine 0.0129 ± 0.0287 0.0129 ± 0.0287 0.0129 ± 0.0287 0.0141 ± 0.0282 0.0247 ± 0.0378

NB
appendicitis 0.2105 ± 0.1458 0.2105 ± 0.1458 0.2105 ± 0.1458 0.1879 ± 0.1356 0.2342 ± 0.1573
fourclass 0.2861 ± 0.0610 0.2861 ± 0.0610 0.2868 ± 0.0617 0.2587 ± 0.0375 0.2767 ± 0.0538
glass2 0.2236 ± 0.0861 0.2236 ± 0.0861 0.2236 ± 0.0861 0.2213 ± 0.0862 0.2245 ± 0.0849
haberman 0.3333 ± 0.0831 0.3333 ± 0.0831 0.3333 ± 0.0831 0.2983 ± 0.0811 0.3333 ± 0.0831
ion 0.3177 ± 0.0692 0.3177 ± 0.0692 0.3177 ± 0.0692 0.2995 ± 0.0646 0.3206 ± 0.0672
iris 0.0487 ± 0.0553 0.0487 ± 0.0553 0.0487 ± 0.0553 0.0494 ± 0.0559 0.0785 ± 0.0622
liver 0.5058 ± 0.0695 0.5058 ± 0.0695 0.5058 ± 0.0695 0.4982 ± 0.0686 0.5073 ± 0.0694
newthyroid 0.0366 ± 0.0342 0.0362 ± 0.0338 0.0362 ± 0.0338 0.0339 ± 0.0346 0.0339 ± 0.0346
phoneme 0.3498 ± 0.0184 0.3498 ± 0.0184 0.3504 ± 0.0184 0.3061 ± 0.0193 0.3514 ± 0.0188
ring 0.0202 ± 0.0052 0.0202 ± 0.0052 0.0202 ± 0.0052 0.0202 ± 0.0052 0.0202 ± 0.0051
svmguide1 0.0844 ± 0.0099 0.0844 ± 0.0099 0.0846 ± 0.0099 0.0899 ± 0.0109 0.1185 ± 0.0107
twonorm 0.0217 ± 0.0054 0.0217 ± 0.0054 0.0217 ± 0.0054 0.0218 ± 0.0054 0.0218 ± 0.0055
vehicle 0.5637 ± 0.0468 0.5641 ± 0.0468 0.5641 ± 0.0466 0.5727 ± 0.0517 0.5496 ± 0.0559
waveform 0.4745 ± 0.0810 0.4745 ± 0.0808 0.4745 ± 0.0808 0.2246 ± 0.0165 0.2567 ± 0.0183
wdbc 0.0886 ± 0.0334 0.0886 ± 0.0334 0.0886 ± 0.0334 0.0882 ± 0.0339 0.0884 ± 0.0334
wine 0.0327 ± 0.0401 0.0327 ± 0.0401 0.0327 ± 0.0401 0.0338 ± 0.0407 0.0355 ± 0.0423

AODE
appendicitis 0.3444 ± 0.1615 0.3444 ± 0.1615 0.3463 ± 0.1606 0.4116 ± 0.1525 0.4385 ± 0.1626
fourclass 0.2635 ± 0.0535 0.2635 ± 0.0535 0.2644 ± 0.0544 0.2736 ± 0.0576 0.4512 ± 0.0975
glass2 0.1143 ± 0.0722 0.1143 ± 0.0722 0.1143 ± 0.0722 0.0966 ± 0.0618 0.0957 ± 0.0621
haberman 0.3333 ± 0.0831 0.3333 ± 0.0831 0.3333 ± 0.0831 0.2977 ± 0.0802 0.3333 ± 0.0831
ion 0.2782 ± 0.0688 0.2782 ± 0.0688 0.2782 ± 0.0688 0.1347 ± 0.0589 0.1428 ± 0.0530
iris 0.0240 ± 0.0397 0.0247 ± 0.0398 0.0240 ± 0.0397 0.0287 ± 0.0394 0.0921 ± 0.0770
liver 0.4976 ± 0.0698 0.4976 ± 0.0698 0.4976 ± 0.0698 0.5006 ± 0.0678 0.5053 ± 0.0645
newthyroid 0.0371 ± 0.0373 0.0371 ± 0.0373 0.0371 ± 0.0373 0.0367 ± 0.0368 0.0353 ± 0.0384
phoneme 0.3379 ± 0.0228 0.3379 ± 0.0228 0.3382 ± 0.0228 0.3025 ± 0.0177 0.3312 ± 0.0199
ring 0.0204 ± 0.0052 0.0204 ± 0.0052 0.0204 ± 0.0052 0.0204 ± 0.0053 0.0204 ± 0.0052
svmguide1 0.0954 ± 0.0104 0.0954 ± 0.0104 0.0955 ± 0.0104 0.1110 ± 0.0123 0.1979 ± 0.0134
twonorm 0.0218 ± 0.0054 0.0218 ± 0.0054 0.0218 ± 0.0054 0.0219 ± 0.0055 0.0220 ± 0.0055
vehicle 0.4502 ± 0.0569 0.4530 ± 0.0565 0.4526 ± 0.0564 0.4781 ± 0.0548 0.5710 ± 0.0536
waveform 0.1737 ± 0.0229 0.1742 ± 0.0232 0.1745 ± 0.0232 0.1712 ± 0.0173 0.2241 ± 0.0198
wdbc 0.0926 ± 0.0327 0.0926 ± 0.0327 0.0926 ± 0.0327 0.1541 ± 0.0456 0.1726 ± 0.0419
wine 0.0198 ± 0.0323 0.0198 ± 0.0323 0.0203 ± 0.0334 0.0209 ± 0.0326 0.0418 ± 0.0417

275

Table C.8: Mean squared error in ten repetitions of a 10-fold cross-validation. The set of
experts’ class labels were generated using a Beta distribution B(0.4, 0.01). The best results
for each dataset and algorithm are highlighted in boldface. The best result for each dataset
is shaded gray.

Datasets CoMEM-MUL CoMEM-BIN CoMEM-IND PLEM EM
MG

appendicitis 0.2226 ± 0.0601 0.2226 ± 0.0601 0.2226 ± 0.0602 0.2166 ± 0.0598 0.2350 ± 0.0611
fourclass 0.1850 ± 0.0275 0.1850 ± 0.0275 0.1849 ± 0.0274 0.1844 ± 0.0180 0.2249 ± 0.0263
glass2 0.2000 ± 0.0312 0.2000 ± 0.0312 0.2000 ± 0.0312 0.1999 ± 0.0311 0.2007 ± 0.0310
haberman 0.2284 ± 0.0330 0.2284 ± 0.0330 0.2282 ± 0.0330 0.2126 ± 0.0309 0.2282 ± 0.0330
ion 0.2031 ± 0.0251 0.2031 ± 0.0251 0.2031 ± 0.0251 0.2034 ± 0.0252 0.2039 ± 0.0254
iris 0.0986 ± 0.0203 0.0986 ± 0.0203 0.0986 ± 0.0203 0.0999 ± 0.0207 0.1127 ± 0.0294
liver 0.2592 ± 0.0303 0.2592 ± 0.0303 0.2591 ± 0.0303 0.2529 ± 0.0296 0.2597 ± 0.0296
newthyroid 0.1073 ± 0.0167 0.1073 ± 0.0167 0.1073 ± 0.0167 0.1072 ± 0.0167 0.1077 ± 0.0169
phoneme 0.2297 ± 0.0080 0.2297 ± 0.0080 0.2297 ± 0.0080 0.2287 ± 0.0078 0.2301 ± 0.0080
ring 0.1770 ± 0.0049 0.1770 ± 0.0049 0.1770 ± 0.0049 0.1771 ± 0.0049 0.1771 ± 0.0049
svmguide1 0.1728 ± 0.0059 0.1728 ± 0.0059 0.1730 ± 0.0059 0.1754 ± 0.0061 0.1911 ± 0.0057
twonorm 0.1727 ± 0.0047 0.1727 ± 0.0047 0.1727 ± 0.0047 0.1729 ± 0.0047 0.1601 ± 0.0317
vehicle 0.0824 ± 0.0088 0.0824 ± 0.0088 0.0824 ± 0.0088 0.1098 ± 0.0153 0.1613 ± 0.0270
waveform 0.0902 ± 0.0030 0.0902 ± 0.0030 0.0902 ± 0.0030 0.0924 ± 0.0031 0.0938 ± 0.0030
wdbc 0.1929 ± 0.0193 0.1929 ± 0.0193 0.1929 ± 0.0193 0.1927 ± 0.0196 0.1924 ± 0.0195
wine 0.1008 ± 0.0176 0.1008 ± 0.0176 0.1007 ± 0.0176 0.1007 ± 0.0171 0.1013 ± 0.0181

NB
appendicitis 0.2117 ± 0.0500 0.2117 ± 0.0500 0.2118 ± 0.0500 0.2047 ± 0.0478 0.2138 ± 0.0524
fourclass 0.1789 ± 0.0211 0.1789 ± 0.0211 0.1789 ± 0.0210 0.1871 ± 0.0245 0.2068 ± 0.0242
glass2 0.2239 ± 0.0320 0.2239 ± 0.0320 0.2239 ± 0.0320 0.2241 ± 0.0320 0.2240 ± 0.0320
haberman 0.2290 ± 0.0329 0.2290 ± 0.0329 0.2288 ± 0.0329 0.2129 ± 0.0308 0.2287 ± 0.0330
ion 0.2453 ± 0.0305 0.2453 ± 0.0305 0.2453 ± 0.0305 0.2402 ± 0.0297 0.2460 ± 0.0295
iris 0.0993 ± 0.0209 0.0993 ± 0.0209 0.0993 ± 0.0209 0.0990 ± 0.0211 0.1028 ± 0.0203
liver 0.2608 ± 0.0291 0.2608 ± 0.0291 0.2607 ± 0.0291 0.2580 ± 0.0307 0.2618 ± 0.0293
newthyroid 0.1065 ± 0.0159 0.1065 ± 0.0159 0.1065 ± 0.0159 0.1063 ± 0.0160 0.1062 ± 0.0159
phoneme 0.2240 ± 0.0081 0.2240 ± 0.0081 0.2240 ± 0.0081 0.2132 ± 0.0074 0.2242 ± 0.0083
ring 0.1771 ± 0.0049 0.1771 ± 0.0049 0.1771 ± 0.0049 0.1771 ± 0.0049 0.1771 ± 0.0049
svmguide1 0.1764 ± 0.0057 0.1764 ± 0.0057 0.1764 ± 0.0057 0.1769 ± 0.0057 0.1798 ± 0.0060
twonorm 0.1726 ± 0.0046 0.1726 ± 0.0046 0.1726 ± 0.0046 0.1726 ± 0.0046 0.1726 ± 0.0046
vehicle 0.1937 ± 0.0116 0.1937 ± 0.0116 0.1937 ± 0.0116 0.1925 ± 0.0127 0.1925 ± 0.0151
waveform 0.2159 ± 0.0232 0.2159 ± 0.0231 0.2159 ± 0.0231 0.1450 ± 0.0046 0.1561 ± 0.0053
wdbc 0.2007 ± 0.0187 0.2007 ± 0.0187 0.2007 ± 0.0187 0.2007 ± 0.0186 0.2007 ± 0.0187
wine 0.1032 ± 0.0175 0.1032 ± 0.0175 0.1032 ± 0.0175 0.1036 ± 0.0176 0.1042 ± 0.0179

AODE
appendicitis 0.1154 ± 0.0463 0.1154 ± 0.0463 0.1154 ± 0.0463 0.1898 ± 0.0495 0.1916 ± 0.0514
fourclass 0.1850 ± 0.0275 0.1850 ± 0.0275 0.1849 ± 0.0274 0.1844 ± 0.0180 0.2249 ± 0.0263
glass2 0.1743 ± 0.0337 0.1743 ± 0.0337 0.1743 ± 0.0337 0.1961 ± 0.0321 0.1953 ± 0.0318
haberman 0.2285 ± 0.0330 0.2285 ± 0.0330 0.2284 ± 0.0330 0.2127 ± 0.0309 0.2284 ± 0.0330
ion 0.1750 ± 0.0278 0.1750 ± 0.0278 0.1750 ± 0.0278 0.2051 ± 0.0263 0.2073 ± 0.0258
iris 0.0956 ± 0.0196 0.0956 ± 0.0196 0.0956 ± 0.0196 0.0984 ± 0.0202 0.0926 ± 0.0229
liver 0.2267 ± 0.0642 0.2267 ± 0.0642 0.2266 ± 0.0642 0.2206 ± 0.0663 0.2365 ± 0.0617
newthyroid 0.1060 ± 0.0161 0.1060 ± 0.0161 0.1060 ± 0.0161 0.1065 ± 0.0162 0.1062 ± 0.0162
phoneme 0.1911 ± 0.0080 0.1911 ± 0.0080 0.1912 ± 0.0080 0.2146 ± 0.0076 0.2081 ± 0.0082
ring 0.1771 ± 0.0049 0.1771 ± 0.0049 0.1771 ± 0.0049 0.1771 ± 0.0049 0.1771 ± 0.0049
svmguide1 0.1711 ± 0.0058 0.1711 ± 0.0058 0.1711 ± 0.0058 0.1736 ± 0.0059 0.1835 ± 0.0057
twonorm 0.1725 ± 0.0046 0.1725 ± 0.0046 0.1725 ± 0.0046 0.1726 ± 0.0046 0.1726 ± 0.0046
vehicle 0.0792 ± 0.0120 0.0795 ± 0.0121 0.0794 ± 0.0121 0.1255 ± 0.0137 0.1504 ± 0.0156
waveform 0.0608 ± 0.0039 0.0608 ± 0.0039 0.0608 ± 0.0039 0.0860 ± 0.0030 0.0724 ± 0.0033
wdbc 0.1554 ± 0.0187 0.1554 ± 0.0187 0.1554 ± 0.0187 0.2093 ± 0.0201 0.2110 ± 0.0195
wine 0.0988 ± 0.0160 0.0988 ± 0.0159 0.0988 ± 0.0160 0.1006 ± 0.0166 0.0995 ± 0.0174

276 APPENDIX C. RESULTS OF THE BNCS WITH CLASS LABEL COUNTS

Bibliography

[1] S. Abe. Support Vector Machines for Pattern Classification. Springer, 2010.

[2] N. Adams. Semi-supervised learning. Journal of the Royal Statistical Society: Series

A (Statistics in Society), 172(2):530, 2009.

[3] C. Agostinelli and U. Lund. R Package circular: Circular Statistics, 2011. URL

https://r-forge.r-project.org/projects/circular.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca,

M. Jarke, and C. Zaniolo, editors, Proceedings of the Twentieth International Confer-

ence on Very Large Data Bases (VLDB 1994), pages 487–499. Morgan Kaufmann,

1994.

[5] A. Agresti. An Introduction to Categorical Data Analysis. John Wiley & Sons, second

edition, 2007.

[6] D. W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-based learning

algorithms. International Journal of Man-Machine Studies, 36(2):267–287, 1992.

[7] D. W. Aha, editor. Lazy Learning. Springer, 1997.

[8] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. J. del Jesus, S. Ventura, J. M. Garrell,

J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández, and F. Herrera.

KEEL: A software tool to assess evolutionary algorithms for data mining problems.

Soft Computing, 13(3):307–318, 2009.

[9] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and F. Her-

rera. KEEL data-mining software tool: Data set repository, integration of algorithms

and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Com-

puting, 17:255–287, 2011.

[10] A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste.

The Brain Activity Map project and the challenge of functional connectomics. Neuron,

74(6):970–974, 2012.

[11] A. P. Alivisatos, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, R. J.

Greenspan, P. L. McEuen, M. L. Roukes, T. J. Sejnowski, P. S. Weiss, and R. Yuste.

The Brain Activity Map. Science, 339:1284–1285, 2013.

277

https://r-forge.r-project.org/projects/circular

278 BIBLIOGRAPHY

[12] L. Alonso-Nanclares, A. Kastanauskaite, J.-R. Rodŕıguez, J. González-Soriano, and

J. DeFelipe. A stereological study of synapse number in the epileptic human hip-

pocampus. Frontiers in Neuroanatomy, 5(8):1–13, 2011.

[13] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

[14] D. G. Altman. Practical Statistics for Medical Research, volume 12. Chapman &

Hall/CRC, 1991.

[15] D. Amaral and P. Lavenex. Hippocampal neuroanatomy. In P. Andersen, R. Morris,

D. Amaral, T. Bliss, and J. O’Keefe, editors, The Hippocampus Book, pages 37–114.

Oxford University Press, 2006.

[16] O. Amayri and N. Bouguila. Beyond hybrid generative discriminative learning: Spher-

ical data classification. Pattern Analysis and Applications, in press, 2013.

[17] H. Anwar, I. Riachi, S. Hill, F. Schürmann, and H. Markram. An approach to capturing

neuron morphological diversity. In E. De Schutter, editor, Computational Modeling

Methods for Neuroscientists, pages 211–232. The MIT Press, 2009.

[18] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona. An extensive

comparative study of cluster validity indices. Pattern Recognition, 46(1):243–256, 2013.

[19] R. Artstein and M. Poesio. Inter-coder agreement for computational linguistics. Com-

putational Linguistics, 34(4):555–596, 2008.

[20] G. A. Ascoli. Successes and rewards in sharing digital reconstructions of neuronal

morphology. Neuroinformatics, 5:154–160, 2007.

[21] G. A. Ascoli and J. L. Krichmar. L-Neuron: A modeling tool for the efficient generation

and parsimonious description of dendritic morphology. Neurocomputing, 32-33:1003–

1011, 2000.

[22] G. A. Ascoli, J. L. Krichmar, S. J. Nasuto, and S. L. Senft. Generation, description and

storage of dendritic morphology data. Philosophical Transactions of the Royal Society

of London. Series B (Biological Sciences), 356:1131–1145, 2001.

[23] G. A. Ascoli, D. E. Donohue, and M. Halavi. Neuromorpho.org: A central resource for

neuronal morphologies. Journal of Neuroscience, 27(35):9247–9251, 2007.

[24] Y. Aumann and Y. Lindell. A statistical theory for quantitative association rules.

Journal of Intelligent Information Systems, 20(3):255–283, 2003.

[25] F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. L. Ferretti,

R. E. P. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel. Equal numbers of neu-

ronal and nonneuronal cells make the human brain an isometrically scaled-up primate

brain. Journal of Comparative Neurology, 513(5):532–541, 2009.

BIBLIOGRAPHY 279

[26] F. R. Bach and M. I. Jordan. Learning graphical models with Mercer kernels. In

S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Pro-

cessing Systems, pages 1009–1016. The MIT Press, 2002.

[27] K. Bache and M. Lichman. UCI Machine Learning Repository, URL

http://archive.ics.uci.edu/ml, 2013.

[28] G. Bagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine

Learning, 5(1):71–99, 1990.

[29] I. Ballesteros-Yáñez, R. Benavides-Piccione, J. Bourgeois, J. Changeux, and J. DeFe-

lipe. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic

receptors. Proceedings of the National Academy of Sciences of the United States of

America, 107(25):11567–11572, 2010.

[30] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere

using von Mises-Fisher distributions. Journal of Machine Learning Research, 6:1345–

1382, 2005.

[31] M. Banerjee, M. Capozzoli, L. McSweeney, and D. Sinha. Beyond kappa: A review of

interrater agreement measures. Canadian Journal of Statistics, 27(1):3–23, 1999.

[32] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M. Blei, and M. I. Jordan.

Matching words and pictures. Journal of Machine Learning Research, 3:1107–1135,

2003.

[33] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, and A. A. Freitas. A survey

of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 42(3):291–312, 2012.

[34] D. M. Bashtannyk and R. J. Hyndman. Bandwidth selection for kernel conditional

density estimation. Computational Statistics & Data Analysis, 36(3):279–298, 2001.

[35] E. Batschelet. Circular Statistics in Biology. Academic Press, 1981.

[36] T. Bdiri and N. Bouguila. Positive vectors clustering using inverted Dirichlet finite

mixture models. Expert Systems with Applications, 39(2):1869–1882, 2012.

[37] R. Benavides-Piccione. Microestructura e Inervación Catecolaminérgica de las Células

Piramidales de la Corteza Cerebral. PhD thesis, Universidad Complutense de Madrid,

2004.

[38] R. Benavides-Piccione, I. Ballesteros-Yáñez, M. Mart́ınez de Legrán, G. Elston, X. Es-

tivill, C. Fillat, J. DeFelipe, and M. Dierssen. On dendrites in Down syndrome and DS

murine models: A spiny way to learn. Progress in Neurobiology, 74:111–126, 2004.

http://archive.ics.uci.edu/ml

280 BIBLIOGRAPHY

[39] R. Benavides-Piccione, F. Hamzei-Sichani, I. Ballesteros-Yáñez, J. DeFelipe, and

R. Yuste. Dendritic size of pyramidal neurons differs among mouse cortical regions.

Cerebral Cortex, 16:990–1001, 2006.

[40] R. Benavides-Piccione, I. Fernaud-Espinosa, V. Robles, R. Yuste, and J. DeFelipe. Age-

based comparison of human dendritic spine structure using complete three-dimensional

reconstructions. Cerebral Cortex, 23(8):1798–1810, 2013.

[41] P. Berens. CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical

Software, 31(10):1–21, 2009.

[42] G. Bergmann and G. Hommel. Improvements of general multiple test procedures for

redundant systems of hypotheses. In P. Bauer, G. Hommel, and E. Sonnemann, editors,

Multiple Hypotheses Testing, pages 100–115. Springer, 1988.

[43] D. S. Berkholz, P. B. Krenesky, J. R. Davidson, and P. A. Karplus. Protein geometry

database: A flexible engine to explore backbone conformations and their relationships

to covalent geometry. Nucleic Acids Res, 38(suppl 1):D320–D325, 2010.

[44] M. Berry, T. Hollingworth, E. M. Anderson, and R. M. Flinn. Application of net-

work analysis to the study of the branching patterns of dendritic fields. Advances in

Neurology, 12:217–245, 1975.

[45] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[46] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[47] J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks

and discriminant analysis in predicting forest cover types from cartographic variables.

Computers and Electronics in Agriculture, 24(3):131–151, 1999.

[48] R. K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jǐrina, J. Klaschka,

E. Kotrč, P. Savický, S. Towers, A. Vaiciulis, and W. Wittek. Methods for multidimen-

sional event classification: A case study using images from a Cherenkov gamma-ray

telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelera-

tors, Spectrometers, Detectors and Associated Equipment, 516(2–3):511–528, 2004.

[49] R. Bordley. A multiplicative formula for aggregating probability assessments. Manage-

ment Science, 28:1137–1148, 1982.

[50] L. Bos, S. De Marchi, M. Vianello, and Y. Xu. Bivariate Lagrange interpolation at

the Padua points: The ideal theory approach. Numerische Mathematik, 108(1):47–57,

2007.

[51] M. Bota and L. W. Swanson. The neuron classification problem. Brain Research

Reviews, 56(1):79–88, 2007.

BIBLIOGRAPHY 281

[52] S. G. Bøttcher. Learning Bayesian Networks with Mixed Variables. PhD thesis, Aalborg

University, 2004.

[53] S. G. Bøttcher and C. Dethlefsen. Learning Bayesian networks with R. In K. Hornik,

F. Leisch, and A. Zeileis, editors, Proceedings of the Third International Workshop on

Distributed Statistical Computing (DSC 2003), 2003.

[54] R. R. Bouckaert. Optimizing causal orderings for generating DAGs from data. In

D. Dubois and M. P. Wellman, editors, Proceedings of the Eighth Annual Conference

on Uncertainty in Artificial Intelligence (UAI 1992), pages 9–16. Morgan Kaufmann,

1992.

[55] R. R. Bouckaert. Estimating replicability of classiffier learning experiments. In C. E.

Brodley, editor, Proceedings of the 21st International Conference on Machine Learning.

ACM, 2004.

[56] R. R. Bouckaert, E. F. Castillo, and J. M. Gutiérrez. A modified simulation scheme

for inference in Bayesian networks. International Journal of Approximate Reasoning,

14(1):55–80, 1996.

[57] N. Bouguila. Clustering of count data using generalized Dirichlet multinomial distribu-

tions. IEEE Transactions on Knowledge and Data Engineering, 20(4):462–474, 2008.

[58] N. Bouguila. Count data modeling and classification using finite mixtures of distribu-

tions. IEEE Transactions on Neural Networks, 22(2):186–198, 2011.

[59] N. Bouguila and W. ElGuebaly. Discrete data clustering using finite mixture models.

Pattern Recognition, 42(1):33–42, 2009.

[60] N. Bouguila and D. Ziou. High-dimensional unsupervised selection and estimation of

a finite generalized Dirichlet mixture model based on minimum message length. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(10):1716–1731, 2007.

[61] N. Bouguila and D. Ziou. A countably infinite mixture model for clustering and feature

selection. Knowledge and Information Systems, 33(2):351–370, 2012.

[62] N. Bouguila, D. Ziou, and J. Vaillancourt. Unsupervised learning of a finite mixture

model based on the Dirichlet distribution and its application. IEEE Transactions on

Image Processing, 13(11):1533–1543, 2004.

[63] S. Boutemedjet, D. Ziou, and N. Bouguila. Model-based subspace clustering of non-

Gaussian data. Neurocomputing, 73(10-12):1730–1739, 2010.

[64] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[65] P. Brennan and A. Silman. Statistical methods for assessing observer variability in

clinical measures. British Medical Journal, 304(6840):1491–1494, 1992.

282 BIBLIOGRAPHY

[66] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing associ-

ation rules to correlations. In J. Peckham, editor, Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD 1997), pages 265–276.

ACM Press, 1997.

[67] K. M. Brown, T. A. Gillette, and G. A. Ascoli. Quantifying neuronal size: Summing up

trees and splitting the branch difference. Seminars in Cell & Developmental Biology,

19:485–493, 2008.

[68] W. Buntine. A guide to the literature on learning probabilistic networks from data.

IEEE Transactions on Knowledge and Data Engineering, 8(2):195–210, 1996.

[69] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2(2):121–167, 1998.

[70] T. Byrt, J. Bishop, and J. Carlin. Bias, prevalence and kappa. Journal of Clinical

Epidemiology, 46(5):423–429, 1993.

[71] S. Calderara, A. Prati, and R. Cucchiara. Mixtures of von Mises distributions for

people trajectory shape analysis. IEEE Transactions on Circuits and Systems for Video

Technology, 21(4):457–471, 2011.

[72] M. Caliari, S. De Marchi, and M. Vianello. Hyperinterpolation in the cube. Computers

& Mathematics with Applications, 55(11):2490–2497, 2008.

[73] M. Caliari, S. De Marchi, A. Sommariva, and M. Vianello. Padua2DM: Fast interpola-

tion and cubature at the Padua points in Matlab/Octave. Numerical Algorithms, 56:

45–60, 2011.

[74] R. C. Cannon, D. A. Turner, G. K. Pyapali, and H. V. Wheal. An on-line archive of

reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84:49–54, 1998.

[75] A. Cano, M. Gómez-Olmedo, and S. Moral. Approximate inference in Bayesian net-

works using binary probability trees. International Journal of Approximate Reasoning,

52(1):49–62, 2011.

[76] J. Carletta. Assessing agreement on classification tasks: The kappa statistic. Compu-

tational Linguistics, 22(2):249–254, 1996.

[77] A. M. Carvalho, T. Roos, A. L. Oliveira, and P. Myllymäki. Discriminative learning

of Bayesian networks via factorized conditional log-likelihood. Journal of Machine

Learning Research, 12:2181–2210, 2011.

[78] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines, 2011.

[79] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. The MIT Press,

2006.

BIBLIOGRAPHY 283

[80] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and results. In

Advances in Knowledge Discovery and Data Mining, pages 138–180. The AAAI Press,

1996.

[81] B. Chen, Q. Liao, and Z. Tang. A clustering based Bayesian network classifier. In Pro-

ceedings of the IEEE Fourth International Conference on Fuzzy Systems and Knowledge

Discovery, pages 444–448. IEEE Computer Society, 2007.

[82] J.-Y. Chen. A simulation study investigating the impact of dendritic morphology and

synaptic topology on neuronal firing patterns. Neural Computation, 22(4):1086–1111,

2009.

[83] R. Chen, K. Sivakumar, and H. Kargupta. Collective mining of Bayesian networks from

distributed heterogeneous data. Knowledge and Information Systems, 6:164–187, 2004.

[84] J. Cheng and R. Greiner. Learning Bayesian belief network classifiers: Algorithms and

system. In E. Stroulia and S. Matwin, editors, Proceedings of the Fourteenth Biennial

Conference of the Canadian Society for Computational Studies of Intelligence, volume

2056 of Lecture Notes in Computer Science, pages 141–151. Springer, 2001.

[85] D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J.

Lenz, editors, Learning from Data, volume 112 of Lecture Notes in Statistics, pages

121–130. Springer, 1996.

[86] D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian

networks is NP-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

[87] S.-T. Chiu. A comparative review of bandwidth selection for kernel density estimation.

Statistica Sinica, 6:129–146, 1996.

[88] C. Chow and C. Liu. Approximating discrete probability distributions with dependence

trees. IEEE Transactions on Information Theory, 14:462–467, 1968.

[89] T. G. Chowdhury, J. C. Jimenez, J. M. Bomar, A. Cruz-Martin, J. P. Cantle, and

C. Portera-Cailliau. Fate of Cajal–Retzius neurons in the postnatal mouse neocortex.

Frontiers in Neuroanatomy, 4(10):1–8, 2010.

[90] K. W. Church and W. A. Gale. Poisson mixtures. Natural Language Engineering, 1(2):

163–190, 1995.

[91] D. V. Cicchetti and A. R. Feinstein. High agreement but low kappa: II. Resolving the

paradoxes. Journal of Clinical Epidemiology, 43(6):551–558, 1990.

[92] H. T. Cline. Dendritic arbor development and synaptogenesis. Current Opinion in

Neurobiology, 11(1):118–126, 2001.

[93] B. Cobb, P. P. Shenoy, and R. Rumı́. Approximating probability density functions with

mixtures of truncated exponentials. Statistics and Computing, 16:193–308, 2006.

284 BIBLIOGRAPHY

[94] J. Cohen. A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1):37–46, 1960.

[95] W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. J. Russell, edi-

tors, Proceedings of the Twelfth International Conference on Machine Learning (ICML

1995), pages 115–123. Morgan Kaufmann, 1995.

[96] E. Côme, L. Oukhellou, T. Denœux, and P. Aknin. Learning from partially supervised

data using mixture models and belief functions. Pattern Recognition, 42:334–348, 2009.

[97] G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9:309–347, 1992.

[98] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian

belief networks. Artificial Intelligence, 42(2-3):393–405, 1990.

[99] T. Cour, B. Sapp, and B. Taskar. Learning from partial labels. Journal of Machine

Learning Research, 12:1225–1261, 2011.

[100] A. Crampton and A. B. Forbes. Spline approximation using knot density functions. In

A. Iske and J. Levesley, editors, Algorithms for Approximation, pages 249–258. Springer,

2007.

[101] G. Csárdi and T. Nepusz. The igraph software package for complex network research.

InterJournal, Vol. Complex Systems, 1695:1–9, 2006.

[102] H. Cuntz. The dendritic density field of a cortical pyramidal cell. Frontiers in Neu-

roanatomy, 6(2):1–6, 2012.

[103] H. Cuntz, A. Borst, and I. Segev. Optimization principles of dendritic structure. The-

oretical Biology and Medical Modelling, 4(21):1–8, 2007.

[104] H. Cuntz, F. Forstner, A. Borst, and M. Häusser. One rule to grow them all: A

general theory of neuronal branching and its practical application. PLoS Computational

Biology, 6(8):e1000877, 2010.

[105] H. Cuntz, A. Mathy, and M. Häusser. A scaling law derived from optimal dendritic

wiring. Proceedings of the National Academy of Sciences of the United States of Amer-

ica, 109(27):11014–11018, 2012.

[106] J. E. da Silva, J. Marques de Sá, and J. Jossinet. Classification of breast tissue by

electrical impedance spectroscopy. Medical and Biological Engineering and Computing,

38(1):26–30, 2000.

[107] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief net-

works is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

BIBLIOGRAPHY 285

[108] R. Daly, Q. Shen, and S. Aitken. Learning Bayesian networks: Approaches and issues.

The Knowledge Engineering Review, 26(2):99–157, 2011.

[109] P. Damien and S. Walker. A full Bayesian analysis of circular data using the von Mises

distribution. Canadian Journal of Statistics, 27(2):291–298, 1999.

[110] A. Darwiche. A differential approach to inference in Bayesian networks. Journal of the

ACM, 50(3):280–305, 2003.

[111] B. V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.

IEEE Computer Society Press, 1991.

[112] D. Dash and G. Cooper. Model averaging for prediction with discrete Bayesian net-

works. Journal of Machine Learning Research, 5:1177–1203, 2004.

[113] P. Dayan and L. F. Abbott. Theoretical Neuroscience. The MIT Press, 2001.

[114] C. de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

[115] L. M. de Campos and J. F. Huete. Approximating causal orderings for Bayesian net-

works using genetic algorithms and simulated annealing. In Proceedings of the Eight

Conference on Information Processing and Management of Uncertainty in Knowledge-

Based Systems, pages 333–340, 2000.

[116] J. G. De Gooijer and D. Zerom. On conditional density estimation. Statistica Neer-

landica, 57(2):159–176, 2003.

[117] J. DeFelipe. El nacimiento de la neurociencia moderna. Trébede, 63, 2002.

[118] J. DeFelipe. Cortical interneurons: From Cajal to 2001. Progress in Brain Research,

136:215–238, 2002.

[119] J. DeFelipe. The neuroanatomist’s dream, the problems and solutions, and the ultimate

aim. Frontiers in Neuroscience, 2:10–12, 2008.

[120] J. DeFelipe. From the connectome to the synaptome: An epic love story. Science, 330

(6008):1198–1201, 2010.

[121] J. DeFelipe and I. Fariñas. The pyramidal neuron of the cerebral cortex: Morphological

and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39:563–

607, 1992.

[122] J. DeFelipe, H. Markram, and K. Rockland. The neocortical column. Frontiers in

Neuroanatomy, 6(22):1–2, 2012.

[123] J. DeFelipe, P. L. López-Cruz, R. Benavides-Piccione, C. Bielza, P. Larrañaga, S. An-

derson, A. Burkhalter, B. Cauli, A. Fairén, D. Feldmeyer, G. Fishell, D. Fitzpatrick,

T. F. Freund, G. González-Burgos, S. Hestrin, S. Hill, P. R. Hof, J. Huang, E. G.

286 BIBLIOGRAPHY

Jones, Y. Kawaguchi, Z. Kisvárday, Y. Kubota, D. A. Lewis, O. Maŕın, H. Markram,

C. J. McBain, H. S. Meyer, H. Monyer, S. B. Nelson, K. Rockland, J. Rossier, J. L. R.

Rubenstein, B. Rudy, M. Scanziani, G. M. Shepherd, C. C. Sherwood, J. F. Staiger,

G. Tamás, A. Thomson, Y. Weng, R. Yuste, and G. A. Ascoli. New insights into the

classification and nomenclature of cortical GABAergic interneurons. Nature Reviews

Neuroscience, 14(3):202–216, 2013.

[124] G. L. deHaas–Lorentz. Die Brownsche Bewegung und einige verwandte Erscheinungen.

Friedr. Vieweg und Sohn, 1913.

[125] M. J. del Jesus, J. A. Gámez, P. González, and J. M. Puerta. On the discovery of

association rules by means of evolutionary algorithms. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 1(5):397–415, 2011.

[126] J. del Valle, S. Bayod, A. Camins, C. Beas-Zárate, D. A. Velázquez-Zamora, I. González-

Burgos, and M. Pallàs. Dendritic spine abnormalities in hippocampal CA1 pyramidal

neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer’s disease.

Journal of Alzheimer’s Disease, 32(1):233–240, 2012.

[127] A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping.

Annals of Mathematical Statistics, 38:325–339, 1967.

[128] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), 39:1–38, 1977.

[129] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.

[130] D. G. T. Denison, B. K. Mallick, and A. F. M. Smith. Automatic Bayesian curve

fitting. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60

(2):333–350, 1998.

[131] T. Denœux. A k-nearest neighbor classification rule based on Dempster-Shafer theory.

IEEE Transactions on Systems, Man and Cybernetics, 25(5):804–813, 1995.

[132] T. Denœux and L. M. Zouhal. Handling possibilistic labels in pattern classification

using evidential reasoning. Fuzzy Sets and Systems, 122:409–424, 2001.

[133] C. Dethlefsen and S. Højsgaard. A common platform for graphical models in R: The

gRbase package. Journal of Statistical Software, 14(17):1–12, 2005.

[134] J. M. Devaud, B. Quenet, J. Gascuel, and C. Masson. Statistical analysis and parsimo-

nious modelling of dendrograms of in vitro neurones. Bulletin of Mathematical Biology,

62:657–674, 2000.

BIBLIOGRAPHY 287

[135] D. Devlaminck, W. Waegeman, B. Bauwens, B. Wyns, P. Santens, and G. Otte. From

circular ordinal regression to multilabel classification. In Proceedings of the 2010 Work-

shop on Preference Learning, European Conference on Machine Learning, 2010.

[136] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance

problem with axis-parallel rectangles. Artificial Intelligence, 89:31–71, 1997.

[137] F. J. Dı́ez. Local conditioning in Bayesian networks. Artificial Intelligence, 87(1-2):

1–20, 1996.

[138] I. DiMatteo, C. R. Genovese, and R. E. Kass. Bayesian curve-fitting with free-knot

splines. Biometrika, 88(4):1055–1071, 2001.

[139] B. Ding, R. Gentleman, and V. Carey. bioDist: Different distance measures, 2010. R

package version 1.18.0.

[140] M. Ding and D. Glanzman. The Dynamic Brain: An Exploration of Neuronal Variabil-

ity and its Functional Significance. Oxford University Press, 2011.

[141] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing systems on the World-

Wide Web. Communications of the ACM, 54(4):86–96, 2011.

[142] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under

zero–one loss. Machine Learning, 29:103–130, 1997.

[143] D. E. Donohue and G. A. Ascoli. Models of neuronal outgrowth. In S. Koslow and

S. Subramaniam, editors, Databasing the Brain: From Data to Knowledge, pages 303–

326. Wiley, New York, 2005.

[144] D. E. Donohue and G. A. Ascoli. Local diameter fully constrains dendritic size in basal

but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience,

19(2):223–238, 2005.

[145] D. E. Donohue and G. A. Ascoli. A comparative computer simulation of dendritic

morphology. PLoS Computational Biology, 4(6):e1000089, 2008.

[146] D. E. Donohue and G. A. Ascoli. Automated reconstruction of neuronal morphology:

An overview. Brain Research Reviews, 67:94–102, 2011.

[147] G. Dougherty. Pattern Recognition and Classification: An Introduction. Springer, 2012.

[148] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization

of continuous features. In A. Prieditis and S. J. Russell, editors, Proceedings of the

Twelfth International Conference on Machine Learning (ICML 1995), pages 194–202.

Morgan Kaufmann, 1995.

[149] T. D. Downs. Spherical regression. Biometrika, 90(3):655–668, 2003.

288 BIBLIOGRAPHY

[150] T. D. Downs and K. V. Mardia. Circular regression. Biometrika, 89(3):683–697, 2002.

[151] E. Driver and D. Morrell. Implementation of continuous Bayesian networks using sums

of weighted Gaussians. In P. Besnard and S. Hanks, editors, Proceedings of the Eleventh

Annual Conference on Uncertainty in Artificial Intelligence (UAI 1995), pages 134–140.

Morgan Kaufmann, 1995.

[152] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley &

Sons, 1973.

[153] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,

second edition, 2001.

[154] T. Duong. ks: Kernel smoothing, 2012. URL http://CRAN.R-project.org/package=ks.

R package version 1.8.11.

[155] K. Eben. Classification into two von Mises distributions with unknown mean directions.

Aplikace Matematiky, 28(3):230–237, 1983.

[156] B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics,

7(1):1–26, 1979.

[157] B. Efron and R. Tibshirani. Bootstrap methods for standard errors, confidence intervals,

and other measures of statistical accuracy. Statistical Science, 1(1):54–75, 1986.

[158] K. El Emam. Benchmarking kappa: Interrater agreement in software process assess-

ments. Empirical Software Engineering, 4(2):113–133, 1999.

[159] S. El Khattabi and F. Streit. Identification analysis in directional statistics. Computa-

tional Statistics & Data Analysis, 23:45–63, 1996.

[160] C. Elkan. Clustering documents with an exponential-family approximation of the

Dirichlet compound multinomial distribution. In W. W. Cohen and A. Moore, ed-

itors, Proceedings of the 23rd International Conference on Machine Learning, pages

289–296. ACM, 2006.

[161] Z. Elouedi, K. Mellouli, and P. Smets. Belief decision trees: Theoretical foundations.

International Journal of Approximate Reasoning, 28:91–124, 2001.

[162] G. Elston and M. Rosa. The occipito-parietal pathway of the macaque monkey: Com-

parison of pyramidal cell morphology in layer III of functionally related cortical visual

areas. Cerebral Cortex, 7(5):432–452, 1997.

[163] G. N. Elston, R. Benavides-Piccione, A. Elston, J. DeFelipe, and P. R. Manger. Spe-

cialization in pyramidal cell structure in the sensory-motor cortex of the vervet monkey

(Cercopethicus pygerythrus). Neuroscience, 134(3):1057–1068, 2005.

http://CRAN.R-project.org/package=ks

BIBLIOGRAPHY 289

[164] K. Etminani, M. Naghibzadeh, and J. M. Peña. DemocraticOP: A democratic way

of aggregating Bayesian network parameters. International Journal of Approximate

Reasoning, 54(5):602–614, 2013.

[165] B. S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Wiley, 5th edition,

2011.

[166] I. Faux and M. Pratt. Computational Geometry for Design and Manufacture. Wiley,

1979.

[167] M. P. Fay and M. A. Proschan. Wilcoxon-Mann-Whitney or t-test? On assumptions

for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys,

4:1–39, 2010.

[168] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge

discovery in databases. AI Magazine, 17(3):37–54, 1996.

[169] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discov-

ery: An overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,

editors, Advances in Knowledge Discovery and Data Mining. AAAI Press / The MIT

Press, 1996.

[170] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued at-

tributes for classification learning. In R. Bajcsy, editor, Proceedings of the 13th Interna-

tional Joint Conference on Artificial Intelligence, pages 1022–1027. Morgan Kaufmann,

1993.

[171] A. R. Feinstein and D. V. Cicchetti. High agreement but low kappa: I. The problems

of two paradoxes. Journal of Clinical Epidemiology, 43(6):543–549, 1990.

[172] M. Feldman. Morphology of the neocortical pyramidal neuron. In A. Peters and

E. Jones, editors, Cerebral Cortex. Vol. 1. Cellular Components of the Cerebral Cortex,

pages 201–253. Plenum Press, 1984.

[173] D. Feldmeyer, V. Egger, J. Lubke, and B. Sakmann. Reliable synaptic connections

between pairs of excitatory layer 4 neurones within a single barrel of developing rat

somatosensory cortex. Journal of Physiology, 521:169–190, 1999.

[174] J. Feng. Computational Neuroscience: A Comprehensive Approach. Chapman & Hall,

2004.

[175] A. Fernández, M. Morales, and A. Salmerón. Tree augmented naive Bayes for re-

gression using mixtures of truncated exponentials: Application to higher education

management. In Advances in Intelligent Data Analysis VII, Proceedings of the 7th

International Symposium on Intelligent Data Analysis (IDA’07), LNCS 4723, pages

59–69, 2007.

290 BIBLIOGRAPHY

[176] A. Fernández, J. D. Nielsen, and A. Salmerón. Learning Bayesian networks for regres-

sion from incomplete databases. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 18(1):69–86, 2010.

[177] A. Fernández, J. A. Gámez, R. Rumı́, and A. Salmerón. Data clustering using hidden

variables in hybrid Bayesian networks. In Proceedings of the 4th International Confer-

ence of the European Research Consortium for Informatics and Mathematics - Working

Group on Computing & Statistics (ERCIM2011), 2011, 2011.

[178] A. Figueiredo. Discriminant analysis for the von Mises-Fisher distribution. Communi-

cations in Statistics–Simulation and Computation, 38(9):1991–2003, 2009.

[179] A. Figueiredo and P. Gomes. Discriminant analysis based on the Watson distribution

defined on the hypersphere. Statistics: A Journal of Theoretical and Applied Statistics,

40(5):435–445, 2006.

[180] N. I. Fisher. Statistical Analysis of Spherical Data. Cambridge University Press, 1987.

[181] N. I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, 1993.

[182] N. I. Fisher and A. J. Lee. Regression models for an angular response. Biometrics, 48:

665–677, 1992.

[183] R. A. Fisher. Dispersion on a sphere. Proceedings of the Royal Society of London.

Series A (Mathematical and Physical Sciences), 217(1130):295–305, 1953.

[184] P. A. Flach and N. Lachiche. Confirmation-guided discovery of first-order rules with

tertius. Machine Learning, 42(1-2):61–95, 2001.

[185] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological

Bulletin, 76(5):378–382, 1971.

[186] J. L. Fleiss, J. Cohen, and B. S. Everitt. Large sample standard errors of kappa and

weighted kappa. Psychological Bulletin, 72(5):323–327, 1969.

[187] J. L. Fleiss, B. Levin, and M. C. Paik. Statistical Methods for Rates and Proportions.

Wiley, 3rd edition, 2003.

[188] I. Flesch, A. Fernández, and A. Salmerón. Incremental supervised classification for

the MTE distribution: A preliminary study. In I. Rojas and H. Pomares, editors,

Proceedings of the Second Simposio de Inteligencia Computacional (SICO 2007), pages

217–224. Thomson, 2007.

[189] M. J. Flores, J. A. Gámez, A. M. Mart́ınez, and J. M. Puerta. GAODE and HAODE:

Two proposals based on AODE to deal with continuous variables. In A. P. Dany-

luk, L. Bottou, and M. L. Littman, editors, Proceedings of the Twenty-Sixth Annual

International Conference on Machine Learning (ICML 2009), volume 382 of ACM In-

ternational Conference Proceeding Series, pages 313–320. ACM, 2009.

BIBLIOGRAPHY 291

[190] M. J. Flores, J. A. Gámez, A. M. Mart́ınez, and J. M. Puerta. Handling numeric

attributes when comparing Bayesian network classifiers: Does the discretization method

matter? Applied Intelligence, 34(3):372–385, 2011.

[191] M. J. Flores, J. A. Gámez, A. M. Mart́ınez, and A. Salmerón. Mixture of truncated

exponentials in supervised classification: Case study for the naive Bayes and aver-

aged one-dependence estimators classifiers. In S. Ventura, A. Abraham, K. J. Cios,

C. Romero, F. Marcelloni, J. M. Beńıtez, and E. L. G. Galindo, editors, Proceedings of

the Eleventh International Conference on Intelligent Systems Design and Applications

(ISDA 2011), pages 593–598. IEEE Computer Society, 2011.

[192] M. J. Flores, A. E. Nicholson, A. Brunskill, K. B. Korb, and S. Mascaro. Incorporating

expert knowledge when learning Bayesian network structure: A medical case study.

Artificial Intelligence in Medicine, 53:181–204, 2011.

[193] G. M. Foody. On the compensation for chance agreement in image classification accu-

racy assessment. Photogrammetric Engineering and Remote Sensing, 58(10):1459–1460,

1992.

[194] E. Frank, L. Trigg, G. Holmes, and I. H. Witten. Technical note: Naive Bayes for

regression. Machine Learning, 41(1):5–25, 2000.

[195] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the

analysis of variance. Journal of the American Statistical Association, 32:675–701, 1937.

[196] N. Friedman. Learning belief networks in the presence of missing values and hidden

variables. In D. H. Fisher, editor, Proceedings of the Fourteenth International Confer-

ence on Machine Learning (ICML 1997), pages 125–133. Morgan Kaufmann, 1997.

[197] N. Friedman and M. Goldszmidt. Discretizing continuous attributes while learning

Bayesian networks. In L. Saitta, editor, Proceedings of the Thirteenth International

Conference on Machine Learning (ICML 1996), pages 157–165. Morgan Kaufmann,

1996.

[198] N. Friedman and D. Koller. Being Bayesian about network structure: A Bayesian

approach to structure discovery in Bayesian networks. Machine Learning, 50:95–125,

2003.

[199] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine

Learning, 29:131–163, 1997.

[200] N. Friedman, M. Goldszmith, and A. Wyner. Data analysis with Bayesian networks:

A bootstrap approach. In K. B. Laskey and H. Prade, editors, Proceedings of the

Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI 1999), pages 196–

205. Morgan Kaufmann, 1999.

292 BIBLIOGRAPHY

[201] M. J. Fryer. A review of some non-parametric methods of density estimation. IMA

Journal of Applied Mathematics, 20(3):335–354, 1977.

[202] G. Fu, F. Y. Shih, and H. Wang. A kernel-based parametric method for conditional

density estimation. Pattern Recognition, 44:284–294, 2011.

[203] L. D. Fu. A Comparison of State-of-the-Art Algorithms for Learning Bayesian Network

Structure From Continuous Data. Master’s thesis, Vanderbilt University, Nashville,

Tennessee, 2005.

[204] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):

3–54, 1999.

[205] J. A. Gámez, R. Rumı́, and A. Salmerón. Unsupervised naive Bayes for data clustering

with mixtures of truncated exponentials. In M. Studený and J. Vomlel, editors, Proceed-

ings of the Third European Workshop on Probabilistic Graphical Models (PGM2006),

pages 123–130, 2006.

[206] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern Analysis

and Applications, 13(1):113–129, 2010.

[207] S. Garćıa and F. Herrera. An extension on “Statistical comparisons of classifiers over

multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research,

9:2677–2694, 2008.

[208] S. Garćıa, J. Luengo, J. A. Sáez, V. López, and F. Herrera. A survey of discretization

techniques: Taxonomy and empirical analysis in supervised learning. IEEE Transac-

tions on Knowledge and Data Engineering, 25(4):734–750, 2013.

[209] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan. Statistical methods for eliciting

probability distributions. Journal of the American Statistical Association, 100(470):

680–701, 2005.

[210] M. Gasca and T. Sauer. Polynomial interpolation in several variables. Advances in

Computational Mathematics, 12(4):377–410, 2000.

[211] R. Gatto and S. R. Jammalamadaka. The generalized von Mises distribution. Statistical

Methodology, 4(3):341–353, 2007.

[212] D. Geiger and D. Heckerman. Learning Gaussian networks. In R. López de Mántaras

and D. Poole, editors, Proceedings of the Tenth Annual Conference on Uncertainty in

Artificial Intelligence (UAI 1994), pages 235–243. Morgan Kaufmann, 1994.

[213] D. Geiger and D. Heckerman. Knowledge representation and inference in similarity

networks and Bayesian multinets. Artificial Intelligence, 82:45–74, 1996.

[214] C. Genest and J. V. Zideck. Combining probability distributions: A critique and an

annotated bibliography. Statistical Science, 1(1):114–135, 1986.

BIBLIOGRAPHY 293

[215] R. Gentleman, E. Whalen, W. Huber, and S. Falcon. graph: A package to handle graph

data structures, 2012. R package version 1.36.1.

[216] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis,

L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry,

F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tier-

ney, J. Y. H. Yang, and J. Zhang. Bioconductor: Open software development for

computational biology and bioinformatics. Genome Biology, 5(10):R80, 2004.

[217] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling directed

acyclic graphs on multiprocessors. Journal of Parallel and Distributed Computing, 16

(4):276–291, 1992.

[218] J. D. Gibbons and S. Chakraborti. Nonparametric Statistical Inference. Chapman &

Hall, 5th edition, 2010.

[219] J. R. Glaser and E. M. Glaser. Neuron imaging with Neurolucida – A PC-based system

for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5):

307–317, 1990.

[220] A. Goh and R. Vidal. Unsupervised Riemannian clustering of probability density func-

tions. In W. Daelemans, B. Goethals, and K. Morik, editors, Proceedings of the Eu-

ropean Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases, pages 377–392. Springer, 2008.

[221] J. H. Goldberg, G. Tamas, D. Aronov, and R. Yuste. Calcium microdomains in aspiny

dendrites. Neuron, 40(4):807–821, 2003.

[222] I. J. Good. A causal calculus. Philosophy of Science, 11:305–318, 1961.

[223] K. A. Greene, J. M. Kniss, G. F. Luger, and C. R. Stern. Satisficing the masses:

Applying game theory to large-scale, democratic decision problems. In International

Conference on Computational Science and Engineering, pages 1156–1162. IEEE Com-

puter Society, 2009.

[224] K. A. Greene, J. M. Kniss, and G. F. Luger. Representing diversity in communities of

Bayesian decision-makers. In IEEE Second International Conference on Social Com-

puting, pages 315–322. IEEE Computer Society, 2010.

[225] R. Greiner, X. Su, B. Shen, and W. Zhou. Structural extension to logistic regression:

Discriminative parameter learning of belief net classifiers. Machine Learning, 59(3):

297–322, 2005.

[226] D. Grossman and P. Domingos. Learning Bayesian network classifiers by maximiz-

ing conditional likelihood. In C. E. Brodley, editor, Proceedings of the Twenty-First

International Conference on Machine Learning (ICML 2004), volume 69 of ACM In-

ternational Conference Proceeding Series. ACM, 2004.

294 BIBLIOGRAPHY

[227] L. Guerra, V. Robles, C. Bielza, and P. Larrañaga. A comparison of clustering quality

indices using outliers and noise. Intelligent Data Analysis, 16(4):703–715, 2012.

[228] H. Guo and W. Hsu. A survey of algorithms for real-time Bayesian network inference.

In H. Guo, E. Horvitz, W. H. Hsu, and E. J. Santos, editors, Proceedings of the AAAI

Workshop on Real-Time Decision Support and Diagnosis Systems, pages 1–12. AAAI

Press, 2002.

[229] H. Guo, B. B. Perry, J. A. Stilson, and W. H. Hsu. A genetic algorithm for tuning

variable orderings in Bayesian network structure learning. In R. Dechter and R. S.

Sutton, editors, Proceedings of the Eighteenth National Conference on Artificial Intelli-

gence and Fourteenth Conference on Innovative Applications of Artificial Intelligence,

pages 951–952. AAAI Press / The MIT Press, 2002.

[230] Y. Gurwicz and B. Lerner. Bayesian network classification using spline-approximated

kernel density estimation. Pattern Recognition Letters, 26(11):1761–1771, 2005.

[231] P. Guttorp and R. A. Lockhart. Finding the location of a signal: A Bayesian analysis.

Journal of the American Statistical Association, 83:322–330, 1988.

[232] H. A. Güvenir, B. Acar, G. Demiröz, and A. Çekin. A supervised machine learning

algorithm for arrhythmia analysis. In A. Murray and S. Swiryn, editors, Computers in

Cardiology 1997, pages 433–436, 1997.

[233] K. L. Gwet. Computing inter-rater reliability and its variance in the presence of high

agreement. British Journal of Mathematical and Statistical Psychology, 61(1):29–48,

2008.

[234] K. L. Gwet. Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring

the Extent of Agreement Among Raters. Advanced Analytics, 3rd edition, 2012.

[235] M. Halavi, K. Hamilton, R. Parekh, and G. A. Ascoli. Digital reconstructions of neu-

ronal morphology: Three decades of research trends. Frontiers in Neuroscience, 6(49):

1–11, 2012.

[236] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

WEKA data mining software: An update. SIGKDD Explorations, 11(1), 2009.

[237] M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD thesis, The

University of Waikato, 1999.

[238] D. J. Hamilton, G. M. Shepherd, M. E. Martone, and G. A. Ascoli. An ontological

approach to describing neurons and their relationships. Frontiers in Neuroinformatics,

6(15):1–11, 2012.

[239] P. Hamilton. A language to describe the growth of neurites. Biological Cybernetics, 68

(6):559–565, 1993.

BIBLIOGRAPHY 295

[240] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.

In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, Proceedings of the ACM

SIGMOD International Conference on Management of Data (ACM SIGMOD 2000),

pages 1–12. ACM, 2000.

[241] D. J. Hand and K. Yu. Idiot’s Bayes: Not so stupid after all? International Statistical

Review, 69(3):385–398, 2001.

[242] L. A. Harris. Bivariate Lagrange interpolation at the Chebyshev nodes. Proceedings of

the American Mathematical Society, 138(12):4447–4453, 2010.

[243] D. P. Hartmann. Considerations in the choice of interobserver reliability estimates.

Journal of Applied Behavior Analysis, 10(1):103–116, 1977.

[244] M. Häusser and B. Mel. Dendrites: Bug or features? Current Opinion in Neurobiology,

13(3):372–383, 2003.

[245] A. F. Hayes and K. Krippendorff. Answering the call for a standard reliability measure

for coding data. Communication Methods and Measures, 1(1):77–89, 2007.

[246] S. S. Haykin. Neural Networks and Learning Machines. Prentice Hall, 3rd edition,

2009.

[247] D. Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-

TR-95-06, Microsoft Corporation, 1996.

[248] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

[249] M. Helmstaeder, B. Sakmann, and D. Feldmeyer. The relation between dendritic ge-

ometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel

cortex. Cerebral Cortex, 19(4):938–950, 2009.

[250] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sam-

pling. In J. F. Lemmer and L. N. Kanal, editors, Proceedings of the Second Annual

Conference on Uncertainty in Artificial Intelligence (UAI 1986), pages 149–164. Else-

vier, 1986.

[251] H. G. Hentschel and A. van Ooyen. Models of axon guidance and bundling during de-

velopment. Proceedings of the Royal Society of London. Series B (Biological Sciences),

266:2231–2238, 1999.

[252] L. D. Hernández. Algoritmos de propagación I: Métodos exactos. In J. A. Gámez and

J. M. Puerta, editors, Sistemas Expertos Probabiĺısticos, pages 500–506. Universidad de

Castilla-La Mancha, 1998.

296 BIBLIOGRAPHY

[253] L. D. Hernández, S. Moral, and A. Salmerón. A Monte Carlo algorithm for probabilistic

propagation in belief networks based on importance sampling and stratified simulation

techniques. International Journal of Approximate Reasoning, 18(1-2):53–91, 1998.

[254] T. Heskes. Selecting weighting factors in logarithmic opinion pools. In Advances in

Neural Information Processing Systems, pages 266–272. The MIT Press, 1998.

[255] H. Heumann and G. Wittum. The tree-edit-distance, a measure for quantifying neuronal

morphology. Neuroinformatics, 7(3):179–190, 2009.

[256] R. F. Hevner, T. Neogi, C. Englund, R. A. M. Daza, and A. Fink. Cajal-Retzius cells

in the mouse: Transcription factors, neurotransmitters, and birthdays suggest a pallial

origin. Developmental Brain Research, 141(1):39–54, 2003.

[257] D. Hillman. Neuronal shape parameters and substructures as a basis of neuronal form.

In F. Schmitt, editor, The Neurosciences: Fourth Study Program, pages 477–498. The

MIT Press, 1979.

[258] P. R. Hof, I. I. Glezer, F. Condé, R. A. Flagg, M. B. Rubin, E. A. Nimchinsky, and D. M.

Vogt Weisenhorn. Cellular distribution of the calcium-binding proteins parvalbumin,

calbindin, and calretinin in the neocortex of mammals: Phylogenetic and developmental

patterns. Journal of Chemical Neuroanatomy, 16(2):77–116, 1999.

[259] R. Hofmann and V. Tresp. Discovering structure in continuous variables using Bayesian

networks. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in

Neural Information Processing Systems, pages 500–506. The MIT Press, 1995.

[260] S. Højsgaard. Graphical independence networks with the gRain package for R. Journal

of Statistical Software, 46(10):1–26, 2012.

[261] S. Højsgaard. gRim: Graphical interaction models, 2012. URL

http://CRAN.R-project.org/package=gRim. R package version 0.1-15.

[262] S. Højsgaard, D. Edwards, and S. Lauritzen. Graphical Models with R. Springer, 2012.

[263] K. Hornik and B. Grün. On conjugate families and Jeffreys priors for von Mises-Fisher

distributions. Journal of Statistical Planning and Inference, 143(5):992–999, 2013.

[264] G. Hripcsak and D. F. Heitjan. Measuring agreement in medical informatics reliability

studies. Journal of Biomedical Informatics, 35(2):99–110, 2002.

[265] C.-N. Hsu, H.-J. Huang, and T.-T. Wong. Why discretization works for naive Bayesian

classifiers. In P. Langley, editor, Proceedings of the Seventeenth International Confer-

ence on Machine Learning (ICML 2000), pages 399–406. Morgan Kaufmann, 2000.

[266] C.-N. Hsu, H.-J. Huang, and T.-T. Wong. Implications of the Dirichlet assumption for

discretization of continuous variables in naive Bayesian classifiers. Machine Learning,

53(3):235–263, 2003.

http://CRAN.R-project.org/package=gRim

BIBLIOGRAPHY 297

[267] W. H. Hsu, H. Guo, B. B. Perry, and J. A. Stilson. A permutation genetic algorithm

for variable ordering in learning Bayesian networks from data. In W. B. Langdon,

E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar,

G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. K. Burke,

and N. Jonoska, editors, Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2002), pages 383–390. Morgan Kaufmann, 2002.

[268] Z. Huang. Extensions to the k-means algorithm for clustering large data sets with

categorical values. Data Mining and Knowledge Discovery, 2(3):283–304, 1998.

[269] J. Hughlings. On classification and on methods of investigation. In Selected Writings

of John Hughlings Jackson. Hodder and Stoughton, 1931.

[270] A. Hussein and E. Santos. Exploring case-based Bayesian networks and Bayesian multi-

nets for classification. In A. Y. Tawfik and S. D. Goodwin, editors, Proceedings of

the Seventeenth Conference of the Canadian Society for Computational Studies of In-

telligence (CSCSI-2004), volume 3060 of Lecture Notes in Computer Science, pages

485–492. Springer, 2004.

[271] R. L. Iman and J. M. Davenport. Approximations of the critical region of the Friedman

statistic. Communications in Statistics - Theory and Methods, 9(6):571–595, 1980.

[272] S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and functional

structures between genes by using Bayesian networks and nonparametric regression. In

Proceedings of the Seventh Pacific Symposium on Biocomputing, pages 175–186. World

Scientific Press, 2002.

[273] S. Imoto, S. Kim, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano.

Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling

of genetic network. In Proceedings of the First IEEE Bioinformatics Conference of the

Computer Society (CBS 2002), pages 219–227. IEEE Computer Society, 2002.

[274] T. S. Jaakola. Variational Methods for Inference and Estimation in Graphical Models.

PhD thesis, Department of Brain and Cognitive Sciences, Massachusetts Institute of

Technology, 1997.

[275] B. Jacobs, M. Schall, M. Prather, E. Kapler, L. Driscoll, S. Baca, J. Jacobs, K. Ford,

M. Wainwright, and M. Treml. Regional dendritic and spine variation in human cerebral

cortex: A quantitative Golgi study. Cerebral Cortex, 11(6):558–571, 2001.

[276] S. R. Jammalamadaka and A. SenGupta. Topics in Circular Statistics. World Scientific,

2001.

[277] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal proba-

bilistic networks by local computations. Computational Statistics Quarterly, 4:269–282,

1990.

298 BIBLIOGRAPHY

[278] F. V. Jensen, K. G. Olesen, and S. K. Andersen. An algebra of Bayesian belief universes

for knowledge-based systems. Networks, 20(5):637–659, 1990.

[279] G. H. John and P. Langley. Estimating continuous distributions in Bayesian classifiers.

In P. Besnard and S. Hanks, editors, Proceedings of the Eleventh Annual Conference on

Uncertainty in Artificial Intelligence (UAI 1995), pages 338–345. Morgan Kaufmann,

1995.

[280] R. A. Johnson and T. E. Wehrly. Some angular-linear distributions and related regres-

sion models. Journal of the American Statistical Association, 73(363):602–606, 1978.

[281] S. G. Johnson and B. Narasimhan. Cubature: Adaptive multivariate integration over

hypercubes, 2011. URL http://CRAN.R-project.org/package=cubature. R package ver-

sion 1.1-1.

[282] M. C. Jones and A. Pewsey. A family of symmetric distributions on the circle. Journal

of the American Statistical Association, 100(472):1422–1428, 2005.

[283] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth selection for

density estimation. Journal of the American Statistical Association, 91(433):401–407,

1996.

[284] J. Jossinet. Variability of impedivity in normal and pathological breast tissue. Medical

and Biological Engineering and Computing, 34(5):346–350, 1996.

[285] A. Juan and E. Vidal. On the use of Bernoulli mixture models for text classification.

Pattern Recognition, 35(12):2705–2710, 2002.

[286] S. Jung, K. H. Lee, and D. Lee. Enabling large-scale Bayesian network learning by

preserving intercluster directionality. IEICE Transactions on Information and Systems,

E90-D:1018–1027, 2007.

[287] M. W. Kadous. Temporal Classification: Extending the Classification Paradigm to

Multivariate Time Series. PhD thesis, School of Computer Science and Engineering,

University of New South Wales, 2002.

[288] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science. McGraw-

Hill, 4th edition, 2000.

[289] S. Kato and M. C. Jones. A family of distributions on the circle with links to, and

applications arising from, Möbius transformation. Journal of the American Statistical

Association, 105(489):249–262, 2010.

[290] S. Kato and M. C. Jones. An extended family of circular distributions related to

wrapped Cauchy distributions via Brownian motion. Bernoulli, 19(1):154–171, 2013.

[291] S. Kato, K. Shimizu, and G. Shieh. A circular-circular regression model. Statistica

Sinica, 18(2):633–645, 2008.

http://CRAN.R-project.org/package=cubature

BIBLIOGRAPHY 299

[292] W. E. Kaufmann and H. W. Moser. Dendritic anomalies in disorders associated with

mental retardation. Cerebral Cortex, 10(10):981–991, 2000.

[293] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to

Platt’s SMO algorithm for SVM classifier design. Neural Computation, 13(3):637–649,

2001.

[294] J. T. Kent. The Fisher-Bingham distribution on the sphere. Journal of the Royal

Statistical Society. Series B (Methodological), 44(1):71–80, 1982.

[295] J. H. Kim and J. Pearl. A computational model for causal and diagnostic reasoning in

inference systems. In A. Bundy, editor, Proceedings of the Eighth International Joint

Conference on Artificial Intelligence (IJCAI 1983), pages 190–193. William Kaufmann,

1983.

[296] C. Koch and I. Segev. The role of single neurons in information processing. Nature

Neuroscience, 3:1171–1177, 2000.

[297] C. Koch, T. Poggio, and V. Torres. Retinal ganglion cells: A functional interpretation

of dendritic morphology. Philosophical Transactions of the Royal Society of London.

Series B (Biological Sciences), 298(1090):227–263, 1982.

[298] R. A. Koene, B. Tijms, P. van Hees, F. Postma, A. de Ridder, G. J. A. Ramakers, J. van

Pelt, and A. van Ooyen. NETMORPH: A framework for the stochastic generation of

large scale neuronal networks with realistic neuron morphologies. Neuroinformatics, 7

(3):195–210, 2009.

[299] R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In

E. Simoudis, J. Han, and U. M. Fayyad, editors, Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining (KDD 1996), pages 202–207.

AAAI Press, 1996.

[300] D. Koller and N. Friedman. Probabilistic Graphical Models. Principles and Techniques.

The MIT Press, 2009.

[301] A. O. Komendantov and G. A. Ascoli. Dendritic excitability and neuronal morphology

as determinants of synaptic efficacy. Journal of Neurophysiology, 101(4):1847–1866,

2009.

[302] I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodratoff, editor, Proceedings of

the European Working Session on Learning, volume 482 of Lecture Notes in Computer

Science, pages 206–219. Springer, 1991.

[303] S. B. Kotsiantis. Supervised machine learning: A review of classification techniques.

Informatica, 31:249–268, 2007.

300 BIBLIOGRAPHY

[304] W. L. Kovach. Quantitative methods for the study of lycopod megaspore ultrastructure.

Rev Palaeobot Palynology, 57(3–4):233–246, 1989.

[305] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical

Statistics, 22(1):79–86, 1951.

[306] L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W. Duin. Limits on the majority

vote accuracy in classifier fusion. Pattern Analysis and Applications, 6:22–31, 2003.

[307] L. Lam and C. Y. Suen. Application of majority voting to pattern recognition: An

analysis of its behavior and performance. IEEE Transactions on Systems, Man and

Cybernetics – Part A: Systems and Humans, 27(5):553–568, 1997.

[308] J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical

data. Biometrics, 33(1):159–174, 1977.

[309] P. Langley and S. Sage. Induction of selective Bayesian classifiers. In R. López de

Mántaras and D. Poole, editors, Proceedings of the Tenth Conference on Uncertainty

in Artificial Intelligence (UAI 1994), pages 399–406. Morgan Kaufmann, 1994.

[310] P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In W. R.

Swartout, editor, Proceedings of the Tenth National Conference on Artificial Intelligence

(AAAI 1992), pages 223–228. AAAI Press / The MIT Press, 1992.

[311] H. Langseth and T. D. Nielsen. Classification using hierarchical näıve Bayes models.

Machine Learning, 63(2):135–159, 2006.

[312] H. Langseth, T. D. Nielsen, R. Rumı́, and A. Salmerón. Inference in hybrid Bayesian

networks. Reliability Engineering and System Safety, 94:1499–1509, 2009.

[313] H. Langseth, T. D. Nielsen, R. Rumı́, and A. Salmerón. Maximum likelihood learning

of conditional MTE distributions. In C. Sossai and G. Chemello, editors, Proceedings of

the Tenth European Conference on Symbolic and Quantitative Approaches to Reason-

ing with Uncertainty (ECSQARU 2012), volume 5590 of Lecture Notes on Computer

Science, pages 240–251. Springer, 2009.

[314] H. Langseth, T. D. Nielsen, R. Rumı́, and A. Salmerón. Parameter estimation and

model selection for mixtures of truncated exponentials. International Journal of Ap-

proximate Reasoning, 51:485–498, 2010.

[315] H. Langseth, T. D. Nielsen, R. Rumı́, and A. Salmerón. Mixtures of truncated basis

functions. International Journal of Approximate Reasoning, 53:212–227, 2012.

[316] H. Langseth, T. D. Nielsen, R. Rumı́, and A. Salmerón. Learning mixtures of truncated

basis functions from data. In A. Cano, M. Gómez-Olmedo, and T. D. Nielsen, editors,

Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM

2012), pages 163–170, 2012.

BIBLIOGRAPHY 301

[317] C. A. Lantz and E. Nebenzahl. Behavior and interpretation of the κ statistic: Resolution

of the two paradoxes. Journal of Clinical Epidemiology, 49(4):431–434, 1996.

[318] A. Larkman. Dendritic morphology of pyramidal neurones of the visual cortex of the

rat: I. Branching patterns. Journal of Comparative Neurology, 306(2):307–319, 1991.

[319] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi. Learning Bayesian

network structures by searching for the best ordering with genetic algorithms. IEEE

Transactions on System, Man and Cybernetics, Part A: Systems and Humans, 26(4):

487–493, 1996.

[320] S. D. Larson and M. E. Martone. Ontologies for neuroscience: What are they and what

are they good for? Frontiers in Neuroscience, 3(1):60–67, 2009.

[321] S. L. Lauritzen. Propagation of probabilities, means and variances in mixed graphical

association models. Journal of the American Statistical Association, 87:1098–1108,

1992.

[322] S. L. Lauritzen and F. V. Jensen. Stable local computation with conditional Gaussian

distributions. Statistics and Computing, 11(2):191–203, 2001.

[323] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on

graphical structures and their application to expert systems. Journal of the Royal

Statistical Society. Series B (Methodological), 50(2):157–224, 1988.

[324] S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables,

some of which are qualitative and some quantitative. The Annals of Statistics, 17(1):

31–57, 1989.

[325] A. Lee. Circular data. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4):

477–486, 2010.

[326] F. Leitenstorfer and G. Tutz. Knot selection by boosting techniques. Computational

Statistics & Data Analysis, 51(9):4605–4621, 2007.

[327] P. Leray and O. Francois. BNT structure learning package: Documentation and Ex-

periments. Technical Report FRE CNRS 2645, Laboratoire PSI - INSA Rouen, 2006.

[328] M. P. Lévy. L’addition des variables aléatoires définies sur une circonférence. Bulletin

de la Société Mathématique de France, 67:1–41, 1939.

[329] R. A. Lew and J. S. Lew. A general permutation test for pairwise agreement. Technical

report, IBM T. J. Watson Research Center, 1995.

[330] D. D. Lewis. Naive (Bayes) at forty: The independence assumption in information

retrieval. In C. Nedellec and C. Rouveirol, editors, Proceedings of the Tenth Euro-

pean Conference on Machine Learning (ECML 1998), volume 1398 of Lecture Notes in

Computer Science, pages 4–15. Springer, 1998.

302 BIBLIOGRAPHY

[331] G. H. Li and C. D. Qin. A model for neurite growth and neuronal morphogenesis.

Mathematical Biosciences, 132(1):97–110, 1996.

[332] W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple

class-association rules. In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of the

First IEEE International Conference on Data Mining (ICDM 2001), pages 369–376.

IEEE Computer Society, 2001.

[333] J. Lin. Divergence measures based on the Shannon entropy. IEEE Transactions on

Information Theory, 37(1):145–151, 1991.

[334] K. A. Lindsay, D. J. Maxwell, J. R. Rosenberg, and G. Tucker. A new approach to

reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205

(2):271–296, 2007.

[335] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In

R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the Fourth

International Conference on Knowledge Discovery and Data Mining (KDD 1998), pages

80–86. AAAI Press, 1998.

[336] B. Liu, Y. Ma, and C. K. Wong. Improving an association rule based classifier. In D. A.

Zighed, H. J. Komorowski, and J. M. Zytkow, editors, Proceedings of the 4th European

Conference on Principles of Data Mining and Knowledge Discovery, volume 1910 of

Lecture Notes in Computer Science, pages 504–509. Springer, 2000.

[337] P. L. López-Cruz, C. Bielza, and P. Larrañaga. The von Mises naive Bayes classifier

for angular data. In J. A. Lozano, J. A. Gámez, and J. A. Moreno, editors, Advances

in Artificial Intelligence, Proceedings of the 14th Conference of the Spanish Association

for Artificial Intelligence, volume 7023 of Lecture Notes in Computer Science, pages

145–154. Springer, 2011.

[338] P. L. López-Cruz, C. Bielza, P. Larrañaga, R. Benavides-Piccione, and J. DeFelipe.

Models and simulation of 3D neuronal dendritic trees using Bayesian networks. Neu-

roinformatics, 9(4):347–369, 2011.

[339] P. L. López-Cruz, C. Bielza, and P. Larrañaga. Learning mixtures of polynomials from

data using B-spline interpolation. In A. Cano, M. Gómez-Olmedo, and T. D. Nielsen,

editors, Proceedings of the 6th European Workshop on Probabilistic Graphical Models

(PGM 2012), pages 211–218, 2012.

[340] P. L. López-Cruz, C. Bielza, and P. Larrañaga. Directional naive Bayes classifiers.

Pattern Analysis and Applications, in press, 2013.

[341] P. L. López-Cruz, C. Bielza, and P. Larrañaga. Learning conditional linear Gaussian

classifiers with probabilistic class labels. In C. Bielza, A. Salmerón, and A. Alonso-

Betanzos, editors, Advances in Artificial Intelligence, Proceedings of the 15th Multi-

BIBLIOGRAPHY 303

Conference of the Spanish Association for Artificial Intelligence, volume 8109 of Lecture

Notes in Computer Science, pages 139–148. Springer, 2013.

[342] P. L. López-Cruz, P. Larrañaga, J. DeFelipe, and C. Bielza. Bayesian network modeling

of the consensus between experts: An application to neuron classification. International

Journal of Approximate Reasoning, in press, 2013.

[343] P. L. López-Cruz, T. D. Nielsen, C. Bielza, and P. Larrañaga. Learning mixtures

of polynomials of conditional densities from data. In C. Bielza, A. Salmerón, and

A. Alonso-Betanzos, editors, Advances in Artificial Intelligence, Proceedings of the 15th

MultiConference of the Spanish Association for Artificial Intelligence, volume 8109 of

Lecture Notes in Computer Science, pages 363–372. Springer, 2013.

[344] R. López de Mántaras and E. Armengol. Machine learning from examples: Inductive

and lazy methods. Data & Knowledge Engineering, 25(1-2):99–123, 1998.

[345] F. López-Muñoz, J. Boya, and C. Alamo. Neuron theory, the cornerstone of neuro-

science, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain

Research Bulletin, 70(4-6):391–405, 2006.

[346] A. Luczak. Spatial embedding of neuronal trees modeled by diffusive growth. Journal

of Neuroscience Methods, 157(1):132–141, 2006.

[347] J. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and

Probability, pages 281–297. California, USA, 1967.

[348] R. E. Madsen, D. Kauchak, and C. Elkan. Modeling word burstiness using the Dirichlet

distribution. In L. De Raedt and S. Wrobel, editors, Proceedings of the 22nd Interna-

tional Conference on Machine Learning (ICML 2005), pages 545–552. ACM, 2005.

[349] Z. F. Mainen and T. J. Sejnowski. Influence of dendritic structure on firing pattern in

model neocortical neurons. Nature, 382:363–366, 1996.

[350] R. Malach. Cortical columns as devices for maximizing neuronal diversity. Trends in

Neurosciences, 17(3):101–104, 1994.

[351] B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, 1982.

[352] K. V. Mardia. Statistics of directional data. Journal of the Royal Statistical Society.

Series B (Methodological), 37(3):349–393, 1975.

[353] K. V. Mardia. On some recent advancements in applied shape analysis and directional

statistics. In S. Barber, P. D. Baxter, and K. V. Mardia, editors, Systems Biology &

Statistical Bioinformatics, pages 9–17. Leeds University Press, 2006.

[354] K. V. Mardia. Bayesian analysis for bivariate von Mises distributions. Journal of

Applied Statistics, 37(3):515–528, 2010.

304 BIBLIOGRAPHY

[355] K. V. Mardia and P. E. Jupp. Directional Statistics. Wiley, 2000.

[356] K. V. Mardia, C. C. Taylor, and G. K. Subramaniam. Protein bioinformatics and

mixtures of bivariate von Mises distributions for angular data. Biometrics, 63(2):505–

512, 2007.

[357] M. Maŕın-Padilla. Cajal–Retzius cells and the development of the neocortex. Trends

in Neurosciences, 21(2):64–71, 1998.

[358] H. Markram. The blue brain project. Nature Reviews Neuroscience, 7(2):153–160, 2006.

[359] A. M. Mart́ınez, G. I. Webb, M. J. Flores, and J. A. Gámez. Non-disjoint discretiza-

tion for aggregating one-dependence estimator classifiers. In E. Corchado, V. Snásel,

A. Abraham, M. Wozniak, M. Graña, and S.-B. Cho, editors, Proceedings of the Sev-

enth International Conference on Hybrid Artificial Intelligent Systems, volume 7209 of

Lecture Notes in Computer Science, pages 151–162. Springer, 2012.

[360] M. Mart́ınez-Ballesteros, A. Troncoso, F. Mart́ınez-Álvarez, and J. C. Riquelme. Mining

quantitative association rules based on evolutionary computation and its application to

atmospheric pollution. Integrated Computer-Aided Engineering, 17(3):227–242, 2010.

[361] M. Mart́ınez-Ballesteros, F. Mart́ınez-Álvarez, A. Troncoso, and J. C. Riquelme. An

evolutionary algorithm to discover quantitative association rules in multidimensional

time series. Soft Computing, 15(10):2065–2084, 2011.

[362] A. R. Masegosa and S. Moral. An interactive approach for Bayesian network learning

using domain/expert knowledge. International Journal of Approximate Reasoning, 54

(8):1168–1181, 2013.

[363] I. Matzkevich and B. Abramson. The topological fusion of Bayes nets. In D. Dubois

and M. P. Wellman, editors, Proceedings of the Eight Conference on Uncertainty in

Artificial Intelligence, pages 191–198. Morgan Kaufmann, 1992.

[364] I. Matzkevich and B. Abramson. Deriving a minimal I-map of a belief network relative

to a target ordering of its nodes. In D. Heckerman and E. H. Mamdani, editors,

Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, pages

159–165. Morgan Kaufmann, 1993.

[365] P. Maynard-Reich II and U. Chajewska. Aggregating learned probabilistic beliefs.

In J. S. Breese and D. Koller, editors, Proceedings of the Seventeenth Conference on

Uncertainty in Artificial Intelligence, pages 354–361. Morgan Kaufmann, 2001.

[366] A. K. McAllister. Cellular and molecular mechanisms of dendrite growth. Cerebral

Cortex, 10(10):963–973, 2000.

[367] G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

BIBLIOGRAPHY 305

[368] M. Meilă and M. I. Jordan. Learning with mixtures of trees. Journal of Machine

Learning Research, 1:1–48, 2000.

[369] G. Meyer, A. M. Goffinet, and A. Fairén. What is a Cajal-Retzius cell? A reassessment

of a classical cell type based on recent observations in the developing neocortex. Cerebral

Cortex, 9(8):765–775, 1999.

[370] J. Miina and T. Pukkala. Application of ecological field theory in distance-dependent

growth modelling. Forest Ecology and Management, 161:101–107, 2002.

[371] G. W. Milligan and M. C. Cooper. An examination of procedures for determining the

number of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

[372] M. Minsky. Steps toward artificial intelligence. Proceedings of the Institute of Radio

Engineers, 49:8–30, 1961.

[373] S. Monti and G. F. Cooper. Learning Bayesian belief networks with neural network

estimators. In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural

Information Processing Systems, pages 578–584. The MIT Press, 1996.

[374] S. Monti and G. F. Cooper. A multivariate discretization method for learning Bayesian

networks from mixed data. In G. F. Cooper and S. Moral, editors, Proceedings of

the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI 1998), pages

404–413. Morgan Kaufmann, 1998.

[375] J. A. Mooney, P. J. Helms, and I. T. Jolliffe. Fitting mixtures of von Mises distributions:

A case study involving sudden infant death syndrome. Computational Statistics & Data

Analysis, 41(3-4):505–513, 2003.

[376] S. Moral, R. Rumı́, and A. Salmerón. Mixtures of truncated exponentials in hybrid

Bayesian networks. In S. Benferhat and P. Besnard, editors, Proceedings of the Sixth

European Conference on Symbolic and Quantitative Approaches to Reasoning with Un-

certainty (ECSQARU 2001), volume 2143 of Lecture Notes in Artificial Intelligence,

pages 145–167. Springer, 2001.

[377] M. Morales, C. Rodŕıguez, and A. Salmerón. Selective naive Bayes for regression based

on mixtures of truncated exponentials. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 15(6):697–716, 2007.

[378] J. E. Morris and P. J. Laycock. Discriminant analysis of directional data. Biometrika,

61(2):335–341, 1974.

[379] F. Mosteller and J. W. Tukey. Data analysis, including statistics. In G. Lindzey and

E. Aronson, editors, Handbook of Social Psychology, volume 2, pages 80–203. Addison-

Wesley, 2nd edition, 1968.

306 BIBLIOGRAPHY

[380] V. B. Mountcastle. Perceptual Neuroscience: The Cerebral Cortex. Harvard University

Press, 1998.

[381] K. P. Murphy. Inference and learning in hybrid Bayesian networks. Technical Report

UCB/CSD-98-990, Computer Science Division, University of California, 1998.

[382] K. P. Murphy. A variational approximation for Bayesian networks with discrete and

continuous latent variables. In K. B. Laskey and H. Prade, editors, Proceedings of

the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI 1999), pages

457–466. Morgan Kaufmann, 1999.

[383] K. P. Murphy. The Bayes net toolbox for Matlab. In E. J. Wegman, A. Braverman,

A. Goodman, and P. Smyth, editors, Proceedings of the Thirty-Third Symposium on

the Interface, pages 331–350. Interface Foundation of North America, 2001.

[384] S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary

survey. Data Mining and Knowledge Discovery, 2(4):345–389, 1998.

[385] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown. An introduction

to decision tree modeling. Journal of Chemometrics, 18(6):275–285, 2004.

[386] R. Nagarajan, M. Scutari, and S. Lèbre. Bayesian Networks in R: with Applications in

Systems Biology. Springer, 2013.

[387] K. A. Neuendorf. The Content Analysis Guidebook. Sage Publications, 2002.

[388] K. Nigam, A. Mccallum, S. Thrun, and T. Mitchell. Text classification from labeled

and unlabeled documents using EM. Machine Learning, 39(2):103–134, 2000.

[389] J. Novovic̆ová and A. Maĺık. Text document classification based on mixture models.

Kybernetika, 40(3):293–304, 2004.

[390] K. G. Olesen. Causal probabilistic networks with both discrete and continuous variables.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3):275–279, 1993.

[391] M. R. Osborne, B. Presnell, and B. A. Turlach. Knot selection for regression splines

via the lasso. In S. Weisberg, editor, Dimension Reduction, Computational Complexity,

and Information, volume 30 of Computing Science and Statistics, pages 44–49. Interface

Foundation of North America, 1998.

[392] W. Pan and X. Shen. Penalized model-based clustering with application to variable

selection. Journal of Machine Learning Research, 8:1145–1164, 2007.

[393] J. D. Park and A. Darwiche. A differential semantics for jointree algorithms. Artificial

Intelligence, 156(2):197–216, 2004.

BIBLIOGRAPHY 307

[394] M. J. Pazzani. Searching for dependencies in Bayesian classifiers. In D. Fisher and H.-J.

Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V. Proceedings

of the Fifth International Workshop on Artificial Intelligence and Statistics, pages 239–

248. Springer, 1995.

[395] J. M. Peña. On Unsupervised Learning of Bayesian Networks and Conditional Gaussian

Networks. PhD thesis, University of the Basque Country, Spain, 2001.

[396] J. M. Peña. Finding consensus Bayesian network structures. Journal of Artificial

Intelligence Research, 42:661–687, 2011.

[397] J. M. Peña, J. A. Lozano, and P. Larrañaga. An improved Bayesian structural EM

algorithm for learning Bayesian networks for clustering. Pattern Recognition Letters,

21(8):779–786, 2000.

[398] J. M. Peña, J. A. Lozano, P. Larrañaga, and I. Inza. Dimensionality reduction in

unsupervised learning of conditional Gaussian networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(6):590–603, 2001.

[399] J. M. Peña, J. A. Lozano, and P. Larrañaga. Learning recursive Bayesian multinets

for data clustering by means of constructive induction. Machine Learning, 47(1):63–89,

2002.

[400] J. M. Peña, J. A. Lozano, and P. Larrañaga. Unsupervised learning of Bayesian net-

works via estimation of distribution algorithms: An application to gene expression

data clustering. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 12(supp01):63–82, 2004.

[401] J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence,

29(3):241–288, 1986.

[402] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[403] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical

Magazine, 2:559–572, 1901.

[404] D. Peel and G. McLachlan. Robust mixture modeling using the t distribution. Statistics

and Computing, 10:339–348, 2000.

[405] D. Peel, W. J. Whiten, , and G. J. McLachlan. Fitting mixtures of Kent distributions

to aid in joint set identification. Journal of the American Statistical Association, 96

(453):56–63, 2001.

[406] D. M. Pennock and M. P. Wellman. Graphical representations of consensus belief. In

Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages

531–540. Morgan Kaufmann, 1999.

308 BIBLIOGRAPHY

[407] M. A. Peot. Geometric implications of the naive Bayes assumption. In E. Horvitz

and F. V. Jensen, editors, Proceedings of the Twelfth Conference on Uncertainty in

Artificial Intelligence (UAI 1996), pages 414–419. Morgan Kaufmann, 1996.

[408] A. Pérez, P. Larrañaga, and I. Inza. Supervised classification with conditional Gaussian

networks: Increasing the structure complexity from naive Bayes. International Journal

of Approximate Reasoning, 43:1–25, 2006.

[409] A. Pérez, P. Larrañaga, and I. Inza. Bayesian classifiers based on kernel density es-

timation: Flexible classifiers. International Journal of Approximate Reasoning, 50(2):

341–362, 2009.

[410] F. Pernkopf and J. Bilmes. Discriminative versus generative parameter and structure

learning of Bayesian network classifiers. In L. De Raedt and S. Wrobel, editors, Pro-

ceedings of the Twenty-Second International Conference on Machine learning (ICML

2005), pages 657–664. ACM, 2005.

[411] F. Perrin. Étude mathématique du mouvement Brownien de rotation. Annales Scien-

tifiques de l’École Normale Supérieure, 45:1–51, 1928.

[412] A. Peters and E. G. Jones. Cerebral Cortex. Cellular Components of the Cerebral

Cortex, volume 1. Plenum Press, 1984.

[413] Petilla Interneuron Nomenclature Group. Petilla terminology: Nomenclature of features

of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 9(7):

557–568, 2008.

[414] A. Pewsey. The wrapped stable family of distributions as a flexible model for circular

data. Computational Statistics & Data Analysis, 52(3):1516–1523, 2008.

[415] D. T. Pham and G. A. Ruz. Unsupervised training of Bayesian networks for data

clustering. Proceedings of the Royal Society. Series A: Mathematical, Physical and

Engineering Science, 465(2109):2927–2948, 2009.

[416] J. C. Platt. Fast training of support vector machines using sequential minimal op-

timization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel

Methods: Support Vector Learning, pages 185–205. The MIT Press, 1998.

[417] R. Popping. On agreement indices for nominal data. In W. E. Saris and I. N. Gallhofer,

editors, Sociometric Research: Volume 1, Data Collection and Scaling, pages 90–105.

St. Martin’s Press, 1988.

[418] O. Pourret, P. Näım, and B. Marcot. Bayesian Networks: A Practical Guide to Appli-

cations. Wiley, 2008.

[419] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Techniques. Springer-

Verlag, 2002.

BIBLIOGRAPHY 309

[420] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[421] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[422] R Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria, 2012. URL

http://www.R-project.org/.

[423] P. Rakic. Confusing cortical columns. Proceedings of the National Academy of Sciences

of the United States of America, 105(34):12099–12100, 2008.

[424] S. Ramón y Cajal. Estructura de los centros nerviosos de las aves. Revista Trimestral

de Histoloǵıa Normal y Patológica, 1:1–10, 1988.

[425] C. E. Rasmussen. The infinite Gaussian mixture model. In S. A. Solla, T. K. Leen, and

K.-R. Müller, editors, Advances in Neural Information Processing Systems, volume 12,

pages 554–560. The MIT Press, 1999.

[426] V. C. Raykar, S. Yu, L. H. Zhao, G. Hermosillo-Valadez, C. Florin, L. Bogoni, L. Moy,

and D. Blei. Learning from crowds. Journal of Machine Learning Research, 11:1297–

1322, 2010.

[427] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,

2008.

[428] L.-P. Rivest and T. Chang. Regression and correlation for 3 × 3 rotation matrices.

Canadian Journal of Statistics, 34(2):187–202, 2006.

[429] M. E. Robert and J. D. Sweeney. Computer model: Investigating the role of filopodia-

based steering in experimental neurite galvanotropism. Journal of Theoretical Biology,

188(3):277–288, 1997.

[430] A. Robles-Kelly and E. R. Hancock. Graph edit distance from spectral seriation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(3):365–378, 2005.

[431] K. S. Rockland. Five points on columns. Frontiers in Neuroanatomy, 4(22):1–10, 2010.

[432] V. Romero, R. Rumı́, and A. Salmerón. Learning hybrid Bayesian networks using

mixtures of truncated exponentials. International Journal of Approximate Reasoning,

42:54–68, 2006.

[433] S. T. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural

Computation, 11(2):305–345, 1999.

[434] G. Rozenberg and A. Salomaa. The Mathematical Theory of L-systems. Academic

Press, 1980.

http://www.R-project.org/

310 BIBLIOGRAPHY

[435] R. Rumı́, A. Salmerón, and S. Moral. Estimating mixtures of truncated exponentials

in hybrid Bayesian networks. Test, 15(2):397–421, 2006.

[436] S. G. Sadeghi, M. J. Chacron, M. C. Taylor, and K. E. Cullen. Neural variability,

detection thresholds, and information transmission in the vestibular system. Journal

of Neuroscience, 27(4):771–781, 2007.

[437] J. Sagrado and S. Moral. Qualitative combination of Bayesian networks. International

Journal of Intelligent Systems, 18:237–249, 2003.

[438] M. Sahami. Learning limited dependence Bayesian classifiers. In E. Simoudis, J. Han,

and U. M. Fayyad, editors, Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining (KDD 1996), pages 335–338. AAAI Press, 1996.

[439] A. V. Samsonovich and G. A. Ascoli. Statistical morphological analysis of hippocam-

pal principal neurons indicates cell-specific repulsion of dendrites from their own cell.

Journal of Neuroscience Research, 71(2):173–187, 2003.

[440] E. Santos and A. Hussein. Case-based Bayesian network classifiers. In V. Barr and

Z. Markov, editors, Proceedings of the Seventeenth International Florida Artificial In-

telligence Research Society Conference. AAAI Press, 2004.

[441] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data

by analytic functions. Part A: On the problem of smoothing of graduation. A first class

of analytic approximation formulae. Quarterly of Applied Mathematics, 4:45–99, 1946.

[442] E. L. Schwartz, editor. Computational Neuroscience. The MIT Press, 1993.

[443] G. E. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):

461–464, 1978.

[444] E. K. Scott and L. Luo. How do dendrites take their shape? Nature Neuroscience, 4

(4):359–365, 2001.

[445] W. A. Scott. Reliability of content analysis: The case of nominal scale coding. Public

Opinion Quarterly, 19(3):321–325, 1955.

[446] M. Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Sta-

tistical Software, 35(3):1–22, 2010.

[447] R. Segal and O. Etzioni. Learning decision lists using homogeneous rules. In B. Hayes-

Roth and R. E. Korf, editors, Proceedings of the Twelfth National Conference on Arti-

ficial Intelligence, volume 1, pages 619–625. AAAI Press / The MIT Press, 1994.

[448] T. J. Sejnowski, C. Koch, and P. S. Churchland. Computational neuroscience. Science,

241(4871):1299–1306, 1988.

BIBLIOGRAPHY 311

[449] A. SenGupta and S. Roy. A simple classification rule for directional data. In N. Balakr-

ishnan, H. N. Nagaraja, and N. Kannan, editors, Advances in Ranking and Selection,

Multiple Comparisons, and Reliability, Statistics for Industry and Technology, pages

81–90. Birkhäuser Boston, 2005.

[450] A. SenGupta and F. I. Ugwuowo. A classification method for directional data with

application to the human skull. Communications in Statistics – Theory and Methods,

40:457–466, 2011.

[451] R. D. Shachter. Intelligent probabilistic inference. In L. N. Kanal and J. F. Lem-

mer, editors, Proceedings of the First Annual Conference on Uncertainty in Artificial

Intelligence (UAI 1985), pages 371–382. Elsevier, 1985.

[452] R. D. Shachter. Evaluating influence diagrams. Operations Research, 34(6):871–882,

1986.

[453] R. D. Shachter. Probabilistic inference and influence diagrams. Operations Research,

36(4):589–604, 1988.

[454] R. D. Shachter and C. R. Kenley. Gaussian influence diagrams. Management Science,

35(5):527–550, 1989.

[455] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

[456] P. P. Shenoy. Two issues in using mixtures of polynomials for inference in hybrid

Bayesian networks. International Journal of Approximate Reasoning, 53(5):847–866,

2012.

[457] P. P. Shenoy and G. Shafer. Axioms for probability and belief functions propagation.

In R. D. Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer, editors, Proceedings

of the Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1988),

pages 169–198. North-Holland, 1990.

[458] P. P. Shenoy and J. C. West. Inference in hybrid Bayesian networks using mixtures of

polynomials. International Journal of Approximate Reasoning, 52(5):641–657, 2011.

[459] G. M. Shepherd, editor. The Synaptic Organization of the Brain. Oxford University

Press, 5th edition, 2004.

[460] C. C. Sherwood, C. D. Stimpson, C. Butti, C. J. Bonar, A. L. Newton, J. M. Allman,

and P. R. Hof. Neocortical neuron types in xenarthra and afrotheria: Implications for

brain evolution in mammals. Brain Structure and Function, 213(3):301–328, 2009.

[461] P. E. Shrout. Measurement reliability and agreement in psychiatry. Statistical Methods

in Medical Research, 7(3):301–317, 1998.

[462] S. Siegel and N. J. Castellan. Nonparametric Statistics for the Behavioral Sciences.

McGraw-Hill, 2nd edition, 1988.

312 BIBLIOGRAPHY

[463] J. Sim and C. C. Wright. The kappa statistic in reliability studies: Use, interpretation,

and sample size requirements. Physical Therapy, 85(3):257–268, 2005.

[464] P. Smets and R. Kennes. The transferable belief model. Artificial Intelligence, 66:

191–243, 1994.

[465] D. J. Spiegelhalter. Probabilistic reasoning in predictive expert systems. In L. N. Kanal

and J. F. Lemmer, editors, Proceedings of the First Annual Conference on Uncertainty

in Artificial Intelligence (UAI 1985), pages 47–68. Elsevier, 1985.

[466] P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction & Search. The MIT

Press, 2nd edition, 2000.

[467] R. L. Spitzer and J. L. Fleiss. A reanalysis of the reliability of psychiatric diagnosis.

British Journal of Psychiatry, 125(10):341–347, 1974.

[468] N. Spruston. Pyramidal neurons: Dendritic structure and synaptic integration. Nature

Reviews Neuroscience, 9(3):206–221, 2008.

[469] S. Sra. A short note on parameter approximation for von Mises-Fisher distributions:

And a fast implementation of Is(x). Computationl Statistics, 27(1):177–190, 2012.

[470] J. F. Staiger, I. Flagmeyer, D. Schubert, K. Zilles, R. Kötter, and H. J. Luhmann.

Functional diversity of layer IV spiny neurons in rat somatosensory cortex: Quantitative

morphology of electrophysiologically characterized and biocytin labeled cells. Cerebral

Cortex, 14(6):690–701, 2004.

[471] H. Steck and T. S. Jaakkola. Predictive discretization during model selection. In C. E.

Rasmussen, H. H. Bülthoff, B. Schölkopf, and M. A. Giese, editors, Proceedings of the

Twenty-Sixth Symposium of the German Association for Pattern Recognition, volume

3175 of Lecture Notes in Computer Science, pages 1–8. Springer, 2004.

[472] R. B. Stein, E. R. Gossen, and K. E. Jones. Neuronal variability: Noise or part of the

signal? Nature Reviews Neuroscience, 6:389–397, 2005.

[473] V. Steuber, E. De Schutter, and D. Jaeger. Passive models of neurons in the deep

cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58-60:563–568,

2004.

[474] C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong. Polynomial splines

and their tensor products in extended linear modeling. The Annals of Statistics, 25(4):

1371–1470, 1997.

[475] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of

the Royal Statistical Society. Series B (Methodological), pages 111–147, 1974.

[476] M. H. Stone. The generalized Weierstrass approximation theorem. Mathematics Mag-

azine, 21(5):237–254, 1948.

BIBLIOGRAPHY 313

[477] J. Su and H. Zhang. Full Bayesian network classifiers. In W. W. Cohen and A. Moore,

editors, Proceedings of the Twenty-Third International Conference on Machine Learn-

ing (ICML 2006), volume 148 of ACM International Conference Proceeding Series,

pages 897–904. ACM, 2006.

[478] J. Su, H. Zhang, C. X. Ling, and S. Matwin. Discriminative parameter learning for

Bayesian networks. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, Pro-

ceedings of the Twenty-Fifth International Conference on Machine Learning (ICML

2008), volume 307 of ACM International Conference Proceeding Series, pages 1016–

1023. ACM, 2008.

[479] H. J. Suermondt and G. F. Cooper. Probabilistic inference in multiply connected belief

networks using loop cutsets. International Journal of Approximate Reasoning, 4(4):

283–306, 1990.

[480] H. J. Suermondt and G. F. Cooper. Initialization for the method of conditioning in

Bayesian belief networks. Artificial Intelligence, 50(1):83–94, 1991.

[481] A. Sumida, I. Terazawa, A. Togashi, and A. Komiyama. Spatial arrangement of

branches in relation to slope and neighbourhood competition. Annals of Botany, 89(3):

301–310, 2002.

[482] M. Svensén and C. M. Bishop. Robust Bayesian mixture modelling. Neurocomputing,

64:235–252, 2005.

[483] K. Svoboda. The past, present, and future of single neuron reconstruction. Neuroin-

formatics, 9(2-3):97–98, 2011.

[484] A. Tanabe, K. Fukumizu, S. Oba, T. Takenouchi, and S. Ishii. Parameter estimation

for von Mises-Fisher distributions. Computational Statistics, 22:145–157, 2007.

[485] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes.

Journal of the American Statistical Association, 101(476):1566–1581, 2006.

[486] F. Thabtah. A review of associative classification mining. The Knowledge Engineering

Review, 22(01):37–65, 2007.

[487] B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman. Learning mixtures of

DAG models. In G. F. Cooper and S. Moral, editors, Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence, pages 504–513. Morgan Kaufmann,

1998.

[488] B. Torben-Nielsen, K. Tuyls, and E. O. Postma. Shaping realistic neuronal morpholo-

gies: An evolutionary computation method. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN 2006), pages 573–580. IEEE, 2006.

314 BIBLIOGRAPHY

[489] B. Torben-Nielsen, K. Tuyls, and E. O. Postma. On the neuronal morphology-function

relationship: A synthetic approach. In K. Tuyls, R. Westra, Y. Saeys, and A. Nowé, ed-

itors, Proceedings of the First International Workshop Knowledge Discovery and Emer-

gent Complexity in Bioinformatics (KDECB 2006), volume 4366 of Lecture Notes in

Computer Science, pages 135–149. Springer, 2007.

[490] B. Torben-Nielsen, K. Tuyls, and E. O. Postma. EvOL-Neuron: Neuronal morphology

generation. Neurocomputing, 71:963–972, 2008.

[491] B. Torben-Nielsen, S. Vanderlooy, and E. O. Postma. Non-parametric algorithmic

generation of neuronal morphologies. Neuroinformatics, 6:257–277, 2008.

[492] T. P. Trappenberg. Fundamentals of Computational Neuroscience. Oxford University

Press, 2nd edition, 2010.

[493] E. G. Tsionas. Bayesian analysis of finite mixtures of Weibull distributions. Commu-

nications in Statistics - Theory and Methods, 31(1):37–48, 2002.

[494] H. B. M. Uylings and J. van Pelt. Measures for quantifying dendritic arborizations.

Network: Computation in Neural Systems, 13:397–414, 2002.

[495] H. B. M. Uylings, A. Ruiz-Marcos, and J. Van Pelt. The metric analysis of three-

dimensional dendritic tree patterns: A methodological review. Journal of Neuroscience

Methods, 18:127–151, 1986.

[496] T. V. Van and T. Pham-Gia. Clustering probability distributions. Journal of Applied

Statistics, 37(11):1891–1910, 2010.

[497] J. Van Pelt and H. B. M. Uylings. Modeling the natural variability in the shape of

dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal

neurons. Neurocomputing, 26-27:305–311, 1999.

[498] J. Van Pelt and H. B. M. Uylings. Natural variability in the geometry of dendritic

branching patterns. In G. N. Reeke, R. R. Poznanski, K. A. Lindsay, J. R. Rosenberg,

and O. Sporns, editors, Modeling in the Neurosciences: From Biological Systems to

Neuromimetic Robotics, pages 89–116. CRC Press, 2005.

[499] J. van Pelt and H. B. M. Uylings. The flatness of bifurcations in 3D dendritic trees:

An optimal design. Frontiers in Computational Neuroscience, 5(54):1–27, 2012.

[500] J. Van Pelt, A. van Ooyen, and H. B. M. Uylings. Modeling dendritic geometry and

the development of nerve connections. In E. De Schutter, editor, Computational Neu-

roscience: Realistic Modeling for Experimentalists, pages 179–208. CRC Press, 2001.

[501] M. P. Van Veen and J. Van Pelt. Terminal and intermediate segment lengths in neuronal

trees with finite length. Bulletin of Mathematical Biological, 55:277–294, 1993.

BIBLIOGRAPHY 315

[502] P. Vannoorenberghe and P. Smets. Partially supervised learning by a credal EM ap-

proach. In L. Godo, editor, Proceedings of the 8th European Conference on Symbolic

and Quantitative Approaches to Reasoning with Uncertainty, pages 956–967. Springer,

2005.

[503] J. J. Verbeek, N. A. Vlassis, and B. J. A. Kröse. Efficient greedy learning of Gaussian

mixture models. Neural Computation, 15(2):469–485, 2003.

[504] R. W. H. Verwer and J. van Pelt. Analysis of binary trees when occasional multifurca-

tions can be considered as aggregates of bifurcations. Bulletin of Mathematical Biology,

52(2):629–641, 1990.

[505] R. W. H. Verwer, J. van Pelt, and H. B. M. Uylings. An introduction to topological

analysis of neurones. In M. G. Stewart, editor, Quantitative Methods in Neuroanatomy,

pages 292–323. Wiley, 1992.

[506] P. Vetter, A. Roth, and M. Häusser. Propagation of action potentials in dendrites

depends on dendritic morphology. Journal of Neurophysiology, 85(2):926–937, 2001.

[507] R. Vilalta, G. Blix, and L. Rendell. Global data analysis and the fragmentation problem

in decision tree induction. In Proceedings of the Ninth European Conference on Machine

Learning Machine Learning (ECML 1997), volume 1224 of Lecture Notes in Computer

Science, pages 312–326. Springer, 1997.

[508] R. von Mises. Uber die “Ganzzahligkeit” der Atomgewichte und verwandte Fragen.

Physikal Z, 19:490–500, 1918.

[509] M. Wand and B. Ripley. KernSmooth: Functions for kernel smooth-

ing for Wand & Jones (1995) “Kernel Smoothing”, 2012. URL

http://CRAN.R-project.org/package=KernSmooth. R package version 2.23-8.

[510] Q. Wang, S. R. Kulkarni, and S. Verdú. A nearest-neighbor approach to estimating di-

vergence between continuous random vectors. In Proceedings of the IEEE International

Symposium on Information Theory (ISIT 2006), pages 242–246. IEEE, 2006.

[511] Y. Wang, A. Gupta, M. Toledo-Rodŕıguez, C. Zhi Wu, and H. Markram. Anatomical,

physiological, molecular and circuit properties of nest basket cells in the developing

somatosensory cortex. Cerebral Cortex, 12(4):395–410, 2002.

[512] G. I. Webb. Discovering associations with numeric variables. In D. Lee, M. Schkolnick,

F. J. Provost, and R. Srikant, editors, Proceedings of the Seventh ACM SIGKDD Inter-

national Conference on Knowledge discovery and Data Mining (ACM SIGKDD 2001),

pages 383–388. ACM, 2001.

[513] G. I. Webb, J. R. Boughton, and Z. Wang. Not so naive Bayes: Aggregating one-

dependence estimators. Machine Learning, 58:5–24, 2005.

http://CRAN.R-project.org/package=KernSmooth

316 BIBLIOGRAPHY

[514] E. J. Wegman. Hyperdimensional data analysis using parallel coordinates. Journal of

the American Statistical Association, 85(411):664–675, 1990.

[515] Q. Wen, A. Stepanyants, G. N. Elston, A. Y. Grosberg, and D. B. Chklovskii. Maxi-

mization of the connectivity repertoire as a statistical principle governing the shapes of

dendritic arbors. Proceedings of the National Academy of Sciences of the United States

of America, 106(30):12536–12541, 2009.

[516] N. Wermuth. Linear recursive equations, covariance selection, and path analysis. Jour-

nal of the American Statistical Association, 75(372):963–972, 1980.

[517] E. White. Cortical Circuits: Synaptic Organization of the Cerebral Cortex. Structure,

Function and Theory. Birkhauser, Boston, 1989.

[518] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):

80–83, 1945.

[519] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, 2nd edition, 2005.

[520] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1:67–82, 1997.

[521] A. T. Wood. Simulation of the von Mises-Fisher distribution. Communications in

Statistics - Simulation and Computation, 23(1):157–164, 1994.

[522] C. Wu, E. Ivanova, J. Cui, Q. Lu, and Z.-H. Pan. Action potential generation at an

AIS-like process in the axonless retinal AII amacrine cell. Journal of Neuroscience, 31

(41):14654–14659, 2012.

[523] B. Xie, W. Pan, and X. Shen. Variable selection in penalized model-based clustering

via regularization on grouped parameters. Biometrics, 64:921–930, 2008.

[524] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural

Networks, 16(3):645–678, 2005.

[525] R. Xu and D. Wunsch. Clustering. Wiley-IEEE Press, 2008.

[526] Y. Yang and G. I. Webb. On why discretization works for naive-Bayes classifiers. In

T. D. Gedeon and L. C. C. Fung, editors, Proceedings of the Sixteenth Australian Con-

ference on Artificial Intelligence, volume 2903 of Lecture Notes in Computer Science,

pages 440–452. Springer, 2003.

[527] Y. Yang, G. I. Webb, and X. Wu. Discretization methods. In O. Maimon and L. Rokach,

editors, Data Mining and Knowledge Discovery Handbook, pages 101–116. Springer,

2010.

BIBLIOGRAPHY 317

[528] E. A. Yfantis and L. E. Borgman. An extension of the von Mises distribution. Com-

munications in Statistics - Theory and Methods, 11(15):1695–1706, 1982.

[529] W. Yu and B. Lu. Synapses and dendritic spines as pathogenic targets in Alzheimer’s

disease. Neural Plasticity, 2012(247150):1–8, 2012.

[530] G. U. Yule. Notes on the theory of association of attributes in statistics. Biometrika,

2:121–134, 1903.

[531] R. Yuste. Dendritic spines. The MIT Press, 2010.

[532] R. Yuste. Dendritic spines and distributed circuits. Neuron, 71(5):772–781, 2011.

[533] R. Yuste and T. Bonhoeffer. Genesis of dendritic spines: Insights from ultrastructural

and imaging studies. Nature Reviews Neuroscience, 5:24–34, 2004.

[534] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowl-

edge and Data Engineering, 12(3):372–390, 2000.

[535] R. S. Zemel, C. K. I. Williams, and M. C. Mozer. Lending direction to neural networks.

Neural Networks, 8(4):503–512, 1995.

[536] M.-L. Zhang and Z. Zhi-Hua. A review on multi-label learning algorithms. IEEE

Transactions on Knowledge and Data Engineerings, in press, 2013.

[537] Y. Zhang, K. Yue, M. Yue, and W. Liu. An approach for fusing Bayesian networks.

Journal of Information & Computational Science, 8(2):194–201, 2011.

[538] Z. Zheng and G. I. Webb. Lazy learning of Bayesian rules. Machine Learning, 41(1):

53–84, 2000.

[539] X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Synthesis Lec-

tures on Artificial Intelligence and Machine Learning, 3(1):1–130, 2009.

[540] Z. Zong. Information-Theoretic Methods for Estimating Complicated Probability Dis-

tributions. Elsevier, 2006.

[541] Z. Zong and K. Lam. Estimation of complicated distributions using B-spline functions.

Structural Safety, 20(4):341–355, 1998.

	Contents
	List of Figures
	Acronyms
	I INTRODUCTION
	1 Introduction
	1.1 Hypothesis and objectives
	1.2 Document organization

	II BACKGROUND
	2 Machine learning
	2.1 Introduction
	2.2 Dependency modeling
	2.3 Supervised learning
	2.3.1 Supervised learning approaches
	2.3.2 Evaluation

	2.4 Unsupervised learning
	2.4.1 Unsupervised learning approaches

	2.5 Other machine learning problems
	2.6 Software

	3 Probabilistic graphical models
	3.1 Introduction
	3.2 Notation and definitions
	3.3 Bayesian networks
	3.3.1 Parameterization
	3.3.2 Learning
	3.3.3 Inference

	3.4 Bayesian network classifiers
	3.4.1 Parameterization
	3.4.2 Learning

	3.5 Finite mixture models
	3.5.1 Parameterization
	3.5.2 Learning

	3.6 Software

	4 Consensus analysis
	4.1 Introduction
	4.2 Agreement indices
	4.2.1 Overall observed agreement
	4.2.2 Chance-corrected agreement
	4.2.3 Category-specific agreement indices

	4.3 Statistical tests for agreement indices

	5 Directional statistics
	5.1 Introduction
	5.2 Statistics for circular data
	5.2.1 Summary statistics and graphical representations
	5.2.2 Probability densities for circular data

	5.3 Statistics for directional data
	5.3.1 Summary statistics
	5.3.2 Probability densities for directional data

	5.4 Software

	6 Neuroscience
	6.1 Introduction
	6.2 Historical note
	6.3 Brain organization and neuronal morphology
	6.3.1 Neuron structure

	6.4 Neuron classification
	6.4.1 Neuronal variability

	6.5 Current research efforts in neuroscience

	III CONTRIBUTIONS TO BAYESIAN NETWORK MODELING
	7 Bayesian network modeling of pyramidal basal dendritic trees
	7.1 Introduction
	7.2 Related work
	7.3 Models and simulation of basal dendrites with Bayesian networks
	7.3.1 Data acquisition and preparation
	7.3.2 Bayesian network learning and model construction
	7.3.3 Simulation algorithm for generating virtual dendritic trees
	7.3.4 Evaluation methodology

	7.4 Results
	7.4.1 Analysis of Bayesian networks
	7.4.2 Evaluation of features used in the model
	7.4.3 Comparison of emergent parameters not used in the model
	7.4.4 Visual comparison
	7.4.5 Supplementary results

	7.5 Conclusion

	8 Learning mixtures of polynomials from data
	8.1 Introduction
	8.2 Related work
	8.3 Mixtures of polynomials
	8.4 Learning mixtures of polynomials using B-spline interpolation
	8.4.1 B-spline interpolation
	8.4.2 Learning one-dimensional mixtures of polynomials
	8.4.3 Learning multidimensional mixtures of polynomials
	8.4.4 Learning conditional mixtures of polynomials
	8.4.5 Model selection

	8.5 Experiments
	8.5.1 Experiments with mixtures of polynomials approximations
	8.5.2 Experiments with Bayesian classifiers
	8.5.3 Comparison of evaluation times

	8.6 Conclusion

	9 Directional naive Bayes classifiers
	9.1 Introduction
	9.2 Naive Bayes classifiers with directional predictive variables
	9.2.1 The von Mises naive Bayes
	9.2.2 The von Mises-Fisher naive Bayes
	9.2.3 Hybrid Gaussian - von Mises-Fisher naive Bayes
	9.2.4 Hybrid discrete - Gaussian - von Mises-Fisher naive Bayes
	9.2.5 Selective von Mises naive Bayes

	9.3 Experiments
	9.3.1 Dataset analysis and preprocessing
	9.3.2 Results
	9.3.3 Goodness-of-fit analysis

	9.4 Conclusion

	IV CONTRIBUTIONS TO CONSENSUS ANALYSIS
	10 Consensus analysis for GABAergic interneuron classification
	10.1 Introduction
	10.2 Interneuron classification by a set of experts
	10.3 Analysis of raw data
	10.4 Experts' agreement values
	10.5 Neuron clustering
	10.5.1 Neuron clustering for each feature
	10.5.2 Neuron clustering for all the features

	10.6 Bayesian networks for modeling experts' opinions
	10.7 Supervised classification of interneurons
	10.7.1 Classifiers for each feature independently
	10.7.2 Binary classifiers for each interneuron type
	10.7.3 Classifiers merging interneuron types

	10.8 Conclusion

	11 Bayesian network modeling of the consensus between experts
	11.1 Introduction
	11.2 A methodology for inducing a consensus Bayesian multinet from a set of expert opinions
	11.2.1 Bayesian network modeling of each expert's behavior
	11.2.2 Clustering of Bayesian networks
	11.2.3 Building the consensus Bayesian network

	11.3 An application to interneuron classification
	11.3.1 Validation of the Bayesian network structure learning algorithm
	11.3.2 Cluster labeling and analysis of the probability distributions
	11.3.3 Analysis of the Bayesian network structures
	11.3.4 Finding agreed definitions for neuronal types
	11.3.5 Clustering visualization with principal component analysis
	11.3.6 Geographical identification of the clusters

	11.4 Conclusion

	12 Learning conditional linear Gaussian classifiers from class label counts using finite mixture models
	12.1 Learning Bayesian classifiers with class count vectors provided by a group of experts
	12.1.1 Obtaining class count vectors for each instance from a group of experts
	12.1.2 Conditional linear Gaussian classifiers
	12.1.3 The counts multinomial expectation maximization algorithm
	12.1.4 Classification of a new instance

	12.2 Related work: Modeling probabilistic class labels with belief functions
	12.3 Experiments
	12.3.1 Dataset generation and stratified h-fold cross-validation with experts' class labels
	12.3.2 Evaluation measures
	12.3.3 Results

	12.4 Conclusion

	V CONCLUSIONS
	13 Conclusions and future work
	13.1 Summary of contributions
	13.2 List of publications
	13.3 Future work

	VI APPENDICES
	A Von Mises NB classifier decision function
	A.1 vMNB with one predictive variable
	A.1.1 Particular cases

	A.2 vMNB with two predictive variables

	B Von Mises-Fisher NB classifier decision function
	B.1 Particular cases

	C Results of the Bayesian classifiers with class label counts
	Bibliography

