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accuracy was 13 bits, with the result of each multiplication truncated
to 16 bits. The analog-to-digital and digital-to-analog conversions on
the system have 12-bit accuracy.

However, the state-variable cascade realization behaves con-
siderably better for all tested approximations compared with the
canonical cascade realization when a suitable scaling has been
applied. Clearly, the state-variable 16-bit realization with the fixed-
point two’s-complement saturation arithmetic (e.g., on the DSP chip
TMS320C25) offers a possibility to increase the signal-to-round-off-
noise ratio at the output of the cascade realization of IIR DF’s in
comparison with the tested canonical cascade realization.
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On Time-Dependent Wavelet Denoising

Brani Vidakovic and Concha Bielza Lozoya

Abstract—In this correspondence, we address the shrinkage of wavelet
coefficients and induced denoising in the time domain by taking into
consideration the “time” behavior of a noisy signal. We illustrate our
time adaptation paradigm in a thresholding procedure utilizing Bayesian
hypothesis tests. Both one-dimensional (1-D) and two-dimensional (2-
D) signals are considered in examples to motivate and implement our
method.

Index Terms—Denoising, image processing, wavelet shrinkage.

I. INTRODUCTION

Wavelet shrinkage is a simple yet powerful tool in statistical
modeling of data sets and signals. It can be described as a three-step
procedure.

Step 1) A discrete signal is transformed into a set of wavelet
coefficients.

Step 2) A shrinkage of the coefficients is performed.
Step 3) The shrunken wavelet coefficients are transformed back

to the domain of the original signal.

Wavelet shrinkage is usually done by thresholding wavelet coeffi-
cients. Thresholding is a rule by which the coefficients with absolute
values smaller than a fixed threshold are replaced by zeroes. Some
other thresholding policies and choices of thresholds are reviewed
in [12].

Many researchers have observed that scale-dependent denoising
methods in the wavelet domain can improve visual and other char-
acteristics of signals and images. Our aim is to describe and apply
one possible approach to the adaptivity of shrinkage rules. “Time”
dependent shrinkage has the threshold that depends on the relative
position of the coefficient within the scale level of the decomposition.
This shrinkage rule is fully determined via an empirical Bayes
argument in testing precise hypotheses in the wavelet domain.

We emphasize that shrinkage and denoising are two related but
not identical actions. The former is performed in the wavelet domain
with wavelet coefficients as arguments. The latter is a consequence
in the time domain of the shrinkage action. The two are connected
via Meyer’s result that states that the magnitudes of the wavelet
coefficients determine the smoothness space to which the signal under
consideration belongs. For a formal statement of this connection, refer
to [7], [8], and [10].

A large body of research in the statistical and engineering com-
munities focused recently on performing shrinkage/denoising by
modeling in the wavelet domain. The models are supported by the
data to produce statistically optimal shrinking methods. An early ref-
erence is the work of Mallat [9], who proposed the exponential power
distribution as a realistic statistical model for wavelet coefficients.
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(a) (b)

Fig. 1. (a) Artificial example containing a point of discontinuity and noise. (b) Discrete wavelet transformation emphasizing the difference between wavelet
coefficients attributed to noise and those attributed to the discontinuity.

Why is the wavelet domain a good environment for statistical
modeling? There are several reasons, including the following.

1) Low Entropy Modeling Environment:Discrete wavelet trans-
formations tend to “unbalance” the signal. Even though the
transformations preserve thè2 norm (the energy) of the signal,
the energy of the transformed signal concentrates in only a few
wavelet coefficients. That narrows the class of plausible models
and facilitates the efficiency of thresholding. Mallat [9] gives an
interesting discussion from the signal processing point of view. The
unbalancing property also motivates a plethora of criteria for the best
basis selection. Two standard references are [5] and [6].

2) Ockham Razor Principle:Wavelets, as building blocks of mod-
els, are well localized in both time and scale (frequency). The signals
with rapid local changes (discontinuities, cusps, sharp spikes, etc.)
can be well represented with just a few wavelet coefficients. Gener-
ally, this rule does not apply to other standard orthonormal bases,
which may require many “compensating” coefficients to describe
discontinuity artifacts or to suppress Gibbs’ effects.

3) Bypassing the Curse of Heisenberg:Heisenberg’s principle
states that in modeling time–frequency phenomena, we cannot
be precise in the time domain and in the frequency domain
simultaneously. Wavelets handle the time–frequency precision
automatically by their innate nature. The parsimony mentioned above
can be ascribed to the ability of wavelets to cope with limitations of
Heisenberg’s principle in a signal-dependent manner.

4) Whitening Property:There is ample theoretical and empirical
evidence that wavelet transformations tend to simplify the dependence
structure in the original signal. It is even possible to construct a
biorthogonal wavelet basis that decorrelates a given stationary signal
at input (a wavelet counterpart of the Karhunen–Loéve transforma-
tion). For a discussion and examples, see [16].

The above arguments evince wavelet bases to be suitable tools for
effective statistical modeling. Several more reasons can be provided:
calculational efficiency, self-similarity in multiresolution, etc.

II. A DAPTIVE DENOISING

The first proposed methods in wavelet denoising had a universal
character: A single threshold policy was applied to all wavelet

coefficients. Donoho and Johnstone proposed the first adaptive de-
noising method, called SureShrink [7], in which wavelet coefficients
at different levels are treated differently, depending on the level index
and total energy in the level. Good references are [2] and [12].

From the Bayesian point of view, the level-dependent denoising
results naturally from specification of a statistical model in the
wavelet domain. Some recent references are [3], [4], and [11]. We
refer to such adaptivity in a denoising algorithm as the “scale”
adaptivity.

For time-inhomogeneous signals, it is useful to inspect the behavior
of wavelet coefficients in a fixed level for different shift parameters. If
the noisy signal has a singularity, the high-energy propagates locally
across the coefficients to the coarsest level of detail. For a single
singularity, the energetic coefficients are contained in the so called
cone of influence.

The noise is well explained by a few levels that contain fine detail
coefficients (and its effect disappears at the coarser scales).

Fig. 1(a) shows an artificial but motivating example. A signal with
a single discontinuity was sampled atn = 2048 equally spaced
time points. The values between 301 and 800 have an added normal
N (0; 0:12) noise.

In the wavelet decomposition of the signal [see Fig. 1(b)], we
notice that the levelsd1 andd2 contain most of the energy attributed
to the noise and that the noise is practically nonexistent in the detail
level d6. However, the effect of the discontinuity artifact does not
abate with coarsening of detail spaces. In this example, the least
asymmetric Daubechies’ wavelet with four vanishing moments (the
default filter S8 in S+ Wavelets) was used.

Generally, in coarser levels, the disturbance caused by an artifact
of interest (sharp peak, discontinuity) dominates disturbances gen-
erated by the noise. We propose time-dependent thresholding that
“sacrifices” a small proportion of the wavelet coefficients from the
coarsest level of detail in order to better calibrate the underlying
statistical model.

Fig. 2(a) shows time-dependent thresholding in action. The signal
consists of 128 observations of Coke stock market prices. Around
index 35, we can see the artifact caused by the (in)famous stock
market crash in 1987. The goal is to denoise the signal while
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(a)
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Fig. 2. (a) Coke stock market prices signal and its nondecimated wavelet
transformation. (b) Original signal, signal denoised in a traditional way, and
signal denoised in a time dependent manner.

not oversmoothing the crash artifact. The upper panel of Fig. 2(a)
depicts the signal (inidwt level) and its nondecimated wavelet

Fig. 3. Shapiro’s zero-tree.

decomposition (see, for example, [2]). The bottom of the left panel
contains all the coefficients(5 � 128 = 640) in one line. The
coefficients from leveld4 have been used in performing time-
dependent thresholding.

The top portion of Fig. 2(b) shows the original signal and the
signal denoised by standard, level dependent, thresholding techniques
(middle portion). The bottom part of the Fig. 2(b) contains “time-
adaptive” denoised signal. Notice two desirable properties: In the
region of no activity (indices> 50), time-dependent thresholding
smooths more, whereas in the artifact area (indices 20–50), the
time-dependent thresholding rule thresholds less, preserving more
information and making the denoised signal more precise.

III. FORMALIZING “T IME” DEPENDENT THRESHOLDING

Bayes rules with respect to squared error loss in an estimation
contest are never thresholding-type rules—they are smooth. One way
to obtain thresholding rules in a Bayesian framework is through
statistical testing. Testing a precise hypothesis in Bayesian fashion
requires a prior that has a point mass component. Otherwise, the
testing is trivial since any continuous prior density will give the prior
(and, hence, the posterior) probability of 0 to a precise hypothe-
sis. For discussion on Bayesian testing of precise hypotheses, see
[1].

Denote byd an observed wavelet coefficient. Assume that the
distribution of d depends on a location parameter� that represents
the unknown signal of interest. In addition, assume that thed’s
are independent. Although the independence assumption may be
an oversimplification of our model, it is justified by the whitening
property of wavelet transformations (see the Introduction) and by the
robustness of its resulting denoising procedures.

The model we discuss below can be found in much greater detail
in [15]; however, the setup discussed there is nonadaptive. We use
it here to illustrate a principle of how related denoising methods can
be made time-scale dependent.

Let the wavelet coefficientd conditional on unknown location�
have a densityf(d��). After observingd, the hypothesisH0: � = 0
versusH1: � 6= 0 is tested. If the hypothesisH0 is rejected,� is
estimated byd. Let � � �(�) = �0(Cj)�0 + �1(Cj)�(�) be the prior
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(c)

Fig. 4. (a) Original fingerprint image. (b) Fingerprint image with the normalN (0; 1002) noise. (c) Segmented version of the denoised image.

on �, where�0(Cj) and�1(Cj) are prior probabilities of hypotheses
H0 andH1, �0 is a point mass at 0, and�(�) is a part of the prior
that describes the distribution of� when H0 is false. Adaptivity
of the above procedure is introduced by the dependence of prior
probabilities�0 and�1 on the energies in the coarsest level of details
reflected on a clique of coefficientsCj from the scalej. One example
of how Cj ’s are formed is described in Section IV.

In a compact form, the Bayes procedure for� corresponding to
Cj is

�̂ = d1 P (H0jCj ; d) <
1
2

(1)

whereP (H0jCj ; d) = (1 + �1(Cj))=(B�0(Cj))
�1 is the posterior

probability of theH0 hypothesis,B = f(d)
� 6=0

f(d��)�(�)d� is

the Bayes factor in favor ofH0, and1(R) is an indicator of relation
R; it is 1 if R is true and 0 if it is false. It is apparent that (1) is the
shrinkage rule of hard thresholding type.

Next we specify distributionsf and � and give an effective rule
for the thresholding described in (1). The likelihood ford is a double
exponential, and the continuous part of the prior on� is the Studentt.

The choice of the double exponential for the distribution wavelet
coefficients can bejustified by two different arguments:

1) The First Argument is Mallat’s Empirical Argument:Mallat
[9] noticed that for a variety of signals and images, empirical
distributions of wavelet coefficients appeared to be similar. Typically,
the distributions were symmetric and had a sharp peak at zero. He
proposed that a “random wavelet coefficient”D could be modeled

by a distribution from the family of exponential power distributions
(EPD(�; �))

f(d) = C � e�(jdj=�) ; �; � > 0: (2)

The normalizing constantC in (2) is given by C =
�=(2��(1=�)). Because EjDj = ��(2=�)=�(1=�) and
ED2 = �2�(3=�)=�(1=�), the parameters� and � can be
estimated from the observations by themethod of momentsas
�̂ = G�1(m2

1=m2) and�̂ = m1�(1=�̂)=�(2=�̂), respectively. Here,
m1 = 1=n jdij andm2 = 1=n d2i are empirical counterparts
of EjDj andED2, andG(x) = �2(2=x)=(�(1=x)�(3=x)).Mallat’s
model (2) is used to perform optimal quantile wavelet thresholding
(see [17] for details) and the Bayesian coring procedure by [14].

The range of estimatorŝ� is [0.2, 1.5] for the majority of signals
encountered in practice, and the proposed double exponential model
[obtained from (2) for� = 1] agrees with Mallat’s empirical
argument.

2) The Second Argument is Probabilistic:Conditional on an un-
known parameter�2 (the variance of the noise) and the unknown
signal �, d is normal, i.e.,dj�; �2 � N (�; �2). By integrating
out �2 by an exponential prior,1 the marginal likelihood becomes
a double exponential. If�2 � E(�), where 1/� is the expectation,

1The exponential distribution minimizes the Fisher information in the class
of all distributions supported onIR+ with fixed first moment.
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Fig. 5. (Upper left) DWT of the noised image. (Upper right) Prior probabilities generated by the intensities in the coarse matrixs3 –d3 . (Lower left)
“Zero-tree” thresholded transformation. (Lower right) Denoised image with continuous pixel values.

then dj� � DE �; 1=
p
2� , where1=

p
2� is a scale parameter.2

This calculation is a straightforward consequence of the fact that an
exponential scale mixture of normals is a double exponential.

The following result gives the effective thresholding rule for
general symmetric prior�.

Result 1 [15]: If an observed wavelet coefficientd in the jth
level follows the modeldj� � DE �; 1=

p
2� and the prior for

the location (signal part) is�(�) = �0(Cj)�0 + �1(Cj)�(�), thend
will be “thresholded” by

�(d) = d1
�0(Cj) e�cjdj

�0(Cj) e�cjdj + �1(Cj)(�1(c) + �2(c))
<

1

2
(3)

wherec = 1=
p
2�; �1, and�2 are the one-sided Laplace transfor-

mations of shifted densities�, �(� � d); and �(� + d):

IV. A N APPLICATION IN IMAGE PROCESSING

The standard 2-D wavelet transformation applied to images or-
ganizes the details in a specific way. In the lower-left corner of
Fig. 5, there is a “smooth” matrix, which is the result of projecting
the image onto a smooth spaceVj for some fixed levelj0 2 .
Around the “smooth” matrix, there are three matrices of the same

2The density associated withDE �; 1=
p
2� is f(dj�) =

1

2

p
2�e�

p
2�jd��j.

dimension as the smooth one, corresponding to the coarsest level of
detail. These three matrices contain the coefficients corresponding to
the three detail spacesW 1

j ; W
2

j , andW 3

j . The next (finer) level of
detail contains three matrices surrounding the matrices grouped in the
lower-left corner, and so on. The three matrices containing the finest
level of detail contain 75% of all coefficients in the decomposition.
The dimensions of the wavelet-transformed image are the same as
the dimensions of the original image.

For natural images with decaying spectrums, it is unlikely to find
an extensive amount of energy among the finest details if there is little
or no energy at the same spatial location in the matrices of coarser
details. This observation on relative self-similarity in detail matrices
led Shapiro [13] to develop an efficient method of data compression
called thezero-tree method.This methoid is illustrated in Fig. 3.

We propose the use of the zero-tree idea to determine the localized
thresholds. The procedure scans the energies of the coefficients at
some fixed coarse level of detail—usually the coarsest one. These
coefficients, as in [13], are calledparents.No shrinkage is performed
on parents or on the coefficients from coarser levels, if such exist. The
“smooth” level is also never thresholded. In the next finer level of
detail, each parent has fourchildren,and the subsequent parents will
have 16, and so on. The terms parents, children, and, more generally,
ancestors and descendants were proposed by Shapiro to emphasize
the directions of energy influence. These directions are antithetical
to the parent–children directions in wavelet packets or local cosine
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bases in tasks of selecting the best basis, for example.
By specifying the prior probabilities�0 of the hypothesesH0, we

treat all descendants of a single parentCj in the levelj in the same
way. If the parent possesses high energy, then the probability�0(Cj)
should be “small,” indicating that there is a strong “local energy
activity,” and we should be more strict about acceptingH0 (i.e.,
setting� = 0). If the parents possess small or no energy, then their
descendants are likely to be insignificant as well. In that case,�0(Cj)
should be large, indicating our prior opinion about the energies of the
descendants in the levelj. However, the inference depends on the
posterior, and no-energy parents may have descendants that “survive”
thresholding and vice versa.

For the sake of robustness, the distribution� part of the prior is
chosen to be from the Studentt family. In the resulting procedure,
the choice of the threshold� is driven by the imposed model or, more
precisely, by the locally adaptable hyperparameters of the model.

The sensitivity issues and empirical Bayes methods in specifying
the hyperparameters are not discussed here (see a related model in
[15] and the discussion therein). We simply note that the procedure
can be made automatic by an empirical Bayes argument: Take
� = const=�̂2 for some estimate of variance ofd, �̂2. We found
that values of const between 0.5 and 4 work well in practice.

The prior probabilities�0(Cj) and �1(Cj) should be selected
such that the proportion ofd’s from Cj for which �0(Cj) is close
to 1 increases when details become finer, thus contributing to the
parsimony of the thresholded object.

We apply the described procedure on a real-life image. The
fingerprint image (courtesy of Prof. L. Pastor) is one of the several
fingerprint images with interesting criminal histories that are part of
an ongoing project at Universidad Politecnica de Madrid. The image
is a256�256 matrix of pixels whose gray intensities range between
0 and 255 [Fig. 4(a)].

We note that the fingerprint image is used only to exemplify our
procedure. We do not compare the proposed adaptive method with
the state-of-the-art wavelet-based fingerprint compression methods
developed for the FBI, for example. Before comparing methods,
extensive research should be conducted on how to choose good
priors, how to calibrate their hyperparameters, how to select the best
decomposing basis, and how to optimally design a hybrid procedure
that adds the time-adaptation (tilling).

In Fig. 4(b), we have the same image with added i.i.d. normal
noise (SNR= �image=�noise = 0:7): The goal is to perform the
time-dependent shrinkage and denoise this image.

The upper left part of Fig. 5 gives 2-D wavelet decomposition of
the noised fingerprint image. There are three levels of detail. We
employ the Daubechiesd8 wavelet. The third level of detail (the
coarsest level) is utilized to generate the prior probabilities�0(Cj)
of the H0 hypotheses for different levelsj. The upper right part of
Fig. 5 illustrates the prior probabilities constrained betweenp0 = 0:3
and p1 = 0:7. The boundsp0 and p1 are calibrated to control
the parsimony of the thresholded wavelet decomposition. The lower
left panel of Fig. 5 exhibits the thresholded version of the wavelet
decomposition that used prior probabilities from the upper right panel.
Finally, the lower right panel displays the denoised fingerprint image
as an inverse wavelet transformation from the thresholded coefficients
in the lower left panel.

V. CONCLUSIONS

In this correspondence, we considered “time” adaptation of an
exemplary wavelet-based denoising procedure. This procedure is
based on hard thresholding rules defined by Bayesian tests of pre-
cise hypotheses, which have been considered previously in [15] as

nonadaptive. It is argued that the “time adaptation” is useful in
preserving more information on discontinuities, spikes, and unusual
energy activities not attributed to the noise. S+ Wavelets software
was used in the implementation. The procedures are expeditious. The
S+ programs can be obtained from the authors upon request.

There are several avenues for further research. Distributional and
modeling issues of wavelet coefficients can be explored conditionally
on coarse scales. In that case, Markov chain Monte Carlo methods
should be used to perform the smoothing. “Time adaptation” of many
existing procedures may be achieved by utilizing wavelet coefficients
on a coarse scale via an empirical argument.
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