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Abstract. We present the application of a cyber-physical system for in-
process quality control based on the visual inspection of a laser surface
heat treatment process. To do this, we propose a classi�cation framework
that detects anomalies in recorded video sequences that have been pre-
processed using a clustering-based method for feature subset selection.
One peculiarity of the classi�cation task is that there are no examples
with errors, since major irregularities seldom occur in e�cient industrial
processes. Additionally, the parts to be processed are expensive so the
sample size is small. The proposed framework uses anomaly detection,
cross-validation and sampling techniques to deal with these issues. Re-
garding anomaly detection, dynamic Bayesian networks (DBNs) are used
to represent the temporal characteristics of the normal process. Experi-
ments are conducted with two di�erent types of DBN structure learning
algorithms, and classi�cation performance is assessed on both anomaly-
free examples and sequences with anomalies simulated by experts.
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1 Introduction

During the production of a steel product, there are speci�c needs regarding the
modi�cation by heat treatment of its surface mechanical properties in order to
meet �nal application requirements. In this respect, laser heating is capable of
operating on small and localized areas, ensuring the repeatability, reproducibility
and robustness demanded by the manufacturing sector. Laser beams are high-
density energy sources that induce fast heating-cooling cycles that are sensed by
contactless pyrometers or thermal high-speed cameras. Consequently, in-process
monitoring systems manage high volumes of data, increasing the computational
power required to give timely feedback.
The objective of this paper is to continue the research reported in [1] and take
advantage of the capability of cyber-physical systems (CPS) to handle large
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amounts of information through embedded processing capabilities [2]. In this
paper, we further investigate the visual inspection of the laser super�cial heat
treatment of steel cylinders monitored by a high-speed thermal camera in order
to build a classi�cation system. This system should analyze the video sequence
from the laser heat treatment of a cylinder and decide whether it has been
correctly processed before the next production step begins.
However, the task of classifying �normal� and �abnormal� products is complex
because major irregularities seldom occur in e�cient industrial processes. This
is an obstacle to training automated systems with statistical learning models
[3]. One-class classi�cation is the anomaly detection technique used in machine
learning for binary classi�cation when information on only one of the classes is
available. In this scenario, a model of normality is learned and used to assign
anomaly scores to previously unseen examples [4]. The larger the anomaly score,
the more �abnormal� the example is. Di�erent models have been proposed in the
literature for learning the normal behavior of temporal systems. Hidden Markov
models (HMMs) are the most used probabilistic graphical models [5]. We pro-
pose to use dynamic Bayesian networks (DBNs), which are a generalization of
HMMs [6], since we are concerned with providing an interpretable representation
of uncertain knowledge [7] avoiding the lack of physical meaning of hidden vari-
ables. DBNs, have already proved to successfully describe the spatial-temporal
relationships of monitored variables in di�erent domains without the use of hid-
den variables, e.g., neuroscience for learning the temporal connections of brain
regions [8], bioinformatics for inferring the interactions of DNA microarrays [9],
or engineering for fault detection of autonomous spacecrafts [10].
Finally, data collection from some industrial applications is expensive. In these
cases, sample sizes are small and generalization cannot be guaranteed. To over-
come this, we implement sampling and cross-validate estimation techniques.
The paper is organized as follows. Section 2 describes the proposed classi�cation
system and explains its theoretical groundwork. The framework is applied to an
industrial laser heat treatment process presented in Section 3 and discussed in
Section 4. Finally, Section 5 summarizes the conclusions.

2 Methodology

This section explains the general aspects of the proposed classi�cation framework
for image sequences, and a schematic �owchart is illustrated in Fig. 1.

2.1 Image Sequence Preprocessing and Feature Subset Selection

Each frame of the recorded videos can be seen as a feature vector whose values
(pixel color information) across the di�erent frames form a multivariate time
series. The bits per pixel, which de�ne the range of possible discrete values of a
pixel, depend on the properties of the camera. However, this range will always
be in excess of the number of categories that discrete statistical models can deal
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Fig. 1: Schematic �owchart of the classi�cation system.

with. Therefore, they have to be integrated into a number of partitions. The
chosen technique was the equal-width interval binning discretization method.
Modeling the time series of every pixel in a video sequence is a high-dimensional
problem. Considering that we need an in-process response from the classi�cation
system implemented in the CPS, it will be too time consuming and computation-
ally prohibitive to model this problem. Therefore, the number of features has
been reduced based on spatial correlations among pixels, where highly corre-
lated pixels are grouped into clusters, i.e., regions with similar properties. These
regions are static, and they are the same for all video sequences. We employed hi-
erarchical clustering with an agglomerative strategy as the clustering algorithm
to perform this segmentation. This algorithm uses the relationships among data
to cluster the features [11]. Apart from the pixel color information in each frame,
the algorithm has access to another relationship: each pixel's neighbors within
the frame space summarized in a connectivity matrix. The role of this matrix is
to avoid the agglomeration of unconnected pixels. In order to select the number
of clusters, experts de�ned a qualitative threshold criterion in terms of the maxi-
mum number of clusters in the frame that do not include any artifacts. Artifacts
are construed as being pixel clusters that have no physical explanation in regard
to the analyzed process, i.e., very small regions or unconnected areas.
Finally, information is extracted from the pixel values of each cluster for each
frame. These cluster features will feed the machine learning algorithm.

2.2 Dynamic Bayesian Networks and Structure Learning

Bayesian networks (BNs) are probabilistic graphical models that compactly de-
scribe the joint probability distribution of a vector of random variables X =
(X1, ..., Xn) by explicitly representing their probabilistic conditional dependen-
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cies. Any variable Xi in a BN is independent of its non-descendants given the
value of its parents Pa(Xi), i.e., nodes at the origin of the arcs pointing to Xi.

DBNs, which are temporal extensions of BNs, expand the above concepts to
stochastic processes. In this case, the variables of interest are observed sequen-
tially at discrete times. Thus, a joint probability distribution of the possible
values of such variables can be built. This distribution could be extremely com-
plex; hence, two hypotheses are normally assumed. The �rst one is the �rst-
order Markov assumption, where the future is independent of the past given
the present. The second assumption is stationarity, i.e., the transition proba-
bilities are independent of time. Under these assumptions, the joint probability
distribution of a time series ending at time T can be written as

P (X[0], ...,X[T ]) = P (X[0])

T∏
t=1

P (X[t] |X[t− 1]) =

T∏
t=0

n∏
i=1

P (Xi[t] |Pa(Xi[t])).

(1)

This type of DBNs are called two-time-slice Bayesian networks (2-TBNs) since
their transition model can be speci�ed by a BN unrolled in two consecutive time
slices. Much of the research into static BNs can be applied when learning the
structure of discrete 2-TBNs from complete data. The key algorithm proposed by
Friedman et al. [12] is based on hill-climbing search (DHC ). Recently, Trabelsi
et al. [13] developed a scalable algorithm called dynamic max-min hill climbing
(DMMHC ), that adapts MMHC [14] to consider the temporal dimension.

2.3 Anomaly Score, Normality Threshold and Classi�cation

After learning the normality model with DBNs, anomalies are detected as se-
quences of consecutive frames that are too far removed from normal frames. In
anomaly detection, this distance is called anomaly score. Within this framework
we de�ne the anomaly score as the log-likelihood of a sequence with respect to
the trained normal model.

The anomaly scores of the normal training sequences form a distribution function
for which we can de�ne a percentile α for a two-tailed test. 2α can be interpreted
as the probability of normal sequences that we are willing to mistakenly classify
in order to be better able to detect the sequences with anomalies. The two values
that limit the rejection regions are the normality thresholds. If they are to be
reliably selected, we need a large training set, which we do not have. To over-
come this problem, we use the probability distribution de�ned by the normality
model to sample new normal sequences in order to augment the training sample
size. Then, the anomaly scores of both the new and the training sequences are
calculated and they are used to select the normality thresholds according to α.

Now, a new unseen sequence can be classi�ed by calculating its anomaly score.
It is abnormal if it falls in the rejection region; otherwise, it is normal.
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We de�ne two �gures of merit for assessing system performance1:

sensitivity =
TP

TP + FN
specificity =

TN

FP + TN
, (2)

where P , N , T and F account for positive, negative, true and false, respectively.
Since the sample size is small, a k-fold cross-validation method is de�ned in order
to estimate the speci�city of the system. The aim is to guarantee generalization.
Normal sequences D are divided into k groups D = D1 ∪ ...∪Dk. The normality
modelMi is learned with the training folds D\{Di}. Then, the testing fold Di is
used to estimate the speci�city p̂i of the classi�er. The mean of the k speci�cities
is p̂M , M being the normality model learned from D.
Regarding the sensitivity calculation, it is required to simulate anomalies in the
normal image sequences because this is a one-class classi�cation scenario.

3 Experiments

The reason behind the development of this classi�cation system is to perform
in-process quality control through the visual inspection of sequences recorded
from the radiation produced by the laser super�cial heat treatment process of
steel cylinders. As proposed by other visual inspection methods, the analysis of
these emissions will help to detect defects during laser processes [3], [15].

3.1 Data Description

The experimental data were collected by recording the correct super�cial laser
heat treatment of 32 steel cylinders. The camera used was a NIT TACHYON
1024 µCORE at a rate of 1,000 frames per second and a FPA resolution of 32×32
(1,024 pixels). A total of 21,500 frames were obtained for each cylinder. Every
pixel raw data item was a 10-bit value (ranging from 0 to 1,023) proportional
to the temperature reading. The in-process response time for this application is
three seconds. Fig. 2(a) shows an example frame of the laser process.
Experts simulated three di�erent defects in the 32 normal videos in order to
assess the response of the classi�cation system to anomalies: (i) the spot is pro-
grammed within the normal heat treatment process to avoid an obstacle in the
cylinders (Fig. 2(b)) and hence videos from obstacle-free processes are abnormal;
(ii) the laser scanner control adjusts the energy that the beam deposits, where a
power supply unit failure could lead to not enough heat being produced for the
process; (iii) the camera is working in hazardous conditions due to heat, sparks
and smoke that gradually wear out the sensors, producing noise.

1 Normal examples are labeled as �negative�, while examples with anomalies are labeled
as �positive�.
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Fig. 2: (a) and (b) are example images of the laser heat treatment process taken
by the NIT camera. Speci�cally, (b) pictures the moment when the laser spot
avoids an obstacle. (c) shows the di�erent clusters into which the pixels are
divided.

3.2 Classi�cation System Experimental Setup

The agglomerative clustering identi�ed 14 artifact-free clusters within the image.
The resulting clustered image is shown in Figure 2(c). The clusters adjacent
to the edges of the image were discarded because they are considered to be
background, leaving nine clusters to be used by the model. Four feature types
were extracted from the pixel values of each cluster for every frame: (1) median
was chosen because pixel values had a skewed distribution, (2) standard deviation
is used to quantify the amount of instability in the region, (3) maximum and (4)
minimum values are useful to know the cluster temperature range. The values
of these features were discretized into 10 intervals of 102.4 units.
The normality models were learned with both DHC and DMMHC algorithms so
as to assess their performance. They were implemented by extending the bnlearn
R package [16]. Constraints were placed on their arcs in order to obtain coherent
relationships among cluster variables: arcs between features of the same type are
the only ones allowed if the features belong to di�erent clusters, whereas any arc
is permitted if it connects features from the same cluster.
The parameter k of the cross-validation method was set to 8. The number of
normal sequences sampled from the DBNs was 72. The response of the system
was studied for di�erent values of α, namely 0%, 1%, 2%, 3%, 4% and 5%.
The �rst defect (obstacle) was simulated by removing the 4,200 frames that
take the laser to avoid the obstacle. The second defect (o�set) was simulated by
decreasing the pixel values with an o�set of 4% of the pixel range (41 units).
The third defect (noise) was simulated by adding Gaussian noise to pixel values
with mean 0 and a standard deviation of 2.5% of the pixel range (26 units).

3.3 Results

Table 1 reports the speci�city and sensitivities of the classi�cation system for
the di�erent combinations of normality models, and α values.
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Table 1: Results for speci�city (normal) and sensitivities (obstacle, o�set, noise)
of the system when learning the normality model with DHC or DMMHC for
di�erent α.
Normality

model
Test

Speci�city and sensitivities for di�erent α values

0% 1% 2% 3% 4% 5%

DHC

Normal 100% 100% 96.9% 93.7% 90.6% 87.5%
Obstacle 78.1% 78.1% 78.1% 81.2% 81.2% 81.2%
O�set 90.6% 90.6% 93.7% 100% 100% 100%
Noise 100% 100% 100% 100% 100% 100%

DMMHC

Normal 90.6% 90.6% 90.6% 81.2% 75.0% 65.6%
Obstacle 90.6% 90.6% 90.6% 93.7% 93.7% 93.7%
O�set 81.2% 81.2% 100% 100% 100% 100%
Noise 25.0% 25.0% 43.7% 100% 100% 100%

The normality model learned with DHC outperformed DMMHC when classify-
ing normal sequences. DHC correctly classi�ed 100% of the normal sequences
with α < 2% and maintained a high speci�city value (87.5%) for the highest α.
DMMHC was just over 90% with low α and fell to 65.6% with the highest α.
DHC also outperformed DMMHC when detecting anomalies produced by o�set
and noise. Regarding o�set, DHC had a sensitivity of 90.6% with α < 2%, while
DMMHC had 81.2%. Both reached 100% with α > 2%. DHC detected 100% of
sequences with noise, while the best result for DMMHC was 43.7% for α < 3%.
DMMHC only outperformed DHC when detecting the absence of obstacles in
data with a sensitivity of 90.6% to 93.7%, while DHC scored 78.1% to 81.2%.
Finally, the proposed methodology met the in-process classi�cation requirement
of three seconds with both DHC and DMMHC.

4 Discussion

It is vital in industrial applications to detect sequences with errors (high sen-
sitivity) without triggering false alarms (high speci�city). Depending on the
speci�c application, either option could be more important than the other. In
this particular laser application, the aim is to reach a balanced trade-o� between
both measures. The best option then is to use the DHC algorithm to learn the
normality model of the classi�cation system with α = 3%. This ensures a speci-
�city above 90% with sensitivities greater than 80% for the di�erent types of
anomalies.

5 Conclusion

We have reported an in-process classi�cation system learned from a small number
of anomaly-free examples for detecting anomalies in large video sequences of the
laser super�cial heat treatment process of steel cylinders.
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We are working on implementing this classi�cation system into a CPS for auto-
mated visual inspection in order to provide timely feedback about the quality of
the process and minimize product failures and waste. To be precise, wrongly pro-
cessed cylinders will be immediately marked and removed from the production
line for later manual inspection.
Additionally, experts are studying the learned DBN structures of normal laser
processes in order to gain insight into the thermodynamic and spatial behavior
occurring in the region where the laser spot is moving. This should improve the
adjustment of di�erent process parameters, e.g., the movement pattern of the
spot and its frequency, or the energy that the beam should deposit depending
on the position of the spot.
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