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Abstract—Anomaly detection is an increasingly common task
in many industrial environments. Cyber-physical systems stand
out in this field due to their unique position in industrial areas.
This paper introduces a new architecture aimed to detect anoma-
lies in a real laser heating surface process, which is designed for
field-programmable gate arrays (FPGAs). The FPGA design of-
fers advantages of highly parallelized and pipelined architectures.
The system will classify one process into normal or abnormal
taking into account spatial information about where the laser spot
is. The proposed design estimates a probability density function
from data; then it performs an image convolution transforming
the probability density function into a kernel density estimation
function. This estimated function should be able to classify in
real time.

I. INTRODUCTION

Anomaly detection is the identification of anomalous events
that have a behaviour outside the expected pattern. There
are different approaches to solve this problem: looking for
events that differ from the majority of the instances, labelling
a data set as normal or abnormal and generating a classifier,
or building a model that represents normal instances.

In this paper, a system of anomaly detection is aimed at
finding errors in a laser surface heat treatment process. The
goal of the laser surface heat treatment is to reinforce the metal
surface by increasing the temperature without affecting the
core. In this process it is considered that an anomaly has oc-
curred when the surface is not heated at a desired temperature
or the heating pattern does not behave as expected. Usually
an event is considered anomalous according to an abnormality
score: if the event score is higher than an established threshold
the event will be considered abnormal. In general anomalies
have an underlying negative meaning in results of the process.

The anomaly detection approach has been used in other laser
applications. For example [7] used continuous hidden Markov
models to identify anomalies in laser welding processes and
[4] faced the problem using D-Markov machines. Moreover,
[1] and [10] proposed different approaches to solve a similar
problem over cyber-physical systems based on kernel density
estimation (KDE) and Bayesian networks respectively.

This paper aims to continue the research proposed by
Atienza et al. in [1] building an architecture which learns

a KDE model taking into account laser spot spatial infor-
mation.The proposed architecture can be integrated in field
programmable gate array (FPGA) applications. FPGAs are
widely used in cyber-physical systems because they can be
easily reconfigured, and thus we focus our work on them.

In order to build KDE models it is necessary to estimate
probability density functions (PDFs). PDF estimation has
already been tackled in some proposed FPGA architectures.
For example, in [5], they created a one dimensional non-
parametric PDF to extract statistical information in real time
to be incorporated into existing FPGA applications. They also
presented an architecture for non-parametric PDF estimation
using one dimensional histograms and kernel-based methods
using histograms [6]. Another interesting approach was pre-
sented in [9], designing a multi-core PDF estimation using
Gaussian kernels.

This work presents a novel architecture to detect anomalies
by estimating PDFs, with two dimensional histograms and
kernel-based methods to approximate KDE models. The archi-
tecture is focused on achieving a highly parallel and pipelined
design.

II. DATA

A. Data description

The input data used to the proposed architecture was gath-
ered from a thermal camera (NIT Taychon 1024 µCore@1000
fps, 32×32 pixels) that recorded 32 processes from a real laser
surface heat treatment applied to cylindrical steel workpieces.
Each pixel value is bounded between 0 and 1023 being
equivalent to its temperature. Each video contains 21,500
frames, so that each video shows 21.5 seconds of the process
for each workpiece. Nevertheless, the laser spot is only visible
on around 20700 of these frames though, with some variation
in this number between recordings. The recorded surface of the
workpiece is 10× 20 mm2. The laser spot during the surface
heating process draws an eight-like fixed pattern with a 100Hz
frequency. Furthermore, during approximately 3,800 frames,
the patterns are modified to avoid a hole in the cylindrical
surface that cannot be heated by the laser.978-1-5090-6505-9/17/$ 31.00 c©2017 IEEE



B. Data preprocessing

Before the laser spot movement is processed, we have to
obtain the laser spot position in each frame. To do this, we first
obtain the differences between contiguous frames for the entire
video. The result is a subtraction video that shows the variation
in the surface temperature across time. As the laser spot is
moving, it applies energy to different areas of the surface.
The regions that are heated by the laser spot exhibit higher
pixel values in the subtraction video. Then, we compute the
centroid of the regions of the surface with higher pixel values
in the subtraction video. This gives us the coordinates of the
laser spot position on each frame [1]. Finally, we range the
pixel values between the lower and upper bounds of histogram
bins in the PDF, that is we discretize the values and truncate
them to fit in the PDF range.

III. METHODOLOGY

The proposed methodology to find anomalies is based on the
spatial characteristics of the laser spot position. The laser spot
position data is used to build a histogram based PDF. Other
works are focused on estimating one dimensional PDF [6].
This novel architecture estimates a bivariate PDF using the
spatial information in a laser process.

The circuit is divided in three mayor blocks as shown in
Fig 1. The first one estimates the PDF taking the laser spot
position as input and builds a two dimensional histogram. The
second block makes a kernel operation on the PDF, building
a KDE model. Finally, the third block performs an evaluation,
comparing the new computed KDE model and a pre-estimated
not-anomalous KDE model, which results in an anomaly score.

Fig. 1. Architecture design overview.

A. Probability Density Function Estimation

The circuit aimed at holding the PDF is relatively direct. An
embedded block RAM with n × n positions is used, with n
equals to the number of bins on one histogram side. The input
data is composed of the laser position x and y values indexing
a two dimensional point in a one dimensional memory block.
This simplification allows to avoid complex direction indexing
which can save many cycles.

In each cycle a new input data is stored in its corresponding
bin of the histogram during PDF estimation. Also, a counter
takes into account the number of samples that are already
gathered in memory. The data storing process takes two
pipelined cycles: the first cycle loads the current bin value,

the second cycle adds one to the load value and store it
in its corresponding bin. The nature of the block RAM
must be taken into consideration when when two or three
consecutive input data values are equal, since it may cause that
only one input value is considered rather than two. Another
consideration that is worth to mention is in regards to the value
n and the word length for each position. The two separated
considerations, will affect the FPGA resource consumption.
In this context we selected n equal to 32 and a word length
equal to 16. These choices take into account the laser heating
surface process particular characteristics.

B. Kernel Density Estimation as an Image Convolution

To have a KDE model, a kernel operation is needed in
each data point. This means that for each new point in the
PDF, adjacent bins should be increased in a kernel defined
proportion. There are two ways to do this operation. The first
one consists of storing also the new values for adjacent bins
for each new data points. An example of this method is found
in [6], who used counters to store the PDF and allowed them
to increase several bin values in the same clock cycle. In this
novel architecture it is not possible due to RAM nature which
need one cycle for each load or store operation, so a second
way to solve this problem is proposed here: first build a PDF
estimation and then proceed to convolve a kernel operation
over all the data stored in the histogram PDF.

To do this in a hardware architecture we construct a 5× 5
kernel convolver. There are many examples and literature that
attempt to solve this problem [11], [2]. An important subject
to take into account is related to the convolution operation
in the histogram edges and how to operate with the kernel
pixels that fall out of the histogram. In order to achieve the
best performance and minimum complexity a mixed solution
is carried out. In the top and bottom border a zero-padding
solution is adopted, meaning that the kernel values which
fall out of the histogram shape are equal to zero and do not
affect the final pixel value. The left and right borders consider
previous rows pixels, so a wrap-around method is implemented
so that kernel pixels which fall out of the histogram shape take
values of pixels on the other side as shown in Fig. 2.

   

0 0 0 0 0
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0 0 0 0 0

Fig. 2. Proposed mixed method for kernel operations in the borders for a
5× 5 image with a 3× 3 kernel.

The hardware architecture consists on three mayor modules:
a FIFO queue, a convolution module and a control block, as
show in Fig 3. The FIFO queue needs at least



Mininum required pixels = n× (k − 1) + k (1)

with k equals to the kernel size, i.e. the available di-
rections to store pixels values during the convolution [3].
In the proposed architecture k = 5 , n = 32 and
Mininum required pixels (M) = 133. The FIFO queue
is designed as an embedded block RAM memory. Due to this
design it is not possible to use the exact previous value in
1 so that a power of two approximation is needed. We can
approximate it with the formula:

FIFO queue length = 2log2(n)+dlog2(k)e (2)

This will ensure that the minimum value that fulfils the size
requirement is used. In this particular application the FIFO
queue size will have 256 addressable directions, with n = 32
and k = 5.

The convolution module performs a 5×5 kernel operation in
two dimensions. The hardware design inputs are the 25 pixel
values of the convolution. It takes 5 cycles to perform all the
convolution operations. Each cycle multiplies the pixel values
by the kernel weight and accumulates the result. Finally, in
the fifth cycle the final convolution result is returned. The
hardware design includes five multiplexors and five multi-
pliers. This reduces the necessary resources on the FPGA.
The convolution module also has the kernel definition. It is
possible to operate with kernels smaller than 5 × 5, but it is
not recommended due to the efficiency loss, since it always
needs five cycles to complete the convolution.

Fig. 3. Architecture design overview for Kernel Convolution module.

The control block is the convolution’s ”brain”, it connects
different image convolution parts, takes into account specials
situations like the first and last cycles, also ensure the correct
data flow between PDF RAM, FIFO queue and convolution
module. During the first cycles, the FIFO queue will store 2×n
zeros and the first M pixels, one per cycle. Once this charge
phase is finished it will start to produce results. It takes seven
cycles per pixel or bin to return its convolved value. Thus, the
whole process takes a number of cycles equals to:

7n2 +M + 2n (3)

The regular convolution phase only needs 7 cycles because
in the Control block there are 20 registers that store the

used values extracted from the FIFO in previous cycles, so
that it only performs 5 loads from the FIFO queue to these
internal registers. This explains the regular convolution takes
five cycles in the middle phase. During the first cycle a push
is performed in the registers causing that the five oldest values
are popped out and replaced by new ones, as show in Fig 4.

Fig. 4. Internal register structure to store values during convolution.

The underlying hardware architecture works as follows:
once the first necessary values are stored in the FIFO queue it
starts to work in a seven cycle loop. The first cycle performs
a push in the internal registers. During the next five cycles,
new values are stored in registers waiting until the next push
to enter the convolution registers. In parallel a previous value
kernel convolution computation is being performed returning
the final result in the sixth cycle. The seventh (last) cycle
updates the PDF and FIFO queue direction values and also
keeps track of how many bins have been calculated so far.

C. KDE Model Evaluation

Once the KDE model is built the next step is to classify
the test instances in normal or abnormal. The test and train
KDE models are compared and the returned result is called
abnormality score. We propose two comparative methods to
obtain the score: one focused on achieving a fast performance,
conceptually easy and light in resource consumption; and the
other method uses the same method proposed in [1], based on
the Kullback-Leibler (KL) divergence [8].

The first method is a simple distance point by point between
the test KDE and the train KDE, calculating the difference
for each point in absolute value and then summing them all.
Then the result is normalized dividing by the total number of
histogram points and the sum of the used kernel values, ki,j .

AbsDiff =

∑
|xtrained − xtest|

numberOfPoints×
∑
ki,j

(4)

In order to continue and compare this work with the method
proposed in [1] we also implemented the KL divergence.
Additionally it offers a more robust and mathematically based
approach to the estimation of the differences between two
KDE models.

For two probability distributions P and Q, the Kullback-
Leibler divergence from any distribution Q to a reference
distribution P is defined as:



DKL(P‖Q) =
∑

P (i) log
P (i)

Q(i)
(5)

The trained model stored in the ROM and the test model
represented by the KDE function will be the P and Q distri-
butions respectively.

The proposed architecture algorithm follows a mathemat-
ically logical path. First, it gathers KDE values, one from
the convolution module and another from a pre-calculated
embedded block ROM which contains the trained KDE model.
Then data inputs enter a pipelined sequence of mathematical
blocks implementing the necessary operations. First the integer
inputs are transformed into floating point type. Afterwards,
a division, a logarithm, a multiplication and an accumulation
take place. Each mathematical block has a seven cycle latency
to adjust to the latency set by the convolution module. Hence,
when a new input comes its divergence will be added to DKL

value, 35 cycles later, and when the last bin in the KDE model
is convolved, the KL module needs 35 cycles to return the final
DKL value result.

IV. RESULTS

The aim of this paper is to propose a fast approximation
to build KDE functions. Thus, the tests measure how fast the
proposed architecture is and how much speed-up it achieves
versus other proposed works. Because of the laser process
reliability there are no anomalous data.

In order to measure the proposed work’s performance, a
complexity study is carried out. The total time in unit cycles
will be the sum of the three modules. The first module will take
s+ 2 cycles, with s equals to the number of data inputs. The
second and third modules are measured as one module since
they run in parallel. Therefore, the second and third total cycles
will be 7n2 +M + 2n cycles as seen in (3), plus 35 cycles
of the evaluation model (using KL divergence method). The
entire process takes a of 7n2+M +2n+s+36 cycles. In the
laser process problem with n = 25, k = 5 and s = 21500, it
takes 28, 901 cycles to finish one complete evaluation process.
At a clock frequency of 100MHz it will take 5.78 milliseconds.

To compare this result we calculated how many cycles
would take to complete the same problem when implementing
the kernels point by point. For each arriving point it will take
k2 cycles to store the data into the PDF, and it will take
7n2 +M + 2n + 35 to evaluate the model. Hence, the total
cycles needed are s×k2+7n2+M +2n+35. With the same
values for evaluation it will finish in 544, 895 cycles.

Comparing the two methods a 18,8× speed-up is achieved.
This speed improvement is based on the premise that s >> n.

Since we lack anomalous data, a test with simulated ex-
amples was carried out. The pattern is transposed and its KL
score is calculated. The results showed that these anomalous
patterns have scores up to 33 times higher than non anomalous
ones. The same simulated test was performed using the point
by point distance. The obtained anomalous score is up to 2.5
times higher in the transposed pattern. The KL divergence
comparison method performs better as expected.

Comparisons with others works are not possible because the
other papers are focused only on estimating PDF, whereas in
this work we also used it for anomaly detection.

V. CONCLUSION

We developed a novel approach to anomaly detection tak-
ing into account spatial information. The architecture uses a
kernel-based function to output an abnormality score. Com-
plexity magnitude studies showed how the convolution imple-
mentation improves the performance against a brute force built
kernel-based function.

The proposed architecture can work with any integer value
ranged between the lower an upper bound. This means that
the input values could also be the position given by the laser
mechanical pieces that control the spot during the pattern.

There are many potential future lines of improvement this
architecture. New parallel implementations might be inves-
tigated which improve how the cost scales with problem
size.The FPGAs parallel and easily pipelined nature can reduce
significantly the necessary cycles when building the PDF,
which takes almost 75% of the amount of cycles. New ways to
calculate the abnormality score will also worth investigating.
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Bayesian network-based anomaly detection for in-process visual inspec-
tion of laser surface heat treatment. Machine Learning for Cyber Physical
Systems, pp. 17-24, Springer, 2016.

[11] Ström, H. A Parallel FPGA Implementation of Image Convolution.. MSc
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