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Abstract

We are in the era of machine learning and the automatic discovery of knowledge from data

is increasingly used to solve problems in our daily life. A key to successfully design use-

ful intelligent algorithms is to be able to model the uncertainty that is present in the real

world. Bayesian networks are a powerful tool that models uncertainty according to probabil-

ity theory. Although the literature contains approaches that learn Bayesian networks from

high dimensional datasets, traditional methods do not bound the inference complexity of the

learned models, often producing models where exact inference is intractable.

This thesis focuses on learning tractable Bayesian networks from data, and contains the

following five contributions. First, we propose strategies for learning Bayesian networks in the

space of elimination orders (i). In this manner, we can efficiently bound the inference com-

plexity of the networks during the learning process. This is specially useful in problems where

data is incomplete. In these cases, the most common approach to learn Bayesian networks

is to apply the structural expectation-maximization algorithm, which requires performing

inference at each iteration of the learning process. Taking advantage of the reduced inference

complexity of the models, we propose a new method with the purpose of guaranteeing the

efficiency of the learning process while improving the performance of the original algorithm

(ii).

Additionally, we study the complexity of multidimensional classification, a generaliza-

tion of multilabel classification, in Bayesian networks. We provide upper bounds for the

complexity of the most probable explanations and marginals of class variables conditioned

to an instantiation of all predictor variables (iii). We use these bounds to propose efficient

strategies for limiting the complexity of multidimensional Bayesian network classifiers during

the learning process. With the objective of improving the performance of these models, we

also propose methods for the discriminative learning of multidimensional Bayesian network

classifiers (iv).

Finally, we address the problem of predicting seizure freedom in patients that have un-

dergone temporal lobe epilepsy surgery (v). For that, we use a multidimensional Bayesian

network classifier, which is specially well fitted to model the relationships among the class

variables, i.e., seizure freedom at one, two and five years after surgery.





Resumen

Estamos en la era del aprendizaje automático y el descubrimiento automático de conocimien-

tos a partir de datos se utiliza cada vez más para resolver problemas en nuestra vida diaria.

Una clave para diseñar con éxito algoritmos inteligentes útiles es poder modelar la incer-

tidumbre que está presente en el mundo real. Las redes bayesianas son una herramienta

poderosa que modela la incertidumbre de acuerdo con la teoŕıa de la probabilidad. Aunque

la literatura contiene métodos que aprenden redes bayesianas a partir de conjuntos de datos

con alta dimensionalidad, los métodos tradicionales no limitan la complejidad de inferencia

de los modelos aprendidos, y a menudo producen modelos en los que la inferencia exacta es

intratable.

Esta tesis se centra en el aprendizaje de redes bayesianas tratables a partir de datos y

contiene la siguientes cinco contribuciones: Primero, proponemos estrategias para aprender

redes bayesianas en el espacio de órdenes de eliminación (i). De esta manera, podemos

acotar de manera eficiente la complejidad de inferencia de las redes durante el proceso de

aprendizaje. Esto es especialmente útil en problemas donde los datos están incompletos. En

estos casos, el enfoque más común para aprender redes bayesianas es aplicar el algoritmo

de esperanza-maximización estructural, que requiere realizar inferencia en cada iteración del

proceso de aprendizaje. Aprovechando la reducida complejidad de inferencia de los modelos,

proponemos un nuevo método con el propósito de garantizar la eficiencia del proceso de

aprendizaje y a la vez mejorar el rendimiento del algoritmo original (ii).

Además, estudiamos la complejidad de la clasificación multidimensional, una generali-

zación de la clasificación multi-etiqueta, en redes bayesianas. Obtenemos cotas superiores

para la complejidad del cómputo de las explicaciones más probables y de probabilidades

marginales de las variables clase dado el valor de todas las variables predictoras (iii). Uti-

lizamos estos ĺımites para proponer estrategias eficientes para acotar la complejidad de los

clasificadores multidimensionales basados en redes bayesianas durante el proceso de apren-

dizaje. Con el objetivo de mejorar el rendimiento de estos modelos, proponemos métodos para

el aprendizaje discriminativo de clasificadores multidimensionales basados en redes bayesianas

(iv).

Finalmente, abordamos el problema de predecir la ausencia de ataques en pacientes con

epilepsia en el lóbulo temporal tras someterse a ciruǵıa (v). Para ello, utilizamos un clasifi-

cador multidimensional basados en redes bayesianas, que están especialmente diseñados para

modelar las relaciones entre las variables clase, es decir, ausencia de ataques epilépticos uno,

dos y cinco años después de la ciruǵıa.
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Chapter 1
Introduction

Machine learning is the science of getting computers to learn by themselves by generalizing

from datasets. During the last years, machine learning algorithms have been extensively used

to aid humans in all sort of real-world problems, including medical diagnosis, neuroscience,

speech recognition, computer vision and sports analytics. The models built from the data

can be used to get predictions of the outcome of certain events and to reason about the

phenomenas collected in the data. These models are also useful to hide the complexity of the

real world, and therefore simplify the representation of the problems that we are facing.

As most of the application domains of machine learning involve uncertainty, robustly

dealing with uncertainty is a must if we aim to produce models that are useful in practice.

Bayesian networks (BNs) address this problem applying probability theory, that is long estab-

lished, using probabilities to indicate different degrees of certainty. A BN represents a joint

probability distribution as a product of conditional distributions. It is an intuitive graphical

representation in the form of a directed acyclic graph (DAG), where the nodes represent

the variables of the model and the arcs represent the probabilistic relationships between the

variables. This explicit representation allows BNs to be consulted or modified by experts.

Moreover, BNs are self-explanatory, i.e., they do not only give solutions to problems, but

they also provide a justification.

One of the main limitations of BNs is that applying them in high dimensional domains

is sometimes intractable. Learning BNs from data is an NP-complete problem [Chickering,

1996], but there are several heuristics that can be used to learn these models from large

datasets [Spirtes et al., 2000; Gámez et al., 2011; Scanagatta et al., 2018a]. Although it is

NP-hard to perform exact [Cooper, 1990] or approximate [Dagum and Luby, 1993] inference

in general BNs, exact inference becomes tractable in BNs with bounded treewidth. Thus,

bounding the treewidh of the models during the learning process would ensure the tractability

of the output BNs.

Tractable inference also allows us to address other problems in which the complexity

of inference is the bottleneck, such as learning models from incomplete datasets. During

inference, BNs can deal with missing values via marginalization. The use of the structural

expectation-maximization (SEM) algorithm [Friedman, 1997] is the most common approach

1
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toward learning BNs from incomplete datasets. However, its main limitation is its demanding

computational cost, caused mainly by the need to perform inference at each iteration of the

algorithm. Therefore, ensuring the tractability of the models is essential for the efficiency of

SEM.

Other problem that can directly benefit from learning BNs of bounded treewidth is multi-

dimensional classification, which consists of obtaining the most probable explanation (MPE)

of the class variables conditioned on the value of the predictor features. In this problem,

identifying the relationships between the class variables is key to correctly classify all the

class variables simultaneously. Multidimensional BN classifiers (MBCs) [van der Gaag and

de Waal, 2006] are a generalization of the well-known BN classifiers. They are BNs with a

restricted network topology, and their structures explicitly represent the relationships among

the class and feature variables. Moreover, they can compute the posterior probability of

the class variables given the features, which is specially useful when point estimates (for the

classes) are not informative enough.

1.1 Hypothesis and objectives

For all the methods proposed in this thesis we assume that the input datasets are drawn from

an existing joint probability distribution over a set of categorical variables. All the instances

in the datasets are assumed to be independent and identically distributed. By default, we

assume that the input datasets are fully observed. The algorithms that specifically address

incomplete datasets assume that values are either missing completely at random or missing

at random.

This work is motivated by the next hypothesis:

• The use of efficient algorithms for searching in the combined space of directed acyclic

graphs and elimination orders will allow us to learn bounded treewidth Bayesian net-

works from high dimensional datasets.

The main objectives of the thesis are formulated according to the above hypothesis:

• Describe a framework to efficiently move in the space of elimination orders (EOs) during

BN structure search.

• Introduce new methods in a BN structure learning algorithm to obtain bounded treewidth

BNs.

• Propose a tractable method for learning BNs from incomplete datasets.

• Study the complexity of inference in MBCs and apply the results to learn tractable

MBCs.

• Propose strategies for the discriminative learning of MBCs.

• Use MBCs to model surgery outcome at different time scales for patients with temporal

lobe epilepsy (TLE).
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1.2 Document organization

This thesis is organized as follows:

• Chapter 1 gives an introduction to the problem of learning tractable BNs from data

and shows the motivations and organization of this work.

• Chapter 2 contains some definitions on the topic of BNs, and reviews the background

of the topics addressed in this thesis. Namely, it includes an overview of inference

complexity in BNs, structure learning algorithms, methods for learning BNs from in-

complete datasets, multidimensional classification with BNs and discriminative learning

of BNs.

• Chapter 3 provides our proposal for learning tractable BNs from data by searching in

the space of EOs.

• Chapter 4 addresses the problem of efficiently learning BNs from incomplete datasets.

• Chapter 5 analyzes the computational complexity of most probable explanations in

MBCs and proposes a new algorithm for learning tractable MBCs.

• Chapter 6 proposes strategies for the discriminative learning of MBCs.

• Chapter 7 provides an MBC for predicting seizure freedom in patients with TLE one,

two, and five years after surgery.

• Chapter 8 gives our conclusions, suggests future research lines, and lists the published

contributions derived from this thesis.
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Chapter 2
Background

2.1 Bayesian networks

A BN B represents a joint probability distribution over a set of discrete random variables

X = {X1, . . . , Xn}. A BN is a pair B = (G,θ), where G is the structure and θ is the vector

of parameters P(Xi|PaGXi) that represent the conditional probability distributions (CPDs)

of each variable Xi ∈ X given its parents in the structure. Structure G encodes conditional

independences among triplets of variables (local Markov property), i.e., each variable Xi

is independent of its non-descendants given its parents PaGXi . Hence, the joint probability

distribution can be factorized as

P(X1, . . . , Xn) =
n∏
i=1

P(Xi|PaGXi).

Figure 2.1 shows the BN Earthquake. It models the behaviour of an alarm that can be

activated by burglars or by an earthquake, and the reactions of John and Mary (if they call

or not) to the activation of the alarm. All the variables in the BN are Boolean, and they

represent the next events: there is a burglary (B), there is an earthquake (E), the alarm

activates (A), John calls (J), and Mary calls (M).

The parameters of the network are represented in conditional probability tables. For

example, the parameters of A show that the probability of activation of the alarm is higher

if there is a burglary and there is not an earthquake (P(A = t|B = t, E = g) = 0.94) than

if there is an earthquake and there is not a burglary (P(A = t|B = f,E = t) = 0.29), or

that there is more probability that John calls (P(J = t|A = t) = 0.9) than that Mary calls

(P(M = t|A = t) = 0.7) if the alarm is activated. The structure of a BN can be used to

discover conditional independences among subsets of variables. Conditional independence is

defined as:

Definition 2.1. (Conditional independence): Let XA, XB and XC be three disjoint sets

of nodes in a DAG G. Given a probability distribution P, XA and XB are conditionally

independent given XC if and only if:

5
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0.001 0.999
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t f

0.002 0.998
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B E t f

t t 0.95 0.05
t f 0.94 0.06
f t 0.29 0.71
f f 0.001 0.999

P(J |A)

A t f

t 0.9 0.1
f 0.05 0.95

P(M |A)

A t f

t 0.7 0.3
f 0.01 0.99

Figure 2.1: BN Earthquake.

P(XA,XB|XC) = P(XA|XC) ·P(XB|XC).

We use (XA ⊥ XB|XC)P to denote that in P, XA and XB are conditionally independent

given XC .

A way of inducing the independences encoded in a BN is to analyze its graph structure

using the concept of d-separation [Geiger et al., 1990; Pearl, 1995, 1988].

Definition 2.2. (d-separation): Let XA, XB and XC be three disjoint sets of nodes in a

DAG G. Let T be the set of possibles trials from any node Xa ∈ XA to any node Xb ∈ XB,

where a trial in the network is a succession of edges in G, no matter their directions. Then

XC blocks a trial TI ∈ T if one of the following holds:

1. TI contains a chain Ti−1 → Ti → Ti+1 such that Ti ∈ XC .

2. TI contains a fork Ti−1 ← Ti → Ti+1 such that Ti ∈ XC .

3. TI contains a collider Ti−1 → Ti ← Ti+1 such that Ti and any of its descendants do not

belong to XC .

If all the trials in T are blocked by XC , then XC d-separates XA and XB, which is expressed

by (XA ⊥ XB|XC)G.

The relation between the topological properties of directed graphs and the conditional

independences of their underlying probability distribution is defined by the concept of I-map

[Pearl, 1988].

Definition 2.3. (I-map): Let XA, XB and XC be three disjoint sets of nodes in a DAG G.

Then G is an I-map of a probability distribution P if:
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(XA ⊥ XB|XC)G =⇒ (XA ⊥ XB|XC)P

This means that if G is an I-Map of P, if two set of nodes XA and XB are d-separated

by another set of nodes XC in G, then XA and XB are conditionally independent in P given

XC . Also, any variable in P is conditionally independent of the rest of the variables given its

Markov blanket [Pearl, 1988].

Definition 2.4. (Markov blanket): Let B be a BN over X = {X1, X2, . . . , Xn}. The

Markov blanket of any variable Xi ∈ X in B (MB(Xi)) is the set of variables composed by

the parents of Xi, its children, and the parents of its children.

BNs can be formally defined as follows:

Definition 2.5. (Bayesian network): Let P be a probability distribution over a set of

variables X , then a Bayesian network B is composed of a DAG G and a set of conditional

probability distributions θ such that:

• Every node Xi in G represents a variable in X , and has a conditional probability distri-

bution θXi = P(Xi|PaGXi) associated to it.

• G is a minimal I-map of P. That is, no arcs can be removed from G without negating

the I-map property.

2.2 Inference in Bayesian networks

Probabilistic inference can be used to refer to multiple problems in BNs. Some well-known

inference problems are: evidence propagation, finding the maximum a posteriori (MAP)

hypothesis, and computing the MPE. Evidence propagation entails finding the posterior

probability P(Xq|e) of a set of query variables Xq conditioned on evidence e. It can be used

for some key tasks such as prediction and diagnosis. Finding the MAP consists of searching

the most probable configuration of a set of variables in a BN for a given evidence. The

MPE is a special case of MAP that involves searching the most probable configuration of all

variables not instantiated in a BN for a given evidence. Kwisthout [2011] provides a thorough

overview of the complexity of many MPE and MAP variants.

In this thesis, we use inference complexity to refer to the complexity of evidence propaga-

tion in BNs. Exact inference in BNs is generally NP-hard [Cooper, 1990], and approximate

inference is commonly used when exact inference is intractable. Approximate inference in

BNs is also NP-hard [Dagum and Luby, 1993], and, although it has been useful for solving

some otherwise intractable problems, it has some major drawbacks. It degrades the responses

output by the model, and hardly any of these algorithms offer any guarantees of convergence.

The message-passing (MP) algorithm [Pearl, 1982; Kim and Pearl, 1983] can perform

exact linear time inference in the number of variables of any BN B when its topology is a

polytree 1. However, there are many situations where polytrees are not representative enough,

1A polytree is a directed acyclic graph whose underlying undirected graph is a tree.
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and this restriction is therefore too strict in practice. Inference in BNs with loops is far from

straightforward, and we cannot use MP to perform exact inference in this type of networks.

Although MP has been adapted to deal with loops, the resultant method, called loopy belief

propagation [Pearl, 1988], provides only approximate results. Most exact inference methods

for graphs with loops are based on variable elimination (VE) [Shachter, 1990; Zhang and

Poole, 1994], recursive conditioning [Pearl, 1985; Darwiche, 2001], and junction tree (JT)

belief propagation [Shenoy and Shafer, 1990; Jensen et al., 1990].

2.2.1 Elimination orders, treewidth and inference complexity

VE is one of the most straightforward methods for inference in BNs. It successively eliminates

the variables of a network until it yields the answer to a specified query. This algorithm is

typically defined in terms of factors. A factor is a function that maps value assignments of

a set of random variables to real positive numbers; CPDs are an example of factors. The

elimination of a variable Xi includes outputting the product of all the factors containing Xi

and marginalising out Xi, producing a new factor φi. The order in which the variables are

removed is called the elimination order. An EO of a set of variables X = {X1, . . . , Xn} is a

permutation π = (π(X1), . . . , π(Xn)) of X . We use (Xi < Xj)π to denote that Xi must be

eliminated before Xj given π. The sequence of factors induced by an EO π in graph G are

the factors obtained after eliminating each node Xi in G acording to the EO π.

Inference complexity is influenced by the selection of the EO [Dechter, 1999]. To provide

a formal definition of optimal EO, we must first introduce the concept of cluster [Darwiche,

2009]:

Definition 2.6. (Cluster) Let φ1, . . . , φn be the sequence of factors induced by an EO π in

graph G. Cluster Ci is defined as the set of random variables in the domain of factor φi.

The optimality of an EO depends on its width.

Definition 2.7. (Optimal EO) Let C = (C1, . . . , Cn) be the sequence of clusters induced

by an EO π in graph G. The width of π in G, which we denote as width(G, π), is the size

(number of variables) of its largest cluster in C minus one. We refer to the EO with the

minimal width for G as the optimal EO.

Note that our use of optimal EO is analogous to optimal graph triangulations [Darwiche,

2009], and we do not consider the best EO for specific inference queries. Inference complexity

in BNs is typically evaluated in terms of their treewidth.

Definition 2.8. (Treewidth) The treewidth of a graph G is the width of the optimal EO for

G.

The notion of treewidth was introduced by Robertson and Seymour [1986]. Intuitively,

the treewidth of a BN B can be understood as a measure of similarity between B and a tree

(e.g., a tree has treewidth one). The computational cost of VE, recursive conditioning, and
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JTs is exponential in the treewidth of B. Thus, bounding the treewidth of B entails limiting

its inference complexity [Kwisthout et al., 2010].

The literature also includes approaches that are not always exponential in the treewidth.

In this case, tractable exact inference does not necessarily call for models with a low treewidth.

These methods exploit the local network structures [Boutilier et al., 1996; Darwiche, 2003],

or the exchangeability between the model variables [Niepert and van den Broeck, 2014].

Nevertheless, it is extremely challenging to consider the above properties during the learning

process. Therefore, in these thesis we focus on learning bounded treewidth BNs.

The combined space of EOs and DAGs is redundant. This means that there may be

multiple EOs that induce the same factors (using VE) for the same BN. We define the

equivalence of two EOs as:

Definition 2.9. (Equivalence of EOs) Let B be a BN over X , and π1 and π2 two EOs

of X . Let Clsπ1(Xi) and Clsπ2(Xi) be the clusters induced by visiting node Xi during VE

using the EOs π1 and π2, respectively. π1 and π2 are equivalent for B if, for each Xi ∈ X ,

Clsπ1(Xi) = Clsπ2(Xi).

The completeness of a set of EOs S for B ensures that if an EO πi belongs to S all the

EOs that are equivalent to πi for B also belong to S. Note that the completeness of S does

not imply that all the EOs in S are equivalent for B.

Definition 2.10. (Completeness of a set of EOs) A set of EOs S is complete for B if

there are no two equivalent EOs πi, πj, with πi ∈ S and πj /∈ S, for B.

For example, assume a BN B over variables X = {X1, . . . , Xn} that represents the product

of marginals P(X1, . . . , Xn) = P(X1)P(X2) · · · P(Xn). Given B, VE induces the same factors

for any EO of X1, . . . , Xn. Hence, all the n! possible EOs are equivalent for B, and there is

a single complete set of EOs that contains all the permutations of X .

2.2.2 Treewidth estimation

It is NP-hard to exactly compute the treewidth of a BN [Arnborg et al., 1987]. There are

many approaches whose time complexity is exponential in the number of network variables

[Shoikhet and Geiger, 1997; Fomin et al., 2004; Bodlaender et al., 2006; Fomin and Villanger,

2012]. In practice, heuristics are most often used. As the treewidth of a graph G is given

by the width of its optimal EO, some well-known heuristics estimate the treewidth of G by

searching for good EOs for G. The list below includes some popular approaches:

• Greedy search methods: Two widely used strategies are to eliminate, at each iteration,

the smallest degree node (i.e., the node with fewest neighbors) in the graph [Markowitz,

1957] or the node that produces the minimum number of fill-in (min-fill) edges [Kjærulff,

1990]. In practice, the min-fill algorithm performance is generally slightly better, but

its computational cost is higher.
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• Graph recognition techniques: The lexicographic breadth-first search algorithm (LEX)

[Rose et al., 1976] and the maximum cardinality search (MCS) algorithm [Tarjan and

Yannakakis, 1984] return an optimal EO only if the input graph is chordal2. The

chordality assumption is very restrictive in practice, but there are two variants of these

methods, respectively called LEX-M [Rose et al., 1976] and MCS-M [Berry et al., 2004],

that also search for a good EO if the graph is not chordal.

• Local search and evolutionary techniques: Some well-known heuristics like simulated

annealing [Kjærulff, 1992], genetic algorithms [Larrañaga et al., 1997], or tabu search

[Clautiaux et al., 2004] have been used to find good EOs.

• Another approach focuses on finding the best graph separators, recursively splitting the

clusters of an initial tree decomposition into smaller components [Koster, 1999]. Most

methods using this strategy give theoretical guarantees of the treewidth upper bound.

Bodlaender and Koster [2010] provide an overview of the different heuristics used for com-

puting upper bounds for graph treewidth, including the above methods. Their experiments

suggest that greedy search methods usually provide the best trade-off between performance

and efficiency.

Sometimes it is sufficient to check if the treewidth of a model is less than or equal to k

rather than exactly computing the treewidth of G; for instance in the problem of learning

models with bounded treewidth (see Section 2.3.1). Although this is an NP-complete problem

[Arnborg et al., 1987], checking if tw(G) ≤ k requires linear time in the number of variables

for a fixed k. Nevertheless, the time complexity for solving the above inequality is super-

exponential in the treewidth of G [Bodlaender, 1993], which means that it may be intractable

unless k is very small.

In these thesis we focus on learning BNs with bounded treewidth. To bound the treewidth

of all the BN candidates during the learning process we propose an efficient heuristic to

incrementally search in the space of EOs.

2.3 Learning the structure of Bayesian networks

Learning the BN structure is typically performed by a scoring metric that evaluates each

candidate network with the data (score+search). Most scoring functions can be classified as

Bayesian or information theory metrics. The former compute the posterior probability distri-

bution of the model P (B|D) given a prior distribution over the possible networks conditioned

on the data D. Some popular examples are Bayesian Dirichlet for likelihood-equivalence

(BDe) [Heckerman et al., 1995] and K2 [Cooper and Herskovits, 1992] scoring functions.

Information theory metrics measure the compression that can be achieved by the BN over

the data. Optimizing data compression is equivalent to maximizing log-likelihood, which is

2A graph is chordal if all cycles of four or more nodes have an edge that connects two nodes of the cycle
but is not part of the cycle.
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defined as:

`(B|D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Mijk log

(
Mijk

Mij

)
,

where qi and ri are number of possible configurations of PaGXi (G is the structure of B) and

Xi, respectively, Mijk is the number of cases of D where PaGXi and Xi are in their j-th and

k-th configuration, respectively, and Mij is
∑ri

k=1Mijk.

As optimizing the log-likelihood during the structure search leads to fully connected DAG

structures, it is necessary to set constrains to avoid overfitting. A common approach is to

penalize the representation complexity of BNs, which is given by the number of parameters.

These metrics are usually of the following form:

score(D,B) = `(B|D)− pen(B,D), (2.1)

where `(B|D) is the log-likelihood of B given D and pen(B,D) is a penalty function that can

depend on B and D.

In the Akaike information criterion (AIC) [Akaike, 1974] pen(B,D) = |B|, where |B| is

the number of parameters of B. The Bayesian information criterion (BIC), that is based on

the Schwarz Information Criterion [Schwarz, 1978], also penalizes the length of D:

BIC(B,D) = `(B|D)− 1

2
log (M)|B|,

where M is the number of cases in D. Note that BIC is equivalent to the minimum description

length (MDL) [Bouckaert, 1993; Lam and Bacchus, 1994] as a BN scoring function. Carvalho

[2009] provides a thorough overview of both Bayesian and information theory metrics.

When data is complete, the decomposability property of the above scoring functions allows

for efficient learning algorithms based on local search methods [Cooper and Herskovits, 1992;

Wang et al., 2004; Gámez et al., 2011; Scanagatta et al., 2018a].

Other well-known approach is to consider the learning process as a constrain satisfaction

problem, trying to get the conditional independences between the variables by using a sta-

tistical hypothesis test, and then selecting the model that fits better the dependences and

independences obtained in the tests [Spirtes et al., 2000; Mahdi and Mezey, 2013]. These

techniques do not use an explicit score metric to test the likelihood between the network

and the data, and instead they use statistical tests to get the skeleton of the network (edges

without orientation) and then they orient the edges by recovering the v-structures of the net-

work. Hybrid methods combine both approaches [Tsamardinos et al., 2006]. Usually, they

use hypothesis tests to build the skeleton of the network and local search techniques to find

the direction of the arcs.
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2.3.1 Previous work on learning low inference complexity Bayesian net-

works

Most approaches that address the problem of inference complexity during the learning pro-

cess use a bound k on the model treewidth (i.e., bounded treewidth models). They reject

any candidate G for which tw(G) > k, where tw(G) is the treewidth of G. Learning bounded

treewidth BNs is an NP-hard problem [Korhonen and Parviainen, 2013]. The literature con-

tains exact methods for this problem that reduce the problem to either a weighted maximum

satisfiability problem [Berg et al., 2014] or mixed-integer linear programming formulations

[Nie et al., 2014; Parviainen et al., 2014]. These methods scale poorly with respect to the

number of model variables and model treewidth.

Elidan and Gould [2009] proposed a method that uses an incremental triangulation of

BNs during the structure search to output bounded treewidth models. Their method is

treewidth-friendly (i.e., each update of the triangulation does not increment its width by

more than one), and it basically applies the best chain of arc additions in each iteration given

a topological ordering of the variables. Its main limitation is that the method is restricted to

a single topological ordering of the variables in each iteration.

Nie et al. [2014] proposed an efficient approach that samples k -trees randomly and selects

the best BN structure whose moral graph is the sampled k -tree. As the convergence of the

sampling process can be a problem when the number of variables is not small, Nie et al. [2017]

also provided a strategy for moving in the space of k -trees and proposed a score (I-score) to

measure how well a k -tree fits the data. The authors showed that this measure is correlated

with the BDeu score of the learned networks.

Scanagatta et al. [2016] proposed a method (called k-greedy) for learning bounded tree-

width BNs from very large datasets. Before performing the structure search, k-greedy initial-

izes a cache of candidate parent sets for each node using the approach of Scanagatta et al.

[2015]. Then, it samples the space of orderings of variables, performing the next steps for

each order. First, an initial structure with the first k + 1 variables in the order is learned.

Depending on the value of k, k-greedy uses either an exact [Cussens, 2011] or an approxi-

mate [Scanagatta et al., 2015] structure learning method. Second, the structure incrementally

grows according to the chosen order, ensuring that at each step the moral graph of the struc-

ture is a partial k-tree. This process is repeated until the maximum allowed execution time

is met. More recently, Scanagatta et al. [2018b] improved k-greedy by proposing a heuris-

tic score for choosing the order in which the variables are visited. This heuristic ranks the

variables by comparing the highest-scoring parent set with the lowest scoring parent set that

do not exceed the treewidth bound. The resultant method is called k-MAX. As the former,

k-MAX requires predefining a maximum execution time to explore the space of solutions. Ex-

tensive experiments showed that both approaches consistently outperform some of the above

methods [Parviainen et al., 2014; Nie et al., 2014, 2017] for learning bounded treewidth BNs.

A limitation of k-greedy and k-MAX is that they only learn BNs whose reverse topological

order, when used as an EO, has at most width k.

There are also several approaches that learn JTs with bounded treewidth, usually called
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thin junction trees (TJTs) [Bach and Jordan, 2001]. This problem is NP-complete when the

bound on the treewidth k is greater than one [Karger and Srebro, 2001]. Chechetka and

Guestrin [2008] proposed a method that learns TJTs with probably approximately correct

guarantees in time O(nk), which is intractable when k is not very small. Shahaf and Guestrin

[2009] used the graph cuts algorithm [Ahuja et al., 1993] to pick the best separator in each

iteration during the learning process, requiring polynomial time in both n and k. As men-

tioned above, heuristics that use separators usually perform worse in practice than heuristics

that search for good EOs for estimating the treewidth of the models.

Some approaches use a penalization in the inference complexity instead of a hard con-

straint. Lowd and Domingos [2008] proposed the first method (LearnAC) to learn arithmetic

circuits (ACs)3 directly from data. This method penalizes the size of each circuit exploit-

ing the local structures of the models to learn networks that can be tractable even for high

treewidths. Moves in the space of ACs can be extremely computationally demanding, as

circuit structure can be huge. LearnAC uses a greedy approach to address these difficulties,

where the best split (i.e., conditioning the CPD of a variable to an instance of another vari-

able) is applied at each iteration. Like EOs, the order of splits can have a major effect on

network size, and this type of search process is not capable of reconfiguring the split ordering

during the learning process.

2.3.2 Learning Bayesian networks from partially observed data

Evaluating a structure according to any of the scores described in Section 2.3 involves esti-

mating the optimal parameters for each network candidate, which can be achieved efficiently

when the data is complete. However, in the presence of missing values or hidden variables,

it is not feasible to efficiently estimate the parameters because the network score does not

decompose.

The most popular optimization method for estimating the parameters from partially ob-

served data is the expectation-maximization (EM) algorithm [Dempster et al., 1977; McLach-

lan and Krishnan, 2008; Liao and Ji, 2009]. EM addresses the missing data problem by

selecting a starting point, which is either an initial set of parameters or an initial assign-

ment to the missing variables. Once we have a parameter set, we can apply inference to

complete the data, or conversely, once we have the complete data, we can estimate the set

of parameters using maximum likelihood estimation (MLE). EM iterates between both steps

until convergence.

Assume we have a BN B = (G,θ) over a set of variables X and a dataset D = {x1, ...,xM}.
Let O[m] be the variables whose values are observed (not missing) at the m-th instance of D.

EM uses the set of parameters θ to complete the data probabilistically (E-step), resulting in

the completed dataset D+. Obtaining D+ can be unfeasible in the majority of cases because

its cost is exponential in the number of missing values. Nevertheless, the expected sufficient

3ACs are DAGs in which the inner nodes are addition and multiplication nodes and the leaves are numeric
variables or constants. They have been adapted to perform inference in BNs [Darwiche, 2003].
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statistics (ESS) required for estimating a new set of parameters are obtained as follows:

ESSθ[X = x,PaGX = u] =

M∑
m=1

P(x,u|o[m],θ), (2.2)

where o[m] is the assignment of O[m] in D and ESSθ[X = x,PaGX = u] are the ESS, i.e.,

the expected counts in D of variable X and PaGX according to θ. Equation (2.2) requires the

performance of inference for each of the M instances in the worst case when all the instances

contain missing values. The new set of parameters is estimated from the completed dataset

(M-step):

θ̂x|u =
ESSθ[x,u]

ESSθ[u]
, (2.3)

where θ̂x|u are the estimated parameters of the CPD P(X|PaGX). Both steps are repeated

iteratively, and the likelihood of the parameters given D improves monotonically until conver-

gence. EM has also been studied in the context of Bayesian learning [Ramoni and Sebastiani,

1997; McLachlan and Krishnan, 2008]. However, in Chapter 4 we focus on the frequentist

approach.

In BNs [Lauritzen, 1995], the EM algorithm assumes a fixed structure G and optimizes

only the component θ of the pair B = (G,θ). When G is unknown, it is not straightforward

to apply EM. The structural EM algorithm (SEM) [Friedman, 1997] extends EM to learn

both the structure and parameters.

SEM includes structural learning in the M-step. Any score+search structure learning

method can be used for this purpose; however, the scoring function to be maximized must

be of the form described in Equation (2.1). SEM starts with a specified initial structure G0

and a set of parameters θ0. At each iteration, SEM selects the model and parameters with

the highest expected score given the previous assessment. The use of the expected score is

motivated by the next inequality [Koller and Friedman, 2009]:

score(D,B)− score(D,B0) ≥ score(D+,B)− score(D+,B0), (2.4)

where D+ is the result of completing dataset D with BN B0. Intuitively, if B has a greater

expected score than the model used to complete the data B0, then the score improvement

with respect to the observed data is guaranteed. Hence, Equation (2.4) ensures that the SEM

algorithm converges to a local optimum.

To compute the expected score of each BN candidate, the ESS (Equation (2.2)) are

required. When the structure changes, a new set of ESS must be obtained, which requires

the performance of inference in each case. This can be severely computationally demanding

if the inference complexity of the models is not bounded. Hereafter, we refer to this method

as soft SEM.

A less-demanding alternative is to complete the data according to its most probable

assignment (E-step) and to estimate the MLE parameters from the completed dataset (M-
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step) [Rancoita et al., 2016]. This strategy does not require the computation of ESS for each

change in the BN. Rather, the scores of all the BN candidates can be computed directly from

the completed dataset. We refer to this method as hard SEM. In hard SEM, the complete

dataset D+ is obtained by imputing the MPE of the missing values given the observed values

o[m] for each instance m of D:

h[m] = arg max
h[m]
P(h[m]|o[m],θ), (2.5)

where h[m] is an assignment of the missing values at the m-th instance of D.

The main difference between hard and soft SEM is that the first optimizes over two

objectives. In the E-step over the data completion D+ (see Equation (2.5)) and in the M-

step over the model (maxB score(D+,B)). Unlike soft SEM, the model selected by hard SEM

after the M-step is not guaranteed to have a greater score with respect to the observed data

than the previous candidate.

Limiting the inference complexity of the models is key to executing SEM efficiently. With

this objective, Scanagatta et al. [2018b] adopt the k-MAX algorithm in the M-step of hard

SEM. They call the resulting method SEM-kMAX.

A relevant detail regarding the implementation of SEM-kMAX is that it adopts hard

SEM rather than soft SEM. This is motivated by the unfeasibility of determining in advance

what statistics will be required during the structure search. As k-MAX precomputes the

scores beforehand at each iteration, in the majority of cases, it would be difficult to store

the required number of sufficient statistics in memory. Scanagatta et al. [2018b] demonstrate

that SEM-kMAX obtains promising results in the imputation experiments, yielding similar

imputation accuracy to other well-known imputation methods in significantly less time.

2.4 Multidimensional classification with Bayesian networks

Van der Gaag and de Waal [2006] introduced MBCs as an extension of BN classifiers to

multidimensional classification. MBCs are a special case of BNs with a restricted structure

topology. Bielza et al. [2011] defined MBCs as follows:

Definition 2.11. (MBC) An MBC is a BN B over a set of variables X = {X1, X2, . . . , Xn},
where X is partitioned into two sets C = {C1, . . . , Cd}, d ≥ 1, of class variables and F =

{F1, . . . , Fl}, l ≥ 1, of feature variables (d+l = n). The arcs in the structure G are partitioned

into three subsets, AC , AF , AB, such that:

• AC ⊆ C × C is composed of the arcs between the class variables having a subgraph

GC = (C, AC) –class subgraph– of G induced by C.

• AF ⊆ F × F is composed of the arcs between the feature variables having a subgraph

GF = (F , AF ) –feature subgraph– of G induced by F .

• AB ⊆ C × F is composed of the arcs from the class variables to the feature variables
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Class subgraph

C1 C2 C3 C4

Bridge subgraph

C1 C2 C3 C4

F1 F2 F3 F4 F5

Feature subgraph

F1 F2 F3 F4 F5

Figure 2.2: MBC structure.

having a subgraph GB = (X , AB) –bridge subgraph– of G induced by X connecting class

and feature variables.

Figure 2.2 shows an example of the structure of an MBC and its corresponding subgraphs.

The problem of multidimensional classification in MBCs involves getting the MPE of the

class variables given an instantiation of the feature variables, which is given by

c∗ = arg max
c∈ΩC

P(c|f) = arg max
c∈ΩC

P(c, f), (2.6)

where f is an instantiation of F and ΩC is the set containing all the possible configurations

of C.

2.4.1 Class-bridge decomposable multidimensional Bayesian network clas-

sifiers

An MBC is class-bridge decomposable [Bielza et al., 2011] if it can be decomposed into

multiple connected components, where each component is composed of all the nodes that are

connected by an undirected path in GC ∪ GB. Basically, the components of an MBC are the

connected graphs obtained after removing the arcs of the feature subgraph from this MBC.

Definition 2.12. (CB-decomposable MBC) A CB-decomposable MBC is a BN B whose

class subgraph and bridge subgraph are decomposed into r maximal components such that:

1. GC ∪ GB =
⋃r
i=1(GCi ∪ GBi), where GCi ∪ GBi, i = 1, . . . , r, are its maximal connected

components.

2. ChGCi ∩ ChGCj = ∅, with i, j = 1, . . . , r and i 6= j, where ChGCi and ChGCj denote the

children of all variables in Ci and Cj (the subsets of class variables in GCi and GCj ),

respectively.
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C1 C2 C3 C4

F1 F2 F3 F4 F5

(a) MBC structure

C1 C2 C3 C4

F1 F2 F3 F4 F5

(b) Connected components

C1 C2 C3 C4

F1 F2 F3 F4 F5

(c) Moralized connected
components

Figure 2.3: Connected components of an MBC.

Bielza et al. [2011] proved that exploiting the CB-decomposability of MBCs can reduce

the number of computations required to perform multidimensional classification. Specifically,

they showed that the MPE can be computed independently in each component, given that

max
c∈ΩC

P(c|f) ∝
r∏
i=1

max
ci∈ΩCi

∏
Cij∈Ci

P(cij |PaGCCij )
∏

Fijk∈Ch
GB
Cij

P(fijk|PaGBFijk ,PaGFFijk), (2.7)

where Ci is the set containing the class variables that belong to component i, ΩCi is the set

containing all the possible configurations of Ci, cij is the value in c of the j-th variable in Ci,
and fijk is the value in f of the k-th child of Cij in the bridge subgraph. This means that

it is possible to maximize over each maximal connected component independently, therefore

maximizing over lower dimensional spaces.

Let us consider the MBC shown in Figure 2.3, which can be CB-decomposed in two con-

nected components that contain nodes {C1, C2, F1, F2} and {C3, C4, F3, F4, F5}, respectively.

To classify an instance f = (f1, . . . , f5) we should get the MPE of (C1, . . . , C4) given f. By

Equation (2.7) we know that for any c = (c1, . . . , c4),

maxc∈ΩC P(c|f) ∝
(

maxc1,c2 P(c1)P(c2)P(f1|c1)P(f2|c1, c2, f1, f4),

maxc3,c4 P(c3)P(c4|c3)P(f3|c3, f2)P(f4|c4)P(f5|c4, f1, f4)
)
.

Thus, the MPE can be computed maximizing over (C1, C2) and (C3, C4) independently.

In Chapter 5 we refer to the moralized connected components of MBCs (Figure 2.3c) as the

prunded graph.
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C1 C2 C3 C4

F1 F2 F3 F4 F5

(a)

C1 C2 C3 C4

F1 F2 F3 F4 F5

(b)

Figure 2.4: Multidimensional classification with an MBC. In (a) the values f = (f1, . . . , f5)
of all the features are given, and multidimensional classification is equivalent to obtaining the
MPE (i.e., arg maxc∈ΩC P(c|f)). In (b) the values of F1 and F2 are missing, and multidimen-
sional classification is equivalent to obtaining the MAP (i.e., arg maxc∈ΩC P(c|f3, f4, f5)).

2.4.2 Complexity of most probable explanations in multidimensional

Bayesian network classifiers

Assuming that all the feature variables are observed, performing multidimensional classifica-

tion in an MBC B with class variables C = {C1, . . . , Cd} and feature variables F = {F1, . . . Fl}
is equivalent to obtaining the MPE of the class variables conditioned on an instance f of the

features. If there are unobserved feature variables, performing multidimensional classifica-

tion in B is equivalent to obtaining not the MPE in (C1, . . . , Cd) but the MAP. This can be

intractable even if the treewidth of B is bounded [Park, 2002].

Figure 2.4 shows an example of both cases where multidimensional classification in an

MBC is equivalent to obtaining the MPE, in (a), and the MAP, in (b), respectively.

Existing research addresses the complexity of multidimensional classification in MBCs

as the complexity of computing the MPE. Thus, they implicitly assume that MPE queries

will not contain missing values (i.e., the values of all the feature variables will be given).

Otherwise, the resulting MPE would provide the most probable instantiation of (C1, . . . ,

Cd, Fh1 , . . . , Fhk), where Fh1 , . . . , Fhk are the non-instantiated features. Note that the most

probable instantiation of (C1, . . . , Cd), that is equivalent to the MAP of the class variables

given an instantiation of the observed features in this case, may differ from the projection

to (C1, . . . , Cd) of the most probable instantiation of (C1, . . . , Cd, Fh1 , . . . , Fhk). In Chapter

5, we also focus on the case where all the feature variables are observed. Hence, we consider

that, to perform multidimensional classification, an MBC obtains arg maxc∈ΩC P(c|f).
MPE is generally NP-hard [Kwisthout, 2011] and known exact methods for MPE com-

putations in a BN B are exponential in the treewidth of G, where G is the structure of B.

Nevertheless, MPE can be computed in polynomial time in B if the treewidth of G is bounded

[Sy, 1992]. Given MBC structural constraints, further bounds on their inference complexity

have been found. De Waal and van der Gaag [2007] demonstrated that

treewidth(G) ≤ treewidth(GF ) + d,

where GF is the feature subgraph and d is the number of class variables. This means that

B could perform multidimensional classification in polynomial time if the addition of the
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treewidth of the feature subgraph and the number of class variables is bounded.

Furthermore, Kwisthout [2011] showed that for any CB-decomposable MBC with struc-

ture G
treewidth(G) ≤ treewidth(GF ) + |dmax|,

where |dmax| is the number of class variables of the component with the maximum number

of class variables. Hence, the MPE can be computed in polynomial time if the treewidth of

GF and the number of class variables of each component of G are bounded.

Pastink and van der Gaag [2015] focused on MBCs with an empty feature subgraph. To

bound the structure, they used

treewidth(GF̄ ) < treewidth(G′),

where GF̄ is the structure of an MBC with empty feature subgraph and G′ is the graph

obtained after moralizing GF̄ (see Figure 2.3c) and then removing all its feature nodes from

the moralized graph.

2.4.3 Previous work on learning multidimensional Bayesian network clas-

sifiers

The problem of learning MBCs from data has been addressed before. The literature contains

methods for learning different families of MBCs, depending on the type of class and feature

subgraphs that they can obtain (trees, forests, polytrees or DAGs). Here we denote the family

of the MBC using <class subgraph> – <feature subgraph> (e.g., Tree–DAG has a tree as

the class subgraph and a DAG as the feature subgraph). Figure 2.5 shows some of the most

popular MBC families.

Methods have been proposed for learning Tree–tree [van der Gaag and de Waal, 2006],

PolyTree–polytree [de Waal and van der Gaag, 2007] and DAG–DAG [Bielza et al., 2011]

MBCs. These approaches do not explicitly consider the inference complexity of the learned

models. Hence, they may lead to MBCs where the MPE cannot be solved efficiently, unless

the number of class variables is very small.

There are also other approaches in the literature that consider the complexity of the MBCs

during the learning process. Corani et al. [2014] proposed a method for learning sparse MBCs

with a forest class subgraph and an empty feature subgraph, and Borchani et al. [2010]

introduced the first method to learn CB-decomposable MBCs. However, neither provides

guarantees regarding the complexity of multidimensional classification in the models. Pastink

and van der Gaag [2015] proposed a method for learning Tree–empty MBCs of bounded

treewidth, providing an optional step to learn a forest feature subgraph, and guaranteeing the

tractability of the resulting models. The method computes the treewidth of each candidate

and rejects any that exceeds the treewidth bound.

Markov random fields have also been used for multi-label classification. Ghamrawi and

McCallum [2005] proposed two pairwise models, the collective multilabel classifier (CML)

and the collective multilabel classifier with features (CMLF). CML learns a factor between
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(a) Tree–tree

C1 C2 C3 C4 C5

F1 F2 F3 F4 F5 F6

(b) PolyTree–polytree

C1 C2 C3 C4 C5

F1 F2 F3 F4 F5 F6

(c) DAG–DAG

Figure 2.5: Widely used MBC families ordered from the least general (a) to the most general
(c). Note that Tree–tree is a special case of polyTree–polytree, which is likewise a special
case of DAG–DAG.

each pair of class variables and between each pairwise combination of a class variable and

a feature variable. CMLF also learns the latter factors, but instead of learning the former

it learns a factor between each combination of two class variables and a feature variable,

increasing the expressiveness of CML. Exact inference in these models requires computing a

factor over all the possible configurations of the class variables. Hence, it is intractable when

the number of class variables is not small. Arias et al. [2016] proposed a method that learns

an undirected graph between the class variables, and learns a base model (e.g., näıve Bayes)

for each pair of connected class variables. The base model gives a factor over a pair of class

variables given an instance of the feature variables. The drawback of this approach is that

the number of base models is huge if the graph between the class variables is not sparsely

connected.

In Chapter 5 we bound the complexity of (the most general) DAG–DAG MBCs by bound-

ing the treewidth of a transformation of their structures (similar to the transformation used

by Pastink and van der Gaag [2015]). However, we do not bound the treewidth of their com-

plete structures. We use these bounds to learn MBCs where multidimensional classification

can be performed in polynomial time. We show that even high treewidth MBCs may be

tractable given other structural constraints.

2.4.4 Discriminative learning of Bayesian networks

In classification, generative methods usually result in suboptimal classification performance

compared to discriminative methods [Friedman et al., 1997; Grossman and Domingos, 2004].

Analogously, in multidimensional classification, wrapper approaches that optimize a discrim-
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inative score (e.g., accuracy) show promising results compared to generative methods [Bielza

et al., 2011].

An alternative that has been successfully applied for learning BN classifiers is to directly

optimize the conditional log-likelihood (CLL) of the models instead of a generative score (eg.,

log-likelihood or information gain). CLL is defined as:

CLL(B|D) =

M∑
m=1

logP(c[m]|f [m],θ),

where θ are the parameters of B. It can also be formulated according to the log-likelihood:

CLL(B|D) = `(B|D)− `F (B|D), (2.8)

where

`F (B|D) =
M∑
m=1

logP(f [m]|θ).

Analogously, the log-likelihood can be formulated as:

`(B|D) = CLL(B|D)− `F (B|D),

Friedman et al. [1997] speculated that one of the problems of optimizing log-likelihood is

that often the term `F (B|D) is much bigger than CLL(B|D), and therefore the optimization

focuses on maximizing `F (B|D) rather than CLL(B|D). The problems of the discriminative

learning of the parameters and the structure of BN classifiers have been studied separately.

Greiner et al. [2005] proposed the extended logistic regression (ELR) algorithm, that uses

conjugate gradient [Bishop, 1995] to optimize CLL. Roos et al. [2005] showed that learning the

parameters in BN classifiers is equivalent to solving logistic regression when their structure

satisfies a certain graph-theoric property. Su et al. [2008] provided a discriminative parameter

learning method, called discriminative frequency estimate, that yields similar accuracy than

ELR with a significantly lower computational cost. Zaidi et al. [2017] used discriminative

learning as an initialization to speed-up the process, and then updated the parameters using

a variant of gradient ascent, maximizing CLL.

To learn the structure of BN classifiers in a discriminative manner, Grossman and Domin-

gos [2004] found that the simple heuristic of estimating the parameters via maximum like-

lihood and optimizing the conditional likelihood of the structure was both accurate and

efficient. Their experiments suggested that optimizing the CLL of both the parameters and

the structure does not improve the results of the simpler approach, where the maximum

likelihood parameters are chosen.

Carvalho et al. [2011] proposed an approximation of the CLL for binary classification

called factorized CLL (fCLL) with several desirable properties. Namely, the score is decom-

posable, and the approximation is unbiased and has minimum variance. Carvalho et al. [2013]

extended fCLL to multi-class problems.
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To the best of our knowledge, the only proposals that focus on the discriminative learning

of MBCs are wrapper methods that guide the structure search according to a measure of

accuracy [Borchani et al., 2010; Bielza et al., 2011]. However, these approaches are usually

extremely computationally demanding when the number of class variables is not very small.



Chapter 3
Learning tractable Bayesian

networks in the space of elimination

orders

A common approach for learning BNs from data is to perform a search process optimizing a

scoring function that measures the quality of each structure. Well-known scoring functions

such as BDe [Heckerman et al., 1995], K2 [Cooper and Herskovits, 1992], AIC [Akaike, 1974],

BIC [Schwarz, 1978] or MDL [Bouckaert, 1993; Lam and Bacchus, 1994] implicitly or explicitly

penalize the number of network parameters. The representation complexity, which is given

by the number of network parameters, does not place an upper bound on the inference

complexity of the models, and a model with a low representation complexity can have a high

inference complexity. Thus, more precise estimations of the inference complexity are required

to ensure the tractability of models during the learning process.

A good indicator of the inference complexity of a BN B with structure G is the treewidth

of G, given that the most widely used exact inference methods for BNs, like VE or message

passing in JTs, can be computed in exponential time in tw(G). It is NP-hard to determine

the treewidth of a graph [Arnborg et al., 1987], and there are no efficient exact methods

for solving this problem. Many heuristics have been proposed for treewidth estimation (see

Section 2.2.2), but most are very computationally demanding. This is especially important

when BNs have to be learned from data, since we have to compute the treewidth of each

candidate during the learning process to ensure tractability.

The treewidth of a graph G can also be expressed as the width of the optimal EO πopt

for graph G. This means that obtaining an optimal EO of G is equivalent to obtaining the

treewidth of G, and it is also an NP-hard problem. Hence, one way of getting an accurate

estimation of tw(G) is to find a good EO for G. It would often be intractable to get a good

EO from scratch for each candidate network during the structure search. As most structure

learning methods perform local changes in G during the learning process, a more efficient

solution to this problem is to incrementally update the EOs for each local change performed

23
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in G.

There are usually multiple equivalent EOs for G. This means that the combined space of

DAGs and EOs is highly redundant, and it would be extremely computationally demanding

to search for low complexity structures in this space. In our first approach we restricted the

search to topological EOs [Benjumeda et al., 2015a] to reduce the search space. We performed

experiments that suggested that learning tractable models and using exact inference may

produce more precise predictions than using traditional learning methods and relying on

approximate inference. Lowd and Domingos [2008] arrived at similar conclusions when they

evaluated the performance of method LearnAC. However, the width of an optimal topological

EO is sometimes many times higher than the width of the optimal EO. This may lead to

gross overestimations of the treewidth.

In this chapter, we define a type of elimination trees (ETs) [Grant and Horsch, 2009],

which we call valid ETs, that avoid the redundancy of the combined space of DAGs and EOs.

A single valid ET can be used to represent all the EOs that are equivalent (i.e., induce the

same factors during VE) for any graph G. We propose methods for efficiently compiling each

possible local change that could be applied in G (i.e., arc additions, removals or reversals),

and provide a framework for learning valid ETs from data using the above methods.

The rest of this chapter is organized as follows. Section 3.1 shows the relation between

ETs and EOs, and the way the former can be used as an equivalence class of EOs and DAGs.

Section 3.2 describes the proposed compilation and optimization methods. It shows how to

use ETs to learn tractable BNs in the space of EOs. Section 3.3 reports the experimental

results. Section 3.4 outlines the concluding remarks and future research lines.

This chapter is derived from Benjumeda et al. [2019a], and extends the work in Benjumeda

et al. [2015a,b] to EOs that are not topological. The software of the proposed method is

available at https://github.com/marcobb8/tr_bn.

3.1 Elimination trees

This chapter addresses the problem of learning bounded treewidth BNs. We focus on choosing

a compact representation of the combined space of DAGs and EOs and a set of operators

that allow efficiently moving in this space for the next reasons: First, this search space

does not put any restrictions on the structure beyond the treewidth bound. Second, given

addition, removal and reversal operators, most score+search BN learning methods can be

easily adapted to learn bounded treewidth BNs.

In a BN B over X = {X1, . . . , Xn}, there are n! different EOs of X , although many are

usually equivalent (Definition 2.9) for the structure G of B, especially when G is not densely

connected. We need to avoid this redundancy to reduce the size of the search space during the

learning process. Next, we define elimination trees (ETs), a representation that is especially

well suited for this purpose. ETs are based on the representation proposed by Grant and

Horsch [2009] for recursive conditioning, which we adapt to represent a set S of EOs for B.

https://github.com/marcobb8/tr_bn
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X1

X2 X3

∗

X1

X2 X3

φX1 φX2 φX3

{X1, X2} {X2} {X1, X3}

Figure 3.1: Structures of a BN B (left) and an ET EB (right). In EB, ∗ is the root node, X1,
X2 and X3 are the inner nodes, and φX1 , φX2 and φX3 are the leaves and potentials. The
domain of the potential of each leaf node φXi is illustrated below the respective node. EB
represents the EOs (X2, X3, X1) and (X3, X2, X1) for B.

Definition 3.1. (Elimination tree) Let B be a BN over X = {X1, . . . , Xn}. An elimination

tree EB over X is composed of:

• A set of factors or potentials φX1 , . . . , φXn that represent the parameters of B of each

node X1, . . . , Xn.

• A tree T composed of a root node, ∗, an inner node (node with parent and children) for

each variable Xi ∈ X , and a leaf node labelled φXi for each potential φXi. The nodes

are connected by undirected edges.

Assuming that we use VE over an ET EB to perform inference, the topology of the tree

shows the orders in which each variable Xi ∈ X should be eliminated from the factors of the

model. If an inner node Xi is the predecessor (this precedence must be read from the root

node to the leaves) of another inner node Xj , Xi is eliminated after Xj .

Definition 3.2. (ET representation of an EO) Let B be a BN over X = {X1, . . . , Xn}.
An elimination tree EB represents an EO π for B if, for each Xi, Xj ∈ X , (Xi < Xj)π implies

that Xj /∈ Desc
EB
Xi

(the descendants of Xi in EB). EB represents a set of EOs S for B if it

represents each πi ∈ S for B.

Figure 3.1 shows an ET EB that represents the set of EOs S for the probability distribution

P(X1, X2, X3) = φX1(X1, X2) ·φX2(X2) ·φX3(X1, X3). As X1 is a predecessor in EB of X2

and X3, EB represents each EO π such that (X2 < X1)π and (X3 < X1)π, that is, (X2, X3, X1)

and (X3, X2, X1).

Let us again consider the product of marginals. If we have a BN B over X = {X1, . . . , Xn}
that represents the probability distribution P(X1, . . . , Xn) = φX1(X1) · · ·φXn(Xn), all the

EOs of X1, . . . , Xn are equivalent for B. This can be represented by a single ET, as shown

in Figure 3.2.

Inference in ETs is straightforward. Given an ET EB that represents a set of EOs S for

B, we could use any EO πi ∈ S to perform VE, or to efficiently compile B into a JT or an

AC.
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Figure 3.2: Structure of an ET that represents the product of marginals. Below each leaf
node φXi , the domain of its corresponding potential is shown.
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Figure 3.3: Structure of an ET. The clusters of the ET are shown near to their corresponding
nodes.

3.1.1 Properties of elimination trees

In this section, we introduce some terms that we use in the rest of the chapter. Let EB be an

ET over X = {X1, . . . , Xn}. We use Pa
EB
Xi

and Ch
EB
Xi

to refer to the parent and the children

of node Xi in EB. Pred
EB
Xi

is the set of predecessor of Xi in EB. For example, Pred
EB
X1

= {∗}
and Desc

EB
X1

= {X2, X3, φX1 , φX2 , φX3} in the ET shown in Figure 3.3.

Given a factor φXi(Xi(1), . . . , Xi(ni)), Dom(φXi) represents its domain, that is, the set of

nodes {Xi(1), . . . , Xi(ni)}, where Xi(1), . . . , Xi(ni) ∈ X and ni is the cardinality of Dom(φXi).

We use Leaves(EB) to refer to the set of leaf nodes in EB.

ETs closely resemble dtrees, a representation used for recursive conditioning [Darwiche,

2001]. Unlike ETs, dtrees are full binary trees (i.e., trees in which any inner node has two

children), and their inner nodes are labeled with a set of variables instead of being labeled

with a single variable. There follows a definition of clusters in ETs, which is analogous to

the definition of clusters given by Darwiche [2009] for dtrees.

Definition 3.3. (Clusters of ET nodes) The cluster of an inner node Xi in an ET EB is

defined as:

ClsEB(Xi) :=

 ⋃
Xj∈Ch

EB
Xi

ClsEB(Xj) \ {Xj}

 .
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∗

X1 X2 X3 X4

{X1, X2}

{X1, X2} {X2} {X3, X1} {X4}

φX1 φX2 φX3 φX4

{X1, X2} {X2} {X3, X1} {X4}

Figure 3.4: Structure of an unsound ET. The clusters of the ET are shown near to their
respective nodes, and the variables that compromise the soundness of the ET are underlined.

The cluster of a leaf node φXi in EB is defined as:

ClsEB(φXi) := Dom(φXi).

When we perform VE in EB, ClsEB(Xi) is equivalent to the cluster (domain of the gener-

ated factor) induced by eliminating Xi. Figure 3.3 shows an example of the clusters ClsEB(Xi)

of an ET EB. The clusters of ETs and the clusters (or cliques) of JTs are also closely related

(see Section 3.1.1.1).

3.1.1.1 Valid elimination trees

The purpose of using ETs to search for structures with a small treewidth is to reduce the

combined space of DAGs and EOs, and consequently allow efficient algorithms for learning

bounded treewidth BNs. By the above definition, there are many solutions that are incorrect

or redundant. To identify and avoid such ETs during the learning process, we define two new

properties: soundness and completeness.

We say that an ET EB is sound if all the EOs that it represents are equivalent for B.

Definition 3.4. (Sound ETs) Let EB be an ET over X . Node Xi is sound for EB if

ClsEB(Xi) ⊆ Pred
EB
Xi
∪{Xi}. A leaf node φXi ∈ Leaves(EB) is sound for EB if ClsEB(φXi) ⊆

Pred
EB
φXi

. EB is sound if every node (inner and leaf nodes) is sound for EB.

Figure 3.4 shows the structure of an unsound ET EB. Given that there are no ancestral

relationships between the inner nodes in EB, it represents all the possible permutations of

{X1, X2, X3, X4} as EOs. The clusters of some nodes contain variables (underlined) that are

not their predecessors in EB. For example, ClsEB(X1) contains X1 and X2, but X2 is not

a predecessor of X1. As there is no ancestral relationship between X1 and X2 in EB, it is

equivalent whether EB eliminates X1 before or after X2. Unfortunately, this is not true, as

eliminating X2 before X1 would induce cluster {X1, X2}. However, this cluster cannot be

induced by any EO π1 where (X1 < X2)π1 because X1 will have been eliminated from all

factors before X2 has been eliminated. Thus, if there is a variable that belongs to the cluster

of a node Xi that is not one of the predecessors of Xi in EB, then the EB is not sound, and it

represents EOs that are not equivalent.

The completeness of ETs is analogous to the completeness of a set of EOs.
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Figure 3.5: Structure of an incomplete ET. The clusters of the ET are shown near to their
respective nodes, and the clusters that compromise the completeness of the ET are underlined.

Definition 3.5. (Complete ETs) Let EB be an ET over X . Node Xi ∈ X ∪ Leaves(EB)

(i.e., Xi is either an inner node from X or a leaf node from Leaves(EB)) is complete for EB
if Pa

EB
Xi
∈ ClsEB(Xi) or Pa

EB
Xi

= ∗. EB is complete if every node (inner and leaf nodes) is

complete for EB.

Figure 3.5 shows the structure of an incomplete ET EB. It represents the EOs S =

{(X3, X2, X1, X4), (X3, X2, X4, X1), (X3, X4, X2, X1), (X4, X3, X2, X1)}, but there are other

EOs that are equivalent for B that are not represented by EB. For example, (X2, X3, X1, X4)

is equivalent to (X3, X2, X1, X4) given that the clusters induced after eliminating X2 and X3

are {X1, X2} and {X1, X3} in both cases.

Definition 3.6. (Valid ETs) An ET EB is valid if it is sound and complete.

The ET shown in Figure 3.3 is sound (for every node Xi, all the variables in its cluster

are either its predecessors or Xi) and complete (for every node Xi with parent Xp, the cluster

of Xi contains Xp). This means that it is valid. The space of valid ETs does not contain

incorrect or redundant solutions.

The process described by Algorithm 3.1 yields a valid ET EB given a BN B and an EO π.

Algorithm 3.1 starts with an ET where the parent of every node is the root node ∗ (line

1). First, the variables in X are visited in the order given by π (line 2). When variable Xi is

visited, node Xi is set as the parent of the nodes whose cluster contains Xi and whose parent

is the root node ∗ in the ET (lines 3–7). This is analogous to the process of eliminating

variable Xi from B. The cluster ClsEB(Xi) of Xi in the ET EB is output in the same way

as the cluster Clsπ(Xi) induced by eliminating Xi using π in B, and they are equal. The

complete process con be computed efficiently.

Proposition 3.1. Algorithm 3.1 executes in polynomial time in the number of variables n.

Proof. Line 1 consumes linear time. The loops at lines 2 and 3 iterate over at most n

values. Obtaining the cluster at line 4 requires polynomial time (see Lemma A.1), and the

set operations at line 3 can be computed in polynomial time.
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Input: BN B over X , EO π
Output: Valid ET EB

1 let EB be an ET with inner nodes X and factor nodes Leaves(EB) where

∀Xi ∈ X ∪ Leaves(EB), Pa
EB
Xi

= ∗ ;

2 for Xi ∈ π do

3 for Xj ∈ (X ∪ Leaves(EB)) ∩Ch
EB
∗ do

4 if Xi ∈ ClsEB(Xj) then

5 Pa
EB
Xj
← Xi ;

6 end

7 end

8 end
9 return EB ;

Algorithm 3.1: Compile a valid ET from an EO and a BN.

Proposition 3.2 states that given an EO π and a BN B, Algorithm 3.1 returns always

valid ETs. Hence, there is at least one valid ET for π and B.

Proposition 3.2. Let B be a BN over X and π an EO of X . Algorithm 3.1 returns a valid

ET that represents π for B.

Proof. Algorithm 3.1 ensures that when any variable Xi is visited, it is set as the parent of

every node whose cluster contains Xi and whose parent is the root node ∗. Therefore:

• If the cluster of node Xj contains Xi when Xi is visited, the cluster of each of its

predecessors also contains Xi, given that node Xi has no children until Xi has been

visited. When Xi is visited, it is set as a predecessor of all the nodes whose cluster

contains Xi. After visiting Xi, there are no nodes whose clusters contain Xi that are

not their descendants in EB. As this applies to each node Xi ∈ X , all the nodes in EB
must be sound, making EB sound.

• The cluster of every node Xj that is a child of Xi contains Xi. Each Xj is complete for

EB, making EB complete.

• A node Xj can only be a descendant of a node Xi in EB if (Xj < Xi)π. Hence, EB
represents π.

As EB is valid (sound and complete) and represents π, there is at least one valid EB for B and

π.

Proposition 3.3 ensures that there is a single valid ET EB that represents an EO π for a

BN B.

Proposition 3.3. Let B be a BN over X and π an EO of X . There is exactly one valid ET

EB that represents π for B.



30 CHAPTER 3. LEARNING TRACTABLE BNs IN THE SPACE OF EOs

∗

Pred
E1B
Xj

Xj

Xi X \ (PredE
1
B
Xj
∪Desc

E1B
Xi

)

Desc
E1B
Xi

Figure 3.6: State of the ET E1
B during the inductive step of the proof of Propositions 3.3 and

3.4.

Proof. From Proposition 3.2, we know that there is at least one valid ET for B and π. We

prove that there is exactly one by structural induction. We consider two ETs E1
B and E2

B for

B and π. We show that if E1
B and E2

B are valid, then, for each node Xi ∈ X , Pa
E2B
Xi

= Pa
E1B
Xi

,

starting from the leaves (base case). This means that E1
B and E2

B are the same, which implies

that there is a single valid ET for B and π.

Base case:

The subtrees that have φXi ∈ Leaves(EB) as its root in E1
B and E2

B are only composed of

node φXi . Hence, they are equal.

Inductive step:

Assume that the subtrees hanging from node Xi in E1
B and E2

B are equal. Let Xj = Pa
E1B
Xi

(Figure 3.6). As E1
B is valid, if Xj 6= Pa

E2B
Xi

, then Pa
E2B
Xi

is a node Xk where either:

a) Xk ∈ Pred
E1B
Xj

: then E2
B would not represent π because (Xj < Xk)π, or

b) Xk ∈ Desc
E1B
Xi

: then E2
B would not represent π because (Xk < Xi)π, or

c) Xk ∈ X \(Pred
E1B
Xj
∪Desc

E1B
Xi

): then E2
B is not complete because Pa

E2B
Xi

= Xj /∈ ClsE2B
(Xi).

This means that if E2
B is valid, then the following condition Pa

E1B
Xi

= Pa
E2B
Xi

holds.

Valid ETs avoid the redundancy between EOs and DAGs. We demonstrate that a valid

ET EB represents a complete set of equivalent EOs for B.

Proposition 3.4. Let B be a BN over X , π an elimination EO of X , and E1
B a valid ET

that represents π1 for B. For each EO π2 equivalent to π1 for B (Definition 2.9), E1
B also

represents π2.

Proof. Let Clπ1i and Clπ2i be the cluster induced by VE after eliminating Xi from B using

the EO π1 and π2, respectively. As π1 and π2 are equivalent for B, Clπ1i = Clπ2i .
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From Proposition 3.3 we know that there is a single valid ET E1
B that represents π1 for B,

and also a single valid ET E2
B that represents π2 for B. We prove that E1

B also represents π2

by structural induction. We show that if E1
B and E2

B are valid, then, for each of node Xi ∈ X ,

starting from the leaves (base case), Pa
E1B
Xi

= Pa
E2B
Xi

. This means that E1
B and E2

B are the same,

which implies that E1
B also represents π2 for B.

Base case:

The subtrees whose root is φXi ∈ Leaves(E1
B) in E1

B and E2
B are composed of node φXi

only. Hence, they are equal.

Inductive step:

Assume that the subtrees hanging from node Xi in E1
B and E2

B are equal. Let Xj = Pa
E1B
Xi

(Figure 3.6). As E1
B is valid, if Xj 6= Pa

E2B
Xi

, then Pa
E2B
Xi

is a node Xk where either:

a) Xk ∈ Pred
E1B
Xj

: then Xj /∈ Clsπ1(Xk) given that Xj ∈ Desc
E1B
Xk

. Assuming that

Clsπ1(Xi) = Clsπ2(Xi), Xj ∈ Clsπ2(Xk) given that Xj ∈ Clsπ2(Xi) = Clsπ1(Xi) (Xj

is the parent of Xi in E2
B) and that Xk is the parent of Xi in E2

B. Hence, Clsπ1(Xk) 6=
Clsπ2(Xk).

b) Xk /∈ Pred
E1B
Xj

: then Xk /∈ Clsπ1(Xi) given that Xi /∈ Pred
E1B
Xk

, and Xk ∈ Clsπ2(Xi)

given that Pa
E2B
Xi

= Xk. Thus, Clsπ1(Xi) 6= Clsπ2(Xi).

This means that if E1
B is valid, then the following condition Pa

E1B
Xi

= Pa
E2B
Xi

holds.

Additionally, valid ETs can be easily transformed into JTs. Let C1, . . . , Cn be the cluster

sequence induced by VE in a BN B with an EO π. The maximal clusters (clusters that

are not contained in other clusters) in C1, . . . , Cn can be connected to form a JT with the

same width as π [Darwiche, 2009]. C1, . . . , Cn are also the clusters of the inner nodes of the

valid ETEB that represents π for B. This means that the maximal clusters of an ET can be

connected to create a JT of the same width.

3.1.2 Inference complexity in elimination trees

Given the above definitions it is simple to analyze inference complexity in ETs, which we will

later use to define the proposed algorithm for learning bounded treewidth BNs. Inference

by VE is exponential in the width of the chosen EO. Analogously, inference in an ET EB is

exponential in the width of EB.

Definition 3.7. (ET width) The width of an ET EB is the length of its largest cluster minus

one.

Given a BN B, the width of the ET EB with lowest width that is valid for B is the treewidth

of B. Therefore, if EB is good enough (near-minimum width), its width is an indicator of the

inference complexity of the model as it should be close to the treewidth of B.
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S S’

Figure 3.7: A set of EOs S that are equivalent for a BN B, and a subset S ′ of S that are
equivalent for the BN B′, output after adding an arc in B.

3.2 Learning elimination trees

3.2.1 Compiling changes

A naive solution to learn bounded treewidth BNs would be to use a known heuristic to output

a good EO (see Subsection 2.2.2). The width of the chosen EO is an estimate of the treewidth

of the BN candidates. However, it is computationally demanding to search for good EOs from

scratch, and it can be intractable if we have to perform this process for each candidate during

the structure search. The results shown in Section 3.1 can be applied to learn tractable BNs

in the combined space of DAGs and EOs. Our proposal is to limit the treewidth of the BN

by bounding the width of the ET (Definition 3.7). This strategy requires obtaining a valid

ET for each network candidate during the learning process.

In this section, we propose methods to compile incrementally in ETs the arc additions and

removals made to a BN during the learning process, and show that the proposed algorithms

always output valid ETs. As the reversal of arc Xout → Xin in B can be seen as the removal

of arc Xout → Xin followed by the addition of the reversed arc Xin → Xout, we assume that

both changes are compiled each time a reversal is made to a BN.

3.2.1.1 Arc addition

The addition of an arc Xout → Xin in B may compromise the soundness of an ET EB. If EB
is valid, it represents a complete set of equivalent EOs S (Proposition 3.3). The addition of

Xout → Xin in B places a new restriction on the equivalence of the EOs in S. After applying

this local change, there is at least one factor over both Xout and Xin. Therefore, an ET E ′B′
can only be valid for the new BN B′ if it encodes an ancestral relationship between Xout and

Xin. Algorithm 3.2 modifies the structure of EB to meet the new restrictions. The resulting

ET E ′B′ represents a complete subset of EOs S ′ ⊆ S (see Figure 3.7) that are also equivalent

in B′.
Algorithm 3.2 receives a valid ET EB, and arc addition Xout → Xin. In B′, variable Xout is

added to the domain of φXin (line 2). The clusters of the nodes that are predecessors of φXin

and descendants of Xout contain Xout after applying this change. There are three different

scenarios that require performing different changes in the ET to ensure its validity.

If Xout is a predecessor of φXin in E ′B′ , it is not necessary to make any changes in E ′B′ .
Otherwise, some nodes contain Xout in their clusters but not in their predecessors, and E ′B′
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Input: Valid ET EB, output node Xout, input node Xin

Output: Valid ET E ′B′
1 let E ′B′ be a copy of EB ;
2 Dom(φXin)← Dom(φXin) ∪ {Xout};
3 Xf ← Pa

EB
φXin

;

4 if Xf ∈ Pred
EB
Xout

then

5 Pa
E ′B′
φXin
← Xout ;

6 else if Xout /∈ Pred
EB
φXin

then

7 let Xm be the deepest node in Pred
E ′B′
Xout
∩ Pred

E ′B′
φXin

;

8 let E1
B′ and E2

B′ be two copies of E ′B′ ;

9 Xk ← Ch
E1B′
Xm
∩Pred

E1B′
φXin

;

10 Pa
E1B′
Xk
← Xout ;

11 Xh ← Ch
E2B′
Xm
∩Pred

E2B′
Xout

;

12 Pa
E2B
Xh
← Xf ;

13 Pa
E2B
φXin
← Xout ;

14 if width(E1
B′) < width(E2

B′) then

15 E ′B′ ← E1
B′ ;

16 else

17 E ′B′ ← E2
B′ ;

18 end

19 end

20 return E ′B′ ;

Algorithm 3.2: Compilation of the addition of arc Xout → Xin (add(EB, Xout, Xin)).
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Figure 3.8: (a) an ET EB, and (b) the ET E ′B′ output after incrementally compiling the arc
addition X1 → X4 (i.e., addition of X1 to Dom(φX4)) in EB.

is not sound. If Xf = Pa
EB
φXin

is a predecessor of Xout in EB (line 4), Xout is set as the new

parent of φXin in E ′B′ (line 5). Thus, Xout is a predecessor of φXin in E ′B′ .
If Xout is not a predecessor of φXin in EB and Xf is not a predecessor of Xout in EB (line

6), the cluster of the node in {Xout} ∪ Pred
EB
φXin
∩Desc

EB
Xout

contains Xout but the clusters

of their predecessors in EB do not. Algorithm 3.2 creates two candidate ETs (E1
B′ and E2

B′).

The first is output by setting Xout as the parent of Xk in E1
B′ (line 10), that is, the shallowest

predecessor of φXin in EB that does not belong to Pred
EB
Xout

(line 9). The second is output by

setting Pa
EB
φXin

as the parent of Xh in E2
B′ (line 12), that is, the shallowest predecessor of Xout

in EB that does not belong to Pred
EB
φXin

(line 11), and setting Xout as the new parent of φXin

in E2
B′ (line 13). E ′B′ is selected as the ET of smaller width between E1

B′ and E2
B′ (lines 14–18).

Either way, Xout is a predecessor in E ′B′ of the nodes in {Xout} ∪Pred
EB
φXin
∩Desc

EB
Xout

, and

the returned ET E ′B′ is valid (Lemma 3.1).

Lemma 3.1. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈ X , the ET

E ′B′ yielded after applying add(EB, Xout, Xin) in Algorithm 3.2, is also a valid ET representing

B′ over X .

Proof. See Appendix A.1.

This process can be performed efficiently in ETs of bounded width (see Theorem 3.2).

Figure 3.8 shows an example of the incremental compilation of the addition of arc X1 →
X4 in X2. EB represents all the permutations of {X1, X2, X3, X4} where X2 and X3 are

eliminated before X1. After adding X1 → X4 in B, there are EOs represented by EB that

are not equivalent for B′ (e.g., {X2, X3, X1, X4} and {X2, X3, X4, X1}). Using Algorithm 3.2,

Xout = X1 and Xin = X4. As Xf = X4 is not a predecessor of X1 in EB (line 4), and X1

is not a predecessor of φX4(line 6), two ETs E1
B′ and E2

B′ are created. Assuming that E1
B′ is

smaller than E2
B′ , X1 is the new parent of X4 in E ′B′ .
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S S ′

Figure 3.9: A set of EOs S that are equivalent for a BN B, and a superset S ′ of S that are
equivalent for the BN B′, yielded after removing an arc in B.

3.2.1.2 Arc removal

The removal of an arc Xout → Xin in B may compromise the completeness of an ET EB. Let

S be the set of EOs represented by EB. The removal of Xout → Xin in B leads to a reduction

in the restrictions on EO equivalence in S. This means that EB may not represent all the

EOs that are equivalent to EOs in S. Algorithm 3.3 yields an ET that represents a complete

superset of EOs S ′ ⊇ S (see Figure 3.9) containing all the EOs that are equivalent to EOs in

S for B′, which is the resulting BN after removing arc Xout → Xin from B.

Input: Valid ET EB, output node Xout, input node Xin

Output: Valid ET E ′B′
1 let E ′B′ be a copy of EB ;
2 Dom(φ(Xin))← Dom(φ(Xin)) \ {Xout} ;
3 Xj ← Xout ;

4 let Xi be the shallowest node in (Pred
E ′B′
φXin
∪ {φXin}) ∩Desc

E ′B′
Xout

;

5 while Xj /∈ ClsE ′B′
(Xi) and Xj 6= ∗ do

6 let X ′j be the deepest node in ClsE ′B′
(Xi) \ {Xi} if ClsE ′B′

(Xi) \ {Xi} 6= ∅ and ∗
otherwise ;

7 Pa
E ′B′
Xi
← X ′j ;

8 set Xi as the shallowest node in {Xj} ∪Pred
E ′B′
Xj
∩Desc

E ′B′
X′j

;

9 Xj ← X ′j ;

10 end

11 return E ′B′ ;

Algorithm 3.3: Compilation of the removal of arc Xout → Xin (remove(EB, Xout, Xin)).

After removingXout → Xin from B, the shallowest node in (Pred
E ′B′
φXin
∪{φXin})∩Desc

E ′B′
Xout

,

which we refer to as Xi (line 4), may not be complete. If Xi is not complete (line 5), Algorithm

3.3 sets the deepest node in ClsE ′B′
(Xi), which we refer to as X ′j , as its new parent (lines 6–7).

Note that the idea behind this change is that the new parent of Xi is in its cluster, making

Xi complete. After this change, the shallowest node in {Xj} ∪ Pred
E ′B′
Xj
∩Desc

E ′B′
X′j

may not

be complete. Thus, Algorithm 3.3 repeats the same process until every node is complete,

guaranteeing the validity of every node in E ′B′ (Lemma 3.2).
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Figure 3.10: (a) an ET EB , and (b) an ET E ′B′ yielded after incrementally compiling the
removal of arc X2 → X1 (i.e., removal of X2 from Dom(φX1)) in EB.

Lemma 3.2. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈ X , the ET

E ′B′ that represents B′ output after applying remove(EB, Xout, Xin) in Algorithm 3.3, is also

valid.

Proof. See Appendix A.1.

Figure 3.10 shows an example of how Algorithm 3.3 compiles, in an ET EB, the removal

of arc X2 → X1 in B. Let E ′B′ be a copy of EB where X2 has been removed from the domain

of φX1 . First, Xj is set to Xout (line 3). As Xout = X2 and Xin = X1, Xi is the shallowest

node in Pred
EB
φX1
∪ {X1} that is a descendant of X2 (line 4), namely φX1 .

Xout is not in the cluster of φX1 in E ′B′ (line 5). Hence, X ′j is set to X1, that is, the deepest

node in the cluster of φX1 (line 6). X1 is now set as the parent of φX1 in E ′B′ , which makes

node φX1 complete. The new Xi is set to X2 (line 8), and the new Xj is X1 (line 9).

As X1 is not in the cluster of X2 in EB, the same process is applied again (lines 6–9). In

this case, the root node ∗ is set as the parent of X2 in E ′B′ and the new Xj is ∗, ending the

loop (line 5) and returning E ′B′ .
The complexity of this process is polynomial in the number of variables and the width of

the ET (see Theorem 3.2).

3.2.2 Optimization

The methods described above adapt an ET EB (resulting in E ′B′) to a local change in a BN

B (resulting in B′). The objective of these methods is to make EB valid for the new BN. In

addition to the incremental compilation of ETs, we also propose a strategy to search in the

space of EOs given a BN B. The purpose of this procedure is to reduce the width of an ET

without modifying B. We use a simple and efficient heuristic to address this problem. In this

paper, we use the optimization process to refine (reduce the width) of the ETs returned by

Algorithms 3.2 and 3.3.
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S S ′

Figure 3.11: The EOs in S are equivalent for a BN B, and a swap produces other set of EOs
S ′, with S ∩ S ′ = ∅, where the EOs in S ′ are also equivalent for B.

Algorithm 3.4 swaps the position in EB of node Xi with the position of its parent Xp, also

changing the parents of any children of Xi in EB whose validity is compromised by the swap.

Algorithm 3.4 guarantees the validity of the resulting ETs. Note that after each swap only

the clusters of Xi and Xp may change.

The sets of EOs represented by EB and the new ET E ′B, which we refer to as S and S ′

respectively, are disjoint (see Figure 3.11). In EB, (Xp < Xi)π for any EO π ∈ S, whereas

(Xi < Xp)π′ in E ′B for any EO π′ ∈ S ′.
Algorithm 3.4 proceeds as follows: First, a copy E ′B of EB is created (line 1), and Xj is

set to the parent of Xi in EB (line 2). Then, the positions of Xi and Xj are swapped in E ′B
(lines 3 and 4). After that, the children of Xi whose cluster contained Xj set their parent in

E ′B to Xj (lines 5–9), because otherwise these nodes would not be sound.

Input: Valid ET EB, node Xi

Output: Valid ET E ′B
1 Let E ′B be a copy of EB ;

2 Xj ← Pa
E ′B
Xi

;

3 Pa
E ′B
Xi
← Pa

E ′B
Xj

;

4 Pa
E ′B
Xj
← Xi ;

5 for Xk ∈ Ch
E ′B
Xi

do

6 if Xj ∈ ClsE ′B
(Xk) then

7 Pa
E ′B
Xk
← Xj ;

8 end

9 end

10 return E ′B ;

Algorithm 3.4: Swap of Xi and Pa
EB
Xi

in ET EB (swap(EB, Xi)).

Lemma 3.3. Let EB be a valid ET that represents B over X . Given Xi ∈ X , the ET E ′B
representing B yielded after applying swap(EB, Xi) in Algorithm 3.4, is also valid.

Proof. See Appendix A.1.

Figure 3.12 shows the result of applying Algorithm 3.4 to an ET EB. In this example,
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∅
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{X4}
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∗

X3 X4

X1

X2

∅

{X3}

{X1, X3}
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{X4}

φX2φX1

φX3

φX4

{X2}{X1, X2}

{X3, X1}

{X4}

(b) E
′
B

Figure 3.12: (a) an ET EB, and (b) an ET E ′B yielded after swapping the positions of X3 and
X1 in EB.

the positions of X3 and X1 (parent of X3 in EB) in the resulting ET EB′ are swapped.

EB represents the EOs π of {X1, X2, X3, X4} where (X2 < X1)π and (X3 < X1)π (e.g.,

(X2, X3, X1, X4), (X4, X3, X2, X1), . . . ), while EB′ represents the EOs π′ of {X1, X2, X3, X4}
where (X2 < X1)π′ and (X1 < X3)π′ (e.g., (X4, X2, X1, X3), (X2, X4, X1, X3), . . . ).

We use a greedy heuristic, which, given an ET EB and a set of nodes for optimization

(Xopt), visits each node Xi ∈ Xopt from the shallowest to the deepest, checking at each

step whether swapping the position of Xi and its parent reduces the width of the ET, see

Algorithm 3.5.

Orderings that are good for one BN B0 (i.e., their width is close to the treewidth of B0)

may not be good for the BN B yielded after applying a local change in B0. We perform the

optimization process after the compilation of each local change. For efficiency, we select the

nodes that may have a different cluster after compiling the local change to initialize Xopt,

given that they are more likely to produce relevant changes in the width of the ET. Next,

we show the set of nodes selected for optimization (Xopt) after compiling arc additions and

removals. Each bullet point describes the assignment to Xopt at a possible scenario. We also

explain the reason why the cluster of any of the nodes in Xopt may have changed.

• Addition of arc Xout → Xin:

– If Xout ∈ Pred
EB
φXin

, Xopt = Pred
EB
φXin
∩Desc

EB
Xout

:

The width of the clusters in Pred
EB
φXin

∩ Desc
EB
Xout

grows, given that they now

contain Xout.

– Else, if Pa
EB
φXin
∈ Pred

EB
Xout

, Xopt = (Pred
EB
Xout
∪ {Xout}) ∩Desc

EB
Pa
EB
φXin

:

The width of the clusters in (Pred
EB
Xout
∪ {Xout}) ∩Desc

EB
Pa
EB
φXin

may grow, given



3.2. LEARNING ELIMINATION TREES 39

Input: Valid ET EB, set of nodes Xopt

Output: Valid ET E ′B
1 Let E ′B be a copy of EB ;
2 Let Xopt be a list that contains the nodes in Xopt ordered from the shallowest to the

deepest;
3 for Xi ∈Xopt do
4 flag ← true;
5 while flag = true do

6 E1
B ← swap(E ′B, Xi);

7 if width(E1
B) ≤ width(E ′B) then

8 E ′B ← E1
B;

9 else
10 flag ← false;
11 end

12 end

13 end

14 return E ′B ;

Algorithm 3.5: Optimization of an ET (optimize(EB,Xopt)).

that they now contain Dom(φXin).

– Otherwise, Xopt = (Pred
EB
φXin
∪Pred

EB
Xout
∪ {Xout}) \ (Pred

EB
φXin
∩Pred

EB
Xout

):

Node φXin is set as a descendant of Xout, and the nodes in Pred
EB
φXin
\ (Pred

EB
φXin
∩

Pred
EB
Xout

) are either predecessors or descendants ofXout and Pred
EB
Xout
\(Pred

EB
φXin
∩

Pred
EB
Xout

) in the new ET.

• Removal of arc Xout → Xin, Xopt = Pred
EB
φXin
∩Desc

EB
Xj

:

Let Xj be the last node that had a new child Xi assigned by Algorithm 3.3. The nodes

in Pred
EB
φXin
∩Desc

EB
Xj

may have smaller clusters in the new ET.

The optimization of an ET takes polynomial time in the number of variables and in the

width of the ET (see Theorem 3.2).

3.2.3 Learning elimination trees from data

Using the incremental compilation and optimization methods described above, it is rather

straightforward to learn ETs from a dataset D in combination with any score+search BN

learning method that applies local changes during the search. Learning low inference com-

plexity BNs with this approach is also easily derived. It can be achieved by bounding the

width of each ET during the learning process (which bounds the treewidth of their corre-

sponding BNs).

Theorem 3.1 ensures that any algorithm that uses the above strategy will always produce

valid ETs.



40 CHAPTER 3. LEARNING TRACTABLE BNs IN THE SPACE OF EOs

Theorem 3.1. Let EB be a valid ET over X , and E ′B′ the result of incrementally compiling

on EB any local change in B using Algorithms 3.2 and 3.3 and optimizing the resulting ET

using Algorithm 3.5. Then E ′B′ is a valid ET.

Proof. See Appendix A.1.

As we apply the incremental compilation and optimization methods to each candidate

during the learning process, efficiency is a critical issue. Theorem 3.2 bounds the computa-

tional time complexity of the incremental compilation and optimization methods proposed

above.

Theorem 3.2. Let EB be a valid ET over a set of variables X = {X1, . . . , Xn}. The process

described in Theorem 3.1 to output E ′B′ can be performed in time O(n2 · width(EB)).

Proof. See Appendix A.2.

Let A be any algorithm that learns the structure of a BN using only local changes in the

structure of the network during the learning process. A can be adapted to learn low inference

complexity BNs compiling and optimizing (Algorithms 3.2–3.5) all the local changes that are

applied to the BN B to its respective ET EB. Thus, EB can be used to bound the treewidth

of B using Definition 3.7. Note that the input for the adaptation of A should be an ET E0
B0

valid for the initial BN B0.

3.3 Experimental results

In this section, we empirically analyzed the performance of the proposed framework in terms

of fitting and computational complexity. Although our approach could be used with most

score+search BN learning methods, in the experiments we combine the incremental compi-

lation and optimization methods proposed in Section 3.2 with a greedy hill-climbing for the

structure search. We call the resulting method hc-ET. We compared hc-ET with k-greedy and

k-MAX to highlight the advantages and drawbacks of using our approach to learn bounded

treewidth BNs. We also tested a polynomial version of hc-ET that only considers arc addi-

tions during the structure search. We call this method hc-ET-poly.

To perform the experiments, we used 22 real-world datasets. These datasets were pre-

viously used in several papers [Lowd and Davis, 2010; Van Haaren and Davis, 2012; Bekker

et al., 2015; Scanagatta et al., 2018b], and can be found at https://github.com/UCLA-StarAI/

Density-Estimation-Datasets. Additionally, we generated synthetic data from 12 real-world

BNs. These BNs were obtained from the bnlearn BN repository http://www.bnlearn.com/

bnrepository/, and are cited therein. Table 3.1 briefly describes the basic properties of each

dataset.

For each dataset we learned three BNs with each of the compared methods, using different

treewidth bounds (3, 5 and 7). In all cases, the score function to maximize was BIC. k-greedy

and k-MAX require to fix a maximum execution time, which we set to n seconds (i.e., a

https://github.com/UCLA-StarAI/Density-Estimation-Datasets
https://github.com/UCLA-StarAI/Density-Estimation-Datasets
http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/


3.3. EXPERIMENTAL RESULTS 41

Table 3.1: Basic properties of the datasets: Number of variables (N. vars), training instances
(N. train inst.) and test instances (N. test inst.). Although N. test inst. does not apply to
these experiments, the test data from the real-world datasets is used in Chapter 4.

(a) Real-world datasets

Dataset N. vars N. train inst. N. test inst.
NLTCS 16 16,181 3,236
MSNBC1 17 291,326 58,265
KDDCup 65 180,092 34,955
Plants 69 17,412 3,482
Audio 100 15,000 3,000
Jester 100 9,000 4,116
Netflix 100 15,000 3,000
Accidents 111 12,758 2,551
Retail 135 22,041 4,408
Pumsb-star 163 12,262 2,452
DNA 180 1,600 1,186
Kosarek 190 33,375 6,675
MSWeb 294 29,441 5,000
Book 500 8,700 1,739
EachMovie 500 4,525 591
WebKB 839 2,803 838
Reuters-521 889 6,532 1,540
20 NewsGroup 910 11,293 3,764
Movie reviews 1,001 1,600 250
BBC 1,058 1,670 330
Voting 1,359 1,214 350
Ad 1,556 2,461 491

(b) Synthetic datasets

Dataset N. vars N. train inst.
Hailfinder 56 5,000
Hepar II 70 5,000
Win95pts 76 5,000
Pathfinder 135 5,000

Munin1 186 5,000
Andes 223 5,000

Diabetes 413 5,000
Pigs 413 5,000
Link 724 5,000

Munin2 1,003 5,000
Munin3 1,041 5,000
Munin4 1,038 5,000
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Table 3.2: Comparison of the methods in all the datasets, using a treewidth bound of 3. The
optimal results are denoted in boldface.

hc-ET hc-ET-poly k-greedy k-MAX
mean rank BIC 1.32±0.53 1.79±0.54 3.79±0.41 3.09±0.62
mean rank LL 1.38±0.55 1.68±0.47 3.79±0.41 3.15±0.56

mean rank time 1.88±0.33 1.12±0.33 3.56±0.5 3.44±0.5
mean treewidth 3±0 3±0 2.85±0.66 2.68±0.77

Table 3.3: Comparison of the methods in all the datasets, using a treewidth bound of 5. The
optimal results are denoted in boldface.

hc-ET hc-ET-poly k-greedy k-MAX
mean rank BIC 1.35±0.69 1.91±0.57 3.76±0.61 2.97±0.63
mean rank LL 1.47±0.71 1.71±0.52 3.71±0.63 3.12±0.59

mean rank time 1.88±0.33 1.12±0.33 3.56±0.5 3.44±0.5
mean treewidth 4.88±0.48 4.91±0.38 3.56±1.13 3.41±1.08

second for each variable) to compute the cache of best parent sets and n/10 seconds for the

structure search. These values were used by Scanagatta et al. [2018b] in their experiments.

To compare the results we used the following performance measures: the BIC score and the

log-likelihood (LL) of the models in the training dataset, the learning time, and the treewidth

of the returned models.

We analyzed the significance of the differences found for each performance measure in

all the datasets and for all the treewidth bounds using the Friedman test with α = 0.05

and Holm’s [Holm, 1979] and Shaffer’s [Shaffer, 1986] post-hoc procedures. Both Holm’s and

Shaffer’s procedures associate pairwise comparisons with a set of hypotheses and perform a

step-down process with the corresponding set of ordered p-values to adjust the value of α

[Garcia and Herrera, 2008].

Experiments were performed on a computer with an Intel Core i7-6700K CPU at 4.00GHz

with 16GB main memory, running Ubuntu 16.04 LTS. hc-ET and hc-ET-poly were written

in Python 2.7.12 and C++11 (version 5.4.0), while k-greedy and k-MAX were downloaded

from http://ipg.idsia.ch/software/blip and are written in Java.

3.3.1 Comparison with k-MAX

Tables 3.2–3.4 give an overview of the results obtained using the treewidth bounds 3, 5 and

7, respectively. For each performance measure, the mean rank ± the standard deviation of

each method over all the datasets is shown. The ranking of the methods is given by their

average performance (BIC, LL and time) compared to the rest (i.e., the best is ranked the

first and the worst is ranked the fourth). The mean treewidth ± the standard deviation is

also shown. The detailed results are supplied at https://github.com/marcobb8/tr_bn/blob/

master/Supplementary%20Material/supplemantary-material_ets.pdf.

Figures 3.13–3.15 graphically present the results obtained with Holm’s and Shaffer’s pro-

cedure for each performance measure in all datasets. In the figures, groups of methods that

http://ipg.idsia.ch/software/blip
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_ets.pdf
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_ets.pdf
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Table 3.4: Comparison of the methods in all the datasets, using a treewidth bound of 7. The
optimal results are denoted in boldface.

hc-ET hc-ET-poly k-greedy k-MAX
mean rank BIC 1.35±0.69 1.97±0.58 3.79±0.59 2.88±0.69
mean rank LL 1.29±0.46 1.82±0.52 3.74±0.62 3.15±0.56

mean rank time 1.91±0.29 1.09±0.29 3.41±0.5 3.59±0.5
mean treewidth 6.74±0.96 6.74±0.86 3.91±1.31 4±1.44

1234

hc-ET
hc-ET-poly

k-MAX
k-greedy

Figure 3.13: Comparison of BIC scores with Holm’s and Shaffer’s tests.

are not significantly different are connected with a thick horizontal line. We used the graphi-

cal representation proposed by Demšar [2006]. Each figure represents both procedures, given

that the significant differences observed by Shaffer’s procedure are identical to those observed

by Holm’s procedure.
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Figure 3.14: Comparison of log-likelihood with Holm’s and Shaffer’s tests.
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Figure 3.15: Comparison of learning time with Holm’s and Shaffer’s tests.

Figure 3.13 shows significant differences between the BIC score achieved by all the meth-

ods; hc-ET performs the best overall, followed by hc-ET-poly, k-MAX, and k-greedy. More-

over, Tables 3.2–3.4 show that similar results can be found for all the tested treewidth bounds.

The detailed results also show that hc-ET performs better than k-MAX and k-greedy in over

94% of the experiments, and performs better than hc-ET-poly in around 80% of the experi-

ments. The treewidth of the models output by each method suggests that one of the reasons

why our proposal manages to optimize better the BIC score is that it allows a tighter fitting

to the treewidth bound.

The comparison of the log-likelihood in Tables 3.2–3.4 and Figure 3.14 leads us to con-

clusions that are similar to those drawn for the BIC score. Nevertheless, in this case no
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significant differences were found between hc-ET and hc-ET-poly. This suggests that hc-ET-

poly requires a higher number of parameters to obtain a similar fitting to hc-ET in terms of

log-likelihood.

As shown in Figure 3.15, we observed significant differences between the learning time of

all the methods with the exception of k-MAX and k-greedy. The latter result was expected,

given that the imposed limit in execution time of both approaches is the same. hc-ET-poly

is the fastest method in all cases, followed by hc-ET. However, we must be cautious when

interpreting these results. First, these methods are implemented in different programming

languages. Second, the bound in execution time set for k-greedy and k-MAX compels their

learning time to scale linearly. Therefore, the difference in learning time between our method

and k-MAX and k-greedy is clearly higher in the smaller datasets. Finally, although hc-

ET takes slightly more time than hc-ET-poly in all the experiments, we think that the

improvement in BIC score is worthwhile in most situations.

3.4 Conclusions

Traditional methods for learning BNs usually output models where exact inference is in-

tractable. In this chapter, we provide a novel framework for learning tractable BNs. We

defined valid ETs, and proposed compilation methods for adapting valid ETs to any local

change that may be applied to a BN (i.e., arc addition, removal, and reversal). We proved

that the proposed methods always return valid ETs in polynomial time (Theorems 3.1 and

3.2). Our approach can be easily combined with any score+search BN learning method that

uses only local changes in the network during the structure search. Valid ETs can be used to

search in the combined space of DAGs and EOs, avoiding redundant solutions (i.e., all the

EOs that are equivalent for a BN are represented by the same valid ET). Hence, we used this

representation to efficiently bound the inference complexity of each BN during the learning

process.

Experimental results showed that our approach places a tight upper bound on the in-

ference complexity of the networks. The models learned with the proposed methods were

competitive with other state of the art methods, performing better in terms of BIC score and

log-likelihood in most cases.

In the future, we aim to study the relationship between the density of DAGs and the

number of equivalent EOs. This would clarify the situations in which it is better to use ETs

during the learning process. Another appealing future research line is to study how to learn

tractable probabilistic models with large treewidth by taking advange of the local structures

or the exchangebility between the variables.



Chapter 4
Tractable learning of Bayesian

networks from partially observed

data

One of the main advantages of BNs is that, as generative models, they can answer all condi-

tional probability queries involving the variables of the network. In supervised classification,

if the value of a certain set of feature variables is missing, a BN can exactly obtain the

a posteriori most likely class label given the observed predictors. However, learning BNs

from incomplete data continues to be a challenging problem. EM [Dempster et al., 1977;

McLachlan and Krishnan, 2008; Liao and Ji, 2009] is the most widely used algorithm for

learning a model in the presence of missing values. Friedman’s SEM [Friedman, 1997] ex-

tends the EM algorithm to simultaneously learn the structure and parameters of a BN from

incomplete data. This method has been successfully applied in semi-supervised classification

[Hernández-González et al., 2013; Wang et al., 2014] and clustering [Peña et al., 2000; Luengo-

Sanchez et al., 2016] problems. One of its most celebrated features is that, by optimizing

an expectation of the score, the algorithm guarantees convergence to a local optimum of the

objective function with respect to the observed data. Note that under the missing at random

assumption, optimizing the scoring function with respect to the observed data is equivalent

to optimizing this function in the incomplete dataset. Because of its iterative nature, SEM is

known to be computationally a highly demanding algorithm. Moreover, as inference in BNs

is NP-hard [Cooper, 1990], the computational cost of the E-step is likely to be prohibitive

when the network candidates exhibit high inference complexity. Thus, bounding the inference

complexity is critical to ensure the tractability of SEM.

The literature contains several approaches that address the problem of learning BNs with

low inference complexity (see Section 2.3.1). Nevertheless, these methods are not capable of

learning from incomplete datasets (see Section 2.3.2). More recently, Scanagatta et al. [2018b]

proposed SEM-kMAX algorithm for learning BNs with bounded treewidth from incomplete

datasets, introducing the k-MAX algorithm in the M-step of SEM. The main drawback of

45
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this approach is that unlike Friedman’s SEM, it does not provide convergence guarantees on

the objective function with respect to the observed data.

In this chapter, we propose an efficient method (i.e., with polynomial cost in the number

of variables and number of instances of the dataset) for learning BNs with low inference

complexity in the presence of missing values. For this purpose, we provide a rapid heuristic

to estimate the upper bounds in the complexity of the models. Furthermore, we develop an

efficient strategy to directly optimize the score with respect to the observed data and discuss

its benefits compared to optimizing an expectation of the score (e.g., Friedman’s SEM). In

the experiments, the proposed approach demonstrates promising results in terms of model

fitting and imputation accuracy.

The remainder of this chapter is organized as follows: Section 4.1 presents our proposal

and provides theoretical results on the complexity of the algorithm. Section 4.2 provides

the experimental results, comparing our proposal with Friedman’s SEM and SEM-kMAX.

Section 4.3 draws conclusions and recommends future research lines.

This chapter contains the work of Benjumeda et al. [2019c]. The software of the proposed

method is available at https://github.com/marcobb8/tr_bn.

4.1 Tractable structural expectation-maximization

This section introduces our proposal for learning BNs with low inference complexity from

incomplete datasets. Algorithm 4.1 is based on the SEM algorithm; however, it implements

several changes toward guaranteeing efficient learning complexity and improving the model

fitting with respect to the observed data. To ensure the tractability of Algorithm 4.1, it

must limit the inference complexity of the BN candidates during the structure search. This

is achieved by setting an upper bound tb on the treewidth of the BN candidates. We use the

strategy proposed in Section 3.2 to this end. With the objective of improving the performance

of soft SEM, Algorithm 4.1 computes the score directly with respect to the observed data

rather than the expected score to compare BN candidates. In Section 4.1.1, we analyze in

more detail the advantages and difficulties of this approach.

Algorithm 4.1 performs as follows. In line 1, the BN structure G0, parameters θ0, and the

EO π0 are initialized. In line 2, a valid ET is obtained from the BN (G0,θ0) and the EO π0.

Line 3 is the main loop of the algorithm, which iterates until convergence. Lines 4 (E-step)

and 5 (M-step) perform a single iteration of the EM algorithm with the purpose of updating

the parameters of the current BN candidate. The E-step and M-step are computed according

to Equations (2.2) and (2.3), respectively. In lines 7–17, Algorithm 4.1 searches for the local

change that improves the score the most with respect to the observed data and that satisfies

the treewidth bound tb. For each local change sj , a new ET E ′B′ is incrementally compiled

and optimized (line 9). The width of E ′B′ is used as an estimate of the treewidth of G′. In line

11, G′ is rejected if this estimate is greater than tb. Otherwise, the parameters of the new

structure G′ are updated with the completed dataset D+
j+1 (line 12) using MLE (Equation

(2.3)). Finally, the resultant BN (G′,θ′) is compared with the current best candidate (line

https://github.com/marcobb8/tr_bn
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Input: Dataset D, treewidth bound tb
Output: Best BN structure G∗ and parameters θ∗

1 select G0, θ0, and EO π0;
2 let E0

B0 be a valid ET that represents π0 for BN (G0,θ0) (Algorithm 3.1);
3 loop for j = 0, 1, . . . until convergence
4 let D+

j+1 be the completed dataset given D and θj ;

5 let θj+1 be arg maxθ `(θ|D+
j+1);

6 Gj+1, Ej+1
Bj+1 ← Gj , E

j
Bj ;

7 let s1, . . . , sl be the local changes (i.e., arc additions, removals, or reversals) that
can be applied to Gj ;

8 for d ∈ 1, . . . , l do

9 let E ′B′ be the result of compiling local change sd in EjBj (Algorithms 3.2 and

3.3), and optimizing the resultant ET (Algorithm 3.5);
10 let G′ be the structure of B′;
11 if width(E ′B′) ≤ tb then
12 let θ′ be arg maxθ `(θ|D+

j+1);

13 if score(Dj+1, (G′,θ′)) > score(Dj+1, (Gj+1,θj+1)) then

14 Gj+1,θj+1, Ej+1
Bj+1 ← G′,θ′, E

′
B′ ;

15 end

16 end

17 end

18 G∗,θ∗ ← Gj+1,θj+1;

Algorithm 4.1: Pseudocode of Tractable SEM.
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13), and the model with the greater score for D is selected (line 14).

Theorem 4.1. If the treewidth bound tb is a constant (which is assumed to be small), then

each iteration of Algorithm 4.1 consumes polynomial time in the number of variables (n) and

number of instances in dataset D.

Proof. Algorithm 3.1 (line 2) requires polynomial time in n (Proposition 3.1). Maintaining

the probabilistic completionD+ of the data requires exponential time and space to the number

of missing values for each data case. Alternatively, the ESS of D+ can be computed prior

to the parameter estimations at lines 5 and 12. Computing the ESS of each BN candidate

requires performing M inference queries, one per each data instance. Computing the score

for D (line 13) also demands performing M inference queries. Note that, although inference

is NP-hard in the general case, when the treewidth of the models is bounded by a constant, it

can be performed efficiently. In one iteration of Algorithm 4.1, there are a maximum of O(n2)

network candidates (i.e., one for each possible local change). Therefore, the total number of

inference queries required is upper-bounded by O(n2M).

The maximum likelihood parameters for a structure G and the completed dataset D+ can

also be computed in polynomial time (lines 5 and 12). The number of possible local changes

in a graph G is quadratic in the number of nodes. Thus, the loop at line 8 uses a number of

iterations l that is also quadratic in n. The width of an ET E ′B′ (line 11) is the length of its

largest cluster munus one (Definition 3.7), which can be computed in time O(n · width(E ′B′))
(see Lemma A.2). Finally, Algorithms 3.2, 3.3 and 3.5 (line 9) take polynomial time in n

(Theorem 3.2). Therefore, each iteration can be computed efficiently.

Theorem 4.1 ensures that each iteration of tractable SEM is computed efficiently under

the described constraints. This implies that if Algorithm 4.1 loops for a polynomial number

of iterations, the complete process is performed efficiently. Corollary 4.1 provides guarantees

on the computational complexity of Algorithm 4.1.

Corollary 4.1. If Algorithm 4.1 satisfies the conditions described in Theorem 4.1, the stop-

ping condition for the loop at line 3 is Gj+1 = Gj and the local changes considered at line 7 are

limited to arc additions, then, the complexity of Algorithm 4.1 is polynomial in the number

of variables and the number of instances in the dataset.

Proof. From Theorem 4.1, each iteration of Algorithm 4.1 must consume polynomial time.

As the stopping criterion is Gj+1 = Gj , the maximum number of iterations of the loop at

line 3 is the number of local changes that can be applied to G. Given that the local changes

are limited to arc additions, and a complete graph of n nodes has n(n−1)
2 arcs, the maximum

number of iterations that this algorithm could perform is upper-bounded by n2. Thus, if

the above conditions are fulfilled, Algorithm 4.1 performs a polynomial number of iterations,

each in polynomial time. Hence, its complexity is polynomial in n and M .
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4.1.1 Optimizing the score with respect to the observed data

One of the most celebrated properties of soft SEM is that it ensures that the scoring function

does not decrease with respect to the observed data D after each iteration. According to

Equation (2.4), given a model B0 and a dataset D+, where D+ is the probabilistic completion

of D by B0, any improvement in the expected score (score(D+,B) ≥ score(D+,B0)) results in

an improvement in the score with respect to the observed data (score(D,B) ≥ score(D,B0)).

Thus, soft SEM ensures the convergence of the score with respect to the observed data to a

local optimum. The advantage of using the expected score rather than the score with respect

to the observed data is that once the data is completed during the E-step, the expected

score decomposes and therefore the local changes in the network locally affect the nodes,

facilitating more efficient learning (e.g., by using cache).

Despite the desirable properties of soft SEM, Equation (2.4) offers no guarantee that the

model selected at the end of the search is near to the optimum. For example, if a greedy search

is used, only the first local change guarantees an improvement in the score for the observed

data. Therefore, if we aim to ensure improvements on the score with respect to the observed

data after applying every local change, the data must be repeatedly completed, preventing

soft SEM from exploiting the decomposition of the score. Moreover, a local change that

improves the score with respect to the observed data may not improve the expected score. If

many local changes are incorrectly rejected, the learning process could terminate early.

These problems can be overcome by directly using the score with respect to the observed

data. The bottleneck of Algorithm 4.1 is the inference required for the computation of the

ESS and score for each network candidate (line 7). Although the cost of this process is

polynomial in the number of variables n and the number of instances of the dataset M when

the treewidth of the BN candidates is small, the computational time required to answer all

the inference queries can be high when n or M are large.

Next, we propose a heuristic with the objective of reducing the number of inference queries

during the learning process while ensuring that each local change applied improves the score

with respect to the observed data. We modify Algorithm 4.1 as follows:

• At line 7, the data is completed with hard assignments and the local changes s1, . . . , sl

are ordered according to their score for the completed dataset.

• The loop at line 8 terminates when the first local change sd that improves the score

with respect to the observed data is identified (i.e., we follow a best-first strategy).

Ordering the local changes as suggested above requires imputing the data once. Testing

all the local changes until an improvement is identified prevents Algorithm 4.1 from falling

into local optima in the early stages of the search. In Section 4.2, we evaluate this strategy.

In the experiments, the proposed approach outperformed soft SEM and SEM-kMAX in terms

of fitting the data and imputation accuracy.
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4.2 Experimental results

In this section, we empirically evaluate the performance of tractable SEM in terms of data

fitting, imputation accuracy, and computational complexity. First, in Section 4.2.1, we com-

pare the proposed approach with soft SEM to highlight the advantages of directly computing

the score with respect to the observed data and the reduction in the computational cost pro-

vided by the strategy proposed in Section 4.1.1. Then, in Section 4.2.2, we compare tractable

SEM with SEM-kMAX for analysing the performance of the proposed approach in real world

datasets of varied dimensionalities.

The experiments below include two versions of tractable SEM: TSEM implements Algo-

rithm 4.1 and uses the heuristic described in Section 4.1.1 to accelerate the learning process.

TSEM-poly also fulfills the conditions required by Corollary 4.1 to ensure polynomial com-

putational complexity.

For all the methods, the score function to maximize is BIC. We analyzed the significance

of the differences found for each performance measure in all experiments using the Friedman

test with α = 0.05 and Holm’s [Holm, 1979] and Shaffer’s [Shaffer, 1986] post-hoc procedures.

Both methods are explained in Section 3.3.1.

Experiments were performed on a computer with an Intel Core i7-6700K CPU at 4.00

GHz with 16 GB main memory, running Ubuntu 16.04 LTS. TSEM, TSEM-poly, and soft

SEM were written in Python 2.7.12, and integrate specific functions developed in C++11

(version 5.4.0). SEM-kMAX was downloaded from http://ipg.idsia.ch/software/blip and

is written in Java.

4.2.1 Comparison with soft SEM

This first experimental study highlights the differences between using TSEM, TSEM-poly,

and soft SEM. The goal is to compare the models output using the three methods in diverse

scenarios according to a set of performance measures. To compare these methods, we gener-

ated synthetic data from 11 real-world BNs. These BNs were obtained from the bnlearn BN

repository (http://www.bnlearn.com/bnrepository/), and are cited therein. Table 4.1 lists

the number of variables (N. vars), arcs (N. arcs), and parameters (N. parameters) of each

BN. To include a wide variety of scenarios, we generated training and testing datasets of

different sample sizes (500, 2000, and 5000) and different percentages of missing values (30%,

50%, and 70%) from the above networks. In TSEM and TSEM-poly, we set the treewidth

bound tb to 5, which in our experience provides an acceptable trade-off between efficiency

and expressiveness. In Section 4.2.2, we evaluate the performance of TSEM and TSEM-poly

with different treewidth bounds.

Tables 4.2–4.4 display the experimental results of comparing the above approaches. We

use the following performance measures: BIC is the BIC score of the models with respect

to the observed values in the training dataset, LL is the log-likelihood of the models in the

test dataset, acc is the imputation accuracy in the training dataset, and time is the learning

time (in seconds). For each performance measure, the mean rank ± the standard deviation of

http://ipg.idsia.ch/software/blip
http://www.bnlearn.com/bnrepository/
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Table 4.1: Basic properties of BNs used to generate synthetic datasets.

Dataset N. vars N. arcs N. parameters
SACHS 11 17 178
ALARM 37 46 509
BARLEY 48 84 114,005
CHILD 20 25 230
INSURANCE 27 52 984
MILDEW 35 46 540,150
WATER 32 66 10,083
HAILFINDER 56 66 2,656
HEPAR II 70 123 1,453
WIN95PTS 76 112 574
PATHFINDER 135 200 77,155

Table 4.2: Comparison of methods in all datasets with 500 instances. Best results are denoted
in boldface.

TSEM TSEM-poly soft SEM

mean rank BIC 1.42±0.5 2.36±0.55 2.21±0.99
mean rank LL 1.3±0.47 2.27±0.52 2.42±0.9
mean rank acc 1.15±0.36 2.09±0.38 2.76±0.66

mean rank time 1.82±0.39 1.18±0.39 3±0

each method over all the datasets is displayed. The ranking of the methods is given by their

average performance (BIC, LL, acc, and time) compared to the others (i.e., the best is ranked

first and the worst is ranked third). The detailed results are supplied at https://github.com/

marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_SEM.pdf.

Figures 4.1–4.4 graphically present the results obtained with Holm’s and Shaffer’s pro-

cedures for each performance measure in all datasets. Each figure represents, in fact, both

procedures, given that the significant differences observed by Shaffer’s procedure are identical

to those observed by Holm’s procedure.

In the case of BIC (see Figure 4.1), significant differences were found among all the

methods. TSEM performed the best, followed by TSEM-poly and soft SEM. The results

suggest that these differences are caused by the inability of the expected score to recognise

many of the changes that improve BIC with respect to the observed data. For example,

of all the local changes performed by TSEM, on average, only 19% improved the expected

Table 4.3: Comparison of methods in all datasets with 2000 instances. Best results are
denoted in boldface.

TSEM TSEM-poly soft SEM

mean rank BIC 1.15±0.36 2.18±0.39 2.67±0.74
mean rank LL 1.33±0.48 2.06±0.61 2.61±0.79
mean rank acc 1.21±0.42 1.97±0.47 2.82±0.58

mean rank time 1.91±0.38 1.15±0.36 2.94±0.35

https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_SEM.pdf
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_SEM.pdf
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Table 4.4: Comparison of methods in all datasets with 5000 instances. Best results are
denoted in boldface.

TSEM TSEM-poly soft SEM

mean rank BIC 1.06±0.24 2.06±0.24 2.88±0.48
mean rank LL 1.12±0.33 1.94±0.35 2.94±0.35
mean rank acc 1.12±0.33 1.94±0.35 2.94±0.35
mean rank time 1.97±0.39 1.12±0.33 2.91±0.38
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TSEM
TSEM-polysoft SEM

Figure 4.1: Comparison of mean rank BIC scores in training dataset with Holm’s and Shaffer’s
post-hoc procedures in synthetic datasets.
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TSEM
TSEM-polysoft SEM

Figure 4.2: Comparison of mean rank log-likelihood (LL) in test dataset with Holm’s and
Shaffer’s post-hoc procedures in synthetic datasets.
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TSEM-polysoft SEM

Figure 4.3: Comparison of mean rank imputation accuracy (acc) in training dataset with
Holm’s and Shaffer’s post-hoc procedures in synthetic datasets.
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TSEM-poly
TSEMsoft SEM

Figure 4.4: Comparison of mean rank learning time in training dataset with Holm’s and
Shaffer’s post-hoc procedures in synthetic datasets.



4.2. EXPERIMENTAL RESULTS 53

score. This leads TSEM to apply, on average, 33% more local changes than soft SEM. The

rare situations where soft SEM achieved a greater BIC score than TSEM and TSEM-poly

correspond to small datasets with a high percentage of missing values. In these situations,

the BN structures output by all the methods were extremely sparse or even completely

unconnected. As TSEM and TSEM-poly terminate when they do not find a local change that

improves the BIC score, both methods clearly require less time than soft SEM to optimise

the parameters. A method of improving the performance of the proposed approach in these

situations would be to perform the EM algorithm until convergence in the output models.

Figures 4.2 and 4.3 compare the log-likelihood and imputation accuracy of the models,

respectively. TSEM and TSEM-poly performed significantly better than soft SEM for both

measures. However, no significant differences were found between TSEM and TSEM-poly.

Figure 4.4 indicates significant differences among the learning times of all the methods;

TSEM-poly was the fastest method overall, followed by TSEM and soft SEM. As these

experiments were only performed in datasets generated from medium and small size BNs,

the treewidth of the models learnt by soft SEM was never high (seven in the worst case).

Therefore, the differences in the computational time can be explained by the number of times

that each approach computed the parameters. For example, soft SEM required computing

the ESS an average 61 more times than TSEM. Note that as soft SEM does not bound the

treewidth of the models during the learning process, larger datasets typically lead to models

with greater treewidth, where exact inference, and therefore computing the ESS is unfeasible.

4.2.2 Comparison with SEM-kMAX

In this section, the proposed approach is compared with SEM-kMAX for learning bounded

treewidth BNs from incomplete datasets. To perform the experiments, we used 22 real-world

datasets of varied dimensionalities and sample sizes. The details of these datasets are given

in Section 3.3. Table 3.1 provides the number of variables and number of training and testing

instances in each dataset.

We set several scenarios to evaluate both methods according to the performance mea-

sures used in Section 4.2.1. For each real-world dataset, we input, at random, different

percentages of missing values (30%, 50%, and 70%), and tested the methods in all the

situations. For each method, we learned a model using four different treewidth bounds

(2, 3, 4, and 5). We set the parameters of SEM-kMAX to the values recommended by

Scanagatta et al. [2018b]. Concretely, they set an execution time of n s (i.e., a second

for each variable) to compute the cache of the most optimum parent sets and n/10 s for

the structure search. Tables 4.5–4.8 display the mean rank ± the standard deviation (over

all the datasets) of each method for every performance measure given a treewidth bound

tb. The detailed results are supplied at https://github.com/marcobb8/tr_bn/blob/master/

Supplementary%20Material/supplemantary-material_SEM.pdf.

The significance results obtained with Holm’s and Shaffer’s post-hoc procedures over all

datasets and treewidth bounds are displayed in Figures 4.5–4.8.

TSEM and TSEM-poly performed better than SEM-kMAX in all experiments in terms

https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_SEM.pdf
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_SEM.pdf
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Table 4.5: Comparison of methods in all datasets, using treewidth bound of 2. Optimal
results are denoted in boldface.

TSEM TSEM-poly SEM-kMAX

mean rank BIC 1.17±0.38 1.83±0.38 3±0
mean rank LL 1.35±0.48 1.65±0.48 3±0

mean rank time 1.94±0.24 1.06±0.24 3±0
mean rank acc 1.42±0.58 1.79±0.54 2.79±0.62

Table 4.6: Comparison of methods in all datasets, using treewidth bound of 3. Optimal
results are denoted in boldface.

TSEM TSEM-poly SEM-kMAX

mean rank BIC 1.17±0.38 1.83±0.38 3±0
mean rank LL 1.48±0.5 1.52±0.5 3±0

mean rank time 1.95±0.21 1.05±0.21 3±0
mean rank acc 1.55±0.59 1.68±0.61 2.77±0.63

Table 4.7: Comparison of methods in all datasets, using treewidth bound of 4. Optimal
results are denoted in boldface.

TSEM TSEM-poly SEM-kMAX

mean rank BIC 1.17±0.38 1.83±0.38 3±0
mean rank LL 1.35±0.48 1.65±0.48 3±0

mean rank time 1.85±0.36 1.15±0.36 3±0
mean rank acc 1.67±0.64 1.64±0.6 2.7±0.72

Table 4.8: Comparison of methods in all datasets, using treewidth bound of 5. Optimal
results are denoted in boldface.

TSEM TSEM-poly SEM-kMAX

mean rank BIC 1.21±0.41 1.79±0.41 3±0
mean rank LL 1.44±0.5 1.56±0.5 3±0

mean rank time 1.85±0.36 1.15±0.36 3±0
mean rank acc 1.68±0.68 1.62±0.55 2.7±0.72
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TSEM-polySEM-kMAX

Figure 4.5: Comparison of mean rank BIC scores in training dataset with Holm’s and Shaffer’s
post-hoc procedures in real-world datasets.
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123

TSEM
TSEM-polySEM-kMAX

Figure 4.6: Comparison of mean rank log-likelihood (LL) in test dataset with Holm’s and
Shaffer’s post-hoc procedures in real-world datasets.
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TSEM-poly
TSEMSEM-kMAX

Figure 4.7: Comparison of mean rank imputation accuracy (acc) in the training dataset with
Holm’s and Shaffer’s post-hoc procedures in real-world datasets.
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Figure 4.8: Comparison of mean rank learning time in training dataset with Holm’s and
Shaffer’s post-hoc procedures in real-world datasets.

of BIC and LL, and achieved a significantly greater imputation accuracy. The treewidth of

the models output by each method suggests that the proposed approach leads to a tighter

treewidth bound fitting than SEM-kMAX (details are provided in the Supplementary Mate-

rial). Although TSEM led to significantly greater BIC scores than TSEM-poly, the difference

in the majority of cases was small. This explains why the results of both methods in terms

of LL and imputation accuracy were similar. Finally, TSEM and TSEM-poly executed faster

than SEM-kMAX in all experiments. However, we must be cautious when interpreting these

results given that these methods were implemented in different programming languages. Al-

though TSEM-poly executed faster than TSEM in the majority of cases, the differences in

learning time in each particular case were small.

4.3 Conclusions

In this study, we addressed the problem of learning BNs in the case of missing values and

hidden variables in tractable time. We proposed an adaptation of SEM that ensures the

efficiency of the E-step by bounding the inference complexity of the BN candidates. To limit

their inference complexity, we proposed the use of an efficiency-focused heuristic for searching

for low-width EOs. We demonstrated that the resulting algorithm consumes polynomial time

under certain conditions. Further, we analyzed the advantages of using the score with respect
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to the observed data directly, rather than the expected score, and provided a heuristic to

reduce the number of inference queries performed during the learning process.

As demonstrated by the experimental results, the proposed approach outperformed soft

SEM and SEM-kMAX based on all the tested evaluation metrics. Apparently, these differ-

ences were a consequence of the advantages of directly optimising the score with respect to

the observed data. Moreover, the proposed heuristics lead to a significant reduction in the

computational cost of the learning process.

Friedman adapted soft SEM to the Bayesian learning of BNs [Friedman, 1998], which

entails several advantages. For example, it provides a method to incorporate prior knowledge

and a superior evaluation of the generalization properties of a model given the data. Adapting

our proposal to use Bayesian scoring functions would be relatively straightforward, and we

intend to do this in the future.

At present, there is an increasing interest in learning with hidden variables from high

dimensional spaces. Examples are multidimensional clustering [Poon et al., 2013; Keivani

and Peña, 2016] and learning deep probabilistic graphical models [Zhang, 2004; Poon and

Domingos, 2011]. We consider that our proposal is effective for these tasks, and we intend to

study its application to these problems.



Chapter 5
Tractability of most probable

explanations in multidimensional

Bayesian network classifiers

The problem of multidimensional classification is common in several domains like text cat-

egorization (a text can be assigned to multiple topics), medicine (a patient may suffer from

several diseases) or system monitoring (a system may break down from multiple failures).

MBCs are BNs with a restricted topology, where no arcs from feature variables to class vari-

ables are allowed. Inference in MBCs may have a high computational cost for some structures,

even when the class and feature subgraphs are restricted to trees or polytrees.

Although there is work in the literature addressing the problem of computational com-

plexity in MBCs, the focus has not been on taking advantage of the most common type of

queries of such models. In this chapter, we study the computational complexity of MPEs

and marginals of class variables in MBCs when an instantiation of the feature variables is

given. We also provide upper bounds on the complexity of these models given additional

restrictions on their structure that limit the treewidth of a transformation of it that we call

the pruned graph. We propose a learning method that uses these properties to search for

tractable MBCs in the space of topological orderings.

This chapter is organized as follows. Section 5.1 presents the new theoretical results

with respect to the complexity of computations of MPEs and marginals in MBCs. Section

5.2 describes the method proposed for learning tractable MBCs. Section 5.3 reports the

experimental results. Section 5.4 draws some conclusions and suggests future research lines.

This chapter 3 adapts the work of Benjumeda et al. [2018a], which is an extension of

Benjumeda et al. [2016]. The software of the proposed method is available at https://

github.com/marcobb8/tr_bn.

57

https://github.com/marcobb8/tr_bn
https://github.com/marcobb8/tr_bn


58 CHAPTER 5. THEORETICAL RESULTS ON MPEs

5.1 Theoretical results on most probable explanations and

marginal computations

In BNs with bounded treewidth, both evidence propagation and MPEs can be computed in

polynomial time. In the case of MBCs (which are, in fact, also BNs), this is also true, but

it is possible to exploit the restrictions on the network structure and the information about

the queries sent to the MBCs. From the structure of MBCs, we know that there are no arcs

from the feature to the class nodes. Also, the values of all the features should appear in the

evidence.

As multidimensional classification in MBCs involves obtaining the MPE of the class vari-

ables given an instantiation of all the feature variables, we focus on finding bounds for this

problem. Nevertheless, the results are extended to marginal computations because it is some-

times worth calculating the probability of a configuration of certain class variables given the

value of all the features, and the extension is straightforward.

The complexity of inference in BNs is query dependent, given that the parameters of a

network can be updated with the value of the evidence variables before performing inference.

Definition 5.1. Let G = (C ∪F ,AC ∪AB ∪AF ) be the structure of an MBC B. The pruned

graph G′ of G is the result of moralizing G and then removing the feature nodes from the

resulting graph.

When computing the MPE in a BN given an evidence f, we can simplify the structure of

the network by pruning every arc Xi → Xj such that Xi appears in f. Pruning arc Xi → Xj

for evidence f from a BN means removing arc Xi → Xj and the parameters of Xj that are

not compatible with f. Previous research uses the treewidth of G to bound the inference

complexity, exploiting the restrictions on the topology of G, but without considering the

known query-dependent information, that is, that all the feature variables are instantiated

when we compute the MPE in B.

Theorem 5.1 states that MPE and marginal computations in an MBC are tractable if

the treewidth of its pruned graph is bounded. This transformation was used by Pastink and

van der Gaag [2015] to bound the treewidth of Tree–empty MBCs. Here, we extend it to

bound the complexity of (the more general) DAG–DAG MBCs.

Theorem 5.1. Let G = (C ∪ F ,AC ∪ AB ∪ AF ) be the structure of an MBC B, and f be an

instantiation of F . If the treewidth of its pruned graph G′ and the number of parents of each

node that belongs to F are bounded, B can compute MPEs and marginals in polynomial time

given f.

Proof. Suppose that the CPD of each node Xi ∈ C ∪F is represented by a potential φi. φi is

updated with f by removing the entries that are not compatible with f. This can be done in

linear time in the size of φi, that is exponential in the number of parents of Xi in G. Hence,

the nodes in F can be updated with f in polynomial time if the number of parents of each

node in F is bounded.
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Complete graph

C1 C2 C3 C4

F1 F2 F3 F4 F5

Pruned graph

C1 C2 C3 C4

Potential Before After
φC1 {C1} {C1}
φC2 {C2} {C2}
φC3 {C3} {C3}
φC4 {C3, C4} {C3, C4}
φF1 {C1, F1} {C1}
φF2 {C1, C2, F1, F2, F4} {C1, C2}
φF3 {C3, F2, F3} {C3}
φF4 {C4, F4} {C4}
φF5 {C4, F1, F4} {C4}

Figure 5.1: MBC structure and pruned graph (left), and domain of the potential of each
node before and after they are updated with evidence f = (f1, . . . , f5) (right). Note that the
treewidth of the pruned graph is smaller than the number of class variables.

After updating G with f, the domain of each potential φf of Xf ∈ F is PaGXf ∩ C. There

is an undirected link in G′ between each node in PaGXf ∩C. It is evident that the width of the

best elimination order for the resulting potentials is equal to the treewidth of G′. As the width

of the best elimination order bounds the complexity of MPE and marginal computations, if

the treewidth of G′ is bounded, B can compute MPEs and marginals in polynomial time given

f.

Figure 5.1 shows an example of the structure of an MBC and its pruned graph. It

also illustrates that all the variables belonging to the domain of the same potential φi ∈
{φC1 , . . . , φC4 , φF1 , . . . , φF5} updated with an instance f = (f1, . . . , f5) of the features are

connected by a link in the pruned graph (and vice versa). This means that the treewidth of

the pruned graph is equal to the width of the best elimination order in the updated potentials.

Although the computational cost of calculating the treewidth of the pruned graph G′ is

less than calculating the treewidth of the complete structure G, the exact computation of the

treewidth of a graph is an NP-complete problem [Arnborg et al., 1987].

In Section 2.2.2 several treewidth estimation techniques are reviewed, but using them for

each candidate during the structure search can be very computationally demanding. Alter-

natively, the incremental compilation of ETs (see Chapter 3) can be easily adapted to bound

the treewidth of the pruned graph. In Section 5.2 we propose a method that uses the above

approach to learn tractable MBCs.

However, there are special cases where it is not necessary to compute the treewidth of the

models to ensure their tractability. Collorary 5.1 shows that if the number of class variables

of an MBC B is bounded, then we can perform inference in B in polynomial time.

Corollary 5.1. Let G = (C ∪ F ,AC ∪AB ∪AF ) be the structure of an MBC B, and f be an

instantiation of F . If the number of class variables d and the number of parents of each node

in F are bounded, B can compute MPEs and marginals in polynomial time given f.

Proof. Let G′ be the pruned graph of G. As each node in G′ belongs to C, treewidth(G′) ≤ d.

Hence, from Theorem 5.1 we know that if the number of parents of each feature and d are
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bounded, B can compute MPEs and marginals in polynomial time given f.

As the pruned graph only contains class nodes, it is patent that its treewidth is always

smaller than the number of class variables in the classifier. Let us consider the MBC shown

in Figure 5.1 and its pruned graph. The nodes in the pruned graph are {C1, . . . , C4}, so its

treewidth can never be greater than 3.

Additionally, if the classifier is CB-decomposable, the maximum number of class nodes

per component is an upper bound in the inference complexity of the MBCs, as shown in

Collorary 5.2.

Corollary 5.2. Let G = (C ∪ F ,AC ∪ AB ∪ AB) be the structure of a CB-decomposable

MBC B, and f be an instantiation of F . If the number of class variables in each component

of G and the number of parents of each node in F are bounded, B can compute MPEs and

marginals in polynomial time given f.

Proof. Let G′ be the pruned graph of G. If G is CB-decomposable into r components

G1, . . . ,Gr, then G′ is composed of r unconnected subgraphs G′1, . . . ,G′r, such that X ′i = Xi∩C,
i = 1, . . . , r, where Xi and X ′i are the nodes in Gi and G′i, respectively. As tw(G′) =

maxi tw(G′i) < maxi |X ′i | = maxi |Xi ∩ C|, we know from Theorem 5.1 that if the number

of parents of each feature and the number of class variables in each component of G are

bounded, B can compute MPEs and marginals in polynomial time given f.

Figure 5.1 shows that the treewidth of the pruned graph is bounded by the maximum

number of class variables per component (two in this case), given that there is no path from

Ci to Cj in the pruned graph if two class nodes Ci and Cj are in two different connected

components.

5.2 Learning tractable multidimensional Bayesian network clas-

sifiers

Given that inference in a BN is tractable if the treewidth of its structure is bounded, most

existing algorithms for learning BNs with low inference complexity bound the treewidth of

the networks during the learning process, rejecting any candidate that exceeds the treewidth

bound.

In the case of an MBC, instead of bounding the treewidth of its complete structure, we

focus on bounding the treewidth of its pruned graph. The simplest solution would be to force

the CB-decomposability of the MBC by setting a maximum number of class variables per

component. However, this restriction may be too hard in practice when the data contains

more complex relationships among the variables. Algorithm 5.1 consists of two parts. First

(lines 3-15), the class and bridge subgraphs are simultaneously learned, and the incremental

compilation of ETs is used to bound the treewidth of the MBC structure. Second (lines

16-25), the feature subgraph is learned in a greedy manner. As the arcs between features do
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not affect the treewidth of the pruned graph, it is not necessary to check the tractability of

the models during this phase.

Input: Dataset D, treewidth bound tb
Output: Best MBC B∗

1 initialize MBC B∗ and EO π∗;
2 let E∗B∗ be a valid ET that represents π∗ for MBC B∗ (Algorithm 3.1);
3 loop for j = 0, 1, . . . until convergence
4 let s1, . . . , sl be the local changes (i.e., arc additions, removals, or reversals) that

can be applied to G∗ (the structure of B∗) such that:
5 a) If local change sd is arc addition Xout → Xin, then Xout ∈ C
6 b) If local change sd is arc reversal Xout → Xin, then Xout ∈ C and Xin ∈ C
7 for d ∈ 1, . . . , l do
8 let B′ be the result of applying local change sd in B∗;
9 let E ′B′ be the result of compiling local change sd in E∗B∗ (Algorithms 3.2 and

3.3), and optimizing the resulting ET (Algorithm 3.5);

10 if width(E ′B′) ≤ tb then
11 if score(D,B′) > score(D,B∗) then

12 B∗, E∗B∗ ← B′, E
′
B′ ;

13 end

14 end

15 end

16 loop for j = 0, 1, . . . until convergence
17 let s1, . . . , sl be the local changes (i.e., arc additions, removals, or reversals) that

can be applied to G∗ (the structure of B∗) such that:
18 a) If local change sd is arc addition Xout → Xin, then Xout ∈ F , Xin ∈ F ,

PaG
∗

Xout
∩ C 6= ∅, and PaG

∗

Xin
∩ C 6= ∅

19 b) If local change sd is arc reversal Xout → Xin, then Xout ∈ F , Xin ∈ F
20 for d ∈ 1, . . . , l do
21 let B′ be the result of applying local change sd in B∗;
22 if score(D,B′) > score(D,B∗) then
23 B∗ ← B′;
24 end

25 end

Algorithm 5.1: Pseudocode of greedy search of tractable MBCs (GS–pruned).

Algorithm 5.1 proceeds as follows. In line 1, an initial BN B∗ and EO π∗ are selected.

A valid ET that represents π∗ for MBC B∗, which is later used to bound the complexity

of the models, is obtained at line 2. The loop at line 3 represents a greedy search that

simultaneously learns the class and bridge subgraphs of the MBC. Lines 5 and 6 make sure

that each candidate is an MBC with empty feature subgraph. Lines 9 and 10 check if the

new candidate violates the treewidth bound. Otherwise, the chosen network is updated if the

new candidate improves the objective score (lines 11 and 12). We do not specify a definite

scoring function because any score (see Section 2.3) used to evaluate BNs can be applied.

We assume that the score is decomposable and must be maximized. When none of the l
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Family Addresses
complexity

Theoretical
guarantees

Bound

[van der Gaag and de Waal, 2006] Tree–tree
[de Waal and van der Gaag, 2007] PolyTree–polytree
[Bielza et al., 2011] DAG–DAG
[Pastink and van der Gaag, 2015] Tree–empty x x Complete graph
[Corani et al., 2014] Forest–empty x
[Borchani et al., 2010] DAG–DAG x
This work DAG–DAG x x Pruned graph

Table 5.1: Comparison of the properties of different MBC learning methods. For each ap-
proach, the table shows the family of MBC returned by the method, whether or not it
addresses the problem of computational complexity of the learned models, whether or not it
provides theoretical guarantees on the tractability of the models, and which part of the struc-
ture is bounded to ensure tractability. Note that Pastink and van der Gaag [2015] provide
an optional step to augment the empty feature subgraph to a forest (to give a Tree–forest
MBC).

local changes improves the score, the method exits from the loop. At this point, the class

and bridge subgraphs of B∗ have been learned, and its treewidth is at most tb. As the arcs

between the features do not affect the treewidth of the pruned graph we can learn the feature

subgraph without checking the tractability of the MBC candidates. The loop at line 16

learns the feature subgraph in a greedy manner. Line 18 allows only arc additions between

feature variables that are children of at least one class variable. Finally, the local change that

optimizes the objective score is applied (lines 20-25).

Table 5.1 compares the properties of our method with other popular MBC learning meth-

ods in the state of the art. Note that our approach is one of the few that provides theoretical

guarantees with respect to the complexity of the models. Also, it allows highly expressive

structures to be learned since it does not bound the treewidth of the complete graph.

5.3 Experimental results

To test the performance of our proposal, we compared it with the next MBC learning methods.

First, we compare our approach with methods that learn a more restricted network topology,

including Tree–tree [van der Gaag and de Waal, 2006] and a version of the method proposed

by Pastink and van der Gaag [2015], which we refer to as Tree–tw. Instead of the branch and

bound approach that they proposed to search the bridge subgraph, we used a greedy search

process that bounds the treewidth of the candidates using Algorithms 3.2–3.5, given that the

computational cost of the former is too high for this experimental framework.

To test the effects of bounding the treewidth of the pruned graph, we compare GS–pruned

with two adaptations of Algorithm 5.1. GS–MBC does not bound the inference complexity of

the models, while GS–tw bounds the treewidth of the complete graph. Note that GS–MBC is

an adaptation of the pure filter algorithm [Bielza et al., 2011] that uses hill-climbing instead

of the K2 algorithm. Unlike the latter, GS–MBC does not require predefining a topological

ordering and it allows the use of a cache. In all cases, we use BIC as the scoring function to
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Table 5.2: Basic properties of the multilabel datasets: Number of class variables (N. class),
number of feature variables (N. feat.) and number of instances (N. inst.). The datasets are
sorted in ascending order according to N. class × N. inst.

Dataset N. class N. feat. N. inst.

emotions 6 72 593
foodtruck 12 21 407
birds 19 260 645
scene 6 294 2407
genbase 27 1186 662
yeast 14 103 2417
medical 45 1186 978
enron 53 1001 1702
ohsumed 23 1002 13929
reutersk500 103 500 6000
tmc2007 500 22 500 28596
bibtex 159 1836 7395
corel5k 374 499 5000
imdb 28 1001 120919
mediamill 101 120 43907

be optimized.

Additionally, we performed the experiments with two transformation methods. CDL2

[Guo and Gu, 2011] uses ridge logistic regression to train the base classifiers and a con-

ditional dependency network (CDN), i.e., a full cyclic directed graphical model, encodes

the relationships among the outcomes of the base classifiers and the class variables. SVM–

struct implements the cutting-plane training of structural support vector machines (SVMs)

[Joachims et al., 2009]. The class variables are connected by a pairwise Markov random field

with the tree structure retrieved with the Chow-Liu algorithm [Chow and Liu, 1968].

We applied 5-fold cross-validation in 15 real-world multilabel datasets extracted from the

MULAN data repository http://mulan.sourceforge.net/datasets-mlc.html and the mldr.

datasets R package https://github.com/fcharte/mldr.datasets. The articles that corre-

spond to each dataset are cited therein. Table 5.2 shows the basic properties of each dataset.

The continuous variables were discretized using five equal frequency intervals.

To test the performance of the methods, we computed the following four performance

measures. The CLL of the model in the test dataset indicates how well each MBC fits the

conditional distribution in the data. Note that this measure is not available for CDL2 and

SVM–struct.

The mean accuracy of the classifiers averages the accuracy values of all the class variables

individually, as described below for M samples and d classes:

accM =
1

d ·M

d∑
i=1

M∑
j=1

δ(c′ij , cij) , (5.1)

http://mulan.sourceforge.net/datasets-mlc.html
https://github.com/fcharte/mldr.datasets
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where c′ij represents the predicted class label for variable Cj in instance i, cij is its true value,

and δ(c′ij , cij) = 1 if c′ij = cij , and 0 otherwise.

The global accuracy measures the fraction of instances in which the labels of all the classes

were correctly assigned, and is given by:

accG =
1

M

M∑
i=1

δ(c′i, ci) , (5.2)

where δ(c′i, ci) = 1 if c′i = ci, and 0 otherwise.

Finally, the learning times (time) required by each method are also compared.

We analyzed the significance of the differences found for each performance measure in all

experiments using the Friedman test with α = 0.05 and Holm’s [Holm, 1979] and Shaffer’s

[Shaffer, 1986] post-hoc procedures. Both methods are explained in Section 3.3.1.

Experiments were performed on a computer with an Intel Core i7-6700K CPU at 4.00

GHz with 16 GB main memory, running Ubuntu 16.04 LTS. The MBC learning methods

were written in Python 2.7.12, and integrate specific functions developed in C++11 (version

5.4.0). We used the implementation of CDL2 provided by MEKA [Read et al., 2016] with the

scikit-multilearn [Szymański and Kajdanowicz, 2017] Python wrapper. We used PyStruct

library [Müller and Behnke, 2014] to perform SVM–struct. We set the input parameters of

methods CDL2 and SVM–struct to their default values.

5.3.1 Comparison with unbounded methods

Some of the compared methods were either very slow or returned intractable models when ap-

plied in large datasets. Therefore, in this subsection we only show the experiments performed

in the first nine datasets datasets in Table 5.2. The rest of the datasets are used in Section

5.3.2. Additionally, we filtered the 200 features with higher information gain among all the

class variables in the datasets with more than 200 features to reduce their dimensionality. We

set the treewidth bound to five for methods GS–pruned, GS–tw and Tree–tw. In our experi-

ence, this bound provides a good trade-off between expressiveness and tractability. Note that

in GS–pruned, we bound the treewidth of the pruned graph rather than the treewidth of the

complete graph. Table 5.3 displays the mean rank ± the standard deviation of each method

over all the datasets for each performance measure. Note that the fastest method is ranked the

first in learning time. The mean treewidth (tw) and the mean treewidth of the pruned graph

(tw–pr) are also given. The detailed results can be found at https://github.com/marcobb8/

tr_bn/blob/master/Supplementary%20Material/supplemantary-material_MBCs_unb.pdf.

Figures 5.2–5.5 graphically present the results obtained with Holm’s and Shaffer’s post-

hoc procedures for each performance measure in all datasets. Note that both procedures

produced identical results for CLL and accG. In Figures 5.4 and 5.5, the differences between

the results output by both methods were explained in the corresponding caption.

GS–MBC and GS–pruned performed the best according to the first three evaluation

metrics. They are the less restrictive methods, and the models returned by both approaches

https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_MBCs_unb.pdf
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_MBCs_unb.pdf
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Table 5.3: Comparison of all the methods in the first nine datasets datasets in Table 5.2.
The optimal results are denoted in boldface.

GS-pruned Tree-tree Tree-tw GS–MBC GS-tw CDL2 SVM-struct
CLL 2.06±0.73 3.76±1.05 4.56±1.16 2.02±0.83 2.61±0.71 6.5±0 6.5±0
accG 2.49±1.11 3.61±1.69 4.86±1.49 2.47±1.07 2.99±0.94 6.86±0.36 4.73±1.52
accM 2.83±1.11 3.04±1.90 5.22±1.14 2.83±1.02 3.18±0.86 6.93±0.33 3.96±2.09
time 3.24±0.93 5.82±0.39 1.42±0.97 2.67±1.02 3.78±1.17 4.07±1.56 7±0

tw (mean) 14.36±18.19 8.91±5.23 3.22±1.04 13.96±17.49 4.33±1 – –
tw-pr (mean) 3.71±1.20 3.47±1.78 3.16±1.09 3.98±1.79 3.64±1.23 – –

12345

GS–MBC
GS–pruned
GS–tw

Tree–tree
Tree–tw

Figure 5.2: Comparison of CLL for all methods against each other with the Holm’s and
Shaffer’s post-hoc test for the experimental results shown in Table 5.3.

1234567

GS–MBC
GS–pruned
GS–tw
Tree–tree

SVM–struct
Tree–tw

CDL2

Figure 5.3: Comparison of accG for all methods against each other with the Holm’s and
Shaffer’s post-hoc test for the experimental results shown in Table 5.3.

1234567

GS–pruned
GS–MBC
Tree–tree
GS–tw

SVM–struct
Tree–tw

CDL2

Figure 5.4: Comparison of accM for all methods against each other with the Holm’s post-
hoc test for the experimental results shown in Table 5.3. Shaffer’s procedure did not find
significant differences between Tree–tree and SVM–struct.
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1234567

Tree–tw
GS–MBC
GS–pruned
GS–tw

CDL2
Tree–tree

SVM–struct

Figure 5.5: Comparison of learning time for all methods against each other with the Holm’s
and Shaffer’s post-hoc tests for the experimental results shown in Table 5.3. Shaffer’s proce-
dure did not find significant differences between Tree–tw and GS-MBC and between Tree–tree
and SVM–struct.

are very similar in most of the experiments, given that GS–MBC only surpasses treewidth five

(of the pruned graph) in a few cases. They are followed by GS–tw, that is ranked the third

for CLL and accG, and Tree–tree, that performs better than GS–tw for accM . Given that

the restrictions of Tree-tree directly apply to the class subgraph, this method was expected

to perform better for accM than for CLL and accG. No significant differences were found

between the above methods.

Tree–tw was the worst performing MBC learning method, and there were significant

differences between this method and GS–MBC, GS–pruned and GS–tw for CLL, accG and

accM . SVM–struct obtained slightly better results than Tree-tw for accG and accM . As Tree–

tw, SVM–struct represents the relationships among the class variables using a tree, and does

not explicitly represent the relationships among the features, but the use of discriminative

models (SVMs) as base classifiers seems to improve the performance, specially for accM .

Finally, CDL2 performs significantly worse than the rest of the methods for accG and accM .

Tree–tw was the fastest method in most of the experiments. GS–MBC, GS–pruned and

GS–tw required a similar amount of computations. Although Tree–tree required more learn-

ing time than the latter methods, this is mainly caused by the Python implementation of the

conditional information gain. Most of the times, the computational cost of Tree–tree should

be lower than the cost of GS–MBC, GS–pruned and GS–tw. SVM–struct was by far the

slowest method in all the experiments.

Overall, the experiments suggest that the least restrictive methods tend to perform better

than the most restrictive ones.

5.3.2 Comparison of treewidth bounded methods

In this subsection we compare the methods GS–pruned, GS–tw and Tree–tw in all the datasets

(see Table 5.2). These methods ensure the tractability of the output models and performed

efficiently in all the datasets. Therefore, the feature variables of the large datasets were

not filtered beforehand. The experiments were performed using varied treewidth bounds,

from two to five. Table 5.3 compares the results obtained with the above approaches in

all datasets. The detailed results are available at https://github.com/marcobb8/tr_bn/blob/

master/Supplementary%20Material/supplemantary-material_MBCs_b.pdf.

https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_MBCs_b.pdf
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_MBCs_b.pdf
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Table 5.4: Comparison of methods for learning tractable MBCs for the datasets of Table 5.2.
The optimal results are denoted in boldface.

GS-pruned Tree-tw GS-tw tw bound
CLL 1.19±0.49 2.87±0.5 1.94±0.28

2

accG 1.52±0.76 2.49±0.73 1.99±0.52
accM 1.29±0.58 2.61±0.61 2.09±0.52
time 2.61±0.54 1.57±0.89 1.81±0.59

tw (mean) 65.79±85.89 2.09±0.47 2±0
tw-pr (mean) 1.99±0.12 2.09±0.47 2±0

CLL 1.23±0.46 2.89±0.45 1.88±0.38

3

accG 1.6±0.67 2.61±0.69 1.79±0.59
accM 1.41±0.65 2.72±0.58 1.87±0.45
time 2.43±0.6 1.53±0.89 2.04±0.69

tw (mean) 65.24±85.04 2.97±0.61 2.95±0.23
tw-pr (mean) 2.91±0.29 2.93±0.64 2.89±0.31

CLL 1.35±0.49 2.89±0.45 1.75±0.45

4

accG 1.57±0.56 2.72±0.64 1.71±0.55
accM 1.42±0.59 2.77±0.54 1.81±0.43
time 2.41±0.55 1.53±0.89 2.05±0.73

tw (mean) 65.68±85.01 3.63±0.91 3.83±0.5
tw-pr (mean) 3.63±0.65 3.59±0.96 3.6±0.7

CLL 1.47±0.48 2.89±0.45 1.63±0.46

5

accG 1.54±0.53 2.73±0.63 1.73±0.52
accM 1.47±0.53 2.79±0.56 1.74±0.44
time 2.43±0.57 1.47±0.81 2.11±0.75

tw (mean) 66.24±86.17 4.15±1.28 4.6±0.82
tw-pr (mean) 4.25±1.07 4.08±1.32 4.25±1.13
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The significant differences found by Holm’s and Shaffer’s procedures are shown in Figures

5.6–5.9. Both procedures produced identical results for all the evaluation metrics.

123

GS–pruned
GS–twTree–tw

Figure 5.6: Comparison of CLL in test dataset with Holm’s and Shaffer’s post-hoc procedures
for the experimental results shown in Table 5.4.

123

GS–pruned
GS–twTree–tw

Figure 5.7: Comparison of accG with Holm’s and Shaffer’s post-hoc procedures for the ex-
perimental results shown in Table 5.4.
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GS–pruned
GS–twTree–tw

Figure 5.8: Comparison of accM with Holm’s and Shaffer’s post-hoc procedures for the ex-
perimental results shown in Table 5.4.

123

Tree–tw
GS–twGS–pruned

Figure 5.9: Comparison of learning time with Holm’s and Shaffer’s post-hoc procedures for
the experimental results shown in Table 5.4.

GS–pruned performed the best according to all the evaluation metrics followed by GS–

tw, and Tree–tw. Holm’s and Shaffer’s procedures found significant differences between all

the methods. The treewidth of the output models was clearly higher for GS–pruned than

for GS–tw, allowing the former to fit better the data. As expected, the difference between

the results obtained with both methods was greater when the treewidth bound was smaller.

This suggests that bounding the pruned graph (as GS–pruned does) instead of the complete

graph may help improving the performance of the models when the relationships allowed by

an MBC of bounded treewidth are not expressive enough.
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Finally, Tree–tw was the fastest in most cases. Although GS–tw required less learning

time than GS–pruned in most of the experiments, the differences in learning time for each

particular experiment were small.

5.4 Conclusions

In this chapter we addressed the problem of the complexity of multidimensional classification

in MBCs. We provided theoretical upper bounds for the complexity of these models, and we

proved that the complexity of the queries that are usually performed in MBCs is bounded

by the treewidth of the pruned graph. The treewidth of the pruned graph may be small even

if the treewidth of the complete structure is high. We proposed a learning method that uses

the above properties to ensure such tractability.

Experimental results showed that the proposed method is competitive with other state-

of-the-art methods in terms of fitting to the conditional distribution of the data and accuracy.

We also observed that some models remain tractable even with a large treewidth. By setting

a bound on the pruned graph instead of on the complete graph we can learn more expressive

models with the same inference complexity. The experiments show that this is specially useful

for lower treewidth bounds.

In the future we are interested in addressing the problem of learning MBCs from incom-

plete datasets.
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Chapter 6
Discriminative learning of

multidimensional Bayesian network

classifiers

Discriminative methods usually outperform generative methods in the task of classification

[Friedman et al., 1997; Grossman and Domingos, 2004]. One of the reasons may be that,

while the latter try to fit the joint probability distribution of the data, the former focus only

on fitting the conditional distribution of the class variables given the features.

In multidimensional classification, correctly identifying the relationships among the class

variables is essential to provide accurate predictions. MBCs are specially well suited for this

task, given that they explicitly represent these relationships. Moreover, they give access to

the posterior distribution of the class variables conditional on the features instead of providing

only point estimates.

To the best of our knowledge, there is little work in the literature addressing the problem

of learning MBCs from data in a discriminative way. Although adapting discriminative

parameter learning to MBCs is straightforward, there is no evidence of whether this leads to

better performance or not. There are some wrapper structure learning methods that optimize

the cross-validated accuracy of MBCs [Bielza et al., 2011; Borchani et al., 2010], but they are

extremely computationally demanding in practice.

In this chapter, we propose strategies for learning the parameters and the structure of

MBCs by optimizing the CLL. As computing CLL requires performing inference, we use the

methods described in Chapter 3 to bound the treewidth of the models during the learning

process. The rest of this chapter is organized as follows. Section 6.1 describes in detail how

to optimize the CLL of the parameters. Section 6.2 contains our proposal for learning the

structure of MBCs. Section 6.3 discusses the experimental results. Finally, Section 6.4 gives

our conclusions and suggests future research lines.

This chapter contains work in progress, that will be submitted as Benjumeda et al. [2019b].

71



72 CHAPTER 6. DISCRIMINATIVE LEARNING OF MBCs

6.1 Parameter learning

A common way to optimize the CLL of the parameters of BN classifiers is to perform gradient

ascent [Greiner et al., 2005; Roos et al., 2005; Zaidi et al., 2017]. This idea can be directly

applied to learn the parameters of MBCs. The main problem of gradient ascent is knowing

how to compute the gradient of the objective function. From Equation (2.8), given the initial

BN B = (G,θ) and a dataset D, the gradient of the CLL is given by:

∂CLL(B|D)

∂θx|u
=
∂`(B|D)

∂θx|u
− ∂`F (B|D)

∂θx|u
, (6.1)

where θx|u is the parameter that represents P(X = x|PaGX = u).

The first term of this equation is the gradient of the log-likelihood function, which is given

by:

∂`(B|D)

∂θx|u
=

M∑
m=1

∂ logP(c[m],f [m]|θ)

∂θx|u
=

M∑
m=1

(
1

P(c[m],f [m]|θ)

)
∂P(c[m],f [m]|θ)

∂θx|u

=
Mx,u

θx|u
, when θx|u 6= 0,

(6.2)

where Mx,u are the number of instances in D where X takes value x and PaBx take values

u. Note that ∂P(c[m],f [m]|θ)
∂θx|u

= 0 when X and PaBx do not take values x and u, respectively,

and ∂P(c[m],f [m]|θ)
∂θx|u

= P(c[m],f [m]|θ)
θx|u

when X and PaBx take values x and u, respectively, and

θx|u 6= 0.

The second term of Equation (6.1) can be computed as follows:

∂`F (B|D)

∂θx|u
=

M∑
m=1

∂ logP(f [m]|θ)

∂θx|u
=

M∑
m=1

(
1

P(f [m]|θ)

)
∂P(f [m]|θ)

∂θx|u

=
1

θx|u

M∑
m=1

P(x,u|f [m],θ), when θx|u 6= 0.

(6.3)

Although Equation (6.2) has closed form, Equation (6.3) requires performing inference for

each instance in the dataset. Well-known inference algorithms as JT belief propagation allow

computing the partial derivatives with respect to all the network parameters at the same

time. In these cases, the cost of evaluating Equation (6.1) is linear in M and exponential in

the treewidth of G. Therefore, if the treewidth of G is small, the gradient of the CLL can be

computed efficiently.

Gradient ascent cannot be directly applied, given that the parameter estimation is a

constrained optimization problem, where θx|u ∈ [0, 1] and
∑

xi∈ΩX
θxi|u = 1. The same issue

has been studied for applying gradient ascent to optimize the LL in incomplete datasets

[Darwiche, 2009; Koller and Friedman, 2009]. We adopt a popular strategy that consists of
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performing the search in the soft-max space [Bishop, 1995]. In this case, the parameters are

defined with respect to the soft-max variables:

θx|u =
esx|u∑

xi∈ΩX
esxi|u

,

where sx|u is the soft-max variable associated with θx|u. For any choice of the soft-max

variables, the parameters fulfill the constraints mentioned above. The gradient of the CLL

with respect to sx|u is

∂CLL(D|θ)

∂sx|u
=
∂CLL(D|θ)

∂θx|u

∂θx|u

∂sx|u
=
∂CLL(D|θ)

∂θx|u

esx|u
∑

xi∈(ΩX\{x}) e
sxi|u

(
∑

xi∈ΩX
esxi|u)2

. (6.4)

Equation (6.4) can be combined with multiple optimization methods. A classic approach

is to use conjugate gradient [Bishop, 1995]. Instead, we use the limited-memory Broyden–

Fletcher–Goldfarb–Shanno (L–BFGS) algorithm [Nocedal, 1980; Byrd et al., 1994]. L–BFGS

is a quasi-Newton optimization method that, to guide the search, estimates an approximation

of the inverse Hessian matrix using a limited amount of memory. While the computational

overhead of L–BFGS in a single iteration is higher than in conjugate gradient, the former

requires fewer steps until convergence and fewer evaluations of the objective function than

the latter [Malouf, 2002]. This is specially useful when learning the parameters of MBCs,

where the evaluation of the CLL is usually the bottleneck.

6.2 Structure learning

This section describes the proposed MBC structure learning algorithm. Our approach is

inspired by the BNC algorithm [Grossman and Domingos, 2004], which learns BN classifiers in

a discriminative manner. Like BNC, we estimate the parameters via ML during the structure

search, given that directly optimizing the CLL would be intractable in most cases. The scoring

function used by BNC to guide the structure search is the CLL of each model (both structure

and parameters), which requires computing the joint probability of the features for each

instance in the dataset. When the dataset is complete, this can be done by marginalizing out

a single variable (the class variable).

In multidimensional classification, it is necessary to marginalize over multiple class vari-

ables to obtain the joint probability of the features. These operations can be performed

efficiently when the treewidth of the MBC structure G is bounded. In this case, the com-

plexity of computing the CLL is exponential in the treewidth of G and is linear in M . We

use the methods described in Chapter 3 to bound the inference complexity of the models. As

directly optimizing the CLL of the MBCs would result in very dense structures, we penalize

the complexity of the models to avoid overfitting. Specifically, we assume that the scoring

function is of the form:

scoreCLL(D,B) = CLL(B|D)− pen(B,D), (6.5)
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where pen(B,D) is a penalty function that can depend on B and D.

Even for bounded treewidth models, the amount of computations required to compute

the CLL of each MBC candidate during the learning process may be too high. Instead,

Algorithm 6.1, called discriminative greedy search (DGS), computes the CLL of the most

promising candidates to speed-up the process. At each iteration, the MBC candidates are

ordered from the best to the worst according to a generative score, and the first model

that produces an increment in the discriminative score (Equation (6.5)) is selected. This

process is repeated until no change improves the discriminative score. The objective of

this procedure is to take advantage of the efficiency of generative methods, avoiding some

of their drawbacks. Specifically, a drawback is that many local changes that improve the

generative scoring function may not improve, or even worsen, the model from a discriminative

perspective. For example, it is common to add arcs from class variables to redundant features.

The proposed procedure ensures that each local change applied during the structure search

improves the discriminative score. Note that, after learning the structure of the MBC, we

may optimize the CLL of the parameters by using the method described in Section 6.1.

Algorithm 6.1 performs as follows: line 2 compiles a valid ET for the given BN. Line 3

loops until no local changes improves the current MBC candidate. In line 4, the local changes

that fulfill the restrictions at lines 5, 6 and 7 are obtained. These restrictions avoid arcs that

have no effect on the CLL of the model and arcs from the features to the class variables. In

line 8, the local changes are sorted in a descending order according to a generative score. The

loop at line 12 searches for the first MBC of bounded treewidth (line 15) that impoves the

discriminative score (line 16). Theorem 6.1 shows that each iteration of Algorithm 6.1 can

be computed efficiently.

Theorem 6.1. If the treewidth bound tb is a constant (which is assumed to be small), then

each iteration of Algorithm 6.1 consumes polynomial time in the number of variables (n) and

number of instances (M) in dataset D.

Proof. Algorithm 3.1 (line 2) requires polynomial time in n (Proposition 3.1). At line 4,

there are a maximum of O(n2) local changes. Therefore, the scores of all the candidates (line

8) can be computed in polynomial time in n and M . The loop at line 12 performs at worst

O(n2) steps (i.e., one for each possible local change). Algorithms 3.2, 3.3 and 3.5 (line 14)

take polynomial time in n (Theorem 3.2), and the width of an EO (line 15) can be obtained

efficiently [Darwiche, 2009]. Finally, the CLL of an MBC of bounded treewidth (line 16) can

be computed in polynomial time in n and M .

6.3 Experimental results

In this section we empirically analyze the strategies proposed in this chapter for learning

MBCs. We compare DGS (Algorithm 6.1) with the methods proposed in Chapter 5, GS–

pruned and GS–tw. A comparison of the latter approaches with other methods in the state

of the art is provided in Section 5.3. DGS–clp and GS–clp use the structures output by DGS
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Input: Dataset D, treewidth bound tb
Output: Best MBC B∗

1 initialize MBC B∗ and EO π∗;
2 let E∗B∗ be a valid ET that represents π∗ for MBC B∗ (Algorithm 3.1);
3 loop for j = 0, 1, . . . until convergence
4 let s1, . . . , sl be the local changes (i.e., arc additions, removals, or reversals) that

can be applied to G∗ (the structure of B∗) such that:
5 a) local change sd is arc addition Xout → Xin and Xout ∈ C
6 b) If local change sd is arc addition Xout → Xin and Xout ∈ F , then Xin ∈ F and

PaG
∗

Xin
∩ C 6= ∅

7 c) If local change sd is arc reversal Xout → Xin, then Xout ∈ F , Xin ∈ F , and

PaG
∗

Xout
∩ C 6= ∅

8 let so(1), . . . , so(l) be the result of sorting in descending order s1, . . . , sl according to

score(D,Bd), where Bd is the result of applying local change sd to B∗;
9 improve ← FALSE;

10 d← 1;

11 let Bj and EjBj be a copy of B∗ and E∗B∗, respectively;

12 while d ≤ l and not improve do
13 let B′ be the result of applying local change so(d) in B∗;
14 let E ′B′ be the result of compiling local change so(d) in E∗B∗ (Algorithms 3.2 and

3.3), and optimizing the resulting ET (Algorithm 3.5);

15 if width(E ′B′) ≤ tb then
16 if scoreCLL(D,B′) > scoreCLL(D,Bj) then

17 Bj , EjBj ← B′, E
′
B′ ;

18 improve ← TRUE;

19 end

20 end
21 increment d;

22 end

23 B∗, E∗B∗ ← Bj , E
j
Bj ;

Algorithm 6.1: Pseudocode of discriminative greedy search of MBCs (DGS).
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12345

DGS–clp
DGS
GS–clp

GS–pruned
GS–tw

Figure 6.1: Comparison of CLL for all methods against each other with the Holm’s and
Shaffer’s post-hoc tests for the experimental results shown in Table 6.1.
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DGS
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GS–pruned
GS–tw

Figure 6.2: Comparison of accG for all methods against each other with the Holm’s and
Shaffer’s post-hoc tests for the experimental results shown in Table 6.1.

and GS–tw, respectively, but they optimize the CLL, as described in Section 6.1, instead of

the LL to learn the parameters of the MBC. In all the cases, BIC was the generative score to

optimize. We also used BIC’s penalization on the number of parameters as the complexity

penalization of the discriminative score (Equation (6.5)).

We learned models from the 15 multilabel datasets described in Table 5.2, using 5-fold

cross-validation. We applied all methods using different treewidth bounds (2, 3, 4 and 5).

The continuous variables were discretized using five equal frequency intervals. To evaluate

the models, we used the CLL in the test dataset, accG and accM (described in Section 5.3).

We used the Friedman test with α = 0.05 and Holm’s [Holm, 1979] and Shaffer’s [Shaf-

fer, 1986] post-hoc procedures to analyze the significance of the differences found for each

performance measure. Both methods are described in Section 3.3.1.

Experiments were performed on a computer with an Intel Core i7-6700K CPU at 4.00

GHz with 16 GB main memory, running Ubuntu 16.04 LTS. All the compared methods were

written in Python 2.7.12, and integrate specific functions developed in C++11 (version 5.4.0).

6.3.1 Comparison with generative methods

Table 6.1 shows the mean rank (± the standard deviation) of each MBC learning method in

the datasets described in Table 5.2 for the different treewidth bounds, according to the CLL,

accG, accM , and the learning time. The mean treewidth, and the mean treewidth of the

pruned graph (see Section 5.1) are also shown. The detailed experimental results are avail-

able online at https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/

supplemantary-material_MBCs_cll.pdf.

Figures 6.1–6.4 show the significant differences among the MBC learning methods for

each evaluation metric.

https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_MBCs_cll.pdf
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/supplemantary-material_MBCs_cll.pdf
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Table 6.1: Comparison of discriminative and generative MBC learning methods. The optimal
results are denoted in boldface.

DGS DGS-clp GS-tw GS-clp GS-pruned tw bound
CLL 2.13±0.84 1.55±1.07 4.61±0.96 3.31±0.94 3.41±0.81

2

accG 2.58±1.05 2.58±1.21 3.95±1.23 2.9±1.19 2.99±1.42
accM 2.62±0.94 2.04±1.09 4.34±1.03 3.01±1.39 2.99±1.21
time 3.94±1.03 3.94±1.03 1.89±0.88 1.89±0.88 3.35±1.01

tw (mean) 1.89±0.31 1.89±0.31 2±0 2±0 65.79±85.89
tw-pr (mean) 1.8±0.43 1.8±0.43 2±0 2±0 1.99±0.12

CLL 2.4±0.97 1.72±1.13 4.49±1.02 2.95±1.17 3.44±0.99

3

accG 2.9±1.29 2.77±1.25 3.47±1.39 2.91±1.2 2.96±1.43
accM 2.67±1.13 2.28±1.23 4.13±1.21 2.81±1.33 3.11±1.27
time 3.59±1.35 3.59±1.35 2.45±1.14 2.45±1.14 2.92±1.25

tw (mean) 2.65±0.67 2.65±0.67 2.95±0.23 2.95±0.23 65.24±85.04
tw-pr (mean) 2.52±0.79 2.52±0.79 2.89±0.31 2.89±0.31 2.91±0.29

CLL 2.48±1.07 1.79±1.15 4.3±0.98 2.76±1.17 3.67±1.11

4

accG 2.71±1.3 2.71±1.33 3.43±1.35 3.04±1.35 3.1±1.23
accM 2.76±1.13 2.29±1.28 4.09±1.19 2.72±1.36 3.15±1.23
time 3.65±1.32 3.65±1.32 2.41±1.13 2.41±1.13 2.89±1.23

tw (mean) 3.29±1.06 3.29±1.06 3.83±0.5 3.83±0.5 65.68±85.01
tw-pr (mean) 3.16±1.22 3.16±1.22 3.6±0.7 3.6±0.7 3.63±0.65

CLL 2.48±1.12 1.83±1.19 4.11±1.15 2.71±1.15 3.87±0.94

5

accG 2.85±1.34 2.79±1.37 3.42±1.3 2.77±1.27 3.17±1.27
accM 2.76±1.18 2.13±1.25 3.96±1.18 2.91±1.34 3.25±1.22
time 3.55±1.32 3.55±1.32 2.54±1.29 2.54±1.29 2.81±1.1

tw (mean) 3.88±1.49 3.88±1.49 4.6±0.82 4.6±0.82 66.24±86.17
tw-pr (mean) 3.67±1.61 3.67±1.61 4.25±1.13 4.25±1.13 4.25±1.07

12345

DGS–clp
DGS
GS–clp

GS–pruned
GS–tw

Figure 6.3: Comparison of accM for all methods against each other with the Holm’s post-
hoc test for the experimental results shown in Table 6.1. Shaffer’s procedure did not find
significant differences between GS–clp and GS–pruned.

12345

GS–tw
GS–clp
GS–pruned

DGS
DGS–clp

Figure 6.4: Comparison of learning time for all methods against each other with the Holm’s
and Shaffer’s post-hoc tests for the experimental results shown in Table 6.1.
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The proposed strategies for the discriminative learning of the structure and parameters of

MBCs led to higher CLL and accuracy. Both DGS and GS–clp performed better than GS–tw

and GS–pruned, and DGS–clp was the best performing method. Overall, DGS outperformed

GS–clp, which suggests that optimizing the CLL of the structure is more relevant than

optimizing only the CLL of the parameters.

DGS–clp performed significantly better than GS–tw and GS–pruned according to the first

three evaluation metrics, and better than DGS and GS–clp for the CLL and accM . All the

methods performed similarly in terms of general accuracy, with the exception of GS–tw, that

obtained the worst results.

GS–clp performed clearly better for higher treewidth bounds. For example, GS–clp and

GS–pruned obtained similar results for treewidth bound 2, while GS–clp was closer to DGS

for bound 5. This suggests that dense structures favor GS–clp. Moreover, computing L–

BFGS to estimate the parameters took less than a minute in the worst case, while DGS took

a mean of 6.28 times the learning time required by GS–tw. As the difference in learning

time scales with the size of the dataset, performing DGS in even larger datasets may be

prohibitive. In these cases, GS–clp can be a good alternative.

6.4 Conclusions

In this chapter we proposed a new method for learning MBCs. To the best of our knowledge,

this is the first MBC learning method where the learning process is guided by the CLL of

the models. Additionally, we demonstrated that each iteration of the new method takes

polynomial time in the number of variables and the size of the dataset. The keys to allow

the method to scale up to large domains were: first, to bound the treewidth of all the MBC

candidates, and second, to use a generative scoring function to order the candidates from the

most to the least promising. We also provided a strategy to optimize the CLL of the MBC

parameters.

We performed extensive experiments to test the performance of our proposal in a wide

variety of multilabel datasets. Both the discriminative structure and parameter learning

methods supposed an improvement in the performance compared to the generative methods

from Chapter 5. Nevertheless, the proposed structure learning method was significantly

slower than its generative counterpart, which could be a problem if we aim to learn MBCs

from even larger domains. In these cases, the discriminative learning of the parameters

may suffice, given that its combination with a generative structure learning method proved

competitive with the rest of the methods, requiring clearly less computations.

When data is complete, the CLL of the MBCs can be computed efficiently even when their

treewidth is not small if the treewidth of their pruned graph is bounded. Therefore, using

the latter to limit the complexity of the MBCs may lead to learning more expressive models.

Additionally, we are interested in combining this work with our proposal in Chapter 4 to

learn MBCs from incomplete datasets. Finally, we intend to study if it is possible to extend

the work of Carvalho et al. [2011] to approximate the CLL of MBCs.



Chapter 7
Multidimensional Bayesian network

classifiers to predict individual

temporal lobe epilepsy patient

surgical outcomes

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy in adults, with

drug-resistance developing in approximately a third of patients [Semah et al., 1998]. Drug-

resistant TLE is potentially curable via surgery. Overall, rates of seizure-freedom after one

year of post-surgical follow-up varies from 53 to 84% [Spencer and Huh, 2008]. Even the so

called “best surgical candidates” can develop rather suboptimal post-surgical outcomes, in

particular during long-term follow-up, with seizure recurrence reaching 40-50% ten years after

surgery [Spencer, 1996; McIntosh et al., 2004]. Meaningful improvement in the quality of life

is primarily observed only in patients who achieve seizure-freedom after surgery [Markand

et al., 2000]. A tool for predicting both short and medium-term surgical success would hence

be immensely useful for both physicians and patients.

Although several predictors of seizure freedom after TLE surgery have been identified,

combining these predictors via multivariate logistic regression modeling has only achieved

a modest discriminative ability [Uijl et al., 2008]. A nomogram and seizure freedom score

have independently been developed to predict success of epilepsy surgery in general [Jehi

et al., 2015; Garcia-Gracia et al., 2015], but there is no clinical prediction model for patients

undergoing TLE surgery in particular.

We therefore aimed to use a supervised machine learning approach to improve surgical

outcome predictions based on clinical, neurophysiological and imaging features retrospec-

tively collected from a TLE surgical dataset at the University of California, San Francisco

(UCSF) over a fifteen year period. Specifically, we learned an MBC from the UCSF dataset.

We further tested this model on a separate surgical TLE cohort treated at the Montreal

Neurological Institute (MNI) to validate the learning model, and compared its performance

79
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with established nomograms.

This chapter includes the content of Benjumeda et al. [2019d].

7.1 Methods

7.1.1 Study design, participants, and procedures

We retrospectively studied a cohort of 231 consecutive TLE patients who underwent surgical

treatment at UCSF (M=167) and at the MNI (M=64) between years 2000-2015. All pa-

tients fulfilled the International League Against Epilepsy definition of drug-resistant epilepsy

[Kwan et al., 2010]. Adults were included if (i) unilateral temporal lobe seizure onset was

demonstrated during scalp and/or intracranial electroencephalography (EEG) monitoring,

(ii) pre-surgical 1.5 or 3.0 Tesla MRIs revealed no lesions, or showed unilateral hippocampal

atrophy, (iii) at least one year of post-surgical follow-up was available. To increase the homo-

geneity of the selected study population, patients with other overt epileptogenic abnormalities

in the temporal lobes on imaging (such as cortical dysplasias, neoplasms or cavernomas) were

excluded. Prior to their surgery, all patients were discussed at a pre-surgical team conference,

during which their seizure history, clinical findings, video EEG and neuroimaging scans were

reviewed, and intracranial EEG implantation and/or surgical strategies planned. This study

was approved by the research ethics committee from both institutions.

Patients’ demographics, clinical, neurophysiological, and imaging variables were collected,

including known predictors of surgical outcomes (Table 7.1). Prior to data collection, both

institutions (UCSF and MNI) agreed on the definitions of all variables, so as to optimize inter-

rater reliability. As specialized imaging modalities such as magnetoencephalography (MEG)

and single-photon emission computed tomography (SPECT) were only available for a small

subset of patients, and are also not routinely performed as part of pre-surgical evaluation

in TLE, these variables were not included. Post-surgery Engel [Engel Jr, 1993] outcomes at

year one, two, and five (when available) were analyzed as primary endpoints.

Table 7.1: Patient demographics, and their clinical, neurophysiological, and imaging variables
collected from UCSF and MNI.

Patient demographics and feature variables UCSF

(M=167)

MNI

(M=64)

Male (%) 84 (50.3) 22 (34.4)

Race (%):

White

Black/African American

Asian

Others

Unknown

135 (80.8)

13 (7.8)

12 (7.2)

4 (2.4)

3 (1.8)

33 (51.6)

3 (4.7)

3 (4.7)

3 (4.7)

22 (34.4)

continued on next page
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continued from previous page

Handedness (%):

Right

Left

Ambidextrous

152 (91.0)

13 (7.8)

2 (1.2)

51 (79.7)

11 (17.2)

2 (3.1)

History of heavy alcohol/substance use (%) 20 (12.0) 3 (4.7)

Pre-operative migraine (%) 29 (17.4) 5 (7.8)

Pre-operative mood disorder (%) 44 (26.3) 12 (18.8)

Pre-operative psychosis (%) 12 (7.2) 4 (6.3)

Static encephalopathy (%) 22 (13.2) 4 (6.3)

History of co-existing psychogenic non epileptic seizures

(%)

4 (2.4) 3 (4.7)

Age at seizure onset, years (mean) 16.0 18.3

Age at surgery, years (mean) 37.1 37.8

Duration of epilepsy till surgery, years (mean) 21.1 19.5

N. of FIAS/month (mean) 6.3 4.7

N. of GTC seizures/year (mean) 4.9 1.9

History of GTC seizures (%) 143 (85.6) 59 (92.2)

At least 6-month seizure-free interval after 1st afebrile

seizure:

Yes (%)

Mean seizure-free interval (years), SD

41 (24.6)

7.5 ± 4.5

27 (42.2)

5.3 ± 5.7

Presence of risk factors present for epilepsy (status

epilepticus, perinatal difficulty, head trauma, or en-

cephalitis) (%)

58 (34.7) 24 (37.5)

Family history of seizure disorder (%):

Yes

Unknown

22 (13.2)

1 (0.6)

9 (14.1)

0

History of febrile seizure (%) 36 (21.6) 21 (32.8)

Type of aura (%):

Mesial TLE

Neocortical TLE/extratemporal

Non-specific/mixed

None

67 (40.1)

16 (9.6)

51 (30.5)

33 (19.8)

29 (45.3)

5 (7.8)

17 (26.6)

13 (20.3)

Presence of abdominal aura (%) 27 (16.2) 23 (35.9)

Automatisms observed first during seizure (%):

Yes

Unknown

80 (47.9)

6 (3.6)

43 (67.2)

3 (4.7

continued on next page
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continued from previous page

Tonic/clonic/hyperkinetic movements observed first

during seizure (%):

Yes

Unknown

19 (11.4)

6 (3.6)

5 (7.8)

3 (4.7)

N. of disabling seizures captured/duration of vEEG in

days (mean)

3.6/4.4 (0.8) 5.8/10.3 (0.6)

Proportion of GTC seizures/N. of disabling seizures cap-

tured during vEEG

0.3 0.1

Only nocturnal seizures or seizures arising from sleep

recorded (%)

22 (13.2) 10 (15.6)

Total no. of AEDs tried (mean) 5.7 4.8

N. of AEDs at time of surgery (mean) 2.2 2.0

History of documented AED non-compliance (%) 23 (13.8) 6 (9.4)

Laterality of interictal spike (%):

Ipsilateral

Bilateral/Generalized/Contralateral

No spike

Unknown

81 (48.5)

45 (26.9)

14 (8.4)

27 (16.2)

38 (59.4)

21 (32.8)

5 (7.8)

0

Oligospiker (%):

Yes

Unknown

17 (10.2)

30 (18.0)

15 (23.4)

0

Typical interictal spike with maximum negativity over

anterior temporal region (%):

Yes

Unknown

68 (40.7)

47 (28.1)

44 (68.8)

6 (9.4)

Ipsilateral temporal slowing seen on EEG (%):

Yes

Unknown

31 (18.6)

56 (33.5)

24 (37.5)

0

Ictal onset on scalp EEG localized to ipsilateral anterior

temporal region (%):

Yes

No (e.g., posterior temporal onset, non-lateralized onset,

. . . )

Independent bilateral onset

No seizure recorded

Unknown

92 (55.1)

62 (37.1)

2 (1.2)

1 (0.6)

10 (6.0)

46 (71.9)

11 (17.2)

6 (9.4)

1 (1.6)

0

continued on next page
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Ictal EEG onset (Ebersole [Ebersole and Pacia, 1996])

(%):

Type 1

Type 2

Type 3

Unknown

53 (31.7)

46 (27.5)

21 (12.6)

47 (28.1)

24 (37.5)

19 (29.7)

7 (10.9)

14 (21.9)

Ictal activity remains localized to

ipsilateral temporal region (%):

Yes

Unknown

30 (18.0)

60 (35.9)

17 (26.6)

9 (14.1)

Intracranial EEG performed (%) 48 (28.7) 8 (12.5)

Intracranial EEG seizure onset (%):

Mesial

Neocortical

Both mesial and neocortical

Involves extratemporal region

No seizure recorded

Unknown

18 (37.5)

1 (2.1)

17 (35.4)

10 (20.8)

1 (2.1)

1 (2.1)

7 (87.5)

0

1 (12.5)

0

0

0

MRI findings (%):

Hippocampal atrophy

Subtle hippocampus changes

Normal hippocampus

100 (59.9)

20 (12.0)

47 (28.1)

42 (65.6)

10 (15.6)

12 (18.8)

Bilateral HS present (%) 7 (4.2) 1 (1.6)

Extrahippocampal lesion present (e.g., encephalomala-

cia, neurocysticercosis) (%)

19 (11.4) 5 (7.8)

Temporal meningoencephalocele present (%) 5 (3.0) 2 (3.1)

PET hypometabolism over ipsilateral temporal region

(%)

65/76 (85.5) 19/21 (90.5)

Concordant lateralizing memory deficit on neuropsy-

chology (%):

Yes

Unknown

40 (24.0)

81 (48.5)

25 (39.1)

4 (6.3)

Side of TLE surgery (%):

Left

Right

87 (52.1)

80 (47.9)

30 (46.9)

34 (53.1)

continued on next page
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continued from previous page

Type of surgery (%):

ATL

Selective amygdalohippocampectomy

Minimally invasive (Visualase/Gamma knife)

Extended ATL/Tailored surgery

146 (87.4)

2 (1.2)

9 (5.4)

10 (6.0)

20 (31.3)

42 (65.6)

0

2 (3.1)

Histology (%):

MTS

Gliosis

FCD, or MTS+FCD

Other (microinfarcts, lymphocytic infiltration, etc)

116 (69.5)

33 (19.8)

12 (7.2)

6 (3.6)

27 (42.2)

21 (32.8)

6 (9.4)

10 (15.6)

Reoperation case (%)1 13 (7.8) 3 (4.7)

Engel I outcomes (%):

Year 1

Year 2

Year 5

95/167 (56.9)

62/119 (52.1)

26/51 (51.0)

40/64 (62.5)

36/50 (72.0)

9/16 (56.3)

7.1.2 Data analysis

We used an MBC to predict surgical outcomes one (Y1), two (Y2), and five (Y5) years post-

operatively. We distinguished between patients with an Engel I score (i.e.,free of disabling

seizures) versus patients with an Engel score of II-IV (i.e.,persistence of disabling seizures).

The presence of both categorical and continuous variables in the datasets greatly increases

the complexity of the prediction of TLE surgery outcome. Thus, we discretized the contin-

uous variables into categorical variables with a reduced number of intervals. For this, we

used the fixed frequency discretization (FFD) [Yang and Webb, 2009]. Given a sufficient

interval frequency (MI), FFD discretizes the ascendingly sorted values into intervals of ap-

proximately MI instances. Note that the interval frequency may not be close to MI in the

presence of many identical values. The main difference between FFD and the well-known

equal frequency discretization (EFD) [Catlett, 1991; Dougherty et al., 1995] is that the for-

mer adapts the number of intervals to the number of observed values, which can help to

control the discretization variance.

To determine the best subset of features we used the next wrapper approach: First, the

feature variables were sorted in descending order according to the information gain (IG)

[Cover and Thomas, 2012] provided by each feature variable in relation to the TLE surgery

outcomes (maximum IG among Y1, Y2, and Y5). Then, the top k variables were used to

learn a model (see Section 7.1.3). To set k, we selected the value that gave the model output a

larger macro-averaged area under the ROC curve (macro-AUC) using 5-fold cross-validation

in the learning dataset. The macro-AUC is the mean among the AUCs in each time scale.

1If this was a reoperation, the Engel outcome after 2nd surgery was used.
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7.1.3 Model selection

We used MBCs, an extension of BN classifiers [Bielza and Larrañaga, 2014], to build the

predictive model. It was evident that outcomes of TLE surgery at different time scales were

related. We learned an MBC that considered these relationships, in which the three class

variables were TLE surgery outcome at Y1, Y2, and Y5, and the feature variables were the

predictors.

To train the model, we used the hill-climbing BN learning method [Heckerman et al.,

1995]. To ensure that the output was always an MBC, the arcs from the feature variables to

the class variables were included in a blacklist. The scoring function used to evaluate each

MBC structure was AIC [Akaike, 1974], which consists of the log-likelihood of each structure

candidate penalized by the number of parameters of the models (see Section 2.3). We used

available-case-analysis [Pigott, 2001] to deal with missing values in the training dataset.

When the parameters of the MBC were estimated by maximum likelihood, the resulting

model predicted probabilities that fluctuated excessively when the value of certain individual

variables changed. The main reason for this problem is that the small number of instances

in the learning dataset caused some model parameters to be too extreme. Thus, we used a

Bayesian estimation of the parameter with uniform Dirichlet priors (which we set to 1) to

improve the stability of the predicted probabilities. The overall performance of the classifier

was not affected by this change.

7.1.4 Validation

To evaluate the model performance, we computed the area under the ROC curve (AUC), the

classification accuracy (acc), the sensitivity or true positive rate (TPR), and the specificity

or true negative rate (TNR) of the proposed MBC against the current gold standard (i.e.,

the nomograms proposed by Jehi et al. [2015]) in the testing dataset. We used a threshold of

0.5 to assign predicted labels to the instances. This means that when the classifier returns a

probability of having an Engel score of I greater than or equal to 0.5, the instance is assigned

to class E I. Otherwise, the instance is assigned to class E II-IV.

An in-house developed Python 2.7 package was used to learn the MBC. This package can

be found at https://github.com/marcobb8/tr_bn. A custom script was written to select the

subset of features and can be found at the same location. We used scikit-learn, version 0.18.1,

to compute all the evaluation metrics.

7.2 Results

The procedure used to learn the MBC was preliminarily tested using 10-fold cross-validation

in the UCSF dataset, yielding a macro-AUC of 0.74. We also tested different well-known

methods for learning the MBC, but they produced worse results. Specifically, we tried BIC

[Schwarz, 1978] instead of AIC as the scoring function (macro-AUC 0.73), the tree-tree MBC

[van der Gaag and de Waal, 2006] learning method instead of the greedy search (macro-AUC

https://github.com/marcobb8/tr_bn
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Table 7.2: Intervals obtained after applying the EFD algorithm to discretize the continuous
variables.

Variable Intervals
Age at seizure onset, years [0, 3], (3, 9], (9, 15.6], (15.6, 27], > 27
N. of FIAS/month [0, 1.2], (1.2, 3], (3, 7], (7, 10], > 10
N. of GTC seizures/year [0, 1], (1, 12], > 12
N. of disabling seizures captured /duration of
vEEG in days

[0, 0.33], (0.33, 0.6], (0.6, 0.83], (0.83, 1.33],
> 1.33

Proportion of GTC seizures /N. of disabling
seizures captured during vEEG

[0, 0.718], > 0.718

Total N. of AEDs tried [0, 4], 5, 6, 7,≥ 8
N. of AEDs at time of surgery [0, 2], 3,≥ 4
Age at surgery, years [0, 25.2], (25.2, 33], (33, 40], (40, 47], > 47
Duration of epilepsy till surgery, years [0, 9], (9, 14], (14, 23], (23, 31], > 31

0.64), and the structural expectation-maximization algorithm [Friedman, 1998] (macro-AUC

0.64) as an alternative to available-case-analysis.

We used the data of 167 UCSF patients as the training cohort, and that of 64 MNI

patients for the validation cohort. The UCSF dataset was used exclusively for preprocessing

and modeling to ensure fairness of the experimental results. The intervals obtained after

discretizing the continuous variables are shown in Table 7.2. The subsets of features selected

for each time scale are shown in Table 7.3. The maximum IG among all time scales is shown

near each feature. The MBC structure induced from the UCSF dataset is shown in Figure

7.1.

We evaluated the predictive performance of the MBC in the MNI dataset, and compared

it with the nomograms proposed by Jehi et al. [2015]. Figure 7.2 shows the ROC curves

obtained with both approaches. Table 7.4 gives the AUC, acc, TPR, and TNR obtained with

each model for the different time scales. Figure 7.3 shows the calibration of the MBC in the

MNI dataset.

The MBC trained on UCSF data showed good discriminative power for MNI data at Y1

and Y2, achieving AUCs of 0.784 and 0.760 respectively. It also performed reasonably well

at Y5 (AUC 0.683). The difference in AUC of Y5 with respect to the other time scales may

be caused by the small number of observations of Y5 in the MNI dataset.

The MBC clearly discriminated better than the nomograms in all comparable time scales.

Only the accuracy at Y2 is slightly higher in the nomogram than in the MBC. This happens

because 72% of the samples are labelled as Engel I at year 2 in the MNI data, and the

nomogram classifies all the samples as Engel I when we use 0.5 as the cutoff (i.e., it does not

discriminate), while the MBC has a TPR and TNR of 0.75 and 0.643 respectively. As the

nomograms never assign a probability smaller than 0.5 to any instance at Y2 or Y5, they

obtain a TPR of 1 and a TNR of 0 in both cases with a cutoff of 0.5.

In summary, the superior performance of the MBC compared to the nomograms highlights

the predictive value and discriminative ability of the subset of selected feature variables, and

the capability of the MBC to encode the probabilistic relationships between the predictors
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Table 7.3: Variables selected for the prediction of TLE surgery at Y1, Y2, and
Y5. Variable V11 combines variables “Automatisms observed first during seizure” and
“Tonic/clonic/hyperkinetic movements observed first during seizure” from Table 7.1.

Variable ID IG
Race V1 0.038
Handedness V2 0.029
History of heavy alcohol/substance use V3 0.042
Age at seizure onset, years V4 0.02
N. of FIAS/month V5 0.021
N. of GTC seizures/year V6 0.099
History of GTC seizures V7 0.021
Presence of risk factors present for epilepsy (status epilepti-
cus, perinatal difficulty, head trauma, or encephalitis)

V8 0.014

Family history of seizure disorder V9 0.016
Type of aura V10 0.022
First clinical manifestation during a seizure (automatisms,
tonic-clonic or hyperkinetic movements)

V11 0.039

N. of disabling seizures captured /duration of vEEG in days V12 0.049
Proportion of GTC seizures /N. of disabling seizures captured
during vEEG

V13 0.053

Only nocturnal seizures or seizures arising from sleep
recorded

V14 0.029

Total no. of AEDs tried V15 0.07
N. of AEDs at time of surgery V16 0.017
History of documented AED noncompliance V17 0.018
Laterality of interictal spike V18 0.066
Oligospiker V19 0.037
Typical interictal spike with maximum negativity over ante-
rior temporal region

V20 0.043

Ipsilateral temporal slowing seen on EEG V21 0.054
Ictal onset on scalp EEG localized to ipsilateral anterior tem-
poral region

V22 0.019

Ictal EEG onset (Ebersole) V23 0.057
Ictal activity remains localized to ipsilateral temporal region V24 0.013
MRI findings V25 0.043
Temporal meningoencephalocele present V26 0.013
PET hypometabolism over ipsilateral temporal region V27 0.014
Age at surgery, years V28 0.145
Duration of epilepsy till surgery, years V29 0.067
Type of surgery V30 0.014
Reoperation case V31 0.127
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Figure 7.1: Structure of the MBC learned for predicting the outcome of Engel at Y1, Y2,
and Y5. Some relevant relationships induced by the structure are analyzed in the discussion.
Table 7.3 displays the correspondence between node labels and variable names.

Table 7.4: Comparison of the MBC versus the nomograms for predicting the outcome of
TLE surgery in the MNI dataset. Note that Jehi et al. [Jehi et al., 2015] did not provide
a nomogram for predicting TLE surgery outcome at Y1. Hence, we only show the results
obtained with the MBC at Y2 and Y5.

Time scale Y1 Y2 Y5
Method MBC MBC Nomogram MBC Nomogram
AUC 0.784 0.760 0.541 0.683 0.611
acc 0.719 0.720 0.729 0.750 0.563
TPR 0.825 0.750 1.000 0.889 1.000
TNR 0.542 0.643 0.000 0.571 0.000
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Y1 Y2 Y5

Figure 7.2: ROC curves obtained with the MBC (blue) and the nomograms (red) at Y1
(left), Y2 (center), and Y5 (right). Note that Jehi et al. [Jehi et al., 2015] did not provide
a nomogram for predicting TLE surgery outcome at Y1. Hence, we only show the results
obtained with the MBC at Y2 and Y5.

Figure 7.3: Calibration curves obtained with the MBC at Y1 (green), Y2 (blue), and Y5
(red).
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and the class variables (i.e., Engel outcomes).

As a deliverable of the current work towards clinical setting, we have developed an online

calculator that is freely available on the web (link can be found at http://manikkavacakar.

dcmohan.com:3838/tlesop), allowing the reader to enter feature variables for individual TLE

patients and to obtain an automated individualized prediction of seizure-free probability at

different time scales.

7.3 Discussion

Our MBC generated meaningful results despite minimal supervision and few constraints

on the model. This study demonstrates the potential for such a model to give us valuable

clinical insights and express complex relationships in patient data beyond what can be offered

by expert-designed, highly constrained, hypothesis-driven statistical models. The excellent

performance of the MBC on the independent MNI dataset suggests that our machine learning

approach can capture general relationships between feature variables and surgical outcomes.

7.3.1 MBC outperformed established nomograms

The established nomogram Jehi et al. [2015] utilized nine feature variables identified to be

predictors of seizure freedom after surgery, e.g. sex, age at onset of seizures, age at time

of surgery, etc. These variables were combined in a non-linear proportional hazards model

that assumes a multiplicative relationship between covariates and prediction. The method

considered pairwise interactions between type of surgery and other variables. In contrast,

the complex non-linear conditional relationships between the different features and the three

outcome probabilities described by the MBC were induced from data. Unlike proportional

hazard models, MBCs can robustly handle missing values, which is essential to make the

proposed tool useful when the value of some of the predictors is unknown. The outcome

probabilities are computed simultaneously and are interdependent. The fact that these results

generalize across different datasets suggests that the model that best describes the underlying

statistical relationships between clinical predictor variables and surgical outcomes at the three

time-scales might be best represented by an MBC-style network.

7.3.2 Clinical interpretation of the MBC

On analysis of the relationships encoded by the structure, the learning algorithm added an

arc from Y5 to all the features. From this, we may infer that the relation between the features

and Y5 is stronger than the relation between the features and Y1 or Y2. This does not mean

that Y1 or Y2 are independent of the features, and more importantly, Y5 is not needed for

the prediction of Y1 or Y2. Also, the presence of an arc from Y1 to “MRI findings” (V25)

suggests a strong relationship between the presence vs absence of hippocampal atrophy on

MRI and seizure freedom outcome at Y1. This is concordant with clinical studies, which

http://manikkavacakar.dcmohan.com:3838/tlesop
http://manikkavacakar.dcmohan.com:3838/tlesop
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have shown seizure freedom rates a year after TLE surgery to be higher in the presence of a

lesion on MRI (“MRI +ve” TLE 75% vs “MRI -ve” TLE 51%) [Téllez-Zenteno et al., 2010].

To further lend transparency to the MBC structure, we also generated MPE values (avail-

able online at https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/

mpes.pdf) to interrogate the model for clinical robustness. Specifically, we show the most

likely value of the features for each possible outcome of the class variables. Reassuringly,

most of the MPEs satisfied clinical intuition, for example a combination of features such as

a shorter duration of epilepsy at time of surgery, presence of hippocampal atrophy, and type

I Ebersole onset portended the best surgical outcome (Engel I). The few instances where

features did not discriminate between outcomes or appeared counterintuitive were often a

result of skewed frequency distributions and/or influence of missing data at Y5 on the MBC

structure.

The interpretation of the predicted probabilities generated by the MBC should be in-

formed by the associated calibration curves (Figure 7.3). Classifier performance was evalu-

ated using a predicted probability of 0.5 as a threshold for predicted seizure freedom, thus

probabilities in excess of 0.5 can be expected to favour seizure freedom while predicted prob-

abilities below 0.5 do not. Where the curve is above the identity line the MBC classifier

underestimates the probability of seizure freedom (as observed in the test sample), while the

probability of seizure freedom is overestimated where the calibration curve falls under the

line. We note that the classifier tends towards an overestimation of seizure freedom predic-

tion rates especially for years 2 and 5. For example, an Engel I estimation of 50% at Y2 is a

slight overestimation, with the true probability being closer to 45%. An Engel I estimation

of 90% at Y5 is a gross overestimation, with the true probability being closer to 55%. At Y5,

each point of the calibration curve is obtained from at most six cases, and this may affect

the calibration results for this time scale.

The outputs of the classification model should also be interpreted in the proper clinical

context when presurgical counseling takes place, even if the algorithm predicts a 40-50%

chance of long-term seizure freedom after temporal lobe epilepsy surgery, surgery still confers

a far greater chance of seizure freedom compared to additional trials of anti-epileptic medi-

cations; fewer than 5% of patients become seizure-free with a third medication regimen after

drug-resistance is observed [Kwan and Brodie, 2000].

7.3.3 Limitations

Although the strengths of the study lay in the availability of datasets from two independent

tertiary epilepsy centers, the inherent limitations of analyzing retrospectively collected data

were missing data values and patients lost to follow-up over time. One can argue that these

patients who “disappeared” from our clinics were those who indeed most likely were cured by

surgery. MBCs can handle missing values during inference by marginalizing the unobserved

variables. If we assume that the mechanism for “drop-out” of the incomplete variables is

independent on all the variables in the dataset, then the available-case-analysis method of

dealing with missing data should still suffice and provide a reliable output.

https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/mpes.pdf
https://github.com/marcobb8/tr_bn/blob/master/Supplementary%20Material/mpes.pdf
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7.4 Conclusions

Seizure-freedom outcome prediction for TLE surgery based on MBC modeling outperformed

the available nomograms when tested on an independent dataset. The model yielded 78%,

76%, and 68% AUC for outcome predictions at year 1, 2 and 5 respectively, indicating good

predictive power. Before this could become a clinical tool in aiding pre-operative counseling,

further testing is needed in prospective large cohorts to ensure its reproducibility. Moreover,

follow-up information beyond five years would provide a more realistic timeframe for long-

term prediction. To further enhance this tool, our long term goal is to allow the MBC classifier

to continuously learn from data. Clinicians worldwide could input into the online calculator

(i.e., feature variables and Engel outcomes of their own TLE surgical patients), which will

optimize its classification accuracy. Future iterations of this model may utilize priors derived

from other studies regarding the effects of individual predictors on overall seizure freedom.



Chapter 8
Conclusions and future work

8.1 Summary of contributions

Chapters 3–7 describe the contributions of this thesis.

• Chapter 3 proposes a framework for learning bounded treewidth BNs by efficiently mov-

ing in the space of EOs. To this end, we demonstrate that valid ETs avoid the redun-

dancy in the combined space of DAGs and EOs, and provide methods for incrementally

compiling valid ETs. The proposed strategies can be included in most score+search

BN learning methods. The rest of the chapters make use of these advances to address

other highly computationally demanding problems. Experimental results show that

our approach successfully bounds the inference complexity of the learned models, and

outperforms other state of the art methods in terms of fitting to data.

• Chapter 4 presents a novel approach to efficiently learn BNs from incomplete datasets.

The main difference with other methods in the state-of-the-art is that: first, it directly

optimizes the log-likelihood of the observed data instead of an expectation, leading to

more accurate results, and second, it uses the incremental compilation of ETs to ensure

the tractability of the models and the learning procedure. The experimental results

support our claims empirically.

• Chapter 5 studies the complexity of computing MPEs with MBCs. We demonstrate that

when the features are fully observed, multidimensional classification can be performed

efficiently in MBCs with a pruned graph with bounded treewidth, even if the treewidth

of the complete graph is not bounded. We propose a method that takes advantage of

this property to learn tractable MBCs. The benefits of this strategy are supported by

the experiments.

• Chapter 6 provides strategies for the discriminative learning of MBCs. During the

structure search, we use penalized CLL to score the models, which can be computed ef-

ficiently in MBCs with bounded treewidth. The experiments suggest that this approach

leads to more accurate predictions compared to other generative methods.

93
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• Chapter 7 provides a real-world application of MBCs. The data of 167 TLE patients

from the UCSF is used to learn an MBC with the goal of predicting seizure freedom

at different time scales in patients that have undergone TLE surgery. The explicit

representation of the MBC and its generative nature allowed the clinicians to analyze

the results in detail. Our proposal outperformed the gold standard in an independent

dataset consisting of 64 patients from the MNI.

8.2 List of publications

The research for this thesis has produced the following publications and submissions:

JCR articles

• M. Benjumeda, C. Bielza, and P. Larrañaga. Learning tractable Bayesian networks in

the space of elimination orders. Artificial Intelligence, 274:66–90, 2019a

• M. Benjumeda, S. Luengo-Sanchez, P. Larrañaga, and C. Bielza. Tractable learning

of Bayesian networks from partially observed data. Pattern Recognition, 91:190–199,

2019c

• M. Benjumeda, C. Bielza, and P. Larrañaga. Tractability of most probable explanations

in multidimensional Bayesian network classifiers. International Journal of Approximate

Reasoning, 93:74–87, 2018a

Other articles

• M. Benjumeda, P. Larrañaga, and C. Bielza. Learning Bayesian networks with low

inference complexity. Progress in Artificial Intelligence, 5(1):15–26, 2015a

Proceedings

• M. Benjumeda, C. Bielza, and P. Larrañaga. Learning tractable multidimensional

Bayesian network classifiers. In Proceedings of the 8th International Conference on

Probabilistic Graphical Models, volume 52, pages 25–32. Proceedings of Machine Learn-

ing Research, 2016

• M. Benjumeda, P. Larrañaga, and C. Bielza. Learning low inference complexity Bayesian

networks. In Proceedings of the 16th Conference of the Spanish Association for Artificial

Intelligence, pages 1–10. AEPIA, 2015b

Workshops

• M. Benjumeda, S. Luengo-Sanchez, P. Larrañaga, and C. Bielza. Bounding the com-

plexity of structural expectation-maximization. In Workshop on Tractable Probabilistic

Models (ICML), 2018b

Submitted
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• M. Benjumeda, D. Lowd, P. Larrañaga, and C. Bielza. Discriminative learning of

multidimensional Bayesian network classifiers. Submitted, 2019b

• M. Benjumeda, Y.-L. Tan, K. A. González-Otárula, D. Chandramohan, E. F. Chang,

J. A. Hall, C. Bielza, P. Larrañaga, E. Kobayashi, and R. C. Knowlton. Patient specific

prediction of temporal lobe epilepsy surgery. Submitted, 2019d

Chapter 3 is derived from Benjumeda et al. [2019a], and extends the work in Benjumeda

et al. [2015a,b] to EOs that are not topological. Chapter 4 contains the work of Benjumeda

et al. [2019c]. Chapter 5 adapts the work of Benjumeda et al. [2018a], which is an extension

of Benjumeda et al. [2016]. Section 5.1 is directly derived from Benjumeda et al. [2018a].

However, the proposed method in Section 5.2 was adapted to use ETs to bound the pruned

graph treewidth of the models. Section 5.3 has been extended to test the method in a wider

variety of real-world datasets. Chapter 6 contains work in progress, that will be submitted

as Benjumeda et al. [2019b]. Finally, Chapter 7 includes the content of Benjumeda et al.

[2019d].

8.3 Future work

This section points out future research lines related to the topics covered in this dissertation.

• The use of latent variables in BNs has been extensively discussed [Pearl, 1988; Elidan

et al., 2000, 2007]. One of the most appealing properties of latent variables is that a

single latent variable can induce dependences among a set of observed variables without

the need of having a dense graph connecting them. We think that latent variables are

potentially useful to learn more expressive bounded treewidth BNs.

• We intend to study how to learn tractable probabilistic models with large treewidth by

taking advange of the local structures or the exchangebility between the variables.

• This thesis focuses mainly on the frequentist approach for learning BNs. Although

using Bayesian scoring functions in Chapters 3 and 5 is straightforward, the work in

Chapters 4 and 6 assumes the use of a frequentist metric. The Bayesian approach would

allow us to incorporate prior knowledge and may improve the generalization properties

of the models.

• In Chapter 6 we showed that the CLL can be computed efficiently in MBCs with

bounded treewidth. However, the computational cost of computing the CLL of each

MBC candidate during the structure search was too high, and we had to rely on a

heuristic to reduce the number of times that we computed the CLL. We are interested

in extending the work of Carvalho et al. [2011] to approximate the CLL of MBCs.

• In Chapters 5 and 6, we assume that the input datasets are completely observed. We

intend to extend this work to problems that involve learning MBCs from incomplete
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datasets. For example, in semi-supervised learning the class variables are partially

observed. Similar strategies could be applied in multidimensional clustering [Zhang,

2004; Poon et al., 2013; Keivani and Peña, 2016], where all the class variables are not

observed and their cardinality is unknown.

• In the last years there is a growing interest in making machine learning algorithms ro-

bust under adversarial attacks [Lowd and Meek, 2005; Papernot et al., 2017]. Although

these concepts have been used for training the most simple BN classifiers (i.e., näıve

Bayes) [Dalvi et al., 2004], it would be interesting to provide algorithms that ensure

the robustness of more general BN classifiers and MBCs under adversarial attacks.



Appendix A
Appendix

A.1 Proof of Theorem 1

We use the following lemmas to prove that the compilation and optimization methods pro-

posed in this paper always return valid ETs.

Lemma 3.1. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈ X , the ET

E ′B′ yielded after applying add(EB, Xout, Xin) in Algorithm 3.2, is also a valid ET representing

B′ over X .

Proof. By cases:

We prove that, for each possible arc addition scenario, Algorithm 3.2 always outputs valid

ETs. We show that, in each case, all the nodes are complete (i.e., for each node its cluster in

E ′B′ contains its parents (Definition 3.5)) and sound (i.e., for each node its cluster in E ′B′ is a

subset of its predecessors and itself (Definition 3.4)).

• Case 1 : Xout ∈ Pred
EB
φXin

.

This occurs when neither of the conditions in lines 4 and 6 (Algorithm 3.1) are fulfilled.

Algorithm 3.1 does not produce any change in the structure of EB (see Figure A.1).

Hence, neither the parents nor the predecessors of each node in EB change. For each

node Xi ∈ (Pred
E ′B′
φXin
∩Desc

E ′B′
Xout

) ∪ {φXin}, the cluster of Xi now contains Xout, but

Xout ∈ Pred
EB
Xi

. Hence, each Xi is sound. As ClsE ′B′
(Xi) ⊇ ClsEB(Xi), each Xi is

complete, and therefore valid. There are no changes in the clusters of the other nodes.

Hence, they are valid.

• Case 2 : Xf = Pa
EB
φXin
∈ Pred

EB
Xout

(line 4 of Algorithm 3.2).

Here, Algorithm 3.1 sets Pa
E ′B′
φXin

to Xout (line 5), and the predecessors and parents of

the other nodes are unchanged (see Figure A.2).

97



98 APPENDIX A. APPENDIX

∗

. . .

Xout

. . .

Xi

. . .

φXin

∅

ClsEB (Xout)

ClsEB (Xi) ∪ {Xout}

ClsEB (φXin) ∪ {Xout}

Figure A.1: ET E ′B′ yielded after compiling an arc addition Xout → Xin in EB when Xout ∈
Pred

EB
φXin

. The value of the cluster of each node in E ′B′ is shown near to the respective node,

and the changes in the clusters with respect to their value in EB are underlined.

– For each node Xi ∈ Pred
E ′B′
φXin
∩Desc

E ′B′
Xf

, we have that ClsE ′B′
(Xi) = ClsEB(Xi) ∪

ClsEB(φXin). First, ClsEB(Xi) ⊆ Pred
EB
Xi

= Pred
E ′B′
Xi

. Also, ClsEB(φXin) ⊆

Pred
EB
φXin

= Pred
EB
Xf
∪ {Xf} ⊆ Pred

EB
Xi

= Pred
E ′B′
Xi

. Therefore, ClsE ′B′
(Xi) ⊆

Pred
E ′B′
Xi

, and Xi is sound in E ′B′ . As ClsE ′B′
(φXin) = ClsEB(φXin) ∪ {Xout} and

Pred
E ′B′
φXin

⊇ Pred
EB
φXin
∪ {Xout}, φXin is sound. The rest of the nodes are sound

given that there are no changes in their clusters.

– Node φXin is complete given that Xout = Pa
E ′B′
φXin

and Xout ∈ ClsE ′B′
(φXin). The rest

of the nodes are complete given that ClsE ′B′
(Xi) ⊇ ClsEB(Xi) and Pa

E ′B′
Xi

= Pa
EB
Xi

for each Xi ∈ (X ∪ Leaves(EB)) \ {φXin}.

• Case 3 : Xout /∈ Pred
EB
φXin

and Xf /∈ Pred
EB
Xout

(line 6 of Algorithm 3.2).

In this case, there are two possible output ETs, E1
B′ and E2

B′ (line 8).

1. In E1
B′ (see Figure A.3b), Pa

E1B′
Xk

is set to Xout (line 10):

– Each node Xi that is not in (Pred
E1B′
φXin

∩ Desc
E1B′
Xm

) ∪ {φXin} has the same

parents and clusters in EB and E1
B′ , and Pred

E1B′
Xi
⊇ Pred

EB
Xi

. Hence, it is valid.

– Each node Xi in Pred
E1B′
Xk
∩Desc

E1B′
Xm

has the same predecessors and parents

in EB and E1
B′ , and ClsE1B′

(Xi) = ClsEB(Xi) ∪ClsEB(Xk) \ {Xk} (making Xi

complete). As ClsE1B′
(Xk)\{Xk} ⊆ Pred

EB
Xk
⊆ Pred

E1B′
Xi

, each Xi is also sound.

Thus, each Xi is valid.
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∗

. . .

Xf

φXin

. . .

Xi

. . .

Xout

∅

ClsEB (Xf )

ClsEB (Xout)

ClsEB (Xi)

ClsEB (φXin) ∪ {Xout}

(a) EB′

∗

. . .

Xf

. . .

Xi

. . .

Xout

φXin

∅

ClsEB (Xf )

ClsEB (Xout) ∪ ClsEB (φXin)

ClsEB (Xi) ∪ ClsEB (φXin)

ClsEB (φXin) ∪ {Xout}

(b) E
′

B′

Figure A.2: (a) EB′ is the ET yielded after adding Xout → Xin in B when Xf ∈ Pred
EB
Xout

before the compilation of the arc addition; (b) E ′B′ is the result of compiling the arc addition
Xout → Xin in EB. The value of the cluster of each node in E ′B′ is shown near to the respective
node, and the changes in the clusters with respect to their value in EB are underlined. The
changes that compromise the validity of the ET are highlighted in red.

– For each Xi ∈ (Pred
E1B′
φXin
∪ {φXin}) ∩ Desc

E1B′
Xout

, ClsE1B′
(Xi) = ClsEB(Xi) ∪

{Xout}, Pred
E1B′
Xi
∪{Xi} ⊇ ClsEB(Xi)∪{Xout}, Pa

E1B′
Xi

= Pa
EB
Xi

if Xi 6= Xk, and

Pa
E1B′
Xk

= Xout. Hence, Xi is valid.

As each node in E1
B′ is valid, E1

B′ is valid.

2. In E2
B′ (see Figure A.3c), Pa

E1B′
Xh

is set to Xf (line 12).

– Each node has the same parent in E2
B′ and EB, with the exception of φXin

and Xh, where Pa
E2B′
φXin

= Xout (line 13) and Pa
E2B′
Xh

= Xf . All the nodes are

complete, given that Xout ∈ ClsE2B′
(φXin), ClsE2B′

(Xh) ⊇ ClsEB(φXin) ⊇ {Xf},
and for each other node Xi, ClsE2B′

(Xi) ⊇ ClsEB(Xi).

– For each node Xi not in (Pred
E2B′
φXin
∩Desc

E2B′
Xm

)∪{φXin}, the clusters of Xi are

the same in E2
B′ and in EB and Pred

E2B′
Xi
⊇ Pred

EB
Xi

. Hence each Xi is sound.

– For each Xi ∈ Pred
E2B′
Xh
∩Desc

E2B′
Xm

, ClsE2B′
(Xi) = ClsEB(Xi)∪ClsEB(Xh)\{Xh}

and ClsEB(Xh) \ {Xh} ⊆ Pred
EB
Xh
⊆ Pred

EB
Xi

= Pred
E2B′
Xi

. Thus, each Xi is

sound.

– For each Xi ∈ Pred
E2B′
φXin
∩ Desc

E2B′
Xf

, ClsE2B′
(Xi) = ClsEB(Xi) ∪ ClsEB(φXin)

and Pred
E2B′
Xi

= Pred
EB
Xi
∪Pred

EB
φXin
⊇ ClsEB(Xi)\{Xi}∪ClsEB(φXin). Hence,

Xi is sound.
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– Node φXin containsXout in its cluster and predecessors in E2
B′ . Hence, ClsE2B′

(φXin) =

ClsEB(φXin) ∪ {Xout} ⊆ Pred
EB
φXin
∪ {Xout} ⊆ Pred

E2B′
φXin

, making φXin sound.

As every node in E2
B′ is sound and complete, E2

B′ is valid.

Lemma 3.2. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈ X , the ET

E ′B′ that represents B′ output after applying remove(EB, Xout, Xin) in Algorithm 3.3, is also

valid.

Proof. By induction. We show that after removing an arc from EB only one node Xi may

not be complete (base case). In each iteration iter of Algorithm 3.3, the completeness of Xi

is amended and E iterB′ is built, and only one other node X ′i, which was a predecessor of Xi in

the previous ET, may not be complete after the change. It is evident that eventually node

X ′i will be complete (e.g., when the parent of X ′i is the root node ∗).
Base case:

Given a valid ET EB, removing arc Xout → Xin from B will produce an ET EB′ . For

each Xh ∈ X ∪Leaves(EB′), Pred
EB′
Xh

= Pred
EB
Xh

, Pa
EB′
Xh

= Pa
EB
Xh

, ClsEB(Xh) ⊇ ClsEB′ (Xh) ⊇

ClsEB(Xh) \ {Xout} if Xh ∈ Desc
EB′
Xout
∩ Pred

EB′
φXin
∪ {φXin}, and ClsEB′ (Xh) = ClsEB(Xh)

otherwise. Therefore, each node in EB′ is sound, and only one node Xi such that Xi ∈
Ch
EB′
Xout
∩ (Pred

EB′
φXin
∪ {φXin}) may not be complete.

Iterative step:

Assume that E1
B′ (Figure A.4a) is sound and only node Xi is not complete. Algorithm

3.3 sets Pa
E1B′
Xi

= Xj (line 7), that is, the deepest node in E1
B′ belonging to ClsEB(Xi) \ {Xi}

(line 6). Hence, all Xi and their descendants are sound. Thus, node Xi is complete in

the resulting ET E2
B′ (Figure A.4b). Node X ′i = Pred

E1B′
Xi
∩ Ch

E1B′
Xj

may not be complete in

E2
B′ . For each node Xh ∈ Pred

E1B′
Xi
∩ Desc

E1B′
X′i

, ClsE2B′
(Xh) ⊆ ClsE1B′

(Xh) \ ClsE1B′
(Xi) and

Pa
E1B′
Xh

/∈ ClsE1B′
(Xi). Hence, each Xh is complete in E2

B′ . The other nodes have the same

clusters in E1
B′ and in E2

B′ . Hence, they are complete.

Lemma 3.3. Let EB be a valid ET that represents B over X . Given Xi ∈ X , the ET E ′B
representing B yielded after applying swap(EB, Xi) in Algorithm 3.4, is also valid.

Proof. Let Xp be the parent of Xi in EB (Figure A.5a). Next, we prove that each node in E ′B
(Figure A.5b) is valid after the swap:

• Each node Xj in (Desc
EB
Xp
\(Desc

EB
Xi
∪{Xi}))∪Pred

EB
Xp

has the same parent and clusters

in E ′B, and Pred
E ′B
Xj
⊃ Pred

EB
Xj

. Hence, each Xj is valid in E ′B.

• Let us divide the descendants of Xi in EB into two subsets D1 and D2. Let C1 be the

children of Xi in EB that do not contain Xp in its cluster. We use D1 to refer to the
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. . .
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. . .

Xf
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∅

ClsEB (Xm)

ClsEB (Xh)ClsEB (Xk) ∪ {Xout}

ClsEB (Xf ) ∪ {Xout} ClsEB (Xout)

ClsEB (φXin) ∪ {Xout}

(a) EB′

∗

. . .

Xm

Xh

. . .

Xout

Xk

. . .

Xf

φXin

∅

ClsEB (Xm)

ClsEB (Xh) ∪ ClsEB (Xk) \ {Xk}

ClsEB (Xk) ∪ {Xout}

ClsEB (Xf ) ∪ {Xout}

ClsEB (Xout) ∪ ClsEB (Xk) \ {Xk}

ClsEB (φXin) ∪ {Xout}

(b) E1B′

∗

. . .

Xm

Xk

. . .

Xf

Xh

. . .

Xout

φXin

∅

ClsEB (Xm)

ClsEB (Xh) ∪ ClsEB (φXin)

ClsEB (Xk) ∪ ClsEB (Xh) \ {Xh}

ClsEB (Xf ) ∪ ClsEB (Xh) \ {Xh}

ClsEB (Xout) ∪ ClsEB (φXin)

ClsEB (φXin) ∪ {Xout}

(c) E2B′

Figure A.3: EB′ (Figure A.3a) is the ET yielded after adding Xout → Xin in B when Xout /∈
Pred

EB
φXin

and Xf /∈ Pred
EB
Xout

before the compilation of the arc addition. E1
B′ (Figure A.3b)

and E2
B′ (Figure A.3c) correspond to the two possible outcomes of compiling the arc addition.

The value of the cluster of each node in E ′B′ is shown near to the respective node, and the
changes in the clusters with respect to their value in EB are underlined. The changes that
compromise the validity of the ET are highlighted in red.
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∗

. . .

X ′j

X ′i

. . .

Xj

Xi

(a)

E1B′

∗

. . .

X ′j

X ′i

. . .

Xj

Xi

(b) E2B′

Figure A.4: (a) E1
B′ is the ET visited at an iterative step of compiling an arc removal; (b) E2

B′
is the result of performing this iterative step.

nodes in Desc
EB
Xi

such that for each Xj ∈ D1, (Pred
EB
Xj
∪ {Xj}) ∩ C1 6= ∅, and D2 to

refer to the nodes in Desc
EB
Xi
\D1.

Each node Xj in D1 has the same parent and cluster in EB and E ′B, and Pred
EB
Xj

=

Pred
E ′B
Xj
\ {Xp}. As Xp /∈ ClsEB(Xj), the respective Xj are valid in E ′B.

Each Xj in D2 has the same predecessors and clusters in EB and E ′B. If Xj /∈ Ch
EB
Xi

, Xj

has the same parent in EB and E ′B. Otherwise, Pa
E ′B
Xj

= Xp and Xp ∈ ClsEB(Xj). Thus,

each Xj is valid in E ′B.

• Xi ∈ ClsE ′B
(Xp), given that there are nodes in D2 whose cluster contains Xi (otherwise

EB would not be complete). This means that Xp is complete for E ′B. As ClsE ′B
(Xp) ⊆

ClsEB(Xp) ∪ {Xi} and Pred
E ′B
Xp

= Pred
EB
Xp
∪ {Xi}, Xp is sound, and therefore valid for

E ′B.

• As ClsE ′B
(Xi) = (ClsEB(Xi)∪ClsEB(Xp))\{Xp}, Pred

E ′B
Xi

= (Pred
EB
Xi
∪Pred

EB
Xp

)\{Xp},
and the parent of Xi in E ′B is the parent of Xp in EB, Xi is valid for E ′B.

We have shown that each node in X ∪ Leaves(E ′B) is valid in E ′B. Thus, E ′B is valid.

Finally, Theorem 3.1 can be proved using the above lemmas.

Theorem 3.1. Let EB be a valid ET over X , and E ′B′ the result of incrementally compiling

on EB any local change in B using Algorithms 3.2 and 3.3 and optimizing the resulting ET

using Algorithm 3.5. Then E ′B′ is a valid ET.
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∗

. . .

Xp

Xj Xi

XD1 XD2

(a) EB

∗

. . .

Xi

XD1 Xp

Xj XD2

(b) E
′
B

Figure A.5: Swap of Xi and Xp. EB (a) and E ′B (b) correspond to the ETs before and after
swapping Xi and Xp, respectively. Note that if EB is valid, E ′B is also valid.

Proof. By Lemmas 3.1 and 3.2 we know that if EB is valid, the tree returned after compiling

a local change in EB is also valid. Hence, if the input for Algorithm 3.5 is a valid ET, we

know, by Lemma 3.3 (the optimization is composed of a sequence of swaps), that it will also

return a valid ET.

A.2 Proof of Theorem 2

The following lemmas are used later to prove Theorem 2. First, we need to know the com-

putational cost of outputting the cluster of a node in an ET.

Lemma A.1. Let EB be an ET over X = {X1, . . . , Xn}. The cluster of a node Xi ∈ X can

be computed in time O(|Ch
EB
Xi
| · width(EB)) given the clusters of the nodes in Ch

EB
Xi

.

Proof. The cluster of node Xi can be output by computing the union of the clusters of

its children in EB (Definition 3.3). The union of sets S1, . . . ,Sm can be computed in time

|S1|+ · · ·+ |Sm|. As the size of each cluster in EB is less than or equal to width(EB) + 1, then∑
Xj∈Ch

EB
Xi

|ClsEB(Xj)| ≤
∑

Xj∈Ch
EB
Xi

(width(EB) + 1) = |Ch
EB
Xi
| · (width(EB) + 1). Hence, the

cluster of Xi can be output in time O(|Ch
EB
Xi
| · width(EB)).

Lemma A.2. Let EB be an ET over X = {X1, . . . , Xn}. All the clusters in EB can be

computed in time O(n · width(EB)).

Proof. The cluster of a leaf node is its domain. The cluster of the inner nodes can be output

bottom-up such that before computing the cluster of node Xi the cluster of each child of Xi

in EB is known. From Lemma A.1, we know that the cluster of each Xi ∈ X can be output

in time O(|Ch
EB
Xi
| · width(EB)). Hence, the clusters of all the nodes in X can be computed

in time O(
∑

Xi∈X |Ch
EB
Xi
| · width(EB)). As

∑
Xi∈X |Ch

EB
Xi
| · width(EB) < 2n · width(EB) (there

are n inner nodes with only one parent, of which at least one is a child of the root node ∗,
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and n edges including inner and leaf nodes), all the clusters of EB can be computed in time

O(n · width(EB)).

A local change in an ET EB produces changes in the clusters of the tree, which have an

influence on the computational complexity of Algorithm 3.5.

Lemma A.3. Let EB be a valid ET, and E ′B the result of swapping (Algorithm 3.4) a node

Xi and its parent in EB. Then

width(E ′B) ≤ 2 · width(EB).

Proof. After swapping Xi and its parent Xp in EB, only the clusters of Xi and Xp may change.

On the one hand, ClsE ′B
(Xp) ⊆ ClsEB(Xp). Hence, the width of Xp does not grow. On the

other hand, the width of Xi may grow, but ClsE ′B
(Xi) ⊆ (ClsEB(Xi) ∪ ClsEB(Xp)) \ {Xp}.

Hence, the width of ClsE ′B
(Xi) is less than |ClsEB(Xi)|+ |ClsEB(Xp)|−1 ≤ 2(width(EB)) + 1.

This means that width(E ′B) ≤ 2 · width(EB).

Next, we bound the time complexity of the compilation and optimization methods.

Lemma A.4. Let EB be a valid ET over X = {X1, . . . , Xn}. The addition of any arc in B
can be compiled in EB in time O(n2) by Algorithm 3.2.

Proof. There are no loops in Algorithm 3.2, and the only operations that cannot be completed

in time O(1) are:

• The intersection performed to compute Xm, Xk and Xh (lines 7, 9 and 11 of Algorithm

3.2), which can be computed in O(n).

• The widht of E1
B′ and E2

B′ . We need to output first the clusters of E1
B′ and E2

B′ , which

can be obtained in time O(n · width(EB)). The width of EB is the length of its largest

cluster munus one (Definition 3.7), which takes O(n). The complete process takes

O(n · width(EB) + n) = O(n · width(EB)) ≤ O(n2).

Therefore, the addition of an arc can be compiled in time O(n2).

Lemma A.5. Let EB be a valid ET over X = {X1, . . . , Xn}. The removal of any arc in B
can be compiled in EB in time O(n2 · width(EB)) by Algorithm 3.3.

Proof. In each iteration, Algorithm 3.3 checks if a node Xi contains its current parent in its

cluster (line 5); else, the new parent of Xi is set to the deepest node X ′j , which appears in

the cluster of Xi (line 6). Then, the child of X ′j , which was previously a predecessor of Xi,

is set as the new Xi, and X ′j is set as the new Xj for the next iteration (lines 8 and 9 of

Algorithm 3.3). Therefore, node Xi is not visited again in the next iterations. This means

that there are fewer than n iterations.

The operations in lines 6–9 of Algorithm 3.3 can be completed in time O(n).
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The clusters of several nodes must be output after each iteration. By Lemma A.2, we

know that the clusters of all the nodes in X can be computed in time O(n · width(EB)).

As there are fewer than n iterations, Algorithm 3.3 can be run in time O(n2 · width(EB)+

n2) = O(n2 · width(EB)).

Lemma A.6. Let EB be a valid ET over X = {X1, . . . , Xn}. Swapping node Xi and its

parent Xp in EB using Algorithm 3.4 and updating the clusters of EB can be completed in time

O(width(EB)(|Ch
EB
Xi
|+ |Ch

EB
Xp
|)).

Proof. To swap a node Xi ∈ X with its parent in EB, Algorithm 3.4 assigns a new parent to

Xi and to its previous parent Xp. It also assigns Xp as the new parent of any children of

Xi whose cluster contains Xp. This can be completed in time O(|Ch
EB
Xi
|). Note that we can

check if Xp belongs to a cluster in time O(1).

After swapping Xi and Xp, only the clusters of Xi and Xp change. By Lemma A.1, we

know that this can be computed in O(|Ch
EB
Xi
|width(EB) + |Ch

EB
Xp
|width(EB)) = O(width(EB)

(|Ch
EB
Xi
|+ |Ch

EB
Xp
|)).

Lemma A.7. Let EB be a valid ET over X = {X1, . . . , Xn}. Algorithm 3.5 can be computed

in time O(n2 · width(EB)).

Proof. The input of Algorithm 3.5 is a list of nodes Xopt = (Xl(1), · · · , Xl(m)) for optimiza-

tion. Assuming that these nodes are ordered from the shallowest to the deepest (i.e. the

depth of Xl(i) is greater than or equal to the depth of Xl(i+1)), Algorithm 3.5 starts swapping

Xl(1) while the width of the ET does not increase, and then it performs the same process with

Xl(2), · · · , Xl(m). Thus, the cost of Algorithm 3.5 is given by the cost of each swap performed

during the optimization. According to Lemma A.6, Algorithm 3.5 can be computed in time

O(

m∑
i=1

ki∑
j=1

width(E i,j−1
B )(|Ch

Ei,j−1
B
Xl(i)

|+ |Ch
Ei,j−1
B

Pa
Ei,j−1
B
Xl(i)

|)),

where:

• ki < n is the number of times that node Xl(i) is swapped.

• E i,jB is the ET obtained after swapping node Xl(i) j times after nodes Xl(1), . . . , Xl(i−1)

have been optimized.

• E i,0B = E i−1,ki
B if Pa

Ei−1,ki
B
Xl(i−1)

= ∗ (i.e., swapping node Xl(i−1) always reduces the width of

the ET candidates until its parent is the root node) and E i,0B = E i−1,ki−1
B otherwise.

• E1,0
B = EB.

When the width of a candidate E i,jB is bigger than width(EB), E i,jB is rejected. Thus, by

Lemma A.3, width(E i,j−1
B ) ≤ 2 · width(EB), and
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m∑
i=1

ki∑
j=1

width(E i,j−1
B )(|Ch

Ei,j−1
B
Xl(i)

|+ |Ch
Ei,j−1
B

Pa
Ei,j−1
B
Xl(i)

|) ≤

2 · width(EB)(
m∑
i=1

ki∑
j=1

|Ch
Ei,j−1
B
Xl(i)

|+ |Ch
Ei,j−1
B

Pa
Ei,j−1
B
Xl(i)

|).

The complexity of Algorithm 3.5 can be output by counting the number of children of

each Xl(i) and its parent in each iteration.

In any ET E i,jB , there are less than 2n arcs without counting arcs from the root node.

Also, note that after swapping node Xl(i) with its parent Xp in an ET E i,jB , Ch
Ei,j+1
B
Xp

⊇

Ch
Ei,jB
Xp
\ {Xl(i)}, Ch

Ei,j+1
B
Xl(i)

⊆ Ch
Ei,jB
Xl(i)
\ {Xp} and Ch

Ei,j+1
B
Xp

∪Ch
Ei,j+1
B
Xl(i)

= Ch
Ei,jB
Xp
∪Ch

Ei,jB
l(i) . This

implies that if a node Xc is the child of a node Xh in any E i,0B , . . . , E
i,ki−1
B , it cannot be the

child of another node that is not Xh or Xl(i) in E i,0B , . . . , E
i,ki−1
B . Therefore, it is evident that∑ki

j=1 |Ch
Ei,j−1
B

Pa
Ei,j−1
B
Xl(i)

| < 2n.

To bound
∑m

i=1

∑ki
j=1 |Ch

Ei,j−1
B
Xl(i)

|, let us focus on the number of children that each node

has when it is swapped. As the nodes in Xopt are visited from the shallowest to the deepest,

if a node Xh is a child of node Xl(i) when Xl(i) is optimized, it cannot be a child of another

node Xl(j) ∈ Xopt when Xl(j) is optimized. Thus, each node Xh can be counted less than n

times, and given that there are 2n inner and leaf nodes in EB,
∑m

i=1

∑ki
j=1 |Ch

Ei,j−1
B
Xl(i)

| < 2n2.

Finally, 2 · width(EB) · (
∑m

i=1

∑ki
j=1 |Ch

Ei,j−1
B
Xl(i)

|+
∑m

i=1

∑ki
j=1 |Ch

Ei,j−1
B

Pa
Ei,j−1
B
Xl(i)

)|) < width(EB)(4n2+

4n). Therefore, Algorithm 3.5 can be computed in time O(n2 · width(EB)).

Theorem 3.2 can be proved using the lemmas shown above.

Theorem 3.2. Let EB be a valid ET over a set of variables X = {X1, . . . , Xn}. The process

described in Theorem 3.1 to output E ′B′ can be performed in time O(n2 · width(EB)).

Proof. By Lemmas A.4, A.5 and A.7, we know that both the compilation and optimization

process can be performed in time O(n2 · width(EB)).
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C. Bielza, G. Li, and P. Larrañaga. Multi-dimensional classification with Bayesian networks.

International Journal of Approximate Reasoning, 52(6):705–727, 2011.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.

In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pages 226–

234. ACM, 1993.

H. L. Bodlaender and A. M. Koster. Treewidth computations I. Upper bounds. Information

and Computation, 208(3):259–275, 2010.

H. L. Bodlaender, F. V. Fomin, A. M. Koster, D. Kratsch, and D. M. Thilikos. On Exact

Algorithms for Treewidth. Springer, 2006.
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