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Abstract
Structural expectation-maximization is the most
common approach to address the problem of learn-
ing Bayesian networks from incomplete datasets.
Its main limitation is that its computational cost is
usually extremely demanding when the number of
variables or the number of instances is not small.
The bottleneck of this algorithm is the inference
complexity of the model candidates. Thus, bound-
ing the inference complexity of each Bayesian net-
work during the learning process is key to make
structural expectation-maximization efficient. In
this paper, we propose a tractable adaptation of
structural expectation-maximization and perform
experiments to analyze its performance.

1. Introduction
Bayesian networks (BNs) (Pearl, 1988; Koller & Friedman,
2009) provide a compact and self-explanatory representation
of multidimensional probability distributions. A BN B =
(G,θ) is composed of a structure G, a directed acyclic graph
that encodes conditional independences among triplets of
variables in the network, and a set of parameters θ, i.e., the
conditional probability distributions of each variable given
its parents in the graph.

In the presence of missing values or hidden variables, BNs
can be learned using Friedman’s structural expectation-
maximization algorithm (SEM) (Friedman, 1997), which ex-
tends the well-known expectation-maximization algorithm
(Dempster et al., 1977; McLachlan & Krishnan, 2008) to
simultaneously learn the structure and parameters of a BN.
Because of its iterative nature, SEM is known to be a very
computationally demanding algorithm. Moreover, as infer-
ence in BNs is NP-hard (Cooper, 1990), its computational
cost may be prohibitive when the inference complexity of
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the network candidates is high.

Very recently, Scanagatta et al. (2018) have proposed the
SEM-kMAX algorithm, a method for learning Bayesian
networks with bounded treewidth from partially observed
data. Unlike Friedman’s SEM, they use hard assignments
to complete the data in each iteration because keeping soft
completions of the data in memory is infeasible for their
proposal.

The main difference between using soft and hard assign-
ments in SEM is that they involve optimizing over different
objective functions. Soft assignments guarantee that the
model is optimized with respect to the observed data, while
hard assignments involve optimizing over both the model
and the learned assignment to the missing values. In the
problem of learning BNs from incomplete data, the objec-
tive function to be optimized is the former, given that the
model that best explains the observed data is sought.

In this paper we propose a tractable adaptation of Friedman’s
SEM that uses soft assignments to guarantee that models are
optimized with respect to the observed data. Additionally,
hard assignments allow us to efficiently search for promising
structure candidates at each iteration.

2. Tractable SEM
The most common approach to limit the inference complex-
ity of the models is to bound its treewidth. Nevertheless,
treewidth does not consider the cardinality of each variable,
which can greatly influence the inference complexity of the
networks. The below scoring function directly penalizes
log-likelihood of the model for dataset D with the cost of
inference:

sc(D, (G,θ)) = `(θ|D)− k · size(G), (1)

where k > 0 represents the weight of the inference complex-
ity penalization given by size(G), which is the number of
arithmetic operations (sums and products) required to per-
form inference with variable elimination (Shachter, 1990)
for the BN B. Note that size(G) depends on the chosen elim-
ination order. An optimal elimination order for G should
minimize size(G), but finding it is an NP-hard problem
(Arnborg et al., 1987). In the rest of the paper we assume
the use of any heuristic with polynomial complexity (e.g.,
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Algorithm 1 Pseudocode of Tractable SEM (TSEM)

1: Input: Incomplete dataset D
2: choose θ0

3: for j = 0, 1, . . . until convergence do
4: let Ds

j+1 and Dh
j+1 be the soft and the hard comple-

tion of D according to θj

5: let G′ be the result of applying the local change
that maximizes sc(Dh

j+1, (G′,θ
′)) where θ′ are the

maximum-likelihood parameters of G′ for Dh
j+1

6: let θj+1 and θ′
j+1 be the maximum-likelihood pa-

rameters of G and G′ for Ds
j+1, respectively

7: if sc(Ds
j+1, (G′,θ

′
j+1)) > sc(Ds

j+1, (G,θj+1))
then

8: (Gj+1,θj+1)← (G′,θ′
j+1)

9: else
10: return (G,θj+1)
11: end if
12: end for

Markowitz (1957) or Kjærulff (1990)) for this purpose.

Algorithm 1 describes our proposal. In order to guide the
structure search towards models with low inference com-
plexity, Algorithm 1 scores each model according to Equa-
tion (1). The bottleneck of SEM is the computation of the
expected sufficient statistics (ESS) for each network can-
didate. This can be very computationally demanding even
when inference can be performed efficiently. To address
this problem, our approach heuristically selects the most
promising candidate structure at each iteration (line 5), using
hard assignments to complete the data. Given a completed
dataset the scoring function is decomposable, and the search
of the optimal local change can be done efficiently. Subse-
quently, a soft completion of the data is used to compare
the candidate structure with the previous one (lines 6–7).
This ensures that the score at Equation (1) is improved with
respect to the observed data at each iteration, guaranteeing
its convergence.

2.1. Complexity of Algorithm 1

Completing dataset Dh
j+1 (line 4) requires performing M

inference queries, where M is the number of instances of D.
This can be done efficiently when the complexity of infer-
ence is bounded. Completing dataset Ds

j+1 (line 4) requires
exponential time and space in the number of missing values.
Nevertheless, computing the ESS of Ds

j+1 for a structure
is clearly less computationally demanding. Efficient infer-
ence methods as junction trees would require M inference
queries to compute the ESS for a given structure candidate.
Algorithm 1 computes the ESS of only two candidates at
each iteration (line 6), which can be done efficiently. It is
evident that lines 5–11 can be computed in tractable time

Table 1: Comparison of the mean ± standard deviation
obtained with TSEM and SEM-kMAX in the 10 datasets.
L time is the learning time (in seconds), L acc is the impu-
tation accuracy and tw is the treewidth of the output model.
The best results are denoted in boldface.

Method L time L acc tw

W
I TSEM 199±13 0.956±0.001 4.9±0.3

SEM-kMAX 1036±295 0.943±0.003 3.2±0.4

PA

TSEM 667±96 0.903±0.002 2.3±0.5
SEM-kMAX 1239±176 0.864±0.005 3.1±0.3

M
U TSEM 3821±399 0.910±0.001 2.9±0.3

SEM-kMAX 1976±284 0.885±0.002 3.1±0.3

given a completed dataset. Finally, the number of iterations
of the loop at line e depends on the stopping criterion. If
the stopping criterion is Gj+1 = Gj and the local changes
considered at line 5 are only arc additions the maximum
number of iterations that this algorithm could perform is
bounded by n2, where n is the number of variables in D.

3. Experimental Results
In this section we compare our approach with SEM-kMAX
to highlight the advantages and drawbacks of the proposed
strategy. We generated 10 datasets of 2000 instances and
50% of missing values from the following real-world BNs:
WIN95PTS (Horvitz et al., 1998), PATHFINDER (Hecker-
man et al., 1992), and MUNIN1 (Andreassen et al., 1989).
We refer to these networks as WI, PA and MU, respectively.

Our approach requires to fix the weight of the complexity
penalization k for the score (Equation (1)). We empirically
set k to 0.05. Other small values of k produced similar
results. We set the parameters of SEM-kMAX to the values
suggested by Scanagatta et al. (2018). Concretely, they
set an execution time of n seconds (i.e., a second for each
variable) to compute the cache of best parent sets and n/10
seconds for the structure search.

Table 1 shows the experimental results that compare the
above approaches. TSEM outperformed SEM-kMAX in
terms of imputation accuracy in all the evaluated datasets.
Apparently, this is caused by the differences between us-
ing soft and hard completions of the data. Analyzing the
learning times, TSEM is faster in datasets generated from
medium-sized networks and slower in those generated from
the largest network. This can be explained by the bound in
execution time set for SEM-kMAX which forces its learning
time to scale linearly.

4. Conclusions
In this paper we proposed an efficient adaptation of SEM,
providing guarantees on its convergence. TSEM showed
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promising experimental results, outperforming the state-of-
the-art.
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