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Abstract. Directional and angular information are to be found in al-
most every field of science. Directional statistics provides the theoretical
background and the techniques for processing such data, which cannot
be properly managed by classical statistics. The von Mises distribution
is the best known angular distribution. We extend the naive Bayes classi-
fier to the case where directional predictive variables are modeled using
von Mises distributions. We find the decision surfaces induced by the
classifiers and illustrate their behavior with artificial examples. Two ap-
plications to real data are included to show the potential uses of these
models. Comparisons with classical techniques yield promising results.

Keywords: Naive Bayes classifier, supervised classification, circular
statistics, directional statistics, angular data, von Mises distribution.

1 Introduction

Scientists from a wide range of fields use angles to capture some properties of
the phenomena they study, e.g., meteorologists analyze the direction of wind
currents and waves, biologists measure the growth direction of plants and the
movement of animals, etc.

Angular data have some distinctive properties that rule out the use of classical
statistics. Therefore, common descriptive statistical tools have to be adapted to
work with this kind of information, e.g., rose diagrams are used instead of regular
histograms, the mean direction is computed taking into account the periodicity
of the data, etc. Directional statistics [1,2] provides the theoretical background
and the techniques to properly manage these data.

In this paper, we introduce the von Mises naive Bayes (vMNB) classifier for
use with angular data. We review the naive Bayes classifier (NB) in Sect. 2,
and the von Mises distribution in Sect. 3. Section 4 introduces vMNB, and its
decision surfaces and properties are analyzed at length. Artificial examples are
used to illustrate the behavior of the classifiers. Two applications to real data
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and the statistical comparisons with classical techniques are included in Sect. 5.
Finally, Sect. 6 concludes with a discussion and outlines future work. Detailed
derivations of the formulas can be found in the Appendix.

2 The Naive Bayes Classifier

The NB classifier [3] is one of the best known models for supervised classifi-
cation [4]. In NB, the class is modeled as a discrete variable C, and the set
of its possible class values is noted val(C). The set of predictive variables is
{X1, . . . , Xn}. Figure 1 shows the graphical structure of the NB classifier, where
the nodes represent the variables in the domain, and the arcs encode the con-
ditional (in)dependence relationships between them [5]. NB assumes that the
predictive variables are conditionally independent given the class value. NB uses
a maximum a posteriori decision rule to classify the objects, i.e., it assigns each
object to the class c∗ with maximum posterior probability. Given an object with
predictive variable values x = (x1, . . . , xn), this is obtained as:

c∗ = arg max
c∈val(C)

p(C = c)
n∏

i=1

ρ(Xi = xi|C = c),

where ρ(·) is a general probability function, i.e., a probability distribution p(·) for
discrete variables or a probability density function fX(·) for continuous variables.

Fig. 1. Graphical structure of the naive Bayes classifier

Although conditional independence is a strong assumption, NB has been suc-
cessfully applied to a wide range of problems [6], and its theoretical properties
have been studied at length [7]. NB is a linear classifier when binary [3] or multi-
nomial [8] predictive variables are used. On the other hand, the decision surfaces
are polynomials when ordinal predictive variables are used [4].

3 The von Mises Distribution

The periodicity of angular data rules out the use of classical probability distribu-
tions. The most straightforward solution is to wrap linear distributions around
the circle. Several distributions have been adapted according to this approach,



The von Mises Naive Bayes Classifier for Angular Data 147

e.g., the wrapped normal distribution [9]. However, specific probability distri-
butions have also been proposed for angular data. The von Mises distribution
[10] is the best known circular distribution, as it is the circular analogue of the
normal distribution. A variable Φ, defined in a circular domain (−π, π], follows
a von Mises distribution vM(μΦ, κΦ) if its probability density function is

fΦ(φ;μΦ, κΦ) =
exp(κΦ cos(φ− μΦ))

2πI0(κΦ)
, (1)

where μΦ is the mean direction, κΦ ≥ 0 is the concentration of the points around
the mean, and Iν(·) is the modified Bessel function of the first kind with order
ν ∈ IR, defined by

Iν(x) =
1
2π

∫ 2π

0

cos(νφ) exp(x cosφ)dφ .

The von Mises distribution is unimodal, with the mode (highest density) at μΦ

and the antimode (lowest density) at μΦ ± π. The distribution of the points
around the circumference is uniform when κΦ = 0, whereas high values of κΦ

yield points tightly clustered around the mean. Given a sample of N points
{φ1, . . . , φN}, the maximum likelihood estimators of the parameters in the dis-
tribution are the sample mean direction

μ̂Φ = arctan
C

S
, with C =

1
N

N∑

i=1

cosφi, and S =
1
N

N∑

i=1

sinφi, (2)

and the sample concentration value

κ̂Φ = A−1(R), where A(κ̂Φ) =
I1(κ̂Φ)
I0(κ̂Φ)

= R =
√
C

2
+ S

2
. (3)

Unfortunately, κ̂Φ cannot be found analytically and approximations have to be
computed numerically [2]. Figure 2 shows a sample of 100 points drawn from
the distribution Φ ∼ vM(π/4, 5) using the CircStat toolbox for MATLAB [11].

4 The von Mises Naive Bayes Classifier

In this section we introduce the vMNB classifier, where the conditional proba-
bility density functions of the predictive variables are modeled using von Mises
distributions. The conditional probability densities for a variable Φ given the
class value c are noted (Φ|C = c) ≡ Φ(c) ∼ vM(μ(c)

Φ , κ
(c)
Φ ). We study the behav-

ior of the classifier by deriving the decision surfaces it induces. We assume that
the class is binary, e.g., val(C) = {1, 2}. When the class has more than two val-
ues, we have to compute the decision surface for each pair of values and label each
subregion with the class having the maximum posterior probability. For detailed
derivations of the decision surfaces included in this paper see the Appendix avail-
able at http://cig.fi.upm.es/components/com phocadownload/container/
vmnbappendix.pdf.

http://cig.fi.upm.es/components/com_phocadownload/container/vmnbappendix.pdf
http://cig.fi.upm.es/components/com_phocadownload/container/vmnbappendix.pdf
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Fig. 2. Sample of 100 points drawn from the distribution vM(π/4, 5). The black line
represents the sample mean direction μ̂Φ and its length is the sample mean resultant
length R.

4.1 One Predictive Variable

We first analyze the simplest scenario where only one predictive variable Φ is
used for classification. The decision surface induced by the classifier is computed
by equaling the posterior probability distribution of the two class values

p(C = 1|Φ = φ) = p(C = 2|Φ = φ) . (4)

By applying Bayes’ rule and substituting the von Mises density (1) in (4), we
get

p(C = 1)

2πI0(κ
(1)
Φ )

exp(κ(1)
Φ cos (φ− μ

(1)
Φ )) =

p(C = 2)

2πI0(κ
(2)
Φ )

exp(κ(2)
Φ cos (φ− μ

(2)
Φ )) .

Simplifying, taking logarithms and operating, we finally get the two angles that
bound the class subregions (see the Appendix):

φ′ = α+ arccos(D/T )
φ′′ = α− arccos(D/T ),

where cosα = a/T , sinα = b/T , D = − ln p(C=1)I0(κ
(2)
Φ )

p(C=2)I0(κ
(1)
Φ )

, T =
√
a2 + b2, a =

κ
(1)
Φ cosμ(1)

Φ − κ
(2)
Φ cosμ(2)

Φ , and b = κ
(1)
Φ sinμ(1)

Φ − κ
(2)
Φ sinμ(2)

Φ .
vMNB finds two angles that divide the circumference into two subregions, one

for each class value. The two angles φ′ and φ′′ are defined with their bisector angle
α, which depends on the mean directions μ(1)

Φ , μ
(2)
Φ and concentrations κ(1)

Φ , κ
(2)
Φ ,

of Φ given each of the two class values. The distance between the angles also
depends on both the concentration and the mean directions. Alternatively, we
can substitute (x, y) = (cosφ, sinφ) to compute the Cartesian coordinates of
the decision surface that bounds the class subregions, obtaining the following
expression (see the Appendix for details):
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(κ(1)
Φ μ

(1)
X − κ

(2)
Φ μ

(2)
X )x− (κ(1)

Φ μ
(1)
Y − κ

(2)
Φ μ

(2)
Y )y −D = 0 . (5)

Equation (5) defines a decision line that bounds the class regions. Therefore,
vMNB with one predictive variable is a linear classifier.

We illustrate the behavior of the classifier with an artificial example. The
class variable C is binary and its values are considered equiprobable a priori,
i.e., p(C = 1) = p(C = 2) = 0.5. The conditional probability densities of Φ
given each class value are Φ(1) ∼ vM(π/2, 2) and Φ(2) ∼ vM(π, 5). Figure 3(a)
shows a sample of 100 points drawn from these distributions, whereas Fig. 3(b)
shows the classification provided by vMNB and the decision angles that bound
the class regions (green lines): φ′ = 2.43 (139.23◦) and φ′′ = −1.67 (−95.63◦).

0

π/2

±π

−π/2
Φ

(a) True classification of the
points

0

π/2

±π

−π/2
Φ

(b) Predicted classification
using vMNB

Fig. 3. True class and class predicted using vMNB for a sample of 100 points. Points
with C = 1 are shown in dark blue, whereas points with C = 2 are shaded light blue.

4.2 Two Predictive Variables

We can use the same approach to analyze the behavior of the classifier when two
circular predictive variables Φ and Ψ are included in the model. In this scenario,
the domain defined by the predictive variables is a torus (−π, π] × (−π, π]. The
decision surface induced by the vMNB classifier is given by

p(C = 1|Φ = φ, Ψ = ψ) = p(C = 2|Φ = φ, Ψ = ψ) . (6)

By applying conditional independence, Bayes’ rule, substituting the von Mises
density function (1) in (6) and operating, we get

a cosφ+ b sinφ+ c cosψ + d sinψ +D = 0, (7)

where a, b, c, d and D are constants (see the Appendix). The Cartesian coordi-
nates of the points lying on the surface of a torus can be computed using:
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x = (L + l cosφ) cosψ
y = (L + l cosφ) sinψ
z = l sinφ,

(8)

where L is the distance from the center of the torus to the center of the revolving
circumference that generates it, and l is the radius of the revolving circumference.
Isolating the trigonometric functions in (8), replacing them in (7) and operating,
we get the following decision surfaces:

clx+ dly − az2 + bz
√
l2 − z2 + bLz + (aL+Dl)

√
l2 − z2 + al2 +DLl = 0,

clx+ dly − az2 − bz
√
l2 − z2 + bLz − (aL+Dl)

√
l2 − z2 + al2 +DLl = 0 .

These decision surfaces are quadratic in z, so vMNB is a more complex and
flexible classifier when two variables are included than when only one variable
is used. This behavior is different in the NB with discrete predictive variables,
where the complexity of the decision surfaces (hyperplanes) remains the same
when the number of predictive variables is increased [8]. The decision surfaces
are also hyperplanes when the predictive variables are statistically independent
and modeled with Gaussian distributions that share the same variance. However,
as far as we know, no result has been given in this particular scenario, where
the predictive variables are conditionally independent given the class value and
have different variances.

The following artificial example illustrates this behavior. Figure 4(a) shows a
sample of 1000 points drawn using the distributions Φ(1) ∼ vM(π, 2) and Ψ (1) ∼
vM(−2π/3, 6) for points in class C = 1, and distributions Φ(2) ∼ vM(π/2, 5)
and Ψ (2) ∼ vM(π, 3) for points in class C = 2. The classes are considered
equiprobable a priori. The classification provided by vMNB and the complex
decision boundaries that separate the two class regions are shown in Fig. 4(b).
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(b) Predicted classification using
vMNB

Fig. 4. True class and class predicted using vMNB for a sample of 1000 points. Points
with C = 1 are shown in dark blue, whereas points with C = 2 are shaded light blue.
The decision boundaries are drawn in green.
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5 Experiments with Real Data

In this section, we apply the classifiers presented above to real world data from
two different problems studied in biology:

Group Identification in Megaspores: In this problem we classify two groups
of lycopsid megaspores based on the angle of orientation of the sporopollenin
wall elements. The dataset is an example included in Oriana software
(http://www.kovcomp.co.uk/oriana). It was first obtained and analyzed in
[12]. The data are measured in degrees and represent the orientation of the el-
ement relative to a baseline drawn perpendicular to the spore surface. The two
groups of megaspores used in this study are called Selaginellalean and Isoetalean.
The dataset includes 960 entries, where 360 are Selaginellalean (37.5%) and 600
are Isoetalean (62.5%).

Protein Secondary Structure Prediction Using Dihedral Angles: The three di-
mensional structure of proteins is the key to identifying their function and be-
havior [13]. Many models tend to predict the protein secondary structure before
modeling the tertiary structure. Dihedral angles (φ, ψ) are of key importance
since they primarily define the protein’s backbone conformation. In this exam-
ple, we use the dihedral angle values of aminoacids to distinguish between the
two most common secondary structures in proteins: the α-helix and the β-sheet.
The data were retrieved from the Protein Geometry Database [13]. The dihedral
angles for all the compositions corresponding to one residue were retrieved. We
erased the instances with missing dihedral angles and selected the conformations
corresponding to α-helices and β-sheets to obtain a dataset containing 49,676
instances. The number of instances for each class value were 28,141 α-helices
(56.65%) and 21,535 β-sheets (43.35%). Figure 5(a) shows an α-helix (light blue)
and a β-sheet (dark blue) conformation in a protein. Figure 5(b) shows the dihe-
dral angles of all the aminoacids in α-helix (light blue) and β-sheet (dark blue)
data conformations, mapped into a torus. Von Mises distributions have been
used to model dihedral angles of protein structures in a number of works, e.g.,
[14,15].

We use vMNB to solve these problems. The maximum likelihood estimators
of the parameters in Eq. (2) and (3) are computed using [11]. As far as we know,
supervised classification problems using angular data as predictive information
have not been systematically studied before. Therefore, we could not find any
other approaches that manage directional data. We compare our results with
the commonly used Gaussian NB classifier (GNB) and the multinomial NB clas-
sifier (mNB) using a supervised discretization algorithm [16]. The accuracy of
the classifiers is estimated with a stratified 10-fold cross-validation procedure.
Table 1 shows the classifiers’ accuracies. We test if the difference in accuracy
is significant by applying a right-tailed t-test over the sorted difference of accu-
racies in a 10-fold cross validation averaged over 10 runs, as recommended in
[17]. Table 1 also shows the p-values of this t-test for each pair of classifiers (the
first classifier is better than the second). In Megaspores dataset, we can only
find statistical differences between GNB and mNB. On the other hand, vMNB

http://www.kovcomp.co.uk/oriana
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(a) Structure of an α-helix
(left) and a β-sheet (right)
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into a torus

Fig. 5. Structure and dihedral angle distribution of α-helices and β-sheets structures

outperforms both GNB and mNB in Protein dataset. Figure 6 illustrates the
difference between modeling protein dihedral angle ψ with a Gaussian or a von
Mises conditional distribution for C=2. The Gaussian distribution ignores the
periodicity of the data and yields different densities for angles 180◦ (0.24) and
−180◦ (0.0), which refer to the same angle. Also, the von Mises distribution is
more peaked. The log-likelihood for the von Mises distribution given the data is
higher than for the Gaussian distribution (see the legend in Fig. 6).

Table 1. Mean accuracy and standard deviation of the classifiers computed with strat-
ified 10-fold cross-validation (left). P-values of a right-tailed t-test to check whether the
difference in accuracy is significant (right).

vMNB GNB mNB vMNB vMNB GNB
vs. GNB vs. mNB vs. mNB

Megaspores 76.56 ± 4.26 76.46 ± 4.26 74.79 ± 5 0.7287 0.0607 0.0461
Protein 98.04 ± 0.18 97.64 ± 0.19 97.76 ± 0.24 0.0000 0.0001 0.9962

6 Discussion

In this paper, we introduced the vMNB classifier for use with angular and di-
rectional data. First, the NB classifier and the univariate von Mises distribution
were reviewed. Then, we analyzed the behavior of vMNB when von Mises dis-
tributions are used to model the conditional probability distributions of the
predictive variables. We derived the decision surfaces for one and two predictive
variables and illustrated them with artificial examples. We showed that vMNB is
a linear classifier when only one predictive variable is included. Also, we showed
that the decision surfaces induced by vMNB are much more complex when two
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Fig. 6. Gaussian (dashed) and von Mises (solid) conditional density functions for ψ
dihedral angles of class C=2 in Protein dataset

predictive variables are considered. Adding more predictive variables to vMNB
can be easily done, and we could expect the complexity of the decision surfaces
induced by these classifiers to grow accordingly. Two applications to real data
from the field of biology were reported. The vMNB classifier achieved similar or
better results than GNB and mNB in those datasets.

Conditional independence is a strong assumption, so a number of Bayesian
classifiers that relax the NB assumption have been proposed, e.g., [18,19,20].
Extending vMNB to these Bayesian classifiers is not a straightforward matter.
On the one hand, the conditional mutual information between variables modeled
with von Mises distributions has to be computed in [19,20]. On the other hand,
both marginal and conditional distributions of a multivariate von Mises cannot
be von Mises distributions [21], making it difficult to model statistical dependen-
cies between angular variables. Estimating the parameters of multivariate von
Mises distributions is also challenging.

Hybrid scenarios combining discrete and continuous variables occur frequently
in science. Classification models including categorical, Gaussian and von Mises
distributions would account for a wide range of heterogeneous features, likely
increasing the information available to the classifier and its accuracy. Learning
and reasoning with these models is not trivial either.

We conclude that using von Mises distributions in Bayesian classifiers, and
Bayesian networks generally, is both interesting and challenging. We hope that
further research in this area will provide the tools necessary to properly manage
directional data in machine learning.
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