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Abstract

Hybrid Bayesian networks efficiently encode a joint probability distribution over a set
of continuous and discrete variables. Several approaches have been recently proposed
for working with hybrid Bayesian networks, e.g., mixtures of truncated basis functions,
mixtures of truncated exponentials or mixtures of polynomials (MoPs). We present a
method for learning MoP approximations of probability densities from data using a linear
combination of B-splines. Maximum likelihood estimators of the mixing coefficients of
the linear combination are computed, and model selection is performed using a penalized
likelihood criterion, i.e., the BIC score. Artificial examples are used to analyze the behavior
of the method according to different criteria, like the quality of the approximations and
the number of pieces in the MoP. Also, we study the use of the proposed method as a
non-parametric density estimation technique in naive Bayes (NB) classifiers. Results on
real datasets show that the non-parametric NB classifier using MoPs is comparable to the
kernel density-based NB and better than Gaussian or discrete NB classifiers.

1 Introduction

Problems defined in hybrid domains with both
continuous and discrete variables are frequently
found in different fields of science. A Bayesian
network (Pearl, 1988) is a kind of probabilistic
graphical model which encodes a factorization
of the joint probability distribution over a set
of random variables. Hybrid Bayesian networks
for domains with continuous and discrete vari-
ables pose a number of challenges regarding the
representation of conditional probability distri-
butions, inference, learning from data, etc.

Langseth et al. (2012) have recently pro-
posed mixtures of truncated basis functions
(MoTBFs) as a framework for representing hy-
brid Bayesian networks. MoTBFs general-
ize mixtures of truncated exponentials (MTEs)
(Moral et al., 2001) and mixtures of polynomi-
als (MoPs) (Shenoy and West, 2011). MoTBFs,
MTEs and MoPs are closed under multiplica-
tion, addition and integration. Therefore, exact
probabilistic inference can be performed using

the Shenoy-Shafer (1990) architecture.

Different methods have been proposed for ap-
proximating MTEs from data by using least
squares (Rumı́ et al., 2006) or maximum like-
lihood (ML) estimation (Langseth et al., 2010).
Recently, Langseth et al. (2012) propose meth-
ods for estimating MoTBFs by minimizing the
Kullback-Leibler divergence.

In this paper, we present a method for learn-
ing MoPs directly from data using B-spline in-
terpolation (Zong, 2006). Given a dataset, this
method can be used for finding a MoP approx-
imation of the probability density which gen-
erated the data. Our proposal ensures that
the MoP is a valid density, i.e., it is continu-
ous, non-negative and integrates to one. Pre-
vious proposals for learning MoPs assume that
the mathematical expression of the generating
parametric density is known (Shenoy and West,
2011) or that the true densities of the Cheby-
shev points are available (Shenoy, 2012). On
the contrary, the proposed method only uses



the dataset without assuming any prior knowl-
edge. First, the probability density is approxi-
mated using the B-spline interpolation method
by Zong (2006), which provides ML estimators
of the mixing coefficients of the linear com-
bination of B-splines from the data. Second,
the approximated B-splines are developed into
a MoP function. Third, penalized likelihood
scores such as the BIC score are used for per-
forming model selection in a principled way,
avoiding overfitting and models with high com-
plexity.

The remainder of the paper is organized as
follows. Section 2 reviews MoPs and the meth-
ods found in the literature for learning them.
Section 3 details the proposed method for learn-
ing MoP approximations of probability densities
from data. Section 4 shows the use of the pro-
posed methods for non-parametric density es-
timation in naive Bayes classifiers. Sections 5
and 6 include the experimental evaluation of the
proposed methods. Finally, Section 7 ends with
conclusions and future work.

2 Mixtures of polynomials

Let X be a one-dimensional random variable
with probability density fX(x). A MoP approx-
imation of fX(x) over a closed domain ΩX =
[ω1, ω2] ⊂ R is a L-piece d-degree piecewise
function of the form (Shenoy and West, 2011)

ϕX(x) =

{
pi(x) for x ∈ Ai, i = 1, . . . , L

0 otherwise,
(1)

where pi(x) is a polynomial function b0i+b1ix+
b2ix

2 + · · · + bdix
d, {b0i, . . . , bdi} are constants

and A1, . . . , AL are disjoint intervals in ΩX

which do not depend on x with ΩX = ∪L
i=1Ai,

Ai ∩Aj = ∅, i 6= j.
MoPs are closed under multiplication, inte-

gration, differentiation and addition. There-
fore, exact inference can be performed with
the Shenoy-Shafer algorithm. Previous works
used the Taylor series expansion (TSE) (Shenoy
and West, 2011) or the Lagrange interpolat-
ing polynomial (LIP) (Shenoy, 2012) for es-
timating pi(x). The mathematical expression
of the probability density fX(x) needs to be

known for computing the TSE. However, real
data might not fit any known parametric den-
sity, so TSE cannot be used in practice. Sim-
ilarly, Shenoy (2012) proposes estimating pi(x)
as the LIP over the Chebyshev points defined
in Ai. However, the true probability densities
of the Chebyshev points in each Ai need to be
known or estimated beforehand.

3 Learning MoPs using B-spline

interpolation

B-splines or basis splines (Schoenberg, 1946) are
polynomial curves which form a basis for the
space of piecewise polynomial functions over a
closed domain ΩX = [ω1, ω2] (Faux and Pratt,
1979). Zong (2006) proposed a method for find-
ing B-spline approximations of probability den-
sity functions from data. He found a B-spline
approximation of the density fX(x) as a linear
combination of M = L+ r − 1 B-splines

ϕX(x ; α) =

M∑

j=1

αjB
r
j (x), (2)

where α = (α1, . . . , αM ) are the mixing coef-
ficients and Br

j (x), j = 1, . . . ,M are B-splines
with order r (degree d = r − 1).

Given a non-decreasing knot sequence of real
numbers δ = (a0, a1, . . . , aL), ai−1 < ai, the jth
B-spline Br

j (x) with order r is written as

Br
j (x) = (aj − aj−r)H(x− aj−r)

·
r∑

t=0

(aj−r+t − x)r−1H(aj−r+t − x)

w′
j−r(aj−r+t)

, (3)

where w′
j−r(x) is the first derivative of

wj−r(x) =
∏r

u=0(x − aj−r+u) and H(x) is the
Heaviside function

H(x) =

{
1 x ≥ 0,

0 x < 0.

A B-spline Br
j (x) can be written as a MoP

function (Equation (1)) with L pieces, where
each piece pi(x) is defined as the expansion of
Equation (3) in the interval Ai = [ai−1, ai), i =
1, . . . , L. To define a MoP using B-spline in-
terpolation, four elements need to be specified:



the order r, the number of knots/pieces L, the
knot sequence δ and the mixing coefficients α.
We used uniform B-splines so the knots in the
sequence δ are equally spaced and yield inter-
vals Ai with equal width: ai − ai−1 = ω2−ω1

L
.

MoPs are closed under multiplication and ad-
dition. Therefore, the linear combination of M
B-splines with order r (Equation (2)) yields a
MoP function with L pieces, where each piece
pi(x) is a polynomial with order r defined in the
interval Ai: pi(x) =

∑M
j=1 αjB

r
j (x),∀x ∈ Ai =

[ai−1, ai).

B-splines have a number of interesting prop-
erties for learning MoP approximations of prob-
ability densities, e.g., Br

j (x) is right side contin-
uous, differentiable, positive in (aj , aj+r+1) and
zero outside.

Given a dataset D = {x1, . . . , xN} with N
observations of variable X, Zong (2006) derived
the following iterative formula for finding the
ML estimators of the mixing coefficients, α̂, in
Equation (2):

α̂
(q)
j =

1

Ncj

∑

x∈D

α̂
(q−1)
j Br

j (x)

ϕX

(
x; α̂(q−1)

) , j = 1, . . . ,M,

(4)
where q is the iteration number in the optimiza-
tion process and

cj =

∫ aj

aj−r

Br
j (x)dx =

aj − aj−r

r
.

Zong (2006) showed that Equation (4) yields
the only maximum of the log-likelihood of D
given the approximation (Equation (2)), sub-
ject to the constraints

∑M
j=1 αjcj = 1 and αj ≥

0, j = 1, . . . ,M . These constraints ensure that
ϕX(x; α̂) is a valid probability density, i.e., it is
non-negative and integrates to one. The initial

values α̂
(0)
j are set to 1/

∑M
j=1 cj . Equation (4)

iterates until
∣∣∣ ℓ(q)−ℓ(q−1)

ℓ(q)

∣∣∣ < ǫ, where ℓ(q) is the

log-likelihood of D given ϕX

(
x; α̂(q)

)
at iter-

ation q of the optimization process. We used
ǫ = 10−6 in our experiments. The computa-
tional complexity of this optimization process
is O(MNqmax), where qmax is the number of

iterations of Equation (4) performed until the
algorithm converges.

Algorithm 1 summarizes the whole process for
obtaining a MoP approximation of a probability
density function using a dataset. Algorithm 1
needs the number of pieces L be specified a pri-
ori. Since the ML estimators of the mixing
coefficients, α̂, are computed in Equation (4),
we can use a penalized likelihood score to per-
form model selection and find L. Here, we used
the Bayesian information criterion (BIC) and
selected the MoP with the highest BIC score:

BIC(ϕX(x),D) = ℓ(D|ϕX(x))−
(M − 1) logN

2
.

(5)

Algorithm 1. Learning a MoP approximation
of a probability density from data

Inputs: A dataset D with N observations, the
number of pieces (L) and the order of the poly-
nomials (r).

Outputs: A L-piece (r − 1)-degree MoP ap-
proximation ϕX(x; α̂) of the probability density
underlying the dataset D.

Steps:

1. Compute the domain of the approximation
ΩX = [ω1, ω2] where ω1 = minD(X) and
ω2 = maxD(X).

2. Compute the knot sequence δ =
(a0, a1, . . . , aL) and define the intervals
Ai = [ai−1, ai), i = 1, . . . , L.

3. Build the M = L + r − 1 B-splines Br
j (x)

by applying Equation (3).

4. Compute the ML estimators of the mixing
coefficients, α̂, by applying Equation (4).

5. Compute the polynomials pi(x) as the lin-
ear combination of the B-splines defined for
each interval Ai, and build the MoP.

6. Normalize the MoP by dividing the co-
efficients of the polynomials pi(x) by∫
ΩX

ϕX(x)dx.

Algorithm 1 can be easily extended for finding
MoP approximations of multivariate probability



densities from data using multivariate B-spline
approximations as proposed by Zong (2006).
Then, the conditional density of a variable X
given its continuous parents Y can be evalu-
ated by dividing the multivariate MoP approx-
imations of the joint densities ϕX,Y(x,y) and
ϕY(y). However, obtaining MoP approxima-
tions of these joint densities is more challenging
due to the higher number of parameters and the
increasing number of instances needed to esti-
mate them.

4 Non-parametric naive Bayes

classifiers using MoPs

In this section, we show how to use the proposed
method as a non-parametric density estima-
tion technique in naive Bayes (NB) classifiers.
We consider a supervised classification problem
with a discrete class variable C with values in
ΩC = {1, . . . ,K} and a vector of n continu-
ous predictive variables X = (X1, . . . ,Xn) with
ΩXv ⊂ R, v = 1, . . . , n. The NB classifier (Min-
sky, 1961) models the probability of the class la-
bels as a categorical distribution pC(c), c ∈ ΩC .
The predictive variables are assumed to be con-
ditionally independent given the class. Here, we
model the conditional densities of every predic-
tive variable Xv given the class C = c with a
MoP ϕXv|c(xv). Algorithm 2 details the pro-
cess for learning a NB classifier from data using
MoPs.

Algorithm 2. Learning NB classifiers with
MoP approximations of the conditional density
functions

Inputs: A dataset D = {(xz , cz)}, z =
1, . . . , N , where xz = (xz1, . . . , xzn), the order
r of the polynomials and the maximum number
of pieces Lmax for each MoP.

Outputs: The estimated probabilities pC(c)
and ϕXv |c(xv).

1. For each class value c ∈ ΩC = {1, . . . ,K}

(a) Estimate pC(c)

(b) For each variable Xv ∈ X

i. Find Dv|c = {xzv ∈ D|cz = c}.

ii. For each L ∈ {1, . . . , Lmax}:

A. Find a MoP ϕXv|c(xv) from Dv|c

with L pieces (Algorithm 1).

B. Compute BIC(ϕXv|c(xv),Dv|c)
in Equation (5).

iii. Select the MoP with the highest
BIC score.

Once the probability distributions have been
estimated with Algorithm 2, a new instance x is
classified by applying the maximum a posteriori
rule: c∗ = argmaxc∈ΩC

pC(c)
∏n

v=1 ϕXv|c(xv).

5 Experiments with MoP

approximations

We analyzed the behavior of Algorithm 1 for
building MoP approximations of probability
densities from data using artificial examples.
Figure 1 shows the MoPs obtained with 500 ob-
servations sampled from a Gaussian, an expo-
nential and a mixture model. MoPs with order
r = 3 and L ∈ {1, . . . , 10} pieces were obtained
using Algorithm 1. The MoPs obtained using
the BIC score had fewer pieces than the MoPs
with the highest log-likelihood. Equation (6)
shows the MoP with the highest BIC score for
the finite mixture distribution (L = 5 in Fig-
ure 1(c)) as an example:

ϕX(x) =




0.0567 + 0.1924x − 0.0627x2 0 ≤ x < 2

0.3246 − 0.0756x + 0.0043x2 2 ≤ x < 4

0.5716 − 0.1990x + 0.0197x2 4 ≤ x < 6

−1.0265 + 0.3336x − 0.0247x2 6 ≤ x < 8

1.6972 − 0.3473x + 0.0179x2 8 ≤ x ≤ 10

(6)

It is easy to check that the MoP in Equa-
tion (6) is continuous for x ∈ {2, 4, 6, 8} and∫ 10
0 ϕX(x)dx = 1.
We studied the influence of the number of

pieces L in the MoP approximations of the three
densities in Figure 1. Figure 2 shows the log-
likelihood and the BIC score of the MoPs with
different values of L ∈ {1, . . . , 10}. In general,
the log-likelihood of the MoPs increased with
the number of pieces L. However, some values of
L yielded lower log-likelihood values than MoPs
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Figure 1: MoP approximations of a sample with 500 data from (a) a Gaussian, (b) an exponential
and (c) a mixture of a χ2 and a Gaussian distributions. The figure shows the true density (light
solid line) and the MoP approximations with the highest BIC score (dark solid line) and the highest
log-likelihood (dashed line). The histogram of the sample is also shown.
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Figure 2: BIC score (solid) and log-likelihood (dashed) of the MoP approximations of the distribu-
tions in Figure 1 for different numbers of pieces L ∈ {1, . . . , 10}.
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Figure 3: Kullback-Leibler divergence of the MoP approximations and the true distributions in
Figure 1 for different numbers of pieces L ∈ {1, . . . , 10}.



with fewer pieces, e.g., the MoP with L = 4
pieces in Figure 2(a) had a lower log-likelihood
than the MoP with L = 3 pieces. The domain
of the MoP ΩX was divided into L intervals
with equal width. Therefore, we conclude that a
bad partition of the domain ΩX can yield worse
MoP approximations even if a higher number of
pieces is used. This highlights the importance
of choosing the cut points of the intervals Ai

which partition ΩX . We can also see that the
changes in the log-likelihood of the approxima-
tions become less prominent as we increase L.

We observed that choosing the MoP with
the highest log-likelihood yielded approxima-
tions with a high number of pieces which over-
fitted the data, e.g., Figures 1(b) and 1(c) show
small oscillations in the MoPs with the high-
est log-likelihood (L = 10). Figure 3 shows the
Kullback-Leibler (KL) divergence of the MoPs
and the true distributions for different L. We
can see that the number of pieces selected using
the BIC score yielded good approximations with
a low KL divergence. Increasing L did not yield
important reductions in the KL divergence. In
fact, the KL divergence increased for high val-
ues of L, confirming that overfitting can occur
in MoPs with many pieces.

6 Experiments with NB classifiers

We evaluated the proposed Algorithm 2 for
learning a non-parametric NB classifier using
MoPs. We set the order of the polynomials
to r = 3, and the maximum number of pieces
for a MoP to Lmax = 8. We retrieved 14
datasets from the UCI1 and KEEL2 reposito-
ries and compared the proposed NB classifier
(NBMoPBIC) with other NB classifiers imple-
mented in Weka which use: Gaussian densities
(NBGauss), kernel-based densities (NBKernel),
Fayyad and Irani’s (1993) discretization (NBFI)
and equal-frequency discretization with 5 bins
(NBEF5) or 10 bins (NBEF10).

Table 1 shows the mean accuracy achieved by
each classifier in each dataset estimated using
a stratified 10-fold cross-validation. NBMoP-

1Available at http://archive.ics.uci.edu/ml/
2Available at http://www.keel.es/

BIC achieved the best accuracy in six datasets,
whereas NBKernel yielded the best accuracy
in five datasets. The average ranking of the
algorithms was NBKernel ≻ NBMoPBIC ≻
NBEF10 ≻ NBFI ≻ NBEF5 ≻ NBGauss. The
null hypothesis of equal performance of all algo-
rithms was rejected at a significance level α =
0.05 using Friedman’s test (p-value = 0.0237)
and Iman-Davenport test (p-value = 0.0182).

Table 2 shows the number of datasets in
which the first of the two algorithms in the
tested null hypothesis (H0) won, tied or lost
against the second algorithm. NBMoPBIC
yielded better results in more datasets than the
other algorithms, with the exception of NBKer-
nel. NBKernel achieved better results in more
datasets than the other algorithms. NBGauss
lost in more datasets than the other algorithms.

Table 2 also includes the results of the sta-
tistical tests for finding significant differences
between the algorithms. The binomial test
checks whether or not the ratio of wins versus
losses is significant. No significant differences
between the number of wins and losses were
found at a significance level α = 0.05. Con-
sidering α = 0.1, NBMoPBIC significantly out-
performed NBGauss, whereas NBKernel signif-
icantly outperformed NBEF5. The Bergmann-
Hommel post-hoc test (Garćıa and Herrera,
2008) checks all the pairwise comparisons be-
tween algorithms in all datasets. We did not
find statistically significant differences between
any pair of algorithms. This test ensures that
the rejected null hypotheses are compatible,
and this restriction makes it more difficult to
find significant results when many algorithms
are compared. Therefore, we also applied the
Wilcoxon rank-sum non-parametric test, which
compares each pair of algorithms independently
taking into account all the datasets. Accord-
ing to this test, NBMoPBIC and NBKernel sig-
nificantly outperformed NBGauss and NBEF5.
Additionally, NBKernel outperformed NBFI.
NBEF10 was the best performing discretization
algorithm. No significant differences were found
between NBMoPBIC, NBKernel and NBEF10.
However, NBMoPBIC and NBKernel won in
more datasets than NBEF10.



Table 1: Mean accuracy of the classifiers estimated using a stratified 10-fold cross-validation. The
best result for each dataset is highlighted with boldface letters.

NBMoPBIC NBGauss NBKernel NBFI NBEF5 NBEF10

appendicitis 0.8582 0.8482 0.8582 0.8391 0.8200 0.8500
fourclass 0.8793 0.7541 0.8839 0.7818 0.7691 0.8341
glass2 0.9485 0.9113 0.9208 0.9251 0.9069 0.9346
haberman 0.7295 0.7453 0.7452 0.7224 0.7388 0.7585

ion 0.9229 0.8117 0.9200 0.8916 0.8859 0.8887
iris 0.9600 0.9600 0.9600 0.9333 0.9333 0.9400
liver 0.6453 0.5512 0.6832 0.5775 0.6394 0.6129
newthyroid 0.9487 0.9632 0.9630 0.9489 0.9541 0.9587
phoneme 0.7914 0.7600 0.7840 0.7720 0.7709 0.7707
svmguide1 0.9432 0.9313 0.9590 0.9642 0.9601 0.9625
vehicle 0.5992 0.4633 0.6134 0.6122 0.5863 0.6323

waveform 0.8106 0.8088 0.8070 0.8078 0.8082 0.8064
wdbc 0.9456 0.9331 0.9490 0.9455 0.9350 0.9473
wine 0.9778 0.9778 0.9778 0.9833 0.9833 0.9667

Table 2: Statistical comparison of the NB classifiers. The table shows the number of datasets in
which the first algorithm in the tested null hypothesis (H0) wins, ties or loses against the second
algorithm. The p-values of the binomial, Bergmann-Hommel and Wilcoxon rank-sum tests are
reported. Statistically significant results at a significance level α = 0.05 are highlighted in boldface.

H0 W / T / L pBinomial pBerg-Hom pWilcoxon

NBMoPBIC = NBKernel 4 / 2 / 8 0.3877 1.0000 0.1294
NBMoPBIC = NBEF10 8 / 0 / 6 0.7905 1.0000 0.3910
NBMoPBIC = NBFI 10 / 0 / 4 0.1796 0.7423 0.1040
NBMoPBIC = NBEF5 10 / 0 / 4 0.1796 0.1792 0.0353

NBMoPBIC = NBGauss 9 / 3 / 2 0.0654 0.1760 0.0244

NBKernel = NBEF10 10 / 0 / 4 0.1796 1.0000 0.1726
NBKernel = NBFI 10 / 0 / 4 0.1796 0.4316 0.0203

NBKernel = NBEF5 11 / 0 / 3 0.0574 0.1000 0.0017

NBKernel = NBGauss 9 / 2 / 3 0.1460 0.0821 0.0068

NBEF10 = NBFI 9 / 0 / 5 0.4240 1.0000 0.0494

NBEF10 = NBEF5 10 / 0 / 4 0.1796 0.7423 0.0494

NBEF10 = NBGauss 10 / 0 / 4 0.1796 0.7423 0.0295

NBFI = NBEF5 8 / 2 / 4 0.3877 1.0000 0.3013
NBFI = NBGauss 9 / 0 / 5 0.4240 1.0000 0.1531
NBEF5 = NBGauss 8 / 0 / 6 0.7905 1.0000 0.2676

7 Conclusion

We have presented a method for learning MoP
approximations of probability densities from
data using a linear combination of B-splines.
The ML estimators of the mixing coefficients
of the linear combination were found and the

BIC score was used for model selection. This
provided a principled way for finding the num-
ber of pieces in a MoP, which yielded accurate
approximations and avoided overfitting.

The use of MoPs as a non-parametric density
estimation technique for naive Bayes classifiers
was also studied. NB with MoPs outperformed



Gaussian NB and discrete NB with EF5 dis-
cretization. NB with MoPs was comparable to
kernel density-based NB and discrete NB with
EF10 discretization. MoPs offer some advan-
tages over kernels as non-parametric density es-
timators. First, MoPs provide an explicit model
of the generating probability density. Second,
MoPs are more efficient than kernels regarding
storage and classification time because MoPs
do not need to save and analyze the complete
dataset to evaluate the density of a value. On
the contrary, training time is higher for MoPs
because parameter estimation is involved, al-
though Equation (4) converges in few iterations
(Zong, 2006).

Future work includes the extension of Algo-
rithm 1 so that the intervals Ai do not have
the same width (non-uniform B-splines). Find-
ing the best knot sequence given a dataset is
expected to reduce the number of pieces neces-
sary to find an accurate MoP approximation of
the underlying probability density. Heuristic or
optimization techniques, e.g., simulated anneal-
ing or differential evolution, could be used to
find estimators of the knots. Here, we only con-
sidered MoPs with order r = 3, but higher or-
ders need to be investigated in the future. Also,
extensions to more complex Bayesian classifiers
which do not assume conditional independence
of the predictive variables given the class will be
considered, e.g., tree-augmented naive Bayes, k-
dependence Bayesian classifiers, etc. Finally,
the performance of the proposed method will
be compared with other non-parametric tech-
niques, e.g., MoTBFs, MTEs, etc.
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