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Abstract. We study the problem of learning Bayesian classifiers (BC)
when the true class label of the training instances is not known, and
is substituted by a probability distribution over the class labels for each
instance. This scenario can arise, e.g., when a group of experts is asked to
individually provide a class label for each instance. We particularize the
generalized expectation maximization (GEM) algorithm in [1] to learn
BCs with different structural complexities: naive Bayes, averaged one-
dependence estimators or general conditional linear Gaussian classifiers.
An evaluation conducted on eight datasets shows that BCs learned with
GEM perform better than those using either the classical Expectation
Maximization algorithm or potentially wrong class labels. BCs achieve
similar results to the multivariate Gaussian classifier without having to
estimate the full covariance matrices.

Keywords: Bayesian classifiers, probabilistic class labels, partially su-
pervised learning, belief functions.

1 Introduction

A classification problem consists of assigning a class label to an object based
on a set of characteristic features. Traditionally, machine learning research has
focused on two problems: supervised and unsupervised learning. In supervised
learning, the true class label of a set of training instances is known. In unsuper-
vised learning settings, on the other hand, the true class label of the training
instances is not available. It can be both hard and expensive to identify the true
class label of all training instances. However, it is often easier to locate partial
or incomplete information about the true class labels, and more sophisticated
methods have been proposed for incorporating that information. Semi-supervised
learning deals with the problem of learning classifiers when the true class labels
of only a few training instances are known, and the rest of the training set
is unlabeled. In partially supervised learning, a subset of possible class labels
(including the true class) is given for each instance.

A general framework for learning multivariate Gaussian classifiers (MGC)
is provided in [1], where the class information is modeled as belief functions
[2], and a generalized expectation maximization (GEM) algorithm is proposed.
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This approach includes supervised, unsupervised, semi-supervised and partially
supervised learning as particular cases. Here we particularize the GEM algorithm
to a specific scenario, where the information about the class for each instance
is given as a probability distribution over the class labels. This is motivated by
a problem in which it is hard to identify the true class labels of the training
instances, perhaps because each label is not clearly defined, and a set of experts
is asked to label the (same) training set to gain information about how the
labels are assigned. Then, we summarize the information about the experts’
classifications as probability distributions over the class labels.

Bayesian networks [3] are probabilistic graphical models which encode a fac-
torization of the joint probability distribution over a set of variables, allowing
for different kinds of reasoning and efficient computations. Bayesian classifiers
(BC) [4] adapt Bayesian networks to classification problems. Here we adapt the
GEM algorithm to fit BCs with different structures when the class information
for each instance is given as a probability distribution.

In Sect. 2 we particularize the GEM algorithm to the case where the class
information is given as probability distributions. Section 3 shows the use of the
GEM algorithm to learn BCs. Section 4 includes the evaluation of the classifiers
over eight datasets. Section 5 ends with conclusions and future work.

2 The GEM Algorithm for Probabilistic Class Labels

Our problem domain is modeled using n predictive univariate variables X =
(X1, . . . , Xn) and a class variable C. The domain of each variable Xj is continu-
ous and denoted as ΩXj . The class variable is discrete with ΩC = {1, . . . ,K}. We
have a training dataset with N instances: D = {(x1,π1), . . . , (xN ,πN )}, where
xi = (xi,1, . . . , xi,n) are the values of the predictive variables for the ith instance,
and πi = (πi,1, . . . , πi,k) is the class information, i.e., a probability distribution
over ΩC so that πi,k is the probability of instance i belonging to class k, with

0 ≤ πi,k ≤ 1 and
∑K

k=1 πi,k = 1. For instance, imagine that we ask 20 experts to
classify each instance of a two-class problem and, for the ith instance, 15 experts
classify it as belonging to class 1 and the rest assign the instance to class 2. We
model that information as the probability distribution: πi = (0.75, 0.25).

In [1], the information about the class of each instance xi is modeled as a
basic belief assignment (bba), which is a function mΩC

i : 2ΩC → [0, 1] over the

powerset 2ΩC , verifying
∑

ω⊆ΩC
mΩC

i (ω) = 1. Table 1 shows an example of a
general bba (top) from [5]. Using the belief function theory in the context of the
transferable belief model [2], a generalization of the Expectation Maximization
(EM) algorithm [6] is derived in [1] for fitting a finite mixture of multivariate
Gaussian distributions with K components

fX(x) =

K∑

k=1

pC(k; θC)fX|k(x;μX|k,ΣX|k) , (1)

which is used as a MGC, where pC(k; θC) is the prior probability of C = k and
fX|k(x;μX|k,ΣX|k) is the conditional multivariate Gaussian density function of
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Table 1. Example of a general bba mΩC
i (ω) taken from [5] (top) and a Bayesian bba

(bottom). The class variable C has three values ΩC = {1, 2, 3}.
ω

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} ΩC

General bba 0 0.1 0 0.3 0.2 0.3 0 0.1
Bayesian bba 0 0.3 0.2 0.5 0 0 0 0

the predictive variablesX given C = k. The GEM algorithm finds the parameters

Θ = {θC} ∪
{
μX|k,ΣX|k

}

k=1,...,K
that maximize a generalized log-likelihood

(LL) criterion

ln(plΘ(Θ|D)) =
N∑

i=1

ln

(
K∑

k=1

pli,kpC(k; θC)fX|k(xi;μX|k,ΣX|k)

)

+ ν , (2)

where ν is a constant and pli,k = plΩC

i ({k}) are the plausibilities of the ith

instance for the set {k}, with plΩC

i (ω) =
∑

γ⊆ΩC ,γ∩ω �=∅m
ΩC

i (γ), ∀ω ⊆ ΩC .
In our scenario, each bba is a probability distribution over ΩC , so all the focal

sets (subsets ω with mΩC

i (ω) > 0) are singletons, and the bba is called a Bayesian

bba (bottom row in Table 1). Since our mΩC

i are Bayesian, the plausibility

functions plΩC

i are probability measures: pli,k = plΩC

i ({k}) = mΩC

i ({k}) = πi,k.
Then, the generalized LL criterion (2) is rewritten as

LL = ln(p(Θ|D)) =

N∑

i=1

ln

(
K∑

k=1

πi,kpC(k; θC)fX|k(xi;μX|k,ΣX|k)

)

+ ν . (3)

The GEM algorithm is then particularized to maximize the LL criterion (3)
by alternating the two steps:

– Expectation step in iteration q: compute the expected posterior probabilities

t
(q)
i,k =

πi,kpC(k; θC)fX|k(xi;μX|k,ΣX|k)
∑K

k′=1 πi,k′pC(k′; θC)fX|k′(xi;μX|k′ ,ΣX|k′)
, (4)

– Maximization step in iteration q: find the parameters which maximize the
expected LL of the complete data

θ
(q+1)
C=k =

1

N

N∑

i=1

t
(q)
i,k ,μ

(q+1)
X|k =

1
∑N

i=1 t
(q)
i,k

N∑

i=1

t
(q)
i,kxi ,

Σ
(q+1)
X|k =

1
∑N

i=1 t
(q)
i,k

N∑

i=1

t
(q)
i,k

(
xi − μ

(q+1)
X|k

)(
xi − μ

(q+1)
X|k

)T

.

(5)

Like the EM algorithm, the GEM algorithm guarantees that the generalized
LL (3) increases in each iteration q up to a local maximum. To avoid local
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maxima, several runs of the algorithm are usually performed with different ran-
domized initializations of the parameters Θ, and the model with the highest

LL is returned. Instead, we consider the πi,k as initial values for t
(1)
i,k in the

first expectation step (4) of the algorithm. Therefore, the algorithm is only run
once. The stopping criterion used to check the convergence of the algorithm is
(LLq − LLq−1)/|LLq−1| < ε. We set ε = 10−6.

3 Learning Bayesian Classifiers with GEM

Multivariate Gaussian classifiers, such as the ones used in [1], need to estimate
a full covariance matrix ΣX|k for each class label. When the number of training
instances N is low or a high number of predictive variables n are available in the
dataset, the estimated covariance matrices might not be very accurate. BCs are
able to exploit the conditional independence relationships between the predictive
variables given the class variable, reducing the number of parameters for esti-
mation. We focus on BCs which conform with the conditional linear Gaussian
(CLG) network’ structure [7], i.e., discrete variables cannot have continuous par-
ents. Therefore, the class variable is a parent of all the predictive variables and
the predictive variables can only have other (continuous) predictive variables as
parents. In a BC with a CLG structure, the conditional density function for a
continuous variable Xj having parents Pa(Xj) = (Yj , C), where Yj is continu-

ous, is defined as fXj |yj ,k(xj) = N (xj ; β0,Xj |Yj ,k +βT
Xj |Yj ,kyj , σ

2
Xj |Yj ,k

), with

β0,Xj |Yj ,k = μXj |k −ΣXj ,Yj |kΣ
−1
Yj |kμYj |k ,

βXj |Yj ,k = Σ−1
Yj |kΣYj ,Xj |k ,

σ2
Xj |Yj ,k

= ΣXj |k −ΣXj ,Yj |kΣ
−1
Yj |kΣYj ,Xj |k ,

(6)

where μXj |k and μYj |k are the mean values of variables Xj and Yj given the
class label k. Therefore, we only need to estimate, for each class label k, the
covariances of each variable with its parents (ΣXj ,Yj|k), and the covariances
between the parents of the same variables (ΣYj |k) in the maximization step (5).

In this paper, we consider four BCs with different structures, and fit their
parameters with GEM:

– The naive Bayes (NB) classifier [8] assumes that all the predictive variables
are conditionally independent given the class variable. Therefore, the co-
variance matrices for each component are reduced to diagonal matrices, so
only the main diagonal of ΣX|k has to be estimated for each class label
k in GEM (5). The updating equations for the mean values μX|k of the
conditional densities in (5) are unchanged.

– The averaged one-dependence estimators (AODE) classifier [9] learns n BCs
with a tree-augmented naive Bayes (TAN) structure [4]. The variable Xj is
a parent of all the other predictive variables in the jth BC. When classifying
a new instance, we compute the posterior probability of each class label as
the mean of the posterior probabilities yielded by each TAN classifier.
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– The structural EM (SEM) algorithm [10] is used to find the structure of
the BC. Since we want to find the conditional (in)dependence relation-
ships between the predictive variables given the class variable, we search
for the structure in the space of the predictive variables. The SEM algo-
rithm alternates between a structural search step and a parameter search
step. The structural search starts with a NB structure and greedily eval-
uates all the possible structures that can be obtained by adding, deleting
or reversing an arc between two predictive variables. The arcs from the
class variable C to each predictive variable Xj are fixed. In the paramet-
ric search, the GEM algorithm finds the maximum likelihood estimates of
the parameters. The process is iterated until there is no further increase in
the BIC score. We implemented a BIC score which uses the generalized LL
(3): BIC(M : D) = ln(p(Θ|D)) − 0.5dim(M) lnN , where M represents a
classifier and dim(M) is the number of free parameters in the classifier.

– The performance of BCs is known to suffer when irrelevant or redundant
variables are not removed from the problem. Therefore, we have also con-
sidered including feature subset selection in the structural search step of the
SEM algorithm. We call this algorithm the feature subset selected structural
EM (FSSSEM). FSSSEM includes the class variable in the structural search
step and introduces some restrictions to ensure that the BC structure is
valid. First, arcs including the class variable have to be directed towards the
predictive variables and cannot be reversed. Second, if an arc from the class
variable to a predictive feature is deleted, we consider that the variable has
been erased and we delete all the arcs including the predictive variable. Like
SEM, the search procedure alternates between the structural search and the
parameter search steps until the generalized BIC score does not increase.

When classifying a new instance x, any BC yields a posterior probability p(C =
k|X = x) for each class label k. We use the maximum a posteriori decision
rule, so that x is assigned to the class with maximum posterior probability
k∗ = argmaxk∈ΩC p(C = k|X = x).

4 Experiments

This section includes the evaluation of the classifiers on eight datasets taken from
the UCI1 and KEEL2 repositories (see Fig. 1). Each variable in the datasets was
standardized by subtracting the mean and dividing by the standard deviation.
We erased the eighth variable in the glass dataset because 82.24% of the values
were zero and the estimated covariance matrices were not positive definite in
some runs. Also, we erased the first variable in the ion dataset because it was
discrete.

Five classifiers (MGC, NB, AODE, SEM and FSSSEM) were learned in four
different scenarios according to the available data and the algorithm used:

1 Available at: http://archive.ics.uci.edu/ml/
2 Available at: http://keel.es

http://archive.ics.uci.edu/ml/
http://keel.es


144 P.L. López-Cruz, C. Bielza, and P. Larrañaga

– GEM: The parameters of the BCs were found using the probability distri-
bution for the class labels with the GEM algorithm.

– EM: The parameters of the BCs were found with the classical EM algorithm
[6]. The probability distributions for the class labels were used to initialize

t
(1)
i,k in the E-step of the first iteration of the algorithm.

– Wrong labels (WL): The BCs were fitted as in a common supervised clas-
sification problem, but the class labels of some instances were flipped to a
wrong label (see Sect. 4.1).

– True labels (TL): The BCs were fitted using the true class labels of the
instances. This corresponds to an utopian scenario where the class labels of
the instances are known to be correct.

4.1 Dataset Generation and Stratified l-Fold Cross-Validation

We artificially modified the real datasets by transforming the true class label
of each instance into a probability distribution over the class labels. For each
instance, we sampled a value bi from a beta distribution with mean μB and
standard deviation σB . If the true class label for the ith instance was k, then we
set πi,k = 1− bi and πi,k′ = bi/(K−1), k′ �= k. The beta distribution models the
mistakes made by the experts when classifying the instances. The probability
of the true class label was high with low values of μB, whereas high values of
μB yielded probability distributions where the true class label did not have the
maximum probability. Similarly, in the WL setting, we randomly modified the
class label for some instances in the dataset. For each instance, we drew a value
ui from a uniform distribution in [0, 1]. If ui < bi, then the true class label was
changed to any other class label in ΩC with equal probability.

Stratified l-fold cross-validation was used to honestly estimate the classifica-
tion error of the models. We assumed that the true class label of the instances
was not available, so we based the stratified cross-validation on the probability
distributions over the class labels. We proposed a simple greedy algorithm for
generating the folds in the cross-validation process. The goal was to generate
folds with the same mean probabilities as the complete dataset. First, for each
class label k, the instances were ranked in decreasing order using the proba-
bilities πi,k. Then, a mean rank was computed for each instance using K − 1
rankings. We ordered the instances according to the mean rank and assigned
each instance to the fold with the lowest sum of mean ranks at any time. The
proposed stratified l-fold cross-validation algorithm yielded folds with similar
proportions to the complete dataset, even when the class labels were unbalanced
(not shown). Once the folds were generated, we proceeded as in a classical strat-
ified cross-validation setting. Each fold was considered once to test the classifier
learned using the other l− 1 folds. The estimated error of the classifier was the
mean of the errors of the classifiers learned for each fold.

4.2 Results

Figure 1 shows the mean classification error achieved in each dataset for differ-
ent values of μB = {0.1, 0.2, 0.3, 0.4} in the beta distribution used to generate
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Fig. 1. Mean classification error and standard deviation bars in ten repetitions
of a 10-fold stratified cross-validation procedure. The probability distributions for
the class labels πi were generated from beta distributions B(μB , 0.01) with μB =
{0.1, 0.2, 0.3, 0.4}.
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Table 2. Comparison between algorithms considering the results for all the classifiers
(5), datasets (8) and values of μB (4).

H0 W/T/L
Binomial test Bergmann-Hommel test

H1 p-value H1 p-value

GEM = EM 141/1/18 > ∗ 0.0000 �= ∗ 0.0000
GEM = WL 104/0/56 > ∗ 0.0000 �= ∗ 0.0000
GEM = TL 32/5/123 < ∗ 0.0000 �= ∗ 0.0000
EM = WL 80/0/80 �= 1.0000 �= 0.1530
EM = TL 20/0/140 < ∗ 0.0000 �= ∗ 0.0000
WL = TL 16/0/144 < ∗ 0.0000 �= ∗ 0.0000

the artificial datasets. The value σB = 0.01 was used in all experiments. We
performed ten repetitions of 10-fold stratified cross-validation and computed the
classification error with respect to the true class labels of the instances. The
GEM algorithm frequently outperformed the classical EM algorithm, the only
exception being the ring dataset, where EM and GEM algorithms won 10 times
each. Interestingly, GEM achieved better results than TL in some experiments,
e.g., MGC in appendicitis and crabs datasets, or NB in appendicitis, iris,
ring and wine datasets (μB = 0.1). A possible explanation is that GEM uses
the information about an instance to estimate the parameters of the condi-
tional probabilities for all the class labels where the probability πi,k is higher
than zero. Therefore, more information was available to fit the classifiers and
higher accuracies could be achieved. The accuracy in the WL scenario deteri-
orated as we increased the mean value of the beta distributions, e.g., in the
appendicitis, crabs, glass, iris or wine datasets. On the contrary, the ac-
curacy of GEM remained rather stable or decreased slightly (e.g., fourclass or
phoneme) when increasing μB. These behaviors could be observed for all but the
classifiers learned with FSSSEM. In general, MGC, SEM and AODE were the
classifiers that performed better for the different algorithms and datasets. NB
yielded poor results in the crabs and glass datasets but seemed to outperform
the other classifiers in appendicitis. FSSSEM’s performance was not very good
across all the datasets.

Table 2 compares the four learning algorithms (GEM, EM, WL and TL). The
number of times the first algorithm wins, ties or loses against the second are
shown. The binomial test checks whether or not the number of wins is equal
to the number of losses. The non-parametric Bergmann-Hommel post-hoc test
[11] checks whether or not the mean accuracy of the methods is the same. The
p-value and the alternative hypothesis (H1) are reported for each test. Statisti-
cally significant results at α = 0.05 are shown with an asterisk. We found that
GEM significantly outperformed both EM and WL. Not surprisingly, we found
significant differences between TL and all the other learning scenarios. On the
other hand, no significant differences were found between EM and WL.

Similarly, Table 3 compares the five BCs. We did not find significant dif-
ferences between the pairwise performances of AODE, MGC and SEM. All the
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Table 3. Comparison between classifiers considering the results for all the algorithms
(4), datasets (8) and values of μB (4)

H0 W/T/L
Binomial test Bergmann-Hommel test

H1 p-value H1 p-value

MGC = NB 80/0/48 > ∗ 0.0030 �= ∗ 0.0022
MGC = AODE 49/17/62 < 0.1273 �= 1.0000
MGC = SEM 57/7/64 < 0.2928 �= 1.0000
MGC = FSSSEM 108/1/19 > ∗ 0.0000 �= ∗ 0.0000
NB = AODE 41/0/87 < ∗ 0.0000 �= ∗ 0.0003
NB = SEM 39/14/75 < ∗ 0.0005 �= ∗ 0.0008
NB = FSSSEM 89/0/39 > ∗ 0.0000 �= ∗ 0.0000
AODE = SEM 59/5/64 < 0.3593 �= 1.0000
AODE = FSSSEM 108/0/20 > ∗ 0.0000 �= ∗ 0.0000
SEM = FSSSEM 100/1/27 > ∗ 0.0000 �= ∗ 0.0000

classifiers significantly outperformed FSSSEM according to both tests. The fea-
ture subset selection method in FSSSEM is rather naive and uninformative and
the number of selected variables in the final classifiers was usually low. This could
explain FSSSEM’s poor performance. Also, NB was outperformed by MGC,
AODE and SEM.

5 Conclusions

In this paper we have adapted the GEM algorithm [1] to the particular sce-
nario where the information about the class of the training instances is given
as probability distributions over the class labels. We used this particulariza-
tion of the GEM algorithm to learn Bayesian network classifiers with different
structural complexities: multivariate Gaussian classifiers, naive Bayes, AODE or
conditional linear Gaussian classifiers. We evaluated the classifiers on eight real
datasets. BCs learned with GEM outperform others learned with the classical
EM algorithm or with potentially wrong labels. We found no significant differ-
ences between the performances of MGC, AODE and CLG classifiers learned
with SEM. In general, both AODE and SEM require a lower number of parame-
ters than MGC to be estimated from data. Therefore, these classifiers might be
more appropriate when the number of instances in the training datasets are low
with respect to the number of variables.

Future work includes the extension to other BCs, e.g., TAN, k-DB, selective
NB, etc. These methods are far more efficient than SEM or FSSSEM because the
structural search uses the conditional mutual information between the predictive
variables to find interrelationships. However, estimating the conditional mutual
information between two variables when the class values are provided as proba-
bility distributions or belief functions is a matter of research. Other more informa-
tive methods could be used for feature subset selection. Adapting classical mea-
sures of the information that a variable (or a set of variables) provides about the
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class, such as the mutual information or correlation-basedmeasures, to work with
uncertain class labels is also challenging. In this paper, we have only considered
score+searchmethods for learning BCs. However, there are approaches which are
based on statistical tests for conditional independence between the variables. To
the best of our knowledge, how to adapt conditional independence tests to work
with probabilistic class labels is also an open question.

Finally, the GEM algorithm does not explicitly model class uncertainty, i.e.,
the probabilities πi,k remain constant throughout the whole algorithm and they
do not appear in the final model (1). Other approaches that explicitly model
these probabilities (e.g., using Dirichlet distributions) would be useful for study-
ing and considering the interactions between the different class values.
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