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This paper introduces and evaluates a new class of knowledge model, the recursive Bayesian multinet
(RBMN), which encodes the joint probability distribution of a given database. RBMNs extend Bayesian networks
(BNs) as well as partitional clustering systems. Briefly, a RBMN is a decision tree with component BNs at the
leaves. A RBMN is learnt using a greedy, heuristic approach akin to that used by many supervised decision tree
learners, but where BN are learnt at leaves using constructive induction. A key idea is to treat expected data as real
data. This allows us to complete the database and to take advantage of a closed form for the marginal likelihood
of the expected complete data that factorizes into separate marginal likelihoods for each family (a node and its
parents). Our approach is evaluated on synthetic and real-world databases.

1. Introduction

One of the main problems that arises in a great variety of fields, including pattern recognition,
machine learning and statistics, is the so-called data clustering problem (Anderberg, 1973;
Banfield & Raftery, 1993; Chandon & Pinson 1980; Duda & Hart, 1973; Fisher, 1987;
Hartigan, 1975; Kaufman & Rousseeuw, 1990). Data clustering can be viewed as a data-
partitioning problem, where we partition data into different clusters based on a quality or
similarity criterion (e.g., as in K-Means (MacQueen, 1967)). Alternatively, data clustering
is one way of representing the joint probability distribution of a database. We assume that, in
addition to the observed or predictive attributes, there is a sidden variable. This unobserved
variable reflects the cluster membership for every case in the database. Therefore, the data
clustering problem is also an example of learning from incomplete data due to the existence
of such a hidden variable. Incomplete data represents a special case of missing daia, where
all the missing entries are concentrated in a single (hidden) variable. That is, we refer to
a given database as incomplete when the classification is not given. Parameter estimation
and model comparison in classical and Bayesian statistics provide a solution to the data
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clustering problem. The most frequently used approaches include mixture density models
(e.g., Gaussian mixture models (Banfield & Raftery, 1993)) and Bayesian networks (e.g.,
AutoClass (Cheeseman et al., 1988)).

We aim to automatically recover the joint probability distribution from a given incomplete
database by learning recursive Bayesian multinets (RBMNs). Roughly, arecursive Bayesian
multinet is a decision tree (Breiman et al., 1984; Quinlan, 1993) where each decision
path (i.e., a conjunction of predictive attribute-value pairs) ends in an alternate component
Bayesian network (BN) (Castillo, Gutiérrez, & Hadi, 1997; Jensen, 1996; Lauritzen, 1996;
Pearl, 1988).

RBMNs are a natural extension of BNs. While the conditional (in)dependencies encoded
by a BN are context-non-specific conditional (in)dependencies, RBMNs allow us to work
with context-specific conditional (in)dependencies (Geiger & Heckerman, 1996; Thiesson
et al., 1998), which differ from decision path to decision path.

Our heuristic approach to the learning of RBMNSs requires the learning of its component
BNs from incomplete data. In the last few years, several methods for learning BNs have
arisen (Buntine, 1994; Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering,
1995; Pazzani, 1996b; Spiegelhalter et al., 1993), some of them that learn from incomplete
data (Cheeseman & Stutz, 1995; Friedman, 1998; Meild & Heckerman, 1998; Pefia, Lozano,
& Larranaga, 1999, 2000a; Thiesson et al., 1998). We describe how the Bayesian heuristic
algorithm for the learning of BNs for data clustering developed by Pefia, Lozano, and
Larrafiaga (1999) is extended to learn RBMNSs.

A key step in the Bayesian approach to learning graphical models in general and BNs
in particular is the computation of the marginal likelihood of data given the model. This
quantity is the ordinary likelihood of data averaged over the parameters with respect to their
prior distribution. When dealing with incomplete data, the exact calculation of the marginal
likelihood is typically intractable (Cooper & Herskovits, 1992), thus, such a computation
has to be approximated (Chickering & Heckerman, 1997). The existing methods are rather
inefficient for our purpose of eliciting a RBMN from an incomplete database, since they
do not factorize into scores for families (i.e., nodes and their parents). Hence, we would
have to recompute the score for the whole structure from anew, although only the factors
of some families had changed.

To avoid this problem, we use the algorithm developed in Pefia, Lozano, and Larrafiaga
(1999) based upon the work done in Thiesson et al. (1998). We search for parameter values
for the initial structure by means of the EM algorithm (Dempster, Laird, & Rubin, 1977;
McLachlan & Krishnan, 1997), or by means of the BCH+EM method (Pefia, Lozano, &
Larrafiaga, 2000a). This allows us to complete the database by using the current model, that
is, by treating expected data as real data, which results in the possibility of using a score
criterion that is both in closed form and factorable.

The remainder of this paper is organized as follows. In Section 2, we describe BN,
Bayesian multinets (BMNs) and RBMNs for data clustering. Section 3 is dedicated to the
heuristic algorithm for the learning of component BNs from incomplete data. In Section 4,
we describe the algorithm for the learning of RBMNSs for data clustering. Finally, in Section 5
we present some experimental results. The paper finishes with Section 6 where we draw
some conclusions and outline some lines of further research.



2. BNs, BMNs and RBMN:s for data clustering
2.1. Notation

We follow the usual convention of denoting variables by upper-case letters and their states
by the same letters in lower-case. We use a letter or letters in bold-face upper-case to
designate a set of variables and the same bold-face lower-case letter or letters to denote an
assignment of state to each variable in a given set. |X| is used to refer to the number of states
of the variable X. We use p(x | y) to denote the probability that X =x given Y =y. We also
use p(x|y) to denote the conditional probability distribution (mass function, as we restrict
our discussion to the case where all the variables are discrete) for X given Y = y. Whether
p(x|y) refers to a probability or a conditional probability distribution should be clear from
the context.

As we mentioned, when facing a data clustering problem we assume the existence of the
n-dimensional random variable X partitioned as X = (Y, ) into an (n — 1)-dimensional
random variable Y (predictive attributes), and a unidimensional hidden variable C (cluster
variable).

2.2, BNs for data clustering

Given an n-dimensional variable X = (X1, ..., X)) = (Y, (), aBN (Castillo, Gutiérrez, &
Hadi, 1997; Jensen, 1996; Lauritzen, 1996; Pearl, 1988) for X is a graphical factorization
of the joint probability distribution for X. A BN is defined by a directed acyclic graph b
(model structure) determining the conditional (in)dependencies among the variables of X
and a set of local probability distributions. When b contains an arc from the variable X ; to
the variable X;, X ; is referred to as a parent of X;. We denote by Pa(b); the set of all the
parents that the variable X; has in b. The structure lends itself to a factorization of the joint
probability distribution for X as follows:

p®x =[] rt Ipam)) €]
i=1

where pa(b); denotes the state of the parents of X;, Pa(b),, consistent with x. The local
probability distributions of the BN are those in Eq. (1) and we assume that they depend on
a finite set of parameters 8y, € ©y,. Therefore, Eq. (1) can be rewritten as follows:

n
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If b* denotes the hypothesis that the conditional (in)dependence assertions implied by b
hold in the true joint probability distribution for X, then we obtain from Eq. (2) that:

p(x |6, b") =] | paby;, 65, b"). ©)
i=1



Figure I. Example of the structure of a BN for data clustering for X = (Y, C) = (Y1, Y2, Y3, ¥4, ¥5, O). It
follows from the figure that the joint probability distribution factorizes as p(x) = p(y, ¢) = p(c) - p(y1|¢c) -
P2y, @ -p(lya, ys, ) -plyalo)-plys|o.

According to the partition of X as X = (Y, C), Eq. (3) can be rewritten as follows:

(x| 6, b") = p(c| 6y, B)p(y|c, O, b
n—1

= p(c | 8y, b [ ] p (i | prepab);, ¢, Oy, b") “
i=1

where prepa(b); denotes the state of those parents of Y; that correspond to predictive
attributes, PrePa(b);, consistent with y.

Thus, a BN is completely defined by a pair (b, 8}). The first of the two components is the
model structure, and the second component is the set of parameters for the local probability
distributions corresponding to b. See figure 1 for an example of a BN structure for data
clustering with five predictive attributes.

2.3. BMNs for data clustering

The conditional (in)dependencies determined by the structure of a BN are called context-
non-specific conditional (in)dependencies (Thiesson et al., 1998), also known as symmetric
conditional (in)dependencies (Geiger & Heckerman, 1996). That is, if the structure implies
that two sets of variables are independent given some configuration (or state) of a third set of
variables, then the two first sets are also independent given every other configuration of this
third set of variables. A BMN (Geiger & Heckerman, 1996) is a generalization of the BN
model that is able to encode context-specific conditional (in)dependencies (Thiesson et al.,
1998), also known as asymmetric conditional (in)dependencies (Geiger & Heckerman,
1996). Therefore, a BMN structure may imply that two sets of variables are independent
given some configuration of a third set, and dependent given another configuration of this
third set. Formally, a BMN for X = (X1, ..., X,,) = (Y, () and distinguished variable
G € Y is a graphical factorization of the joint probability distribution for X. A BMN is
defined by a probability distribution for G and a set of component BNs for X\{G}, each of
which encodes the joint probability distribution for X\{G} given a state of G. Because the
structure of each component BN may vary, a BMN can encode context-specific conditional
(in)dependence assertions. In this paper, we limit the distinguished variable G to be one of
the original predictive attributes. However Thiesson et al. (1998) allows the distinguished



Figure 2. Example of the structure of a BMN for data clustering for X = (Y, C) = (¥y, 12, Y3, Y4, V5, C)
and distinguished variable G = Ys5. There are two component BNs as the distinguished variable is dichotomic
(|Ys | =2). Dotted lines correspond to the distinguished variable ¥s.

variable to be either one of the predictive attributes or the hidden cluster variable C'. When
this last happens, each leaf represents a single cluster. These models are called mixiures of
BN according to Thiesson et al. (1998). Figure 2 shows the structure of a BMN for data
clustering when the distinguished variable G has two values.

Lets and 8, denote the structure and parameters of a BMN for X and distinguished variable
G. In addition, let us suppose that b, and 8, denote the structure and parameters of the
g-th component BN of the BMN. Also, lets” denote the hypothesis that the context-specific
conditional (in)dependencies implied by s hold in the true joint probability distribution for
X and distinguished variable G. Therefore, the joint probability distribution for X encoded
by the BMN is given by:

P(x|0s,8") =pg| 65" p(x\(g} | g, 05, 8") = 7, p(x\(g} | 6. b}) )

where 8, = (01, ..., 0\g|, 71, ..., 7)) denotes the parameters of the BMN, bz is a short-
hand for the conjunction of s" and G = g, and m, = p(g] 0, s"). The last term of the
previous equation can be further factorized according to the structure of the g-th component
BN of the BMN (Eq. (4)).

Thus, a BMN is completely defined by a pair (s, ). The first of the two components is
the structure of the BMN, and the second component is the set of parameters.

We may see a BMN as a depth-one decision tree (Breiman et al., 1984; Quinlan, 1993),
where the distinguished variable is the root and there is a branch for each of its states. At the
end of each of these branches is a leaf which is a component BN. Thus, it is helpful to see
the dotted lines of figure 2 as conforming a decision tree with component BN as leaves.

2.4. RBMNs for data clustering

Let us follow with the view of a BMN as a depth-one decision tree where leaves are
component BNs. We propose to use deeper decision trees where leaves are still component



BNs. By definition, every component of a BMN is limited to be a BN. A RBMN allows
every component to be either a BN (at a leaf) or recursively a RBMN.

RBMNs extend BNs and BMNs, but RBMNs also extend partitional clustering systems
(Fisher & Hapanyengwi, 1993). RBMNSs can be considered as extensions of BNs because,
like BMNs and mixtures of BNs, RBMNs allow us to encode context-specific conditional
(in)dependencies. Thus, they constitute a more flexible tool than BNs and provide the user
with structured and specialized domain knowledge as alternative component BN are learnt
for every decision path. Moreover, RBMNs generalize the idea behind BMNs by offering
the possibility of having decision paths with conjunctions of as many predictive attribute-
value pairs as we want. The only constraint is that these decision paths must be represented
by a decision tree.

Additionally, RBMNs extend traditional partitional clustering systems. A previous work
with the same aim is where Fisher and Hapanyengwi (1993) propose to perform data
clustering based upon a decision tree. The measure used to select the divisive attribute at
each node during the decision tree construction consists of the computation of the sum of
information gains over all attributes, while in the supervised paradigm the measure is limited
to the information gain over a single specified class attribute. This is a natural generalization
of the works on supervised learning where the performance task comprises the prediction
of only one attribute from the knowledge of many, whereas the generic performance task
in unsupervised learning is the prediction of many attributes from the knowledge of many.
Thus, RBMNs and the work by Fisher and Hapanyengwi aim to learn a decision tree with
knowledge at leaves sufficient for making inference along many attributes. This implies that
both paradigms are considered extensions of traditional partitional clustering systems as
they are concerned with characterizing clusters of observations rather than partitioning them.

We define a RBMN according to the intuitive idea of a decision tree with component
BN as leaves. Let T be a decision tree, here referred to as distinguished decision tree,
where (i) every internal node in T represents a variable of Y, (ii) every internal node has
as many children or branches coming out from it as states for the variable represented by
the node, (iii) all the leaves are at the same level, and (iv) if T (root, [) is the set of variables
that are in the decision path between the root and the leaf [ of the distinguished decision
tree, there are then no repeated variables in T (root, 7). Condition (iii) is imposed to simplify
the understanding of RBMNs and their learning, but such a constraint can be removed in
practice. Let us define X\T(roo1, ) as the set of all the variables in X except those that
are in the decision path between the root and the leat / of the distinguished decision tree
T. Thus, a RBMN for X = (X, ..., X,) = (Y, () and distinguished decision tree T is a
graphical factorization of the joint probability distribution for X. A RBMN is defined by
a probability distribution for the leaves of T and a set of component BNs, each of which
encodes the joint probability distribution for X\T(root, ) given the /-th leaf of T. Thus, the
component BN at every leaf of the distinguished decision tree does not consider attributes
involved in the tests on the decision path leading to the leaf.

Obviously, BMNs are a special case of RBMNs in which T is a distinguished decision
tree with only one internal node, the distinguished variable. Moreover, we could assume
that BNs are also a special case of RBMNs in which the distinguished decision tree contains
no internal nodes.
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Figure 3. Example of the structure of a 2-levels RBMN for data clustering for X = (Y, C) = (Y1, 12, Y3,
Y4, Y5, C) and distinguished decision tree T. This RBMN has two component BMNSs, each of them with two
component BNs (assuming that the variables in the distinguished decision tree are all dichotomic). Dotted lines
correspond to the distinguished decision tree T.

Figure 3 helps us to illustrate the structure of a RBMN for data clustering as a decision
tree where each internal node is a predictive attribute and branches from that node are
states of the variable. Every leaf / is a component BN that does not consider attributes in
T(root, I). So, the induction of the component BN is simplified. Since every internal node
of T is a predictive attribute, the hidden variable C appears in every component BN. This
fact implies that the component BN at each leaf of T does not represent only one cluster as
Fisher and Hapanyengwi (1993) propose but a context-specific data clustering. That is, the
data clustering encoded by each component BN is totally unrelated to the data clusterings
encoded by the rest. This means that the probabilistic clusters identified by each component
BN are not in correspondence with those identified by the rest of component BNs. This is
due to the fact that C acts as a context-specific or local hidden cluster variable for every
component BN. To be exact, every variable of each component BN is a context-specific
variable that does not interact with the variables of any other component BN since the
elicitation of every component BN is totally independent of the rest. This is not explicitly
reflected in the notation as every branch identifies unambiguously each component BN and
its variables. Additionally, this avoids a too complex notation. This reasoning should also
be applied to BMNs as they are a special case of RBMNs.

Let s and 8 denote the structure and parameters of a RBMN for X and distinguished
decision tree T. In addition, let us suppose that b; and 6, denote the structure and param-
eters of the /-th component BN of the RBMN. Also, let s* denote the hypothesis that the
context-specific conditional (in)dependencies implied by s hold in the true joint probabil-
ity distribution for X and distinguished decision tree T. Therefore, the joint probability
distribution for X encoded by the RBMN is given by:

p(x| 05,8 = ptroot, 1) | O, s") px\t(root, 1) | t(root, 1), O, s")
= mp(x\t(roor, 1) | 6:, b)) (©)

where the leaf / is the only one that makes x be consistent with t(root, 1), 8s = (81, ..., 01,
71, ..., ;) denotes the parameters of the RBMN, L is the number of leaves in T, bf’ is



a shorthand for the conjunction of s® and T(root, 1) = t(rool, 1), and 7, = p(t(root, 1)
| 8, s"). The last term of the previous equation can be further factorized according to the
structure of the /-th component BN of the RBMN (Eq. (4)).

Thus, a RBMN is completely defined by a pair (s, 8;). The first of the two components
is the structure of the RBMN, and the second component is the set of parameters.

In this paper, we limit our discussion to the case in which the component BNs are defined
by multinomial distributions. That is, all the variables are finite discrete variables and the
local distributions at each variable in the component BNs consist of a set of multinomial
distributions, one for each configuration of the parents. In addition, we assume that the
proportions (probabilities) of data covered by the leaves of T follow also a multinomial
distribution.

As stated, RBMNs extend BNs due to their ability to encode context-specific conditional
(in)dependencies which increases the expressive power of RBMNs over BNs. A decision
tree effectively identifies subsets of the original database where different component BNs
result a better, more flexible way fit to data.

Other works in supervised induction identify instance subspaces through local or compo-
nent models. Kohavi (1996) links Naive Bayes (NB) classifiers and decision tree learning.
On the other hand, the work done by Zheng and Webb (2000) combines the previous work
by Kohavi with a lazy learning algorithm to build Bayesian rules where the antecedent is a
conjunction of predictive attribute-value pairs, and the consequent is a NB classifier. Thus,
both works share the fact that they use conjunctions of predictive attribute-value pairs to
define instance subspaces described by NB classifiers. Zheng and Webb (2000) give an
extensive experimental comparison between these two and other approaches for supervised
learning in some well-known domains.

Langley (1993) proposes to identify instance subspaces where the independence assump-
tions made by the NB classifier hold. His work is based upon the recursive split of the original
database by using decision trees where nodes are NB classifiers and leaves are sets of cases
belonging to only one class.

To illustrate how RBMNSs structure a clustering for a given database, we use a real-
world domain where data clustering was successfully performed by means of probabilistic
graphical models (Pefia et al., 2001), with the aim of improving knowledge on the geo-
graphical distribution of malignant tumors. A geographical clustering of the towns of the
Autonomous Community of the Basque Country (north of Spain) was performed. Every
town was described by the age-standardized cancer incidence rates of the six most frequent
cancer types for patients of each sex between 1986 and 1994. The authors obtained a geo-
graphical clustering for male patients and a geographical clustering for female patients as
the differences in the geographical patterns of malignant tumors for patients of each sex are
well-known by the experts. Each of both clusterings was achieved by means of the learning
of a BN. The final clusterings were presented by using coloured maps to partition the towns
in such a way that each town was assigned to the most probable cluster according to the
learnt BN, i.e., each town was assigned to the cluster with the highest posterior probability.

Due to the different geographical patterns for male and female patients, it seems quite
reasonable to assume that a RBMN would be an effective and automatic tool to face the
referred real-world problem without relying on human expertise. That is, the learning of a
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Figure 4. Scheme of the structure of the RBMN that, ideally, would be learnt for the real-world domain described
m Pefia et al. (2001). Additionally, the clusterings encoded by the component BNs are shown as coloured maps.
White towns were excluded from the study.

RBMN would be able to automatically identify that the instance subspace for male patients
encodes an underlying model ditferent from the one encoded by the instance subspace
for female patients. However, the authors relied on human expertise o divide the original
database and treat separately male and female cases.

Figure 4 shows a RBMN that, ideally, would be learnt, and the structured clustering
obtained from this model. It is easy to see that the clusterings obtained for male and female
patients are different as well as context-specific. Furthermore, Pefia et al. (2001) reports that
the characterization of cach cluster was completely different for male and female patients.
These differences in the geographical pattemns can not be captured when learning BNs from
the original joint database. In this example, figure 4 is also a BMN since the distinguished
decision tree contains only one predictive attribute. IHowever, it is easy to see that a RBMN
might represent a more complex decision tree that represented a more specialized clustering.
For example, we might expect different component BNs for each of the four conjunctions
(SEX = male, AGE = child), (SEX =male, AGE = adult), (SEX =female, AGE = child),
and (SEX =female, AGE = adult). This example could be encoded by a RBMN with a
2-levels distinguished decision tree.

A key idea in our approach to the learning of a RBMN for data clustering is to decompose
the problem into learning its component BNs from incomplete data. The component BN
corresponding to each leaf / is learnt from an incomplete database that is a subset of the
original incomplete database. This subsel contains all the cases of the original database that
are consistent with t(roof, [). Therefore, there still exists a hidden variable when learning
every component BN. That is why the problem of learning a RBMN for data clustering is
largely a problem of learning component BNs from incomplete data. Thus, in the following



section, we present a heuristic algorithm for the learning of a BN from an incomplete
database.

3. Learning BNs from incomplete data through constructive induction

In this section, we describe a heuristic algorithm to elicit the component BNs from in-
complete data. We use this heuristic algorithm as part of the algorithm for the learning of
RBMNs for data clustering that we present in the following section.

3.1. Component BN structure

Due to the difficulty involved in learning densely connected BNs and the painfully slow
probabilistic inference when working with them, it is desirable to develop methods for
learning the simplest BNs that fit the data adequately. Some examples of this trade-off
between the cost of the learning process and the quality of the learnt models are NB
models (Duda & Hart, 1973; Peot, 1996), Exiended Naive Bayes (ENB) models (Pazzani,
1996a, 1996b; Pena, Lozano, & Larrafiaga, 1999, 2001) and Tree Augmented Naive Bayes
models (Friedman, Geiger, & Goldszmidt, 1997; Friedman & Goldszmidt, 1996; Friedman,
Goldszmidt, & Lee, 1998; Keogh & Pazzani, 1999; Meild, 1999; Peiia, Lozano, & Larrafiaga,
2000a). Despite the wide recognition that these models are a weaker representation of some
domains than more general BNs, the expressive power of these models is often acceptable.
Moreover, these models appeal to human intuition and can be learnt relatively quickly.

For the sake of brevity, the class of compromise BNs that we propose to learn as com-
ponent BNs will be referred to as ENB (Pefia, Lozano, & Larrafiaga, 2001). ENB models
were introduced by Pazzani (1996a, 1996b) as Bayesian classifiers and later used by Pefia,
Lozano, and Larrafiaga (1999, 2001) for data clustering. ENB models can be considered
as having an intermediate place between NB models and models with all the predictive at-
tributes fully correlated (see figure 5). Thus, they keep the main features of both extremes:
simplicity from NB models and a better performance from fully correlated models.

ENB models are very similar to NB models since all the attributes are independent given
the cluster variable. The only difference with NB models is that the number of nodes in
the structure of an ENB model can be shorter than the original number of attributes in the
database. The reasons are that (i) a selection of the attributes to be included in the models can

NB model ENB meodel Fully correlated model

3
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Figure 5. Component BN (ENB model) structure that we propose to learn seen as having a place between NB
models and fully correlated models, when applied to the data clustering problem.
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be performed, and (ii) some attributes can be grouped together under the same node as fully
correlated attributes (we refer to such nodes as SMpéi’ﬂOd@Sl). Therefore, the class of ENB
models ensures a better performance than NB models while it maintains their simplicity.
As we consider all the attributes relevant for the data clustering task, we do not perform
attribute selection as proposed by Pazzani.

The structure of an ENB model for data clustering lends itself to a factorization of the
joint probability distribution for X as follows:

P(x| 8y, ") = p(y, c |6, b") = p(c| 6, b)) [[ 2@ | ¢, 65, 1) )
i=1
where {z;, ..., z,} is a partition of y, where r is the number of nodes (including the special

nodes referred to as supernodes). Each z; is the set of values in y for the original predictive
attributes that are grouped together under a supernode Z;, or it is the value in y for a
predictive attribute Z; .

3.2, Algorithm for learning ENB models from incomplete data

The log marginal likelihood is often used as the Bayesian criterion to guide the search for
the best model structure. An important feature of the log marginal likelihood is that, under
some reasonable assumptions, it factorizes into scores for families. When a criterion is
factorable, search is more efficient since we need not reevaluate the criterion for the whole
structure when only the factors of some families have changed. This is an important feature
when working with some heuristic search algorithms, because they iteratively transform
the model structure by choosing the transformation that improves the score the most and,
usually, this transformation does not affect all the families.

When the variable that we want to classify is hidden the exact calculation of the log
marginal likelihood is typically intractable (Cooper & Herskovits, 1992) thus, we have to
approximate such a computation (Chickering & Heckerman, 1997). However, the existing
methods for doing this are rather inefficient for eliciting the component BNs (ENB models)
from incomplete databases as they do not factorize into scores for families.

To avoid this problem, we use the heuristic algorithm presented in Pefia, Lozano, and
Larrafiaga (1999), which is shown in figure 6. First, the algorithm chooses an initial structure
and parameter values. Then, it performs a parameter search step to improve the set of
parameters for the current model structure. These parameter values are used to complete the
database, because the key idea in this approach is to treat expected data as real data (hidden
variable completion by means of probabilistic inference with the current model). Hence,
the log marginal likelihood of the expected complete data, log p(d | b*), can be calculated
by Cooper and Herskovits (1992) in closed form. Furthermore, the factorability of the log
marginal likelihood into scores for families allows the performance of an efficient structure
search step. After structure search, the algorithm reestimates the parameters for the new
structure that it finds to be the maximum likelihood parameters given the complete database.
Finally, the probabilistic inference process to complete the database and the structure search
are iterated until there is no change in the structure. Figure 6 shows the possibility of



1.Choose initial structure and initial set of parameter values
for the initial structure

2.Parameter search step
3.Probabilistic inference to complete the database
4.Calculate sufficient statistics to compute the log p(d | b%)
5.8tructure search step
6.Reestimate parameter values for the new structure
7.IF no change in the structure has been done
THEN stop
ELSE IF interleaving parameter search step
THEN go to 2
ELSE go to 3

Figure 6. A schematic of the algorithm for the learning of component BNs (ENB models) from incomplete data.

interleaving the parameter search step or not after each structural change, though we will
notinterleave parameter and structure search in the experiments to follow for reasons of cost.
Another key point is that a penalty term is built into the log marginal likelihood to guard
against overly complex models. In Meild and Heckerman (1998) a similar use of this built-in
penalty term can be found.
In the remainder of this section, we describe the parameter search step and the structure
search step in more detail.

3.2.1. Parameter search. As seen in figure 6, the heuristic algorithm that we use con-
siders the possibility of interleaving parameter and structure search steps. Concretely, this
interleaving process is done, at least, in the first iteration of the algorithm. By doing that,
we ensure a good set of initial parameter values. For the remaining iterations we can then
decide whether to interleave parameter and structure search steps or not. Although any pa-
rameter search procedure can be considered to perform the parameter search step, currently,
we propose two alternative techniques: the well-known EM algorithm (Dempster, Laird, &
Rubin, 1977; McLachlan & Krishnan, 1997), and the BC+EM method (Pefia, Lozano, &
Larrafiaga, 2000a).

According to Pefia, Lozano, and Larrafiaga (2000a), the BC+EM method exhibits a faster
convergence rate, and more effective and robust behaviour than the EM algorithm. That is
why the BC+EM method is used in our experimental evaluation of RBMNs. Basically,
the BCH+EM method alternates between the Bound and Collapse (BC) method (Ramoni &
Sebastiani, 1997, 1998) and the EM algorithm.

The BC method is a deterministic method to estimate conditional probabilities from
databases with missing entries. It bounds the set of possible estimates consistent with the
available information by computing the minimum and the maximum estimate that would be
obtained from all possible completions of the database. These bounds are then collapsed into
aunique value viaa convex combination of the extreme points with weights depending on the
assumed pattern of missing data. This method presents all the advantages of a deterministic
method and a dramatic gain in efficiency when compared with the EM algorithm (Ramoni
& Sebastiani, 1999).
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.FOR every case y in the database DO
a.Calculate the posterior probability distribution p(c|y,8p,b")
b.Let puax be the maximum of p(c |y, 01, b") which is reached
for C = ¢y
¢.IF ppmax > fixing_probability_threshold
THEN assign the case y to the cluster cpu
2.Run the BC method
a.Bound
b.Collapse
3.8et the parameter values for the current BN to be the BC’s
output parameter values
4 .Run the EM algorithm until convergence
5.IF BC+EM convergence
THEN stop
ELSE go to 1

Figure 7. A schematic of the BCH+EM method.

The BC method is used in presence of missing data, but it is not useful when there is a
hidden variable as in the data clustering problem. The reason for this is that the probability
intervals returned by the BC method would be too large and poorly inform the missing
entries of the single hidden variable. The BC4+EM method overcomes this problem by
performing a partial completion of the database at each step. See figure 7 for a schematic
of the BC+EM method.

For every case y in the database, the BCH+EM method uses the current parameter values
to evaluate the posterior probability distribution for the cluster variable C' given y. Then, it
assigns the case y to the cluster with the highest posterior probability only if this posterior
probability is greater than a threshold, fixing_probability _threshold, that the user must deter-
mine. The case remains incomplete if there is no cluster with posterior probability greater
than the threshold. As some of the entries of the hidden variable have been completed during
this process, we hope to have more informative probability intervals when running the BC
method. The EM algorithm is then executed to improve the parameter values that the BC
method has returned. The process is repeated until convergence.

3.2.2. Structure search. Chickering (1996) shows that finding the BN structure with the
highest log marginal likelihood from the set of all the BN structures in which each node
has no more than k£ parents is NP-hard for £ > 1. Therefore, it is clear that heuristic meth-
ods are needed. Our particular choice is based upon the work done by Pazzani (1996a,
1996b). Pazzani presents algorithms for learning augmented NB classifiers (ENB models)
by searching for dependencies among attributes: the Backward Sequential Elimination and
Joining (BSEJ) algorithm and the Forward Sequential Selection and Joining (FSSJ) al-
gorithm. To find attribute dependencies, these algorithms perform constructive induction
(Arciszewski, Michalski, & Wnek, 1995; Michalski, 1978), which is the process of chang-
ing the representation of the cases in the database by creating new attributes (supernodes)
from existing attributes. As a result, some violation of conditional independence assump-
tions made by NB models are detected and dependencies among predictive attributes are



1.Consider joining each pair of attributes

2.IF there is an improvement in the log p(d | b%)
THEN make the joint that improves the score the most
ELSE return the current case representation

Figure §. A template for the forward structure search step.

1.Consider splitting each attribute at each possible point
2.IF there is an improvement in the log p(d | b%)
THEN make the split that improves the score the most
ELSE return the current case representation

Figure 9. A template for the backward structure search step.

included in the model. Ideally, a better performance is reached while the model that we ob-
tain after the constructive induction process maintains the simplicity of NB models. Pazzani
uses the term joining to refer to the process of creating a new attribute whose values are
the Cartesian product of two other attributes. To carry out this change in the representation
of the database, Pazzani proposes a hill-climbing search combined with two operators: re-
placing two existing attributes with a new attribute that is the Cartesian product of the two
attributes, and either delete an irrelevant attribute (resulting in the BSEJ) or add a relevant
attribute (resulting in the FSSJ).

The algorithm for the learning of component BNs that we use (figure 6) starts from one of
two possible initial structures: from a NB model or from a model with all the variables fully
correlated. When considering a NB model as the initial structure, the heuristic algorithm
performs a forward search step (see figure 8). On the other hand, when starting from a fully
correlated model, the heuristic algorithm performs a backward search step (see figure 9).

Notice should be taken that the algorithm of figure 6 has completed the database before the
structure search step is performed. Consequently, the log marginal likelihood of the expected
complete data has a factorable closed form. The algorithm uses the factorability of the log
marginal likelihood to score every possible change in the model structure efficiently.

4. Learning RBMNs for data clustering

In this section, we present our heuristic algorithm for the learning of RBMNs for data
clustering. This algorithm performs model selection using the log marginal likelihood of
the expected complete data to guide the search. This section starts deriving a factorable
closed form for the marginal likelihood of data for RBMNS.

4.1. Marginal likelihood criterion for RBMNs

Under the assumptions that (i) the variables in the database are discrete, (ii) cases occur
independently, (iii) the database is complete, and (iv) the prior distribution for the parameters
given a structure is uniform, the marginal likelihood of data has a closed form for BNs that



allows us to compute it efficiently. In particular:

pa vy =111 (N = _'1), HNz,k ®)
ij i

i=1 j=1

where 7 is the number of variables, r; is the number of states of the variable X;, ¢; is the
number of states of the parent set of X;, N;;; is the number of cases in the database where
X; has its k-th value and the parent set of X; has its j-th value, and NV;; = Z;‘:l Niji (see
(Cooper & Herskovits, 1992) for a derivation).

This important result is extended to BMNs in Thiesson et al. (1998) as follows: let ©;,
denote the set of parameter variables associated with the local probability distribution of the
i-th variable belonging to X\ {G} in the g-th component BN. Also, let IT denote the set of pa-
rameter variables (71, .. ., 7|g)) corresponding to the weights of the mixture of component
BNs. If (i) the parameters variables IT, @1, .. ., @(nfl)l, ey 61\G\’ ey @(nfl)‘(;‘ are mu-
tually independent given s” (parameter independence), (ii) the parameter priors p(8; g | s™)
are conjugate for all / and g, and (iii) the data d is complete, then the marginal likelihood
of data has a factorable closed form for BMNs. In particular:

|G|
log p(d|s") = log pd®) + Y log p(d®# | b’) ©)

g=1

where d€ is the data restricted to the distinguished variable G, and d*2 is the data restricted
to the variables X\{G} and those cases in which G = g. The term p(d®) is the marginal
likelihood of a trivial BN having only a single node G. The terms in the sum are log marginal
likelihoods for the component BNs of the BMN.

Furthermore, this observation extends to RBMNs as follows: let ©;; denote the set of
parameter variables associated with the local probability distribution of the ;-th variable
belonging to X\T(roor, [) in the /-th component BN. Also, let L denote the number of leaves
in T and m denote the number of levels (depth) of T. Let IT designate the set of parameter
variables (zq, ..., mp) corresponding to the weights of the mixture of component BNs.
If (i) the parameters variables I, 11, ..., O 1, ..., O11, ..., Oy are mutually
independent given s" (parameter independence), (ii) the parameter priors p(6;; | s") are
conjugate for all i and /, and (iii) the data d is complete, then the marginal likelihood of
data has a factorable closed form for RBMNs. In particular:

L

logp(d | Sh) — Z [logp(dt(rool‘,l)) + logp(dx,t(rool‘,l)|b§’£)] (10)
=1

where df"??%) ig the database restricted to the variables in T(root, ), and those cases
consistent with t(root, 1) d%t027:) ig the database restricted to the variables in X\ T (root, )
and those cases consistent with t(rooz, /). The sum of the first terms can be easily calculated
as the log marginal likelihood of a trivial BN with a single node with as many states as
leaves in the distinguished decision tree T. The second terms in the sum are log marginal
likelihoods for the component BNs of the RBMN. Thus, under the assumptions referred
above, there is a factorable closed form to calculate them (Cooper & Herskovits, 1992).



Therefore, the log marginal likelihood of data has a closed form for RBMNs, and it can be
calculated from the log marginal likelihoods of the component BNs. This fact allows us to
decompose the problem of learning a RBMN into learning its component BNs.

4.2, Algorithm for learning RBMNs from incomplete daia

The heuristic algorithm that we present in this section performs data clustering by learning,
from incomplete data, RBMNs as they were defined in Section 2.4.

The algorithm starts from an empty distinguished decision tree and, at each iteration, it
enlarges the tree in one level until a stopping condition is verified. Stopping might occur at
some user-specified depth, or when no further improvement in the log marginal likelihood
of the expected complete data for the current model (Eq. (10)) is observed. To enlarge the
current tree, every leaf (component BN) should be extended. The extension of each leaf /
consists of learning the best BMN for X\T(roo1, /) and distinguished variable Y;, where
Y; € Y\T(root, ). This BMN replaces the leaf /. For learning each component BN of the
BMN, we use the algorithm presented in figure 6. Figure 10 shows an example of a 2-levels
RBMN structure that could be the output of the algorithm that we present in figure 11.

In this last figure, we can see that the learning algorithm replaces every leaf [ by the best
BMN for X\T(root, [) and distinguished variable Y;, where ¥; € Y\T(ro01, [). This is done
as follows: let Y; be a variable of Y\T (root, ), for every state y;; of Y;, k =1, ..., |Y;]|, the
algorithm learns a component BN, b, for the variables in ext from an incomplete database
d®t* (the cluster variable is still hidden), where ext = (X\T(root, 1))\ {Y;}. This learning is
carried out by the heuristic algorithm that we have presented in figure 6. The database d®*
is a subset of the original database (instance subspace), in fact, it is the original database d
restricted to the variables in ext, and those cases consistent with the decision path t(root, [)
and y;;. After this process, we have a candidate BMN with distinguished variable Y; as a

Figure 10. Example of the structure of a 2-levels RBMN for data clustering for X =(Y,C) = (11, 12, Y3,
Y4,Ys, C) and distinguished decision tree T. Dotted lines correspond to the distinguished decision tree T. The

component BN at the leaf / is obtained as a result of improving by constructive induction the NB model for the
variables X\'T(root, ).



1.Start from an empty tree !/
2.WHILE stopping_condition==FALSE DO
search leaf (I)

where search leaf (1) is

1.IF [ is an empty tree or [ is a leaf
THEN extension(l)
ELSE
FOR every child ck of [/ DO
search leaf (ch)

and extension(l) is as follows

1.FOR every variable Y; in Y\T(root,[) DO
a.Set ext = (X\T(root, N\{Y;}
b.FOR every state y;; of ¥; DO
i.Let d®“f be the database restricted to the variables
in ext, and those cases in the database consistent
with t(root,]) and yig
ii.Learn a component BN from d®t* for the variables
in ext by means of constructive induction
c.Score the candidate BMN
2.Choose as extension the candidate BMN with the highest score

Figure 11. A schematic of the algorithm for the learning of RBMNSs for data clustering.

possible extension for the leaf [. Given that Eq. (9) provides us with a closed form for the
log marginal likelihood for BMNs, we can use it to score the candidate BMN as follows:

|7
logp(dx,t(rool‘,l) | Sh) — logp(dYx,t(rool‘,l)) + Zl()g p(deXt’k|b]]:) (11)
k=1

where d*t097%) s as defined before, d¥-t0??*) is the database restricted to the predictive
attribute ¥; and those cases consistent with t(rooz, 1), d*%* is as defined above, and bi’ is the
k-th component of the BMN. The first term can be calculated as the log marginal likelihood
of a trivial BN having only a single node Y;, and the terms in the sum are calculated using
Eq. (8). Once all the possible candidate BMNs for extending the leaf / have been scored,
the algorithm performs the extension with the highest score.

5. Experimental results

This section is devoted to the experimental evaluation of the algorithm for the learning of
RBMN5s for data clustering using both synthetic and real-world data. All the variables in
the domains that we considered were discrete, and all the local probability distributions
were multinomial distributions. In all the experiments, we assumed that the real number of
clusters was known, thus, we did not perform a search to identify the number of clusters in
the databases.



As we have already mentioned, currently, our algorithm for learning RBMNs from in-
complete data considers 2 alternative techniques to perform the parameter search for the
component BNs: the EM algorithm and the BC4+EM method. According to Pefia, Lozano,
and Larrafiaga (2000a), the BC4+EM method exhibits a more desirable behaviour than the
EM algorithm: faster convergence rate, and more effective and robust behaviour. Thus, the
BC+EM method was the one used in our experimental evaluation, although we are aware
that alternative techniques exist.

The convergence criterion for the BCH+EM method was satisfied when either the relative
difference between successive values of the log marginal likelihood for the model structure
was less than 10~ or 150 iterations were reached. Following (Pefia, Lozano, & Larrafiaga,
2000a), we used fixing _probability threshold equal to 0.51.

As shown, the algorithm for the learning of RBMNSs runs the algorithm for the learning
of component BNs a large number of times. That is why the runtime of the latter algo-
rithm should be kept as short as possible. Thus, throughout the experimental evaluation
we did not consider interleaving the parameter search step after each structural change
(figure 6), though it is an open question as to whether interleaving parameter and struc-
ture search would yield better results. Prior experiments (Pefia, Lozano, & Larrafiaga,
1999) suggest that interleaved search in our domains, however, do not yield better re-
sults. For the same reason, we only considered the forward structure search step (figure 8),
thus, the initial structure for each component BN was always a NB model. These deci-
sions were made based upon the results of the work done in Pefia, Lozano, and Larrafiaga
(1999).

5.1. Performance criteria

In this section, we describe the criteria of table 1 that we use to compare the learnt models and
to evaluate the learning algorithm. The log marginal likelihood criterion was used to select
the best model structure. We use this score to compare the learnt models as well. In addition
to this, we consider the runtime as valuable information. We also pay special attention to the
performance of the learnt models in predictive tasks (predictive ability). Predictive ability
is measured by setting aside a test set. Following learning, the log likelihood of the test set
is measured given the learnt model.

All the experiments were run on a Pentium 366 MHz computer. All the results reported
for the performance criteria are averages over 5 independent runs.

Table I. Performance criteria.

Expression Comment

SCinitial T S»  mean £ standard deviation of the log marginal likelihood of the initial model
$Cfinal = 5 mean = standard deviation of the log marginal likelihood of the learnt model
10CV S, mean = standard deviation of the predictive ability of the learnt model (10-fold cross-validation)

Time £+ S, mean = standard deviation of the runtime of the learning process (in seconds)




5.2, Results on synthetic data

In this section, we describe our experimental results on synthetic data. Of course, one of
the disadvantages of using synthetic databases is that the comparisons may not be realistic.
However, seeing as the original or gold-standard models are known, they allow us to show
the reliability of the algorithm for the learning of RBMNs from incomplete data and the
improvement achieved by RBMNs over the results scored by BNs.

We constructed 4 synthetic databases (di, d», d3, and d4) as follows. In d; and d», there
were 11 predictive attributes involved and 1 4-valued hidden cluster variable. 9 out of the 11
predictive attributes were 3-valued, and the 2 remaining were binary attributes. To obtain
d; and d,, we simulated 2 1-level RBMNs. Both models had a distinguished decision tree
with only 1 binary predictive attribute. Thus, there were 2 component BN in each original
model. At each of these component BNs several supernodes were randomly created. The
parameters for each local probability distribution of the component BNs were randomly
generated as far as they defined a local multinomial distribution. Moreover, the weights
of the mixture of component BNs were equal to % that is, the leaves followed a uniform
probability distribution. From each of these 2 RBMNs we sampled 8000 cases resulting in
d; and d,, respectively.

On the other hand, in d; and d4, there were 12 predictive attributes involved and 1 4-
valued hidden cluster variable. 9 out of the 12 predictive attributes were 3-valued, and the 3
remaining were binary attributes. For getting d; and d4, we simulated 2 2-levels RBMNs.
Both models had a distinguished decision tree with 3 binary predictive attributes. Thus, there
were 4 component BNs in each original model. At each of these component BNs several
supernodes were randomly created. The parameters for each local probability distribution
of the component BNs were randomly generated as far as they defined a local multinomial
distribution. Moreover, the weights of the mixture of component BNs were equal to }1, that
is, the leaves followed a uniform probability distribution. From each of these 2 RBMNs we
sampled 16000 cases resulting in d3 and d4, respectively. Appendix shows the structures of
the 4 original RBMNs sampled.

Obviously, we discarded all the entries corresponding to the cluster variable for the 4
synthetic databases. Finally, every entry corresponding to a supernode was replaced with
as many entries as original predictive attributes that were grouped together under this
supernode. That is, we “decoded” the Cartesian product of original predictive attributes for
every enftry in the database corresponding to a supernode.

Table 2 compares the performance of the learnt RBMNs for different values of the column
Depth, which represents the depth of the distinguished decision trees. Remember that BNs
were assumed to be a special case of RBMNs where the depth of the distinguished decision
trees was equal to 0. It follows from the table that the algorithm for learning RBMNs
from incomplete data is able to discover the complexity of the underlying model: in the
databases d; and d», the models with the highest log marginal likelihood are those with a
1-level distinguished decision tree, whereas, in the databases ds and d4, the learnt RBMN's
with the highest log marginal likelihood are those with a 2-levels distinguished decision
tree. Thus, the log marginal likelihood of the expected complete data appears to behave
effectively when used to guide the search, and when considered as the stopping condition.



Table 2. Performance achieved when learning RBMNs for data clustering from the 4 synthetic databases. All
the results are averages over 5 independent runs.

Database SCinitial £ S» Depth SCfinal = Sy 10CV LS, Time £ S,
d; —40309 + 188 0 —37806 £ 49 —6101+£107 T6+£18
1 —37728 £50 —5667 £ 128 751+42
2 —37864 £ 18 —5521 £ 66 1370+ 50
dy —40495 £ 157 0 —37600 £ 102 —5816 £127 110+ 50
1 —37412 £ 36 —5345 £ 100 956 + 50
2 —37554£50 —5403 £75 1530+ 82
d3 —86179 £ 145 0 —81436 £ 348 —12573 £203 209 £ 83
1 —80881 £ 61 —12941 £ 83 2341+ 176
2 —80861 £ 68 —12046 £ 135 3915+ 136
3 —81134 +84 —11704 £ 60 5159 £ 154
dy —86273 +£285 0 —80013 £ 135 —12940 £ 442 188 £23
1 —79410+£ 112 —12361+ 44 2535+ 143
2 79275 £72 —11231+£ 100 4086 + 176
3 —79513 £ 69 —11182+£85 5233 +137

The detailed analysis of the RBMN learnt in each of the 5 runs for the 4 synthetic databases
considered suggests that, in general, the variables used to split the original databases in
several instance subspaces (internal nodes of the distinguished decision trees of the RBMNs
sampled) are discovered most of the runs. For instance, all the runs on d; identify Y, as the
root of the distinguished decision tree. Then, the learnt RBMNs recover on average 100%
of the true instance subspaces. On the other hand, 3 out of the 5 runs on d, discover the true
attribute that splits the domain in 2 instance subspaces which results in an average of 60%
of true instance subspaces discovered. For ds3, 3 out of the 5 runs provide us with a RBMN
with Y7, as the root of the distinguished decision tree. Moreover, 2 of these 3 runs also
identify the rest of true internal nodes of the original 2-levels RBMN. The third of these 3
runs only discovers 1 of the 2 true internal nodes of the second level of the distinguished
decision tree. Additionally, the other 2 runs of the 5 on d3 identify the 3 internal nodes of
the distinguished decision tree of the original RBMN (Y,, Y7 and Y3) but Y, appears as the
root and, Y1» and Y in the second level of the distinguished decision tree. Then, only 2 of
the 4 instance subspaces are effectively discovered in these 2 runs. As a result, the learnt
models for dz discover on average 60% of the 2 main true instance subspaces and 70% of
the 4 more specific true subspaces. For dg4, 3 out of the 5 runs provide us with a RBMN that
splits the original data in the 4 true instance subspaces. The remainder 2 runs provide us
with RBMNs that have Y1, as the root of the distinguished decision trees and Y, as 1 of the
other 2 internal nodes. However, they fail to identify ¥; as the second node of the second
level of the original distinguished decision tree. Thus, the learnt models for d4 discover on
average 100% of the 2 main true instance subspaces and 80% of the 4 more specific true
subspaces.



From the point of view of the predictive task (measured in the 10CV column), we can
report that, in general, the learnt RBMNs outperform BNs. For the databases d; and d»,
the biggest difference in the predictive ability is reached between the learnt BNs and the
learnt RBMNs with Depth equal to 1. Remember that the underlying original models for
these databases were 1-level RBMNSs. Furthermore, the learnt 1-level RBMNSs received the
highest scqna1. Exactly the same is observed for the synthetic databases dz and d4, where
the biggest increase in the 10CV is reached between the learnt RBMNs with Depth equal
to 1 and the learnt RBMNss with 2-levels distinguished decision trees. Again, note that these
2-levels RBMNs were the models scored with the highest scgnal, and that the underlying
original models were 2-levels RBMN.

As the learnt RBMNs have more complex distinguished decision trees, the improvement
of their predictive ability decreases. However, as a general rule, the more complex the
models are, the higher the predictive ability is. This fact is well-known because 10-fold
cross-validation scores the log likelihood of the test database, which does not penalize the
complexity of the model, as does the log marginal likelihood. In addition, as the complexity
of the distinguished decision tree increases, the instance subspaces where to learn the
component BNs reduce and, thus, the uncertainty decreases. In order to avoid very complex
models, our results show that the log marginal likelihood is a suitable score to guide the
search for the best RBMN.

From the point of view of the efficiency (measured as the runtime of the learning pro-
cess), our experimental results show that the learning of RBMNs implies a considerable
computational expense when compared with the learning of BNs. However, this expense
appears justified by the empirical evidence that RBMNs behave more effectively in these
synthetic domains, in addition to their outlined advantages (context-specific conditional
(in)dependencies, structured clustering, flexibility, etc.).

5.3, Results on real data

Another source of data for our evaluation consisted of 2 real-world databases from the UCI
machine learning repository (Merz, Murphy, & Aha, 1997): the tic-tac-toe database and
the nursery database. The past usage of the tic-tac-toe database helps to classify it as a
paradigmatic domain for testing constructive induction methods. Despite being used for
supervised classification due to the presence of the cluster variable, we considered this a
good domain to evaluate the performance of our approach once the cluster entries were
hidden. Furthermore, the past usage of the nursery database shows its suitability for testing
constructive induction methods. In addition to this fact, the presence of 5 clusters and the
large number of cases made this database very interesting for our purpose once the cluster
entries were hidden.

The tic-tac-toe database contains 958 cases, each of them represents a legal tic-tac-toe
endgame board. Each case has 9 3-valued predictive attributes and there are 2 clusters.
The nursery database consists of 12960 cases, each of them representing an application for
admission in the public school system. Each case has 8 predictive attributes, which have
between 2 and 5 possible values. There are 5 clusters. Obviously, for both databases we
deleted all the cluster entries.



Table 3. Performance achieved when learning RBMNs for data clustering from the 2 real-world databases. All
the results are averages over 5 independent runs.

Database SCinitial = S» Depth SCfinal = Sy 10CV £ S, Time £ S,
tic-tac-toe —4152 £ 15 0 —3932+£25 —508 £8 4+1
1 —3922+7 —483+7 28+0
2 —3966 £ 6 —484 +5 5040
nursery —57026 £ 120 0 —53910£ 709 —6453 £126 30+6
1 —53427 £ 45 —6244 +£4 245+ 12
2 —53608 + 81 —6267 +8 440+20

Table 3 reports on the results achieved when learning RBMNs of different depth for
the distinguished decision tree from the 2 real-world databases. For both databases, the
learnt RBMNs outperform the learnt BNs in terms of both log marginal likelihood for the
learnt models and predictive ability. The learnt 1-level RBMNs obtain the highest score for
the log marginal likelihood for both domains. Moreover, these learnt RBMNs with 1-level
distinguished decision trees appear to be more predictive than more complex models as the
learnt RBMNs with 2-levels distinguished decision trees.

6. Conclusions and future research

We have proposed a new approach to perform data clustering based on a new class of
knowledge models: recursive Bayesian multinets (RBMNSs). These models may be learnt to
represent the joint probability distribution from a given, complete or incomplete, database.
RBMNss are a generalization of BNs and BMNs, as well as extensions to classical partitional
systems. Additionally, we have described a heuristic algorithm for learning RBMNSs for
data clustering which simplifies the learning to the elicitation of the component BNs from
incomplete data. Also, we have presented some of the advantages derived from the use of
RBMNs such as codification of context-specific conditional (in)dependencies, structured
and specialized domain knowledge, alternate clusterings able to capture different patterns
for different instance subspaces, and flexibility.

Our experimental results in both synthetic and real-world domains have shown that the
learnt RBMNs overcame the learnt BNs in terms of log marginal likelihood and predictive
ability for the learnt model. Moreover, in the synthetic domains, the score to guide the
structural search, the log marginal likelihood of the expected complete data, has exhibited
a suitable behaviour as the instance subspaces implied by the underlying original models
have been effectively discovered.

To achieve such a gain there is an obvious increase in the runtime of the learning process
for RBMNs when compared with the learning of BNs. Our current research is driven to,
by means of a simple data preprocessing, reduce the set of the predictive attributes that
are considered to be placed in the distinguished decision tree. This reduction of the search
space would imply a huge save in runtime. Since our primary aim was to introduce a
new knowledge paradigm to perform data clustering, we did not focus on exploiting all its



possibilities. For instance, the definition of RBMNs introduced in Section 2.4 limits the
modeling power of RBMNss since all the leaves had to be at the same level. This constraint
was imposed for the sake of understandability of the new model but it can be removed in
practice resulting in the possibility of obtaining more natural data clusterings. A limitation
of the presented heuristic algorithm for the learning of RBMNS is its monothetic nature,
that is, only single attributes are considered at each extension of a distinguished decision
tree. We are currently considering the possibility of learning polytheric decision paths in
order to enrich the modeling power.

Another line of research that we are investigating is the extension of RBMNs to perform
data clustering in continuous domains. In this case, component BNs would have to be able
to deal with continuous attributes, thus, they would be conditional Gaussian nerworks (Lau-
ritzen, 1996; Pefia, Lozano, & Larrafiaga, 2001; Pefia et al., 2001). However, this approach
would imply to search for the best discretization of the attributes to be considered in the
decision paths. Pefia et al. (2001) is an example of real-world continuous domain where
these mentioned extensions of RBMNs to continuous data could be considered to perform
data clustering as different patterns are observed for different instance subspaces of the
original data. This extension of RBMNs to continuous domains would decrease the distupt-
ing effects due to the discretization of the original data that would be necessary to apply
RMBNSs as defined in this paper to the problem domain presented in Pefia et al. (2001).

Appendix: Structures of the original RBMNs sampled in order to obtain the
synthetic databases

Structures of the original 1-level and 2-levels RBMNs sampled to obtain the synthetic
databases. The first two model structures correspond to the RBMNs sampled to generate
the synthetic databases d; (top) and d, (bottom), whereas the last two model structures
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correspond to the RBMNs sampled to get the synthetic databases d3 (top) and d4 (bottom).
Dotted lines correspond to the distinguished decision trees. All the predictive attributes were
3-valued except Y1, Y> and Yy, which were binary. The cluster variable C was 4-valued.
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Note

1. In the remainder of this paper, we refer to the set of nodes and supernodes of an ENB model simply as nodes.
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