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The induction of the optimal Bayesian network structure is NP-hard, justifying the use 
of search heuristics. Two novel population-based stochastic search approaches, 
univariate marginal dis-tribution algorithm (UMDA) and population-based 
incremental learning (PBIL), are used to learn a Bayesian network structure from a 
database of cases in a score  search framework. A comparison with a genetic 
algorithm (GA) approach is performed using three different scores: penalized 
maximum likelihood, marginal likelihood, and information-theory–based entropy. 
Experimental results show the interesting capabilities of both novel approaches with 
respect to the score value and the number of generations needed to converge. 

1. INTRODUCTION

There has been a big growth in the use of the probability theory during the 
last 10 years as a formalism to reason under uncertainty in artificial intelligence. 
This resurgence of the probability theory in artificial intelligence has been 
principally motivated by Ref. 1, in which an algorithm for the evidence 
propagation in probabilistic graphical models is introduced.

Probabilistic graphical models are able to represent n-dimensional probability 
distributions by means of a directed acyclic graph and a set of marginal and 
conditional probability distributions drawn from the graph structure. This graph 
gathers a semantic related to the conditional independence concept.2



Among developed probabilistic graphical models, Bayesian networks are the
most studied paradigm, resulting in a large number of applications. As each
X1, . . . , Xn random variable follows multinomial probability distributions in a
Bayesian network, the joint probability distribution p( x1, . . . , xn) can be factor-
ized by the formula p( x1, . . . , xn) � �i�1

n p( xi�pa( xi)), where xi represents the
value of the random variable Xi, and pa( xi) represents a combination of the values
of the random variable parents of Xi in the graphical structure. Excellent intro-
ductions to the Bayesian network paradigm can be found in Refs. 3, 4, 5, and 6.

The causality relations among the problem variables can be represented by a
directed acyclic graph in several application fields (i.e., genetic domains). On the
other hand, the help of an expert that constructs a list of conditional (in)depen-
dences among the problem variables is needed in other domains. However, an
automatic learning process that induces the Bayesian network structure from a
database of cases is an interesting alternative. This automatic process should reflect
the conditional (in)dependences that implicitly appear in the database. Although
the first automatic approaches tried to produce a list of conditional (in)dependences
by the use of statistical tests,7 another automatic approach has strongly emerged in
the last years: the score � search approach. The score � search approach is based
on the idea of performing an intelligent search in a specific space (the space of
network structures, orders, skeletons, or equivalence classes) and evaluating each
proposed Bayesian network.

In this work, continuing within the score � search approach, an empirical
comparison between three population-based, stochastic search paradigms is per-
formed: genetic algorithms (GAs), univariate marginal distribution algorithms
(UMDA), and population-based incremental learning (PBIL). Although GAs have
been used in previous works to search for the optimal Bayesian network, as far as
we know, this is the first work that uses UMDA and PBIL search strategies in the
exposed task.

The rest of the work is organized as follows. In Section 2 the principal score �
search contributions in the Bayesian network induction task are reviewed, ordering
them according to the employed search strategy. A special emphasis is put on three
score metrics that are used in the experimental part; Bayesian information criterion
(BIC), K2, and entropy. Section 3 presents the search heuristics used in this work:
GAs, UMDA, and PBIL. Section 4 shows the individual representations, and
Section 5 collects the experimental results of three approaches over three networks
previously used in the literature. We finish with a brief set of conclusions.

2. SCORE � SEARCH APPROACHES TO
LEARNING BAYESIAN NETWORKS

In this section, the principal works that use a score � search mechanism for
the induction of multiply connected Bayesian networks are reviewed. Although the
principal score metrics are introduced, our review is focused in the way the search
is performed and the nature of the space where this search is performed. Detailed



revisions on structure learning of Bayesian networks from data can be found in
Refs. 8, 9, and 10.

2.1. Families of Scores

X � (X1, . . . , Xn) denotes an n-dimensional random variable and x �
( x1, . . . , xn) represents one of its possible instances. If the variable Xi has ri

possible values xi
1, . . . , xi

ri, the local distribution, p( xi�pai
j,S, �i) is an unrestricted

discrete distribution p�xi
k�pa i

j,S, �i� � �xi
k�pa i

j � �ijk, where pai
1,S, . . . , pai

qi,S de-
notes the values of Pai

S, the set of parents of the variable Xi in the structure S. The
term qi denotes the number of possible different instances of the parent variables
of Xi. Thus, qi � �Xg�Pai

rg. The local parameters are given by �i �
((�ijk)k�1

ri )j�1
qi ). In other words, the parameter �ijk represents the conditional

probability of variable Xi being in its kth value, knowing that the set of its parent
variables is in its jth value. We represent by D � {x1, . . . , xN} a database with
N cases. The information contained in D is used to learn the Bayesian network
structure S.

Using the maximum likelihood estimate for �ijk (�̂ijk � Nijk/Nij where Nijk

denotes the number of cases in D in which the variable Xi has the value xi
k and Pai

has its jth value and Nij � ¥k�1
ri Nijk), and incorporating some form of penalty

model complexity into the maximized likelihood, we obtain a general formula for
the penalized maximum likelihood score as

�
i�1

n �
j�1

qi �
k�1

ri

Nijklog
Nijk

Nij
� f�N� �

i�1

n

qi�ri � 1�

where f(N) is a nonnegative penalization function. A usual choice for it is the
Jeffreys-Schwarz criterion, sometimes called the BIC,11 where f(N) � 1

2
log N.

In the Bayesian approach to the Bayesian network model induction from data,
we express our uncertainty on the model (structure and parameters) by defining a
variable in which its states correspond to the possible network structure hypothesis
Sh and assessing the probability p(Sh). In the approach known as Bayesian model
selection we select the model in which its logarithm of the relative posterior
probability, i.e., log p(S, D), is maximum. Taking into account that log p(S�D) �
log p(S, D) � log p(S) � log p(D�S) and under the assumption that the prior
distribution over the structure is uniform, an equivalent criterion is the log mar-
ginal likelihood (log p(D�S)) of the data given the structure. It is possible to
compute the marginal likelihood efficiently and in a closed form under some
general assumptions.12,13 For instance, it is shown12 that if the cases occur
independently (there are no missing values) and the density of the parameters given
the structure is uniform, then

p�D�S� � �
i�1

n �
j�1

qi �ri � 1�!

�Nij � ri � 1�! �
k�1

ri

Nijk!



This score is known as the K2 metric.
The literature includes several scores that, inspired in the information the-

ory,14 are able to calculate the entropy of a probability distribution represented by
a Bayesian network. It is shown that the entropy of the distribution represented by
a Bayesian network structure S is15

HS � �
i�1

n �
j�1

qi

p�Pai � j�HXi�Pai�j

where HXi�Pai�j
� ¥k�1

ri p(Xi � xi
k�Pai � j)ln p(Xi � xi

k�Pai � j).

2.2. Search Heuristics

It is shown that the search problem of identifying an optimal Bayesian
network structure is NP-hard.16 A problem P is NP-hard when some problem N in
NP can be reduced to P(N � P). This result has been used to justify the use of large
number of heuristics for the exposed problem. An organization of the works that
propose different search heuristics to search for near-optimal Bayesian network
models can be the following: deterministic heuristics, for instance hill climb-
ing,12,17 iterated hill climbing,18 tabu search,19 variable neighborhood search,20

and branch and bound;21 or stochastic heuristics, e.g., simulated annealing,18

variable neighborhood search,20 GAs,22–24 evolutionary programming,25 Markov
Chain Monte Carlo,26,27 and ant colonies.28

2.3. The Search Space

The most usual approach to perform the search of the Bayesian network
model is to perform this search in the space of directed acyclic graphs. The search
process in this space has difficulties when the search strategy has an evolutionary
nature (See Section 3.4 for more details). The number of possible structures for a
domain with n variables is given by a recursive formula presented in Ref. 29.

The Bayesian Dirichlet equivalent (BDe) metric10 asseses with the same value
two Bayesian networks reflecting the same set of conditional independences. In
this way, the search also can be performed in the space of equivalence classes
(classes that reflect the same set of conditional independences).30 Recent works31

note the relationship between the cardinality of Bayesian network structures and
equivalence of classes spaces; this can be interpreted as a deceleration in the
popularization of this promising approach. There are two basic reasons for this
stop: the cardinality of this space is not largely reduced and the search process in
this space has a large computational cost.

The literature also proposes to perform the search in the space of skeletons.32

The advantage of this space for heuristics coming from evolutionary computation
is that the operations that are performed with the old population to create a new one



are closed: valid individuals are generated in the offspring without the need of
repair operators.

Other authors22,26,33,34 have proposed to perform the search in the space of
orders of the n variables of the problem. The motivation for the birth of this
approach is that several structure learning algorithms need the n variables ordered.

3. FROM GAs TO UMDA AND PBIL

3.1. GAs

Roughly, a GA works as follows. First, the initial population is chosen, and
the quality of each of its individuals is determined. Next, in every iteration, parents
are selected from the population. These parents produce children who are added to
the population. For all newly created individuals a probability near zero exists that
they mutate, i.e., they change their heriditary distinctions. After that, some indi-
viduals are removed from the population according to a selection criterion in order
to reduce the population to its initial size. One iteration of the algorithm is referred
to as a generation. The pseudocode of an abstract GA (AGA) is shown in Figure
1.

The operators that define the child production process and the mutation
process are called the crossover operator and the mutation operator, respectively.
Both operators are applied with different probabilities called the crossover prob-
ability and the mutation probability. Mutation and crossover play different roles in
the GAs. Mutation is needed to explore new states and it helps the algorithm to
avoid local optima. Crossover should increase the average quality of the popula-
tion. In this work an elitist GA is used with a one-point crossover. This operator
divides the parents into two parts and it combines the parts to the generated two
new individuals. The probability of crossover is set to 1.0 and the mutation
probability to 0.1 (these values are so common in the literature).

The major part of genetic combinatorial approaches has no mechanism for
capturing the relationships among the variables of the problem. GAs try to capture
implicitly these relationships by a semiblind process, concentrating samples on

Figure 1. The pseudocode of the AGA.



combinations of high-performance members of the current population through the
use of the recombination (crossover and mutation) operators.

In GAs no explicit information is kept about which groups of variables jointly
contribute to the quality of candidate solutions. As crossover and mutation oper-
ations are randomized, they could disrupt many of these desired relationships
among the variables.35 Although the search process could produce an individual
that covers an optimal relation among a subset of variables, a crossover or mutation
operator could break this. Therefore, most of the crossover and mutation operations
yield unproductive results and the discovery of the global optima could be delayed.
On the other hand, GAs are also criticized in the literature for three aspects36: (i)
the large number of parameters and their associated refered optimal selection or
tuning process; (ii) the extremely difficult prediction of the movements of the
populations in the search space; (iii) their incapacity to solve the well-known
deceptive problems.

3.2. UMDA

A different way to perform a population-based, stochastic search is to change
the basic principle of recombination. One idea is to estimate the joint distribution
of promising solutions and use this estimate in order to generate new individuals.
A general scheme of the algorithms based on this principle is called the estimation
of distribution algorithms (EDAs).37,38 In EDAs (See Figure 2), there are no
crossover or mutation operators, and the new population is sampled from a
probability distribution that is estimated from the selected individuals. The initial
M individuals are generated at random. These individuals constitute the initial
population D0, and each of them is evaluated. In a second step, a number N (N �
M) of individuals is selected. In a third step the induction of the n-dimensional
probabilistic model that reflects the relationships among the variables is carried
out. In the fourth step, M new individuals, which form the new population, are
obtained from simulation of the probabilistic distribution learned in the previous
step. The previous three steps are repeated until a stopping criterion is met.

The main problem with EDAs is how the probability distribution pl(x) is
estimated. Obviously, the computation of all the parameters needed to specify the
probability distribution is impractical. This has led to several approximations
where the probability distribution is assumed to factorize according to a probability
model.

Figure 2. Main scheme of the EDA approach.



In the case that the n-dimensional joint probability distribution factorizes as
a product of n univariate and independent probability distributions, i.e., pl(x) �
�i�1

n pl( xi), we obtain the UMDA.39 In this work, UMDA is used.

3.3. PBIL Algorithm

PBIL40 is another paradigm that performs a population-based, stochastic
search. Its objective is to obtain the optimum of a function defined in the binary
space 	 � {0, 1}n (the next explanations can be easily extended to nonbinary
search spaces). In each generation, the population of individuals is represented by
a vector of probabilities: pl(x) � ( pl( x1), . . . , pl( xi), . . . , pl( xn)), where pl( xi)
refers to the probability of obtaining a value of 1 in the ith component of Dl, the
population of individuals in the lth generation. The algorithm works as follows
(See Figure 3). At each generation, using the probability vector pl(x), M individ-
uals are obtained. Each of these M individuals are evaluated and the N best of them
(N � M) are selected. We denote them by x1:M

l , . . . , xi:M
l , . . . , xN:M

l . These
selected individuals are used to update the probability vector by using a Hebbian
inspired rule: pl�1(x) � (1 
 �) pl(x) � �(1/N) ¥k�1

N xk:M
l , where � � (0, 1]

is a parameter of the algorithm. Note that the PBIL algorithm only belongs to the
EDA approach in the case that � � 1. In this case, PBIL coincides with UMDA.
In our implementation of PBIL, � is fixed to 0.5. A theoretical study of PBIL can
be consulted in Ref. 41.

4. INDIVIDUAL REPRESENTATION

To represent a Bayesian network structure, the same representative schema is
used for three evaluation approaches (GAs, UMDA, and PBIL). In an n-dimen-
sional domain, each Bayesian network structure is represented by a connectivity
matrix C � M(n, n), in which its elements cij verify that

cij � �1 if Xi is parent of Xj

0 otherwise (1)

Figure 3. Pseudocode for the main PBIL algorithm.



From this connectivity matrix two different individual representations can be
proposed: (i) if an order of the variables is given, a node only can be parent of its
following variables within the proposed ordering. The values of the connectivity
matrix below the diagonal are zero. The array required to represent a network
structure is given by the values of the upper triangular connectivity matrix

I � �c12, . . . , c1n, c23, . . . , c2n, . . . , ci�i�1�, . . . , cin, . . . , c�n
1�n�

(ii) if all the nodes of the network can be parents of the rest of the nodes, only the
values of the cii elements of the connectivity matrix are zero. An n2 
 n-
dimensional array is required to represent a network structure

I � �c12, . . . , c1n, . . . , ci1, . . . , ci�i
1�, ci�i�1�, . . . , cin, . . . , cn1, . . . , cn�n
1��

It must be taken into account that the previous arrays represent a directed
acyclic graph. Thus, neither genetic crossover and mutation operators nor the
simulation of new individuals in UMDA and PBIL are closed operations with
respect to the acyclicity when the ordering is not available; in the genetic recom-
bination and in the simulation phase of new individuals of UMDA and PBIL, “not
valid” individuals could be generated. In this way, we are forced to use a repairing
operator to transform not valid individuals (solutions with cycles) into valid ones
(directed acyclic graphs). In this work, a simple repairing operation is used: once
a cycle is detected in the individual, one arc of the cycle is randomly deleted (this
is repeated until a directed acyclic graph is achieved).

5. EXPERIMENTAL RESULTS

To compare the behavior of the three proposed search algorithms (GAs,
UMDA, and PBIL), they are tested, in a score � search framework, for three scores
(BIC, K2, and entropy) introduced in Section 2.1. We test our three algorithms over
three databases of 10,000 cases generated from the Asia,1 the Alarm,42 and the
Water43 Bayesian networks. Alarm database is a subset of the 20,000 cases
generated by probabilistic logic sampling,44 and Asia and Water databases are
generated using Hugin Expert software.

Three search techniques are tested with the same population size 10n, where
n is the number of variables of the problem (n is 8, 37, and 32 for Asia, Alarm, and
Water networks, respectively). The presented algorithms in the previous sections
are general schemes that can be modified. In this work an elitist scheme is used for
three search strategies: the new population is formed from the best members of
both the previous population and the offspring.

In the case of UMDA and PBID, half of the best individuals of the populations
are selected to form the pool of “best individuals.” In the case of GA, a rank-based
proportional selection is used to select individuals for crossover. Ten independent
runs are executed for each combination of score and search technique. When the
ordering is taken into account, this ordering is consistent with the topology of the
network and it is the same for the 10 independent runs.



With the purpose of comparing the obtained results with a “standard algo-
rithm” to learn Bayesian networks, the results obtained with the well-known K2
algorithm12 are shown. The K2 algorithm is only executed once when the order of
the variables is supplied and 10n with random orders when the order is not
available.

Tables 1, 2, and 3 show the obtained results for Asia, Alarm, and Water
problems, respectively. For each combination of score � search technique, the
average score and number of required generations for convergence are shown in
tables. It is assumed that the search converges when the sum of the scores of the
individuals of the previous population is the same as the sum of the scores of
the current population. It must be noted that the maximization of the three scores
is the objective.

A deeper analysis of the results is performed by means of statistical tests. The
Mann-Whitney test is performed to determine the significance of the differences

Table 1. Results of the best scores and the number of generations required for convergence
of Asia network.

Alg.

BIC K2 Entropy

Score � SD Gener. � SD Score � SD Gener. � SD Score � SD Gener. � SD

Order
GA 
10947.1 � 13.6† 21.1 � 14.35† 
11086.4 � 387.47† 25.6 � 16.75† 1.09 � 0† 26.1 � 13.89†

UMDA 
9890.05 � 2.51 13.3 � 1.06 
9802.66 � 0 15.0 � 1.76 
1.00 � 0 14.3 � 1.34
PBIL 
9889.26 � 0 18.5 � 1.58† 
9802.66 � 0 19.9 � 1.28† 
1.00 � 0 19.7 � 1.57†

K2 
9889.26 � — — � — 
9802.66 � — — � — 
1.00 � — — � —
No order

GA 
9969.03 � 46.67† 18.7 � 3.40 
9813.09 � 11.41 27.9 � 9.07 
0.97 � 0 25.7 � 6.04
UMDA 
9917.61 � 15.29 29.7 � 6.20† 
9684.36 � 343.36 34.7 � 6.68 
0.97 � 0 24.3 � 3.13
PBIL 
9917.46 � 15.06 30.7 � 3.89† 
9793.72 � 39.20 39.5 � 6.62 
0.97 � 0 26.8 � 1.75
K2 
9968.66 � 35.57 — � — 
9804.25 � 21.28 — � — 
1.00 � 0.19 — � —

The real values of the BIC, K2, and entropy scores for the network are 
9894.16, 
9802.66,
and 
1.00, respectively.

Table 2. Results of the best scores and the number of generations required for convergence
of the Alarm network.

Alg.

BIC K2 Entropy

Score � SD Gener. � SD Score � SD Gener. � SD Score � SD Gener. � SD

Order

GA 
68525.0 � 1009.9† 106.5 � 27.24† 
79494.7 � 1788.1† 155.1 � 25.68† 
8.59 � 0.03† 165.8 � 34.65†

UMDA 
49430.4 � 116.40 79.6 � 5.43† 
47083.1 � 15.41 73.3 � 1.77 
6.52 � 0.02 77.4 � 3.31†

PBIL 
49466.2 � 28.87 66.2 � 1.69 
47081.6 � 8.81 77.0 � 1.94† 
6.52 � 0.02 74.6 � 1.07

K2 
49433.5 � — — � — 
47103.5 � — — � — 
6.53 � — — � —

No order

GA 
52331.8 � 574.21† 174.7 � 25.84† 
47744.4 � 289.54† 272.2 � 31.05† 
6.11 � 0.08 208.9 � 36.69†

UMDA 
51224.3 � 129.47 149.2 � 38.02† 
47083.3 � 10.43 183.8 � 26.17† 
6.12 � 0.07 202.5 � 44.42†

PBIL 
51250.8 � 362.90 101.1 � 7.82 
48271.0 � 299.81† 117.7 � 8.06 
6.13 � 0.04 98.6 � 5.89

K2 
52439.7 � 883.70 — � — 
49193.4 � 462.18 — � — 
6.68 � 0.15 — � —

The real values of the BIC, K2, and entropy scores for the network are 
49687.55, 
47086.57, and 
6.52, respectively.



shown in the score and in the number of generations. For each score, statistically
significant differences with respect to the algorithm with the best score are noted
in the table; the same test is performed relative to the algorithm with the lowest
number of needed generations for convergence. The symbol † denotes a statisti-
cally significant difference with respect to the best search algorithm at the 0.05
confidence level in Tables 1, 2, and 3.

For Asia, Alarm, and Water networks, when the ordering is supplied, UMDA
and PBIL algorithm obtain competitive results with respect to GA with a lowest
number of generations. The results of UMDA and PBIL improve the real values of
the networks and the value of the network learned by the K2 algorithm, except for
Water with the BIC score. The number of generations required for convergence by
PBIL and UMDA is, in all cases, lower than the number of generations required by
GA, except for Water with the BIC score.

When the ordering is not taken into account, it must be noted that the results
of the GA are competitive but UMDA always obtains the best results, except for
the Alarm with the entropy score. These results improve those obtained by the K2
algorithm with random orders. PBIL needs the lowest number of generations in all
cases, obtaining score values not significantly different to those obtained by
UMDA.

It must be noted that in all cases, for the three metrics and the three networks,
GA obtains better results if the ordering is ignored, i.e., better results when the
problem is more complex than if the ordering is taken into account. This can mean
that the stopping criterion is restrictive to GA, and the algorithm stops when the
population is not uniform. Figure 7 shows that when the improvements of the
UMDA and PBIL become stable, the improvement of GA is still growing slowly.
GA could possibly obtain better results with other less restrictive stopping criterion
when the ordering is available.

Comparisons between the structure of the networks with the best score values
and the original network are also performed. Three types of differences are
measured with respect to the original network: the Hamming distance, the number

Table 3. Results of the best scores and the number of generations required for convergence
of Water network.

Alg.

BIC K2 Entropy

Score � SD Gener. � SD Score � SD Gener. � SD Score � SD Gener. � SD

Order

GA 
62429.3 � 586.75† 77.6 � 26.24 
71175.4 � 800.08† 124.3 � 27.40† 
10.34 � 0.01† 45.44 � 39.71†

UMDA 
57119.1 � 3.11 167.3 � 10.02† 
56251.4 � 0 44.6 � 1.35 
9.79 � 0 36.2 � 2.62

PBIL 
63030.1 � 1705.3† 178.9 � 6.71† 
56257.8 � 8.20 53.9 � 1.79† 
9.79 � 0 45.9 � 1.91†

K2 
57118.1 � — — � — 
56251.4 � — — � — 
9.79 � — — � —

No order

GA 
57967.5 � 554.27† 91.0 � 16.92† 
56423.3 � 100.27 127.0 � 28.34† 
8.89 � 0.04 121.9 � 23.90†

UMDA 
57141.2 � 384.66 111.8 � 21.95† 
56346.9 � 110.15 155.0 � 33.86† 
8.87 � 0.03 112.5 � 29.26

PBIL 
57131.9 � 69.69 65.8 � 6.37 
56370.4 � 56.75 72.2 � 2.86 
8.88 � 0.02 72.2 � 4.64

K2 
57577.7 � 202.02 — � — 
56760.0 � 86.39 — � — 
9.45 � 0.19 — � —

The real values of the BIC, K2, and entropy scores for the network are 
120595.94, 
56687.60, and 
10.07, respectively.



of exceed arcs, and the number of missing arcs in the learned network. The more
similar networks with respect to the original one are obtained when the ordering is
taken into account. In Figures 4, 5, and 6, the closest networks to the original one
are shown. It must be noted that the PBIL algorithm and UMDA with the K2 score
obtain the original Asia network; in Figure 4 the network structure drawn is the
structure obtained by PBIL and UMDA with BIC and entropy scores. In the case
of Alarm network, the structure depicted in Figure 5 is obtained with the three
metrics by the UMDA. In the case of the Water network, the structure shown in
Figure 6 is the most common structure into the set of structures obtained by the
three algorithms, and it is obtained with the UMDA using the metric K2. If the
ordering is ignored, the learned structures are different in a large degree with
respect to the original network.

Figures 7 and 8 show the evolution of the best values found with respect to
the number of evaluations in the search process in a typical run for the Alarm
network. In Figure 7 the ordering is available, and in Figure 8 it is ignored.

Figure 7 shows how UMDA and PBIL obtain a considerable improvement in
the first 10,000 evaluations and in further evaluations this gain is maintained. We
can assume that the best values found by UMDA and PBIL increase logarithmi-

Figure 5. (a) Real Alarm network with 37 nodes and 46 arcs. (b) Learned Alarm network with
45 arcs. It can been seen that the arc from node 12 to 32 is missing.

Figure 4. (a) Real Asia network with eight nodes and eight arcs. (b) Learned Asia network with
only seven arcs. It can been seen that only the arc from the node visit to asia to has tuberculosis
is missing.



cally. GA seems to increase logarithmically as well, but the growth is small and
slow with respect to UMDA and PBIL. The number of generations required by GA
is higher than those needed by UMDA and PBIL.

Figure 6. (a) Real Water network with 32 nodes and 66 arcs. (b) Learned Water network with
36 missing arcs.

Figure 7. Evolution of the best value found in the search process for the Alarm network when
the ordering is available with (a) BIC score, (b) K2 score, and (c) entropy score.



In Figure 8, it can be seen that the growth of the best values is very similar
for the three search algorithms. It must be noted that UMDA and PBIL need less
evaluations than GA. It seems that UMDA and PBIL find better values before GA
in the search process, maintaining this difference in the rest of the search.

6. CONCLUSIONS

Two novel population-based, stochastic approaches UMDA and PBIL are
used in the well-known problem of learning a Bayesian structure from a database
of cases in a score � search framework.

In an extensive comparison with three frequently used score metrics, com-
petitive results are achieved by these approaches with respect to a genetic approach
with two different suppositions: when the ordering is known and when it is
ignored.

These competitive results are better and only in two cases similar to those
obtained by the K2 algorithm. The results obtained by UMDA and PBIL always
improve the real values of the three proposed networks for the three scores.

Figure 8. Evolution of the best value found in the search process for the Alarm network when
the ordering is ignored with (a) BIC score, (b) K2 score, and (c) entropy score.



The comparison of the learned structures show that if the ordering is taken
into account, the obtained structures are similar to the original network and the
score of the network is improved. If the ordering is not taken into account the
learned structures are different in a large degree with respect to the original.

It must be noted that the experiments are performed only over three networks:
Asia with a small number of nodes, and Alarm and Water, with a similar number
of nodes. Thus, the obtained results must be generalized with caution.
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