
three steps are grouped together, Covey's first three habits correspond 

to the order of problem solving following the Systems Approach. First 

the problem is defined, then the desired outcome is envisioned, and 

time and effort are organized to achieve this desired outcome. The 

general reference to problem solution in Habit 3, "Put First Things 

First," corresponds to many steps in this Systems Approach. Fig. 8 

indicates that these, too, could be integrated into a single category. 

Habits 4, 5, and 6 are more difhcult to apply to specific steps. 

Analogous to the overriding principles enumerated in Fig. 3, these 

habits are applicable throughout the problem-solving process. To the 

extent that these steps promote communication, the habits "Think 

Win/Win" and "Seek First to Understand ...," apply to almost every 

situation that involves group interaction. More specifically, "Think 

Win/Win," can apply to creative problem solving and idea generation, 

and "Seek First to Understand ..." directs the interaction between a 

systems engineer and a client. "Synergize" can also be applied on 

numerous levels. Finally, "Sharpen the Saw" directly corresponds 

to the constant iteration that is stressed throughout the systems 

engineering approach. 

II. CONCLUSION 

The side-by-side comparison of the Seven Habits and the steps in 

the Systems Approach serves to show how the elements of both not 

only correspond but also complement each other. Both philosophies 

stress problem definition, early determination of the desired outcome, 

and an organized effort to determine a solution. They also promote 

similar overriding principles to better enable the problem-solving 

process. This similarity is remarkable given that the Seven Habits 

are a guide to personal development, whereas the Systems Approach 

is geared for systems design and development. Most importantly, 

the comparison of Covey's philosophy to the philosophy of the 

Systems Approach can help improve the understanding of systems 

engineering. 
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Learning Bayesian Network Structures by Searching for 
the Best Ordering with Genetic Algorithms 

Pedro Larrañaga, Cindy M . H. Kuijpers, 

Roberto H. Murga, and Yosu Yurramendi 

A6«(rac(—In this paper we present a new methodology for inducing 
Bayesian network structures from a database of cases. The methodology 
is based on searching for the best ordering of the system variables by 
means of genetic algorithms. Since this problem of finding an optimal 
ordering of variables resembles the traveling salesman problem, we use 
genetic operators that were developed for the latter problem. The quality 
of a variable ordering Is evaluated with the structure-learning algorithm 
K2. W e present empirical results that were obtained with a simulation of 
the A L A R M network. 

I. INTRODUCTION 

Bayesian networks (BN's) constitute a reasoning method based on 

probability theory. They model causal relations between events. 

A B N consists of a set of nodes and a set of arcs which together 

constitute a directed acyclic graph (DAG). The nodes represent 

random variables, all of which have a finite set of states. The arcs 

indicate the existence of direct causal connections between the linked 

variables, and the strengths of these connections are expressed in 

terms of conditional probabilities. 

To specify the probability distribution of a Bayesian network, 

P(zi, - -, z„), one must give prior probabilities for all root nodes 

(nodes without predecessors) and conditional probabilities for all 

other nodes, given all possible combinations of their direct prede­

cessors. These numbers in conjunction with the D A G , specify the 

B N completely. The joint probability of any particular instantiation 

of all M variables in a B N can be calculated as follows: 

_P(l], ..., Z„) = YJ P(z¿|7T¿), 

where z¿ represents the instantiation of the variable X , and 7r, rep­

resents the instantiation of the parents of X,. Excellent introductions 

on BN's can be found in |l]-[3]. 

The construction of a B N consists of two subproblems, namely 

of the rfrwcfwre /earning or search for the D A G that best reflects 

all interdependence relations between the system variables, and of 

the /xznzmefer (earning, i.e., the determination of the conditional 

probabilities belonging to the network. 

In this paper w e consider the problem of the automatic structure 

learning of BN's from a database of cases (observations). This 

problem is an interesting one because the construction of a B N 

exclusively from the information provided by an expert is time-

consuming and subject to mistakes. Therefore, and due to the fact that 

large databases become more accessible, algorithms for automatic 

learning can be of great help. W e are not the first to look at this 

problem: a considerable amount of research has been done on the 

induction of causal structures, BN's and other graphical models. In 

the structure learning of BN's often an ordering between the nodes 
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of the structure is assumed, in order to reduce the search space. This 
means that a node z¿ can only have node zj as a parent node if in 
the ordering node z., comes before node z,. 

W e propose to search for the best ordering and w e choose to do 
this using a genetic algorithm. For developing this algorithm, w e 
use results of the research carried out on the application of genetic 
algorithms in tackling the intensively studied traveling salesman 
problem (TSP), since the problem of the search for an optimal 
ordering of system variables is not very different from the TSP. W e 
evaluate the orderings of the variables with the K 2 structure-learning 
algorithm of Cooper and Herskovits [4]. 

The structure of this paper is as follows. In Section II, w e revise the 
most important structure-learning algorithms that were proposed in 
literature. Genetic algorithms are introduced in Section HI. In Section 
TV w e consider the resemblance of the problem of the search for an 
optimal ordering of variables and the TSP. In Section V, w e explain 
the crossover and mutation operators that we use for our experiments. 
In Section VI, w e describe our algorithm. Empirical results with a 
simulation of the A L A R M network [5] are presented in Section VII. 
There can be seen that our algorithm is robust, for all combinations 
of parameters it manages to obtain results close to the evaluation of 
the A L A R M network. In a ñnal Section VTII concluding remarks are 
given. 

II. RELATED W O R K 

A. Trees a/ia" foZy-Trees 

C h o w and Liu [6] show how to recover an undirected Markov tree 
from empirical observations using the maximum weight spanning 
tree algorithm. 

Suzuki [7] proposes to carry out structure search using the M D L 
(Minimum Description Length) principle of Rissanen [8]. Suzuki 
focuses on tree structures, in which case his method is a generalization 
of the one of C h o w and Liu. 

Rebane and Pearl [9] showed that the algorithm of C h o w and Liu 
can also be used for recovering the topology of a poly-tree. They also 
developed an algorithm for recovering the direction of the branches. 

C A S T L E (CAusal STructures from inductive LEaming), which 
was developed by Acid ef a/. [10] learns poly-tree structures from 
examples, using the maximum weight spanning tree heuristic in 
combination with some metric to estimate the undirected graph and 
a conditional independence test for the determination of the direction 
of the branches. 

& MwZfZpZe CoMMgcfea" Arwcf%res 

V j AwwmJMg an (Wen'fig Beftvee» fAe A W e s / Srinivas ef aZ. [H] 
proposed an algorithm for the automatic construction of sparse 
BN's from information about the domain provided by an expert. 
The network is constructed by incrementally adding nodes. The 
information of the expert, together with a greedy heuristic that intends 
to minimize the number of arcs, guide, in each step, the search for 
a next node. 

Herskovits and Cooper [12] developed the system K U T A T Ó , which 
incorporates a module for constructing belief networks based on en­
tropy calculations. K U T A T Ó constructs an initial network in which all 
variables in the database are assumed to be marginally independent. 
In every step, the arc is added that, maintaining acyclicity, minimizes 
the entropy of the resulting network. This process continuous until 
an entropy-based threshold is reached. 

A Bayesian version of the last described algorithm was developed 
by the same authors. Cooper and Herskovits [4] proposed K2, 
an algorithm which searches for the most probable belief network 

structure given a database of cases. The K 2 algorithm is described 
in detail in Section VI. 

Chickering ef of. [13] reviewed the B D e metric (Bayesian metric 
with Dirichlet priors) described by Heckerman ef aZ. [14] under 
the name C H , which has a property useful for inferring causation 
called /¡Wi'/zcW egm'vaZence, which says that two networks that 
represent the same assertions of conditional independence have the 
same likelihood. 

Bouckaert [15] proposed a measure for the quality of a structure 
based on the M D L principle, using a search algorithm similar to K2. 

Larrañaga ef aZ. [16] tackled the problem of the search for a 
B N structure that maximizes the metric proposed by Cooper and 
Herkovits with hybrid genetic algorithms. 

2J&)ZvZngf/ie#ejfncfz'onq/^Ae Ordering; Bouckaert [17] pre­
sented an algorithm that manipulates the ordering of the variables with 
operations similar to arc reverfaf. These operations are only applied 
in case the resulting D A G represents at least the independences that 
were already present in the structure before the application of the 
operator. In this way the set of independences increases incrementally. 

Singh and Valtorta [18] developed the C B algorithm (Conditional 
independence + Bayesian learning) with which they intended to 
integrate two of the existing trends in the learning of BN's. The 
algorithm first uses a conditional independence test based on the %̂ -
distribution for obtaining an ordering between the variables. Next, 
given this ordering, a structure is obtained by means of K 2 after 
which, again with K2, the structures are obtained that correspond to 
orderings that are compatible with the partial ordering implied by the 
structure found with the first application of K2. 

L a m and Bacchus [19] described a method for learning unrestricted 
multiply-connected belief networks based on the M D L principle, 
which permits to trade off accuracy and complexity. The method 
can be seen as a generalization of other approaches based on the 
cross entropy of Kullback and Leibler and can be interpreted from a 
Bayesian point of view, where the apn'on probability to be assigned 
to a structure is inversely proportional to its complexity. 

In [20] L a m and Bacchus improved the algorithm of [19], by 
considering partial information available about the domain. 

Larranaga ef of. [21] presented a genetic algorithm that used the 
metric that was proposed by Cooper and Herkovits for evaluating 
the quality of an induced structure. They used a repair operafor for 
converting offspring structures that were not acyclical into DAG's. 

Provan and Singh [22] proposed an algorithm called K2-AS (K2 
+ Attribute Selection) in which not all variables (or affrZWes) about 
which information is present are considered, but only a subset of 
them. That subset should maximize the predictable capacity of the 
network. In this way the generated networks are computationally easy 
to evaluate and their predictability is comparable with the networks 
that consider all variables. 

C OfAer Gra/?A;ca/ MoaeZa 

Andersen ef aZ. [23] developed S T E N O , an expert system for 
medical diagnosis, which combines expert knowledge concerning 
associations between entities with knowledge generated by a statis­
tical analysis of data relating these entities. It uses the model search 
strategy described by Kreiner [24]. 

Fung and Crawford [25] developed C O N S T R U C T O R , a system 
which integrates techniques and concepts of the probabilistic net­
works, artificial intelligence and statistics, in order to induce Markov 
networks. 

Lauritzen ef a/. [26] presented results of a medical diagnostic 
system. They compared the diagnostic power of different block 
recursive graphical models induced using the information criterion 



of Akaike [27], and criteria based on statistical tests. The model 

construction is carried out by means of ¿xzctwa/d Mkcfzon. 

Madigan ef of. [28] proposed a Bayesian method for finding 

graphical models, in which they, instead of only one model, consider 

several good ones, combining the results from them. 

Mechling and Valtorta [29] proposed an algorithm that constructs 

Markov networks in a similar way to C O N S T R U C T O R . 

Pmvan [30] presented an algorithm for the automatic construction 

of a femporaf m/ZwgMce diagram, i.e., a union of a sequence of 

influence diagrams, each of which model the system during a certain 

interval of time in which the system is supposed to have a static 

behavior. 

III. GENETIC ALGORITHMS 

Holland [31] introduced the gengfic eZgonfAma. In these algo­

rithms, the search space of a problem is represented as a collection 

of Wf'wdwak. These individuals are represented by character strings, 

which are often referred to as cAromojoma?. The purpose of the 

use of a genetic algorithm is to find the individual from the search 

space with the best "genetic material." The quality of an individual 

is measured with an evaluation function. The part of the search space 

to be examined is called the p o p w W o M . 

Roughly, a genetic algorithm works as follows. Firstly, the initial 

population is chosen, and the quality of this population is determined. 

Next, in every iteration parents are selected from the population. 

These parents produce children, which are added to the population. 

For all newly created individuals of the resulting population a 

probability near to zero exists that they "mutate", i.e., that they 

change their hereditary distinctions. After that, some individuals are 

removed from the population according to a selection criterion in 

order to reduce the population to its initial size. One iteration of the 

algorithm is referred to as a ggMgrafzoM. 

The operators which deñne the child production process and the 

mutation process are called the cwMover operator and the mwfafion 

operator, respectively. Mutation and crossover play different roles 

in the genetic algorithm. Mutation is needed to explore new states 

and helps the algorithm to avoid local optima. Crossover should 

increase the average quality of the population. By choosing adequate 

crossover and mutation operators, the probability that the genetic 

algorithm provides a near-optimal solution in a reasonable number 

of iterations is enlarged. Under certain circumstances, the genetic 

algorithms evolve to the optimum with probability 1 [32]-[34]. 

Further descriptions of genetic algorithms can be found in [35] 

and [36]. 

IV. RESEMBLANCE TO THE TSP 

The search for an optimal ordering between the variables resembles 

the intensively studied traveling salesman problem (TSP): given a 

collection of cities, determine the shortest tour that visits each city 

precisely once and then returns to its starting point. 

Both problems are ordering problems. However, between both 

problems a difference exists: in the TSP, in general, only the relative 

order is assumed to be important while in our problem the absolute 

order also matters. For example, in the 6-cities TSP, in general, the 

string (1 2 3 4 5 6) is assumed to represent the same tour as the 

string ( 4 5 6 1 2 3 ) . In the 6-vanables ordering problem both strings 

represent different variable orderings. W e remark that the variable 

ordering problem is an asymmetrical problem; the string (12 3 4 5 

6) does not represent the same variable ordering as the string (6 5 4 

3 2 1). The TSP is often assumed to be symmetrical. 

Because of the similarities between our problem of finding an 

optimal variable ordering and the TSP, w e use the results of the 

research carried out on the TSP with genetic algorithms. For a review 

on representations and operators that have been used in tackling the 

TSP with genetic algorithms, see [37]. 

W e choose to use, what in relation with the TSP is called, the 

fafA representation. Therefore, we represent an ordering between the 

variables by a list of numbers, where the ¿th element of the list is a j 

if variable j has the ¿th place in the ordering. For example, the string 

(3 1 2) represents the ordering in which % is a root node, %i has as 

possible parent % , and the possible parents of % are % , and %i. 

The genetic operators that w e use for our experiments (see Section 

V ) have all but the A P operator already been used for tackling the 

TSP. 

V. GENETIC OPERATORS 

A. C/tiMover Operoforj 

The partially-mapped crossover ( P M X ) [38] transmits ordering 

and value information from the parent strings to the offspring. A 

portion of one parent string is mapped onto a portion of the other 

parent string and the remaining information is exchanged. Consider, 

for example, the following two parents: ( 1 2 3 4 5 6 7 8) and 

( 3 7 5 1 6 8 2 4 ) . The P M X operator creates an offspring in the 

following way. It begins by selecting uniformly at random two cut 

points along the strings, which represent the parents. Suppose, for 

example, that the first cut point is selected between the third and 

the fourth string element, and the second one between the sixth and 

the seventh string element. Hence, (1 2 3 | 4 5 6 | 7 8) and (3 7 

5 | 1 6 8 | 2 4). The substrings between the cut points are called 

the mapping sections. In our example, they define the mappings 4 

<-» 1, 5 *-» 6, and 6 <-» 8. N o w the mapping section of the first 

parent is copied into the second offspring, and the mapping section 

of the second parent is copied into the first offspring: offspring 1: 

(z z z|l 68|z z) and offspring 2: (zzz|4 56|zz). Then offspring ¿ 

(¿ = 1, 2) is filled up by copying the elements of the ¿th parent. 

In case a number is already present in the offspring it is replaced 

according to the mappings. For example, the first element of offspring 

1 would be a 1, like the first element of the first parent. However, 

there is already a 1 present in offspring 1. Hence, because of the 

mapping 1 <-» 4 w e choose the first element of offspring 1 to be 

a 4. The second, third and seventh elements of offspring 1 can be 

taken from the first parent. However, the last element of offspring 1 

would be an 8, which is already present. Because of the mappings 

8 <-» 6, and 6 <-» 5, it is chosen to be a 5. Hence, offspring 1: (4 

2 3 | 1 6 8 | 7 5). Analogously, w e frnd offspring 2: (3 7 8 | 4 5 

6 | 2 1). The absolute positions of some elements of both parents 

are preserved. 

The cycle crossover (CX) [39] attempts to create an offspring 

from the parents where every position is occupied by a corresponding 

element from one of the parents. For example, consider again the 

parents (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 1). N o w w e choose 

the first element of the offspring equal to either the first element 

of the first parent string or the first element of the second parent 

string. Hence, the first element of the offspring has to be a 1 or a 

2. Suppose w e choose it to be 1, (1 * * * * * * * ) . N o w consider 

the last element of the offspring. Since this element has to be chosen 

from one of the parents, it can only be an 8 or a 1. However, if a 

1 were selected, the offspring would not represent a legal individual. 

Therefore, an 8 is chosen, ( 1 * * * * * * 8 ) . Analogously, w e And that 

the fourth and the second element of the offspring also have to be 

selected from the first parent, which results in (1 2 * 4 * * * 8 ) . The 

positions of the elements chosen up to now are said to be a cycle. 

N o w consider the third element of the offspring. This element w e 

may choose from any of the parents. Suppose that we select it to be 



from parent 2. This implies that the ñfth, sixth and seventh elements 
of the offspring also have to be chosen from the second parent, as 
they form another cycle. Thus, we find the following offspring: (1 2 

6 4 7 5 3 8). The absolute positions of on average half the elements 
of both parents are preserved. 

The order crossover operator (OX1) [40] constructs an offspring 
by choosing a substring of one parent and preserving the relative 
order of the elements of the other parent. For example, consider the 
following two parent strings: ( 1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 
1), and suppose that w e select a first cut point between the second 
and the third bit and a second one between the ñfth and the sixth bit. 
Hence, (1 2 | 3 4 5 | 6 7 8) and (2 4 | 6 8 7 | 5 3 1). The offspring are 
created in the following way. Firstly, the string segments between the 
cut point are copied into the offspring, which gives (* *| 3 4 5 |* * *) 
and (* *|6 8 7|* * * ) . Next, starting from the second cut point of one 
parent, the rest of the elements are copied in the order in which they 
appear in the other parent, also starting from the second cut point 
and omitting the elements that are already present. W h e n the end of 
the parent string is reached, we continue from its first position. In 
our example this gives the following children: (8 7|34 5|12 6) and 
(4 5 | 6 8 7 | 1 2 3). 

The order-based crossover operator (0X2), [41] which was 
suggested in connection with schedule problems, is a modification 
of the 0 X 1 operator. The 0 X 2 operator selects at random several 
positions in a parent string, and the order of the elements in the 
selected positions of this parent is imposed on the other parent. For 
example, consider again the parents ( 1 2 3 4 5 6 7 8) and (2 4 6 
8 7 5 3 1), and suppose that in the second parent the second, third, 
and sixth positions are selected. The elements in these positions are 
4, 6 and 5 respectively. In the first parent these elements are present 
at the fourth, ñfth and sixth positions. N o w the offspring is equal to 
parent 1 except in the fourth, ñfth and sixth positions: (12 3 * * * 

7 8). W e add the missing elements to the offspring in the same order 
in which they appear in the second parent. This results in (1 2 3 4 6 
5 7 8). Exchanging the role of the ñrst parent and the second parent 
gives, using the same selected positions, ( 2 4 3 8 7 5 6 1 ) . 

The position-based crossover operator (POS), [41] which was 
also suggested in connection with schedule problems, is a second 
modiñcation of the O X 1 operator. It also starts with selecting a 
random set of positions in the parent strings. However, this operator 
imposes the position of the selected elements on the corresponding 
elements of the other parent. For example, consider the parents (1 2 
3 4 5 6 7 8) and (2 4 6 8 7 5 3 1), and suppose that the second, 
third and the sixth positions are selected. This leads to the following 
offspring: (1 4 6 2 3 5 7 8) and (4 2 3 8 7 6 5 1). 

The voting recombination crossover operator (VR) [42] can be 
seen as a p-sexual crossover operator, where p is a natural number 
greater than, or equal to, 2. It starts by denning a threshold, which 
is a natural number smaller than, or equal to, p. Next, for every 
z E {1, 2, --- , n} the set of ¿th elements of all the parents is 

considered. If in this set an element occurs at least the threshold 
number of times, it is copied into the offspring. For example, if we 
consider the parents (p = 4) (1 4 3 5 2 6), (1 2 4 3 5 6), (3 2 1 5 
4 6), (1 2 3 4 5 6) and we deñne the threshold to be equal to 3 w e 
ñnd (1 2 z z 2 6). The remaining positions of the offspring are ñlled 
with mutations. Hence, our example might result in (1 2 4 5 3 6). 

The alternating-position crossover operator (AP) [43] creates an 
offspring by selecting alternately the next element of the ñrst parent 
and the next element of the second parent, omitting the elements 
already present in the offspring. For example, if parent 1 is (1 2 3 4 
5 6 7 8) and parent 2 is (3 7 5 1 6 8 2 4), the A P operator gives the 
following offspring (1 3 2 7 5 4 6 8) [41]. Exchanging the parents 
results in (3 1 7 2 5 4 6 8). 

The displacement mutation operator ( D M ) (e.g., [44]) ñrst 
selects a substring at random. This substring is removed from the 
string and inserted in a random place. For example, consider the 
string (1 2 3 4 5 6 7 8), and suppose that the substring (3 4 5) is 
selected. Hence, after the removal of the substring we have (12 6 
7 8). Suppose that we randomly select element 7 to be the element 
after which the substring is inserted. This gives (12 6 7 3 4 5 8). 

The exchange mutation operator ( E M) (e.g., [45]) randomly 
selects two elements in the string that represents the individual and 
exchanges them. For example, consider the string (12 3 4 5 6 7 8), 
and suppose that the third and the ñfth element are randomly selected. 
This results in (1 2 5 4 3 6 7 8). 

The insertion mutation operator (ISM) (e.g., [44]) randomly 
chooses an element in the string that represents the individual, 
removes it from this string, and inserts it in a randomly selected 
place. For example, consider again the string ( 1 2 3 4 5 6 7 8), 
and suppose that the insertion mutation operator selects element 4, 
removes it, and randomly inserts it after element 7. The resulting 
offspring is (1 2 3 5 6 7 4 8). 

The simple-inversion mutation operator (SIM) (e.g., [31]) se-
lects randomly two cut points in the string that represents the 
individual, and it reverses the substring between these two cut points. 
For example, consider the string (12 3 4 5 6 7 8), and suppose that 
the ñrst cut point is chosen between element 2 and element 3, and 
the second cut point between the ñfth and the sixth element. This 
results in (1 2 5 4 3 6 7 8). 

The inversion mutation operator (IVM) (e.g., [46]) randomly 
selects a substring, removes it from the string and inserts it, in 
reversed order, in a randomly selected position. Consider again our 
example string (12 3 4 5 6 7 8), and suppose that the substring (3 
4 5) is chosen, and that this substring is inserted immediately añer 
element 7. This gives (12 6 7 5 4 3 8). 

The scramble mutation operator (SM) (e.g., [41]) selects a 
random substring and scrambles the elements in it. For example, 
consider the string (1 2 3 4 5 6 7 8), and suppose that the substring 
(4 5 6 7) is chosen. This might result in (1 2 3 5 6 7 4 8). 

VI. PROPOSED APPROACH 

Our approach is based on joining the genetic algorithms and the 
algorithm K 2 (see Fig. 1). W e search for a near-optimal ordering 
between the variables, with a genetic algorithm that creates new 
variable orderings by means of the crossover and mutation operators 
described in the previous section. The quality of an ordering is the 
evaluation of the B N structure that K 2 creates from it. 

K 2 is an algorithm that creates and evaluates a B N from a database 
of cases once an ordering between the system variables is given. For 
the evaluation of the network that it constructs, the formula of Cooper 
and Herskovits is used. 

K 2 searches, given a database D for the B N structure B g . 
with maximal B(B_?, D ) , where f (Bs, D ) is as described in the 
following theorem proved in [4]. 

Theorem.- Let Z be a set of n discrete variables, where a variable 
z¿ in Z has n possible value assignments: (fa, - - , i\rj. Let D 
be a database of cases of m cases, where each case contains a value 
assignment for each variable in Z. Let B s denote a B N structure 
containing just the variables in Z. Each variable z¿ in B g has a 
set of parents, which are represented with a list of variables 7t,. Let 
w,j denote the jth unique instantiation of 7t, relative to D. Suppose 
there are g\ such unique instantiations of %\. Deñne Â ., & to be the 
number of cases in D in which variable z< has the value %¿t and 7r¿ 
is instantiated as w^. Let TV\., = ¿^^L, A % & . If given a B N model, 



Algorithm K2 

INPUT: A set of n nodes, an ordering on the nodes, an 
upper bound « on the number of parents a node may have, 
and a database D containing m cases. 
OUTPUT: For each node, a printout of its parent nodes. 
BEGIN K2 

FOR «:= 1 T O ,z D O 
BEGIN 

7T, := 0; 

OKToProceed := T R U E 
WHILE OKToProceed A N D |*,| < « D O 

BEGIN 
Let z be the node in Pred(i,) - r, that 
maximizes g(i, 7r¡ U {%}); 
fnew:=@(«,^U{z}); 
IFJ^ew > J^w THE N 
BEGIN 

fold == ̂ iew; 
7T, := TTj U {z} 

END 
ELSE OKToProceed := FALSE; 

END; 
WRITE('Node:', z¡, 'Parents of this node:', ?r¿) 

END; 
END K2. 

Fig. 1. The K2 algorithm. 

the cases occur independently and the density function /(B_p|Bs) is 
uniform, then it follows that 

f(%|D)=f(^s)%%a(i,7r,), 

where 

o 
The K 2 algorithm assumes that an ordering on the variables is 

available and that, a priori, all structures are equally likely. It searches, 
for every node, the set of parent nodes that maximizes g(í, ?n). K 2 
is a greejy heuristic. It starts by assuming that a node does not 
have parents, after which in every step it adds incrementally that 
parent whose addition most increases the probability of the resulting 
structure. K 2 stops adding parents to the nodes when the addition 
of a single parent can not increase the probability. Obviously, this 
approach does not guarantee the selection of a structure with the 
highest probability. 

A possible improvement of K2 could be the determination of the 
best combination of at most u parent nodes in which case the number 
of searches to be carried out for a node j would increase from 

nwn-j-otoziLi rr). 
For our experiments, we let the K 2 algorithm only construct 

networks which nodes have at most 4 parent nodes. The genetic 
algorithm we use, is an algorithm based on the principles of GEN­
ITOR, which was developed by Whitley [47]. In every generation 
two ordering; are selected for crossover, where the probability of an 
ordering to be selected depends on the rank of its objective function 
value. The newly created offspring substitutes, in case it is better, the 
worst ordering in the population. 

The stop criterion is based on the definition of convergence of 
a population formulated by De Jong [48]. W e say that a gene has 

TABLE I 
POPULATION SIZE 10. FOR ALL COMBINATIONS OF OPERATORS, 

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE 

EVALUATION, THE ACCOMPANYING STANDARD DEVIATION AND 

THE AVERAGE NUMBER OF EVALUATIONS BEFORE CONVERGENCE 

D M 

EM 

ISM 

rvM 

SIM 

SM 

AP 

14,456* 

14,576* 

84 

650 

14,434 

14,567 

63 

658 

14,475 

14,573 

97 

754 

14,465 

14,581 

76 

550 

14,508 

14,653 

58 

812 

14,542 

14,647 

72 

699 

CX 

14,419 

14,433 

14 

4124 

14,423 

14,439 

15 

4009 

14,423 

14,436 

14 

4483 

14,417 

14,437 

15 

4417 

14,423 

14,437 

14 

3984 

14,423 

14,435 

14 

3928 

OX1 

14,442 

14,537 

59 

317 

14,483 

14,552 

48 

266 

14,454 

14,554 

58 

353 

14,472 

14,543 

35 

388 

14,492 

14,561 

39 

385 

14,487 

14,564 

57 

397 

OX2 

14,431 

14,475 

28 

606 

14,430 

14,482 

35 

580 

14,435 

14,473 

21 

748 

14,441 

14,478 

26 

692 

14,441 

14,500 

35 

572 

14,452 

14,515 

40 

438 

PMX 

14,469 

14,523 

35 

276 

14,485 

14,552 

36 

212 

14,454 

14,511 

38 

454 

14,446 

14,546 

57 

244 

14,516 

14,584 

45 

216 

14,510 

14,576 

39 

257 

POS 

14,430 

14,478 

36 

791 

14,458 

14,486 

26 

764 

14,430 

14,472 

22 

1139 

14,434 

14,466 

23 

946 

14,444 

14,518 

50 

733 

14,459 

14,510 

31 

503 

VR 

14,453 

14,486 

22 

795 

14,453 

14,501 

33 

1685 

14,450 

14,498 

36 

719 

14,456 

14,493 

24 

918 

14,464 

14,525 

29 

1109 

14,468 

14,516 

30 

825 

converged at level a, if this gene has the same value in at least an a 
of the individuals in the population. A population converges at level 
/3, if at least a 0 of the genes has converged. W e choose a and /3 to 
be equal to 95 and 100, respectively. This convergence criterion does 
not always guarantee the termination of the algorithm. Therefore, we 
decide that the population has also converged if in a certain number 
of subsequent iterations the average fitness of the population has not 
improved. 

VII. RESULTS OF THE EXPERIMENTS 

W e study the behavior of the algorithm described with respect to 
the different combinations of crossover and mutation operators of 
Section V. 

If we consider the genetic algorithm as a 7-tuple G A 
(A, 02,03,04, p c P ™ , 07) where A is the population size, a? 
is the selection criterion, 03 the crossover operator, «4 the mutation 
operator, pc crossover probability, p ™ mutation rate, a? the reduction 
criterion for reducing the population to its original size, then we can 
describe our algorithm as follows: A = 10, 50; «2 = based on the rank 
of the objective function; 03 = AP, CX, O X 1 , O X 2 , P M X , POS, VR; 
04 = D M , E M , ISM, rVM, SIM, SM; p^ = 1; p^, = 0.01; o? = ek'fúf. 

For all 84 (2 x 7 x 6) parameter combinations to be considered 
we carry out 20 searches. 

For the experiments we use a simulation, consisting of the 3000 
first cases obtained by Herskovits [49], of the A L A R M network, 
which was designed by Beinlinch ef of. [5] for modeling a problem 
in a medical held. The objective function which expresses the quality 
of the structures is the natural logarithm of the a poafen'on probability 
of the database of cases, given the structure to be evaluated, following 
the formula of Cooper and Herskovits [4]. 

The best and average evaluations as well as the accompanying 
standard deviations obtained with the different combinations of 



TABLE II 
POPULATION SEE 50. FOR ALL COMBINATIONS OF OPERATORS, 

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE 

EVALUATION, THE ACCOMPANYING STANDARD DEVIATION AND 

THE AVERAGE NUMBER OF EVALUATIONS BEFORE CONVERGENCE 

D M 

EM 

ISM 

rvM 

SIM 

SM 

AP 

14,422* 

14,441* 

19 

7921 

14,422 

14,449 

17 

6529 

14,422 
14,447 

17 

7782 

14,423 

14,447 

22 

8355 

14,426 

14,512 

39 

3397 

14,442 

14,518 

41 

3498 

CX 

14,422 

14,428 

10 

13,447 

14,423 

14,425 

4 

14,047 

14,423 
14,428 
10 

13,336 

14,422 

14,425 

6 

15,467 

14,423 
14,424 

1 
12,321 

14,417 
14,426 

9 
15,022 

OX1 

14,422 

14,443 

15 

6569 

14*424 

14,447 

11 

6685 

14,417 
14,448 
14 
7148 

14,417 

14,442 

15 

7331 

14,427 
14,457 

13 
4848 

14,430 

14,455 

15 

5050 

OX2 
14,422 

14,433 

13 

3862 

14,423 

14,436 

13 

3489 

14,423 
14,432 

12 
3742 

14,423 

14,433 

12 

3944 

14,423 
14,442 

11 
3240 

14,423 
14,437 

12 
3113 

PMX 

14,423 

14,436 

14 

4350 

14,423 

14,444 

15 

3614 

14,423 
14,437 
14 
4331 

14,417 

14,433 

13 

4683 

14,424 
14,446 

15 
3165 

14,427 

14,453 

15 

2983 

POS 

14,423 

14,430 

11 

4049 

14,423 
14,437 
14 
3842 

14,423 
14,435 
13 
3905 

14,423 

14,439 

13 

3898 

14,423 
14,439 

12 
3639 

14,423 

14,442 

12 

3242 

VR 

14,424 

14,451 

11 

10,052 

14,424 

14,446 

13 

9406 

14,424 
14,445 

12 
9872 

14,424 

14,442 

13 

9445 

14,433 
14,460 

15 
8161 

14,432 

14,455 

12 
7910 

genetic operators for the population sizes 10 and 50 are presented in 

the Tables I and II, respectively. If we order the crossover operators 

with respect to their average evaluations, from best to worst we And: 

CX, OX2, POS. VR, PMX, OX1, AP for population size 10 and CX, 

OX2, POS, PMX, OXt, VR, AP for population size 50. Noticeable is 

that as the average evaluation increases, the standard deviation also 

grows. Ordering the mutation operators in the same way, we obtain: 

DM, ISM, IVM, EM, SM, SIM for A = 10 and IVM, DM, ISM, 
EM, SIM, SM for A = 50. 

If we apply the Kruskal-Wallis test for comparing the behavior of 
the crossover operators, statistically significant differences are found 

(p < 0.0001) for both A = 10 as well as for A = 50. For the mutation 

operators we obtain the same result. 

For all operators considered, the performance of the algorithm 

becomes better as the population size grows. For the crossover 

operators, however, this tendency is stronger than for the mutation 

operators. 

The evaluation found for the structure induced by the K2 algorithm 

when this algorithm is applied to the order that was used for creating 

the database of cases is -1.4412e04. 

As can be observed in the Tables I and II, none of the best orderings 

obtained in the searches is able to improve the evaluation of this initial 

ordering. For population size 50, however, the worst best evaluation 

obtained is — 1.4442e04, while 4 combinations give orderings the 

structure of which is — 1.4417e04. 

In the Tables I and II also the convergence velocity of the algorithm 

is represented. Ranking the crossover operators from the fastest to the 

slowest, we ñnd: PMX, O X 1, OX2, AP, POS, VR, C X for A = 10 and 

OX2, POS, PMX, AP, OX1, VR, C X for A = 50. For the mutation 

operators, we ñnd: SM, D M , SIM, IVM, EM, ISM for A = 10 and 

SLM, SM, EM, ISM, D M , IVM for A = 50. W e observe that the C X 

operator, which gives the best results, implies a slow convergence, 

while the O X 2 operator, which is the second best operator, results 

in a considerably faster algorithm. However, we also see that the 

C X operator only needs a small population size to give good results 

while the other crossover operators need larger population sizes. With 

respect to the convergence velocity of the mutation operators, we see 

that the S M operator, which is one of the fastest ones, gives the 

worst results. 

VIH. CONCLUDING REMARKS 

W e have presented a method for structure learning of BN's from 

a database of cases with which it is not necessary to assume an 

ordering between the system variables since the method is based on 

searching for the optimal ordering of variables. For this search we 

have proposed a genetic algorithm that uses the K2 algorithm for 

evaluating the orderings and that creates new offspring orderings by 

applying the genetic operators that were already used in the genetic 

tackling of the TSP. 

The empirical results obtained are comparable with the results that 

we presented in [16], where we also tackled the structure learning 

of BN's with genetic algorithms, however, assuming an ordering 

between the variables. 

It would be interesting to see which results would be obtained 

if the best orderings found with the method described in this paper 

were used as an input for an order-assuming (genetic) algorithm for 

learning the structure of BN's. 

ACKNOWLEDGMENT 

The authors thank G. F. Cooper for providing his simulation of 

the A L A R M network. 

REFERENCES 

[1] J. Pearl, Pro6a6:Vúfic jkajoning in /nfeMgenf Syafenu: A/ertvor&r of 
fVawj/e/e /n/erencg. San Mateo, CA: Morgan Kaufmann, 1988. 

[2] R. E. Neapoli, P/ioW%Yúfi'c Agasoning ¿n Eiperf System?. TTigory and 
Afgon'fAmj. New York: Wiley, 1990. 

[3] F. V. Jensen, "Introduction to Bayesian networks," Dept. of Mathematics 
and Computer Science, Univ. of Aalborg, Denmark, Tech. Report IR 
93-2003, 1993. 

[41 G. F. Cooper and E. A. Herskovits. "A Bayesian method for the 
induction of probabilistic networks from data," Mocn. ¿gaming, vol. 
9, no. 4, pp. 309-347, 1992. 

[5] I. A. Beinlinch, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, 
"The ALARM monitoring system: A case study with two probabilistic 
inference techniques for belief networks," in f roc. 2nd Euro/7. Con/ on 
Arf#c:o/ /nfg/fi'ggnce in AWicing, 1989, pp. 247-256. 

[6] C. K. Chow and C. N. Liu, "Approximating discrete probability distri­
butions with dependence trees," /Egg Tronj. /n/brm. 7%gory, vol. 14, 
no. 3, pp. 462^167, 1968. 

[7] J. Suzuki, "A construction of Bayesian networks from databases based 
on an M D L principle," in fmc. 9fn Con/ [/ncgrfainfy ,n Arm/Ktaf 
WgfWggncg, 1993, pp. 266-273. 

[8] J. Rissanen, "Modeling by shortest data description," Aufomafica, vol. 
14, pp. 465-471, 1978. 

19] G. Rebane and J. Pearl, "The recovery of causal poly-trees from 
statistical data," in [/ncgrfoinfy "" Arfi/wW WgMggncg 3, 1989, pp. 
175-182. 

[10] S. Acid, L. M. de Campos, A. Gonzalez, R. Molina, and N. Pérez 
de la Blanca, "Learning with CASTLE," SymWic onj Quanfifafivg 
Approac/iga fo f/ncgrrainfy, Lgcfwrgj AWgs in Compwf. Sci 348, R. Kruse 
and P. Siegel Eds. Berlin: Springer-Verlag, 1991, pp. 99-106. 

[11] S. Srinivas, S. Russell, and A. Agogino, "Automated construction of 
sparse Bayesian networks from unstructured probabilistic models and 
domain information," in C/ncgrfainfy in Arfz/iciof /nfg&ggncg 3, Windsor, 
Ontario, Canada, 1990, pp. 295-308. 

[12J E. Herskovits and G. Cooper, "KUTATÓ: An entropy-driven system for 
construction of probabilistic expert systems from databases," Knowl­
edge Systems Laboratory, Medical Computer Science, Stanford Univ., 
Stanford, CA, Rep. KSL-90-22, 1990. 



[13] D. M. Chickering, D. Geiger, and D. Heckerman, "Learning Bayesian 
networks: Search methods and experimental results," in frefiminary 
Papers Jfn Air. WoMüAop o» Arfi^ciof ínkWigence anj gfafiafica, 1995, 
pp. 112-128. 

[14] D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian 
networks: The combination of knowledge and statistical data," in 
Microsoft, Technical Report MSR-TR-94-09, 1994. 

[15] R. R. Bouckaert, "Properties of Bayesian belief networks learning algo­
rithms," in Pmc. YOfAAnnWConf (/wgTToiMfj'inArd/iciaf/nfeHigence, 
Washington, 1994, pp. 102-109. 

[16] P. Larrañaga, R. H. Murga, M . Poza, and C. M . H. Kuijpers, "Structure 
learning of Bayesian networks by hybrid genetic algorithms," in Pyefin:-
inary Paper; 5fn /nf. WbrbAop on Arfi^ciai Mg/Wgence an¿ Jfofiafica, 
1995, pp. 310-316. 

[17] R. R. Bouckaert "Optimizing causal orderings for generating DAG's 
from data," in f me. 8fn Con/: (/ncerfainfy in Arfificia/ /nfe/iigence, 
1992, pp. 9-16. 

[181 M . Singh and M . Val torta, "An algorithm for the construction of 
Bayesian network structures from data," in Pmc. 9fn Co»/ (/ncer&unfy 
in /Wi/%W /nfeiiigence, Washington, D C , 1993, pp. 259-265. 

[19] W . Lam and F. Bacchus, "Learning Bayesian belief networks. A n 
approach based on the M D L principle," CompKfofionoi /nfeiiigence, 
vol. 10, no. 4, 1994. 

[20] , "Using causal information and local measures to learn Bayesian 
networks," in fmc. Pfn Co»/ ¿/ncgrfainfy in Arfi/ictaf /nfe/figence, 
Washington, D C , 1993. pp. 243-250. 

[21] P. Larrañaga, M . Poza, Y. Yurramendi, R. H. Murga, and C. M . 
H. Kuijpers, "Structure learning of Bayesian networks by genetic 
algorithms: A performance analysis of control parameters," /EEE Trana. 
PaffemAnai Macn. /nfeii., in press. 

[22] G. M . Provan and M . Singh, "Learning Bayesian networks using 
feature selection," in /Wimmary Paper? Jfn /nf. WbrtiAop on Arfificiaf 
/nfeiiigence an¿ Sfafiafica, PL, 1995, pp. 450-456. 

[23] L. R. Andersen, J. H. Krebs, and J. D. Andersen, "STENO: A n expert 
system for medical diagnosis based on graphical models and model 
search," /. App/. Sfaf., vol. 18, no. 1, pp. 139-153, 1991. 

[24] S. Kreiner, "On tests of conditional independence," Statistical Research 
Unit, University of Copenhagen, Res. Rep. 89/14, 1989. 

[25] R. M. Fung and S. L. Crawford, "Constructor: A system for the 
induction of probabilistic models," in fmc. AAA/, Boston, M A , 1990, 
pp. 762-769. 

[26] S. L. Lauritzen, B. Thiesson, and D. J. Spiegelhalter, "Diagnostic sys­
tems created by model selection methods—A case study," in Prg/iminary 
Papers 4fn /nf. Wbrtanop on Arfi/iciai /nfe/Zigence anj Aafiafica, 1993, 
pp. 93-105. 

[27] H. Akaike, "New look at the statistical model identification," /EEE 
Thma. Aufomaf. Confr, vol. 19, pp. 716-722, 1974. 

[28] D. Madigan, A. E. Raffery, J. C. York, J. M . Bradshaw, and R. G. 
Almond, "Strategies for graphical model selection," in Prefúm'nory 
Popera 4fn /nf. Wbrbnop on Arfi/zciai /nfeHi'gence an¿ Sfafiafica, 1993, 
pp. 331-336. 

[29] R. Mechling and M . Valtorta, "PaCCIN: A parallel constructor of 
Markov networks," in Pnz/wni'nary Popery 4fn /nf. Wbrbnop on Arfi/zcKÜ 
/nfe/Zigence anj Sfafiafica, 1993, pp. 405-410. 

[30] G. M. Provan, "Model selection for diagnosis and treatment using 
temporal influence diagrams," in Pre/iminary Popera Jfn /nf. Wbrtanop 
on Arfi/iciof /nfefYigence onj Aafiafica, 1995, pp. 469-480. 

[31] J. H. Holland, Aaopfofion in Nafwraf an¿ Arfi^íiaZ Svafema. Ann 
Arbor, MI: The Univ. of Michigan Press, 1975. 

[32] U. K. Chakraborty and D. G. Dastidar, "Using reliability analysis to es­
timate the number of generations to convergence in genetic algorithms," 
/nfbrm. Proc. Leff., vol. 46, no. 4, pp. 199-209, 1993. 

[33] A. E. Eiben, E. H. L. Aarts, and K. M . van Hee, "Global convergence 
of genetic algorithms: A n infinite Markov chain analysis," Compiling 
Science /Vbfea, Eindhoven Univ. of Tech., 1990. 

[34] G. Rudolph, "Convergence analysis of canonical genetic algoritms," 
submitted to /EEE Trana. /Vewrai /Vefworta. 

[35] D. E. Goldberg, Generic Afgorz'fnma in Searcn, Opfimizafion an¿ Mo-
cnine ¿earning. Addison-Wesley, 1989. 

[36] L. Davis, Ed., //and%oo& o/ Generic A/gorifnma. N e w York: Van 
Nostrand Reinhold, 1991. 

[37] P. Larrañaga, C. M . H. Kuijpers, and R. H. Murga, "Evolutionary algo­

rithms for the travelling salesman problem: A review of representations 
and operators," submitted to Arfi/ /nfefi #ev. 

[38] D. E. Goldberg and J. R. Lingle, "Alleles, loci and the traveling salesman 
problem," in Proc. /nf. Con/ Generic Afgorifnma ano" rneirAppficofiona, 
Pittsburgh, PA, 1985, pp. 154-159. 

[39] I. M . Oliver, D. J. Smith, and J. R. C. Holland, "A study of permutation 
crossover operators on the TSP," in Proc. 2na" /nf. Con/ on Generic 
Afgorifnma ono" TTieir Appiicofiona, Cambridge, M A , 1987, pp. 224-230. 

[40] L. Davis, "Applying adaptive algorithms to epistatic domains," in Pmc. 
/nf. /oinf Con/ on Arfi/icia/ /nfeiiigence, Los Angeles, CA, 1985, pp. 
162-164. 

[41] G. Syswerda, "Schedule optimization using genetic algorithms," in [36], 
pp. 332-349. 

[42] H. MUhlenbein, "Parallel genetic algorithms, population genetics and 
combinatorial optimization," in Proc. . W /nf. Com/ on Ge«e»'c /Ugo-
nfnma, Arlington, VA, 1989, pp. 416^*21. 

[43] P. Larrañaga, C. M . H. Kuijpers, M. Poza, and R. H. Murga, "Optimal 
decomposition of Bayesian networks by genetic algorithms," Dept. of 
Com. Science and Art. Intel., Univ. of the Basque Country, Int. Rep. 
EHU-KZAA-IKT-3-94, 1994. 

[44] Z. Michalewicz, Genefic Afgorifnma + Dafa Arwcfwrea = Evoiwfion 
Programa. Berlin: Springer-Verlag, 1992. 

[45] W . Banzhaf, "The "molecular" traveling salesman," Bio/. Cyoem., vol. 
64, pp. 7-14, 1990. 

[46] D. B. Fogel, "A parallel processing approach to a multiple travel­
ing salesman problem using evolutionary programming," in Pmc. 4fn 
Annwa/Porai/e/Proceaaing Symp., Fullerton, CA, 1990, pp. 318-326. 

[47] D. Whitley, "The G E N I T O R algorithm and selection pressure: W h y 
rank-based allocation of reproductive trials is best," in Proc. 3ra" /nf. 
Con/ on Generic Afgorifn/na, Arlington, VA, 1989, pp. 116-121. 

[48] K. A. de Jong, "An analysis of the behavior of a class of genetic adaptive 
systems," Ph.D. Dissertation. Univ. of Michigan. 1975. 

[49] E. H. Herskovits, "Computer based probabilistic-network construction," 
Doctoral Dissertation, Dept. Medical Information Sciences, Stanford 
University. Stanford, CA. 1991. 


