
three steps are grouped together, Covey's first three habits correspond

to the order of problem solving following the Systems Approach. First

the problem is defined, then the desired outcome is envisioned, and

time and effort are organized to achieve this desired outcome. The

general reference to problem solution in Habit 3, "Put First Things

First," corresponds to many steps in this Systems Approach. Fig. 8

indicates that these, too, could be integrated into a single category.

Habits 4, 5, and 6 are more difhcult to apply to specific steps.

Analogous to the overriding principles enumerated in Fig. 3, these

habits are applicable throughout the problem-solving process. To the

extent that these steps promote communication, the habits "Think

Win/Win" and "Seek First to Understand ...," apply to almost every

situation that involves group interaction. More specifically, "Think

Win/Win," can apply to creative problem solving and idea generation,

and "Seek First to Understand ..." directs the interaction between a

systems engineer and a client. "Synergize" can also be applied on

numerous levels. Finally, "Sharpen the Saw" directly corresponds

to the constant iteration that is stressed throughout the systems

engineering approach.

II. CONCLUSION

The side-by-side comparison of the Seven Habits and the steps in

the Systems Approach serves to show how the elements of both not

only correspond but also complement each other. Both philosophies

stress problem definition, early determination of the desired outcome,

and an organized effort to determine a solution. They also promote

similar overriding principles to better enable the problem-solving

process. This similarity is remarkable given that the Seven Habits

are a guide to personal development, whereas the Systems Approach

is geared for systems design and development. Most importantly,

the comparison of Covey's philosophy to the philosophy of the

Systems Approach can help improve the understanding of systems

engineering.

ACKNOWLEDGMENT

The contribution to this paper of the following graduate students,

who participated in a systems engineering course at the University of

Virginia, is acknowledged with appreciation: H. Albright, B. Athay,

E. Brown, P. Delaney, L. Fischer, S. Genberg, T. Get, T. Godkin, A.

Goltzman, L. Johnson, D. Knauff, M . Lee, M . Lenox, G. Lesinski, R.

Oelrich, R. Olsen, N. Rajey, D. Salmons, J. Schamburg, A. Schoka,

K. Stanford, and J. Soltys.

REFERENCES

B. S. Blanchard, and W. J. Fabrycky, SysYenu Engineering ¿WAna/yaK.
Englewood Cliffs, NJ: Prentice Hall, 1990.
S. R. Covey, 7ne Sewn #o6i# of ffigMy Egecfive Peopie. New York:
Simon and Schuster, 1989.
W . E. Deming, Owf of fne Crüü. Cambridge, M A : MIT Center for
Advanced Engineering Study, 1982.
M. Imai, Koizen. New York: McGraw Hill, 1986.
A. Sage, Sysfenu Engineering. New York: Wiley, 1992.
P. M. Senge, 7%e F # Diycipfine. New York: Doubleday, 1990.
J. G. Truxal, /nfrodwcfory Syrlemj Engineering. New York: New York,
1972.

Learning Bayesian Network Structures by Searching for
the Best Ordering with Genetic Algorithms

Pedro Larrañaga, Cindy M . H. Kuijpers,

Roberto H. Murga, and Yosu Yurramendi

A6«(rac(—In this paper we present a new methodology for inducing
Bayesian network structures from a database of cases. The methodology
is based on searching for the best ordering of the system variables by
means of genetic algorithms. Since this problem of finding an optimal
ordering of variables resembles the traveling salesman problem, we use
genetic operators that were developed for the latter problem. The quality
of a variable ordering Is evaluated with the structure-learning algorithm
K2. W e present empirical results that were obtained with a simulation of
the A L A R M network.

I. INTRODUCTION

Bayesian networks (BN's) constitute a reasoning method based on

probability theory. They model causal relations between events.

A B N consists of a set of nodes and a set of arcs which together

constitute a directed acyclic graph (DAG). The nodes represent

random variables, all of which have a finite set of states. The arcs

indicate the existence of direct causal connections between the linked

variables, and the strengths of these connections are expressed in

terms of conditional probabilities.

To specify the probability distribution of a Bayesian network,

P(zi, - -, z„), one must give prior probabilities for all root nodes

(nodes without predecessors) and conditional probabilities for all

other nodes, given all possible combinations of their direct prede­

cessors. These numbers in conjunction with the D A G , specify the

B N completely. The joint probability of any particular instantiation

of all M variables in a B N can be calculated as follows:

_P(l], ..., Z„) = YJ P(z¿|7T¿),

where z¿ represents the instantiation of the variable X , and 7r, rep­

resents the instantiation of the parents of X,. Excellent introductions

on BN's can be found in |l]-[3].

The construction of a B N consists of two subproblems, namely

of the rfrwcfwre /earning or search for the D A G that best reflects

all interdependence relations between the system variables, and of

the /xznzmefer (earning, i.e., the determination of the conditional

probabilities belonging to the network.

In this paper w e consider the problem of the automatic structure

learning of BN's from a database of cases (observations). This

problem is an interesting one because the construction of a B N

exclusively from the information provided by an expert is time-

consuming and subject to mistakes. Therefore, and due to the fact that

large databases become more accessible, algorithms for automatic

learning can be of great help. W e are not the first to look at this

problem: a considerable amount of research has been done on the

induction of causal structures, BN's and other graphical models. In

the structure learning of BN's often an ordering between the nodes

Manuscript received March 18, 1995; revised July 25, 1995. This work was
supported by the Diputación Foral de Gipuzkoa, under Grant OF 95/1127 and
by the Fondo de Investigación Sanitaria, Ministerio de Sanidad y Consumo,
under Grant 94/1370.
The authors are with the Department of Computer Science and Artificial

Intelligence, University of the Basque Country, 20080 San Sebastián, Spain
(e-mail: ccplamup@si.ehu.es).
Publisher Item Identifier S 1083-4427(96)03846-5.

mailto:ccplamup@si.ehu.es

of the structure is assumed, in order to reduce the search space. This
means that a node z¿ can only have node zj as a parent node if in
the ordering node z., comes before node z,.

W e propose to search for the best ordering and w e choose to do
this using a genetic algorithm. For developing this algorithm, w e
use results of the research carried out on the application of genetic
algorithms in tackling the intensively studied traveling salesman
problem (TSP), since the problem of the search for an optimal
ordering of system variables is not very different from the TSP. W e
evaluate the orderings of the variables with the K 2 structure-learning
algorithm of Cooper and Herskovits [4].

The structure of this paper is as follows. In Section II, w e revise the
most important structure-learning algorithms that were proposed in
literature. Genetic algorithms are introduced in Section HI. In Section
TV w e consider the resemblance of the problem of the search for an
optimal ordering of variables and the TSP. In Section V, w e explain
the crossover and mutation operators that we use for our experiments.
In Section VI, w e describe our algorithm. Empirical results with a
simulation of the A L A R M network [5] are presented in Section VII.
There can be seen that our algorithm is robust, for all combinations
of parameters it manages to obtain results close to the evaluation of
the A L A R M network. In a ñnal Section VTII concluding remarks are
given.

II. RELATED W O R K

A. Trees a/ia" foZy-Trees

C h o w and Liu [6] show how to recover an undirected Markov tree
from empirical observations using the maximum weight spanning
tree algorithm.

Suzuki [7] proposes to carry out structure search using the M D L
(Minimum Description Length) principle of Rissanen [8]. Suzuki
focuses on tree structures, in which case his method is a generalization
of the one of C h o w and Liu.

Rebane and Pearl [9] showed that the algorithm of C h o w and Liu
can also be used for recovering the topology of a poly-tree. They also
developed an algorithm for recovering the direction of the branches.

C A S T L E (CAusal STructures from inductive LEaming), which
was developed by Acid ef a/. [10] learns poly-tree structures from
examples, using the maximum weight spanning tree heuristic in
combination with some metric to estimate the undirected graph and
a conditional independence test for the determination of the direction
of the branches.

& MwZfZpZe CoMMgcfea" Arwcf%res

V j AwwmJMg an (Wen'fig Beftvee» fAe A W e s / Srinivas ef aZ. [H]
proposed an algorithm for the automatic construction of sparse
BN's from information about the domain provided by an expert.
The network is constructed by incrementally adding nodes. The
information of the expert, together with a greedy heuristic that intends
to minimize the number of arcs, guide, in each step, the search for
a next node.

Herskovits and Cooper [12] developed the system K U T A T Ó , which
incorporates a module for constructing belief networks based on en­
tropy calculations. K U T A T Ó constructs an initial network in which all
variables in the database are assumed to be marginally independent.
In every step, the arc is added that, maintaining acyclicity, minimizes
the entropy of the resulting network. This process continuous until
an entropy-based threshold is reached.

A Bayesian version of the last described algorithm was developed
by the same authors. Cooper and Herskovits [4] proposed K2,
an algorithm which searches for the most probable belief network

structure given a database of cases. The K 2 algorithm is described
in detail in Section VI.

Chickering ef of. [13] reviewed the B D e metric (Bayesian metric
with Dirichlet priors) described by Heckerman ef aZ. [14] under
the name C H , which has a property useful for inferring causation
called /¡Wi'/zcW egm'vaZence, which says that two networks that
represent the same assertions of conditional independence have the
same likelihood.

Bouckaert [15] proposed a measure for the quality of a structure
based on the M D L principle, using a search algorithm similar to K2.

Larrañaga ef aZ. [16] tackled the problem of the search for a
B N structure that maximizes the metric proposed by Cooper and
Herkovits with hybrid genetic algorithms.

2J&)ZvZngf/ie#ejfncfz'onq/^Ae Ordering; Bouckaert [17] pre­
sented an algorithm that manipulates the ordering of the variables with
operations similar to arc reverfaf. These operations are only applied
in case the resulting D A G represents at least the independences that
were already present in the structure before the application of the
operator. In this way the set of independences increases incrementally.

Singh and Valtorta [18] developed the C B algorithm (Conditional
independence + Bayesian learning) with which they intended to
integrate two of the existing trends in the learning of BN's. The
algorithm first uses a conditional independence test based on the %̂ -
distribution for obtaining an ordering between the variables. Next,
given this ordering, a structure is obtained by means of K 2 after
which, again with K2, the structures are obtained that correspond to
orderings that are compatible with the partial ordering implied by the
structure found with the first application of K2.

L a m and Bacchus [19] described a method for learning unrestricted
multiply-connected belief networks based on the M D L principle,
which permits to trade off accuracy and complexity. The method
can be seen as a generalization of other approaches based on the
cross entropy of Kullback and Leibler and can be interpreted from a
Bayesian point of view, where the apn'on probability to be assigned
to a structure is inversely proportional to its complexity.

In [20] L a m and Bacchus improved the algorithm of [19], by
considering partial information available about the domain.

Larranaga ef of. [21] presented a genetic algorithm that used the
metric that was proposed by Cooper and Herkovits for evaluating
the quality of an induced structure. They used a repair operafor for
converting offspring structures that were not acyclical into DAG's.

Provan and Singh [22] proposed an algorithm called K2-AS (K2
+ Attribute Selection) in which not all variables (or affrZWes) about
which information is present are considered, but only a subset of
them. That subset should maximize the predictable capacity of the
network. In this way the generated networks are computationally easy
to evaluate and their predictability is comparable with the networks
that consider all variables.

C OfAer Gra/?A;ca/ MoaeZa

Andersen ef aZ. [23] developed S T E N O , an expert system for
medical diagnosis, which combines expert knowledge concerning
associations between entities with knowledge generated by a statis­
tical analysis of data relating these entities. It uses the model search
strategy described by Kreiner [24].

Fung and Crawford [25] developed C O N S T R U C T O R , a system
which integrates techniques and concepts of the probabilistic net­
works, artificial intelligence and statistics, in order to induce Markov
networks.

Lauritzen ef a/. [26] presented results of a medical diagnostic
system. They compared the diagnostic power of different block
recursive graphical models induced using the information criterion

of Akaike [27], and criteria based on statistical tests. The model

construction is carried out by means of ¿xzctwa/d Mkcfzon.

Madigan ef of. [28] proposed a Bayesian method for finding

graphical models, in which they, instead of only one model, consider

several good ones, combining the results from them.

Mechling and Valtorta [29] proposed an algorithm that constructs

Markov networks in a similar way to C O N S T R U C T O R .

Pmvan [30] presented an algorithm for the automatic construction

of a femporaf m/ZwgMce diagram, i.e., a union of a sequence of

influence diagrams, each of which model the system during a certain

interval of time in which the system is supposed to have a static

behavior.

III. GENETIC ALGORITHMS

Holland [31] introduced the gengfic eZgonfAma. In these algo­

rithms, the search space of a problem is represented as a collection

of Wf'wdwak. These individuals are represented by character strings,

which are often referred to as cAromojoma?. The purpose of the

use of a genetic algorithm is to find the individual from the search

space with the best "genetic material." The quality of an individual

is measured with an evaluation function. The part of the search space

to be examined is called the p o p w W o M .

Roughly, a genetic algorithm works as follows. Firstly, the initial

population is chosen, and the quality of this population is determined.

Next, in every iteration parents are selected from the population.

These parents produce children, which are added to the population.

For all newly created individuals of the resulting population a

probability near to zero exists that they "mutate", i.e., that they

change their hereditary distinctions. After that, some individuals are

removed from the population according to a selection criterion in

order to reduce the population to its initial size. One iteration of the

algorithm is referred to as a ggMgrafzoM.

The operators which deñne the child production process and the

mutation process are called the cwMover operator and the mwfafion

operator, respectively. Mutation and crossover play different roles

in the genetic algorithm. Mutation is needed to explore new states

and helps the algorithm to avoid local optima. Crossover should

increase the average quality of the population. By choosing adequate

crossover and mutation operators, the probability that the genetic

algorithm provides a near-optimal solution in a reasonable number

of iterations is enlarged. Under certain circumstances, the genetic

algorithms evolve to the optimum with probability 1 [32]-[34].

Further descriptions of genetic algorithms can be found in [35]

and [36].

IV. RESEMBLANCE TO THE TSP

The search for an optimal ordering between the variables resembles

the intensively studied traveling salesman problem (TSP): given a

collection of cities, determine the shortest tour that visits each city

precisely once and then returns to its starting point.

Both problems are ordering problems. However, between both

problems a difference exists: in the TSP, in general, only the relative

order is assumed to be important while in our problem the absolute

order also matters. For example, in the 6-cities TSP, in general, the

string (1 2 3 4 5 6) is assumed to represent the same tour as the

string (4 5 6 1 2 3) . In the 6-vanables ordering problem both strings

represent different variable orderings. W e remark that the variable

ordering problem is an asymmetrical problem; the string (12 3 4 5

6) does not represent the same variable ordering as the string (6 5 4

3 2 1). The TSP is often assumed to be symmetrical.

Because of the similarities between our problem of finding an

optimal variable ordering and the TSP, w e use the results of the

research carried out on the TSP with genetic algorithms. For a review

on representations and operators that have been used in tackling the

TSP with genetic algorithms, see [37].

W e choose to use, what in relation with the TSP is called, the

fafA representation. Therefore, we represent an ordering between the

variables by a list of numbers, where the ¿th element of the list is a j

if variable j has the ¿th place in the ordering. For example, the string

(3 1 2) represents the ordering in which % is a root node, %i has as

possible parent % , and the possible parents of % are % , and %i.

The genetic operators that w e use for our experiments (see Section

V) have all but the A P operator already been used for tackling the

TSP.

V. GENETIC OPERATORS

A. C/tiMover Operoforj

The partially-mapped crossover (P M X) [38] transmits ordering

and value information from the parent strings to the offspring. A

portion of one parent string is mapped onto a portion of the other

parent string and the remaining information is exchanged. Consider,

for example, the following two parents: (1 2 3 4 5 6 7 8) and

(3 7 5 1 6 8 2 4) . The P M X operator creates an offspring in the

following way. It begins by selecting uniformly at random two cut

points along the strings, which represent the parents. Suppose, for

example, that the first cut point is selected between the third and

the fourth string element, and the second one between the sixth and

the seventh string element. Hence, (1 2 3 | 4 5 6 | 7 8) and (3 7

5 | 1 6 8 | 2 4). The substrings between the cut points are called

the mapping sections. In our example, they define the mappings 4

<-» 1, 5 *-» 6, and 6 <-» 8. N o w the mapping section of the first

parent is copied into the second offspring, and the mapping section

of the second parent is copied into the first offspring: offspring 1:

(z z z|l 68|z z) and offspring 2: (zzz|4 56|zz). Then offspring ¿

(¿ = 1, 2) is filled up by copying the elements of the ¿th parent.

In case a number is already present in the offspring it is replaced

according to the mappings. For example, the first element of offspring

1 would be a 1, like the first element of the first parent. However,

there is already a 1 present in offspring 1. Hence, because of the

mapping 1 <-» 4 w e choose the first element of offspring 1 to be

a 4. The second, third and seventh elements of offspring 1 can be

taken from the first parent. However, the last element of offspring 1

would be an 8, which is already present. Because of the mappings

8 <-» 6, and 6 <-» 5, it is chosen to be a 5. Hence, offspring 1: (4

2 3 | 1 6 8 | 7 5). Analogously, w e frnd offspring 2: (3 7 8 | 4 5

6 | 2 1). The absolute positions of some elements of both parents

are preserved.

The cycle crossover (CX) [39] attempts to create an offspring

from the parents where every position is occupied by a corresponding

element from one of the parents. For example, consider again the

parents (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 1). N o w w e choose

the first element of the offspring equal to either the first element

of the first parent string or the first element of the second parent

string. Hence, the first element of the offspring has to be a 1 or a

2. Suppose w e choose it to be 1, (1 * * * * * * *) . N o w consider

the last element of the offspring. Since this element has to be chosen

from one of the parents, it can only be an 8 or a 1. However, if a

1 were selected, the offspring would not represent a legal individual.

Therefore, an 8 is chosen, (1 * * * * * * 8) . Analogously, w e And that

the fourth and the second element of the offspring also have to be

selected from the first parent, which results in (1 2 * 4 * * * 8) . The

positions of the elements chosen up to now are said to be a cycle.

N o w consider the third element of the offspring. This element w e

may choose from any of the parents. Suppose that we select it to be

from parent 2. This implies that the ñfth, sixth and seventh elements
of the offspring also have to be chosen from the second parent, as
they form another cycle. Thus, we find the following offspring: (1 2

6 4 7 5 3 8). The absolute positions of on average half the elements
of both parents are preserved.

The order crossover operator (OX1) [40] constructs an offspring
by choosing a substring of one parent and preserving the relative
order of the elements of the other parent. For example, consider the
following two parent strings: (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3
1), and suppose that w e select a first cut point between the second
and the third bit and a second one between the ñfth and the sixth bit.
Hence, (1 2 | 3 4 5 | 6 7 8) and (2 4 | 6 8 7 | 5 3 1). The offspring are
created in the following way. Firstly, the string segments between the
cut point are copied into the offspring, which gives (* *| 3 4 5 |* * *)
and (* *|6 8 7|* * *) . Next, starting from the second cut point of one
parent, the rest of the elements are copied in the order in which they
appear in the other parent, also starting from the second cut point
and omitting the elements that are already present. W h e n the end of
the parent string is reached, we continue from its first position. In
our example this gives the following children: (8 7|34 5|12 6) and
(4 5 | 6 8 7 | 1 2 3).

The order-based crossover operator (0X2), [41] which was
suggested in connection with schedule problems, is a modification
of the 0 X 1 operator. The 0 X 2 operator selects at random several
positions in a parent string, and the order of the elements in the
selected positions of this parent is imposed on the other parent. For
example, consider again the parents (1 2 3 4 5 6 7 8) and (2 4 6
8 7 5 3 1), and suppose that in the second parent the second, third,
and sixth positions are selected. The elements in these positions are
4, 6 and 5 respectively. In the first parent these elements are present
at the fourth, ñfth and sixth positions. N o w the offspring is equal to
parent 1 except in the fourth, ñfth and sixth positions: (12 3 * * *

7 8). W e add the missing elements to the offspring in the same order
in which they appear in the second parent. This results in (1 2 3 4 6
5 7 8). Exchanging the role of the ñrst parent and the second parent
gives, using the same selected positions, (2 4 3 8 7 5 6 1) .

The position-based crossover operator (POS), [41] which was
also suggested in connection with schedule problems, is a second
modiñcation of the O X 1 operator. It also starts with selecting a
random set of positions in the parent strings. However, this operator
imposes the position of the selected elements on the corresponding
elements of the other parent. For example, consider the parents (1 2
3 4 5 6 7 8) and (2 4 6 8 7 5 3 1), and suppose that the second,
third and the sixth positions are selected. This leads to the following
offspring: (1 4 6 2 3 5 7 8) and (4 2 3 8 7 6 5 1).

The voting recombination crossover operator (VR) [42] can be
seen as a p-sexual crossover operator, where p is a natural number
greater than, or equal to, 2. It starts by denning a threshold, which
is a natural number smaller than, or equal to, p. Next, for every
z E {1, 2, --- , n} the set of ¿th elements of all the parents is

considered. If in this set an element occurs at least the threshold
number of times, it is copied into the offspring. For example, if we
consider the parents (p = 4) (1 4 3 5 2 6), (1 2 4 3 5 6), (3 2 1 5
4 6), (1 2 3 4 5 6) and we deñne the threshold to be equal to 3 w e
ñnd (1 2 z z 2 6). The remaining positions of the offspring are ñlled
with mutations. Hence, our example might result in (1 2 4 5 3 6).

The alternating-position crossover operator (AP) [43] creates an
offspring by selecting alternately the next element of the ñrst parent
and the next element of the second parent, omitting the elements
already present in the offspring. For example, if parent 1 is (1 2 3 4
5 6 7 8) and parent 2 is (3 7 5 1 6 8 2 4), the A P operator gives the
following offspring (1 3 2 7 5 4 6 8) [41]. Exchanging the parents
results in (3 1 7 2 5 4 6 8).

The displacement mutation operator (D M) (e.g., [44]) ñrst
selects a substring at random. This substring is removed from the
string and inserted in a random place. For example, consider the
string (1 2 3 4 5 6 7 8), and suppose that the substring (3 4 5) is
selected. Hence, after the removal of the substring we have (12 6
7 8). Suppose that we randomly select element 7 to be the element
after which the substring is inserted. This gives (12 6 7 3 4 5 8).

The exchange mutation operator (E M) (e.g., [45]) randomly
selects two elements in the string that represents the individual and
exchanges them. For example, consider the string (12 3 4 5 6 7 8),
and suppose that the third and the ñfth element are randomly selected.
This results in (1 2 5 4 3 6 7 8).

The insertion mutation operator (ISM) (e.g., [44]) randomly
chooses an element in the string that represents the individual,
removes it from this string, and inserts it in a randomly selected
place. For example, consider again the string (1 2 3 4 5 6 7 8),
and suppose that the insertion mutation operator selects element 4,
removes it, and randomly inserts it after element 7. The resulting
offspring is (1 2 3 5 6 7 4 8).

The simple-inversion mutation operator (SIM) (e.g., [31]) se-
lects randomly two cut points in the string that represents the
individual, and it reverses the substring between these two cut points.
For example, consider the string (12 3 4 5 6 7 8), and suppose that
the ñrst cut point is chosen between element 2 and element 3, and
the second cut point between the ñfth and the sixth element. This
results in (1 2 5 4 3 6 7 8).

The inversion mutation operator (IVM) (e.g., [46]) randomly
selects a substring, removes it from the string and inserts it, in
reversed order, in a randomly selected position. Consider again our
example string (12 3 4 5 6 7 8), and suppose that the substring (3
4 5) is chosen, and that this substring is inserted immediately añer
element 7. This gives (12 6 7 5 4 3 8).

The scramble mutation operator (SM) (e.g., [41]) selects a
random substring and scrambles the elements in it. For example,
consider the string (1 2 3 4 5 6 7 8), and suppose that the substring
(4 5 6 7) is chosen. This might result in (1 2 3 5 6 7 4 8).

VI. PROPOSED APPROACH

Our approach is based on joining the genetic algorithms and the
algorithm K 2 (see Fig. 1). W e search for a near-optimal ordering
between the variables, with a genetic algorithm that creates new
variable orderings by means of the crossover and mutation operators
described in the previous section. The quality of an ordering is the
evaluation of the B N structure that K 2 creates from it.

K 2 is an algorithm that creates and evaluates a B N from a database
of cases once an ordering between the system variables is given. For
the evaluation of the network that it constructs, the formula of Cooper
and Herskovits is used.

K 2 searches, given a database D for the B N structure B g .
with maximal B(B_?, D) , where f (Bs, D) is as described in the
following theorem proved in [4].

Theorem.- Let Z be a set of n discrete variables, where a variable
z¿ in Z has n possible value assignments: (fa, - - , i\rj. Let D
be a database of cases of m cases, where each case contains a value
assignment for each variable in Z. Let B s denote a B N structure
containing just the variables in Z. Each variable z¿ in B g has a
set of parents, which are represented with a list of variables 7t,. Let
w,j denote the jth unique instantiation of 7t, relative to D. Suppose
there are g\ such unique instantiations of %\. Deñne Â ., & to be the
number of cases in D in which variable z< has the value %¿t and 7r¿
is instantiated as w^. Let TV\., = ¿^^L, A % & . If given a B N model,

Algorithm K2

INPUT: A set of n nodes, an ordering on the nodes, an
upper bound « on the number of parents a node may have,
and a database D containing m cases.
OUTPUT: For each node, a printout of its parent nodes.
BEGIN K2

FOR «:= 1 T O ,z D O
BEGIN

7T, := 0;

OKToProceed := T R U E
WHILE OKToProceed A N D |*,| < « D O

BEGIN
Let z be the node in Pred(i,) - r, that
maximizes g(i, 7r¡ U {%});
fnew:=@(«,^U{z});
IFJ^ew > J^w THE N
BEGIN

fold == ̂ iew;
7T, := TTj U {z}

END
ELSE OKToProceed := FALSE;

END;
WRITE('Node:', z¡, 'Parents of this node:', ?r¿)

END;
END K2.

Fig. 1. The K2 algorithm.

the cases occur independently and the density function /(B_p|Bs) is
uniform, then it follows that

f(%|D)=f(^s)%%a(i,7r,),

where

o
The K 2 algorithm assumes that an ordering on the variables is

available and that, a priori, all structures are equally likely. It searches,
for every node, the set of parent nodes that maximizes g(í, ?n). K 2
is a greejy heuristic. It starts by assuming that a node does not
have parents, after which in every step it adds incrementally that
parent whose addition most increases the probability of the resulting
structure. K 2 stops adding parents to the nodes when the addition
of a single parent can not increase the probability. Obviously, this
approach does not guarantee the selection of a structure with the
highest probability.

A possible improvement of K2 could be the determination of the
best combination of at most u parent nodes in which case the number
of searches to be carried out for a node j would increase from

nwn-j-otoziLi rr).
For our experiments, we let the K 2 algorithm only construct

networks which nodes have at most 4 parent nodes. The genetic
algorithm we use, is an algorithm based on the principles of GEN­
ITOR, which was developed by Whitley [47]. In every generation
two ordering; are selected for crossover, where the probability of an
ordering to be selected depends on the rank of its objective function
value. The newly created offspring substitutes, in case it is better, the
worst ordering in the population.

The stop criterion is based on the definition of convergence of
a population formulated by De Jong [48]. W e say that a gene has

TABLE I
POPULATION SIZE 10. FOR ALL COMBINATIONS OF OPERATORS,

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE

EVALUATION, THE ACCOMPANYING STANDARD DEVIATION AND

THE AVERAGE NUMBER OF EVALUATIONS BEFORE CONVERGENCE

D M

EM

ISM

rvM

SIM

SM

AP

14,456*

14,576*

84

650

14,434

14,567

63

658

14,475

14,573

97

754

14,465

14,581

76

550

14,508

14,653

58

812

14,542

14,647

72

699

CX

14,419

14,433

14

4124

14,423

14,439

15

4009

14,423

14,436

14

4483

14,417

14,437

15

4417

14,423

14,437

14

3984

14,423

14,435

14

3928

OX1

14,442

14,537

59

317

14,483

14,552

48

266

14,454

14,554

58

353

14,472

14,543

35

388

14,492

14,561

39

385

14,487

14,564

57

397

OX2

14,431

14,475

28

606

14,430

14,482

35

580

14,435

14,473

21

748

14,441

14,478

26

692

14,441

14,500

35

572

14,452

14,515

40

438

PMX

14,469

14,523

35

276

14,485

14,552

36

212

14,454

14,511

38

454

14,446

14,546

57

244

14,516

14,584

45

216

14,510

14,576

39

257

POS

14,430

14,478

36

791

14,458

14,486

26

764

14,430

14,472

22

1139

14,434

14,466

23

946

14,444

14,518

50

733

14,459

14,510

31

503

VR

14,453

14,486

22

795

14,453

14,501

33

1685

14,450

14,498

36

719

14,456

14,493

24

918

14,464

14,525

29

1109

14,468

14,516

30

825

converged at level a, if this gene has the same value in at least an a
of the individuals in the population. A population converges at level
/3, if at least a 0 of the genes has converged. W e choose a and /3 to
be equal to 95 and 100, respectively. This convergence criterion does
not always guarantee the termination of the algorithm. Therefore, we
decide that the population has also converged if in a certain number
of subsequent iterations the average fitness of the population has not
improved.

VII. RESULTS OF THE EXPERIMENTS

W e study the behavior of the algorithm described with respect to
the different combinations of crossover and mutation operators of
Section V.

If we consider the genetic algorithm as a 7-tuple G A
(A, 02,03,04, p c P ™ , 07) where A is the population size, a?
is the selection criterion, 03 the crossover operator, «4 the mutation
operator, pc crossover probability, p ™ mutation rate, a? the reduction
criterion for reducing the population to its original size, then we can
describe our algorithm as follows: A = 10, 50; «2 = based on the rank
of the objective function; 03 = AP, CX, O X 1 , O X 2 , P M X , POS, VR;
04 = D M , E M , ISM, rVM, SIM, SM; p^ = 1; p^, = 0.01; o? = ek'fúf.

For all 84 (2 x 7 x 6) parameter combinations to be considered
we carry out 20 searches.

For the experiments we use a simulation, consisting of the 3000
first cases obtained by Herskovits [49], of the A L A R M network,
which was designed by Beinlinch ef of. [5] for modeling a problem
in a medical held. The objective function which expresses the quality
of the structures is the natural logarithm of the a poafen'on probability
of the database of cases, given the structure to be evaluated, following
the formula of Cooper and Herskovits [4].

The best and average evaluations as well as the accompanying
standard deviations obtained with the different combinations of

TABLE II
POPULATION SEE 50. FOR ALL COMBINATIONS OF OPERATORS,

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE

EVALUATION, THE ACCOMPANYING STANDARD DEVIATION AND

THE AVERAGE NUMBER OF EVALUATIONS BEFORE CONVERGENCE

D M

EM

ISM

rvM

SIM

SM

AP

14,422*

14,441*

19

7921

14,422

14,449

17

6529

14,422
14,447

17

7782

14,423

14,447

22

8355

14,426

14,512

39

3397

14,442

14,518

41

3498

CX

14,422

14,428

10

13,447

14,423

14,425

4

14,047

14,423
14,428
10

13,336

14,422

14,425

6

15,467

14,423
14,424

1
12,321

14,417
14,426

9
15,022

OX1

14,422

14,443

15

6569

14*424

14,447

11

6685

14,417
14,448
14
7148

14,417

14,442

15

7331

14,427
14,457

13
4848

14,430

14,455

15

5050

OX2
14,422

14,433

13

3862

14,423

14,436

13

3489

14,423
14,432

12
3742

14,423

14,433

12

3944

14,423
14,442

11
3240

14,423
14,437

12
3113

PMX

14,423

14,436

14

4350

14,423

14,444

15

3614

14,423
14,437
14
4331

14,417

14,433

13

4683

14,424
14,446

15
3165

14,427

14,453

15

2983

POS

14,423

14,430

11

4049

14,423
14,437
14
3842

14,423
14,435
13
3905

14,423

14,439

13

3898

14,423
14,439

12
3639

14,423

14,442

12

3242

VR

14,424

14,451

11

10,052

14,424

14,446

13

9406

14,424
14,445

12
9872

14,424

14,442

13

9445

14,433
14,460

15
8161

14,432

14,455

12
7910

genetic operators for the population sizes 10 and 50 are presented in

the Tables I and II, respectively. If we order the crossover operators

with respect to their average evaluations, from best to worst we And:

CX, OX2, POS. VR, PMX, OX1, AP for population size 10 and CX,

OX2, POS, PMX, OXt, VR, AP for population size 50. Noticeable is

that as the average evaluation increases, the standard deviation also

grows. Ordering the mutation operators in the same way, we obtain:

DM, ISM, IVM, EM, SM, SIM for A = 10 and IVM, DM, ISM,
EM, SIM, SM for A = 50.

If we apply the Kruskal-Wallis test for comparing the behavior of
the crossover operators, statistically significant differences are found

(p < 0.0001) for both A = 10 as well as for A = 50. For the mutation

operators we obtain the same result.

For all operators considered, the performance of the algorithm

becomes better as the population size grows. For the crossover

operators, however, this tendency is stronger than for the mutation

operators.

The evaluation found for the structure induced by the K2 algorithm

when this algorithm is applied to the order that was used for creating

the database of cases is -1.4412e04.

As can be observed in the Tables I and II, none of the best orderings

obtained in the searches is able to improve the evaluation of this initial

ordering. For population size 50, however, the worst best evaluation

obtained is — 1.4442e04, while 4 combinations give orderings the

structure of which is — 1.4417e04.

In the Tables I and II also the convergence velocity of the algorithm

is represented. Ranking the crossover operators from the fastest to the

slowest, we ñnd: PMX, O X 1, OX2, AP, POS, VR, C X for A = 10 and

OX2, POS, PMX, AP, OX1, VR, C X for A = 50. For the mutation

operators, we ñnd: SM, D M , SIM, IVM, EM, ISM for A = 10 and

SLM, SM, EM, ISM, D M , IVM for A = 50. W e observe that the C X

operator, which gives the best results, implies a slow convergence,

while the O X 2 operator, which is the second best operator, results

in a considerably faster algorithm. However, we also see that the

C X operator only needs a small population size to give good results

while the other crossover operators need larger population sizes. With

respect to the convergence velocity of the mutation operators, we see

that the S M operator, which is one of the fastest ones, gives the

worst results.

VIH. CONCLUDING REMARKS

W e have presented a method for structure learning of BN's from

a database of cases with which it is not necessary to assume an

ordering between the system variables since the method is based on

searching for the optimal ordering of variables. For this search we

have proposed a genetic algorithm that uses the K2 algorithm for

evaluating the orderings and that creates new offspring orderings by

applying the genetic operators that were already used in the genetic

tackling of the TSP.

The empirical results obtained are comparable with the results that

we presented in [16], where we also tackled the structure learning

of BN's with genetic algorithms, however, assuming an ordering

between the variables.

It would be interesting to see which results would be obtained

if the best orderings found with the method described in this paper

were used as an input for an order-assuming (genetic) algorithm for

learning the structure of BN's.

ACKNOWLEDGMENT

The authors thank G. F. Cooper for providing his simulation of

the A L A R M network.

REFERENCES

[1] J. Pearl, Pro6a6:Vúfic jkajoning in /nfeMgenf Syafenu: A/ertvor&r of
fVawj/e/e /n/erencg. San Mateo, CA: Morgan Kaufmann, 1988.

[2] R. E. Neapoli, P/ioW%Yúfi'c Agasoning ¿n Eiperf System?. TTigory and
Afgon'fAmj. New York: Wiley, 1990.

[3] F. V. Jensen, "Introduction to Bayesian networks," Dept. of Mathematics
and Computer Science, Univ. of Aalborg, Denmark, Tech. Report IR
93-2003, 1993.

[41 G. F. Cooper and E. A. Herskovits. "A Bayesian method for the
induction of probabilistic networks from data," Mocn. ¿gaming, vol.
9, no. 4, pp. 309-347, 1992.

[5] I. A. Beinlinch, H. J. Suermondt, R. M. Chavez, and G. F. Cooper,
"The ALARM monitoring system: A case study with two probabilistic
inference techniques for belief networks," in f roc. 2nd Euro/7. Con/ on
Arf#c:o/ /nfg/fi'ggnce in AWicing, 1989, pp. 247-256.

[6] C. K. Chow and C. N. Liu, "Approximating discrete probability distri­
butions with dependence trees," /Egg Tronj. /n/brm. 7%gory, vol. 14,
no. 3, pp. 462^167, 1968.

[7] J. Suzuki, "A construction of Bayesian networks from databases based
on an M D L principle," in fmc. 9fn Con/ [/ncgrfainfy ,n Arm/Ktaf
WgfWggncg, 1993, pp. 266-273.

[8] J. Rissanen, "Modeling by shortest data description," Aufomafica, vol.
14, pp. 465-471, 1978.

19] G. Rebane and J. Pearl, "The recovery of causal poly-trees from
statistical data," in [/ncgrfoinfy "" Arfi/wW WgMggncg 3, 1989, pp.
175-182.

[10] S. Acid, L. M. de Campos, A. Gonzalez, R. Molina, and N. Pérez
de la Blanca, "Learning with CASTLE," SymWic onj Quanfifafivg
Approac/iga fo f/ncgrrainfy, Lgcfwrgj AWgs in Compwf. Sci 348, R. Kruse
and P. Siegel Eds. Berlin: Springer-Verlag, 1991, pp. 99-106.

[11] S. Srinivas, S. Russell, and A. Agogino, "Automated construction of
sparse Bayesian networks from unstructured probabilistic models and
domain information," in C/ncgrfainfy in Arfz/iciof /nfg&ggncg 3, Windsor,
Ontario, Canada, 1990, pp. 295-308.

[12J E. Herskovits and G. Cooper, "KUTATÓ: An entropy-driven system for
construction of probabilistic expert systems from databases," Knowl­
edge Systems Laboratory, Medical Computer Science, Stanford Univ.,
Stanford, CA, Rep. KSL-90-22, 1990.

[13] D. M. Chickering, D. Geiger, and D. Heckerman, "Learning Bayesian
networks: Search methods and experimental results," in frefiminary
Papers Jfn Air. WoMüAop o» Arfi^ciof ínkWigence anj gfafiafica, 1995,
pp. 112-128.

[14] D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian
networks: The combination of knowledge and statistical data," in
Microsoft, Technical Report MSR-TR-94-09, 1994.

[15] R. R. Bouckaert, "Properties of Bayesian belief networks learning algo­
rithms," in Pmc. YOfAAnnWConf (/wgTToiMfj'inArd/iciaf/nfeHigence,
Washington, 1994, pp. 102-109.

[16] P. Larrañaga, R. H. Murga, M . Poza, and C. M . H. Kuijpers, "Structure
learning of Bayesian networks by hybrid genetic algorithms," in Pyefin:-
inary Paper; 5fn /nf. WbrbAop on Arfi^ciai Mg/Wgence an¿ Jfofiafica,
1995, pp. 310-316.

[17] R. R. Bouckaert "Optimizing causal orderings for generating DAG's
from data," in f me. 8fn Con/: (/ncerfainfy in Arfificia/ /nfe/iigence,
1992, pp. 9-16.

[181 M . Singh and M . Val torta, "An algorithm for the construction of
Bayesian network structures from data," in Pmc. 9fn Co»/ (/ncer&unfy
in /Wi/%W /nfeiiigence, Washington, D C , 1993, pp. 259-265.

[19] W . Lam and F. Bacchus, "Learning Bayesian belief networks. A n
approach based on the M D L principle," CompKfofionoi /nfeiiigence,
vol. 10, no. 4, 1994.

[20] , "Using causal information and local measures to learn Bayesian
networks," in fmc. Pfn Co»/ ¿/ncgrfainfy in Arfi/ictaf /nfe/figence,
Washington, D C , 1993. pp. 243-250.

[21] P. Larrañaga, M . Poza, Y. Yurramendi, R. H. Murga, and C. M .
H. Kuijpers, "Structure learning of Bayesian networks by genetic
algorithms: A performance analysis of control parameters," /EEE Trana.
PaffemAnai Macn. /nfeii., in press.

[22] G. M . Provan and M . Singh, "Learning Bayesian networks using
feature selection," in /Wimmary Paper? Jfn /nf. WbrtiAop on Arfificiaf
/nfeiiigence an¿ Sfafiafica, PL, 1995, pp. 450-456.

[23] L. R. Andersen, J. H. Krebs, and J. D. Andersen, "STENO: A n expert
system for medical diagnosis based on graphical models and model
search," /. App/. Sfaf., vol. 18, no. 1, pp. 139-153, 1991.

[24] S. Kreiner, "On tests of conditional independence," Statistical Research
Unit, University of Copenhagen, Res. Rep. 89/14, 1989.

[25] R. M. Fung and S. L. Crawford, "Constructor: A system for the
induction of probabilistic models," in fmc. AAA/, Boston, M A , 1990,
pp. 762-769.

[26] S. L. Lauritzen, B. Thiesson, and D. J. Spiegelhalter, "Diagnostic sys­
tems created by model selection methods—A case study," in Prg/iminary
Papers 4fn /nf. Wbrtanop on Arfi/iciai /nfe/Zigence anj Aafiafica, 1993,
pp. 93-105.

[27] H. Akaike, "New look at the statistical model identification," /EEE
Thma. Aufomaf. Confr, vol. 19, pp. 716-722, 1974.

[28] D. Madigan, A. E. Raffery, J. C. York, J. M . Bradshaw, and R. G.
Almond, "Strategies for graphical model selection," in Prefúm'nory
Popera 4fn /nf. Wbrbnop on Arfi/zciai /nfeHi'gence an¿ Sfafiafica, 1993,
pp. 331-336.

[29] R. Mechling and M . Valtorta, "PaCCIN: A parallel constructor of
Markov networks," in Pnz/wni'nary Popery 4fn /nf. Wbrbnop on Arfi/zcKÜ
/nfe/Zigence anj Sfafiafica, 1993, pp. 405-410.

[30] G. M. Provan, "Model selection for diagnosis and treatment using
temporal influence diagrams," in Pre/iminary Popera Jfn /nf. Wbrtanop
on Arfi/iciof /nfefYigence onj Aafiafica, 1995, pp. 469-480.

[31] J. H. Holland, Aaopfofion in Nafwraf an¿ Arfi^íiaZ Svafema. Ann
Arbor, MI: The Univ. of Michigan Press, 1975.

[32] U. K. Chakraborty and D. G. Dastidar, "Using reliability analysis to es­
timate the number of generations to convergence in genetic algorithms,"
/nfbrm. Proc. Leff., vol. 46, no. 4, pp. 199-209, 1993.

[33] A. E. Eiben, E. H. L. Aarts, and K. M . van Hee, "Global convergence
of genetic algorithms: A n infinite Markov chain analysis," Compiling
Science /Vbfea, Eindhoven Univ. of Tech., 1990.

[34] G. Rudolph, "Convergence analysis of canonical genetic algoritms,"
submitted to /EEE Trana. /Vewrai /Vefworta.

[35] D. E. Goldberg, Generic Afgorz'fnma in Searcn, Opfimizafion an¿ Mo-
cnine ¿earning. Addison-Wesley, 1989.

[36] L. Davis, Ed., //and%oo& o/ Generic A/gorifnma. N e w York: Van
Nostrand Reinhold, 1991.

[37] P. Larrañaga, C. M . H. Kuijpers, and R. H. Murga, "Evolutionary algo­

rithms for the travelling salesman problem: A review of representations
and operators," submitted to Arfi/ /nfefi #ev.

[38] D. E. Goldberg and J. R. Lingle, "Alleles, loci and the traveling salesman
problem," in Proc. /nf. Con/ Generic Afgorifnma ano" rneirAppficofiona,
Pittsburgh, PA, 1985, pp. 154-159.

[39] I. M . Oliver, D. J. Smith, and J. R. C. Holland, "A study of permutation
crossover operators on the TSP," in Proc. 2na" /nf. Con/ on Generic
Afgorifnma ono" TTieir Appiicofiona, Cambridge, M A , 1987, pp. 224-230.

[40] L. Davis, "Applying adaptive algorithms to epistatic domains," in Pmc.
/nf. /oinf Con/ on Arfi/icia/ /nfeiiigence, Los Angeles, CA, 1985, pp.
162-164.

[41] G. Syswerda, "Schedule optimization using genetic algorithms," in [36],
pp. 332-349.

[42] H. MUhlenbein, "Parallel genetic algorithms, population genetics and
combinatorial optimization," in Proc. . W /nf. Com/ on Ge«e»'c /Ugo-
nfnma, Arlington, VA, 1989, pp. 416^*21.

[43] P. Larrañaga, C. M . H. Kuijpers, M. Poza, and R. H. Murga, "Optimal
decomposition of Bayesian networks by genetic algorithms," Dept. of
Com. Science and Art. Intel., Univ. of the Basque Country, Int. Rep.
EHU-KZAA-IKT-3-94, 1994.

[44] Z. Michalewicz, Genefic Afgorifnma + Dafa Arwcfwrea = Evoiwfion
Programa. Berlin: Springer-Verlag, 1992.

[45] W . Banzhaf, "The "molecular" traveling salesman," Bio/. Cyoem., vol.
64, pp. 7-14, 1990.

[46] D. B. Fogel, "A parallel processing approach to a multiple travel­
ing salesman problem using evolutionary programming," in Pmc. 4fn
Annwa/Porai/e/Proceaaing Symp., Fullerton, CA, 1990, pp. 318-326.

[47] D. Whitley, "The G E N I T O R algorithm and selection pressure: W h y
rank-based allocation of reproductive trials is best," in Proc. 3ra" /nf.
Con/ on Generic Afgorifn/na, Arlington, VA, 1989, pp. 116-121.

[48] K. A. de Jong, "An analysis of the behavior of a class of genetic adaptive
systems," Ph.D. Dissertation. Univ. of Michigan. 1975.

[49] E. H. Herskovits, "Computer based probabilistic-network construction,"
Doctoral Dissertation, Dept. Medical Information Sciences, Stanford
University. Stanford, CA. 1991.

