
DEPARTAMENTO DE INTELIGENCIA ARTIFICIAL

Facultad de Informática
Universidad Politécnica de Madrid

PhD THESIS

Semi-supervised subspace clustering
and applications to neuroscience

Author

Luis Guerra
MS Computer Science

MS Artificial Intelligence

PhD supervisors

Concha Bielza
PhD Computer Science

Vı́ctor Robles
PhD Computer Science

2012

Thesis Committee

President:

External Member:

Member:

Member:

Secretary:

La constancia es el

complemento ideal para el

resto de virtudes humanas

Acknowledgements

I intend to write a brief acknowledgement section but covering all the people who have

been important to finish this thesis.

Foremost, I would like to thank my supervisors Concha Bielza and Vı́ctor Robles, and

also Pedro Larrañaga, for these years of intense work, full of meetings, reviews and, mainly,

learning moments. Not only this work, but also myself, would not be the same without all

these referred moments.

Also related to this work, and more specifically to the interdisciplinary aspect, I would

like to thank Javier DeFelipe, Rafael Yuste and Ruth Benavides-Piccione, for their patience

at teaching some of their huge knowledge about neuroscience to people like me, who knew

almost nothing about this amazing field.

I also want to thank Nahid Shahmehri and Jose M. Peña not only for giving me the

opportunity of visiting their group, but also for their hospitality, support with all the stuff that

arose at that time, and also their advice, during my stay in Sweden at Linköping University

with the Division for Database and Information Techniques.

Besides all these people, I want to thank all the managers and members of the Cajal Blue

Brain Project (some of them were previously named) since this thesis would not have been

possible without the economical and structural support of this project.

I want to begin the less formal part of this section thanking all my friends, colleagues,

and teammates who have been with me throughout all these years sharing their lives. I do

not want to be more specific because I certainly know that they all recognise who they are.

Last but of course not least, I wish to thank my family, specially my parents and my

sister, for all the support and love, and also for being the best role models to follow in my

life. To them I dedicate this work.

Abstract

Machine learning techniques are used for extracting valuable knowledge from data. Nowa-

days, these techniques are becoming even more important due to the evolution in data ac-

quisition and storage, which is leading to data with different characteristics that must be

exploited. Therefore, advances in data collection must be accompanied with advances in

machine learning techniques to solve new challenges that might arise, on both academic and

real applications.

There are several machine learning techniques depending on both data characteristics and

purpose. Unsupervised classification or clustering is one of the most known techniques when

data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters)

according to their similarity. On the other hand, supervised classification needs data with

supervision (labeled data) and its aim is to make predictions about labels of new data. The

presence of data labels is a very important characteristic that guides not only the learning

task but also other related tasks such as validation.

When only some of the available data are labeled whereas the others remain unlabeled

(partially labeled data), neither clustering nor supervised classification can be used. This

scenario, which is becoming common nowadays because of labeling process ignorance or cost,

is tackled with semi-supervised learning techniques. This thesis focuses on the branch of

semi-supervised learning closest to clustering, i.e., to discover clusters using available labels

as support to guide and improve the clustering process.

Another important data characteristic, different from the presence of data labels, is the

relevance or not of data features. Data are characterized by features, but it is possible

that not all of them are relevant, or equally relevant, for the learning process. A recent

clustering tendency, related to data relevance and called subspace clustering, claims that

different clusters might be described by different feature subsets. This differs from traditional

solutions to data relevance problem, where a single feature subset (usually the complete set

of original features) is found and used to perform the clustering process.

The proximity of this work to clustering leads to the first goal of this thesis. As commented

above, clustering validation is a difficult task due to the absence of data labels. Although

there are many indices that can be used to assess the quality of clustering solutions, these

validations depend on clustering algorithms and data characteristics. Hence, in the first goal

three known clustering algorithms are used to cluster data with outliers and noise, to critically

study how some of the most known validation indices behave.

The main goal of this work is however to combine semi-supervised clustering with subspace

clustering to obtain clustering solutions that can be correctly validated by using either known

indices or expert opinions. Two different algorithms are proposed from different points of view

to discover clusters characterized by different subspaces. For the first algorithm, available

data labels are used for searching for subspaces firstly, before searching for clusters. This

algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping

known labels to subspaces using supervised classification techniques. Subspaces are then used

to find clusters using traditional clustering techniques. The second algorithm uses available

data labels to search for subspaces and clusters at the same time in an iterative process.

This algorithm assigns each instance to each cluster based on a membership probability (soft

clustering) and is based on integrating known labels and the search for subspaces into a

model-based clustering approach. The different proposals are tested using different real and

synthetic databases, and comparisons to other methods are also included when appropriate.

Finally, as an example of real and current application, different machine learning tech-

niques, including one of the proposals of this work (the most sophisticated one) are applied to

a task of one of the most challenging biological problems nowadays, the human brain model-

ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain

cortex, which makes impossible not only any modeling attempt but also the day-to-day work

without a common way to name neurons. Therefore, machine learning techniques may help

to get an accepted solution to this problem, which can be an important milestone for future

research in neuroscience.

Resumen

Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos.

Hoy en d́ıa, la importancia de estas técnicas está siendo incluso mayor, debido a que la

evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes

caracteŕısticas que deben ser explotadas. Por lo tanto, los avances en la recolección de datos

deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos

retos que pueden aparecer, tanto en aplicaciones académicas como reales.

Existen varias técnicas de aprendizaje automático dependiendo de las caracteŕısticas de

los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas

más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo

descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra

parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su

objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las

etiquetas es una caracteŕıstica muy importante que gúıa no solo el aprendizaje sino también

otras tareas relacionadas como la validación.

Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto

permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación

supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en d́ıa

debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas

de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado

más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles

como apoyo para guiar y mejorar el proceso de clustering.

Otra caracteŕıstica importante de los datos, distinta de la presencia de etiquetas, es la

relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero

es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de

aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y

llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas

por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para

el problema de la relevancia de los datos, en las que se busca un único subconjunto de

atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso

de clustering.

La cercańıa de este trabajo con el clustering lleva al primer objetivo de la tesis. Como

se ha comentado previamente, la validación en clustering es una tarea dif́ıcil debido a la

ausencia de etiquetas. Aunque existen muchos ı́ndices que pueden usarse para evaluar la

calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de

clustering utilizados y de las caracteŕısticas de los datos. Por lo tanto, en el primer objetivo

tres conocidos algoritmos se usan para agrupar datos con valores at́ıpicos y ruido para estudiar

de forma cŕıtica cómo se comportan algunos de los ı́ndices de validación más conocidos.

El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado

con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas

de forma correcta utilizando ı́ndices conocidos u opiniones expertas. Se proponen dos algo-

ritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por

diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus-

car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna

cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-

cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo

utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru-

paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con

una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas

y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son

probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones

con otros métodos cuando resulten apropiadas.

Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes

técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más

sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en d́ıa, el

modelado del cerebro humano. Espećıficamente, expertos neurocient́ıficos no se ponen de

acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo

cualquier intento de modelado sino también el trabajo del d́ıa a d́ıa al no tener una forma

estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático

pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un

importante hito para investigaciones futuras en neurociencia.

Contents

Contents xv

Acronyms xvii

I INTRODUCTION 1

1 Introduction 3

1.1 Evidences and motivation . 7

1.2 Hypothesis and objectives . 7

1.3 Document organization . 8

II BACKGROUND 11

2 Pattern recognition 13

2.1 Introduction . 13

2.2 Supervised classification . 15

2.2.1 Supervised classification approaches 16

2.2.2 Validation . 18

2.3 Unsupervised classification . 20

2.3.1 Unsupervised classification approaches 22

2.3.2 Validation . 27

2.4 Semi-supervised learning . 31

2.4.1 Semi-supervised classification . 32

2.4.2 Semi-supervised clustering . 33

2.5 Dimensionality reduction . 37

2.5.1 Subspace clustering . 39

III PROPOSALS 49

3 Clustering validation indices 51

3.1 Introduction . 51

xiii

xiv CONTENTS

3.2 Algorithms and indices . 52

3.3 Experimental results . 52

3.3.1 Data . 52

3.3.2 Evaluation process . 53

3.3.3 Results . 54

3.4 Summary and discussion . 61

4 Semi-supervised subspace hard clustering 63

4.1 Introduction . 63

4.2 Knowledge mapping framework (KMF) . 63

4.3 Knowledge mapping specific instantiation . 68

4.4 Experimental results . 68

4.4.1 Data . 69

4.4.2 Evaluation process . 70

4.4.3 Results . 70

4.4.4 Comparison with a constrained clustering algorithm 74

4.5 Summary and discussion . 76

5 Semi-supervised subspace soft clustering 81

5.1 Introduction . 81

5.2 Basic theory . 82

5.3 Semi-supervised subspace soft clustering (3SMBC) 85

5.4 Experimental results . 98

5.4.1 Data . 98

5.4.2 Evaluation process . 98

5.4.3 Results . 99

5.4.4 3SMBC vs CLWC . 102

5.5 Summary and discussion . 105

IV APPLICATIONS IN NEUROSCIENCE 109

6 Introduction to neuroscience 111

6.1 Introduction . 111

6.2 History . 112

6.3 The Blue Brain Project . 116

6.4 The Cajal Blue Brain Project . 116

6.5 Problem statement . 117

7 Pyramidal neurons vs interneurons 119

7.1 Introduction . 119

7.2 Experimental results . 121

7.2.1 Data . 121

CONTENTS xv

7.2.2 Evaluation process . 121

7.2.3 Results . 122

7.2.4 Algorithms comparison and feature relevance 125

7.3 Summary and discussion . 127

8 Subtypes of interneurons 129

8.1 Introduction . 129

8.2 Classification experiment . 130

8.3 Experimental results . 132

8.3.1 Data . 132

8.3.2 Evaluation process . 132

8.3.3 Results . 134

8.4 Summary and discussion . 148

V CONCLUSIONS AND FUTURE WORK 151

9 Conclusions 153

9.1 Publications . 154

10 Future Work 157

10.1 Clustering validation . 157

10.2 Semi-supervised subspace clustering . 158

10.3 Real applications in neuroscience . 160

Bibliography 162

xvi CONTENTS

Acronyms

3SMBC semi-supervised subspace model-based clustering

AIC Akaike’s information criterion

ARI adjusted Rand index

B basket

BBP Blue Brain Project

BIC Bayesian information criterion

BSS between-cluster sum of squares

CBBP Cajal Blue Brain Project

CDCDD constraint based dimension correlation and distance divergence

CLIQUE clustering in quest

CLWC constrained locally weighted clustering

COSA clustering on subsets of attributes

CQI clustering quality index

CRISP-DM cross-industry standard process for data mining

CSIC Consejo Superior de Investigaciones Cient́ıficas

CTh candidates threshold

DB Davies-Bouldin

DBSCAN density-based spatial clustering of applications with noise

DiSH detecting subspace cluster hierarchies

DOC density-based optimal projective clustering

EA evolutionary algorithm

xvii

xviii ACRONYMS

EM expectation-maximization

ENCLUS entropy-based clustering

EPFL École Polytechnique Fédérale de Lausanne

FINDIT fast and intelligent subspace clustering algorithm using dimension voting

FIRES filter refinement subspace clustering

FN false negative

FP false positive

FSE feature subset extraction

FSS feature subset selection

GA genetic algorithm

HARP hierarchical approach with automatic relevant dimension selection for projected clus-

tering

HMRF hidden Markov random field

HT horse-tail

IC Instituto Cajal

KDD knowledge discovery in databases

KL Kullback-Leibler

KMF knowledge mapping framework

K-nn K-nearest neighbors

LAC locally adaptive clustering

LR logistic regression

MAFIA merging of adaptive finite intervals

MLP multilayer perceptron

MML minimum message length

MPCKM metric pairwise constrained K-means

MT Martinotti

NB näıve Bayes

ACRONYMS xix

ORCLUS oriented projected cluster generation

P3C projected clustering via cluster cores

PCA principal component analysis

PC principal component

PLS partial least squares

PreDeCon preference weighted density connected clustering

PROCLUS projected clustering

SCHISM support and Chernoff-Hoeffding bound-based interesting subspace miner

SCKMM semi-supervised clustering Kernel method based on metric learning

SISC semi-supervised impurity based subspace clustering

SSPC semi-supervised projected clustering

SUBCLU density-connected subspace clustering

SVM support vector machine

TAN tree augmented näıve Bayes

TN true negative

TP true positive

UPM Universidad Politécnica de Madrid

WSS within-cluster sum of squares

Part I

INTRODUCTION

1

Chapter 1
Introduction

With constant advances in both computer technology and data acquisition, the amount of

data that can be not only stored but also processed is getting larger and larger. Due to the

vast amount, and also the complexity of data, human beings cannot analyze the information

directly, and machine learning techniques are used for extracting valuable knowledge from

data. Therefore, advances in machine learning techniques must be linked to available data

and their characteristics, adapting and creating algorithms depending on data requirements.

There are several machine learning tasks, but traditionally, two of the most known are

supervised classification and unsupervised classification or clustering. These two tasks are

different depending on both input data characteristics and purpose, and their understanding

is necessary to locate the work presented in this thesis.

Regarding data characteristics, a data set is composed of single instances. Each instance

is uniquely identified by a descriptive feature vector, where each feature is a random variable

that represents a measurement about a characteristic or an event related to the instance.

Besides, an instance may be also identified by a class variable, also called label or merely

class, that represents the classification of an instance. This label guides the learning process

when available, and is the essential difference between data in supervised classification and

clustering. Thus, in supervised classification each single instance is characterized by a pair

of features vector and class variable, and only by a feature vector, without any kind of

supervision, in unsupervised classification.

Regarding the purpose, the goal of supervised classification is learning a model according

to some instances, which are called training data. This model is then used to make label

predictions, based only on the known ones, about new instances that might appear without

labels. Therefore, supervised classification is a predictive task. On the other hand, the goal

of clustering is to find hidden structures in data, grouping instances based on their feature

vectors. Therefore, clustering is a descriptive task. There are some others, but supervised

classification and clustering are pattern recognition tasks both aiming at finding classes (labels

or groups) for instances.

Although supervised classification and clustering must be seen as different tasks and com-

parisons between them should be made wisely, the lack of labels in clustering, and therefore of

3

4 CHAPTER 1. INTRODUCTION

supervision, turns some related processes, like validation, into a more difficult process than in

supervised classification. Therefore, data labels, when available, might provide an important

knowledge that can be used, not only for validating, but also for helping during the learning

process.

Semi-supervised learning

The importance of data labels is evident, since their presence is one of the main reasons to

select the pattern recognition task. The main problem related to labels is they are still scarce

in some domains due to different reasons. On some occasions this absence is due to the label

obtaining cost, either in money or in personnel. The data gathering procedure may have a

high cost depending on the domain, like in neuroscience or genomics. Nevertheless, this is not

the most challenging situation, since on other occasions, the absence of data labels is directly

due to the ignorance about them. Hence, pattern recognition techniques become even more

important concerns in that case.

When the absence of data labels is complete, i.e., a data set with all unlabeled instances,

clustering is used as pattern recognition task as commented above. However, between the

situations of total ignorance and total knowledge about data labels, there is a possible inter-

mediate situation where labels for some instances are known, but not for the remaining ones.

This kind of data is called partially labeled data.

When dealing with a partially labeled data, and taking into account the previously pre-

sented tasks, there are three different situations:

� To use a supervised classification approach. This situation might be considered when

the number of labeled instances is high enough. Therefore, a model is learned from

the labeled instances and the remaining labels are induced from the model. When the

number of labeled instances is not high enough, the model that can be obtained could

not be accurate or even usable. Note that predicted data labels for unlabeled data will

be based only on the known labels from labeled data.

� To use a clustering approach. If the number of labeled instances is very low or even when

the user does not matter to discard them, clustering might be used as if a completely

unlabeled data set were available. Therefore, available data labels are discarded and are

not used during the learning process. Nevertheless, labels are not completely useless in

this choice since they can be used to validate the obtained results, evaluating whether

the found groups are consistent with the data labels.

� Rigorously based on the input data characteristics of each task, neither supervised

classification nor clustering can be used as approaches to solve the learning task. This

fact leads to an intermediate task called semi-supervised learning.

Semi-supervised learning can be used when available data have some partial supervision,

like when dealing with partially labeled data. Depending on whether the unlabeled instances

5

can be classified into one of the known labels or if there is the possibility of discovering new

previously unknown labels, the task can be called semi-supervised classification or semi-

supervised clustering, respectively. A common characteristic of these two tasks is that all

available instances are somehow used to perform the learning process. Thus, if learning is

based on some supervised classification algorithm, unlabeled data are employed to enhance

the model. On the other hand, if learning is based on some clustering algorithm, labeled data

are used trying to improve the obtained results.

The summary of where semi-supervised classification and semi-supervised clustering are

situated depending on input data type and purpose, and also with respect to supervised

classification and clustering, can be seen in Figure 1.1.

task

input data

clustering semi-supervised
clustering

semi-supervised
classification

supervised
classification

unlabeled
data

partially
labeled data

labeled
data

discovering
new labels

classifying into
known labelspurpose

Figure 1.1: Pattern recognition tasks depending on data and task purpose.

Subspace search

Considering again the huge amount of available data, and independently of the task, the

available number of features may become very high. This evidence turns the solution process

more complicated and, even in some cases, unsolvable. For this reason, a dimensionality

reduction if often carried out before or together with the learning task, with the aim of

obtaining not only more accurate models, but also simpler. Simplest models are preferable in

order to satisfy the well-known Occam’s razor [32], which recommends the use of parsimonious

models.

Dimensionality reduction can be achieved either by selecting a subset of features or by

extracting new features from the available ones. The first approach is a process called feature

subset selection (FSS), whereas the second approach is called feature subset extraction (FSE).

Traditionally, both approaches aim at obtaining a single subset of features to perform the

learning task. Therefore, there is a global dimensionality reduction. One of the main disad-

vantages of FSE is that new extracted features can be difficult to interpret when they must be

explained. For this reason, FSS may be preferable although both approaches are commonly

used

FSS is, similarly to validation, often easier when data labels are available because they

can be used to guide the selection process. Maybe for this reason, FSS has been widely

studied for supervised classification. However, FSS in clustering is still an open topic that

6 CHAPTER 1. INTRODUCTION

requires many improvements. This fact has not prevented that a new approach, related to

FSS and called subspace clustering, has emerged for clustering tasks.

In clustering task, the found subset of features is used for finding hidden structures

in data. Nevertheless, it is possible that using a single subset of features, some hidden

structures in data remain hidden. Hence different subsets of features would be necessary to

find all the structures in data. Therefore, there are several local dimensionality reductions.

Subspace clustering is a tendency based on this assumption that has been successfully applied

in clustering problems recently.

The summary of where the search for subspaces is situated depending on how the subsets

of features are obtained and the number of them, and also with respect to other known

dimensionality reduction processes, can be seen in Figure 1.2.

process

obtaining

FSE FSS search for
subspaces

extraction selection

one (global) several (local)number

Figure 1.2: Dimensionality reduction processes depending on how the subsets of features are obtained
and the number of them.

Applications

From this introduction, the close relation between data and machine learning is evident.

There is not only (and at least) one machine learning task to solve each learning problem

that can arise from data, but also machine learning tasks are constantly evolving either to

solve new problems that can emerge or to obtain more accurate solutions for the known ones.

Besides, machine learning is applied in very different fields. One of the best examples is

“bioinformatics”: machine learning is very often applied to solve biological problems, such as

genomics or proteomics. Following this guideline, and also related to biology, neuroscience is

one of the fields that is receiving increasing amounts of attention nowadays.

Chapter outline

This chapter continues with the presentation of the evidences that can be extracted from this

introduction and the main motivations for this thesis. Then, the hypothesis and objectives

are presented in Section 1.2. Finally the complete organization of this manuscript is detailed

in Section 1.3.

1.1. EVIDENCES AND MOTIVATION 7

1.1 Evidences and motivation

The research of this thesis is centered on the topics presented in the previous introduction,

focusing on clustering validation and mainly on semi-supervised clustering problems together

with subspace clustering. Besides, an important aspect of this research is the application

of machine learning in general, and the obtained advances in particular, to neuroscience, as

an example of challenging and real task. Before detailing the motivations for these topics, a

series of evidences, extracted from the previous introduction, are presented:

� Clustering algorithms must be used when the aim is to find new and hidden groups in

data, taking into account the difficulty of processes as validation due to the absence of

labels.

� Data labels, when available, might help not only to validate results, but also to find

them. When data labels are used together with unlabeled data in a clustering task, it

is called semi-supervised clustering.

� Due to possible huge amounts of features available, FSS process is often necessary to

find more accurate and simpler solutions.

� Related to the previous evidence, data groups can be hidden in different data dimen-

sions in clustering. Therefore, subspace clustering, where different feature subsets are

searched to characterize each group, can be used to find hidden data structures.

� There are many interdisciplinary tasks in which data mining might help to find solutions

for real problems in fields like neuroscience.

The main motivation for this thesis is to extract valuable knowledge from partially labeled

data. This kind of data arises in challenging problems, mainly when instances are not labeled

due to ignorance about their labels and also when completely unknown groups, which do not

appear in the labeled instances, may be discovered.

1.2 Hypothesis and objectives

Based on the evidences and motivation presented above, this research has a main and de-

composable hypothesis:

� Semi-supervised clustering and subspace clustering can be used together to create new

algorithms that aim to solve problems with partially labeled data.

– These algorithms can be created from different point of views, depending on both

the employed techniques and how data labels and subspaces are used together.

– The created algorithms lead to clustering solutions that, otherwise, cannot be such

accurate or can be even unreachable.

8 CHAPTER 1. INTRODUCTION

Based on this hypothesis, the main objective of this thesis is to tackle the semi-supervised

subspace clustering problem from different approaches and to develop the adequate experi-

ments in order to validate the different approaches. In more detail, the following separated

objectives can be distinguished:

1. Study of some of the most used clustering validation indices under different data condi-

tions and clustering algorithms, as an inherent problem in all tasks related to clustering.

2. Creation of semi-supervised subspace clustering proposals from two different points of

view:

� Using available data labels for searching for subspaces firstly, before searching for

clusters. This proposal assigns each instance to only one cluster (hard clustering)

and is based on mapping known labels to subspaces using supervised classification

techniques. Subspaces are then used to find clusters using traditional clustering

techniques.

� Using available data labels to search for subspaces and clusters at the same time

in an iterative process. This proposal assigns each instance to each cluster based

on a membership probability (soft clustering) and is based on integrating known

labels and the search for subspaces into a model-based clustering approach.

3. Application of machine learning to neuroscience, presenting a real problem and applying

the necessary techniques, including some of the proposals, to provide solutions.

As a summary, this work first attempts to throw some light about some clustering vali-

dation indices; then addresses the fundamental issues regarding the implementation of semi-

supervised subspaces clustering algorithms from different points of view, highlighting their

characteristics and benefits; and finally, the proposed and other machine learning algorithms

are applied to a concrete neuroscience problem as an example of real and useful application.

Figure 1.3 represents this summary pointing out the different objectives of this research.

1.3 Document organization

The rest of this document is divided into four thematic blocks. Each one is divided into

chapters to facilitate its understanding:

� Background: the first block gathers the current state of the researching areas related

to this thesis.

– Chapter 2 presents an overview of machine learning, and more specifically, pattern

recognition and its most common tasks. The aim of this chapter is to present a

high-level scenario in which this thesis is developed. Besides, semi-supervised

learning task is described, separating between semi-supervised classification and

semi-supervised clustering. Specific related algorithms from both approaches are

1.3. DOCUMENT ORGANIZATION 9

Semi-supervised
clustering

Subspace
clustering

CLUSTERING

Clustering
validation

indices

Clustering
dimensionality

reduction

Semi-supervised
classification

SUPERVISED
CLASSIFICATION

1

2

NEUROSCIENCE

3

Figure 1.3: Graphical representation of this thesis objectives. Numbers match with previously pre-
sented objectives: 1. Study of clustering validation indices. 2. Proposals on semi-supervised subspace
clustering. 3. Application of machine learning techniques (including supervised classification tech-
niques and some of the proposals) to neuroscience. The neuroscience figure, representing a 3-dimension
reconstruction of a neuron, belongs to the Cajal Blue Brain Project (see Section 6.4).

also presented. Subspace clustering is detailed together with the state of the art

of related algorithms. Finally, at the end of this chapter, some algorithms based

on semi-supervised learning and subspaces, and therefore close to the proposals

presented in this thesis, are presented.

� Proposals: the second block states the proposed approaches for semi-supervised sub-

space clustering together with all the experiments performed in this research.

– Chapter 3 presents a study about some of the most widely known clustering vali-

dation indices. Validation is an inherent problem in all tasks related to clustering.

This research shows the behaviour of several indices when they are used to validate

clustering results obtained by using different clustering algorithms and input data

characteristics.

– Chapter 4 presents a framework based on finding subspaces from available labels

using supervised techniques, and then clustering data using these subspaces and

traditional clustering algorithms. A specific instantiation, using known hard clus-

tering algorithms, is also presented and validated using synthetic and real data.

– Chapter 5 first details model-based clustering, which is a soft clustering approach,

and then, presents an extension of this kind of clustering to include both the

available labels and the subspace search into the clustering process. Finally, ex-

perimental results using both synthetic and real data are also presented.

� Applications in neuroscience: the third block presents the neuroscience domain

together with real applications related to this thesis.

10 CHAPTER 1. INTRODUCTION

– Chapter 6 introduces basic concepts and history about neuroscience as well as some

projects related to this thesis that combine interdisciplinary attempts to advance

in neuroscience domain research. A specific problem, the neurons classification, is

also presented.

– Chapter 7 presents the first application of pattern recognition to neuroscience

by separating two well-known types of brain cells using different supervised tech-

niques. Besides, these techniques are also compared to unsupervised techniques,

which are the most common used techniques in neuroscience for every classification

task. This is the first step to solve the neurons classification problem presented in

the previous chapter.

– Chapter 8 presents another application of a supervised technique and the proposal

introduced in Chapter 5 as the second step to solve the neurons classification

problem, focused on one of the well-known neuron types previously separated. Due

to the complexity of the task, a final solution is not achieved but some conclusions

are drawn as a further step to reach a consensual solution.

� Conclusions and future work: the last part shows the conclusions of this thesis and

the open lines of the proposals.

– Chapter 9 extracts the most important conclusions obtained from the achievements

of this work.

– Chapter 10 describes the possible research lines that arise at the end of the thesis

development.

Part II

BACKGROUND

11

Chapter 2
Pattern recognition

2.1 Introduction

Pattern recognition is a discipline based on classifying instances into some classes [246]. This

discipline can be located within another one, even more general, called machine learning.

Therefore, some definitions are provided first trying to clarify what machine learning means.

A first definition can be found in [195]:

Definition “A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E”.

Another definition very related to explain the discipline and extracted from [262], is:

Definition “Things learn when they change their behavior in a way that makes them perform

better in the future”.

From both previous definitions, machine learning is about learning from data to correctly

perform a task in the future. Machine learning tasks are considered pattern recognition

tasks when learning from data entails finding patterns for data. Although there are different

machine learning tasks, like reinforcement learning [243], the two most common tasks, su-

pervised classification and unsupervised classification (or clustering), are pattern recognition

tasks. These two tasks are different in both purpose and input data characteristics.

A process very close to machine learning and pattern recognition is data mining. Data

mining can be seen as the application of machine learning to concrete data, and is a step

within a larger process, called knowledge discovery in databases (KDD) [85]. KDD has several

steps, from data acquisition to evaluation of obtained results. A graphical representation of

KDD can be found in Figure 2.1.

13

14 CHAPTER 2. PATTERN RECOGNITION

Figure 2.1: Graphical representation of the KDD process, extracted from [84].

Figure 2.2: Graphical representation of the
CRISP-DM process, extracted from the step-
by-step data mining guide [51].

There are some other processes, very related

to KDD, and therefore to data mining, that are

mixed up on some occasions. The most known ex-

ample of this kind of processes is cross-industry

standard process for data mining (CRISP-DM)

[261]. The discussion about differences between

several data analysis processes is out of the scope

of this research, but based on [11], CRISP-DM

can be seen as a mainly-used-in-industry imple-

mentation of KDD. In any case, data mining can

be found within CRISP-DM in the “modeling”

step and, therefore, the difference with KDD is

not considered as significative for this research.

Figure 2.2 shows the CRISP-DM graphical repre-

sentation. To conclude with this discussion, note that there are other data analysis processes,

like SEMMA [11], that stands for Sample, Explore, Modify, Model, Assess.

Chapter outline

After this brief introduction to some related concepts, this chapter continues giving details

about supervised and unsupervised classifications. Some of the most important approaches

and algorithms are also presented. The comprehension of these two tasks is necessary to

understand another task, called semi-supervised learning (see Section 2.4), which is explained

next together with semi-supervised clustering, which is a kind of semi-supervised learning,

and is one of the main topics of this thesis. After this, subspace clustering is presented, which

is the other main topic of this work. As commented later, subspace clustering is a tendency

related to dimensionality reduction (see Section 2.5) and clustering. Different approaches

and algorithms are also presented as state of the art. Finally, the chapter ends by presenting

works in which both semi-supervised clustering and subspace clustering are used together.

As commented in Chapter 1, this work is focused on this kind of approaches.

This thesis is focused on continuous data, therefore the background, related work, pre-

sented proposals, and the real application, also focus on this kind of data.

2.2. SUPERVISED CLASSIFICATION 15

2.2 Supervised classification

Imagine you are a bank director who has bank loans documentation about your clients from

the last five years. There are different features for each client within the documentation, and,

as additional information, you know the current state of the loan, i.e., whether the client has

fulfilled with all the payments (safe client) or whether the client has had some delays or even

non-payment (risky client) during that period of time. Then, a new client, who shares the

same features with all your previous clients, is asking you for a loan and you are not sure

about to grant it, depending on whether you would classify your client either as a safe or a

risky client. Supervised classification may help you to make a decision.

The above situation is one of the most used examples to explain what supervised classifi-

cation is. Supervised classification is a two-steps predictive task: first of all, a model is built

based on some input data (also called training data), and this model is then used to make

predictions about future data (also called test data). The training data must be characterized

using pairs of descriptive features and a class label variable (also called class or merely label),

whereas the test data are characterized using only the descriptive features. The aim is to

make predictions about the test data classes using a model built from the training data.

A formal definition is, let the training set X = {(x(1), c(1)), . . . , (x(N), c(N))} be a set of

instances described by a tuple of a vector of descriptive features in a space of dimension F ,

that is, x(i) ∈ <F , and a label from a class variable, c(i) ∈ {1, . . . , C}, with i ∈ {1, . . . , N}, a

supervised classification algorithm builds a classification model, learned from X , which will

be used to assign class labels to new instances, {x(N+1), . . . ,x(N+M)}. Hence, for a single

new instance, the model can be seen as a function:

γ : x(N+1) → {1, . . . , C} (2.1)

There are many different approaches to perform supervised classification, and, within

these approaches, there are also many specific supervised classification algorithms. The cat-

egorization for the different supervised classification approaches depends on the source in

literature. One classification attempt can be found in [119], where Han and Kamber divided

the supervised approaches into classification by decision tree induction, Bayesian classifica-

tion, rule-based classification, classification by backpropagation, support vector machines,

associative classification, lazy learners, and others, like genetic algorithms (GAs) or fuzzy

approaches. On the other hand, Kotsiantis et al. [157] reduced this categorization to logic-

based algorithms, perceptron-based techniques, and statistical learning algorithms, in their

supervised classification survey.

Although supervised classification is out of the main scope of this thesis, some supervised

classification algorithms are used throughout the research. Therefore, the different paradigms

of these used algorithms, together with an explanation of each algorithm, are presented next,

as an example of some of the most known supervised classification approaches. This pre-

sentation does not pretend to cover all the supervised classification set, and other important

paradigms, like support vector machine (SVM) [250] for instance, are not presented because

16 CHAPTER 2. PATTERN RECOGNITION

they are not used in this work.

2.2.1 Supervised classification approaches

Bayesian classifiers

The goal of algorithms from this approach is to predict class membership probabilities [76].

Therefore, and using prior probabilities according to Bayes’ theorem, the assigned class to

each new instance is the most probable a posteriori class:

arg maxc p(c|x) = arg maxc p(c)p(x|c). (2.2)

The most known algorithm, and also the simplest, is näıve Bayes (NB) [194]. The maxi-

mum a posteriori assignment to the class label is based on obtaining the conditional probabil-

ity density function for each feature given the value of the class variable, assuming conditional

independence of the descriptive features given the class (see Figure 2.3), that is

arg maxc p(c)
F∏
j=1

p(xj |c). (2.3)

Although the conditional independence assumption does not come true in many practical

scenarios, NB has obtained competitive performance when compared with other more compli-

cated approaches. Nevertheless, the independence assumption is alleviated in other Bayesian

classifiers, as seminäıve Bayes [156, 209] and tree augmented näıve Bayes (TAN) [94].

Neuron

somatic perimeter somatic compactness
number axonal
sholl sections

...

P(=0)=0.61

P(=1)=0.39

class 0 class1
mean: 55.305 59.071
std. dev: 13.652 12.425

class 0 class1
mean: 0.756 0.719
std. dev: 0.117 0.095

class 0 class1
mean: 5.413 7.325
std. dev: 2.555 3.816

Class 0: Interneuron
Class 1: Pyramidal

Type
C

C

Figure 2.3: Part of a real NB graphical representation classifying neuronal data. The conditional
independence assumption between features given the class variable is represented with no connections
between them.

Classification trees

This approach [40] aims to build a tree structure where each node is a question related to

some predictive feature. Depending on the answer to node questions, i.e., predictive feature

values, new branches connect to other nodes. This structure is repeated until a leaf node is

reached, where a class label is held as pattern response. Therefore, when a new instance to be

classified appears, the tree structure will be covered following the proper branches depending

on feature values until a class label is found in a leaf node.

2.2. SUPERVISED CLASSIFICATION 17

C4.5 [215] is one of the most known classification trees algorithms. It builds a decision tree

from the training data using recursive partitioning of the space representing the predictive

features and based on the information gain ratio. A graphical representation of a real C4.5

output can be seen in Figure 2.4.

number dendritic sholl sections

axonal segment length ave stdv ratio of axonal length to surface area

highest order dendritic segment convex hull dendrite perimeter

axonal segment length avesomatic form factor

somatic compactness

dendritic sholl length at 150 µm (fraction)

ratio of axonal length to surface area

axonal planar angle stdv

number axonal sholl sections

0 (119.0/2.0)

1 (7.0/1.0) 1 (27.0/1.0) 0(8.0/1.0)

1(63.0/1.0)

1 (6.0)

0 (6.0) 1 (5.0/1.0)

0 (30.0/1.0)

0 (17.0/1.0)

0 (6.0)

1 (24.0/6.0)0 (9.0/1.0)

< = 10 > 10

< = 47.33 > 47.33 < = 1.32 > 1.32

< = 10 > 10

< = 0.8 > 0.8< = 13 > 13

< = 0.79 > 0.79

> 0.21< = 0.21

< = 1.82 > 1.82

< = 36.94 > 36.94

< = 1350.8 > 1350.8

< = 56.68 > 56.68

Figure 2.4: Example of a real C4.5 output representation classifying neuronal data.

Lazy algorithms

This kind of algorithms does not provide an explicit model as the other paradigms. Therefore,

the whole training data set must be stored until a new instance to be classified appears, and

a class label is then assigned to that instance depending on the labels of the most similar

instances on the stored data.

K-nearest neighbors (K-nn) [56] is the typical example of lazy classifier. In this algorithm,

a new instance is compared to the available training data according to some distance metric.

The class label is then assigned, as mentioned before, depending on the class labels for the

K closest training instances.

Neural networks

This approach [188] is based on weight assignments to connections between input/output

units, which are often organised in different layers. The weights are adjusted during the

learning phase to predict labels for new instances. Each unit is known as a “neuron”, due to

an analogy to simulate the structure and behavior of biological neuronal networks.

18 CHAPTER 2. PATTERN RECOGNITION

The simplest algorithm is called perceptron [228] and is able to distinguish labels in a

binary classification problem by using a threshold activation function and a linear discrimi-

nation function. The perceptron structure has a single layer, but for more complex problems,

a perceptron with several hidden layers can be used, creating a multilayer perceptron (MLP)

[231].

Statistical theory

Logistic regression (LR) [131, 152], from statistical theory, is an algorithm that is used to

predict the class of new instances in a binary classification problem by using a linear function

of the predictive features as

p(c = 1|x) =
1

1 + e−(β0+
∑F

j=1 βjxj)
, (2.4)

where β0, . . . , βF are the parameters of the model. The estimation of these parameters is

based on the maximum likelihood estimation method. This approach can be also used for

multivalued classification problems using other functions.

2.2.2 Validation

Validation of results obtained by supervised classification algorithms is relatively straightfor-

ward due to the presence of class labels, which are considered as the ground truth. Based on

the class labels, the accuracy of an algorithm is the percentage of instances that are correctly

classified by the algorithm. An instance is considered as correctly classified by an algorithm

when the predicted class is the same than the class that was known beforehand.

Another important tool to validate results obtained by supervised classification algo-

rithms is the confusion matrix. A single instance, in a binary classification problem with

positive/negative classes, is considered true positive (TP) if it belongs to positive class and is

correctly classified, true negative (TN) if it belongs to negative class and is correctly classi-

fied, false positive (FP) if it belongs to negative class and is classified as positive, and finally,

false negative (FN) if it belongs to negative class and is classified as positive, see Table 2.1.

Predicted class

positive negative

True class
positive TP FN
negative FP TN

Table 2.1: Confusion matrix for a binary classification problem.

Representing the total number of instances in each case with TP, TN, FP, and FN, and

being N the total number of instances, several measures can be directly obtained using these

values from the confusion matrix:

sensitivity =
TP

TP + FN
, (2.5)

2.2. SUPERVISED CLASSIFICATION 19

specificity =
TN

TN + FP
, (2.6)

error rate =
FN + FP

N
. (2.7)

From information retrieval [249], and also statistical classifications, two other measures can

be directly extracted from the confusion matrix:

precision =
TP

TP + FP
, (2.8)

recall =
TP

TP + FN
. (2.9)

Note that recall matches sensitivity. Using these terms, the previously presented accuracy

can be represented as

accuracy =
TP + TN

N
× 100. (2.10)

Besides defining performance measures, it is necessary to define the method to estimate

these measures, depending on how available labeled data are managed. There are several

approaches:

� Resubstitution. This is the simplest estimation method. In it, the same training data set

used to build the model is also used to validate it. This method is too optimistic, with

a high bias to the specific used data. Therefore, resubstitution cannot be considered a

honest method for estimating any performance measure of a classifier.

� Hold-out. The available labeled data are split into training and test data. The training

data is then used to build a model, which is evaluated using the test data. The previous

optimism disappears using this method, but its main disadvantage is that a data subset

(the test data) is not used to build the model, which cannot be desirable if the available

data sample size is not very high.

� K-fold cross-validation [242]. The possible lack of knowledge for building a model by

using hold-out is avoided in cross-validation by randomly partitioning the available

data into K mutually exclusive folds. These folds are usually balanced, i.e., there are

approximately the same number of instances in each fold. The building and testing

processes are then repeated K times, reserving a different fold for testing in each run.

The final quality measure is calculated by averaging all runs and the final model learnt

from all the original labeled instances.

� Leave-one-out cross-validation. This can be seen as a concrete K-fold cross-validation

case in which K = N . It means that the learning process is repeated N times, using

N − 1 instances to learn, and using a single instance to test each time.

20 CHAPTER 2. PATTERN RECOGNITION

� Bootstrap [80]. This is a general sampling approach based on uniformly selecting in-

stances with replacement. There are several bootstrap methods, being 0.632 bootstrap

[81] one of the most commonly used. This method creates a new data set of N instances

by sampling the available data set N times with replacement. Some instances might

be selected more than once during the sampling process, and therefore, some instances

in the original data set will not be selected. The no selected instances will be the test

data. The name of this method is related to the probability of an instance to be selected

or not: an instance has 1/N probability of being selected and a 1 − 1/N of not being

selected each time. Thus, the probability for an instance of not being selected is

(1− 1

N
)N ≈ e−1 = 0.368.

Assuming then a data set large enough, the test and the training data sets generated

will contain about 36.8% and 63.2% of the instances, respectively. The name of the

method comes from the probability of the generated training data set. Results obtained

with this method may be biased due to the training data set size. For this reason, a

possible error rate ε̂ is estimated as

ε̂ = (0.368× ε̂train) + (0.632× ε̂test).

2.3 Unsupervised classification

Imagine now you are a mobile phone company director; you are interested in offering different

interesting products to your clients depending on their charges, phone calls time, and many

other parameters. Therefore, you would like to partition your clients into different groups,

joining those that might have a similar profile, to personalize the offered products for each

group. Unsupervised classification (or clustering) may help you to get success in this task.

Clustering is a descriptive task that aims at obtaining a data division by grouping in-

stances based on the input data and some similarity measure. In this case, the input data is

only characterized using descriptive features and, as commented above, the aim is, based on

some similarity measure, partition the data into different groups (often called clusters).

A formal definition of clustering is, let the data set X = {x(1), . . . ,x(N)} be a set of

instances described by a vector of descriptive features in a space of dimension F , that is,

x(i) ∈ <F ,∀i ∈ {1, . . . , N}, the goal is then to assign a cluster label c(i) to each instance, with

c(i) ∈ {1, . . . ,K}, based on some similarity measure with the other instances, and K being

the number of clusters in the data. Note that the cluster assignment can be considered similar

to the class label assignment in supervised classification. One of the main differences is that

supervised classification assigns a class label from a set of known labels, whereas clustering

finds previously unknown labels (clusters). The final number of clusters, K, is often unknown

and must be estimated.

The categorization of the different clustering approaches may depend on several criteria.

2.3. UNSUPERVISED CLASSIFICATION 21

In [137], one of the most cited clustering surveys, Jain et al. distinguished between agglom-

erative and divisive (depending on the algorithmic structure), monothetic and polythetic

(depending on how features are used), hard and fuzzy (depending on the kind of instance

memberships; hard clustering is also called crisp clustering, whereas fuzzy clustering is also

called soft clustering), deterministic and stochastic (depending on optimization techniques),

and, finally, incremental and non-incremental (depending on how instances are used). The

same authors separated, at the very top level of a possible hierarchy, between hierarchical and

partitional approaches. The former produces a sequence of partitions and the latter directly

partitions data into a fixed number of clusters. This rough separation was also accepted

in [83]. Xu and Wunsch II [269] also followed this frame in their survey of clustering, but

they also separated partitional approaches into squared error-based algorithms and mixture

models algorithms. Besides, these authors also introduced other techniques, that can be used

for hierarchical and partitional clustering, including graph theory [136, 147], combinatorial

search techniques (like evolutionary algorithms (EAs) [87] or GAs [104, 129]), fuzzy set the-

ory [101, 130, 278], neural networks [154, 155, 204], and kernel techniques [201, 233, 251].

The mixture models approach, also called model-based clustering, is considered as an in-

dependent approach by Han and Kamber [119]. Other approaches, such as density-based

algorithms or grid-based methods (see Section 2.5) are also included into the clustering ap-

proach categorization in [119]. Density-based methods, with density-based spatial clustering

of applications with noise (DBSCAN) [82] as the most representative algorithm, are also

included within the partitional approach in [25]. Finally, another relatively recent approach

is called affinity propagation [92]. This method defines exemplars as the most representative

examples of a data set. When the exemplars are refined, the set of clusters gradually emerges.

The main advantages of this algorithm are that it does not need the number of clusters as

input parameter and is faster than other methods. From all these different categorizations,

it is evident that there are many clustering approaches in the literature.

Hierarchical, partitional, and model-based clustering are somehow used throughout this

thesis. Due to this, the remainder of this chapter is focused on the introduction and overview

of these approaches. Before that, and as an important choice in some kinds of clustering, like

hierarchical or some partitional, different metrics that can be used to calculate the similarity

between two groups of instances are presented.

Clustering metrics

The metric plays a key role in some clustering approaches, like hierarchical or partitional,

since the proximity between two instances can be completely different depending on the used

metric. When working with continuous attributes, as in this thesis, the proximity between

two instances is typically quantified by dissimilarity measures [83]. These measures can be

broadly divided into distance measures and correlation-type measures.

One of the most commonly used distance measures is called Euclidean distance. For

instance, the distance (d) between two consecutive instances x(i) and x(i+1) is calculated

22 CHAPTER 2. PATTERN RECOGNITION

with the Euclidean distance as

d(x(i),x(i+1)) =

√√√√ F∑
j=1

(x
(i)
j − x

(i+1)
j)2. (2.11)

The Euclidean distance is formally known as the l2 norm because it is a concrete case of the

general Minkowski distance (or lr):

d(x(i),x(i+1)) = r

√√√√ F∑
j=1

wrj (x
(i)
j − x

(i+1)
j)r, (2.12)

where wj is a possible importance weight for feature j, and r the distance norm. Manhattan

distance (or l1) is another measure following this structure, with r = 1.

There are other different measures, such as Mahalanobis distance or Pearson’s correlation

[211], based on correlations between features. The definition of the Pearson’s correlation is

δ(x(i),x(i+1)) =
1− φ(x(i),x(i+1))

2
, (2.13)

with

φ(x(i),x(i+1)) =

∑F
j=1wj(x

(i)
j − x(i))(x

(i+1)
j − x(i+1))

(
∑F

j=1wj(x
(i)
j − x(i))2

∑F
j=1wj(x

(i+1)
j − x(i+1))2)1/2

, (2.14)

where

x(i) =

∑F
j=1wjx

(i)
j∑F

j=1wj
. (2.15)

The presented examples are some of the most commonly used dissimilarity measures. For

further details about them and many other measures, see [72].

2.3.1 Unsupervised classification approaches

Hierarchical clustering

Hierarchical clustering aims at grouping data into a hierarchy structure. A proximity matrix

among the instances is built based on some dissimilarity measure, and nested partitions are

then obtained according to it. A review of hierarchical clustering can be found in [108]. There

are two paradigms of hierarchical clustering algorithms:

1. Divisive clustering. This is a top-down clustering. All instances start grouped together

into the same cluster, and this cluster is then split, according to the largest between-

group dissimilarity, obtaining two different clusters. In each step of the process, a

cluster is subdivided into two smaller clusters until each instance forms a single cluster.

2.3. UNSUPERVISED CLASSIFICATION 23

2. Agglomerative clustering. This is a bottom-up clustering. At the beginning of the

process, each instance forms a single cluster. Two clusters are merged at each step

according to the between-group similarity. Again, this is an iterative process that

continues until all instances are grouped together into the same cluster.

A limitation of hierarchical clustering is that divisions in the divisive, and mergers in the

agglomerative paradigm, cannot be undone once made.

The output hierarchy is often plotted in a structure called dendrogram (see an example in

Figure 2.5). This kind of plot is easily readable since it represents not only the joining between

instances but also the proximity among them. Based on this dendrogram, and choosing a

cutting point on it, the user is able to select the final output clustering. Therefore the number

of final clusters is not an input parameter in hierarchical clustering, but it has to be chosen

at the end of the process if a unique clustering solution is required.

Figure 2.5: Dendrogram representing an out-
put obtained by running an agglomerative hi-
erarchical clustering.

Although the number of clusters is not an in-

put parameter, some choices must be made in

order to decide whether a cluster must be split

(divisive paradigm) or whether two clusters must

be joined (agglomerative paradigm). The user

must choose a metric (commented above) and a

linkage criterion.

Linkage criteria Metrics presented in this sec-

tion above are valid to obtain the dissimilarity be-

tween two instances, but when a cluster is formed

by several instances, a linkage criterion is neces-

sary. Therefore, a linkage criterion is the defini-

tion of distance between either two clusters, or

an instance and a cluster.

A complete description of each criterion can be found in [83], but a brief introduction to

some of the most commonly used linkage criteria is presented:

� Single linkage [238]. This is the minimum distance criterion, i.e., the distance between

two clusters is obtained by calculating the distance between the two closest instances

in each cluster.

� Complete linkage [240]. This is the maximum distance criterion, i.e., the distance

between two clusters is obtained by calculating the distance between the two most

remote instances in each cluster.

� Average linkage [239]. The distance between two clusters is the average of all distances

between pairs of instances of each cluster.

� Ward’s method [259]. The distance between two clusters is calculated depending on the

24 CHAPTER 2. PATTERN RECOGNITION

variance between the clusters. Hence, the minimum distance is obtained by minimizing

the within-cluster variance.

Partitional clustering

Partitional clustering aims to partition the data, based on some dissimilarity measure, into a

pre-fixed number of clusters.Therefore, a single data partition is obtained. This is the major

difference between hierarchical and partitional clustering.

The most representative partitional clustering algorithm is K-means [88, 175, 179, 241].

As mentioned above, K-means needs K, the number of clusters, as input parameter, and

aims to cluster the data set X into K clusters. The algorithm proceeds as follows. First,

the K clusters are initialized (there are many variants for this initialization, a comparison of

four of them can be found in [210]), obtaining K centroids, which represent the K cluster

centers, being µk the centroid of cluster Ck. Each instance x(i) is assigned to a cluster by

minimizing the distance between the instance and cluster centroids. Once each instance is

assigned to a cluster, the cluster centroids are recalculated based on those assignments. After

the new centroids are calculated, the instances are again reallocated in the clusters. This is

an iterative process that converges when cluster centroids do not suffer any changes from an

iteration to another. At the end, the aim is to find a partition P such that the squared error

between the centroids (µ) and the instances (x) is minimized:

J(P) =
K∑
k=1

∑
x(i)∈Ck

‖x(i) − µk‖2. (2.16)

An example of K-means execution, extracted from [29], clustering the data set called old-

faithful (representing measurements of the eruption of the Old Faithful geyser at Yellowstone

National Park in the United States) can be found in Figure 2.6. Instances are represented

in a re-scaled 2-dimensional Euclidean space, the number of fixed clusters is two (K = 2),

and cluster centroids, µ1 and µ2, are represented by a blue and a red cross, respectively.

The initialization of the algorithm is shown in (a). Each instance is assigned to a cluster

in (b) depending on the distance to each cluster centroid. After that, cluster centroids are

recalculated in (c) according to the instance assignments. This process is repeated until the

convergence criterion is reached, i.e., cluster centroids do not suffer any changes.

K-means was created more than fifty years ago, but its importance was still pointed in

[135] recently. Some extensions related to K-means are K-medoids [148], representing the

clusters using the median, and fuzzy C-means [26, 78], which is the K-means variant for soft

clustering.

Model-based clustering

This clustering approach is based on the assumption that data were generated using several

probability distributions. Thus, in clustering terms, each probability distribution can be seen

as a cluster (also called component in this approach), and instances in different clusters were

2.3. UNSUPERVISED CLASSIFICATION 25

Figure 2.6: Example, taken from [29], of K-means execution clustering the oldfaithful data set. Ini-
tialization is shown in (a), cluster assignments in (b), and cluster centroids recalculation in (c). The
process of assignments and recalculations is repeated until the convergence criterion is reached.

generated by different probability distributions. The mixture of all the distributions, called

finite mixture model [189], can therefore model all the data as a whole. Although other

distributions, like Poisson [165] or skew-normal [168], can be used to model each mixture

component, by far, the most popular mixture model is formed by Gaussian components

[190].

Using this approach, the clustering problem becomes a mixture parameters estimation

problem. Once the parameters are estimated, they can be used to calculate the posterior

probabilities of each instance and distribution, i.e., the membership of each instance to each

cluster (soft clustering). The parameter estimation is often performed using the expectation-

maximization (EM) algorithm [70]. This is an iterative method that estimates the model

parameters by finding maximum likelihood estimates. Although the EM algorithm is also

used in Chapter 3, a detailed explanation of the basic algorithm can be found in Section 5.2,

since the algorithm is extended throughout Chapter 5 in one of the proposals of this thesis. As

26 CHAPTER 2. PATTERN RECOGNITION

Figure 2.7: Example, taken from [29], of model-based clustering execution, with the oldfaithful data
set using the EM algorithm and two components to model the mixture. Components are initialized in
(a). Soft cluster assignment (E-step) is represented in (b), and finally, cluster parameter recalculation
(M-step) is shown in (c), finishing the first iteration (L = 1) of the algorithm. Iterations 2, 5, and 20
are also shown in (d), (e), and (f), respectively.

an introduction, the process of the EM algorithm is very similar to the above presented process

of the K-means algorithm. Both of them begin with cluster initializations (parameters in EM

and centroids in K-means). After the initialization, the iterative process begins and instances

are assigned to different clusters (soft clustering in E-step of EM and hard clustering in K-

means). Clusters are then recalculated depending on the previous assignments (parameter

estimation in M-step of EM and centroids in K-means). Finally, if the convergence criterion

has not been reached, the process iterates again. All this process applying the EM algorithm

is shown in Figure 2.7, using again the re- scaled oldfaithful data set, and two components

to model the mixture. This figure, which is also extracted from [29], shows how the EM

process is very similar to K-means, starting with an initialization step in (a). The soft

cluster assignment (E-step) is performed in (b), where the different colour intensities show

the membership of each instance to each component. The first EM iteration (L = 1) finishes

with the cluster parameter recalculation (M-step) in (c). Results at the end of iterations 2,

5, and 20 are shown in (d), (e), and (f), respectively.

The mixture parameters initialization is a critical decision for finding the best local max-

imizer, or even the global maximizer. See [86, 181] for complete overviews of many different

initialization procedures. These can be divided into deterministic and stochastic procedures.

The former are less demanding, but algorithms from this approach are not able to propose

2.3. UNSUPERVISED CLASSIFICATION 27

starting values different from the initially chosen; an example from this approach can be

seen in [90]. Stochastic procedures can restart the starting values if the initially ones were

not properly selected, but this process leads to more demanding algorithms, like [27]. Some

comparisons of several initialization procedures can be found in [146, 182]. Nevertheless, pa-

rameters initialization is not a resolved topic in model-based clustering, because no method

uniformly outperforms the others. Due to this, new proposals appeared recently, like [191],

where Melnykov and Melnykov proposed an initialization depending on high density instances

areas, meanwhile using a truncated normal distribution, and [271], where Yang et al. pro-

posed a new schema using all instances as initials to solve the problem of choosing initial

values.

The number of components of the mixture is often unknown. This number can be con-

sidered as an input parameter of model-based clustering (similar to the number of partitions

in K-means) that must be estimated. Different available approaches to address this prob-

lem are overviewed in [189]. Most of these approaches are based on choosing the number

of components depending on the optimization of the likelihood value augmented by some

penalty function according to the model complexity. Therefore, several number of compo-

nents are tried to build different models. The model with the most optimized value is then

selected. Some information-based criteria are usually chosen as value to be optimized, two

of the most common are Akaike’s information criterion (AIC) [6] and Bayesian information

criterion (BIC), also known as Schwartz criterion [234].

2.3.2 Validation

Clustering solutions are usually much more difficult to evaluate than supervised classification

solutions, because there is no ground truth, i.e., class labels. A clustering solution quality is

closely related to domain expert opinion in many situations. In spite of this, there are lots

of clustering quality indices (CQIs) that try to assess the quality of clustering solutions. To

do this, indices tend to rate compact and isolated clusters highly.

Regarding the classification of CQIs, Yeung et al. [272] indicated that there are two groups

of CQIs: internal and external. These types of indices match with the equally called internal

and external criteria, which are traditionally used for clustering validation when appropriate.

Meanwhile, Jain and Dubes [136] and Halkidi et al. [117] discussed the existence of a third

criterion, called relative criterion. The relative criterion concept is based on creating several

clustering partitions depending on an assumed criterion, and choosing then the clustering

partition which best satisfies such criterion. A typical example of criterion is the number

of clusters: the relative criterion for clustering validation consists of running the clustering

algorithm from a minimum to a maximum number of clusters and the best clustering partition

according to some index is chosen as the best partition. The typical used indices in relative

criteria are the internal indices, which are presented next.

28 CHAPTER 2. PATTERN RECOGNITION

Internal indices

Internal indices do not require any knowledge about the ground truth. A clustering partition

quality, using internal CQIs, is assessed by evaluating the partition based on distance or

dissimilarity measures. The problem with this approach is that results may be very biased

depending on how the partition was built, since the quality may be measured with different

criteria than those used to build the partition, which can lead to incorrect validations. There-

fore, CQIs suffer from biases not only regarding the data (shape or number of clusters for

instance), but also regarding to the clustering algorithm used to obtain the partition [121].

The partition quality is often used as stopping rule for finding the correct number of

clusters hidden in a data set. Following this approach, Milligan and Cooper [193] ranked 30

internal CQIs on an extensive battery of data sets without impurities (clear cluster struc-

tures). These data sets had different configurations by varying the number of features and

instance distribution density levels (instances were not equally distributed in each hidden

group). Hierarchical clustering was used as clustering approach for grouping the data. This

comparison is still considered as one of the main references for clustering validation even

though the work was developed more than 25 years ago. The importance of this work is

exemplified by current works dealing with the same issue, such as the research of Vendramin

et al. [252], where authors used the same type of data sets as in [193] but changed the

evaluation approach by introducing another type of CQIs for validation. Besides these, there

are some other references in the literature that attempted to evaluate internal CQIs using

different clustering algorithms and kinds of data, like [73, 187]. Another very recent paper

comparing internal CQIs is [116]. This paper attempted to obtain a standard methodology

for evaluating results obtained with hierarchical clustering and using different indices. They

considered that it is necessary not only to get the correct number of clusters but also to

obtain the partition that best fits the original data.

The problem with data used in the works commented above is that they are not typical

cases of real domains because of the low dimensionality and the clear separation and cohesion

of the clusters. This is an utopian scenario in real problems, since there are usually irrelevant

or noisy features, or even no cluster structures in data. This is the main motivation for a

research made in this thesis (see Chapter 3), whose conclusions are taken into account during

the first proposal, presented in Chapter 4.

The internal CQIs used throughout this thesis are some of the most known and widely

used in the literature. These indices are:

Silhouette [229] is calculated for an instance x(i) as follows:

Silhouette(x(i)) =
b(x(i))− a(x(i))

max(b(x(i)), a(x(i)))
, (2.17)

where a(x(i)) is the average dissimilarity between instance x(i) and all other points in the

cluster where x(i) belongs, and b(x(i)) is the minimum average dissimilarity to instances of

2.3. UNSUPERVISED CLASSIFICATION 29

each different clusters. The average of all output values is the average Silhouette, which is

the final result and is in the [−1, 1] range. A high value indicates good quality clusters.

Calinski [42] consists of finding well isolated clusters and is based on two measures that

evaluate separation, with the between-cluster sum of squares (BSS), and cohesion, with the

within-cluster sum of squares (WSS):

Calinski =
BSSK(K − 1)

WSSK(N −K)
, (2.18)

where K is the number of clusters and N is the total number of instances. The aim is to find

a value of K that maximizes the index. A high value indicates isolated and unified clusters.

C-index [14] is defined as:

C-index =
S − Smin

Smax − Smin
, (2.19)

where S is the sum of distances over all pairs of instances from the same cluster. If P is the

number of those pairs of instances, Smax and Smin are the sum of the P largest and smallest

distances, respectively, considering all the pairs of instances. Again, this index should be

minimized and is confined to the interval [0, 1].

Davies-Bouldin (DB) index [65] is calculated by averaging each pair of clusters as:

DB =
1

K

K∑
k=1,k 6=k′

max

(
dk + dk′

d(µk, µk′)

)
, (2.20)

where K is the total number of clusters, dk and dk′ are the average distances of all instances

in each cluster to their respective cluster center µk and µk′ . Finally, d(µk, µk′) is the distance

between cluster centers. The target value for the DB index is a small one, and it corresponds

to compact and well-separated clusters.

Gamma [14], also known as Baker and Huberts index, is defined as:

Gamma =
s(+)− s(−)

s(+) + s(−)
, (2.21)

where s(+) is the number of consistent comparisons and s(−) the number of inconsistent

comparisons. Comparisons are made between all clusters pairwise and all between-clusters

pairwise dissimilarities. A comparison is consistent if a within-cluster distance is less than a

between-cluster distance, otherwise it is considered as inconsistent. The target value of this

index is the maximum value and it is bounded by 1.

30 CHAPTER 2. PATTERN RECOGNITION

External indices

On the other hand, external validation is more accurate but not realistic in clustering. In

this case, the ground truth must be known and the evaluation is carried out based on this

knowledge. Although there are many external CQIs, some of them are equivalent [7]. This

approach has a more realistic usage when the aim is to compare different clustering partitions,

even during the clustering process, like during the process of ensemble clustering, as pointed

by Vinh et al. [253]. These authors classified external indices to compare clustering partitions

into:

� Pair counting based measures, which are based on the agreement or disagreement be-

tween pairs of instances on the partitions. Measures presented below are examples of

this kind of measures.

� Set matching based measures, which are more proper measures for supervised classifi-

cation, because they are based on finding matches between cluster partitions having as

requirement that both partitions have the same number of clusters.

� Information theoretic based measures, such as entropy or mutual information, which

are based on concepts from information theory [57], are defined using the marginal

and joint distributions of instances in each clustering partition. Precision and recall,

previously explained in Section 2.2.2, are examples of this kind of measures.

External CQIs used throughout this thesis are defined taking int account the next context:

given a set of N instances, suppose P and P ′ are two different partitions of not necessarily

the same size to be compared. Then, a is the number of pairs of instances that are located

in the same group in P and in P ′; b is the number of pairs of instances located in the same

group in P, but not in P ′; c is the number of pairs of i instances located in the same group

in P ′, but not in P; and d is the number of pairs of instances located in different groups in

both partitions P and P ′.

Rand index [225] is defined as

Rand =
a+ d

a+ b+ c+ d
. (2.22)

The problem of Rand index is its value when two random partitions are compared, since it

does not take a zero (minimum) value. This index must be maximized.

Adjusted Rand index (ARI) [132] was proposed to overcome the Rand index limitation

concerning random partitions. This index, like Rand, must be maximized and outputs 1

when there is a perfect match between two partitions. ARI is calculated as

ARI =

(
N
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
N
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
. (2.23)

2.4. SEMI-SUPERVISED LEARNING 31

Therefore, ARI is a very demanding index because it introduces a penalization to avoid the

possibility of random classification.

Gamma index [136] is

Gamma =
ad− bc√

(a+ b)(a+ c)(c+ d)(b+ d)
. (2.24)

As ARI, Gamma index considers both instances in the same group and instances in different

groups in the two partitions as good decisions. Gamma results have a range [−1, 1] and must

be maximized.

Gower [109] is defined as

Gower =
a+ d

a+ 1
2(b+ c) + d

, (2.25)

and attaches more importance to the good decisions than to the bad decisions. Taking this

into account, and that results, between 0 and 1, must be maximized, this index thus yields

very high values.

Russel index [232] is defined as

Russel =
a

a+ b+ c+ d
. (2.26)

This index only considers pairs of instances in the same group in both partitions as good

decisions. This is one of the reasons why Russel index returns low values very often. The

results range is [0, 1].

Clustering validation is still a challenging task nowadays. Nevertheless, validation is very

important not only to assess the quality of a partition after the clustering process, but also

to select the number of clusters during the clustering process. Some recent research dealing

with clustering validation can be found in [266] and [206], whereas Rendón et al. recently

compared internal and external indices [226].

2.4 Semi-supervised learning

Due to changes in available data, new machine learning tasks are playing an important role

nowadays. These changes are often related to the available data labels. Recently, with

advances in data acquisition and storage, the amount of available data is not a bottleneck

in many domains. However, data labels are still scarce in some domains because they are

either expensive, labour intensive to gather, or merely, completely unknown. Related to

this, and as previously seen in this chapter, when all available data are labeled, supervised

classification is used to perform the learning task, whereas when there are no available data

labels, clustering tasks can be used for finding such labels. Nevertheless, when there are only

some available data labels, with the rest of data without labels, i.e., partially labeled data,

32 CHAPTER 2. PATTERN RECOGNITION

supervised classification and clustering can be used, depending on the number of available

labels and with some limitations. This scenario leads to another pattern recognition task,

called semi- supervised learning [49]. The obvious point regarding data labels is that they

might contribute with valuable information, not only for validating, but also for improving

the learning task.

Based on [285], semi-supervised learning can be separated into inductive semi-supervised

learning and transductive learning. The former aims to predict labels on future test data, as in

a supervised classification problem, but using both labeled and unlabeled data in the training

set to build the model. On the other hand, transductive learning aims to predict the labels

on the unlabeled data in the available training set. This thesis is focused on transductive

learning. Besides, depending on whether the unlabeled instances can be classified according

to one of the known labels or there is the possibility of discovering new previously unknown

groups, semi-supervised learning can precisely referred as semi-supervised classification or

semi-supervised clustering, respectively.

A formal description of this problem is let X be a set of N instances described by con-

tinuous features in a space of dimension F , that is, x(i) ∈ <F ,∀i ∈ {1, . . . , N}. Besides, the

class information of some instances is available in this partially labeled data set. Thus, X
can be divided into X = XL ∪ XU , where XL = {(x(1), c(1)), . . . , (x(L), c(L))} is the subset of

instances with an associated known class label, with c(i) ∈ {1, . . . , C}. On the other hand,

XU = {x(L+1), . . . ,x(N)} are the instances with unknown labels. The aim is to estimate

the labels of those instances in XU : thus, ∀j ∈ {L + 1, . . . , N}, c(j) ∈ {1, . . . , C}, must be

estimated in semi-supervised classification; and c(j) ∈ {1, . . . ,K}, being K ≥ C the final

number of clusters, must be estimated in semi-supervised clustering.

An overview of semi-supervised classification and semi-supervised clustering approaches

is presented next.

2.4.1 Semi-supervised classification

Semi-supervised classification is meaningful, compared to supervised classification, when the

built model using both labeled and unlabeled data is better than the one built using only

labeled data. It is noteworthy that, depending on the problem and the assumptions, using

semi-supervised classification can lead to a decrease in the classifier accuracy. There is not

much research about this topic in the literature, but an example can be found in [58].

Based on [283], there are several semi-supervised classification methods: self-training,

co-training, transductive support vector machines, graph-based methods, and EM with gen-

erative mixture models. A similar enumeration can be also found in [213].

Nevertheless, all these methods can be classified into two wider approaches based on

their underlying assumptions [49, 183]. The first assumption, and therefore the first group

of methods, is the manifold assumption, which formulates that data lie on a low-dimensional

manifold. This reduces the search space of the learning algorithm, obtaining some advantages

like avoiding the curse of dimensionality (see Section 2.5). Data are often represented in a

graph by algorithms based on this assumption. Thus, the above commented graph-based

2.4. SEMI-SUPERVISED LEARNING 33

methods are within this group. Some examples of algorithms, based on the manifold assump-

tion, are label propagation [284], Markov random walks [244], graph cut [30], or low density

separation [50]. Most of these are transductive algorithms.

The second assumption is called the cluster assumption, which formulates that data with

high similarity, i.e., data in a same cluster, must share the same class label. This assumption

means that instances with different class labels shall not be grouped into the same cluster.

However, this assumption does not imply that every single class forms a single cluster. Sev-

eral inductive semi-supervised algorithms can be found within this group. Co-training [31]

is based on that each instance can be characterized by different sources. Sources can be,

for instance, two different, independent, and compatible feature sets [31], or two diverse su-

pervised models [105] that label the instances depending on confidence intervals and noise

control mechanisms. A classifier from each source is separately learnt using the labeled in-

stances and, depending on the confident of each classifier, predictions are used to iteratively

obtain new labeled data. This approach is a kind of ensemble or hybrid method, such as

[24]. Another example of algorithm based on the cluster assumption, and similar to the last

approach presented, is the Nigam et al. research [203], based on a generative approach (using

mixtures of distributions and EM algorithm). The aim is to estimate the parameters of the

distributions, first learning from the labeled instances and improving then those estimations

in repeated iterations, based on the likelihood and all the instances, in [192] and [282]. Fi-

nally, other examples of algorithms based on the cluster assumption are self-training [227]

and transductive support vector machines [140]. Chawla and Karakoulas [52] presented an

empirical study of several of these techniques.

Finally, some other examples of semi-supervised classification, specialized on some su-

pervised techniques, can be found in [46], based on neural networks, and in [258], based on

nearest neighbors classifiers. Note also that some authors, such as Bouchachia [34], distin-

guished another type of semi-supervised classification. This different approach is based on

obtaining labels of the unlabeled instances, using some information extracted from the avail-

able labels. Once all the data set is labeled, a supervised algorithm can then be used to build

a predictive model. This approach is called pre-labeling, and some examples can be found in

related work from [34].

2.4.2 Semi-supervised clustering

The available information in semi-supervised clustering is often called constraints, which leads

to a different name for this task: clustering with constraints or constrained clustering [20].

There are different types of clustering constraints. Many of them are out of the scope of this

thesis, but some examples are:

� Related to the number of instances in each cluster. This is when information about the

number of instances in each cluster is known, or even when the search for clusters is

biased to obtain balanced clusters (similar number of instances in each cluster). Some

examples can be found in [39, 96, 281].

34 CHAPTER 2. PATTERN RECOGNITION

� Negative information. This is when some sets of clusters are available, from different

executions of different clustering algorithms for instance, and a new clustering solution

must then be found, being different enough from the available ones [107].

� Pairwise constraints. These are the most common types of clustering constraints. They

are also called instance-level constraints. This kind of constraints consists of state-

ments about pairs of instances. There are two types [255]: must-link and cannot-link

constraints. A must-link constraint between two instances means that these two in-

stances should be grouped into the same cluster. On the other hand, a cannot-link

constraint between two instances indicates that they should be grouped into different

clusters. When data labels are available, like in partially labeled data mentioned above,

they can be directly translated into pairwise constraints. If two instances have the same

class label, a must-link constraint can be inferred. In a similar way, when two instances

have different class labels, there is a cannot-link constraint between them. On the other

hand, when pairwise constraints are available instead of class labels, groups of instances

that belong to the same cluster can be obtained from the must-link constraints [111].

One of the first surveys in clustering with instance-level constraints can be found in

[60].

The last approach is the closest one to this thesis, but before presenting different ap-

proaches to clustering with pairwise constraints, the next question should be answered: Do

constraints benefit the clustering performance? It is similar to the first paragraph of the

previous section, where the same question about using semi-supervised classification instead

of supervised classification was commented. There are different works trying to answer this

question. The concept of feasibility, i.e., whether a clustering algorithm is able to find a

clustering solution that satisfies all available constraints, can be found in [62]. Wagstaff et al.

[254] presented a study about two constraints properties: inconsistency and incoherence. The

former is the amount of conflict between constraints and the clustering algorithm (very close

to feasibility), and the latter is the amount of internal conflict between constraints, given a

distance metric. Wagstaff et al. recommend to select those constraints that minimize both

inconsistency and incoherence. Finally, a related work dealing with the possible decrease

of performance when using constraints in clustering, even when constraints are completely

reliable, can be found in [64].

Traditionally, as compared in [18], constrained clustering algorithms have been based on

two approaches: search-based and similarity-based methods. The first approach is based

on the penalization of an objective function for evaluating clusterings depending on the

available knowledge. On the other hand, similarity-based methods train a metric using that

knowledge. From these two approaches, there is a new trend called hybrid methods by some

authors [47, 230]. Hybrid methods integrate both search-based and similarity-based at the

same time.

According to this small categorization, a presentation of some of the most known semi-

supervised clustering algorithms follows. Besides, a summary of all these algorithms, depend-

2.4. SEMI-SUPERVISED LEARNING 35

ing on the category and the intrinsic basic clustering approach used, can be found in Table

2.2.

Semi-supervised clustering category

Clustering approach Search-based Similarity-based Hybrid

Hierarchical [63] [151]

Partitional [16, 17, 256] [18, 44, 268] [19, 28, 273]

Model-based [55] [192, 162, 177, 236]

Others [35, 69, 230, 267] [12, 13]

Table 2.2: Summary of semi-supervised clustering algorithms regarding how the available information
is used and the intrinsic basic clustering approach.

Davidson and Ravi [63] presented the first work that modified hierarchical clustering

algorithms so as to satisfy all the available constraints. This work, which is an extension

of [61], highlighted how constraints not only improve the created dendrogram but also the

efficiency of the algorithm.

Klein et al. [151] also used a hierarchical approach, although their idea can be used with

any proximity-based clustering algorithm (any algorithm based on a proximity matrix). The

original proximity matrix is modified in order to satisfy the available constraints and their

implications, i.e. the constraint propagation, which are achieved when clusters are merged.

Partitional clustering in general, and K-means in particular, have received much attention

by including available constraints. One of the first example is COP-K-means [256]. The

basic idea of this algorithm is based on to modify the traditional K-means algorithm taking

into account that constraints are never violated when updating cluster assignments. PC-

K-means [17] is similar to COP-K-Means, but this algorithm does not enforce to satisfy all

the constraints. Also related to K-means, Basu et al. [16] proposed not to use the available

constraints to guide the clustering process, but to generate initial seed clusters which give

prior information about the final clustering.

Examples of algorithms based on learning a new metric are M-K-means [18], based on

traditional K-means, and [44], based on learning a new metric for fuzzy C-means. Xing et al.

[268] also presented a similar algorithm, which learns new metrics but does not require that

the constraints must be satisfied.

One of the most known hybrid algorithms based on K-means is metric pairwise constrained

K-means (MPCKM) [28], which greedily optimizes an objective function (JMPCKM), based

on both pairwise constraint satisfaction and metric learning depending on instance relations.

This algorithm is also presented and compared to some of the previously presented algorithms

in [18]. MPCKM is used throughout this thesis, so some details are provided. JMPCKM must

36 CHAPTER 2. PATTERN RECOGNITION

be minimized and is defined as

JMPCKM =
∑

x(i)∈X

(‖x(i) − µli‖
2
Ali
− log(det(Ali)))

+
∑

(x(i),x(j))∈M

wMij fM(x(i),x(j))1[li 6= lj]

+
∑

(x(i),x(j))∈C

wCijfC(x
(i),x(j))1[li = lj].

(2.27)

The specific notation is as follows. Let x(i) and x(j) be two instances of a data set X , and

µli be the centroid of the cluster li assigned to x(i). Then, ‖x(i)−µli‖2Ali
is the parametrized

Euclidean distance using a weight matrix Ali from the instance to the specific centroid.

The second term of the first addend is due to normalization with covariance matrix A−1
li

.

Regarding the constraints, M is a set of must-link constraints and C is a set of cannot-link

constraints. For each pair of instances, x(i) and x(j), there are two penalty costs for violating

these two kinds of constraints, wMij and wCij , respectively. The penalty also depends on the

distance between the instances, so two functions fM(x(i),x(j)) and fC(x
(i),x(j)) are used for

this purpose. Finally, 1 is an indicator function, where 1[true] = 1 and 1[false] = 0.

Other examples of hybrid algorithms are hidden Markov random field (HMRF)-K-means

[19] and the adaptive semi-supervised clustering Kernel method based on metric learn-

ing (SCKMM) [273]. The former incorporated available constraints along with an underlying

distortion measure into K-means by using HMRFs. And the latter used K-means for cluster-

ing incorporating constraints and using an objective function which was also obtained from

constraints estimating the parameter of a Gaussian kernel.

Cohn et al. [55] obtained incorporated constraints in order to satisfy user feedback. This

feedback is iterative and satisfied in each new iteration. These authors incorporated this

knowledge into a model-based clustering approach, by augmenting the standard Kullback-

Leibler (KL) divergence [161] with a weighting function, but reiterated that the approach is,

in theory, applicable to almost any clustering algorithm.

The idea of using partially labeled data sets together with EM was introduced in [192].

Shental et al. [236] also introduced constraints into the EM algorithm for finite mixture

models using a closed-form EM procedure with only must-link constraints, and a generalized

EM procedure with Markov nets to estimate the model including also cannot-link constraints.

This was also applied to a leukemia data set in [8]. The inclusion of clustering constraints

into model-based clustering can also be found in [162], where Law et al. modified the EM

algorithm by treating the constraints as random variables. In the same year, Lu and Leen [177]

expressed the clustering constraints in the prior distribution over assignments of instances to

clusters in a Gaussian mixture model. They penalized the cluster assignments depending on

this prior and according to the degree of constraint violations.

Other algorithms based on different clustering approaches are [35] and [69], where the

objective function is somehow regularized depending on the label information to obtain the

2.5. DIMENSIONALITY REDUCTION 37

final clustering based on GAs and the fuzzy C-Means, respectively. Again with the restriction

of satisfying all the constraints, Xia [267] presented a global optimization method to solve

the semi-supervised clustering problem.

An example of an algorithm based on density-based clustering is C-DBSCAN [230], which

extended DBSCAN by first partitioning the data into dense spaces. From them, local clusters

are identified and merged later according to the must-link constraints. Finally, cannot-link

constraints are satisfied to obtain the final clusters.

Baghshah and Shouraki presented two papers [12, 13] based on metric learning for semi-

supervised clustering using both available constraints and the geometrical structure of data

to improve the performance of semi-supervised clustering algorithms.

Liu et al. [174] presented a completely different approach, in a framework called Boost-

Cluster. The aim of this framework is to improve the accuracy of the clustering solution by

exploiting the constraints, independently of the used clustering algorithm. This is an itera-

tive process in which new data are generated in each iteration, depending on the clustering

results at previous iterations and on the available clustering constraints.

2.5 Dimensionality reduction

Advances in data acquisition and storage have not only led to large amounts of data, but also

to data with large number of features. This fact, that could be worthy on paper, is not always

desirable at learning because data with a large number of features can become unhandled

data by pattern recognition algorithms. Besides, even though an algorithm might be able to

deal with large amounts of features, some of them can be either irrelevant or redundant for the

task. An attribute is irrelevant for the pattern recognition task when it does not contribute

to improve the final result or even degrades it, according to the used performance measure.

On the other hand, an attribute is redundant when it contributes to the task with the same

information than another attribute. These facts are very related to the well-known curse of

dimensionality, cited by Bellman [22] as “[The] curse of dimensionality [...is] a malediction

that has plagued the scientists from earliest days.”. The summarized explanation of this

concept, related to any optimization problem, is that the difficult of an optimization problem

increases exponentially with an increasing number of features. This fact becomes even worse

when the number of instances is not increased together with the number of features.

Feature subset selection

For the above reasons, it is often desirable to select a subset of features before, or sometimes

during, performing the learning task. This selecting task is called FSS and has been widely

studied in data mining [10, 171]. FSS can be seen as a process in which several subsets are

searched, and the best of them is then selected based on some evaluation criterion. Therefore,

two different steps must be performed: search and evaluation.

Regarding the search, it can be seen as a problem in a space search of 2F different

possibilities, with F the number of available features. Some optimal searches, like depth-first

38 CHAPTER 2. PATTERN RECOGNITION

and breadth-first (which are typical search algorithms in graph theory for instance), are based

on exhaustively look for all possible combinations, finding the best possible subset. These

techniques cannot be applied when the number of features F becomes relatively high since

the space search size becomes too large. Heuristic techniques are then applied trying to find

solutions close to the optimal, and, in some situations, even the optimal itself. Heuristic

approaches can be divided into:

� Deterministic. This kind of algorithms obtains the same solution for each run and

configuration. Most of these algorithms are “greedy”, i.e., from a starting point, the

search continues until the optimization function does not improve once. The two most

common algorithms are forward selection and backward elimination [150]. The former

starts with no features and one feature is added in each step, whenever the objective

function improves. On the other hand, backward elimination starts with the whole

set of available features and one of them is deleted in each step, until the convergence

criterion is reached, i.e., the objective function does not improve when any instance is

deleted.

� Stochastic. These algorithms might vary their execution using some kind of randomness.

Therefore, solutions vary for different runs. GAs are an example of these kinds of

algorithms [245, 270], since their search step evolves good feature subsets by using

random perturbations of a current list of candidate subsets.

Besides the search step, it is necessary to define the objective or evaluation function that

must be optimized to select the features subset in the evaluation step. Regarding this, FSS

has been faced from two different approaches [171]:

� Filter. This approach evaluates data properties before the learning task. Therefore, the

evaluation relies on data characteristics without using any learning algorithm. Filter

algorithms rank features according to a measure, e.g., correlation between features [118]

or RELIEF [149].

� Wrapper [153]. This approach identifies feature relevance based on the evaluation

performance of a learning algorithm. Therefore, the search objective function is the

same than evaluating the applied learning algorithm. Using this approach can lead to

bias depending on the learning algorithm and it is more computationally demanding.

Some supervised classification algorithms, such as some decision tree-based, also select

some features as relevant during the classification process. This can be seen as another

approach, called embedded. One of the most known examples of algorithm using this approach

is the classification tree algorithm C4.5, previously presented. Liu and Yu [173] also referred

to another approach, called hybrid, in which filter and wrapper algorithms are used at different

stages.

2.5. DIMENSIONALITY REDUCTION 39

Some of the last FSS approaches, together with potential future work, can be found in

[172]. Therefore, FSS continues as an active research line in data mining due to the impor-

tance of this process in real domains such as genomics [133], text mining [89], or intrusion

detection [164].

Feature subset extraction

If a feature subset is selected from the original features in FSS, FSE is a process in which new

features (different from the original ones) are created. Therefore, new features are extracted

from the available feature set, getting a lower dimensional space. principal component anal-

ysis (PCA) [141], one of the most widely used FSE algorithms, obtains new uncorrelated

variables named principal components (PCs), which preserve as much of the original infor-

mation as possible. These PCs are sought from the original features and maximize the data

variance captured. It is a mathematical procedure and can be calculated from the eigenvalue

decomposition of the data covariance matrix.

FSE is out of the scope of this thesis, but other examples of general techniques are

wavelet transforms [59], which provides very general techniques that can be applied to many

tasks in signal processing, allowing the possibility to manipulate data to obtain compressed

parameters, and partial least squares (PLS) [263], which is a class of methods for modeling

relations between sets of observations by means of latent variables.

2.5.1 Subspace clustering

Figure 2.8: Data set with four clusters rep-
resented in three dimensions. Each cluster,
generated using only a subset of the available
features, is represented by a different colour.
This figure was taken from [205].

Focusing on clustering, the FSS process becomes

in a more difficult problem when each cluster may

have a different subset of relevant features than

other clusters. This problem is called subspace

clustering and an illustrative motivation to it, us-

ing figures extracted from [205], follows.

Figure 2.8 shows a 3-dimensional representa-

tion of a data set separated into four clusters.

The main characteristic of these data is that in-

stances from each cluster were generated using

a feature subset. Clusters represented in red and

green colours were generated using features a and

b, whereas clusters in blue and purple colours

were generated using features b and c. When

clusters are characterized using different features and a traditional clustering algorithm is

used to partition the data, the common situation is that the obtained partition achieves a

poor result. This problem becomes even worse when the number of features is increased.

An FSS technique applied to this data set does not fix the problem. This can be seen

in Figures 2.9 and 2.10, where data are represented in one and two dimensions, respectively,

40 CHAPTER 2. PATTERN RECOGNITION

Figure 2.9: Data set plotted in only one dimension, including a histogram. Different clusters are again
represented using different colours. This figure was taken from [205].

Figure 2.10: Data set plotted in two dimensions, covering all possible combinations that could be
selected. This figure was taken from [205].

covering all possibilities that can be obtained using an FSS technique. Using neither only

one feature nor any combination of two features would be enough to discover the four data

structures as can be seen in both figures.

Nevertheless, clusters are completely visible and separated in pairs, as can be seen in

Figure 2.10. In 2.10 (a), where features a and b are used to plot the data, clusters green and

red are separated. In 2.10 (b), where features b and c are used to plot the data, clusters blue

and purple are completely distinguished. This matches with how each cluster was generated.

Therefore, searching in different feature subsets (subspaces) leads to the correct clustering

solution.

In sum, and as detailed in this chapter, a clustering task can be performed: (i) without

any dimensionality reduction process, i.e., using the original and available data, (ii) obtaining

a single feature subset either by selecting features, i.e., FSS, or by extracting new ones, i.e.,

FSE, and (iii) identifying several subspaces to characterize each cluster. These possibilities

are shown in Figure 2.11.

As commented above, the general problem of finding clusters characterized by different

dimensions is roughly called subspace clustering. Besides [205], there are some surveys on sub-

space clustering [197, 200, 208, 237], where different approaches and algorithms are discussed

and compared. Although these surveys are a good source of information about different ap-

proaches, Kriegel et al. [160] presented another survey focused on giving a more systematic

approach to the problem. These authors, like others, directly related this kind of problem to

2.5. DIMENSIONALITY REDUCTION 41

Clustering

(ii) Single (sub)space

(iii) Several subspaces

(i) Original data

FSS

FSE

Data Dimensionality reduction

Figure 2.11: Possibilities regarding the data to perform a clustering task.

high-dimensional data. It is obvious that high-dimensional data are clear targets for finding

clusters using different feature subsets due to the number of available features, but this thesis

does not limit this kind of problems only to high-dimensional data, since subspaces may exist

in data with fewer features. Besides, and citing to [120]: “Note that high-dimensional can be

as few as p = 10 variables or as many as p = 1000 variables or beyond - it depends on the

complexity of the models concerned and on the size of the available data”.

The categorization of subspace clustering approaches depends on the paper or survey

consulted, since different authors categorized these approaches using different criteria. One

of the most complete categorizations can be found in [160], and therefore, the categorization

that follows is based on that survey, However, names and concepts that other authors also

used are included when appropriate.

A category, different to the used in this work, is called by [160] as “finding clusters based

on patterns in the data matrix” (also called “biclustering” and “coclustering”). This kind of

algorithms cluster instances and features interchangeably. For a related survey, see [180]. The

next necessary distinction to categorize different subspace clustering approaches is whether

clusters can be found in arbitrarily oriented subspaces or only in axis-parallel subspaces. The

former case, called “correlation clustering”, is a more general case, but it is necessary to take

into account that there is an infinite number of arbitrarily oriented subspaces, which leads to

computationally infeasible problems unless heuristics are used. It can be enough, depending

on the application, to assume only the existence of axis-parallel subspaces. An example of

axis-parallel subspaces can be seen in Figure 2.10. Many works are focused on searching

subspaces under this assumption, and different approaches can be found in this sense. The

difference between the orientation of the subspaces is not taken into account by some authors,

like in [205] for instance.

There are two possible categorizations of axis-parallel subspaces approaches. The first

one, although only used by some authors, is based on a problem-oriented categorization:

� Projected clustering algorithms. Each instance belongs to only one cluster, which is

characterized using a subspace. Therefore, there is not overlapping in clusters (hard

clustering). Found subspaces are those that best cluster data according to some defi-

nition of what a good cluster is. Related to it, there is another tendency, called “soft

projected clustering”, in which subspaces are not found by selecting (retaining or dis-

42 CHAPTER 2. PATTERN RECOGNITION

carding) features, but by weighting them. A feature with a high weight is considered

as more important to define a subspace than another lower weighted feature. This

tendency is merely called “soft subspace clustering” by some authors [71, 138], and is

similar to “weighting clustering” but extending it to every single cluster. Thus, it is a

multiple feature weighting clustering [202]. Deng et al. [71] divided this approach fur-

ther into “fuzzy weighting subspace clustering” [45, 99, 98, 139] and “entropy weighting

subspace clustering” [74, 138], depending on whether the algorithms are based on ei-

ther assigning a fuzzy weight to each feature and cluster, or those weights are controlled

depending on the entropy, respectively.

� Subspace clustering algorithms. The aim is to identify all subspaces where clusters can

be found. Therefore, instances can be grouped in many different clusters, each char-

acterized by a different subspace. Therefore, the overlapping is allowed by algorithms

from this category.

� Hybrid algorithms. As its name suggests, this approach is a hybrid between the two

previously presented. Found clusters may overlap, but the number of found subspaces

is not the full set of possible subspaces, but only a smaller subset according to some

criteria.

This categorization1, presented in [160], is also followed in [237] for instance, but it does

not appear in previous surveys, such as [205]. This categorization can be confusing because

the concept “subspace clustering” is not always used in the same manner. See for instance

[277], where Yiu and Mamoulis used projected clustering and subspace clustering as the same

concept.

The second categorization (algorithmic-oriented) presented in [160] is the same as the one

used in [205]. Therefore, the agreement with this categorization is complete:

� Bottom-up approach. It is based on finding dense regions of data using low dimensional

spaces. These regions are then combined until a cluster can be formed. This approach is

based on the downward closure property of density, which states that if there are dense

units in a number of dimensions, F , there are dense units in all (F − 1) dimensional

projections. One of the problems of this approach is the amount of necessary input

parameters, e.g., the density threshold, and the difficulty of properly tuning them.

� Top-down approach. This approach tries to find a clustering result using all available

dimensions. After this, subspaces of each cluster are searched and new clusters must be

found. Therefore, a circular dependency begins. To escape from this, most top-down

algorithms are based on the locality assumption [160]. This assumes that the subspace

of each cluster can be learned from the local neighborhood of cluster members.

1According to this categorization, the title of this thesis should be “Semi-supervised projected clustering
and application to neuroscience”. However, due to this categorization depends on the authors, the title
maintains the general concept “subspace clustering” as a more identifiable concept

2.5. DIMENSIONALITY REDUCTION 43

Biclustering
Correlation
clustering

Axis-parallel
subspaces

[160]

Problem
oriented

Algorithmic
oriented

Projected
algorithms

Subspace
algorithms

Hybrid
algorithms

Top-down
algorithms

Bottom-up
algorithms

[205]

Soft projected

Figure 2.12: General schema of approaches that search for several subspaces for clustering data
according to [160] and [205].

The general schema of approaches that search for several subspaces for clustering data

is illustrated in Figure 2.12. The problem-oriented and the algorithmic-oriented categoriza-

tions are completely different. However, they have some relations when algorithms are seen

in detail. All subspace clustering algorithms are implemented using a bottom-up approach,

whereas most projected clustering are top-down algorithms. These direct relations between

both categorization types are taken into account in [119], where algorithms were divided

into “dimension-reduction projected clustering” and “dimension-growth subspace clustering”.

Nevertheless, this generalization should be made wisely, because some projected clustering

algorithms are implemented using a bottom-up approach. On the other hand, hybrid algo-

rithms do not appear in those relations and some of these algorithms are implemented using

a bottom-up approach and some others using a top-down approach.

According to these categorizations, a presentation of some of the most known algorithms

that find clusters in several subspaces follows. Besides, a summary of all the algorithms that

search for axis-parallel subspaces, depending on the category, can be found in Table 2.3.

Problem-oriented

Algorithmic-oriented Projected (Soft projected*) Subspace Hybrid

Top-down [2, 265, 33] [93, 75]* [214, 274]

Bottom-up [4, 48, 53, 103, 143, 169, 170] [1, 159, 235]

Table 2.3: Summary of some of the most known algorithms that find clusters in several subspaces
regarding the previously presented categorizations.

Projected clustering (PROCLUS) [2] was the first projected and top-down algorithm. This

44 CHAPTER 2. PATTERN RECOGNITION

algorithm is close to K-means (see Section 2.3.1) and uses an iterative process that starts

determining some cluster centers using a greedy algorithm. Cluster subspaces are searched

then by minimizing the distances standard deviation of the instances in the neighborhood of

each cluster center to the corresponding cluster center in each dimension. Finally, instances

memberships are estimated depending on these cluster centers and subspaces. An extension

of PROCLUS is an algorithm called fast and intelligent subspace clustering algorithm using

dimension voting (FINDIT) [265], which employs additional heuristics to enhance efficiency

and accuracy of PROCLUS.

Subspace preference weighted density connected clustering (PreDeCon) [33] is also cate-

gorized as a projected algorithm and is based on DBSCAN. This algorithm builds a subspace

preference vector, based on the variance in each feature, and uses a weighted distance mea-

sure according to the vector. Although PreDeCon was presented as an efficient algorithm,

robust to noise, and linear in the number of features, there are four input parameters, related

to density and preference vector, that must be correctly tuned to obtain good performance.

Clustering on subsets of attributes (COSA) [93] is another top-down algorithm. This

algorithm is different from the previously presented because it does not cluster the data,

but obtains a similarity matrix, examining the K-nn of each instance. The similarity matrix

can be used to cluster data with another algorithm later. This matrix contains information

between instances and dimensions using weights. Hence, subspaces are found for each instance

instead of for each cluster, and when the cluster task is performed, cluster subspaces must

be estimated depending on the instances of each cluster. Although COSA is categorized

by Parsons et al. [205] as a top-down algorithm, these authors do not take into account

soft subspace clustering algorithm, and COSA is categorized as a soft subspace clustering

algorithm by [138] and as a soft projected clustering algorithm by [160].

Another example of soft projected clustering algorithm is locally adaptive clustering

(LAC) [75]. The search for subspaces is based on discovering clusters using different combi-

nations of features via local weightings. Weights are configured depending on the correlation

of instances in each cluster. LAC is based on K-means and EM (see the relation between

K-means and model-based clustering in Section 2.3.1). There is an initialization and, after

that, an iterative process firstly assigning instances to clusters and recalculating clusters. The

difference between LAC and other similar algorithms is related to the weight formulas that

result from different objective functions to be minimized in the clustering process. An impor-

tant and related concept is feature saliency, introduced in [163], that is the probability that

a feature is relevant to a cluster. Therefore it is a close concept to soft subspace clustering if

it is extended to all clusters separately. Law et al. [163] introduced this probability into the

EM algorithm for model-based clustering, getting that irrelevant features got a saliency of

0. The extension of [163] to subspaces was presented by Li et al. [166], using also minimum

message length (MML) criterion to estimate the final number of clusters. Besides, the same

authors presented a variant in [167], where clusters and individual feature subsets for each

cluster were found simultaneously through parameter estimation using variational Bayesian

learning. Previous to this work, and also based on variational approximation, Ghahramani

2.5. DIMENSIONALITY REDUCTION 45

and Beal [102] presented an algorithm that infers the model structure of a mixture, also

determining the number of components and the local dimensionality of each cluster.

A different approach, presented by Graham and Miller [110], was based on shared distri-

butions obtaining more parsimonious models. This is close to projected clustering because

each cluster has its own specific feature subset distribution, but all of them share a common

distribution for some features when it is possible. This method obtains more flexible models

trying to overcome the “structural failure”, i.e., the problem of estimating the number of

clusters by varying the complexity of a model in terms of degrees of freedom.

Hoff [127] developed an approach, based on a multivariate Dirichlet process mixture

model, that estimated the number of clusters, the clustering partition, and the specific pa-

rameters for each cluster, in a unified way. This proposal was thought for binary features,

specifically for the analysis of genomic abnormality data. Hoff reported a similar research

with fewer limitations in [128]. Other works, also for non-Gaussian data, based on generalized

Dirichlet process are [36, 37]. Again for binary data, Patrikainen and Mannila [207] presented

SUBBERCLUST, a subspace mixture model algorithm for Bernoulli distribution. A recent

proposal can be found in [38], where a new generalized Dirichlet mixture model is used to

address the problem of clustering multidimensional data sets on different subspaces.

All subspace clustering algorithms are also bottom-up algorithms. The first created algo-

rithm was clustering in quest (CLIQUE) [4], which was not only the first bottom-up algorithm

but also one of the first algorithms that found clusters in different subspaces. CLIQUE is a

density and grid-based clustering algorithm that iteratively finds cluster combining adjacent

dense grid units, which are defined in different subspaces depending on the coverage, i.e., the

fraction of data covered by the units.

There are several variants of CLIQUE, all of them categorized as subspace and bottom-up

algorithms. The first variant is called entropy-based clustering (ENCLUS) [53]. The main

difference between CLIQUE and ENCLUS is that the latter is based on entropy instead of

density. ENCLUS assumes that a subspace with clusters has lower entropy than a subspace

without clusters. Both CLIQUE and ENCLUS use a static sized grid to split each dimension

in bins, therefore this is another input parameter that must be fixed before running these

algorithms. Trying to handle this fixed size, other algorithms introduced different techniques

to automatically determine, in each case, the number of bins for each dimension. merging of

adaptive finite intervals (MAFIA) [103] splits each dimension depending on the data distribu-

tion. Cell-based clustering [48] and CLTree [169] are other two examples of algorithms with

an adaptive grid size, based on examination of min-max values of each dimension, and on a

decision tree, respectively. Another variant of CLIQUE is called nCluster [170]. This algo-

rithm does not use a grid based approach to partition the data into non-overlapping rectangle

cells, but uses a more flexible method to partition the dimensions to preserve meaningful and

significant clusters.

Density-connected subspace clustering (SUBCLU) [143] is another subspace and bottom-

up algorithm based on DBSCAN that satisfies the downward closure property. This algorithm

is able to detect arbitrarily shaped and positioned clusters in subspaces, therefore it is more

46 CHAPTER 2. PATTERN RECOGNITION

accurate than grid-algorithms but has a high computational cost. This algorithm can be

summarized as if a DBSCAN run would be applied for each identified subspace.

There are several algorithms categorized as hybrid algorithms by [160]. Density-based

optimal projective clustering (DOC) [214], which is density-based, as some other algorithms

commented above, is one of them. DOC process is very flexible, since several decisions can

be made depending on the requirements. The process finds, for each run of the algorithm,

an approximation of an optimal cluster over the current instances. Therefore, if instances

that were clustered in the first iterations are excluded for the following iterations, DOC will

not find overlapped clusters. DOC could be considered a pure projected clustering algorithm

in this case. On the other hand, if all instances are always maintained as input, overlapped

clusters may be found. This possible variation categorizes DOC as a hybrid algorithm.

Hierarchical approach with automatic relevant dimension selection for projected clustering

(HARP) [274] and detecting subspace cluster hierarchies (DiSH) [1] are hybrid algorithms

based on hierarchical clustering. The former, which is a top-down algorithm, does not find

a hierarchy of subspace clusters but uses different distance functions to iteratively merge

clusters minimizing the number of relevant attributes for each cluster. On the other hand,

DiSH is a bottom-up algorithm and based on the key concept of “subspace distance”, that

assigns small values if two instances are in a common low-dimensional subspace cluster and

high values if they are in a common high-dimensional subspace cluster or are not in a subspace

cluster at all. Subspace clusters with small subspace distances are embedded within clusters

with higher subspace distances. According to this, DiSH uncovers hierarchies of nested

subspace clusters.

Another example of hybrid bottom-up algorithm is support and Chernoff-Hoeffding bound-

based interesting subspace miner (SCHISM) [235], which is based on mining interesting sub-

spaces, i.e., this algorithm searches for subspaces that can be used for finding clusters subse-

quently. Filter refinement subspace clustering (FIRES) [159] is a framework that can be used

with any kind of cluster approach. Firstly, clusters are found using only one dimension and

are then merged to find maximal-dimensional subspace cluster approximations. There is a

last step to refine these cluster approximations. This framework is also considered bottom-up.

Projected clustering via cluster cores (P3C) [196] is another hybrid algorithm that also

starts by finding clusters using one dimension. Then, “cluster cores” are identified by combin-

ing the previously found regions. Finally, these “cluster cores” are refined for finding the final

clusters. P3C is also effective in detecting clusters with varying orientation in their relevant

subspaces. This type of algorithms is illustrated in Figure 2.12 as “arbitrarily”. Another typ-

ical example of this kind of algorithms is oriented projected cluster generation (ORCLUS) [3],

which is an extension of PROCLUS. Many of these algorithms are based on FSE using PCA.

Related to this, although out of the scope of this thesis, Tipping and Bishop [247] reduced

data dimensionality, based on PCA, obtaining a mixture model for probabilistic principal

component analysers using the EM algorithm.

Once some of the most known subspace and projected clustering algorithms are pre-

sented, algorithms using some kind of knowledge to enhance the search for subspaces and the

2.5. DIMENSIONALITY REDUCTION 47

clustering process are detailed.

Subspace clustering and constraints

There are some works dealing with subspace clustering and using some kind of available

information, like constraints, to improve the final result. In 2005, Yip et al. presented semi-

supervised projected clustering (SSPC) [275], based on a partitional method similar to K-

medoids algorithms to find projected clusters. These authors used the term projected clusters

to identify clusters characterized by only small subsets of all available features. Besides, this

algorithm is able to utilize domain knowledge (labeled instances) to improve the clustering

accuracy by determining the initial seeds of the search space. According to this work, this

is the first semi-supervised projected clustering algorithm. A similar work from some of the

same authors was extended and applied to microarray data in [276].

Cheng et al. [54] presented an extension of LAC, called constrained locally weighted clus-

tering (CLWC), incorporating pairwise constraints (must-link and cannot-link constraints)

into the local weighting scheme, according to the concept of “chunklet”, i.e., subset of in-

stances that are known to belong to the same although unknown class [15].

Fromont et al. [95] proposed to extend bottom-up subspace clustering algorithms, like

CLIQUE, by integrating the available known information. These authors presented an al-

gorithm, called SC-MINER, for subspace clustering. The algorithm is based on extending

the classical steps of bottom-up subspace algorithms (pre-process, mining, and post-process)

by including constraints. The pairwise constraints are integrated into the mining step. Dur-

ing the same year, Ahmed and Khan [5] presented semi-supervised impurity based subspace

clustering (SISC), used in conjunction with K-nn, and applied to text classification. This

algorithm, based on the EM algorithm, is able to identify subspaces including the Chi Square

Statistic in the objective function. Besides, another component called impurity is also used

to modify the dispersion measure [186] for each cluster. Finally, K-nn is applied using the

subspace cluster centroids as neighbors to finally assign labels.

Zhang et al. [280] pointed out that feature correlation and distance divergence are im-

portant considerations for subspace clustering. Feature correlation can be used to reduce the

search space, whereas distance divergence can be used to distinguish distances on different

dimensions and to find clusters accurately. According with these two aspects, they presented

a top-down subspace clustering algorithm, called constraint based dimension correlation and

distance divergence (CDCDD), based on the algorithm previously presented FINDIT, that

uses the aid of available constraints. The same authors presented another algorithm called

S3C [279] in a similar line than the previous one, and also exploiting available constraints.

This algorithm first identifies subspaces by finding consistencies according to the available

constraints. Once the subspaces are found, instances are assigned to clusters based again on

constraints and found subspaces.

This is the up to date state-of-the-art regarding subspace clustering algorithms using

available constraints. Based on these works, using available information might improve clus-

tering solutions either helping to firstly identify subspaces before the clustering assignments

48 CHAPTER 2. PATTERN RECOGNITION

(like in the proposal presented in Chapter 4), or during the clustering process directly (like

in the proposal presented in Chapter 5).

Part III

PROPOSALS

49

Chapter 3
Clustering validation indices

3.1 Introduction

As commented in Section 2.3.2, clustering validation is a very difficult task due to the lack

of ground truth in clustering. There are many CQIs that can be used to validate a clustering

solution [193], but research studies about these indices are often based on utopian data

conditions, with low dimensionality and clear separation and cohesion of clusters. Besides, in

this type of works, only one clustering approach is often used, but different indices may have

different behaviours depending on the way the solutions were obtained. For these reasons,

a study of some of the most known CQIs using different data conditions and clustering

approaches is presented throughout this chapter. A shorter version has been published in

[114].

This study focuses on using each CQI as a stopping rule for finding the real number of

clusters for each particular solution, which is an important and common step in clustering.

This type of validation is known as relative criterion and was commented in Section 2.3.2.

Besides, close-to-real domains for the purpose of evaluating, indices are used dealing with

different data characteristics and clustering algorithms. Thus, some of the most used CQIs

are compared here in different scenarios to output some behaviour patterns that can help

decision making on what index should be used depending on the problem at hand and how

it is solved. The scenarios are created using different databases that aim to simulate real

cases, having different percentages of outliers or noisy dimensions. Data are partitioned

using three different clustering approaches and one random algorithm to check whether each

index behaviour is different in each case. Finally, and following [252], an external CQI is used

as support for the validation.

Chapter outline

The next section presents the algorithms and indices used during this chapter, although

details about both algorithms and indices can be found in Chapter 2. Then, Section 3.3

covers all the experimental studies, presenting the used data, the validation process, and the

51

52 CHAPTER 3. CLUSTERING VALIDATION INDICES

obtained results. Finally, the chapter ends with a summary and some discussion in Section

3.4.

3.2 Algorithms and indices

Three clustering algorithms from different approaches (see Section 2.3) are used to parti-

tion each data set: K-means, hierarchical clustering using Ward’s method, and model-based

clustering using Gaussian mixtures and the EM algorithm. All these algorithms are prime ex-

amples of different approaches and, therefore, are well-known in clustering literature. Apart

from using these algorithms, data are also randomly partitioned as if it were another algo-

rithm. For each data set, this random strategy is executed for 50000 iterations in an attempt

to achieve statistical significance for each case.

The study compares five internal CQIs, using one external CQI to check whether clustering

algorithms are able to identify the correct cluster structure for each data set. The five internal

CQIs that have been introduced in the comparison are: Silhouette, Calinski, C-index, DB,

and Gamma. These indices were previously detailed in see Section 2.3.2. Silhouette is the

only index that was not compared in [193], but it is widely used in different fields, like, for

example, genomics [176] or neuroscience [145]. On the other hand, ARI is used as external

CQI. This index was created as an improvement on the Rand index. Both indices belong to

pair counting based measures, as explained in Section 2.3.2.

The indices compared in this work were designed to be used together with hard clustering

algorithms. Thus, the soft clustering solutions that are obtained with model-based clustering

are adapted by assigning each instance to the cluster whose probability of membership is

maximum.

As a note about indices, remark that there are many other CQIs that are not considered

in this work, some examples are Dunn index [79], Je(2)/Je(1) [76], or Beale index [21]. It

is not possible to cover all the available indices, but the selected ones are either well-ranked

instances according to [193] or widely used indices in clustering validation literature.

3.3 Experimental results

3.3.1 Data

The differences in the data used in this comparison are related to impurities, such as noisy

dimensions and outliers. All these details are presented in the following and summarized in

Table 3.1.

The data sets were generated using the original cluster data generator software described

in [193]. All data sets are detailed in the following, where they are divided into three groups.

The first group (clear) is composed of data sets with strong and distinct clusters. The second

group (out5 and out10) has data sets generated with 5% and 10% outliers, respectively.

Outliers are instances that do not belong to any predefined cluster. Finally, the last group

3.3. EXPERIMENTAL RESULTS 53

(noi1 and noi2) has data sets with 1 or 2 added random noisy dimensions, respectively. A

noisy dimension is a feature that does not contribute to the correct clusters separation.

Data F K DL N

clear 4,6,8 2,3,4,5 1,2,3 50

out5 4,6,8,10 2,3,4,5 1,2,3 105

out10 4,6,8,10 2,3,4,5 1,2,3 110

noi1 5,7,9,11 2,3,4,5 1,2,3 100

noi2 6,8,10,12 2,3,4,5 1,2,3 100

Table 3.1: Summary of databases, where F is the num-
ber of features, K is the number of clusters, DL are the
different density levels, and N is the number of instances
of each data set. For more details about each data set,
see the text.

The number of data sets in each

group depends on the number of dimen-

sions, clusters, and density levels. The

density levels were designed to change

the cluster sizes and the instance dis-

tributions. At the first density level

each cluster has the same number of in-

stances; at the second level, one cluster

always contains 10% of instances; and

at the third level, one cluster contains

60% of instances. At last, 228 data sets

are used in the comparison:

1. There are 36 data sets in the first group, resulting from combining four different number

of clusters (from 2 to 5 clusters), each with different number of features (4, 6, and 8),

and three different density levels. The number of data instances in each data set from

this first group is 50.

2. The second group is divided into data sets with 5% and 10% outliers. There are 48

data sets in each subgroup since a new dimensionality (10 features) is added on top of

all the combinations explained for the first group. Besides, 105 and 110 instances are

used in each data set depending on if there are 5% or 10% outliers, respectively.

3. The last group has data sets with 100 instances each, but one noisy dimension is added

to noi1 and two noisy dimensions are added to noi2 for each original number of features.

The total number of data sets is again 48 for each subgroup.

3.3.2 Evaluation process

The methodology consists of creating clustering partitions, using K-means, hierarchical clus-

tering, and model-based clustering algorithms, and the random grouping algorithm for all

the possible number of clusters (from 2 to 5) for each data set and using the CQIs to evaluate

each built partition. Thus, by using four different algorithms and four number of clusters

combinations for each data set, 228 ∗ 4 ∗ 4 = 3648 partitions are evaluated with five internal

and one external CQIs. The external CQI, ARI, is used as external validation to assess the

quality of each built partition against the real partition, which is known beforehand.

For each index evaluation, the best number of clusters is the maximum or the minimum

index value depending on each CQI. This choice will be correct if the chosen number of

clusters matches the real number of clusters known beforehand. Otherwise, the choice will

be classed as wrong irrespective of the distance to the real number of clusters. Besides, by

evaluating the external CQI, it is possible to find out whether the clustering algorithms are

54 CHAPTER 3. CLUSTERING VALIDATION INDICES

able to find the real cluster structures in data regardless of correct or incorrect internal CQIs

number of clusters choices.

3.3.3 Results

Table 3.6 shows the number of correct decisions on the number of clusters output by each

CQI and each clustering algorithm for the 228 data sets. The number of correct decisions

output by ARI is very high. This means that the clustering algorithms are able to find

the correct cluster structure in many situations, especially when they have to find 2 or 3

clusters. Regarding internal indices, Calinski achieves the best results with around 70%

correctly decisions. It is followed by Silhouette, DB, and Gamma, which all achieve very

similar results. C-index is the clear loser in this first comparison. It is interesting to note

however that this index is at least as competitive as Silhouette, DB, and Gamma at finding

5 clusters.

K

Index Algorithm 2 3 4 5 Total %

Silhouette
K-means 31 31 29 33 124 54.386
Hierarchical 38 39 35 32 144 63.158
EM based 39 33 31 33 136 59.649

Calinski
K-means 50 40 28 42 160 70.175
Hierarchical 51 39 29 40 159 69.737
EM based 50 37 33 36 156 68.421

C-index
K-means 22 14 13 31 80 35.088
Hierarchical 9 8 7 35 59 25.877
EM based 6 4 7 39 56 24.561

DB
K-means 27 31 28 31 117 51.316
Hierarchical 30 35 31 28 124 54.386
EM based 41 32 25 21 119 52.193

Gamma
K-means 21 32 29 36 118 51.754
Hierarchical 23 36 30 36 125 54.825
EM based 22 30 27 41 120 52.632

ARI
K-means 55 55 52 46 208 91.228
Hierarchical 57 55 52 47 211 92.544
EM based 55 55 54 49 213 93.421

Table 3.2: Number and percentage of correct decisions for each CQI, clustering algorithm, and number
of clusters K (from 2 to 5) in 228 data sets: 36 with clear cluster structures, 96 with outliers, and 96
with noisy dimensions.

Regarding the clustering algorithms, K-means behaves better when used with Calinski

and C-index, whereas hierarchical clustering outperforms the other algorithms when used

with Silhouette, DB, and Gamma. Interestingly, EM is the best algorithm only when used

with ARI, which is the most precise index.

3.3. EXPERIMENTAL RESULTS 55

Indices behaviours in data sets with outliers

Results for the 96 data sets with 5% and 10% outliers are shown in Table 3.3. As expected,

these results are different from the results shown in Table 3.6. In this case, the biggest

differences depend on the used clustering algorithm. For example, there is a 20% difference

in the number of correct decisions obtained by Silhouette depending on using either K-means

or hierarchical clustering. This also applies to C-index, because EM returns around 26% and

K-means around 51% correct decisions. The internal CQI with the highest percentage of

correct decisions regardless the clustering algorithm is again Calinski. Taking into account

all three clustering algorithms, Gamma mean results are a worse than C-index mean results.

C-index achieves better results than in Table 3.6, mainly due to the improvement of K-means

output.

The clustering algorithms behaviours with each CQI is very similar to before, and there

are not significant differences when data sets with outliers are evaluated separately. A minor

difference is that K-means, when used with C-index, performs much better than the other

clustering algorithms. Proportionately, the other differences among the three clustering al-

gorithms are negligible.

Regardless the appearance of outliers, ARI again outputs high outcomes (even higher

than in Table 3.6 for hierarchical and EM-based algorithms). It means that these algorithms

are able to find the correct cluster structures very often. Nevertheless, the internal CQIs

behaviours differ compared to results in Table 3.6. Although ARI results are better than

before for hierarchical and EM-based algorithms, only C-index for all algorithms and Calinski

for K-means and hierarchical algorithms obtain better results for data sets with outliers.

Silhouette, DB, and Gamma clearly obtain worse results than in Table 3.6. This is noteworthy

because although the correct cluster structures are found, based on ARI, some internal indices

are not able to estimate the correct number of clusters.

Indices behaviours in data sets with noise

Results for the 96 data sets with 1 and 2 noisy dimensions are shown in Table 3.4. One of the

first conclusions that emerges from these results is the balanced values regardless the used

clustering algorithm. In Table 3.3, indices like Silhouette or C-index obtained very different

results depending on the used clustering algorithm. However, results for data sets with noise

are much more balanced as can be seen in Table 3.4.

Another interesting conclusion is that ARI results are slightly worse than the obtained

in Table 3.6 with hierarchical and EM-based clustering algorithms. It means that noisy

dimensions affect the clustering algorithms for finding the correct cluster structures. However,

only C-index and Calinski with K-means and hierarchical clustering algorithms obtain worse

results than the obtained in Table 3.6. Because of these results, C-index is the lowest ranked

internal CQI in this comparison. On the other hand, Silhouette, DB, and Gamma clearly

outperform previous results even when the correct cluster structures are worse identified

according to ARI results. Specifically, Gamma, which is the index with the poorest results

56 CHAPTER 3. CLUSTERING VALIDATION INDICES

K

Index Algorithm 2 3 4 5 Total %

Silhouette
K-means 3 7 8 16 34 35.417
Hierarchical 9 14 14 16 53 55.208
EM based 6 7 10 18 41 42.708

Calinski
K-means 18 19 11 21 69 71.875
Hierarchical 18 18 13 20 69 71.875
EM based 17 14 13 17 61 63.542

C-index
K-means 12 11 9 17 49 51.042
Hierarchical 3 6 4 21 34 35.417
EM based 0 1 2 22 25 26.042

DB
K-means 2 6 9 16 33 34.375
Hierarchical 7 9 13 13 42 43.750
EM based 18 6 9 5 38 39.583

Gamma
K-means 2 5 5 13 25 26.042
Hierarchical 3 6 6 15 30 31.250
EM based 1 2 5 18 26 27.083

ARI
K-means 22 22 22 20 86 89.583
Hierarchical 24 22 23 23 92 95.833
EM based 22 22 24 24 92 95.833

Table 3.3: Number and percentage of correct decisions for each CQI, clustering algorithm, and number
of clusters K (from 2 to 5) in 96 data sets with 5% and 10% of outliers.

in data sets with outliers, achieves the best results in data sets with noise.

CQI evolution depending on the data characteristics

Previous conclusions about the evolution of each index depending on changes in data are

studied now. Data change from “clean” clusters to data with outliers and noisy dimensions.

This may lead to conclusions about how these new data characteristics affect the behaviour

of CQIs and determine when a particular combination of CQI and clustering algorithm is

better.

The complete evolution is shown in Figure 3.1. One of the most interesting findings is that,

according to these results, C-index performs worse with clear data sets than with outliers.

Besides, when Calinski is used to find the correct number of clusters in data sets with 5%

outliers, the outcomes are, at least, as competitive as in clear data sets. One important point

for examination here is how the introduction of more outliers or noisy dimensions affect the

behaviour of each index. Silhouette performs worse in data sets with outliers than in data

sets with noise, but the introduction of the second noisy dimension has a bigger effect than

the switch from 5% to 10% outliers. This situation is even more marked using Calinski, since

the performance substantially decreases compared to other data sets when the second noisy

dimension is introduced. DB and Gamma behave similarly: results for data sets with outliers

are very poor, whereas values for data sets with one noisy dimension are more competitive

3.3. EXPERIMENTAL RESULTS 57

K

Index Algorithm 2 3 4 5 Total %

Silhouette
K-means 20 19 13 11 63 65.625
Hierarchical 21 19 13 10 63 65.625
EM based 24 20 14 9 67 69.792

Calinski
K-means 24 15 12 13 64 66.667
Hierarchical 24 15 11 12 62 64.583
EM based 24 16 15 11 66 68.750

C-index
K-means 5 1 3 12 21 21.875
Hierarchical 3 0 2 12 17 17.708
EM based 3 1 3 14 21 21.875

DB
K-means 18 19 12 9 58 60.417
Hierarchical 16 19 11 9 55 57.292
EM based 16 19 10 9 54 56.250

Gamma
K-means 14 22 15 16 67 69.792
Hierarchical 15 24 15 14 68 70.833
EM based 15 22 14 16 67 69.792

ARI
K-means 24 24 21 18 87 90.625
Hierarchical 24 24 20 16 84 87.500
EM based 24 24 22 17 87 90.625

Table 3.4: Number and percentage of correct decisions for each CQI, clustering algorithm, and number
of clusters (K) in 96 data sets with 1 and 2 noisy dimensions.

compared to clear data sets. The performance of most indices decreases when the second

noisy dimension is introduced. The exception is the C-index discussed above. Although C-

index results are generally very low, results with K-means are better when more outliers are

introduced and when the second noisy dimension is introduced than with only 5% outliers

and one noisy dimension, respectively. Results obtained with C-index are consistent with

results obtained with ARI. The obtained results are better when outliers are introduced

than when noisy dimensions are included into the feature set. Assuming that ARI results are

the most accurate results because they are obtained by directly comparing partitions instead

of internal data structures, Silhouette, Calinski (except for noi2), DB, and Gamma obtain

results contrary to expectations.

Regarding the algorithms, EM and hierarchical clustering algorithms achieve the best re-

sults for clear data sets. For data sets with outliers, hierarchical clustering algorithm achieves

results that are, at least, as competitive as the obtained by other clustering algorithms, based

on all the internal CQIs, except for C-index, where K-means was the clear winner. In data

sets with noisy dimensions, there is not a very clear pattern for clustering algorithms be-

haviours. The top clustering algorithm changes depending on the used CQI and if one or two

noisy dimensions are introduced into the feature set.

Besides the number of correct decisions on the number of clusters decisions, another factor

for evaluation is how the value of each index changes depending on data characteristics.

The mean values of each CQI for each data situation are shown in Figure 3.2. The aim

58 CHAPTER 3. CLUSTERING VALIDATION INDICES

clear out5 out10 noi1 noi2
0

10

20

30

40

50

60

70

80

90

100

Silhouette

clear out5 out10 noi1 noi2
0

10

20

30

40

50

60

70

80

90

100

Calinski

clear out5 out10 noi1 noi2
0

10

20

30

40

50

60

70

80

90

100

C-index

clear out5 out10 noi1 noi2
0

10

20

30

40

50

60

70

80

90

100

Davies-Bouldin

clear out5 out10 noi1 noi2
0

10

20

30

40

50

60

70

80

90

100

Gamma

clear out5 out10 noi1 noi2
0

10

20

30

40

50

60

70

80

90

100

ARI

K-means Hierarchical EM-based

Figure 3.1: Evolution of percentage of correct number of clusters decisions for each CQI, depending
on data characteristics and clustering algorithms.

when using Silhouette, Calinski, Gamma, and ARI is to maximize their values, whereas the

lower the C-index and DB values, the better. In general, the addition of noisy dimensions

particularly affect all indices values, and performances are worse than when clear data are

evaluated. C-index is again an exception, because results for clear data sets are worse than

for data sets with outliers. Note also that, when outliers were previously introduced, C-

index returned a higher percentage of correct decisions. Here again, when index value is

observed, the outliers introduction improves the C-index behaviour. Regarding how the

introduction of more outliers or more noisy dimensions affect the output values, Calinski and

Gamma performances considerably decrease when the second noisy dimension is introduced.

In general, the addition of 5% outliers affects all indices performance except for C-index and

ARI.

Random groups and clustering algorithms

After using different clustering algorithms to obtain clustering partitions, a different approach

is applied. Data are randomly partitioned to compare CQIs behaviours to previous results

3.3. EXPERIMENTAL RESULTS 59

clear out5 out10 noi1 noi2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Silhouette

clear out5 out10 noi1 noi2
0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

Calinski

clear out5 out10 noi1 noi2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C-index

clear out5 out10 noi1 noi2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Davies-Bouldin

clear out5 out10 noi1 noi2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gamma

clear out5 out10 noi1 noi2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ARI

K-means Hierarchical EM-based

Figure 3.2: Mean values of each CQI for each data type. Note that scale differs depending on the
index.

when clustering algorithms were used. The number of random partitions is 50000 for each

data set, outputting the same number of quality assessments for each CQI analyzed. This is

a random approach, the specified number of repetitions is then considered in an attempt to

achieve statistical significance.

In this case, the external CQI is not used to assess how similar random partitions are

compared to the original groups. The aim of evaluating random partitions with the internal

CQIs is to compare these assessments with evaluations using clustering algorithms, obtain-

ing the random executions percentages that score better values than clustering algorithm

validations.

Table 3.5 shows these results, being Silhouette and Gamma the two more logical indices. A

logical index is when partitioning evaluation results of clustering algorithms are not usually

(less than 0.66% times) outperformed by random partitioning results. The threshold for

considering an index as logical is fixed depending on the highest percentage obtained with

the two best indices.

On the other hand, random partitions assessed with Calinski, C-index, and DB indices

score very different percentages depending on the used data characteristics and clustering

60 CHAPTER 3. CLUSTERING VALIDATION INDICES

Data

Index Algorithm clear out5 out10 noi1 noi2

Silhouette
K-means 0.21 0.39 0.45 0.49 0.66
Hierarchical 0.21 0.41 0.47 0.49 0.66
EM based 0.21 0.41 0.44 0.49 0.66

Calinski
K-means 8.23 6.78 5.77 10.92 0.61
Hierarchical 7.32 6.28 4.91 11.13 0.66
EM based 8.91 6.32 6.48 9.82 0.64

C-index
K-means 8.58 13.17 11.20 9.17 4.58
Hierarchical 6.42 5.25 2.66 7.61 4.27
EM based 7.95 0.59 3.21 7.72 5.41

DB
K-means 0.36 1.21 1.80 3.12 4.10
Hierarchical 0.35 2.65 4.69 3.37 4.16
EM based 0.19 5.41 8.85 3.30 4.31

Gamma
K-means 0.15 0.23 0.22 0.25 0.24
Hierarchical 0.15 0.23 0.22 0.25 0.24
EM based 0.15 0.23 0.22 0.25 0.24

Table 3.5: Percentage of cases in which internal CQIs output better evaluation scores for random
partitioning than for clustering algorithms.

algorithms. For Calinski, when noi2 data sets are partitioned, clustering algorithms are

beaten only by a maximum of 0.66% random executions. In all other data sets, this percentage

was significantly greater, ranging from 4.91% random partitions, which beat the score with

hierarchical clustering algorithm in out10 data, to 11.13% by using the same algorithm to

partition noi1 data.

In the case of C-index, when this index evaluates partitions output with K-means, results

are beaten by random partitioning from a 4.58% of cases in noi2 data to 13.17% in out5 data.

When out5 data sets are partitioned with EM-based clustering algorithm, the percentage of

cases in which random partitioning algorithm scores a better value for C-index was 0.59%;

in all other cases using EM or hierarchical clustering algorithms, this value increases up to a

maximum of 7.95%.

Random partitioning evaluated with DB index outperforms clustering algorithms in fewer

than 1% of the cases for clear data, but again this value increases up to 8.85% for out10 data

when EM-based clustering algorithm is used to clustering the data.

Another interesting result is the clear tendency of each internal CQI to choose an “ex-

treme” (minimum or maximum value within the compared range) number of clusters as

correct. In the case of Silhouette and C-index, this number of clusters is 2 (which is the

minimum number of clusters used in this study). On the other hand, Calinski and DB tends

to choose 5 clusters, which is the maximum number of clusters. Gamma is the only index

that is not so biased to a set number of clusters. This is important because results may be

very biased depending on the selected range of minimum and maximum number of clusters.

3.4. SUMMARY AND DISCUSSION 61

3.4 Summary and discussion

This chapter has shown an experimental research about some of the most used CQIs: Sil-

houette, Calinski, C-index, DB, and Gamma, throwing some light in their behaviours when

they are used to validate data with different characteristics, such as having outliers or noisy

dimensions. Besides, algorithms from three different clustering paradigms (partitional, hi-

erarchical, and model-based clustering) are used, to also cover a range of some of the most

widely used clustering algorithms. The conclusions presented here for each index are related

to a previous work, presented by Milligan and Cooper [193], which is an interesting starting

point to study many internal indices.

C-index was a measure with a weird behaviour since it achieved better results at evaluating

data sets with outliers than data sets without outliers or noisy dimensions. C-index was

ranked in third position (in a ranking of 30 measures) by Milligan and Cooper, whereas in

this new study was the index with the lowest accuracy. The main reason for this result was the

low performance of C-index when it was used for validating clusters with noisy dimensions.

The final problem of C-index was that it measured better results for random partitions than

for partitions coming from clustering algorithms in a significant percentage of cases.

Another measure that might be placed in a low position of a ranking, according to this

new study, is DB. The general behaviour of DB was not as good as other measures, and it

got even worse when it was used for validating clustering solutions of data with outliers. This

measure was ranked tenth in [193].

Calinski was ranked in first position by Milligan and Cooper. This good position was

also demonstrated in this study according to the obtained results. However, Calinski failed

in the random partitioning experiment. Its behaviour when results of random partitions

were compared to results of clustering algorithms was not as good as that obtained by other

indices. It may be an enough reason to not choose Calinski to validate future clustering

results.

Silhouette was not ranked by Milligan and Cooper but this index was chosen for this

comparison because is widely used to validate clustering solutions. The general results of

Silhouette were similar to those obtained by Calinski, obtaining acceptable results in all com-

pared situations and, moreover, demonstrating a higher stability than Calinski throughout

the random partitioning experiment.

Finally, Gamma index, which was ranked in fourth position by Milligan and Cooper,

behaved again as a weird measure. It was not biased by using a concrete clustering algo-

rithm and demonstrated good stability against random partitions. The only disadvantage of

Gamma appeared when outliers were introduced in data, since there was a sharp decrease

in its performance. This fact, when compared to Calinski or Silhouette, may be enough rea-

son to choose one of the other indices. Nevertheless, Gamma had a main advantage when

compared with all the other indices: it was not biased by the minimum or maximum number

of clusters used as range. It means that other measures were biased to choose one of those

numbers of clusters, while Gamma did not have this possible disadvantage.

62 CHAPTER 3. CLUSTERING VALIDATION INDICES

Although these conclusions are related to both the created scenarios and the used algo-

rithms, and, therefore, they cannot be considered as categorical statements, Table 3.6 shows a

particular ranking for these indices. Each index is scored for each part of the study according

to a value from 1 to 5 depending on the obtained results for each created scenario. According

to this ranking, Gamma index should be placed in first position, followed by Silhouette and

Calinski. DB would be located in fourth position while C-index would be the worst compared

index. However, rather than according to the total results values, each index should be used

depending on the intuition about new scenarios, since although Gamma obtained the highest

total result, it should not be used to validate results of data with outliers.

General Outliers Noise Random Bias to min/max Total Final
Index behaviour effect effect stability number of clusters values ranking

Silhouette 3 3 4 5 2 17 2nd

Calinski 4 4 4 2 2 16 3rd

C-index 2 3 1 2 2 10 5th

DB 3 2 3 3 3 14 4th

Gamma 3 2 4 5 4 18 1st

Table 3.6: The different studied parameters are scored for each index on a scale from 1 to 5, where
5 is the best. Values were determined after dividing numeric results into 5 bins. In case of random
stability and bias to min/max number of clusters, values were subjectively estimated depending on
the conclusions.

Considering the behaviour of each index depending on the different clustering algorithms,

it is difficult to find clear patterns indicating the best algorithm-index combination. In

general, hierarchical clustering algorithm returned more promising results than K-means or

the EM algorithm, but this should not be seen as a categorical conclusion because differences

also depended on the characteristics of each data set.

Chapter 4
Semi-supervised subspace hard

clustering

4.1 Introduction

The first approach created in this thesis to tackle the semi-supervised subspace clustering

problem is based on hard clustering. This approach is called knowledge mapping frame-

work (KMF) and receives partially labeled data as input. The main idea of KMF is to

identify subspaces according to the available data labels by using feature subset selection and

supervised classification techniques. A clustering algorithm is then used to partition the data

into the most interesting clusters depending on the used subspaces and the available labels.

According to Section 2.5.1, KMF can be considered a projected clustering algorithm since

each instance belongs to a single cluster at the end of this proposal.

KMF is not a final algorithm but a general framework. Several decisions must be made

and different algorithms can be used to output the solution depending on the user. A specific

instantiation, based on standard decisions and available and known algorithms, is presented

here in order to assess the viability of the framework general idea. Both the general framework

and the specific instantiation are detailed throughout this chapter (see also [115]).

Chapter outline

The chapter continues in the next section with the notation used throughout this chapter and

the details about KMF. The specific instantiation created for this thesis is then presented

in Section 4.3. The experimental results are shown in Section 4.4 and, finally, a summary of

the proposal and some discussion can be found in Section 4.5.

4.2 Knowledge mapping framework (KMF)

The notation for this proposal follows. Given XN = XL ∪ XU a data set of N instances,

the main goal is to find a clustering solution for XN . Specifically, the L instances of XL are

63

64 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

described by a feature vector x ∈ <F and by a label from a class variable C ∈ {1, . . . , C}.
Therefore XL = {(x(1), c(1)), . . . , (x(L), c(L))}. On the other hand, the U = N − L instances

of XU are described only by a feature vector x ∈ <F , and then XU = {x(L+1), . . . ,x(N)}.
As commented before, the aim is to find a clustering solution that assigns a label for each

instance in XN . The clustering solution will be led by different subspaces. These subspaces

are identified to describe the instances that belong to the known classes and to describe also

the instances that do not fit with the known classes, allowing the discovering of new clusters.

Hence, the number of final data classes or clusters will be K ≥ C. Instances in XL can vary

their labels at the end of the algorithm.

Generally speaking, the KMF framework can be divided into two phases, as follows:

Phase 4.1. Mapping knowledge. Considering the labeled instances (XL) as the available

knowledge, new knowledge in the shape of subspaces is identified by discriminating each

known class from the others. Thus, the instance-level knowledge (instances with known

class labels) is mapped to feature-level knowledge by finding the respective feature

subspaces. Data are then partitioned into different clusters according to the found

subspaces. A clustering solution is obtained for each subspace, but only one cluster is

finally selected from each solution. The next four steps elaborate on Phase 4.1.

Phase 4.1 Mapping knowledge. For each known class c, a subspace of features (Fc) is found
and used to partition the data set. Thus, a data partition (Gc) is found according to each
Fc. From each Gc, a genuine cluster (gcc) is chosen. Therefore, a set of genuine clusters (GC)
is obtained from all the known classes. Due to KMF is based on hard clustering, an instance
belongs to only one genuine cluster. For this reason, a post-process filter is also applied to
select the best cluster for each instance if necessary.

GC = ∅
for c = 1 to C do

Step 4.1.1. XLc = generateNewDataSet(XL, c)
Step 4.1.2. Fc = supervisedFSS(XLc)
Step 4.1.3. Gc = clustering(XN , Fc)

gcc = selectGenuineCluster(Gc)
add(GC, gcc)

end for
Step 4.1.4. GC = filterRepeated(GC)

Step 4.1.1. Phase 4.1 begins by separating, for each known class, the labeled in-

stances in XL that belong to class c from the instance subset that belongs to the other

known classes. With this, a new binary data set (XLc with Cc ∈ {0, 1}) is generated

involving two types of instances, both with known classes, c (coded as 1) and ¬c (coded

as 0).

Step 4.1.2. Each new binary data set can be seen as a binary supervised classification

problem. Thus, for each known class c, the subset of features (Fc) that gets the most

4.2. KNOWLEDGE MAPPING FRAMEWORK (KMF) 65

accurate classification of the binary problem, based on FSS supervised classification

techniques, is obtained. This subset of features will be a subspace in which finding a

clustering solution in the next step. Figure 4.1 shows this and the previous step for all

known classes.

Figure 4.1: Steps 4.1.1 and 4.1.2 of Phase 4.1. The instances subset that belongs to each known class
is distinguished from the instances subset that belongs to the remaining known classes. Then the
subsets of features that best fit each of these divisions are found.

Step 4.1.3. Once the new feature-level knowledge (subspaces) has been found, it is

used to find clustering solutions. This is a discovery step whose aim is to find data

partitions depending on the identified subspaces. Thus, a clustering solution (Gc) is

obtained for each known class c. All data (XN) are partitioned by using a clustering

algorithm and the previously identified subspace Fc. From Gc, only one cluster, named

genuine cluster gcc, is noteworthy for the final solution, and is the cluster that contains

most of the instances of XL originally labeled as c. Note this genuine cluster could

also be composed of instances of XL with a label c′, with c′ 6= c, and also of originally

unlabeled instances from XU .

As mentioned in each step, these three steps are repeated for each known class. Thus,

C binary data sets are generated by separating instances in XL that belong to each

particular class from the remaining labeled instances. C subspaces are then identified

by using FSS for each binary supervised classification problem. Finally, C clustering

algorithm runs are performed, obtaining C clustering solutions, one for each identified

subspace. A set of genuine clusters, GC = {gc1, . . . , gcC}, is found from the clustering

solutions before beginning Step 4.1.4.

Step 4.1.4. Once C genuine clusters have been extracted from GC, some instances

might belong to more than one of these genuine clusters. This approach is based on

66 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

hard clustering, i.e., each instance belongs to only one cluster. Therefore, for those

instances that belong to more than one cluster, the framework has to select only one

cluster for each. Assuming that an instance x(i) belongs to two genuine clusters gcc and

gcc′ , if x(i) ∈ XL and c(i) = c, instance x(i) then remains in gcc and is deleted from gcc′ .

The same applies vice versa if c(i) = c′. On the other hand, if x(i) ∈ XL and c(i) 6= c

and c(i) 6= c′, or if x(i) ∈ XU , the distance from x(i) to the centroids of gcc and gcc′ is

calculated. Note that each gc is described using a different subspace of features. Thus,

distances are also normalized by dividing by the number of features of each subspace

using normalized data. x(i) remains in the genuine cluster whose distance to its centroid

is the minimum after this calculation. Figure 4.2 shows Steps 4.1.3 and 4.1.4 for all

known classes.

 F 1
1

N

Clustering

added
instances

labeled
instances

 F c
1

N

Clustering

labeled
instances

added
instances

.

.

.
gc1

gcc

gc1

.

.

.

gcc

Filter repeated

.

.

.

Figure 4.2: Steps 4.1.3 and 4.1.4 of Phase 4.1. For each subspace identified in Step 4.1.2, data are
partitioned by using a clustering algorithm. A filtering step deletes repeated instances in genuine
clusters before moving on to Phase 4.2.

The partition output at the end of Step 4.1.4 of Phase 4.1 is the final solution if all

instances (XN) are grouped into genuine clusters. If some instances have not been

added to GC by the end of this first phase, Phase 4.2 starts. Any instance of XL and

XU may remain unclassified before Phase 4.2.

Phase 4.2. Discovering new knowledge. This phase aims to discover new clusters con-

taining the instances (XR) that have not been previously grouped into any genuine

cluster. For this purpose, a new subspace (FC+1) is identified and used to partition

XR. This is shown using pseudo-code in Phase 4.2. The three steps below elaborate

4.2. KNOWLEDGE MAPPING FRAMEWORK (KMF) 67

on this phase.

Phase 4.2 Discovering new knowledge. If the number of instances grouped into genuine
clusters (NI(GC)) is fewer than N , then the previously ungrouped R = N−NI(GC) instances
are clustered into GC+1, using a clustering algorithm and a new identified subspace FC+1.

if NI(GC) < N then
Step 4.2.1. XNC+1 = generateNewDataSet(XN , C + 1)
Step 4.2.2. FC+1 = supervisedFSS(XNC+1)
Step 4.2.3. GC+1 = clustering(XR, FC+1)

end if
return GC ∪GC+1

Step 4.2.1. There are two different subsets of instances at the beginning of this phase:

instances grouped into genuine clusters (X T), and instances that do not belong to GC
(XR), with X T ∪ XR = XN and X T ∩ XR = ∅. These two subsets generate a new

binary data set, XNC+1, with CC+1 ∈ {0, 1}.

Step 4.2.2. A subspace FC+1 is identified from XNC+1 by using FSS for the created

binary supervised classification problem, as in Step 4.1.2 of Phase 4.1. This new sub-

space discriminates instances whose classification was already found in Phase 4.1 from

instances that must be classified in this phase.

Step 4.2.3. Then, a clustering algorithm is used to partition XR in FC+1, obtaining

a new clustering solution with C ′ new clusters.

At the end of this second phase, the final solution is reached, and the final instances

classification is GC ∪ GC+1, with all instances grouped either in one of the C genuine

clusters or in a new cluster. Figure 4.3 shows the process for this phase.

x1 xF CC+1

1
1

.

.

.

1

0
0
.
.
.

0

FSS
 F C+1

1

NI(GC)

N

 F C+1

NI(GC)+1

R

Clustering
... C'

1

2

X T

X R

Figure 4.3: Phase 4.2. A clustering algorithm is again applied to the last subspace of features identified
to discover new clusters.

To sum up, the original instance-level knowledge is used to obtain feature-level knowl-

edge, represented in different subspaces. These subspaces are used to partition the data into

68 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

different clusters. At the end of the process, if Phase 4.2 is necessary as expected, there will

be C + 1 subspaces characterizing K clusters, where K = C + C ′, with C ′ the number of

clusters found in the last phase.

4.3 Knowledge mapping specific instantiation

The proposal explained in the previous section must be instantiated using several supervised

and unsupervised algorithms. The decisions made for this instantiation are based on using

standard and available algorithms.

Steps 4.1.2 and 4.2.2 are solved by using a wrapper FSS (see Chapter 2.5), where results

are evaluated by selecting the subset of features that returns the highest classification ac-

curacy. In this case, logistic regression (see Section 2.2) is used as supervised classification

algorithm, and GA (see Chapter 2.5) as search method in the feature space.

A constrained clustering algorithm is chosen for Step 4.1.3 to take advantage of the avail-

able class label information. This information can be mapped to pairwise constraints, obtain-

ing must-link constraints if two instances have the same class label and cannot-link constraints

if their class labels are different, as explained in Section 2.4.2. The algorithm used in this im-

plementation is MPCKM, previously presented in Section 2.4.2. Besides, a greedy approach

based on maximizing the objective function of MPCKM is used to estimate the number of

clusters when necessary. This estimation process iterates MPCKM in a range of clusters

{kmin, . . . , kmax}, reaching the convergence criterion when JMPCKM (ki) ≤ JMPCKM (ki+1)

holds the first time, returning ki as the number of clusters, with kmin ≤ ki ≤ kmax.

Hierarchical clustering with Ward’s method (see Section 2.3.1) is chosen for Step 4.2.3.

This approach returns a hierarchy that can be seen as a graphical representation for readily

observing the distances between clusters. This, along with its simplicity, were the reasons for

its choice.

Finally, there are many internal validation indices in clustering, as commented in Section

2.3.2 and studied in Chapter 3, that can be used to select the final number of clusters. A

voting scheme is proposed here, using Silhouette, Calinski, DB, and Gamma indices. All

these indices were detailed in Section 3.2. In this scheme, each index votes a number of

clusters depending on its obtained values. The number of clusters with the highest number

of votes is finally selected. Calinski breaks possible ties because it was the best ranked index

by Milligan and Cooper in [193], and also obtained good results in the comparison presented

in the previous chapter.

4.4 Experimental results

The instantiation for the proposal (the algorithm from now on) is evaluated using both real

and synthetic data sets. Although these data are completely labeled, the full set of labels is

used only for validation purpose. A subset of instances maintain the label in each experiment

to create the partially labeled data as input for the algorithm. Different percentages of labeled

4.4. EXPERIMENTAL RESULTS 69

instances are used to correctly assess the algorithm behaviour when the percentage of available

labels changes. The algorithm is evaluated at the end of Phase 4.1, checking whether the

identified subspaces are correct, and also at the end of Phase 4.2 (final results) using several

external indices to output a complete assessment. Finally, for comparison purposes, the same

data sets are evaluated using MPCKM.

Note that MPCKM is also part of the proposed KMF instantiation, since it is used as

the clustering algorithm in Step 4.1.3. However, this instantiation is not an extension of

MPCKM, since any other algorithm can be used in its place. Therefore, it can be useful to

use MPCKM for comparison purposes to check whether KMF is helpful for improving an

algorithm like MPCKM.

4.4.1 Data

Seven real data sets from the UCI Machine Learning Repository [91] and three synthetic

data sets were used in the experiments. All data sets have similar characteristics: hundreds

of instances, tens of continuous features, and several classes. Table 4.1 shows the number of

instances, features, and classes of both the real and synthetic data sets.

Data N F K

glass 214 9 6

image 2310 19 7

iris 150 4 3

shape 160 17 9

vehicle 842 18 4

vowel 990 10 11

wine 178 13 3

syn15 1461 15 8

syn25 1454 25 8

syn50 1461 50 8

Table 4.1: Number of instances (N), features (F),
and classes (K) of seven real from UCI and three
synthetic data sets used in the experiments.

The synthetic data sets were generated

using a clustering generator as described in

earlier researches focusing on subspace clus-

tering [143, 200]. In this kind of data, there

are data structures hidden in different sub-

spaces. Therefore some features are com-

pletely useless for finding some hidden struc-

tures, but absolutely necessary for finding

others. The difference among the synthetic

data sets is the number of dimensions used

in each case (15, 25, and 50). The main fea-

ture of KMF is to identify different subspaces

before the clustering is performed, and this

subspace search is mainly evaluated with the

synthetic data sets. On the other hand, the

chosen real data sets are suitable for the ex-

perimentation since they may contain only full-dimensional subspace clusters, and the frame-

work must be also evaluated when data could be described without using different subspaces.

All data sets are fully labeled, therefore some instance labels are hidden to get partially

labeled data. The full set of labels is used for evaluation. To gain more insight into the

algorithm behaviour, four percentages of labeled instances are used: 10%, 20%, 30%, and

40%. The instances that remain labeled are selected completely at random with only one

consideration: if a data set has C known classes, instances corresponding to [C2]+1 classes are

candidates for random selection as labeled instances, whereas instances from the remaining

classes are fixed as completely unknown. This is made to evaluate the algorithm behaviour

70 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

not only classifying instances into known classes, but also for discovering new classes. Since

selection is at random, 100 executions of the algorithm are run for each percentage of labeled

instances and data set, to achieve statistical significance. Each execution contains different

labeled instances with high probability.

4.4.2 Evaluation process

It is assumed in the evaluation process that original class labels match natural clusters. This

is similar to the cluster assumption, commented in Section 2.4.1, which states that highly

similar instances must have the same label (or class). The KMF evaluation process is divided

into two stages. The first stage checks the genuine clusters behaviour (see Section 4.2) and

the second stage assesses the final clusters at the end of the algorithm. The original labels of

each data set are used to evaluate the classification obtained by the algorithm in across both

stages.

After the genuine clusters have been found, they are evaluated using two indices: recall

and precision, comparing the partition obtained by the genuine clusters with the real class

labels. These two indices are used in information retrieval [249] and also in statistical classi-

fications. Recall measures how many instances of a particular class are in the same cluster

taking into account those instances of the same class that are not. Precision measures how

many instances in a cluster are from a particular class taking into account all the instances

in the cluster. In both cases, the range of scores is from 0 to 1, 1 being the best score. More

details can be found in Section 2.3.2.

21 indices are used to establish the quality of each partition against the real labels com-

paring our algorithm with the MPCKM algorithm. The complete list of used indices is: ARI,

Hamann, Czekanowski, Kulczynski, McConnaughey, Peirce, Wallace1, Wallace2, Gamma,

Sokal1, Fager, Sokal2, Sokal3, Gower, Roger, Kruskal, Pearson, Rand, Jaccard, Folkes, and

Russel. But, detailed results for only four indices are reported, as some of the 21 indices are

quite similar. The four indices are: ARI, Gamma, Gower, and Russel, and were presented in

Section 2.3.2. ARI and Gamma are very known indices which are demanding and balanced,

i.e., these indices take into account both good and bad results in partitions. On the other

hand, Gower and Russel are chosen as example of indices that output very good and bad

results, respectively, due to the evaluation method used. The complete description of the

remaining indices can be found in package Validator of the R-project software [216], or in [7].

4.4.3 Results

Phase 4.1

The genuine clusters evaluation, obtained by comparing the obtained results for those clusters

to the available real labels, are shown for real data sets in Table 4.2 and for synthetic data

sets in Table 4.3. Recall and precision results show whether the clusters obtained in Phase

4.1 were able to distinguish each known class from the other classes (precision), and, also

4.4. EXPERIMENTAL RESULTS 71

Recall Precision

Data % x̄ ± sd x̄ ± sd

glass

10 0.42 ± 0.23 0.68 ± 0.19
20 0.50 ± 0.24 0.71 ± 0.19
30 0.62 ± 0.24 0.74 ± 0.18
40 0.70 ± 0.22 0.77 ± 0.18

image

10 0.76 ± 0.22 0.83 ± 0.19
20 0.77 ± 0.19 0.80 ± 0.02
30 0.85 ± 0.14 0.84 ± 0.18
40 0.92 ± 0.08 0.81 ± 0.19

iris

10 0.79 ± 0.26 0.98 ± 0.05
20 0.90 ± 0.13 0.95 ± 0.09
30 0.96 ± 0.04 0.94 ± 0.12
40 0.93 ± 0.07 0.94 ± 0.12

shape

10 0.73 ± 0.23 0.71 ± 0.18
20 0.81 ± 0.17 0.74 ± 0.17
30 0.89 ± 0.12 0.75 ± 0.18
40 0.93 ± 0.09 0.77 ± 0.19

vehicle

10 0.31 ± 0.11 0.68 ± 0.16
20 0.40 ± 0.00 0.78 ± 0.00
30 0.50 ± 0.00 0.83 ± 0.00
40 0.61 ± 0.06 0.88 ± 0.10

vowel

10 0.76 ± 0.22 0.83 ± 0.19
20 0.77 ± 0.19 0.80 ± 0.02
30 0.85 ± 0.14 0.84 ± 0.18
40 0.92 ± 0.08 0.81 ± 0.19

wine

10 0.76 ± 0.22 0.83 ± 0.19
20 0.77 ± 0.19 0.80 ± 0.02
30 0.85 ± 0.14 0.84 ± 0.18
40 0.92 ± 0.08 0.81 ± 0.19

Table 4.2: Average (x̄) and standard deviation (sd) recall and precision for genuine clusters in each
real data set and percentage (%) of labeled instances. Results were calculated by averaging execution
results.

whether the identified subspaces were able to group instances that belonged to originally

known classes (recall).

A common behaviour across all real data sets is that recall improved more than precision

when the percentage of labeled instances grew (see Table 4.2). Comparing results with 10%

and 40% of labeled instances, recall improved almost 24% on average, whereas precision

improved just under 7% on average. In any case, the initial results with 10% of labeled

instances were higher for precision than for recall in all data sets, except for shape. For this

reason, taking into account the good initial results for precision, and the high improvement

for recall when labels percentage grew, Phase 4.1 results were very competitive even when

the importance of subspaces in these real data sets was limited. Specifically, with 40% of

labeled instances, recall ranged from 0.61 ± 0.06 for vehicle to more than 0.90 on average for

72 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

image, iris, shape, and wine. Precision results ranged from 0.77 ± 0.18 and 0.77 ± 0.19 in

glass and shape, respectively, to 0.94 ± 0.12 in iris.

Recall Precision

Data % x̄ ± sd x̄ ± sd

syn15

10 0.84 ± 0.20 0.90 ± 0.16
20 0.87 ± 0.17 0.91 ± 0.15
30 0.90 ± 0.13 0.92 ± 0.14
40 0.94 ± 0.10 0.92 ± 0.14

syn25

10 0.92 ± 0.13 0.95 ± 0.10
20 0.96 ± 0.08 0.96 ± 0.10
30 0.98 ± 0.05 0.97 ± 0.09
40 0.99 ± 0.03 0.97 ± 0.09

syn50

10 0.93 ± 0.13 0.94 ± 0.13
20 0.95 ± 0.10 0.94 ± 0.12
30 0.97 ± 0.07 0.95 ± 0.12
40 0.98 ± 0.04 0.95 ± 0.12

Table 4.3: Average (x̄) and standard deviation (sd) recall and precision for genuine clusters in each
synthetic data set and percentage (%) of labeled instances. Results were calculated by averaging
execution results.

As expected, synthetic data results (see Table 4.3) were better on average than real data

results, because subspaces were highly important in these cases. Again, there was more

improvement for recall than for precision when the percentage of labels grew (around 7% and

2%, respectively). Final results were very accurate, and the genuine clusters classifications

for syn25 and syn50 with 40% of labeled instances were near perfect.

Based on these results, it can be said that the presented KMF instantiation achieved the

first phase goal, i.e., to correctly identify the subspaces that described the known classes, since

new instances with the same label (although hidden to the input) were correctly grouped into

genuine clusters.

Phase 4.2

After the genuine clusters are found, the remaining final clusters are obtained at the end of

Phase 4.2 by identifying a new subspace and using hierarchical clustering. All these clusters

are the final clustering solution for each scenario and are compared to real (and partially

hidden) labels. The aim is to check the evolution of each result and the algorithm general

behaviour depending on the percentage of labeled instances and data characteristics. Results

for real and synthetic data sets are listed in Table 4.4 and in Table 4.5, respectively. Taking

into account the properties of the indices presented in Section 2.3.2, results must be deeply

studied using ARI and Gamma, since Gower and Russel are shown as examples of very radical

indices, i.e., indices that evaluate partitions with a bias to high and low values, respectively.

The real data results evolution can be seen in Table 4.4. Behaviours differed depending

on the data set, since the improvement with glass, vehicle, vowel, and wine was around 24%

4.4. EXPERIMENTAL RESULTS 73

on average from 10% to 40% of labeled instances using ARI. Nevertheless, the improvement

was only around 7% on average with image, iris, and shape. This also depended on the index,

since looking at Gamma results, the improvements were more moderate because initial results

(with 10% of labels) were higher using Gamma than ARI.

ARI Gamma Gower Russel

Data % x̄ ± sd x̄ ± sd x̄ ± sd x̄ ± sd

glass

10 0.20 ± 0.04 0.42 ± 0.04 0.83 ± 0.02 0.09 ± 0.03
20 0.24 ± 0.05 0.44 ± 0.03 0.84 ± 0.02 0.10 ± 0.02
30 0.31 ± 0.05 0.48 ± 0.03 0.86 ± 0.02 0.11 ± 0.02
40 0.40 ± 0.06 0.53 ± 0.03 0.88 ± 0.02 0.13 ± 0.02

image

10 0.50 ± 0.09 0.56 ± 0.06 0.93 ± 0.02 0.07 ± 0.01
20 0.52 ± 0.07 0.57 ± 0.05 0.94 ± 0.01 0.08 ± 0.01
30 0.56 ± 0.08 0.61 ± 0.06 0.94 ± 0.02 0.09 ± 0.01
40 0.60 ± 0.07 0.64 ± 0.05 0.94 ± 0.03 0.10 ± 0.01

iris

10 0.63 ± 0.15 0.68 ± 0.11 0.92 ± 0.03 0.20 ± 0.05
20 0.73 ± 0.08 0.71 ± 0.06 0.94 ± 0.02 0.25 ± 0.01
30 0.72 ± 0.12 0.75 ± 0.09 0.93 ± 0.03 0.24 ± 0.02
40 0.69 ± 0.12 0.73 ± 0.09 0.93 ± 0.03 0.23 ± 0.04

shape

10 0.53 ± 0.06 0.57 ± 0.05 0.95 ± 0.01 0.06 ± 0.07
20 0.54 ± 0.08 0.59 ± 0.06 0.94 ± 0.01 0.07 ± 0.01
30 0.56 ± 0.07 0.61 ± 0.05 0.95 ± 0.01 0.08 ± 0.02
40 0.59 ± 0.09 0.63 ± 0.07 0.95 ± 0.01 0.08 ± 0.07

vehicle

10 0.12 ± 0.03 0.41 ± 0.03 0.80 ± 0.03 0.09 ± 0.02
20 0.16 ± 0.03 0.42 ± 0.02 0.81 ± 0.02 0.09 ± 0.01
30 0.23 ± 0.03 0.44 ± 0.02 0.84 ± 0.01 0.10 ± 0.01
40 0.33 ± 0.03 0.49 ± 0.02 0.87 ± 0.01 0.11 ± 0.01

vowel

10 0.09 ± 0.04 0.27 ± 0.01 0.88 ± 0.03 0.02 ± 0.00
20 0.17 ± 0.02 0.31 ± 0.01 0.91 ± 0.03 0.03 ± 0.00
30 0.23 ± 0.04 0.34 ± 0.02 0.91 ± 0.02 0.03 ± 0.00
40 0.33 ± 0.06 0.42 ± 0.04 0.93 ± 0.01 0.04 ± 0.00

wine

10 0.48 ± 0.11 0.59 ± 0.07 0.88 ± 0.03 0.18 ± 0.04
20 0.55 ± 0.10 0.63 ± 0.08 0.90 ± 0.02 0.20 ± 0.04
30 0.63 ± 0.10 0.69 ± 0.07 0.92 ± 0.02 0.21 ± 0.04
40 0.70 ± 0.09 0.75 ± 0.07 0.93 ± 0.02 0.23 ± 0.03

Table 4.4: Real data sets average (x̄) and standard deviation (sd) for each external index and different
percentages (%) of labeled instances. Results are obtained by comparing the final clustering solutions
to the real labels.

Table 4.5 shows the results for the synthetic data sets. syn15 obtained 0.80± 0.10 using

ARI with 40% of labeled instances, but this result was higher with syn50 (0.90± 0.07), and

even more so with syn25 (0.92±0.07). As can be seen in the table, good results denoted again

the importance of subspaces for the best framework exploitation. Note also the importance

of the number of dimensions in data. When the number of dimensions was either too high or

low, the FSS search technique may not find the best features subset in some cases.

Therefore, results using KMF when clustering data with subspaces were very good. Nev-

74 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

ARI Gamma Gower Russel

Data % x̄ ± sd x̄ ± sd x̄ ± sd x̄ ± sd

syn15

10 0.75 ± 0.12 0.77 ± 0.10 0.97 ± 0.02 0.11 ± 0.02
20 0.76 ± 0.10 0.78 ± 0.09 0.97 ± 0.01 0.11 ± 0.02
30 0.77 ± 0.10 0.79 ± 0.09 0.97 ± 0.01 0.12 ± 0.02
40 0.80 ± 0.10 0.81 ± 0.09 0.97 ± 0.01 0.12 ± 0.02

syn25

10 0.86 ± 0.08 0.87 ± 0.07 0.98 ± 0.01 0.13 ± 0.01
20 0.89 ± 0.08 0.89 ± 0.07 0.99 ± 0.01 0.13 ± 0.01
30 0.91 ± 0.07 0.91 ± 0.07 0.99 ± 0.01 0.13 ± 0.01
40 0.92 ± 0.07 0.93 ± 0.07 0.99 ± 0.01 0.14 ± 0.01

syn50

10 0.83 ± 0.09 0.84 ± 0.08 0.98 ± 0.01 0.12 ± 0.01
20 0.85 ± 0.08 0.86 ± 0.07 0.98 ± 0.01 0.13 ± 0.01
30 0.88 ± 0.08 0.89 ± 0.07 0.98 ± 0.01 0.13 ± 0.01
40 0.90 ± 0.07 0.91 ± 0.06 0.99 ± 0.01 0.13 ± 0.01

Table 4.5: Synthetic data sets average (x̄) and standard deviation (sd) for each external index and
different percentages (%) of labeled instances. Results are obtained by comparing the final clustering
solutions to the real labels.

ertheless, it is necessary to compare these results with a different approach, to obtain a more

accurate feedback about the behaviour of KMF. This is even more important when clustering

real data, since KMF is not focused on data without subspaces. Therefore, the comparison

with a clustering algorithm that is not focused on subspaces may indicate whether the ob-

tained results were competitive.

4.4.4 Comparison with a constrained clustering algorithm

The approach employed for comparison is a much used constrained K-means, previously

explained in Section 4.3, and abbreviated as MPCKM. This algorithm iterates to satisfy

must-link and cannot-link constraints using an adaptive metric for each cluster depending on

the pairwise relations. This algorithm does not compute the number of clusters, which has

to be entered as a parameter. MPCKM is run within a range from the number of known

classes in each data set to 20, and the number of clusters is selected in the algorithm by

minimizing JMPCKM . The above results for synthetic data were very accurate, but the aim

with this comparison is to check whether KMF is also competitive when clustering real data

sets, although subspaces are not necessarily a primary feature of these data.

Table 4.6 presents the average number of clusters selected for each approach depending

on the data set and the percentage of labeled instances. KMF was, in general, more accurate

than MPCKM at selecting the number of clusters. This applied mainly to the synthetic data

sets: the number of clusters selected by KMF was on average 11 when there were 15 features;

but it estimated eight clusters, the real number, when there were 25 and 50 features. The

estimation of the number of clusters when clustering real data was not accurate when using

KMF, but neither MPCKM was able to select the correct number of clusters. KMF selected

on average a number of clusters closer to the real number than MPCKM for glass, iris,

4.4. EXPERIMENTAL RESULTS 75

Data % KMF MPCKM

10 9.50 11.69
glass 20 9.20 11.59
(6) 30 8.91 11.30

40 8.84 11.45

10 16.40 12.80
image 20 17.20 12.10

(7) 30 16.90 11.80
40 15.56 11.90

10 8.30 8.40
iris 20 5.40 8.00
(3) 30 6.10 7.70

40 6.80 7.20

10 12.60 10.70
shape 20 11.10 9.75

(9) 30 10.10 9.80
40 10.10 9.60

10 6.16 13.34
vehicle 20 5.87 12.87

(4) 30 5.90 13.39
40 5.92 13.95

10 11.00 14.80
vowel 20 12.50 13.80
(11) 30 16.00 13.30

40 12.90 13.80

10 5.33 11.92
wine 20 5.45 11.74
(3) 30 5.48 11.28

40 5.37 11.35

10 11.15 12.13
syn15 20 11.33 12.48

(8) 30 11.05 12.72
40 11.92 12.68

10 8.68 11.63
syn25 20 8.78 11.60

(8) 30 8.82 11.48
40 8.89 11.57

10 8.16 11.29
syn50 20 7.95 11.48

(8) 30 7.91 11.62
40 7.73 11.99

Table 4.6: Average number of clusters selected for each approach and percentage (%) of labeled
instances. Real number of clusters are shown within parenthesis.

76 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

vehicle, and wine. Note that results related to the estimation of the number of clusters using

KMF completely depends on the clustering algorithm that is used during Phase 4.2. For this

reason, this results should be taken wisely, since not only different clustering algorithms, but

also different indices or processes to evaluate the final selection could be used. Although how

each algorithm selected the number of clusters is an interesting feature, it is necessary to

compare the final clustering solutions independently of the selected number of clusters.

The Wilcoxon signed-rank test [260], a nonparametric statistical hypothesis test which can

reveal the existence of significant differences between two distributions, is used to compare

results output by KMF and MPCKM. The null hypothesis is that there are not statistical

differences between the two distributions. Therefore, the test checks whether there is signif-

icant statistical difference between results from both algorithms, with a significance level of

5%, for different data sets and labeled instances percentages.

The Wilcoxon results for the 21 indices are shown in Table 4.7, and indicate how many

indices of each approach were significantly better than for the other, and how many indices did

not achieve significant differences. Results were quite similar for the glass, vehicle, and wine

real data sets, where MPCKM had a slight advantage. This small difference became even

lower depending on the labeled instances percentage, and results for glass and 30% of labeled

instances, or vehicle and 10% were equal. In other cases, like for example, wine and 30%

of labeled instances, KMF achieved better results than MPCKM. Results were even more

similar for image, iris (except with 20%, where KMF clearly outperformed MPCKM), shape,

and vowel. Therefore, KMF was very competitive when clustering data with no subspaces.

In the case of synthetic data sets, MPCKM performed better in syn15. MPCKM achieved

better results in syn50 with 10% and 20% of available labels, showing that the proposal was

not able to find the correct subspaces with a low percentage of labels, but in this data set,

KMF clearly outperformed MPCKM with 30% and 40%. KMF also obtained better results in

syn25 regardless the percentage of labeled instances. As previously mentioned, the number

of features is one of the most important data characteristic for KMF, because either a small

or a large number of features could lead to poor decisions, depending on the FSS technique.

As a summary, KMF obtained competitive results compared to MPCKM when clustering

data that do not need to be described by using different subspaces. On the other hand, if the

presence of subspaces are a characteristic of the target data, KMF outperformed MPCKM,

provided there was a large enough number of features (at least 25 features based on this

experimentation), or when the percentage of labeled instances was high (≥ 30%).

4.5 Summary and discussion

This chapter has presented a framework, called KMF, that, having available class label infor-

mation for some instances, aims to clustering data using different identified subspaces. This

goal is achieved by mapping the instance-level knowledge to feature-level knowledge, and

taking advantage of supervised methods to output this information. The search for different

subspaces not only outputs more parsimonious clustering solutions that can be easily inter-

4.5. SUMMARY AND DISCUSSION 77

preted, but also is able to find data structures that might remain hidden without searching

for subspaces.

After the framework presentation, a specific instantiation is proposed. This instantiation

is based on using very known and available algorithms, trying to assess the framework ideas.

The main reason for using known algorithms was the easy understanding of the framework.

Besides, using this kind of algorithms allowed to validate the instantiation quickly. On the

other hand, results showed some limitations in determined situations that could be overcome

using other kind of algorithms. The proposal also automatically selects the number of clusters,

which is a typical problem in all tasks related to clustering, by using some indices for validating

the clustering solutions.

Some conclusions can be drawn from the creation of this proposal and the achieved results.

KMF identifies subspaces completely based on the available data labels. These subspaces are

then used as different dimensions where data partitions are found. Regarding the known

labels, there are two noteworthy conclusions. First of all, the available data labels can be

used to guide the clustering process. This is the main conclusion for most semi-supervised

clustering algorithms. Related to the presented approach, some semi-supervised clustering

algorithms used the known information about data labels or pairwise relations to constraint

the space search or to learn a new metric, as commented in Section 2.4.2. In this case, data

labels guide the search for subspaces, and the clustering process completely depends on these

subspaces. The second conclusion is directly drawn from the previous one. Since data labels

are used as a starting point of KMF, they must be completely reliable to obtain accurate

results. This is a known trouble for this kind of problems and is preferable to have a lower

amount of reliable information that a higher amount of less accurate information.

Also related to the search for subspaces, another important data characteristic for KMF

is the number of features. An FSS for a supervised classification problem is used here for

finding each subspace. According to the obtained results, the FSS process is very accurate for

data described with 25 features. The combination of the number of features and the available

data labels is also important, since KMF obtained very different results for a data set with

50 features depending on the percentage of available data labels. This is possibly related

to whether data are balanced or not. When the number of labeled instances for a specific

class is very different from the number of labeled instances for all the other known classes,

the FSS process is performed in an unbalanced data set. The binary supervised classification

problem becomes more difficult for this kind of data and, therefore, the FSS process may

become less accurate. Assuming the commented limitations and depending on the scenario,

KMF obtained accurate results when clustering synthetic data sets. The main characteristic

of these data is that clusters are characterized in different subspaces. Thus, the clustering

solutions for the target data of KMF achieved the goal of improving results when compared

to a state-of-the-art semi-supervised clustering algorithm.

On the other hand, KMF was also validated with real data sets. These data are not

characterized by different subspaces and, therefore, the search for subspaces of KMF may

not help to obtain accurate clustering results in this case. Nevertheless, the results obtained

78 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

Data % KMF MPCKM NoDiff

glass

10 4 12 5
20 7 12 2
30 9 9 3
40 4 10 7

image

10 0 0 21
20 0 0 21
30 0 0 21
40 0 0 21

iris

10 0 0 21
20 18 1 2
30 3 1 17
40 0 2 19

shape

10 0 1 20
20 0 0 21
30 0 0 21
40 0 4 17

vehicle

10 10 11 0
20 9 11 1
30 9 12 0
40 7 14 0

vowel

10 2 17 2
20 0 4 17
30 1 6 14
40 0 2 19

wine

10 9 11 1
20 8 10 3
30 10 7 4
40 4 15 2

syn15

10 2 19 0
20 2 19 0
30 2 19 0
40 2 19 0

syn25

10 17 4 0
20 17 4 0
30 17 2 2
40 19 1 1

syn50

10 2 19 0
20 2 19 0
30 11 4 6
40 17 4 0

Table 4.7: Number of external indices out of 21 returning no statistical difference between the ap-
proaches (NoDiff), or, number of times one approach outperforms the other for each percentage of
knowledge and data set.

4.5. SUMMARY AND DISCUSSION 79

with KMF were competitive, depending on the data, when compared to a semi-supervised

clustering algorithm that does not search for subspaces. The important conclusion about

these results is that, although KMF searches for subspaces regardless of the input data, the

FSS process should not affect very much the results if subspaces cannot be found. The

most extreme case is whether the FSS process identifies always the same subspace for all

known classes, i.e., there is only a feature subset which is suitable to distinguish between

each known class and the others. Note that the clustering step will be performed with always

the same subspace in that case, but different genuine clusters will be identified. Although

this is a desirable situation for data which are not described by different subspaces, KMF is

completely exploited when different subspaces can be identified.

80 CHAPTER 4. SEMI-SUPERVISED SUBSPACE HARD CLUSTERING

Chapter 5
Semi-supervised subspace soft

clustering

5.1 Introduction

The second proposal, called semi-supervised subspace model-based clustering (3SMBC), is

based on probabilistic (and soft) clustering and adapts model-based clustering approach,

presented in Section 2.3.1, integrating available instance labels and subspace search together

with the EM algorithm to obtain the final clustering solution. Therefore, as for the previous

proposal, the 3SMBC input data must be partially labeled data.

Besides the soft clustering instead of the hard clustering approach, the main difference

between 3SMBC and KMF is that the former is a closed-algorithm and not a framework

that can be instantiated using different algorithms. Another important difference is that the

available information was used to find subspaces in KMF, and these subspaces were then used

to find the clustering solution. However, subspaces and clusters are simultaneously searched

in 3SMBC.

This approach is based on the traditional concept of finite mixture models, where an

instance is assumed to be generated by a probabilistic model given by a finite mixture of

distributions [29]. 3SMBC work is described throughout this chapter (see also [112]).

Chapter outline

The notation for this chapter is presented in the next section together with the basic theory of

mixture modeling. It is used as basis to detail the proposal about semi-supervised subspace

soft clustering in Section 5.3. The chapter continues in Section 5.4 showing the experimental

results using both synthetic and real data. A comparison with related algorithms is also

shown in that section. Finally, Section 5.5 covers a summary of the proposal and some

discussion about it.

81

82 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

5.2 Basic theory

The underlying theory of mixture modeling is introduced in this section as the groundwork

for 3SMBC. First of all, the notation in this chapter is similar to that used in the previous

chapter. Let XN = {x(1), . . . ,x(N)} be a partially labeled data set of instances described

by continuous features in a space of dimension F , that is, x(i) ∈ <F ,∀i ∈ {1, . . . , N}, the

aim of 3SMBC is to find the correct soft clustering solution for each instance in XU , which

is defined later, according to either a known class or a new unknown cluster. The class1

information of some instances is available in this kind of data. Therefore, mathcalX can be

divided into X = XL ∪ XU , where XL = {x(1), . . . ,x(L)} is the subset of instances with an

associated known class label and XU = {x(L+1), . . . ,x(N)} are the instances with unknown

labels. This information is gathered in the mixture using a latent variable Z. Therefore,

this set can be divided into Z = ZL ∪ ZU = {z(1), . . . , z(L)} ∪ {z(L+1), . . . , z(N)}, separating

known from unknown class labels, respectively, where z(i) = (z
(i)
1 , . . . , z

(i)
C , z

(i)
C+1, . . . , z

(i)
K),

with z
(i)
m = 1 if instance i belongs to component m and with all other elements z

(i)
m′ = 0,

∀ m′ 6= m. Note that z
(i)
m = 0 if m > C for z(i) ∈ ZL, that is, ∀i ∈ {1, . . . , L}, where C

denotes the number of known classes in the semi-supervised setting. This constraint does

not apply to ZU because the instances with unknown class labels can belong to a known

class or any other new group that can be discovered. For this reason, the final number of

clusters is K, with K ≥ C. The feature relevance for each mixture component is indicated

in the set V = {v1, . . . ,vK}, being vm = (vm1, . . . , vmF) with vmj = 1 if feature j is relevant

to component m, and vmj = 0 otherwise, ∀ m = 1, . . . ,K, j = 1, . . . , F . The values of each

vm are unknown, and, therefore, set V is a new set of latent variables. Besides, for each

component and feature, ρmj = p(vmj = 1), the probability of feature j being relevant to

component m, can be defined.

For the basic theory, there is no kind of subset selection or knowledge about the data

to start with. For this reason, V does not exist, and ZL is not a priori known. Therefore,

the aim is to find Z. In a finite mixture model, an instance is assumed to be generated by

a probabilistic model given by a finite mixture of distributions. Assuming that the mixture

has K components, the density function of an instance x(i) is

p(x(i) | Θ) =
K∑
m=1

πmp(x
(i) | θm), (5.1)

where p(·) is the density function, θm is the parameter set defining component m, and πm is

the mixing probability of component m, with πm ≥ 0 and
∑K

m=1 πm = 1. The full parameter

set of the mixture is Θ = {θ1, . . . ,θK , π1, . . . , πK}.
To explain Equation (5.1), πm is the a priori probability that instance i was generated

by component m. Then, z(i), a binary random variable is defined as previously commented.

1Note that “cluster”, “component”, “group” and “class” are equivalent concepts at the end of the classifi-
cation, but each concept will be used here to refer, respectively to a priori knowledge about instances (classes),
mixture components (components) or identified groups (clusters).

5.2. BASIC THEORY 83

Also, p(z
(i)
m = 1) = πm. Therefore, it can be written

p(z(i)) =
K∏
m=1

πz
(i)
m
m . (5.2)

Similarly, the other term of Equation (5.1) can be written as p(x(i) | z(i)
m = 1) = p(x(i) | θm),

which, extended, is

p(x(i) | z(i),Θ) =
K∏
m=1

p(x(i) | θm)z
(i)
m . (5.3)

Using Equations (5.2) and (5.3), Equation (5.1) can be rewritten by summing over all possible

states of z(i), as

p(x(i) | Θ) =
∑
z(i)

p(x(i), z(i) | Θ) =
∑
z(i)

p(z(i))p(x(i) | z(i),Θ)

=
∑
z(i)

(
K∏
m=1

πz
(i)
m
m

K∏
m=1

p(x(i) | θm)z
(i)
m

)

=

K∑
m=1

πmp(x
(i) | θm).

(5.4)

The whole set of variables z(i) for all instances is defined as Z = {z(1), . . . , z(N)} and is the

set of latent variables of the model.

The presented mixture of distributions has unknown parameters in Θ that must be esti-

mated. This parameter set can be estimated using the maximum likelihood method. There-

fore, assuming that each instance is independent and identically distributed (i.i.d.), and

building the log-likelihood function (logL) from Equation (5.4) and extending it to all the

instances, logL is

logL(Θ | X) = log p(X|Θ)

= log
N∏
i=1

p(x(i) | Θ)

=
N∑
i=1

log

(
K∑
m=1

πmp(x
(i) | θm)

)
.

This log-likelihood function is difficult to maximize because the summation over the compo-

nents is inside the logarithm function. This is because the equation deals with incomplete-

data, due to the lack of knowledge about latent variables. For one of the first attempts to

unify maximum likelihood estimation from incomplete-data, see [122]. Therefore, the log-

likelihood function would change if both the latent variables (Z) and the observable data

84 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

(X) were known, i.e., having the complete-data. Then, based on Equations (5.2) and (5.3),

the complete-data log-likelihood can be defined as

logL(Θ | X ,Z) = log p(X ,Z|Θ)

= log

N∏
i=1

K∏
m=1

πz
(i)
m
m p(x(i) | θm)z

(i)
m

=
N∑
i=1

K∑
m=1

z(i)
m

(
log πm + log p(x(i) | θm)

)
.

(5.5)

The maximization of this complete-data log-likelihood function is straightforward because

the summation is outside the logarithm. But since the latent variables are unknown, this

function cannot be directly used. However, the expectation of this log-likelihood function

can be obtained with respect to the posterior distribution of the latent variables. So, the

EM algorithm, presented in Section 2.3.1, is used as an iterative algorithm to estimate the

parameters that maximize the expectation of the complete-data log-likelihood function. This

expectation is calculated in an iteration t, having fixed the parameters from the previous

iteration2 t− 1, in the E-step of the EM algorithm. After this, the parameters of the distri-

butions are recalculated to maximize this expectation (M-step). These two steps are repeated

until a convergence criterion is reached.

Hence, the expectation of the complete-data log-likelihood function is given by

Q(Θ,Θt−1) = EZ|X ,Θt−1 [logL(Θ | X ,Z)]

=
∑
Z
p(Z | X ,Θt−1) log p(X ,Z | Θ),

(5.6)

where the posterior distribution of the latent variables given the data and the parameters of

the previous iteration t− 1 fixed, using Equation (5.5), is

p(Z | X ,Θt−1) ∝
N∏
i=1

K∏
m=1

(
πmp(x

(i) | θm)
)z(i)m

. (5.7)

This factorizes over i so that the {z(i)} in this distribution are independent. Using this poste-

rior distribution and using Bayes’ theorem, the expected value of each z
(i)
m can be calculated

as

2Note that, for legibility, the notation related to iterations is used with Θ, but not with θ throughout the
document

5.3. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING (3SMBC) 85

E
z
(i)
m |x(i),θm

[z(i)
m] = γ(z(i)

m)

=

∑
z
(i)
m
z

(i)
m (πmp(x

(i) | θm))z
(i)
m∑

z
(i)

m′
(πm′p(x(i) | θm′))z

(i)

m′

=
πmp(x

(i) | θm)∑K
m′=1 πm′p(x

(i) | θm′)
= p(z(i)

m = 1 | x(i),θm),

which can be used to calculate the expectation of the complete-data log-likelihood as

Q(Θ,Θt−1) =
N∑
i=1

K∑
m=1

γ(z(i)
m)
(

log πm + log p(x(i) | θm)
)
. (5.8)

In the M-step the set of parameters is estimated to maximize the expectation of the complete-

data log-likelihood, presented in Equation (5.8), as Θt = arg maxΘQ(Θ,Θt−1). The up-

dated parameters are obtained by computing the partial derivatives of the expectation of the

complete-data log-likelihood described above with respect to the different parameters and

equaling to zero. These derivatives will be presented as part of the proposed solution for the

specific problem.

5.3 Semi-supervised subspace soft clustering (3SMBC)

The above mixture model theory is applied to a clustering problem with two specific charac-

teristics:

1. Groups of instances can be hidden in different feature subspaces. Therefore, a FSS is

required in each mixture component. Hence, data structures that would remain hidden

using all features or a single FSS might be identified.

2. The class information of some instances is available. This knowledge is used during

the EM process to improve the final classification; therefore, this is a semi-supervised

learning task.

Therefore, 3SMBC adds subspaces and available label instance information to model-

based clustering (see Figure 5.1), plus a novel estimation of the final number of groups. The

possibilities for adapting basic model-based clustering to the characteristics of the specific

problem are described next.

The adaptation begins by including the search for subspaces in each component which

leads on to the development for maximizing the above expectation of the complete-data log-

likelihood function. Then, the available labeled instances information is taken into account

to improve the final clustering. Besides, the estimation of the final number of components is

provided, based on an iterative forward greedy approach.

86 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

Semi-supervised
clustering

Subspace
custering

CLUSTERING

Validation

Clustering
dimensionality

reduction
EM

3SMBC

Figure 5.1: 3SMBC is a model-based clustering algorithm combining subspaces search and class labels
information.

Adding subspaces to EM

To find the subspaces that best describe the components, the feature relevance for each

each mixture component must be found. As previously mentioned, each component’s feature

relevance is indicated in the set V, which is a new set of latent variables. Besides, for each

component and feature, ρmj = p(vmj = 1), the probability that feature j is relevant to

component m, can be defined. Then, assuming that features are independent given the

component label, the next probability can be obtained for a component m and an instance i,

p(vm | z(i)
m = 1) =

F∏
j=1

(ρmj)
vmj (1− ρmj)1−vmj .

This can be extended for all components as

p(V | z(i)) =
K∏
m=1

 F∏
j=1

(ρmj)
vmj (1− ρmj)1−vmj

z
(i)
m

. (5.9)

Besides, Equation (5.3) can be extended by introducing V, as

p(x(i) | V, z(i),Θ) =
K∏
m=1

 F∏
j=1

p(x
(i)
j | θmj)

vmjp(x
(i)
j | λmj)

1−vmj

z
(i)
m

, (5.10)

where θmj indicates the density function parameters if attribute j is relevant to component

m, whereas λmj indicates the density function parameters if attribute j is not relevant to

component m. With the inclusion of subspaces, a whole new set of parameters have to be

estimated: Θ = {θmj , λmj , ρmj , πm}m=1,...,K;j=1,...,F . The new density function, based on

Equation (5.4), and using Equations (5.2), (5.9) and (5.10), is,

5.3. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING (3SMBC) 87

p(x(i) | Θ) =
∑
z(i)

∑
V
p(x(i),V, z(i) | Θ)

=
∑
z(i)

∑
V
p(x(i) | V, z(i),Θ)p(V | z(i))p(z(i)).

The summation over z(i) is solved as in Equation (5.4), obtaining,

p(x(i) | Θ) =
∑
V

(
K∑
m=1

πm

F∏
j=1

(
[ρmjp(x

(i)
j | θmj)]

vmj

× [(1− ρmj)p(x(i)
j | λmj)]

1−vmj

))
.

And the summation over V can be solved by summing over all the possible states of each

vmj , as,

p(x(i) | Θ) =
K∑
m=1

πm

F∏
j=1

1∑
vmj=0

(
[ρmjp(x

(i)
j | θmj)]

vmj

× [(1− ρmj)p(x(i)
j | λmj)]

1−vmj

)
=

K∑
m=1

πm

F∏
j=1

(
ρmjp(x

(i)
j | θmj) + (1− ρmj)p(x(i)

j | λmj)
)
.

(5.11)

Taking into account that each component can be described in a different feature subspace

this is the new density function of an instance. The new log-likelihood function that should

be maximized, by extending Equation (5.11) to all the instances, is

logL(Θ | X) = log p(X|Θ) = log
N∏
i=1

p(x(i) | Θ)

=

N∑
i=1

(
log

K∑
m=1

πm

F∏
j=1

(
ρmjp(x

(i)
j | θmj)

+ (1− ρmj)p(x(i)
j | λmj)

))
.

This is again difficult to compute since the summation over the components is inside the log-

arithm function. This equation would change if the complete-data were known, i.e., knowing

the sets of latent variables, Z and V. Again by extending Equations (5.2), (5.9), and (5.10)

to all the data,

88 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

p(X ,Z,V | Θ) =
N∏
i=1

K∏
m=1

 F∏
j=1

p(x
(i)
j | θmj)

vmjp(x
(i)
j | λmj)

1−vmj

z
(i)
m

×
N∏
i=1

K∏
m=1

 F∏
j=1

(ρmj)
vmj (1− ρmj)1−vmj

z
(i)
m

×
N∏
i=1

K∏
m=1

πz
(i)
m
m ,

which can be simplified to

p(X ,Z,V | Θ) =
N∏
i=1

K∏
m=1

(
πz

(i)
m
m

F∏
j=1

(
[ρmjp(x

(i)
j | θmj)]

vmj

× [(1− ρmj)p(x(i)
j | λmj)]

1−vmj

)z(i)m

)
.

(5.12)

The complete-data log-likelihood function can be obtained by taking the logarithm of previous

function as,

logL(Θ | X ,Z,V) = log p(X ,Z,V | Θ)

= log
N∏
i=1

K∏
m=1

(
πz

(i)
m
m

F∏
j=1

(
[ρmjp(x

(i)
j | θmj)]

vmj

× [(1− ρmj)p(x(i)
j | λmj)]

1−vmj

)z(i)m

)
,

and operating again,

logL(Θ | X ,Z,V)

=

N∑
i=1

K∑
m=1

(
z(i)
m log πm

+

F∑
j=1

(
z(i)
m

[
vmj(log ρmj + log p(x

(i)
j | θmj))

+ (1− vmj)(log(1− ρmj) + log p(x
(i)
j | λmj))

]))
.

(5.13)

This indicates how necessary the two latent variables are: z
(i)
m indicates instance i’s mem-

5.3. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING (3SMBC) 89

bership of component m, whereas vmj indicates attribute j’s relevance for a component m.

Obviously, the problem again is that these variables are not available and must be estimated.

For this reason, and as in Equation (5.6), the expectation of the complete-data log-likelihood

function must be calculated in the E-step of the EM algorithm, taking into account the two

sets of latent variables Z and V. This expectation is presented in the next section.

Expectation of the complete-data log-likelihood function

Similarly to Equation (5.6), the expectation can be written as

Q(Θ,Θt−1) =
∑
Z

∑
V
p(Z,V | X ,Θt−1) log p(X ,Z,V | Θ).

As in Equation (5.7), the posterior distribution of the latent variables given the data, having

fixed the parameters of the previous iteration t−1, and using Equation (5.12), can be written

as

p(Z,V | X ,Θt−1) ∝
N∏
i=1

K∏
m=1

(
πz

(i)
m
m

F∏
j=1

(
[ρmjp(x

(i)
j | θmj)]

vmj

× [(1− ρmj)p(x(i)
j | λmj)]

1−vmj

)z(i)m

)
.

Before computing the expected values of each vmj and each z
(i)
m , some other necessary prob-

abilities must be defined:

p(x
(i)
j , vmj = 1 | θmj) = ρmjp(x

(i)
j | θmj),

and, similarly

p(x
(i)
j , vmj = 0 | θmj) = (1− ρmj)p(x(i)

j | λmj).

Taking both expressions into account

p(x
(i)
j | θmj) = p(x

(i)
j , vmj = 1 | θmj)

+ p(x
(i)
j , vmj = 0 | θmj)

= ρmjp(x
(i)
j | θmj) + (1− ρmj)p(x(i)

j | λmj).

90 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

Now, as detailed after Equation (5.7), the expected value of each vmj can be calculated as

E
vmj ,|x

(i)
j ,θmj

[vmj] = γ(vmj)

=
ρmjp(x

(i)
j | θmj)

ρmjp(x
(i)
j | θmj) + (1− ρmj)p(x(i)

j | λmj)

= p(vmj = 1 | x(i)
j , θmj).

(5.14)

Using this, the expected value of each z
(i)
m is

E
z
(i)
m |vm,x(i),θm

[z(i)
m] = γ(z(i)

m)

=
πm
∏F
j=1[ρmjp(x

(i)
j | θmj) + (1− ρmj)p(x(i)

j | λmj)]∑K
m′=1 πm′

∏F
j=1[ρm′jp(x

(i)
j | θm′j) + (1− ρm′j)p(x

(i)
j | λm′j)]

= p(z(i)
m = 1 | vm,x(i),θm).

(5.15)

Thus the expectation of the complete-data log-likelihood, as in Equation (5.8) and using

Equation (5.13), is

Q(Θ,Θt−1) =

N∑
i=1

K∑
m=1

γ(z(i)
m)

×

(
log πm +

F∑
j=1

(
γ(vmj)(log ρmj + log p(x

(i)
j | θmj))

+ (1− γ(vmj))(log(1− ρmj) + log p(x
(i)
j | λmj))

))
.

(5.16)

Then, for simplicity’s sake,

γ(u
(i)
mj) = γ(z(i)

m)γ(vmj), (5.17)

γ(w
(i)
mj) = γ(z(i)

m)(1− γ(vmj)). (5.18)

Now Equation (5.16) can be simplified by introducing these new expressions and separating

5.3. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING (3SMBC) 91

each parameter into different addends

EZ,V|X ,Θt−1 [logL(Θ | X ,Z,V)]

=
N∑
i=1

K∑
m=1

γ(z(i)
m) log πm

+
N∑
i=1

K∑
m=1

F∑
j=1

γ(u
(i)
mj)(log ρmj + log p(x

(i)
j | θmj))

+

N∑
i=1

K∑
m=1

F∑
j=1

γ(w
(i)
mj)(log(1− ρmj) + log p(x

(i)
j | λmj)).

(5.19)

Before detailing how to obtain the updated parameters of 3SMBC in the M-step, the

expectation of the complete-data log-likelihood function is adapted to introduce the available

instance label information.

Instance label information inclusion

3SMBC uses the available instance label information to guide the clustering of the unlabeled

instances. Based on this information, the model learning process can be divided into two

parts: the labeled instances are correctly classified into known classes {1, . . . , C} (classifi-

cation term) and the unlabeled instances can be grouped either in those known or in other

unknown components {1, . . . , C, C + 1, . . . ,K} (clustering term). Thus, the expectation of

the log-likelihood presented in Equation (5.19), separating the two learning steps, is,

EZ,V|X ,Θt−1 [logL(Θ | X ,Z,V)]

= EZL,V|XL,Θt−1 [logL1(Θ | XL,ZL,V)]

+ EZU ,V|XU ,Θt−1 [logL2(Θ | XU ,ZU ,V)],

where the expectation corresponding to the classification term is,

EZL,V|XL,Θt−1 [logL1(Θ | XL,ZL,V)]

=

L∑
i=1

C∑
m=1

z(i)
m log πm

+

L∑
i=1

C∑
m=1

F∑
j=1

γ(u
(i)
mj)(log ρmj + log p(x

(i)
j | θmj))

+

L∑
i=1

C∑
m=1

F∑
j=1

γ(w
(i)
mj)(log(1− ρmj) + log p(x

(i)
j | λmj)).

(5.20)

92 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

Note that when z
(i)
m is known, γ(u

(i)
mj) and γ(w

(i)
mj), calculated in Equations (5.17) and (5.18),

are obtained using the value of z
(i)
m instead of γ(z

(i)
m).

The expectation related to the clustering term is,

EZU ,V|XU ,Θt−1 [logL2(Θ | XU ,ZU ,V)]

=
N∑

i=L+1

K∑
m=1

γ(z(i)
m) log πm

+

N∑
i=L+1

K∑
m=1

F∑
j=1

γ(u
(i)
mj)(log ρmj + log p(x

(i)
j | θmj))

+
N∑

i=L+1

K∑
m=1

F∑
j=1

γ(w
(i)
mj)(log(1− ρmj) + log p(x

(i)
j | λmj)).

(5.21)

Another feature of 3SMBC is the procedure for estimating the final number of clusters,

which is described next.

Model order selection. Selection of the final number of clusters

The number of components of the finite mixture is an unknown parameter that must be

estimated. This is a challenging task in clustering, which is very often tackled using a top-

down approach, i.e., establishing a maximum number of components, Kmax, and iteratively

deleting one component in each step, depending on a quality measure, as the (regularized)

log-likelihood function. In this proposal, and due to some available labeled instances, the

minimum number of clusters is known beforehand. Therefore, from C, the minimum number

of mixture components (one component per each known class), a bottom-up approach (see

Algorithm 5.1) is proposed to estimate the final number of clusters using a greedy forward

search. The process begins at an initial level l = 0, where a model M0 is built using a finite

mixture with C components, each in different feature subspaces. Then, in l = 1, a new model

M1 with C + 1 components is built. M1 tries to find a new component in a new feature

subspace. This model is evaluated and compared with M0. If M1 is better than M0, then

a new component is added to the group of known components, and level l = 2 starts with

C + 1 known components trying to add another one. The convergence criterion is reached

when Ml is better than Ml+1, returning a clustering solution with C + l components. Note

that labeled instances can only belong to the C known components of level 0, whereas the

unlabeled instances can belong to any component C + l, in level l.

Two models from consecutive levels and with a different number of components are com-

pared by penalizing the log-likelihood with a term related to model complexity. BIC, pre-

sented in Section 2.3.1, is used for this purpose. BIC must be minimized, and being R the

number of free parameters of the model, i.e., parameters that must be somehow estimated,

5.3. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING (3SMBC) 93

Algorithm 5.1 General code for model order selection. A model is represented byMl where
l is the level of the algorithm, K is the number of components of a model, C is the number
of known classes at the beginning of the execution, BICold and BICnew are the evaluation
values of a model obtained with BIC.

l = 0
K = C
Build Ml

BICold,BICnew = Evaluation of Ml

repeat
BICold = BICnew

l = l + 1
K = K + 1
Initialize K
Build Ml

BICnew = Evaluation of Ml

until BICold ≥ BICnew

and N the number of instances, its definition is

BIC = −2 logL+R logN. (5.22)

At level 0, parameters of the C known components must be initialized. This is carried

out using only labeled instances depending on the given labels. On the other hand, new

component initialization of each Ml, with l ≥ 1, must be explained in detail, because it is

performed using those instances that worse fit the components of level l − 1. Therefore, for

a level l, it is assumed that instances that worse fit to the l − 1 components are candidates

for belonging to a new component. Based on this assumption the unlabeled instances are

ranked, taking into account the sum of all membership values to the l− 1 components. This

is calculated, from Equation (5.11) and for an instance i, as

C+(l−1)∑
m=1

πm F∏
j=1

[ρmjp(x
(i)
j | θmj) + (1− ρmj)p(x(i)

j | λmj)]

 . (5.23)

The top-ranked instances are the ones that worse fit the known components. Then, beginning

from the top of the ranking, some of instances are chosen to initialize the subspace for the

new component. The number of instances is the candidates threshold (CTh).

Finally, to generalize for a level l of 3SMBC, Equations (5.20) and (5.21), for Ml, are

94 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

updated as

ElZL,V|XL,Θt−1 [logL1(Θ | XL,ZL,V)]

=

L∑
i=1

C∑
m=1

z(i)
m log πm

+
L∑
i=1

C∑
m=1

F∑
j=1

γ(u
(i)
mj)(log ρmj + log p(x

(i)
j | θmj))

+

L∑
i=1

C∑
m=1

F∑
j=1

γ(w
(i)
mj)(log(1− ρmj) + log p(x

(i)
j | λmj)),

(5.24)

ElZU ,V|XU ,Θt−1 [logL2(Θ | XU ,ZU ,V)]

=

N∑
i=L+1

C+l∑
m=1

γ(z(i)
m) log πm

+

N∑
i=L+1

C+l∑
m=1

F∑
j=1

γ(u
(i)
mj)(log ρmj + log p(x

(i)
j | θmj))

+

N∑
i=L+1

C+l∑
m=1

F∑
j=1

γ(w
(i)
mj)(log(1− ρmj) + log p(x

(i)
j | λmj)).

(5.25)

Now E and M steps for the adapted EM algorithm of 3SMBC are detailed next. For

simplicity’s sake, it is assumed that l = 1 in the following.

E-step

The aim in E-step of EM algorithm is to calculate the expectation of the above complete-data

log-likelihood function, having fixed the parameters. These parameters must be initialized

before the first iteration of the EM algorithm, whereas they are recalculated in M-step for

subsequent iterations.

The value of the expected complete-data log-likelihood function for M1 is the sum of

Equations (5.24) and (5.25). Latent variables expectations are in Equations (5.15), (5.17),

and (5.18).

M-step

Parameters are recalculated in M-step to maximize the value of the expectation of the

complete-data log-likelihood function. As already mentioned, these updates are obtained

by computing the partial derivatives of this expectation and equaling to zero. The univariate

Gaussian distribution for each feature and component is used for this explanation. Therefore

θmj = (µθmj
, σ2

θmj
), and

5.3. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING (3SMBC) 95

log p(x
(i)
j | θmj) = log(σ−1

θmj
(2π)−

1
2)− 1

2
(x

(i)
j − µθmj

)2σ−2
θmj

,

� πm is updated3 using a Lagrange multiplier to enforce constraint
∑C+1

m=1 πm = 1:

∂

∂πm

(
L∑
i=1

C∑
m=1

z(i)
m log πm

+
N∑

i=L+1

C+1∑
m=1

γ(z(i)
m) log πm

+ λ

(
C+1∑
m=1

πm − 1

))
= 0, ∀m = 1, . . . , C + 1,

whose derivative is

L∑
i=1

z(i)
m

1

πm
+

N∑
i=L+1

γ(z(i)
m)

1

πm
+ λ = 0.

Multiplying both sides by πm and summing over m, with m = 1, . . . , C + 1, then

λ = −N , as

−λ =
L∑
i=1

C+1∑
m=1

z(i)
m +

N∑
i=L+1

C+1∑
m=1

γ(z(i)
m) = N,

and then each πm is updated using

πm =

∑L
i=1 z

(i)
m +

∑N
i=L+1 γ(z

(i)
m)

N
. (5.26)

� µθmj
is updated solving the following partial derivative equation:

∂

∂µθmj

(
L∑
i=1

C∑
m=1

F∑
j=1

γ(u
(i)
mj) log p(x

(i)
j | θmj)

+

N∑
i=L+1

C+1∑
m=1

F∑
j=1

γ(u
(i)
mj) log p(x

(i)
j | θmj)

)
= 0.

Then the result is

3Note that the classification term only iterates theoretically until m = C, but it can be assumed that this
iteration finishes at m = C + 1 with z

(i)
C+1 = 0, ∀i = 1, . . . , L.

96 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

L∑
i=1

(
γ(u

(i)
mj)σ

−2
θmj

x
(i)
j − γ(u

(i)
mj)σ

−2
θmj

µθmj

)
+

N∑
i=L+1

(
γ(u

(i)
mj)σ

−2
θmj

x
(i)
j − γ(u

(i)
mj)σ

−2
θmj

µθmj

)
= 0,

and the value of the parameter can be found as,

µθmj
=

∑L
i=1 γ(u

(i)
mj)x

(i)
j +

∑N
i=L+1 γ(u

(i)
mj)x

(i)
j∑L

i=1 γ(u
(i)
mj) +

∑N
i=L+1 γ(u

(i)
mj)

=

∑N
i=1 γ(u

(i)
mj)x

(i)
j∑N

i=1 γ(u
(i)
mj)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F.

(5.27)

� And for σ2
θmj

,

∂

∂σ2
θmj

(
L∑
i=1

C∑
m=1

F∑
j=1

γ(u
(i)
mj) log p(x

(i)
j | θmj)

+

N∑
i=L+1

C+1∑
m=1

F∑
j=1

γ(u
(i)
mj) log p(x

(i)
j | θmj)

)
= 0.

The derivative is

L∑
i=1

(
γ(u

(i)
mj)(x

(i)
j − µmj)

2σ−4
θmj
− γ(u

(i)
mj)σ

−2
θmj

)
+

N∑
i=L+1

(
γ(u

(i)
mj)(x

(i)
j − µmj)

2σ−4
θmj
− γ(u

(i)
mj)σ

−2
θmj

)
= 0,

and the parameter update is,

σ2
θmj

=

∑L
i=1 γ(u

(i)
mj)(x

(i)
j − µθmj

)2 +
∑N

i=L+1 γ(u
(i)
mj)(x

(i)
j − µθmj

)2∑L
i=1 γ(u

(i)
mj) +

∑N
i=L+1 γ(u

(i)
mj)

=

∑N
i=1 γ(uimj)(x

(i)
j − µθmj

)2∑N
i=1 γ(u

(i)
mj)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F.

(5.28)

5.3. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING (3SMBC) 97

The same development is valid for λmj = (µλmj
, σ2

λmj
) but using γ(w

(i)
mj) instead of

γ(u
(i)
mj) to indicate that feature j is irrelevant for component m.

� Then, µλmj
is updated as

µλmj
=

∑N
i=1 γ(w

(i)
mj)x

(i)
j∑N

i=1 γ(w
(i)
mj)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F. (5.29)

� And σ2
λmj

σ2
λmj

=

∑N
i=1 γ(w

(i)
mj)(x

(i)
j − µλmj

)2∑N
i=1 γ(w

(i)
mj)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F. (5.30)

� Finally in M1, ρmj is updated by

∂

∂ρmj

(
L∑
i=1

C∑
m=1

F∑
j=1

γ(u
(i)
mj) log ρmj

+
N∑

i=L+1

C+1∑
m=1

F∑
j=1

γ(u
(i)
mj) log ρmj

+

L∑
i=1

C∑
m=1

F∑
j=1

γ(w
(i)
mj) log(1− ρmj)

+
N∑

i=L+1

C+1∑
m=1

F∑
j=1

γ(w
(i)
mj) log(1− ρmj)

)
= 0,

whose partial derivative solution is,

N∑
i=1

γ(u
(i)
mj)

1

ρmj
−

N∑
i=1

γ(w
(i)
mj)

1

1− ρmj
= 0.

This parameter is updated by

ρmj =

∑N
i=1 γ(u

(i)
mj)∑L

i=1 z
(i)
m +

∑N
i=L+1 γ(z

(i)
m)

, ∀m = 1, . . . , C + 1; j = 1, . . . , F. (5.31)

Note that z
(i)
C+1 = 0 for i = 1, . . . , L for the three sets of parameters, θmj , λmj and ρmj .

98 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

5.4 Experimental results

5.4.1 Data

Both synthetic and real data sets are used to evaluate the proposed algorithm. All these

data are fully labeled, and the cluster assumption (see Section 2.4.1) is again assumed. Thus,

original labels will be used as ground truth to evaluate the clustering solutions. As the input

of 3SMBC is expected to be a partially labeled data set, some of the labels will be hidden to

the algorithm in each experiment.

The synthetic data data have been randomly generated using the Weka [262] data genera-

tor tool. Synthetic data sets were created by using different features, creating subspaces. The

number of features depends on the experiment and details are indicated in each subsection.

All relevant features were randomly generated using the Gaussian distribution with random

mean and standard deviation, between 1 and 10, and 0.2 and 0.5, respectively. The irrelevant

features were randomly generated using the Gaussian distribution with mean 0 and standard

deviation 1, unless otherwise stated.

Data N F K

diabetes 768 8 2

iris 150 4 3

shape 160 17 9

Table 5.1: Number of instances (N), features (F),
and classes (K) of real data sets used in the exper-
iments.

Real data sets are collected from the UCI

repository [91] (see Table 5.1). The selected

data sets are very typical examples used

for evaluating different pattern recognition

tasks. Although these data cannot be con-

sidered high-dimensional data, it is also in-

teresting to check the behaviour of the pro-

posal with this kind of data whose classes are

not balanced and subspaces are not a main

characteristic for them. However, in trying to introduce some complexity into the task, 25

Gaussian-distributed features were added to the original number of features for each data

set, simulating some noise for the experiment. Therefore, the used data are called diabetes25,

iris25, and shape25.

5.4.2 Evaluation process

Experiments are divided into two sets. The first of them is based on evaluating the proposed

algorithm under different data conditions, like different data distributions, clusters in very

low dimensional spaces, or clusters with different number of dimensions. Therefore, differ-

ent scenarios are simulated to assess the 3SMBC behaviour under different data conditions

(Section 5.4.3).

It is also interesting to compare the behaviour of 3SMBC against a related algorithm.

Thus, the second set of experiments consists of a comparison of 3SMBC and CLWC (see

Section 2.5.1). CLWC has been chosen due to the similarity of the algorithm regarding

the weighting scheme for features and the available information exploitation (using pairwise

constraints in this case). Both synthetic and real data sets were used in this comparison and

details can be found in Section 5.4.4.

5.4. EXPERIMENTAL RESULTS 99

All the used data are fully labeled. All these original labels will be used as ground truth to

evaluate the output clusters. However, as the input of 3SMBC is expected to be a partially

labeled data set, some of the labels will be hidden to the algorithm in each experiment.

Instances that retain their original labels are randomly selected and, on this ground, each

scenario is executed 10 times (for 10 random selections), unless otherwise stated, to account

for variability.

After some preliminary studies, CTh = 5 (see Section 5.3) has been chosen for these

experiments. This value can be considered as a trade-off between information and noise for

the initialization of a new component.

3SMBC is based on soft clustering. For the purpose of comparison with other algorithms,

algorithm outputs were then translated, using the group with highest a posteriori probability

in each case, to assign only one cluster to each instance (hard clustering). ARI, detailed in

Section 2.3.2, was used to compare the post-processed output with the original labels.

5.4.3 Results

Synthetic scenarios under different data conditions

Different scenarios have been created to simulate several data conditions for an interesting

evaluation of the 3SMBC performance. These scenarios cover many situations that can arise

when using our algorithm, results show the 3SMBC reliability with the used data in the

created scenarios.

Different data distributions

This experiment aims at evaluating the behaviour of 3SMBC when irrelevant features are

generated by using different distributions. Specifically, Gaussian and Uniform distributions

were considered to generate irrelevant data. According to this, four different data sets, each

with 400 instances and four balanced classes, were generated: uni25 and gauss25 have 25

features, with 40% of relevant features per class and 20% of all features are completely

irrelevant. On the other hand, uni50 and gauss50 have 50 features, with 20% of relevant

features per class and 60% of completely irrelevant features. All irrelevant features were

generated using the Uniform (between 0 and 1) and the Gaussian distribution (with mean 0

and standard deviation 1) depending on each data set and as indicated in each name. The

relevant features were generated as indicated in Section 5.4.1.

Labels of one class are completely hidden for all cases, and two different percentages of

labeled instances are used, 20% and 40%. The results are shown in Table 5.2.

The main conclusion is that there was no significant difference in the results obtained when

irrelevant features were generated using Uniform and Gaussian distributions, regardless of

how the model of 3SMBC is built using the Gaussian distribution for all features. Another

conclusion is that results for data sets with 50 features were better than results for data sets

with 25 features. This conclusion should be taken wisely since these results may depend on

the instances selected to maintain their labels. A scalable experiment is shown next to study

100 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

Data

% uni25 gauss25 uni50 gauss50

20 0.90 ± 0.04 0.93 ± 0.03 0.99 ± 0.02 0.99 ± 0.02

40 0.94 ± 0.04 0.92 ± 0.00 0.97 ± 0.03 1.00 ± 0.00

Table 5.2: Average ± standard deviation of ARI results when clustering data with 3SMBC using
different distributions (25 or 50 features and Uniform or Gaussian models for irrelevant features) and
percentage of labeled instances.

the behaviour of 3SMBC when the number of features change. The difference between using

20% and 40% of labeled instances was negligible for all scenarios but for uni25, where the

ARI obtained with 20% and 40% of labeled instances were 0.90 ± 0.04 and 0.94 ± 0.04,

respectively. The small ARI differences between results with different percentage of labeled

instances indicates the correct behaviour of 3SMBC even when the available information is

not very high.

Scalability

Although the purpose of this work is not to design a scalable algorithm, an experiment was

carried out to check the behaviour of the algorithm when data sets with different number

of instances and features are clustered. Nine different synthetic data sets were generated,

combining 100, 500, and 1000 instances, with 10, 50, and 100 features. Data were generated

in four balanced classes. The percentage of relevant features for each data set was between

60% and 80%. All experiments were run with 40% of labeled instances and one class was

completely hidden to the algorithm.

F

N 10 50 100

100 1.00 ± 0.00 0.96 ± 0.04 0.94 ± 0.02

500 0.94 ± 0.04 0.95 ± 0.05 0.95 ± 0.05

1000 0.93 ± 0.04 0.94 ± 0.05 0.94 ± 0.01

Table 5.3: Average ± standard deviation of ARI results when clustering data with 3SMBC for different
number of instances (N) and features (F).

The results in Table 5.3 show the good behaviour of the algorithm regardless of the

number of instances and features. The basic case, with 100 instances and 10 features, was

clustered obtaining a perfect matching with the original labels. Results slightly decreased

from this basic case when the number of instances was increased. Thus, with 10 features,

the ARI was 0.94 and 0.93 on average with 500 and 1000 instances, respectively, both with

a standard deviation of 0.04. The decrease was similar when the number of instances was

maintained but the number of features increased. Thus, with 100 instances, the ARI was

5.4. EXPERIMENTAL RESULTS 101

0.96 ± 0.04 and 0.94 ± 0.02 for data with 50 and 100 features, respectively. There were not

significant differences when data combined 500 and 1000 instances with 50 and 100 features,

obtaining results around 0.95 on average with 500 instances and 0.94 with 1000 instances.

0

10

20

30

40

50

●

●

●

10 50 100
Features

S
ec

 x
 1

0³

Instances

● 100

500

1000

Figure 5.2: Computational cost in time per level of
3SMBC depending on the number of instances and
features.

3SMBC is a computationally demanding

algorithm. This cost is known for EM-based

algorithms, and is increased here due to the

iterative process to estimate the relevance of

each feature and the final number of clus-

ters. This cost is assumed, and the current

version of 3SMBC did not try to overcome

this situation that can be considered as fu-

ture work. The computational cost for com-

pleting one level of 3SMBC is detailed in

Figure 5.2. This was calculated according

to the experimentation run on a multi-core

machine with eight Intel(R) Xeon(R) CPU

E5320 @1.86GHz and 12GB of RAM. Values were approximated since the time cost for a

level with fewer components is lower than for another level with more components. Accord-

ing to these approximated results, the time cost is higher when the number of features is

increased than with more instances. Nevertheless, note the differences on execution time

depending on both the number of instances and features and how they are combined.

Different number of dimensions

Now the 3SMBC performance is assessed when the number of relevant features for each class

differs. For this purpose, a synthetic data set was generated with 120 instances in three

balanced classes, which are characterized by 30 features with the next characteristics: class

1 has 10% of relevant features (3 features), class 2 has 40% of relevant features (12 features),

and class 3 has 85% of relevant features (25 features). In total, 95% of features are relevant

for some class (28 features).

The validation scenario was created by running 3SMBC 15 times, with 40% of labeled

instances and completely hiding one class for each execution (each class was completely hidden

five times).

Class 1 (10%) Class 2 (40%) Class 3 (85%) Total

0.98 ± 0.02 0.97 ± 0.03 0.96 ± 0.04 0.97 ± 0.03

Table 5.4: Average ± standard deviation of ARI results when clustering data with 3SMBC for clusters
with different number of relevant features. The percentage of relevant features of the class that is
completely hidden to the algorithm is shown within parentheses.

Results are shown in Table 5.4, where the ARI results are presented depending on the

class completely hidden to the algorithm. There were some differences in the results, since

102 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

the performance slightly decreased when the hidden class was characterized with a higher

number of features. Furthermore, if total average results are calculated, and according to

this experiment, 3SMBC is able to correctly cluster data when clusters are characterized with

different number of dimensions and one class must be discovered, regardless of which class is

completely hidden.

Very low dimensional space

This experiment aims at evaluating the behaviour of the proposal when clusters are char-

acterized by a very low number of features compared with the total number of available

features. Three data sets were generated with 60 instances, three balanced classes, and 20,

200, and 2000 features respectively. Each cluster was characterized with 10%, 1%, and 0.1%

of the total number of features, respectively, for each data set (i.e., 2 features). The cases

with only 1%, and 0.1% of relevant features for each class are extreme scenarios since finding

the correct features in such a big search space is a very tough task.

10% 1% 0.1%

1.00 ± 0.00 0.40 ± 0.04 0.25 ± 0.07

Table 5.5: Average ± standard deviation of ARI
results when clustering data with 3SMBC for clus-
ters in very low relevant dimensional spaces.

Results are shown in Table 5.5. 3SMBC

obtained perfect clustering solutions when

clusters were characterized by 10% of fea-

tures. However, the ARI values sharply

dropped when only 1% and 0.1% of features

were relevant. As previously commented,

these are difficult scenarios that are open to

further studies related to 3SMBC and other

algorithms to find better solutions.

5.4.4 3SMBC vs CLWC

The algorithm CLWC, presented in Section 2.5.1, is used for comparison purpose. This

algorithm is very related to 3SMBC because subspaces are found by weighting features to

indicate the relevance to each cluster. Besides, pairwise constraints are used as information

known beforehand to guide the clustering process. These constraints can be directly obtained

from partially labeled data sets. All pairs of instances with the same label have a must-link

constraint, whereas all pairs of instances with different labels have a cannot-link constraint.

These labels and constraints are mapped in data sets used to evaluate 3SMBC. Thus, exactly

the same data sets were used to evaluate 3SMBC and CLWC.

Another characteristic of CLWC is that it needs to fix the number of clusters beforehand.

Although this is a crucial parameter that does not need to be fixed in 3SMBC, it is known

when original data are completely labeled. Then two different results for CLWC are shown

depending on the number of clusters. The first result is obtained by calculating the average

and standard deviation of 50 executions obtained by running CLWC with the correct number

of clusters (K) as input parameter. Note that CLWC must be run several times because

different cluster initializations are used. However, this comparison is not completely fair,

5.4. EXPERIMENTAL RESULTS 103

since 3SMBC automatically estimates the number of clusters and it is a fixed parameter for

3SMBC. For this reason, a second result is also presented for CLWC that is obtained by

calculating the average and standard deviation of 150 executions: 50 executions obtained

with K − 1, 50 executions obtained with K, and, finally, 50 executions obtained with K + 1.

Experiments are divided depending on the data, synthetic and real, used for comparison.

Synthetic data comparison

The synthetic data set generated for the comparison has 125 instances divided into five

balanced classes. The number of features for each cluster is 25, with 20% of irrelevant

features and 40% of relevant features.

This experiment aims at comparing the behaviour of 3SMBC and CLWC when different

percentages of labeled instances (20% and 40%) are available, and when different number

of classes must be completely discovered, i.e., there are not any labeled instances for these

classes (different scenarios are created by completely hiding from one to three classes for each

percentage of labeled instances).

Results are shown in Table 5.6, where CLWCK and CLWC{K,K±1} refer to results ob-

tained with CLWC fixing the correct number of clusters (K) and fixing {K − 1,K,K + 1},
respectively. Regarding 3SMBC results, it can be seen how the algorithm was able to obtain

an acceptable clustering solution (0.90± 0.12) even when there were three classes completely

unknown and only a 20% of labeled instances. The ARI value was 0.96 ± 0.02 when there

was only one unknown class and 40% of labeled instances. The behaviour of CLWC was very

dependent on the initialization. This is evident from the high standard deviations obtained

in all scenarios, meaning that, on some occasions, CLWC was able to obtain a very accu-

rate clustering solution while other solutions obtained a very low performance for the same

scenario. On average, CLWC results were worse than those obtained by 3SMBC even when

the correct number of clusters was fixed beforehand. As expected, when CLWC worked with

{K − 1,K,K + 1} clusters, the difference with 3SMBC was even more sizeable. A curious

behaviour of CLWC was that when three classes were hidden to the input data (H = 3)),

the obtained ARI values were higher with 20% of labeled instances (mean ARI of 0.68) than

with 40% (mean ARI of 0.53).

20% 40%

Algorithm H=1 H=2 H=3 H=1 H=2 H=3

3SMBC 0.93± 0.04 0.92± 0.01 0.90± 0.12 0.96± 0.02 0.95± 0.04 0.91± 0.10

CLWCK 0.82± 0.18 0.71± 0.30 0.74± 0.24 0.86± 0.15 0.77± 0.25 0.59± 0.41

CLWC{K,K±1} 0.75± 0.25 0.71± 0.27 0.68± 0.28 0.77± 0.25 0.70± 0.28 0.53± 0.40

Table 5.6: ARI values of 3SMBC and CLWC for synthetic data depending on the percentage of labeled
instances (20% and 40%) and the number of classes with no representation in the labeled data (H).

Together with ARI results, it is interesting to show the behaviour of 3SMBC regarding

104 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

20% 40%

Algorithm H=1 H=2 H=3 H=1 H=2 H=3

3SMBC 3.00± 0.86 4.33± 0.58 2.66± 0.57 1.66± 0.5 3.22± 1.48 3.33± 1.00

Table 5.7: Number of new clusters estimated by 3SMBC in synthetic data depending on the percentage
of labeled instances (20% and 40%) and the number of classes with no representation in the labeled
data (H).

the estimation of the number of clusters. Table 5.7 shows the number of new clusters, i.e.,

clusters that were not represented in the labeled data, estimated by 3SMBC for the results

presented in Table 5.6. 3SMBC overestimated the number of clusters for all cases except

when 20% of instances were labeled with H = 3. This is the worst scenario for 3SMBC with

a considerable number of clusters to be identified and only a little of known information.

Although finding the exact number of clusters could be an issue to obtain good clustering

solutions, note that it is better to overestimate the final number of clusters than to underesti-

mate it. This is related to the cluster assumption, which states that data with high similarity,

i.e., data within the same cluster, must share the same class label. This assumption means

that instances with different class labels shall not be grouped into the same cluster. However,

this assumption does not imply that every single class forms a single cluster.

Real data comparison

The created scenarios regarding the labeled instances are the same as before for the synthetic

data, with two percentages of labeled instances (20% and 40%). Two cases are also compared

regarding the number of classes hidden to the input data (0 and 1).

Results are shown in Table 5.8. As expected, for a similar scenario regarding the per-

centage of labeled instances and hidden classes, ARI results completely depended on the

data set. However, similar conclusions about 3SMBC and the comparison with CLWC can

be drawn from all data. 3SMBC outperformed on average CLWC{K,K±1} in all scenarios

and data except for shape25 with 20% of labeled instances. Besides, 3SMBC also obtained

very competitive results when compared with CLWCK , although the comparison was not

completely fair since the correct number of clusters was fixed beforehand for CLWC. This

comparison became even more important with H = 1, since a cluster was not represented in

the known information and, in theory, the clustering problem became more difficult. 3SMBC

outperformed on average CLWCK in all data with H = 1 and 40% of labeled instances,

even when CLWCK had the correct information about the number of clusters as input. It

indicates that the initialization step in 3SMBC for the new and unknown cluster correctly

worked. Finally, another interesting result is, as for synthetic data, related to the standard

deviation. Due to differences in the initialization, CLWC outputs a higher standard deviation

in general than 3SMBC, i.e., the behaviour of 3SMBC can be considered more stable. This

is a desirable state in clustering since, for real applications, without the full set of correct

5.5. SUMMARY AND DISCUSSION 105

labels, the validation for the number of clusters and initialization is not a trivial task.

20% 40%

Data Algorithm H=0 H=1 H=0 H=1

diabetes25

3SMBC 0.19± 0.08 0.14± 0.02 0.34± 0.06 0.36± 0.01

CLWCK 0.21± 0.03 0.05± 0.02 0.41± 0.01 0.32± 0.10

CLWC{K,K±1} 0.12± 0.09 0.07± 0.08 0.24± 0.18 0.22± 0.17

iris25

3SMBC 0.84± 0.06 0.83± 0.05 0.91± 0.05 0.89± 0.05

CLWCK 0.89± 0.14 0.85± 0.21 0.90± 0.17 0.84± 0.22

CLWC{K,K±1} 0.72± 0.24 0.74± 0.19 0.64± 0.35 0.72± 0.23

shape25

3SMBC 0.52± 0.01 0.61± 0.03 0.75± 0.02 0.72± 0.02

CLWCK 0.64± 0.14 0.69± 0.09 0.70± 0.10 0.62± 0.25

CLWC{K,K±1} 0.63± 0.15 0.67± 0.12 0.68± 0.14 0.66± 0.22

Table 5.8: ARI values of 3SMBC and CLWC for real data depending on the percentage of labeled
instances (20% and 40%) and the number of classes with no representation in the labeled data (H).

5.5 Summary and discussion

A semi-supervised clustering algorithm, called 3SMBC, capable of discovering new classes,

based on EM theory, and including searching for subspaces, has been presented in this chap-

ter. Besides, 3SMBC is included within a process in which the number of final clusters is

automatically selected depending on the BIC criterion. This process is not only important

because the number of clusters is automatically selected, but also because the new found clus-

ters are initialized based on those instances that worse fit previous models. This initialization

leads to find data structures that were not represented in the initial available information.

Some conclusions can be repeated from those obtained with KMF. The reliability of the

available labels is even more important for 3SMBC since, in the current approach, labeled

instances cannot change their labels during the algorithm. Although this fact, together with

the initialization, also guide the search for subspaces, this process is integrated within 3SMBC

instead of using separately the labels as in KMF.

the accuracy also decreases. Although this is also a normal situation due to the difficulty

of searching when the search space grows, the decrease is not as biased to the number of

features as to the number of new clusters that must be found. In any case, and as can

be seen in Section 5.4.3, the estimation of the final number of clusters was very accurate

obtaining a perfect estimation in many scenarios, even when there were clusters that were

not represented in the available data labels. This good estimation also leads to very accurate

results, obtaining again perfect clustering solutions when compared to the original labels.

Although 3SMBC is based on soft clustering, results were post-processed to hard clus-

tering in order to validate and compare results with other algorithms. However, there was

no lost of accuracy during this translation since all obtained results were almost like in hard

106 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

clustering, i.e., the highest value of the probability of membership of an instance was virtually

1 for a specific component, while the other components obtained almost a 0 in consequence.

Several evaluations (using ARI) of our method were provided under different data con-

ditions creating some useful scenarios to understand the general behaviour of the algorithm.

The first experiment was based on testing 3SMBC by clustering data generated using differ-

ent distributions. Although the Gaussian distribution is assumed in the theory of 3SMBC,

the obtained results when clustering data generated by other distribution were, at least, as

competitive as results when clustering data generated with the Gaussian distribution.

The scalability was taken into account for the next experiment. Different synthetic data

sets were generated starting with 100 instances and 10 features, and increasing both param-

eters until 1000 instances and 100 features. Although there were slight decreases of ARI

values when the parameters were increased, the validation results can be considered as high.

However, the time cost was very demanding for those cases in which the number of instances

and features grew. 3SMBC was not created for being a fast algorithm, and the demanding

computational cost is assumed.

Another scenario was created trying to simulate a data set containing three clusters with

different density regarding features, i.e., clusters were generated with very different number

of features: 10%, 40%, and 85%, respectively, with respect to the total number of features.

Each cluster was hidden to 3SMBC in the input data to check whether the algorithm was

able to correctly cluster data, even when a cluster with different number of features was

completely hidden. Results showed that 3SMBC obtained accurate results regardless of the

hidden cluster.

Data in a very low dimensional space was another experiment to check the behaviour

of 3SMBC. Very extreme scenarios were created by using only 10%, 1%, and 0.1% relevant

features, with respect to the total number of features, to generate each cluster. Although

results yielded a perfect solution for the case with clusters generated with 10% of relevant

features, the validation results with 1% and 0.1% of relevant features were not so accurate

demonstrating the difficulty of these scenarios, where clusters are very hidden within the

total space of features.

Another algorithm, called CLWC, was also used for comparison purposes. Both synthetic

and real data sets were used for the comparison. Again, different scenarios were created

depending on the percentage of labeled instances and the number of classes completely hidden

to the algorithms in the input data. Although the correct number of clusters was fixed

beforehand to CLWC, 3SMBC outperformed on average CLWC in all created scenarios for

synthetic data, also obtaining a lower standard deviation in all scenarios, showing the stability

of the algorithm. Regarding the real data, three data sets from UCI were augmented with

25 noisy features. 3SMBC obtained also very competitive results, outperforming CLWC

on average in most situations taking into account three different inputs for the number of

clusters. When the correct number of clusters was fixed to CLWC, 3SMBC obtained better

results on average when there were 40% labeled instances and one cluster was hidden in the

input data. Besides, the standard deviation results for CLWC were again higher in general,

5.5. SUMMARY AND DISCUSSION 107

due to the different initializations, than for 3SMBC. Note that neither the correct number of

clusters nor a validation for the initialization are usually known parameters in this kind of

problems.

Related to soft clustering, it is interesting to comment the possible relation between soft

clustering, projected clustering, and subspace clustering. 3SMBC is based on soft clustering,

therefore, and in theory, some overlapping is allowed in the found clusters, since an instance

may belong to different clusters with different probabilities. The overlapping in clusters is

allowed in subspace clustering but not in projected clustering. However, due to the almost

hard clustering results obtained, and even more to the post-process step, 3SMBC can be

considered as a projected clustering algorithm.

108 CHAPTER 5. SEMI-SUPERVISED SUBSPACE SOFT CLUSTERING

Part IV

APPLICATIONS IN

NEUROSCIENCE

109

Chapter 6
Introduction to neuroscience

6.1 Introduction

Neuroscience is the science that deals with the study of the nervous system. Although

this discipline could be considered very far from computer science, this distance is becoming

shorter nowadays. Some computer science approaches, such as data analysis and visualization,

are very often used in biological research. These common endeavours between different fields

lead to interdisciplinary tasks that allow getting advances in challenging tasks related to the

involved disciplines.

Biology in general, and neuroscience in particular, have been very typical fields in which

data mining techniques obtained good results in the past. Then, and once the data gathering

is moving forward with advances in both storage and processes, the union of traditional ma-

chine learning techniques together with new advances in this area, such as the created in this

thesis, must be employed to continue obtaining good results in this kind of interdisciplinary

tasks.

More specifically, the task presented as real application is, roughly speaking, classifica-

tion of neurons. This is a very challenging task in neuroscience, since many efforts have

been done for many years, trying to reach some consensus among experts. However, the

agreement has not been reached up to date.

Chapter outline

This chapter continues in Section 6.2 providing some history about neuroscience. Some useful

definitions and concepts, which are necessary to understand the real applications that will

be presented in next chapters, are also introduced. Sections 6.3 and 6.4 present an European

project and its Spanish participation, respectively, both focusing on the study of the brain.

Finally, the current problem statement is detailed in Section 6.5.

111

112 CHAPTER 6. INTRODUCTION TO NEUROSCIENCE

6.2 History

It is necessary to go back to the 18th century to find the inception of modern neuroscience.

During the 1780’s, Luigi Galvani, an Italian biologist, physician, and anatomist, researched

about electrical charges [97]. Throughout that experimentation, Galvani discovered the cur-

rent electricity. This was one of the milestones for modern neuroscience, because electricity

is very related to the human beings capacitance. After this discovery, the next main step in

neuroscience was given by Camilo Golgi, an Italian physician and cytologist. Golgi discovered

a novel technique for staining nervous tissue in 1873 [106]. The technique was called reazione

nera (black reaction) and consisted of impregnating the preparation, previously hardened in

potassium bichromate, using silver nitrate. This method allowed to track the cell ramifica-

tions in a manner that had not been possible previously (see Figure 6.1). The methods of

staining before the introduction of the black reaction (mostly carmine staining) only allowed

visualization of neuronal cell bodies and a small portion of their proximal processes, making

further characterization of cells difficult. The complete staining of the cell, that is, with all

its parts, and its finest morphological details were readily observed in Golgi-stained prepara-

tions. At this time, the most common view regarding the organization of the nervous system

was that it consisted of a diffuse network of nerves formed by the anastomosing branches

of nerve cell processes (reticularism). Therefore, experts from this branch, including Golgi,

argued that the nervous system was a continuous network.

Figure 6.1: Cerebellar cortex image using the
reazione nera technique, showing relations between
two different types of cells [178].

After some years, Santiago Ramón y Ca-

jal, a Spanish physician and scientist, not

only used the black reaction but also adapted

it in his research [218, 219, 222, 223, 224].

Cajal’s studies of the microanatomy of virtu-

ally the whole central nervous system and his

observations regarding degeneration and re-

generation, together with his theories about

the function, development, and plasticity of

the nervous system, had a profound impact

on researchers of his era. These studies rep-

resent the roots of what some of the most

exciting areas of discovery, in terms of the

structure and function of the brain in both

sickness and health [67], are nowadays. For

these reasons Cajal is considered the father of modern neuroscience. Cajal initialized a new

branch, distinct of the reticularist, in which cells, called neurons, were considered as inde-

pendent and basic units and their connections are by contiguity, instead of continuity. This

was called the neuron doctrine [217] and was one of the most important milestones in neu-

roscience. Based on this doctrine, Cajal’s studies with the Golgi method confirmed Golgi’s

conclusion that dendrites end freely and do not anastomose. However, in contrast to Golgi,

6.2. HISTORY 113

Cajal added the crucial conclusion that this also applies to axons and their branches, and

provided many examples from throughout the nervous system to support this hypothesis [67].

An original draw, as an example of Cajal’s work about the types of cortical neurons, can be

seen in Figure 6.2. As a curiosity, Golgi and Cajal shared the Nobel prize for medicine in

1906, due to their important and, in many cases, opposite, research in the field.

Figure 6.2: Cajal’s drawing, extracted from [134], showing different types of cortical neurons and
unmyelinated axons.

114 CHAPTER 6. INTRODUCTION TO NEUROSCIENCE

Neuron doctrine

The neuron doctrine is the fundamental principle of modern neuroscience [41]. Before detail-

ing its assessments, it is interesting to know that the name of neuron was given to the basic

structural unit in the brain by Waldeyer [257].

The neuron doctrine established the neuron as the structural and functional individual

unit of the nervous system. This discovery was controversial because the theory of the neuron

doctrine was completely opposite to the belief of the reticularist view, which said that the

human brain was a complex and continuous network. However, according to the neuron

doctrine, neurons are not anatomically continuous to other neurons, and therefore neuron

connections are not made by continuity anymore, but by contiguity.

Figure 6.3: Original drawing made by Cajal rep-
resenting neurons with many spines from Insti-
tuto Cajal, Consejo Superior de Investigaciones
Cient́ıficas (CSIC), Madrid, Spain.

Neurons can be divided into three differ-

ent parts:

� Soma. It is the cell body, contains the

nucleus, and stores the genetic infor-

mation of the cell. The soma gives rise

to the two other parts of a neuron.

� Axon. It is the transmitting element

of neurons. Its length can be very dif-

ferent depending on the neuron type

and is very thin compared to the soma.

The axon has several terminal ar-

borizations, which make close contact

to dendrites or the soma of other neu-

rons. Therefore, the connections be-

tween neurons, called synapses, start

in the axon of a presynaptic neuron

and signals are transmitted to another

neuron (postsynaptic cell).

� Dendrites. If the axon is the out-

put element of a neuron, dendrites are

the input elements. They are multi-

ple short branches classified into api-

cal and basal dendrites, depending on

whether they emerge from the apex or

the base, respectively. Some dendrites

have short extensions, called spines. These structures represent the main postsynaptic

element of cortical synapses. The presence of spines was also discovered by Cajal [217]

and confirmed in [220, 221]. The importance of spines is pointed in [100]. Figure 6.3

shows an original drawing made by Cajal with many spines in neuron dendrites.

6.2. HISTORY 115

Many morphological features can be extracted from each part of a neuron. The application

of machine learning to neuroscience in this thesis is focused on this kind of data. Nevertheless,

many other important features, but out of the scope of this work, like electrophysiological

and genomic ones could also be gathered.

This work is focused on the cerebral cortex, which is a structure directly involved in many

aspects of mammalian behavior and considered the most human part of the nervous system.

A brief introduction to the history about the morphological types of neurons in the cerebral

cortex follows.

Types of neurons

Before the discovery of the Golgi method, the existence of two broad morphological types of

cortical neurons was already recognized: pyramidal and nonpyramidal neurons [142]. How-

ever, it was with the introduction of the Golgi method when the complete staining of the

neuron and its finest morphological details were readily observed in Golgi-stained prepara-

tions. This led to the important breakthrough of full characterization and classification of

neurons.

Golgi distinguished then, according to the behaviour of the nerve process, between Type

I and Type II cells. Cells from Type I had a motor function and, morphologically, were

cells with long axons. The long axons are important because these cells were able to form

long circuitry going even beyond the grey matter. On the other hand, cells from Type II

had a sensory function, short axons, and were in charge of local circuits. Cajal agreed ba-

sically with the morphological aspect and distinguished between long-axon and short-axon

cells. Since then cells with long axons have been considered as pyramidal neurons due to

their roughly triangular soma. Another important characteristic of pyramidal cells is the

presence of apical dendrites, besides the basal dendrites. Finally, according to the role in

connections, these neurons are usually excitatory, using glutamate as neurotransmitter. This

type of neurons is the largest group in the cerebral cortex and constitute 70-85% of the total

neuron population. On the contrary, nonpyramidal neurons are today subdivided into two

large groups: spiny nonpyramidal or stellate cells, and aspiny or sparsely spiny nonpyramidal

cells. Spiny nonpyramidal cells form a morphologically heterogeneous group of neurons, and

some of them project to other cortical areas, whereas others are short-axon cells, also called

interneurons. Aspiny nonpyramidal cells are interneurons that constitute the majority of

short-axon cells and approximately 15-30% of the total neuron population. These neurons

are usually inhibitory, using GABA as neurotransmitter, and show a great variety of mor-

phological, biochemical, and physiological types. This basic separation is widely accepted

by experts, and although some subgroups have been found as expansions to the basic clas-

sification, differences in nomenclature and neuron types do not allow to create a good and

complete neuronal classification.

This is a very basic introduction to some aspects in neuroscience that will be useful for

the real application part of this thesis. Nevertheless, the reader can refer to the first chapters

of [144], as an extended introduction for a better understanding of neuroscience terms.

116 CHAPTER 6. INTRODUCTION TO NEUROSCIENCE

Many efforts are being done by different research groups all over the world, existing

narrow relations between data analysis and neuroscience. Specifically, the study of the basic

functional unit of the brain, the cortical column, is crucial for the basic understanding of the

brain function. Examples of some research efforts are presented next.

6.3 The Blue Brain Project

The Blue Brain Project (BBP) [185] is an example of one of these projects aiming to research

the brain. The BBP started in 2005 at the École Polytechnique Fédérale de Lausanne (EPFL)

as the first large scale attempt to carry out the reverse engineering of the human brain at all

levels of detail, from genomics and molecular interactions to cognitive processes. The BBP

is focused nowadays on the cortical column hypothesis.

The cortical column hypothesis, formulated by Mountcastle [198, 199] after his research

about the cortex of cats, is related to the organization of the cerebral cortex. According

to the cortical column hypothesis, the neocortex is made up of many elemental units, called

cortical columns, which are repeated along cortex surface with small variations. There is

some accepted knowledge about cortical columns, such as each column is divided into six

horizontal layers, with different neuron types and connections.

In the first phase of the BBP, and having gathered data from experiments with rats for

15 years, a first circuit model with 10,000 neurons corresponding with a cortical column,

was simulated. The ultimate goal of this project is to provide a computational model of the

brain, to enable simulations at all possible levels of detail. To achieve this goal, more realistic

circuits and simulations about the cortex must be provided not only by gathering more data

from experiments but also by improving visualization and data analysis techniques that can

deal with those data. It is obvious the complexity of the brain cortex from Cajal’s time, so

obtaining accurate models of the cerebral cortex is a good foundation stone to reach the final

goal about the whole brain.

6.4 The Cajal Blue Brain Project

The Spanish participation within the BBP is called Cajal Blue Brain Project (CBBP). Dif-

ferent universities and laboratories, such as the Universidad Politécnica de Madrid (UPM)

and the Instituto Cajal (IC) from Consejo Superior de Investigaciones Cient́ıficas (CSIC),

respectively, are involved in the brain model aim. Although the participation of the UPM

with the BBP goes back to the origin of the international project, the CBBP was officially

initiated in 2008.

Both the BBP and the CBBP are involved in different tasks to accomplish the final goal of

the projects. Many of these tasks are related to visualization (Figure 6.4 shows an example

of a related visualization work) and data analysis. The real application of this thesis is

focused on the latter. Within the data analysis tasks, the classification of neurons from the

cerebral cortex is necessary to get an accurate brain model. Hence, to understand neural

6.5. PROBLEM STATEMENT 117

circuits it is fundamental, as a first step, to correctly identify the existing types of neurons.

If this classification were achieved, other knowledge, like the connections and how the circuit

actually works, would be more easily researched.

6.5 Problem statement

Figure 6.4: A partial view of a synthetic cor-
tical minicolumn made by 100 neurons, ex-
tracted from [126].

The classification of neuron types based on mor-

phological features is a challenging task in neuro-

science. This is a very open problem and agree-

ment among experts has not been achieved up

to date. However, there is some knowledge about

the different types and about the most important

features to characterize them. Thus, this is valu-

able information that should be use to accomplish

the classification.

The top level of the classification, separat-

ing between pyramidal neurons and interneurons,

seems clear for experts, but has not been auto-

matically obtained previously. The study shown

in Chapter 7 aims at separating pyramidal neu-

rons from interneurons. This is a noteworthy

study not only to obtain an automatic separation

between the two types of neurons, but also to

introduce some supervised algorithms to neuro-

science. This introduction is useful because these

techniques have not been used very often in this

domain, even when they were the most suitable

approaches regarding the input data and the pur-

pose.

Once the separation between pyramidal neu-

rons and interneurons (the first level of the classi-

fication) is achieved, further studies are necessary

to move forward towards a more detailed classification. These movements are commonly re-

lated to interneurons, as can be seen in an important attempt [9] that tried to reach some

consensus about the different types of interneurons. Following this direction, the proposal

presented in Chapter 5, together with a supervised algorithm, are used in Chapter 8 to throw

some light about different types of interneurons in the cerebral cortex.

118 CHAPTER 6. INTRODUCTION TO NEUROSCIENCE

Chapter 7
Pyramidal neurons vs interneurons

7.1 Introduction

The two principal neuronal types of the cerebral cortex are pyramidal neurons and GABAergic

interneurons [212, 222] (see Figure 7.1). This basic classification has been expanded over

the last century with the definition of new subtypes of cells, but the agreement related

to these expansions is rather limited. At the same time, classification of cortical neurons

has traditionally been qualitative [66] with nomenclature that varies across investigators.

For these reasons, it has become apparent in recent times that a classification based on

quantitative criteria is needed, in order to obtain an objective set of descriptors for each

cell type that most investigators can agree upon. As suggested by community efforts [9],

proper neuronal type definition should probably be a multimodal information task, including

physiological, molecular and morphological features, and should use classification algorithms

that are both quantitative and robust [43]. However, the data acquisition is not a trivial

task, and the number of reconstructed neurons characterized by morphological features is

not very high (even taking into account many different laboratories all over the world). This

number becomes even lower if neurons characterized by physiological or molecuar features

are desirable. Thus, all the neurons used in this and the next chapters are characterized only

by morphological features.

Previous efforts to quantitatively classify cortical neurons have based their neuronal clas-

sification on clustering techniques [23, 43, 77, 123, 124, 125, 145, 158, 248, 264]. As explained

in Section 2.3, these are essentially exploratory techniques which aim at discovering new

subtypes of cells or confirming some known hypothesis about them. In these studies, prior

information on the potential outcomes was not utilized, or was only used to validate the

clustering. Instead, this information could be used to guide a supervised classification (see

Section 2.2). An example of this approach can be seen in [184], where linear discriminant

analysis was used to investigate whether different classes of projection neurons had distinct

axon projection patterns. This problem was also tackled by Wong et al. [264], using hierar-

chical clustering.

119

120 CHAPTER 7. PYRAMIDAL NEURONS VS INTERNEURONS

A B

Figure 7.1: Picture of 3-dimensional reconstructions of an (A) interneuron and a (B) pyramidal cell
from the Rafael Yuste’s lab at Columbia University.

In this study, and as the first level of a classification of neurons, the performance of

supervised and unsupervised classification approaches is compared in an apparently simple

task: to automatically distinguish pyramidal neurons from interneurons. It is important to

note that, in this exercise, the presence or absence of an apical dendrite was not included in

the morphological features, since it was used as the ground truth to evaluate the performance

of the algorithms. This work, presented in [113], has two main goals:

� To automatically separate pyramidal neurons from interneurons using machine learning

techniques, establishing the first level of a classification of neurons.

� To introduce supervised classification techniques into neuroscience, as an approach that

must be used when the aim is to classify instances into known classes, and there are

available labeled training data. Besides the classification algorithms, different tech-

niques to automatically select the most suitable subset of features are also evaluated

and compared with the most widely used techniques in neuroscience up to date.

Chapter outline

After the introduction, the chapter continues with the experimental results in Section 7.2,

which covers all the used data, the evaluation process, the obtained results, and the compar-

ison of algorithms. The summary of this study and some discussion about it are presented

in Section 7.3.

7.2. EXPERIMENTAL RESULTS 121

7.2 Experimental results

7.2.1 Data

The used data set has 327 cells (199 interneurons and 128 pyramidal neurons), and for each

cell, 65 morphological features were measured, creating a data matrix. All the neurons were

reconstructed from brain slices of the cortex of mice. Neurons were reconstructed with an

advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping,

and morphometry, called Neurolucida (MicroBrightField). Once the reconstructions were ob-

tained, the neurons were measured with Neurolucida Explorer to extract their morphological

features. Some variables were directly measured, such as somatic area and perimeter, number

of axons and dendrites, axonal and dendritic length, axonal and dendritic branch angles and

number of axonal and dendritic nodes (branch points). Other variables were calculated val-

ues such as axon and dendritic sholl lengths, convex hull analysis and fractal analysis. Sholl

length is a measure of how the length of the processes is distributed. Concentric spheres

centered at the soma were drawn around the neuron; for axons the spheres were drawn at

radius intervals of 100 µm and for dendrites at intervals of 50 µm. The sholl length is the

total length of the part of the axon or dendrite contained within in each shell. Convex hull

analysis draws a convex shape around the axons or dendrites in both two (x,y) and three

(x,y,z) dimensions. The area and perimeter of the two dimensional shape and the volume and

surface area of the three dimensional shape are then calculated. Fractal analysis calculates

the fractal dimension of the axons or dendrites using linear regression, and thus is a measure

of how the neuron fills space. All pyramidal neurons had apical dendrites. Interneurons

belonged to many different subtypes and were collected over several different studies from

the Rafael Yuste’s lab at Columbia University.

7.2.2 Evaluation process

The evaluation process aims to compare previously used algorithms for classification in neu-

roscience, i.e., hierarchical clustering, with supervised classification algorithms. Besides the

learning algorithms, different dimensionality reduction techniques are also compared.

Agglomerative hierarchical clustering, based on Euclidean distance and Ward’s method as

linkage criterion (see Section 2.3), is used as clustering algorithm. The final number of clusters

is always 2, since it is a binary classification problem, therefore this value is known beforehand.

On the contrary, different supervised classification algorithms, explained in Section 2.2, are

used trying to cover some of the most important paradigms: NB, C4.5, K-nn, MLP, and

LR. The measure of both types of classification performance is the rate of correctly classified

instances or accuracy, using the presence or absence of an apical dendrite as the ground truth.

The supervised validation technique is 10-fold cross validation (see Section 2.2.2). Regarding

the dimensionality reduction techniques, PCA is used as FSE algorithm, whereas a filter and

a wrapper approaches, using three different search techniques: forward selection, backward

elimination, and genetic algorithms, are used as FSS techniques. See Section 2.5 for details

122 CHAPTER 7. PYRAMIDAL NEURONS VS INTERNEURONS

about the algorithms and techniques. Finally, the results of the supervised algorithms are

compared using the Wilcoxon signed-rank test, previously used in Section 4.4.4.

7.2.3 Results

The obtained results, using the different techniques listed above, are:

Hierarchical clustering

This approach was used with three different dimensionality reduction techniques. The first

one was based on the first six PCs obtained with PCA, which carry almost 55% of the total

variance. This number of PCs was chosen because of the trade-off between the accuracy and

the number of features. For example, using the first seven PCs (60% of the total variance),

the accuracy decreased by 2%. Using the first eleven PCs (70% of the total variance), the

accuracy was only increased in 1%. And finally, using the first 16 PCs (80% of the total

variance), the accuracy decreased in 4%. The second variable selection method for clustering

was to use only those original features with a correlation coefficient greater than 0.7 with the

first six PCs. With this requirement, 10 original features remained. Finally, filter FSS was

used as the third method to select variables in unsupervised approach.

As it was known beforehand which neurons were pyramidal and which were interneurons,

the accuracy of the hierarchical clustering was calculated as the percentage of each group

of cells which fall in the correct majority cluster, after separating the data into two final

clusters. Thus, it is assumed that each cluster was equivalent to a class.

Accuracy (%) F

No FSS 59.33 65

PCA
PC 59.02 6

Original features 66.77 10

Filter

Forward 77.68 10

Backward 71.25 17

Genetic 79.82 16

Table 7.1: Accuracy results obtained with hierarchical clus-
tering. PC uses the six first principal components, whereas
“Original features” uses the original features with correlation
greater than 0.7 with the six first principal components. The
number of features used (F) is also indicated.

All the hierarchical clustering

results can be seen in Table 7.1.

Without dimensionality reduction

techniques, 59.33% of accuracy is

obtained. Using the above tech-

niques of dimensionality reduction

related to PCA the outcomes were

relatively poor. Only 59.02% accu-

racy was reached using PCA, which

is the lowest value from all algo-

rithms in this comparative study.

Using hierarchical clustering of the

more than 0.7 correlated features

with the PCs, the accuracy ob-

tained was 66.77%. This is increased when the features obtained with filter FSS were used.

The accuracy obtained is 71.25% using backward elimination, and this value increased to

77.68% using forward selection and 79.82% using genetic algorithms.

As mentioned, all these accuracy values were obtained without using any previous in-

formation about the class variable. Supervised classification algorithms, whose results are

7.2. EXPERIMENTAL RESULTS 123

presented next, use this known information to build the different models.

Supervised algorithms

A battery of different supervised classification algorithms were compared in the task of dis-

tinguishing between pyramidal neurons and interneurons. Again, all the available data is

used first, without FSS. Filter FSS was then used with three different search strategies,

the same as with hierarchical clustering. Finally, wrapper FSS, another approach used to

select subsets of features which is only appropriate for supervised classification algorithms,

is explored. Thus, a comparison using it with clustering techniques cannot be made. In

each table, the values correspond to the accuracy of each model, i.e. the mean ± standard

deviation (percentage) averaged over the 10 values estimated using 10-fold cross-validation.

The number of features used is also indicated as before. Bold face indicates the model with

no significant statistical differences with the highest accuracy supervised model.

Accuracy (%) F

No FSS 80.73 ± 10.44 65

Filter

Forward 79.82 ± 9.86 10

Backward 79.51 ± 9.74 17

Genetic 80.43 ± 7.07 16

Wrapper

Forward 87.16 ± 6.34 8

Backward 83.18 ± 9.12 50

Genetic 83.49 ± 8.55 23

Table 7.2: Results obtained using Näıve Bayes (see the
text for bold face meaning).

Näıve Bayes This algorithm ob-

tained very similar results using all vari-

ables and using variables selected by the

filter FSS process (see Table 7.2). With-

out FSS, an 80.73% ± 10.44 accuracy

was achieved, whereas with filter FSS,

the accuracy was around 80%. Wrapper

FSS was able to improve these means:

with forward search, its accuracy was

87.16% ± 6.34. Backward (83.18%

± 9.12) and genetic search (83.49% ±
8.55) did not significantly improve the

accuracy.

Accuracy (%) F

No FSS 84.40 ± 3.84 65

Filter

Forward 82.26 ± 7.17 9

Backward 88.07 ± 6.09 11

Genetic 81.65 ± 7.24 6

Wrapper

Forward 86.85 ± 5.29 7

Backward 87.16 ± 5.83 12

Genetic 86.85 ± 4.72 13

Table 7.3: Results obtained using C4.5

C4.5 In the case of C4.5 algorithm,

all the results (see Table 7.3) were com-

parable or better than those obtained

using näıve Bayes. Without FSS, an

84.40% ± 3.84 of accuracy was ob-

tained. Forward selection and genetic

algorithms for filter FSS showed lower

outcomes than without FSS, but by us-

ing backward selection a performance of

88.07% ± 6.09 using only 11 features

was achieved. This mean was the high-

est one obtained using filter FSS. In the

124 CHAPTER 7. PYRAMIDAL NEURONS VS INTERNEURONS

case of wrapper FSS, the outcomes were 86.85% ± 5.29 using forward selection, 87.16% ±
5.83 using backward selection and 86.85% ± 4.72 using genetic search.

Accuracy (%) F

No FSS 83.18 ± 7.15 65

Filter

Forward 83.79 ± 9.55 10

Backward 84.71 ± 6.03 17

Genetic 85.01 ± 5.60 16

Wrapper

Forward 89.30 ± 7.58 6

Backward 86.85 ± 6.26 51

Genetic 87.46 ± 5.68 34

Table 7.4: Results obtained using K-nn, with K = 5

K-nn K-nn was configured with K =

5 after trying some preliminary tests,

this configuration obtained better ac-

curacy than K = 1, K = 3, and K

= 7. In spite of K-nn being the sim-

plest algorithm used to classify, the re-

sults (see Table 7.4) were quite competi-

tive with other approaches. Specifically,

with K-nn using all the available vari-

ables a 83.18% ± 7.15 accuracy is ob-

tained. This value improved when filter

FSS is used, obtaining 85.01% ± 5.60

with genetic algorithms as the best case. Again, wrapper FSS was the best approach to

select appropriate variables, with accuracies using backward selection of 86.85% ± 6.26, and

in turn, this is overcome by 87.46% ± 5.68 for genetic algorithms and 89.30% ± 7.58 for

forward selection.

Accuracy (%) F

No FSS 87.46 ± 9.06 65

Filter

Forward 82.57 ± 9.54 10

Backward 82.77 ± 6.36 17

Genetic 82.26 ± 9.17 16

Wrapper

Forward 88.07 ± 4.99 10

Backward 88.07 ± 8.27 61

Genetic 87.46 ± 6.26 37

Table 7.5: Results obtained using multilayer perceptron
(MLP)

Multilayer Perceptron Multilayer

perceptron (see Table 7.5) was the al-

gorithm with the highest overall accu-

racy among all the algorithms without

using FSS (87.46% ± 9.06). Moreover,

this result was improved using back-

ward selection for filter FSS (87.77% ±
6.36). However, using forward selection

(82.57% ± 9.54) or genetic algorithms

(82.26% ± 9.17), the accuracy was re-

duced. The improvement obtained us-

ing wrapper FSS was not as significant

as when using other supervised algo-

rithms. In this case, 88.07% was the highest accuracy mean obtained using forward selection

(± 4.99) and backward elimination (± 8.27).

Logistic Regression The last supervised classification algorithm, logistic regression (see

Table 7.6), maintained the mean obtained without FSS (82.26% ± 7.36) when forward selec-

tion for filter FSS was used (82.26% ± 9.82). This outcome is 83.49% ± 9.45 using genetic

algorithms while using backward elimination reaches 85.63% ± 8.56. The highest accuracy

of all the approaches was obtained using logistic regression with wrapper FSS and a genetic

7.2. EXPERIMENTAL RESULTS 125

Accuracy (%) F

No FSS 82.26 ± 7.36 65

Filter
Forward 82.26 ± 9.82 10
Backward 85.63 ± 8.56 17
Genetic 83.49 ± 9.45 16

Wrapper
Forward 85.63 ± 9.79 7
Backward 84.71 ± 7.54 59
Genetic 91.33 ± 5.95 33

Table 7.6: Results obtained using logistic regression (LR)

algorithms search: 91.13% ± 5.95. This model was therefore used in the statistical test to be

compared against the rest.

7.2.4 Algorithms comparison and feature relevance

For hierarchical clustering, filter FSS always generated more accurate classifications than us-

ing all available variables, or after applying some traditional dimensionality reduction tech-

nique such as PCA. It is important to highlight this result because all previous clustering

works used PCA to reduce the number of variables. Specifically, for this test, using filter FSS

enhanced accuracy of unsupervised clustering by almost 15%. Thus, this approach appears

desirable to select an appropriate subset of variables for future cluster analysis studies.

When comparing hierarchical and supervised methods, hierarchical clustering and filter

FSS, using forward selection or genetic algorithms, were competitive combinations against

supervised classification algorithms with no FSS and filter FSS. On the other hand, when

wrapper FSS is used with the supervised classification algorithms it is generally superior.

After concluding that supervised methods with wrapper selection of variables enhance

the classification, the next step was to discern which supervised algorithm was best able to

discriminate between pyramidal neurons and interneurons in this test.

The highest accuracy was obtained using the model built with logistic regression and

wrapper FSS (with a genetic algorithm). To compare this model with all the rest, the

Wilcoxon signed-rank test was used.

The results obtained with this statistical test are shown in Table 7.7. In this table,

only the models which have a p-value greater than 0.05 (differences are not statistically

significant) in the test are shown. As these models did not reject the null hypothesis, it

cannot be asserted than they are significantly different from the model built using logistic

regression and genetic algorithms in a wrapper approach. Thus these models are the top

models from these results. Statistical hypothesis test outcomes confirm that models obtained

with the wrapper approach are the most accurate to classify interneurons and pyramidal

neurons, since nine of the selected models in Table 7.7 are built using wrapper FSS. These

results indicate that there is not one particular supervised method which is superior, since

all the used algorithms could be chosen as winners based on the statistical test. Therefore,

an appropriate selection of variables (using wrapper FSS in this case) appears to be more

126 CHAPTER 7. PYRAMIDAL NEURONS VS INTERNEURONS

important than using a specific supervised algorithm.

FSS Algorithm p-Value

No FSS MLP 0.091

Filter Backward C4.5 0.095

Wrapper

Forward

NB 0.095

K-nn 0.220

MLP 0.063

LR 0.053

Backward

C4.5 0.077

MLP 0.115

C4.5 0.052

Genetic
K-nn 0.052

LR -

Table 7.7: Models which do not reject the null hypoth-
esis, and therefore, with no significant statistical differ-
ences (p-value greater than 0.05) with the highest accu-
racy model are listed.

Finally, which of the actual mor-

phological features, or combinations of

them, were most indicative of differ-

ences between pyramidal neurons and

interneurons, is studied. In the origi-

nal data set, 65 variables were available

before applying subset selection. When

filter FSS was applied, the number of

attributes obtained for each searching

method was the same, except for C4.5

algorithm. This is because filter FSS

algorithms do not depend on the clas-

sification method to obtain the subset

of features. The number of features

selected, using filter FSS, was 10 for

forward selection, 17 for backward se-

lection, and 16 for genetic algorithms.

C4.5 is the only algorithm with differ-

ent number of features, since it has an embedded FSS that chooses a subset from the features

selected by the filter FSS to build the decision tree.

The number of features selected using wrapper FSS were similar but the main difference

was in the searching technique. Using forward selection, the number of features selected was

in a range from 6 to 10. The low number of features is a bias of the forward selection. In

the case of backward elimination, the number of features was higher (from 50 to 61) with an

exception in the C4.5 algorithm. In C4.5, the number of features selected by the wrapper

FSS was 23, and after that, when C4.5 induces the decision tree model, only 12 features were

used. Genetic algorithms technique selects from 13 to 37 features, taking into account again

that C4.5 has the embedded FSS. This technique was not as biased as the two others, since

it is not a greedy search.

Regarding the particular features chosen, the somatic compactness seemed to be the most

important feature among the somatic features because it was the most commonly selected

variable by the winner models. As for axonal features, the number of axonal sholl sections

and standard deviation of the average axonal segment length were the two most important

features. This happens in the logistic regression and C4.5 models for example, because these

two features had a high coefficient or are located at the top of the tree. In addition, the axonal

local angle average was another important feature because it was selected by many models.

For the same reasons, the number of dendritic sholl sections and the ratio of dendritic length

to surface area were the most important dendritic features. The highest order dendritic

segment is selected by the majority of the models as well.

Some tests, using separately the somatic, axonal and dendritic subsets of features, were

7.3. SUMMARY AND DISCUSSION 127

also performed on some of the selected models. While models built using only somatic features

obtained ∼60% accuracy, ∼75% accuracy was obtained with axonal features while dendritic

features reached∼85% accuracy. These values confirmed the importance of dendritic features.

Therefore, these results indicate that dendritic features are very informative to differentiate

morphologically pyramidal neurons from interneurons, although some axonal and somatic

features can also contribute to this distinction.

7.3 Summary and discussion

To enable the quantitative classification of neuronal cell types, different methods were com-

pared in this methodological study to objectively distinguish between neuronal classes, based

on their morphologies. By using a standard database with a clearly classified set of cells,

a test in which the algorithms had to distinguish pyramidal neurons from interneurons is

created. A human observer originally classified these cells into both classes according to

the presence or absence of an apical dendrite, thus setting the ground truth for this task.

Then the performance of the unsupervised clustering method, which is becoming standard

in neuroscience, was tested side by side, versus the performance of representative algorithms

from some of the most popular supervised classification paradigms used in machine learning.

The reason for doing so is that, if previous information is available to classify data, taking

advantage of it to obtain more accurate outcomes should be desirable. Nevertheless, given

the peculiarities of the classification problem, it was not obvious that those supervised meth-

ods would be in principle better than previously used neuronal classifiers, or which approach

could outperform the others, so the task of carefully comparing a battery of algorithms and

different preprocessing strategies was undertaken.

The main finding is that supervised classification methods outperformed unsupervised

algorithms. In this comparative study, hierarchical clustering approach was unable to obtain

an accuracy as precise as supervised classification when distinguishing between pyramidal

neurons and interneurons. Therefore, supervised classification is an effective approach to

perform this task and is another approach in neuronal data analysis, something that could

be useful in future studies. In fact, previous classification studies, in which some information

is known beforehand, could be reanalyzed using that information as a class label with su-

pervised algorithms. An ideal supervised classification algorithm does not emerge from these

results. It seems that the accuracy of results obtained does not depend on the classification

algorithm, since the best models chosen using the statistical test are built using all the dif-

ferent supervised classification algorithms tested. Thus, the choice of the algorithm would

depend on each specific classification or domain. There could be some bias in this choice,

since if an interpretable model is desirable, C4.5 or näıve Bayes could be the most preferred.

K-nn does not build a model, so this could be an undesirable restriction.

The second conclusion is that the preselection of the variables with FSS greatly enhances

the performance of both supervised and unsupervised methods. Specifically, in terms of which

FSS approach to follow, wrapper FSS is found as the most suitable technique for this data

128 CHAPTER 7. PYRAMIDAL NEURONS VS INTERNEURONS

set of neurons using supervised algorithms. Models obtained using FSS are desirable, not

only because a higher accuracy is achieved, but also because more parsimonious and easily

understood models are obtained. The disadvantage of this approach is its computational

cost, since performing wrapper FSS is slow. Wrapper FSS cannot be used with unsuper-

vised algorithms, but the results obtained using a different variable preselection method, the

filter FSS, with hierarchical clustering point out the advantage of using this dimensionality

reduction technique, compared to clustering with no FSS.

The final conclusion is that an acceptable distinction between pyramidal neurons and

interneurons was achieved using dendritic morphological features, even without explicitly

providing knowledge of the presence or absence of an apical dendrite. But while differentiat-

ing between pyramidal neurons and interneurons may not seem a particularly difficult task

for a trained neuroanatomist, discerning subtypes of neurons using objective and quantitative

criteria is more challenging. Therefore, one future direction could be the quantitative explo-

ration of new subtypes of interneurons. For this goal, unsupervised clustering techniques

could still be used as exploratory techniques; to accomplish this goal, a priori information

will probably be most useful, or even key. For this task, one could explore the use of semi-

supervised clustering, using previous information about cell groups that are well accepted in

the scientific community, as a way to partially supervise the clustering.

Although it is difficult to reach a consensus about cell types that exist in the cortex,

the introduction of supervised, or partially supervised algorithms could help to advance the

state of this key question, an essential one to decipher neocortical circuits. For this reason,

3SMBC, one of the proposals of this thesis, is applied to throw some light in the classification

of interneurons (see Chapter 8).

Chapter 8
Subtypes of interneurons

8.1 Introduction

The first level of a possible classification of neurons was studied in the previous chapter. That

level is commonly accepted nowadays, but new levels of the possible hierarchical classification

must be studied. The most representative efforts related to a possible next level have been

done with interneurons [9]. However, the scientific community still lack a catalog of neuron

types and names that is accepted by the general scientific community. A milestone towards

a future classification of interneurons in the cerebral cortex was the standardization of the

nomenclature of their properties [9]. Nevertheless, at that time it was not possible to identify

a set of anatomical traits that unambiguously define an interneuron class.

The final goal is to identify subtypes of interneurons according to morphometric measures

extracted from 3-dimensional reconstructions. The main motivation for this task is that, once

a classification is achieved and accepted, it may be easier not only to tackle other related

tasks, like brain modelling, but also the understanding among experts, since interneuron

nomenclature would be unique for all laboratories.

The classification of neurons is a known problem since Cajal’s time. Therefore the first

attempts to accomplish the task began more than one hundred years ago. Taking into account

that the task has not been successfully solved yet, it can be considered as a very challenging

task. From engineer and computer science points of view, there are two main reasons that

make this task hard to solve:

� Lack of data. Biological data are commonly difficult or expensive to gather. Neuronal

data are not an exception. The neuron reconstructions are used to extract, using

specific software, morphometric measures that describe each neuron. But it is not easy

to obtain reconstructions that represent the total extension of each neuron. Besides,

the number of correctly reconstructed neurons is not necessarily representative of all

possible subtypes of neurons. This last fact should not be a limitation, since if an

accepted classification is achieved with the available data, the obtained milestone would

be a big enough success even although the classification is not complete.

129

130 CHAPTER 8. SUBTYPES OF INTERNEURONS

� Lack of agreement. This can be considered a problem according to two different aspects.

The first one is related to take advantage of some available knowledge, since some

knowledge for an expert could not be the same knowledge for another expert. However,

not all the subtypes of interneurons are equally unknown, and, therefore, any available

knowledge should be used to improve and guide the classification. The second aspect

is that any obtained results must be validated by experts at last. Thus, validation can

be also challenging if experts have different previous opinions about the subtypes.

This chapter presents a study related to the classification of interneurons assuming the

complexity of the task, due to the reasons commented above. First of all, the number of

available neurons is limited, but this number is even more reduced depending on if labeled

neurons must be used. Also regarding the available data, the reconstructions cannot be

equally made for every neuron. This is a recurrent problem that is assumed and, therefore,

results must be taken wisely. On the other hand, the limitation about the agreement on types

of neurons is also tackled during the chapter.

In particular, a known supervised classification algorithm and the proposal presented in

Chapter 5 are used for the classification task. Then, the procedure to be followed and the

results are validated by an expert neuroscientist who is working with the IC in the CBBP.

Some considerations about nomenclature for this chapter are: since the chapter focuses

only on interneurons, the word “neuron” refers to interneuron unless otherwise indicated. As

detailed in Section 8.3.1, some types of interneurons are proposed for the experiment. Thus,

the words “type” and “group” refer to each of these types of interneurons, whereas the words

“subtype” and “subgroups” refer to possible new subpopulations of neurons.

Chapter outline

The following section describes a recent experiment that tested the suitability of a set of

terms as the basis for anatomical classification of cortical interneurons. The results obtained

in this experiment have been used to obtain the labels for the data that are presented in this

study. Section 8.3 details these data, together with the procedure and algorithms used in the

new study. Finally, Section 8.4 covers a summary of this study and some discussion.

8.2 Classification experiment

This study [68] describes a new, community-based strategy for defining a morphological tax-

onomy in order to establish a list of terms that could be used by all researchers to distinguish

neuronal morphologies. In particular, 42 expert neuroscientists examined 320 interneurons,

assigning every neuron to a limited number of neuron types, based on studies performed over

the years in many laboratories. The aim of this experiment was to propose a consensus ter-

minology regarding the types of interneurons that could be used as the basis for classification.

Hence, every neuron could be labeled as one of the fixed types according to majority vote

among experts’ assignments.

8.2. CLASSIFICATION EXPERIMENT 131

Although interesting conclusions arose from this classification, final conclusions about

types of interneurons were not easily drawn since experts did not agree about most of as-

signments. Thus, the utility of some commonly used terms for the classification of neurons

is rather limited. Nevertheless, some knowledge can be extracted regarding the interneuron

labels, depending on the number of votes given to each neuron by experts.

Table 8.1 summarizes the number of neurons that were voted by experts depending on the

type of interneuron (1 to 10 or uncharacterized) and the number of obtained votes (threshold).

Note that the total number of neurons in the table is 241 instead of 320, since although there

were 320 reconstructed neurons, only 241 of these neurons were 3-dimensional reconstructions.

This kind of reconstruction is necessary for a correct features extraction process. These data

are shown from a threshold of 21 votes, which is half the total number of experts. The number

of neurons that would either lose (unlabeled) or maintain (labeled) the labels depending on

the threshold.

Threshold U 1 2 3 4 5 6 7 8 9 10 Unlabeled Labeled

21 11 10 6 2 27 33 0 20 0 2 0 130 111
22 11 5 5 2 25 26 0 19 0 1 0 147 94
23 10 3 4 2 24 22 0 16 0 1 0 159 82
24 10 1 4 2 24 19 0 13 0 1 0 167 74
25 9 1 4 2 22 12 0 12 0 0 0 179 62
26 9 1 4 2 22 10 0 12 0 0 0 181 60
27 8 1 3 2 20 5 0 10 0 0 0 192 49
28 8 1 3 2 20 3 0 6 0 0 0 198 43
29 6 1 3 1 20 3 0 4 0 0 0 203 38
30 5 0 3 1 19 1 0 3 0 0 0 209 32
31 4 0 3 1 19 0 0 2 0 0 0 212 29
32 3 0 3 1 19 0 0 2 0 0 0 213 28
33 3 0 3 1 17 0 0 1 0 0 0 216 25
34 3 0 3 1 17 0 0 0 0 0 0 217 24
35 2 0 2 1 14 0 0 0 0 0 0 222 19
36 2 0 2 1 13 0 0 0 0 0 0 223 18
37 2 0 2 1 10 0 0 0 0 0 0 226 15
38 2 0 1 1 8 0 0 0 0 0 0 229 12
39 2 0 1 0 5 0 0 0 0 0 0 233 8
40 1 0 0 0 3 0 0 0 0 0 0 237 4
41 0 0 0 0 2 0 0 0 0 0 0 239 2
42 0 0 0 0 0 0 0 0 0 0 0 241 0

Table 8.1: Number of neurons voted for each corresponding type depending on different thresholds
(number of experts’ coincidences). The list of labels (types of interneurons) is: U = uncharacterized,
1 = common type, 2 = horse-tail, 3 = chandelier, 4 = Martinotti, 5 = common basket, 6 =
arcade, 7 = large basket, 8 = Cajal-Retzius, 9 = neurogliaform, 10 = others.

The lack of agreement among experts can be seen in Table 8.1. The number of neurons

that would be labeled according to a high number of experts (votes) is very limited. For

instance, if a threshold of 40 was considered, i.e., 40 experts agreed, there would be only 4

labeled neurons. When the threshold is decreased, the number of labeled neurons slightly

grows step by step.

132 CHAPTER 8. SUBTYPES OF INTERNEURONS

This classification experiment is very useful for the current study in order to obtain a

labeled data set: the aim is to reach a trade-off between the number of labeled neurons and

the labels reliability. The higher the threshold, the fewer labeled instances but the higher

the supposed reliability of these labels. It is necessary to take into account that a minimum

number of neurons is also necessary to achieve a reasonable statistical result. The selected

threshold for the beginning of this study is 22 (the half of experts plus one). This threshold

will be later increased until 26 later trying to obtain more detailed conclusions.

8.3 Experimental results

8.3.1 Data

By using a threshold of 22 experts as commented above, the labeled data are 94 neurons1.

These neurons were reconstructed from brain slices of the cortex of different animals (mice,

rats, cats, rabbits, and monkeys), and even from human beings. Taking into account that

11 out of these 94 neurons were labeled as uncharacterized neurons, that the label common

type can be considered a hodgepodge with neurons that are not clearly identified, and that

chandelier and neurogliaform are types with only two and one neurons (see Table 8.1),

respectively, the labeled data then consisted of 75 neurons divided into: 5 horse-tail (HT),

25 Martinotti (MT), 26 common basket (B), and 19 large B. Also, since the results from the

classification experiment revealed that the distinction between common and large B was not

very clear in the biological community, both common and large B were merely labeled as B.

Therefore, this study is performed from now on using three different groups of interneurons.

Finally, after some preliminary results, one neuron, which was labeled as MT by 22

experts, was identified as uncharacterized. Therefore, this neuron was removed from this

study. Therefore, the final number of labeled neurons was 74. Figure 8.1 shows an example

of 3-dimensional reconstructions of each used neuron type.

Like in the previous chapter, Neurolucida (MicroBrightField) was used to extract around

2900 features for each neuron. This vast amount of features due to dendrites and axon of each

neuron are divided into different segments and nodes, and each of these parts are detailed in

terms of angles and other different analysis (see Section 7.2.1). A subset of these features was

selected by the expert, obtaining a final subset of 224 features to characterize each neuron: 10

features describe the soma, 128 describe the axonal characteristics, and 86 features describe

the dendrites. Depending on the used features, different data sets were created. Four data

sets were used throughout this study: axon, dendrites, and soma, and all when the total

number of features were used.

8.3.2 Evaluation process

There are two main steps in this study trying to obtain different conclusions. The aims of

each step are detailed below. Each step is performed four times depending on the used data,

1Each neuron is identified with a unique number that will be used throughout the chapter

8.3. EXPERIMENTAL RESULTS 133

A CB

Figure 8.1: 3-dimensional reconstruction of three neurons used in this experiment: (A) neuron 39
labeled as horse-tail (HT), (B) neuron 73 labeled as Martinotti (MT), and (C) neuron 296 labeled
as basket (B).

with different features in each case as commented above. The main goal of using different

data sets is to draw conclusions about which parts of a neuron are the most important for a

classification task and for finding new subtypes of neurons. The steps are:

1. Supervised classification step (see Section 2.2). This step is performed taking advantage

of the available labels. The used algorithm is NB (see Section 2.2.1) and validation

results are estimated by using 10-fold cross-validation (see Section 2.2.2). The aim of

this first step is to check the reliability of labels. Note that the reliability of labels

was previously taken into account by selecting a threshold of 22, but it is possible that

the morphological features and the used algorithm are not able to correctly classify the

neurons. Besides the original data with all the 224 features filtered by the expert, an

FSS process is also run for each kind of features to select the most interesting ones

according to a wrapper approach using GA as heuristic for searching an optimal subset

(see Section 2.5).

2. Semi-supervised clustering step (see Section 2.4.2). The used algorithm is 3SMBC,

created in this thesis and detailed in Chapter 5. The aim of this step is to obtain more

conclusions about the separation of the known types of interneurons and also about

possible subtypes that can be identified for each type. Each experiment in this step

consists of completely hiding the labels of instances from one interneuron type, whereas

the remaining instances maintain their labels (partially labeled data). The unlabeled

instances are then clustered into either one of the known types or into a new subtype.

For each data set, three experiments are run (hiding one type of interneuron each time).

134 CHAPTER 8. SUBTYPES OF INTERNEURONS

8.3.3 Results

Results of each step are presented next. The details of each step and possible relations

between the obtained results are also analyzed.

A. Supervised classification

Results for the supervised step are divided depending on the kind of features used and whether

the FSS process is run or not.

All data set

� No FSS. The supervised classification results using all are shown in Table 8.2. The

obtained accuracy was 87.84% with 9 misclassified neurons. These misclassified neurons

are the first example about either problems with the reliability of labels or limitations

of NB using features from all parts of the neurons. Regarding each specific type, only

one HT was correctly classified, whereas the other four were misclassified as MT. Again

four MT were misclassified as B and only one neuron with B label was misclassified as

MT.

Predicted class

HT MT B

Real class
HT 1 4 0
MT 0 20 4
B 0 1 44

Table 8.2: Supervised classification results classifying three known types of interneurons using 224
features of all parts of the neurons (all) without FSS. The number of correctly classified instances
was 65 (87.84%) while the misclassifications were 9 (12.16%).

The misclassified instances were:

– HT: 10, 72, 89, 142 (as MT).

– MT: 53, 127, 184, 185 (as B).

– B: 84 (as MT).

� FSS. After the wrapper FSS, 111 features out of 224 were selected as the best feature

subset. Results using these features are shown in Table 8.3. The accuracy was 90.54%,

obtaining a better result than when no FSS was performed in the previous experiment.

The improvement was achieved because one HT and two MT, which had been mis-

classifications before, were correctly classified here. However, one B, which had been

correctly classified before, became a misclassification. Regarding the selected features,

71 were axonal, 35 dendritic, and 5 soma features. Thus, the percentages related to

the total number of features from each part were: approximately 55% of axon features,

40% of dendritic features, and 50% of soma features. Regarding the total number of

8.3. EXPERIMENTAL RESULTS 135

selected features, almost 65% of features were related to the axon, around 31% were

dendritic features, and 4% of features contained information about the soma.

Predicted class

HT MT B

Real class
HT 2 2 1
MT 0 22 2
B 0 2 43

Table 8.3: Supervised classification results classifying three known types of interneurons using features
of all parts of the neurons (all) with FSS (111 features). The number of correctly classified instances
was 67 (90.54%) while the misclassifications were 7 (9.46%).

The misclassified instances were:

– HT: 10, 89 (as MT), 142 (as B).

– MT: 127, 185 (as B).

– B: 84, 131 (as MT).

Axon data set

� No FSS. Supervised classification results using the 128 features containing informa-

tion about the axon of each neuron are shown in Table 8.4. The accuracy was again

90.54%, the same than when the best identified subset of features from all the parts of

the neurons was used. Although the general results were the same and the accuracy

estimated using the that axonal features was the same as the obtained using the best

feature subset previously obtained from all parts of the neuron, note that there were

some differences in the misclassifications in some cases. Thus, the final results were

the same in accuracy terms, but different features are able to distinguish better some

neurons and worse others.

Predicted class

HT MT B

Real class
HT 3 1 1
MT 0 21 3
B 0 2 43

Table 8.4: Supervised classification results classifying three known types of interneurons using 128
features regarding the axon (axon) without FSS. The number of correctly classified instances was 67
(90.54%) while the misclassifications were 7 (9.46%).

The misclassified instances were:

– HT: 142 (as MT), 10 (as B).

– MT: 127, 184, 185 (as B).

– B: 84, 170 (as MT).

136 CHAPTER 8. SUBTYPES OF INTERNEURONS

� FSS. After the wrapper FSS on axon, 44 features were selected. Supervised classifica-

tion results using this feature subset are shown in Table 8.5. The obtained accuracy

reached 91.89%, which is the highest value obtained in this set of experiments. Thus,

a “clean” (after FSS) axon feature subset is the best option to distinguish among HT,

MT, and B interneurons. Nevertheless, there were misclassified neurons (four HT and

2 MT) when it might have been expected that, with the chosen threshold, the labels of

all the neurons were correct.

Predicted class

HT MT B

Real class
HT 1 1 3
MT 0 22 2
B 0 0 45

Table 8.5: Supervised classification results classifying three known types of interneurons using features
regarding the axon (axon) with FSS (44 features). The number of correctly classified instances was
68 (91.89%) while the misclassifications were 6 (8.11%).

The misclassified instances were:

– HT: 39 (as MT), 72, 89, 142 (as B).

– MT: 127, 185 (as B).

Dendrites data set

� No FSS. Supervised classification results using the 86 dendritic features are shown in

Table 8.6. These results were not as good as the previously obtained using all and axon.

The accuracy decreased until 74.32%. None of the HT neuron was correctly classified,

while 6 and 8 MT and B, respectively, were also misclassified.

Predicted class

HT MT B

Real class
HT 0 3 2
MT 0 18 6
B 0 8 37

Table 8.6: Supervised classification results classifying three known types of interneurons using 86
features regarding the dendrites (dendrites) without FSS. The number of correctly classified instances
was 55 (74.32%) while the misclassifications were 19 (25.68%).

The misclassified instances were:

– HT: 10, 72, 142 (as MT), 39, 89 (as B).

– MT: 34, 53, 127, 222, 249 (as B).

– B: 21, 93, 131, 176, 230, 286, 295, 296 (as MT).

8.3. EXPERIMENTAL RESULTS 137

� FSS. The FSS process selected 35 dendritic features. Results using this feature subset

are shown in Table 8.7. The accuracy was 72.97%, which is lower than the accuracy

obtained without FSS. This is the only experiment in which the obtained result was

lower with FSS than without it. In any case, results were very similar to the obtained

using dendrites without FSS and the conclusion for both cases is that dendritic features

are not as useful as axonal features for distinguishing the three types of interneurons

with NB.

Predicted class

HT MT B

Real class
HT 0 4 1
MT 1 16 7
B 0 7 38

Table 8.7: Supervised classification results classifying three known types of interneurons using features
regarding the dendrites (dendrites) with FSS (35 features). The number of correctly classified instances
was 54 (72.97%) while the misclassifications were 20 (27.03%).

The misclassified instances were:

– HT: 10, 72, 89, 142 (as MT), 39 (as B).

– MT: 107 (as HT), 34, 53, 127, 184, 222, 249, 291 (as B).

– B: 21, 93, 131, 176, 286, 295, 296 (as MT).

Soma data set

� No FSS. The soma is a part that has small differences among neurons. It can be seen in

the results shown in Table 8.8. The accuracy was only 52.7%. The small differences in

the soma among neurons were also reflected in that many neurons were classified as B.

This happened because the B group was the biggest group, and NB classifies instances

into the biggest group when there are no many differences among the features.

Predicted class

HT MT B

Real class
HT 2 0 3
MT 0 5 19
B 5 8 32

Table 8.8: Supervised classification results classifying three known types of interneurons using 10
features regarding the soma (soma) without FSS. The number of correctly classified instances was 39
(52.7%) while the misclassifications were 35 (47.3%).

The misclassified instances were:

– HT: 10, 39, 142 (as B).

– MT: 3, 20, 34, 53, 66, 69, 77, 82, 106, 107, 111, 127, 178, 184, 222, 231, 249, 291,

302 (as B).

138 CHAPTER 8. SUBTYPES OF INTERNEURONS

– B: 9, 44, 76, 120, 296 (as HT), 21, 93, 103, 166, 170, 176, 216, 238, (as MT).

� FSS. Only two features were selected by the FSS process. Results (Table 8.9) only

improved very slightly after FSS, obtaining 54.05% of accuracy, which is clearly not

enough to distinguish these types of interneurons. Thus, soma features are not as useful

as axonal features, or even as dendritic features, to classify the types of interneurons

with NB.

Predicted class

HT MT B

Real class
HT 0 0 5
MT 0 5 19
B 5 5 35

Table 8.9: Supervised classification results classifying three known types of interneurons using features
regarding the soma (soma) with FSS (2 features). The number of correctly classified instances was
40 (54.05%) while the misclassifications were 34 (45.95%).

The misclassified instances were:

– HT: 10, 39, 72, 89, 142 (as B).

– MT: 3, 20, 53, 66, 69, 77, 82, 106, 111, 127, 178, 184, 197, 222, 231, 249, 291, 302

(as B).

– B: 44, 76, 120, 131, 225 (as HT), 5, 55, 170, 216, 238 (as MT).

50

60

70

80

90

100

All Axon Dendrites Soma
Features

%
 A

cc
ur

ac
y

FSS

No FSS

Figure 8.2: Summary of accuracy values obtained with
NB depending on the used data.

A summary of all the obtained ac-

curacy values is shown in Figure 8.2. It

can be seen how using soma or dendrites

separately is not enough to achieve a

good separation of HT, MT, and B neu-

rons. When these subsets are used to-

gether with the axon subset (all), re-

sults increased until more than 90% of

accuracy after FSS. Nevertheless, ac-

cording to these results, it is not nec-

essary to use all the subsets since the

best results were achieved by using only

axon after FSS. The FSS process ob-

tained slightly better results than when

no FSS was carried out for all cases ex-

cept for dendrites.

Detailing the misclassifications, HT

neurons were not well-separated from the other groups, in spite of this type of neurons is

very different from the other ones, as can be seen in Figure 8.1. This fact might happen

8.3. EXPERIMENTAL RESULTS 139

due to the unbalanced number of available neurons, since the number of HT neurons is very

low compared to the number of MT and B neurons (see Table 8.1). The semi-supervised

approach overcomes this problem (see the next section). Other misclassifications that were

repeated several times, even when the best results were achieved, are the neurons numbered

as 127 and 185, labeled as MT, and the neuron 84, labeled as B. These neurons are shown in

Figure 8.3.

Although these neurons have clear differences with respect to typical neurons presented

in Figure 8.1, visual expert validations confirmed that they were correctly labeled. Thus,

this is a very representative example of lack of agreement in the different validations, since

the machine learning and the expert validations did not agree. These neurons should be

considered as misclassifications according to the best results of NB, and the opinion of the

expert is that their labels are correct. Note that if this study is presented to another expert,

validation may be different.

A B C

Figure 8.3: 2-dimensional reconstructions of three misclassified neurons in most supervised scenarios.
(A) neuron 127, Martinotti (MT), (B) neuron 185, Martinotti (MT), and (C) neuron 84, basket
(B).

B. Semi-supervised clustering

The process to achieve the partially labeled data that 3SMBC needs as input data is based

on hiding the labels of instances that belong to a specific type of interneuron. The remaining

instances (labeled as one of the other two types of interneurons) maintain the label as known

information for the algorithm. This process is repeated for each data set. By using this

process, some conclusions can be drawn about whether the different feature subsets are able

to correctly separate each type from the others, and also whether new subtypes are identified

for each type of interneuron. At the end of the algorithm, the unlabeled instances may belong

either to a new cluster or to some of the two known groups. Both the known and the new

clusters are identified by weighting the features according to their relevance provided by the

algorithm (see Section 5.3).

Results are separated depending on the hidden interneuron type. Note that only results of

unlabeled instances are shown because the labeled instances do not change their labels at the

end of 3SMBC. As can be seen in more detail in each subsection and as expected according

to previous experiments, the results were different depending on the used data set. Soma

140 CHAPTER 8. SUBTYPES OF INTERNEURONS

features separately are not shown in this experiment because they do not contain enough

information to obtain remarkable results, as shown in the supervised classification step, and

as confirmed in (not shown) preliminary results with the semi-supervised subspace clustering

algorithm.

Hiding HT

The instance assignments of the five hidden HT neurons are shown in Table 8.10. Each

number (in this case only 1) corresponds to a new subgroup, whereas MT and B correspond

to instances that were grouped into those known groups (misclassifications according to the

available labels). The separation of HT neurons from MT and B groups was better than that

obtained in the supervised classification step. This separation was complete when all and

axon data sets were used.

Data

ID all axon dendrites

10 1 1 1
39 1 1 1
72 1 1 MT
89 1 1 1
142 1 1 1

Table 8.10: Semi-supervised assignments when labels of horse-tail (HT) instances were hidden
taking into account a threshold of 22 for each of the considered data sets.

Details for each considered data set (depending on the used features) are commented

next:

� Using all data set. A new subgroup was found for the five neurons. This result is

important because a complete separation of HT with respect to MT and B was not

achieved in the supervised classification step. Therefore, it can be concluded that HT

is correctly distinguished from the other two types of interneurons when each type is

characterized with a different subspace. The number of most relevant2 features was 75,

which is around 33% of the total features. Regarding each part of the neuron, 72% of

the 75 features were from the axon, 25% from dendrites, and 3% from soma.

� Using axon data set. Again, only one subgroup was found for the five HT neurons.

The number of relevant features was 53. All the selected features but one completely

matched with the axonal features previously identified as relevant using all. Besides,

98% of the features matched up with the previous subset. Therefore, it can be concluded

that a subset of axonal features was enough to distinguish the available HT neurons

from MT and B. Specifically, some of the most important features were: all the sholl

axon features regarding distances from 120 µm to 420 µm, the neuron orientation

2A feature is considered as relevant for a subspace if 3SMBC assigns a weight (ρ, see Equation 5.31) of, at
least, 0.8.

8.3. EXPERIMENTAL RESULTS 141

(with many polar axon features), and the information about the local branch angle of

the axon.

� Using dendrites data set. There was a new subgroup for four HT neurons, but neuron

72 was clustered into the MT group. This neuron was also misclassified as MT in the

supervised classification step using the dendritic features.

Hiding MT

The instance assignments of the 24 hidden MT neurons are shown in Table 8.11. Each number

in the table corresponds to a new subgroup (in this case 1, 2, 3, and 4, depending on the

used data), whereas HT and B correspond to instances that were grouped into those known

groups (misclassifications according to the available labels). Details for each considered data

Data

ID all axon dendrites

3 2 2 3
20 1 1 1
34 B B 1
53 B B 4
66 1 3 4
69 2 B 2
73 2 B 1
77 2 2 1
82 2 2 1
106 1 1 1
107 B B HT
111 B B 1
127 B B B
178 2 2 1
184 2 2 B
185 B B 4
222 2 2 HT
229 1 2 4
231 3 2 2
249 1 1 2
272 3 2 3
290 B B 2
291 2 2 4
302 2 2 2

Table 8.11: Semi-supervised assignments when labels of Martinotti (MT) instances were hidden
taking into account a threshold of 22 for each of the considered data sets.

set (depending on the used features) are commented next:

� Using all features. Three subgroups were found and seven neurons were misclassified

and grouped into the B cluster. The misclassified neurons were: 34, 53, 107, 111, 127,

185, and 290. The number of misclassified neurons is higher than that obtained in the

142 CHAPTER 8. SUBTYPES OF INTERNEURONS

supervised classification approach, where four and two MT neurons were misclassified

by using all without and with FSS, respectively. Neurons 127 and 185 are within

the misclassification subset. These two neurons were misclassifications using the NB

algorithm in the previous step when both all and axon data sets were used.

� Using axon features. The algorithm also found three subgroups, but one of them has

only neuron 66. The number of misclassified neurons was even higher than using all. In

total, nine neurons were misclassified and grouped into the B cluster. Again, neurons

127 and 185 were misclassified neurons.

� Using dendrites features. The information given by dendrites separately is completely

different. Four subgroups with four misclassified neurons (two of them joined to the HT

cluster) were found. The number of misclassified neurons using the NB algorithm and

the dendrites data were 18 and 17, with no FSS and with FSS, respectively. Therefore,

3SMBC obtained a more accurate results with only four misclassifications.

Hiding B

The instance assignments of the 45 hidden B neurons are shown in Table 8.12. Each number

corresponds to a new subgroup (in this case 1, 2, 3, and 4, depending on the used data),

whereas HT and MT correspond to instances that were grouped into those known groups

(misclassifications according to the available labels).

Details for each considered data set (depending on the used features) are commented

next:

� Using all features. Three new subgroups were found with one misclassified neuron (9).

One of these subgroups had the 80% of the B neurons, while the explanation for the

other two subgroups was not clear for the expert.

� Using axon features. There were two identified subgroups with neuron 84 as a misclas-

sification. Neuron 84 was identified, also considering supervised classification results, as

a difficult target for this kind of algorithms. In this case, the percentage of B neurons

grouped into the biggest group is almost 90%.

� Using dendrites features. In this case, there were not misclassifications. Therefore, and

similarly to results by hiding MT neurons, the number of misclassified neurons was

again lower by using dendrites than all or axon. There were four subgroups, and again,

one of them has most of the neurons with almost 80% of the total number of B neurons.

Some preliminary conclusions could be drawn from these results:

� Regarding HT neurons, the obtained separation was complete and only one subgroup

was found. This is an interesting advance with respect to the supervised classification

results, since these neurons were not completely distinguished from MT and B neurons

8.3. EXPERIMENTAL RESULTS 143

Data

ID all axon dendrites

5 1 2 2
9 HT 2 2
11 3 2 2
12 1 1 2
21 3 2 2
26 3 2 3
29 3 2 2
35 3 2 2
44 3 2 2
55 3 2 2
61 3 2 3
63 2 1 2
76 3 2 3
78 3 2 1
81 3 2 2
84 2 MT 2
93 1 1 1
96 3 2 2
103 1 1 3
108 3 2 1
109 3 2 4
113 3 2 2
120 3 2 2
121 3 2 2
131 3 2 2
143 3 2 2
146 3 2 2
161 3 2 2
166 3 2 2
170 2 2 2
176 3 2 1
202 3 2 2
214 3 2 2
216 1 2 4
225 3 2 2
230 3 2 2
236 3 2 2
238 3 2 2
240 3 2 2
247 3 2 2
283 3 2 2
286 3 2 1
293 3 2 3
295 3 2 2
296 3 2 2

Table 8.12: Semi-supervised assignments when labels of basket (B) instances were hidden taking into
account a threshold of 22 for each of the considered data sets.

144 CHAPTER 8. SUBTYPES OF INTERNEURONS

by using the NB algorithm. Therefore, detailing each found cluster with a specific

subspace supports the separation of HT neurons from MT and B neurons. Specifically,

the most important features for the HT subspace were related to the axon (sholl axon

and polar axon features).

� Regarding MT neurons, the obtained separation was not complete. There were several

misclassified neurons and, according to these results, the dendritic information became

more important for this separation. This is interesting because the most important part

of the neuron to obtain the previous HT separations was the axon. In any case, the

complexity of these neurons is higher than HT neurons since although at least 22 experts

labeled these neurons as MT, neither a supervised classification nor a semi-supervised

approach were able to obtain a complete separation.

� Regarding B neurons, the separation was almost complete by using all and axon, and

complete by using dendrites. Again, this indicates the possible relevance of dendritic

features. This possible relevance was not revealed by using NB. There was a big

subgroup of B (numbered as 2 and as 1 in Table 8.12 for all and axon, respectively)

that could be considered as a good starting point of “basic B neurons”, while some

other neurons (like neuron 84) were more problematic.

The conclusions for HT neurons can be considered as remarkable. However, the expert’s

validation for the identified subgroups for MT and B neurons was not as satisfactory. For this

reason, the next step was to reduce the data set due to the complexity of some of the current

MT and B neurons. This reduction can be obtained by increasing the threshold commented

in Section 8.1. The main new goal is to obtain more specific conclusions about MT and B

neurons using a data set with more reliable labels.

Different threshold

The new selected threshold was raised to 26, i.e., at least 26 experts assigned to each neuron

the same label. According to this threshold, there are 22 neurons labeled as MT and 22

neurons labeled as B (10 common B and 12 large B), as can be seen in Table 8.1. Therefore,

there are 44 neurons for each new data set. Four data sets are again considered because the

same separation regarding the features is used.

Neurons 127 and 185, which were misclassified neurons for the best supervised classifi-

cation results and also for the semi-supervised approach, were not included in this new set

of data. Nevertheless, neuron 84, which was also problematic, was maintained since it was

labeled as B by 33 experts.

The same semi-supervised approach and process that was previously used was again

employed for this new data set. In this case, there are only two different labels and, therefore,

MT were first hidden maintaining B labels and with the aim of obtaining a good separation of

MT from B neurons and discovering possible MT subgroups. This process was then repeated,

but hiding the B labels and maintaining MT labels.

8.3. EXPERIMENTAL RESULTS 145

Before showing the results obtained with the semi-supervised approach, Table 8.13 sum-

marizes the results obtained using the same supervised approach than before, i.e., using NB

with no FSS and with wrapper FSS. It can be seen how results were similar to the obtained

with the previous threshold, even when the number of neurons was decreased and only two

labels were used. The obtained results with the threshold 26 were similar to the obtained

with the threshold 22 in terms of both accuracy and importance of features, since again

axonal features were more accurate at distinguishing between the two types of interneurons

than when all features were used. As a curiosity, the FSS process did not achieve better

results than when the original data were used for the two highest accuracy values (using all

and axon). It may reveal that the maximum accuracy value was obtained in each case and,

although the FSS process obtained models with a lower number of features, the obtained

accuracy did not improve. It is interesting the similarity of these results with the previously

obtained, but this work focuses on the semi-supervised approach and its results, which are

presented next.

Data

all axon dendrites soma

No FSS 88.63% 90.91% 70.45% 47.72%
FSS 88.63% 90.91% 72.72% 61.36%

Table 8.13: Accuracy obtained using NB as supervised approach (estimated with a 10-fold cross
validation) depending on the data used and whether FSS was carried out.

Hiding MT

The instance assignments are shown in Table 8.14. Each number corresponds to a new

subgroup (in this case 1, 2, 3, and 4, depending on the used data), whereas B corresponds

to instances that were grouped into that known group (misclassifications according to the

available labels). The main conclusion from assignments presented in Table 8.14 is that the

number of misclassifications was increased when only axon or dendrites were used. On the

contrary, when all parts of the neuron were combined, there was only one misclassification:

neuron 53 was grouped into the B group. Note that neuron 53 was also misclassified when

NB was applied in the supervised approach in all scenarios except for the axon data. Thus,

the used algorithms, together with the available features, were not able to clearly consider

this neuron as a typical MT neuron.

After expert’s validation, the neuroscientist was able to visually distinguish some different

subtypes of MT. According to these and other preliminary results, MT neurons seem a

population of neurons more heterogeneous than previously thought.

Hiding B

The instance assignments are shown in Table 8.15. Each number corresponds to a new

subgroup (in this case 1, 2, and 3, depending on the used data), whereas MT corresponds

146 CHAPTER 8. SUBTYPES OF INTERNEURONS

Data

ID all axon dendrites

3 3 4 2
20 1 1 2
34 3 B 1
53 B B 2
66 1 1 1
69 4 B 1
73 3 B 1
77 2 3 2
82 3 4 4
106 1 1 3
107 2 B 1
111 2 B 1
178 2 3 1
184 4 3 B
185 3 3 2
222 3 2 2
229 1 2 4
231 3 2 B
249 1 1 4
272 3 2 3
291 3 2 B
302 3 2 4

Table 8.14: Semi-supervised assignments when labels of Martinotti (MT) instances were hidden
taking into account a threshold of 26 for each of the considered data sets.

to instances that were grouped into that known group (misclassifications according to the

available labels).

Results in Table 8.15 were the most interesting results for our expert. Neuron 84 was

the single misclassified neuron when all and axon were used. This neuron was previously

commented because it was very problematic for NB during the supervised classification step.

Results confirmed again that either this neuron might not be correctly reconstructed or the

available features were not able to characterize it.

Traditionally, axonal features have been considered by neuroscientist as the most impor-

tant characteristics to classify neurons. However, as can be seen in Table 8.15, no subgroups

were identified when all and axon data sets were used. Thus, these results indicate ax-

onal features allow for the successful separation of B neurons from MT neurons, whereas no

separation among B neurons was observed.

However, when dendrites data were used, the algorithm found three subgroups. After

expert validation, these subgroups can be considered as logical groups, according to the

results expected by the expert, depending on both the size and the orientation of the neurons.

One representative neuron from each of the three found subgroups is shown in Figure 8.4.

Neurons from the first subgroup (Figure 8.4 (A)) are big neurons that mainly match with the

previously group of large B neurons (see Table 8.1). These neurons have also an elongated

axon arborization. Neurons from the second subgroup (Figure 8.4 (B)) are also considered

8.3. EXPERIMENTAL RESULTS 147

Data

ID all axon dendrites

5 1 1 3
9 1 1 1
11 1 1 1
12 1 1 1
21 1 1 3
26 1 1 2
55 1 1 1
76 1 1 1
78 1 1 2
84 MT MT 1
93 1 1 2
113 1 1 3
131 1 1 1
214 1 1 1
216 1 1 2
225 1 1 1
230 1 1 1
247 1 1 3
286 1 1 1
293 1 1 1
295 1 1 3
296 1 1 3

Table 8.15: Semi-supervised assignments when labels of basket (B) instances were hidden taking into
account a threshold of 26 for each of the considered data sets.

as large B neurons, but the arborizations are horizontally distributed. Figure 8.4 (B) was

rescaled to maintain the same size than the other two neurons, as can be seen in the elongated

squares that indicate the size of the neuron. Finally, the third subgroup contains neurons

like Figure 8.4 (C), which are smaller than neurons from the first and second subgroups, and

mainly match with the previously assigned name common B neurons.

A B C

Figure 8.4: 2-dimensional reconstructions of three types of basket (B) neurons. (A) Neuron 12
belongs to the first subgroup, (B) neuron 78 belongs to the second subgroup, and (C) neuron 21
belongs to the third subgroup. All these subgroups were found using dendritic features.

148 CHAPTER 8. SUBTYPES OF INTERNEURONS

The most interesting conclusion about the identified subgroups is that dendritic features

were able to identify neurons containing particular axonal arborization. Therefore, it is

possible that, according to the obtained results with the available neurons, dendritic and

axon arborizations may be more related than previously thought.

8.4 Summary and discussion

After an interesting experiment that was performed showing more than 300 interneurons to

many experts, there were three types of interneurons that might be considered as known

types: horse-tail (HT), Martinotti (MT), and basket (B). The reliability of the assigned

labels depended on the number of experts that voted the same label for a neuron. It can be

seen from those results the lack of agreement that exists. When a supervised classification

algorithm (näıve Bayes (NB)) was applied trying to distinguish these three types, the main

conclusion is that some neurons were not correctly classified. This happened mainly for HT

neurons. Movements toward a final classification of neurons are not easy, since not even three

very known types of interneurons, using a supposedly reliable data set, can be automatically

distinguished with NB. For this task, axonal features were identified as the most important

features to distinguish the types of interneurons, since when axonal features were combined

with dendritic and soma features, the classification accuracy decreased. The importance of

the axonal features was expected by an expert neuroscientist used as external validation.

It is necessary to take into account that the first problem at classifying neuronal data

begins in the reconstruction step. All the available neurons are not complete neurons, thus

the reconstructed morphologies may be or may not be very representative data about the

exact neurons. Another very important milestone that should be reached to further advances

is related to the morphological features measured. Throughout this study, a complete list of

224 features from each part of the neuron was used to characterize them. Nevertheless, new

complementary parameters should be achieved in order to obtain a complete description of

the morphology of the neuron.

3SMBC was then applied as semi-supervised approach. The labels of each type of in-

terneurons were hidden in each case while the other types maintained these labels, obtaining

partially labeled data. The goal of this approach was to obtain not only a good separation

among the types of interneurons, but also new subgroups for each type. The results throw

some light about the proposed types of interneurons and their possible subtypes. HT neu-

rons were correctly separated by using this semi-supervised approach when the threshold of

22 was used. This good separation was not achieved with NB. However, the task became

more challenging for MT and B neurons, because there were misclassified neurons and the

subgroups were not very clear after expert’s validation.

When the threshold was then raised until 26, obtaining more reliable data labels, some

interesting conclusions arose after repeating the study with the new data, which contained

only MT and B neurons. Both MT and B types of neurons were completely separated from the

other group except for one neuron using all features. This is interesting because conclusions

8.4. SUMMARY AND DISCUSSION 149

about the features from supervised classification results were that axonal features are the

most important for distinguishing different types of interneurons, and that the combination

of axonal features with features from other parts of the neuron led to worse results.

MT neurons were separated into different subgroups. This happened throughout all pre-

liminary and final experiments. The MT neurons are considered as a very basic neuron and

subgroups were not previously identified. However, a final specification of these groups was

not achieved because, as the expert expected at the beginning of the experiment, new features

should be extracted from the neuron reconstructions in order to specify some relationships

between the different parts of each neuron.

Finally, the most remarkable conclusion is related to B neurons. Three B subgroups

were identified, matching with some previous expert intuition: a subgroup with large and

elongated neurons, another one with large and horizontally distributed neurons, and, finally,

a subgroup with smaller B neurons. The most interesting conclusion about these subgroups

is that dendritic features were used to identify them, while the main characteristics of these

neurons are related to the axon. This fact does not mean that the axon is not a relevant

feature when characterizing a neuron, but instead reveals that dendritic characteristics in

neurons could be more related to axonal characteristics than previously thought. This could

be a very interesting finding that deserves further studies to be confirmed.

150 CHAPTER 8. SUBTYPES OF INTERNEURONS

Part V

CONCLUSIONS AND FUTURE

WORK

151

Chapter 9
Conclusions

The main and specific conclusions drawn from this thesis have been presented throughout

each chapter. The most relevant conclusions will be summarized in this chapter, emphasizing

the reached achievements.

� Although clustering validation is still an open field of research, some internal indices

can be used to guide the clustering solution. The performance of these measures is very

dependent on several factors, e.g., used clustering algorithm or data characteristics.

According to the obtained results, some measures such as Calinski, Silhouette, and

Gamma, should be chosen before others such as C-index and DB, almost systematically.

Nevertheless, the final selection of an index should be made depending on some previous

analysis on data.

� Data labels can be used together with searching for subspaces to enhance clustering

results when dealing with data with structures hidden in different subspaces. Two

different algorithms have been created obtaining this main conclusion. Some more

specific conclusions are:

– Available data labels can be used not only to validate, but also to guide the created

algorithms. Besides, data labels can be used from different perspectives as can be

seen in the algorithms. On the one hand data labels were mainly used to identify

the most relevant subspaces, while on the other hand they were used as fixed

information known beforehand that is introduced into the clustering process to

support both the search for subspaces and the instance assignments.

– Searching for subspaces leads to clustering results that are very accurate when deal-

ing with data with structures hidden in different subspaces. Traditional clustering

algorithms may find not such accurate solutions (which may be even unreachable)

for this kind of data.

� Traditional and novel machine learning techniques may help advance towards the so-

lution of real and challenging problems. Specifically, the neuronal data classification

153

154 CHAPTER 9. CONCLUSIONS

is an example of this kind of problems. Some advances have been achieved by using

traditional machine learning tasks, and also new algorithms, such as the presented in

this work. These advances may help to the understanding of a possible classification of

neurons. Nevertheless, more efforts should be made to obtain more conclusive results

for this interdisciplinary problem.

The main hypothesis of this thesis: taking advantage of available data labels, and

using different subspaces for finding hidden structures, lead to clustering solu-

tions that, otherwise, cannot be such accurate or even unreachable was demon-

strated by obtaining satisfactory results on the main objective: to tackle the semi-supervised

subspace clustering problem using different approaches and to develop the adequate scientific

experiments in order to validate the different approaches.

The separated objectives defined in Chapter 1 have been fulfilled as presented during the

different chapters of this document:

1. Chapter 3 deals with the objective “Study of some of the most used clustering validation

indices under different data conditions and clustering algorithms, as an inherent problem

in all tasks related to clustering”.

2. The objective “Creation of semi-supervised subspace clustering proposals from two dif-

ferent points of view” is presented in Chapter 4 for the approach based on “Using

available data labels for searching for subspaces firstly, before searching for clusters.

This proposal assigns each instance to only one cluster (hard clustering) and is based

on mapping known labels to subspaces using supervised classification techniques. Sub-

spaces are then used to find clusters using traditional clustering techniques”, and in

Chapter 5 for the approach based on “Using available data labels to search for sub-

spaces and clusters at the same time in an iterative process. This proposal assigns

each instance to each cluster based on a membership probability (soft clustering) and

is based on integrating known labels and the search for subspaces into a model-based

clustering approach”.

3. Chapter 6 presents an introduction to neuroscience as a starting point for Chapters 7

and 8 where the objective “Application of machine learning to neuroscience, presenting

a real problem and applying the necessary techniques, including some of the proposals,

to provide solutions” is fulfilled.

Besides the chapters related to the commented objectives, Chapter 2 presents a complete

overview of all the machine learning topics used throughout this research, presenting different

approaches, algorithms, and references.

9.1 Publications

To conclude this chapter, the publications derived from this research are listed below.

9.1. PUBLICATIONS 155

� L. Guerra, L. McGarry, V. Robles, C. Bielza, P. Larrañaga and R. Yuste. Comparison

between supervised and unsupervised classifications of neuronal cell types: A case study.

Developmental Neurobiology, 71(1):71–82, 2011. Current JCR (2011): 3.551.

� L. Guerra, V. Robles, C. Bielza and P. Larrañaga. A comparison of clustering quality

indices using outliers and noise. Intelligent Data Analysis, 16:703–715, 2012. Current

JCR (2011): 0.448.

� L. Guerra, C. Bielza, V. Robles and P. Larrañaga. Semi-supervised projected model-

based clustering. Data Mining and Knowledge Discovery, Submitted. Current JCR

(2011): 1.545.

� L. Guerra, V. Robles, C. Bielza and P. Larrañaga. Partially labeled data clustering in

subspaces. International Journal on Artificial Intelligence Tools, Submitted. Current

JCR (2011): 0.217.

156 CHAPTER 9. CONCLUSIONS

Chapter 10
Future Work

The work presented in this thesis mainly addresses semi-supervised clustering, also dealing

with completely supervised and unsupervised techniques in different situations together with

dimensionality reduction under several approaches. All these topics together compose a vast

amount of research and knowledge in the literature. Therefore, and although the objectives

of this thesis were satisfactory fulfilled, a series of future works could be considered.

In this chapter some of the most relevant future lines and open issues will be enumerated.

Some of them deal with the improvement of the presented proposals, whereas others are

related to changes in experiments and applications. The order of these future lines follows

the same order as that used during the manuscript.

10.1 Clustering validation

Taking into account that clustering is a descriptive task, and that different descriptions could

be equally accepted by different users, validating clustering is a task more based on expert

opinions that on numerical measures. Nevertheless, depending on the purpose, some measures

can be used to guide the search of subsets of features or number of clusters as seen in Chapter

3. A more extended battery of measures and data characteristics could be studied, trying to

drawn some conclusions about indices’ behaviour and performance when validating clustering

solutions obtained with different algorithms.

Another remark about clustering validation, and maybe as a no realistic desire, the cre-

ation of a validation framework capable of validating any clustering solutions would be the

ideal aim in this research field. The creation of this framework could be based on the defini-

tion of new validation indices, but, as previously commented, due to differences in clustering

algorithms, and mainly, due to differences in expert validation opinions, this aim seems far

from being reachable. Finally, this desire can be extended to semi-supervised clustering.

The clustering validation indices may not be useful to correctly validate semi-supervised

approaches. Therefore, new indices to validate this type of problems could be also defined.

157

158 CHAPTER 10. FUTURE WORK

10.2 Semi-supervised subspace clustering

Contrary to clustering validation, semi-supervised subspace clustering is open to minor and

major future work. This specific pattern recognition task can be considered as recent. It

means that improvements for created algorithms and new techniques can be elaborated to

solve this kind of problem. Focusing on the two proposals presented in this work, the open

lines for each one of them are listed next.

Hard approach

Although some positive conclusions (commented in Section 4.5) are drawn from the proposal

called KMF, which was presented in Chapter 4, there are many opportunities for improve-

ments in the proposal. Related to the general ideas in which the created framework is based

on, there are three important aspects that can be modified. First of all, KMF is a projected

clustering approach since overlapping in clusters is not allowed and each instance belongs to

only one cluster in the final solution. To achieve this, a post-process filter is applied to the

found clusters to delete possible repetitions of the same instance in different clusters. If this

step was withdrawn, the same instance could belong to more than one cluster in the same

solution. With this new situation, and according to Section 2.5.1, KMF would become a sub-

space clustering approach in which overlapped clusters can be found. Both approaches are

equally correct depending on the application, and although projected clustering approaches

are more easily interpreted, the ad-hoc post-process filter can be seen as a computationally

demanding and unnatural step.

The second aspect is related to those instances that are not clustered into any of the

genuine clusters, which are found for each known class. According to the current framework,

only one subspace is found to cluster all those instances. Using only one subspace may prevent

the algorithm from finding hidden structures. Therefore, a new method for finding more than

one subspace for those instances that are not clustered into the genuine clusters is desirable.

The subspaces associated to the known classes are identified according to the known labels,

by using a supervised approach. However, the search for the new subspace during the second

phase is based on the results obtained at the end of the first phase and the supervision is

rather limited. A possible line to tackle this problem is to introduce an iterative search

for subspaces during the second phase. Thus, the first new subspace would be identified

as presented in the current proposal and used to cluster the data. Nevertheless, instead

of assuming the clustering solution as the correct partition that is included into the final

solution, the found clusters would be evaluated including into the final solution only the best

cluster(s) according to some validation measure. The instances that still remain unclustered

would be then used to identify a new subspace, and the process would be repeated until

all instances belong to good clusters, i.e., clusters that obtain a good value according to a

validation measure. Again, clustering validation would become a very important step and

different solutions would be obtained depending on the validation measure.

Finally, another general aspect that could be modified is related to the identification of

10.2. SEMI-SUPERVISED SUBSPACE CLUSTERING 159

each subspace and the available data labels at the same time. In the current approach, sub-

spaces are identified by using an FSS approach for a binary supervised classification problem

without taking into account the hypothetical validation result of each supervised problem.

This value may indicate two key aspects: whether the identified subspace is noteworthy and

whether the available data labels are reliable. Therefore, according to these results, some

flexibility could be introduced into the identified subspaces, allowing either the inclusion or

the removal of some features. Besides, if some instances are misclassified in this supervised

classification problems, it is possible that labels for those instances are not clear and should

be taken wisely to find the genuine clusters. In the current approach, those labels could be

removed from the constraint set for the MPCKM algorithm.

Besides the general ideas that could be modified, KMF is a framework that must be

instantiated and, therefore, many future work can be made in this direction. Currently, KMF

is instantiated by using traditional and available algorithms. However, the instantiation may

differ depending on the user and the application domain. The main changes that can be done

related to the instantiation are:

� It is necessary to solve an FSS step in a binary supervised classification problem during

the search for subspaces in the first phase. A supervised classification algorithm, an

FSS approach, and a method to estimate some accuracy measure must be chosen. This

is repeated at the beginning of the second phase.

� Once the subspaces are found, a clustering algorithm is used to find the genuine clusters.

A clustering algorithm, together with a method to estimate the number of clusters in

each solution, must be chosen. Another clustering algorithm is used as final step at the

end of the second phase.

As a summary, the decisions about the instantiation must be made regarding how sub-

spaces are identified and how data are clustered using those subspaces. The justification for

using some algorithms or others is not trivial because the performance of each algorithm

depends on the data. Therefore, the future work related to this should be directed towards

experimental work.

Soft approach

Although 3SMBC, presented in Chapter 5, is a closed algorithm that obtained very accurate

results in different experimental scenarios, some future work could be done trying to improve,

even more, these results. Although others could be considered, three proposal are presented

here for further study.

The first proposal is related to the available data labels. It is assumed for 3SMBC, equally

than for many other semi-supervised clustering algorithms (it was also commented for KMF),

that available data labels are completely reliable. However, if this assumption is not realistic,

and the clustering solution is guided by wrong data labels, the output will be also wrong.

This possible trouble is very highlighted in the 3SMBC case, since data labels are important

160 CHAPTER 10. FUTURE WORK

not only taking part in the initialization, but also because they do not change along the

complete execution. Thus, it is not allowed that an instance, if was originally mislabeled,

can change its label in 3SMBC (unlike in KMF). The first proposal can be tackled from two

different points of views. The first one is very simple and consists of allowing the possible

changes in data labels for the originally labeled instances. 3SMBC would calculate the new

labels for those instances in the same way as is calculated for the unlabeled instances. The

second point of view is more complicated and is based on assigning different weights to the

instances depending on the reliability of each data label. The subspaces should be generated

according to these weights and then, instances that belong to a component according to the

original label would be more important to identify the subspace for that component if they

have reliable labels than if they have labels with lower reliability.

The second proposal is related to how new components are found and introduced into

the 3SMBC mixture model. Currently, a new component is introduced into the model at

each level, trying to discover new and hidden data structures. This iterative process is based

on initializing the new component according to those instances that worse fit the current

components in the model. The main limitation of this approach is that only one component

is then considered to be introduced into the model at each level. A new proposal could be

based on considering more than one component at each level, based on different initializations.

With this proposal, one or more than one new components could be selected to be introduced

into the new model.

Finally, the third proposal is related to outliers. Some instances could not properly fit

in all the identified subspaces and components. Therefore, they can be considered outliers.

Outlier detection is another important paradigm in machine learning, and it is many times

related to clustering. An outlier detection method could be introduced into the algorithm

under the next definition of outlier: an instance is considered as an outlier if it belongs to

a component characterized by using all the available features instead of belonging to some

cluster characterized by a subspace. According to it, another component could be considered

in the model at each level, characterized by all the available features. If some instances are

clustered into that component at the end of the algorithm, they are considered as outliers.

Other definitions of outliers may be created, obtaining different outlier detection methods.

10.3 Real applications in neuroscience

Although some conclusions were drawn from the real applications presented in Sections 7 and

8, the final solution for the neuron classification is still remote. Thus, much future work can

be considered:

� A better feature extraction process should be designed, trying to gather as much infor-

mation as possible about neurons in computer features so that these features can be

used to obtain better classifications. A possible approach could be related to the ex-

traction of features that gather information about relationships between different parts

of the neurons.

10.3. REAL APPLICATIONS IN NEUROSCIENCE 161

� The lack of agreement among experts may be exploited. Some kind of uncertainty (in

terms of reliability of labels as votes received) can be introduced into the experiments

and new used algorithms to model the agreement.

� More experiments are necessary to obtain final conclusions about relationships between

the different parts of neurons.

� Different algorithmic approaches could be applied to the neuron classifications since,

after these current experiments, the same neuron may be grouped with different neurons

depending on the used data. This is considered in overlapping clustering algorithms

and many of them are also related to subspace clustering.

� Finally, and depending on hypothetical results that might be obtained with the pre-

viously indicated future work, some kind of consensus approach could be introduced

into subspace and semi-supervised clustering approaches if a final solution, with each

neuron grouped into only one cluster, is aimed.

162 CHAPTER 10. FUTURE WORK

Bibliography

[1] E. Achtert, C. Böhm, H. Kriegel, P. Kröger, I. Müller-Gorman, and A. Zimek. Detection

and visualization of subspace cluster hierarchies. In Advances in Databases: Concepts,

Systems and Applications, volume 4443 of Lecture Notes in Computer Science, pages

152–163. Springer Berlin Heidelberg, 2007.

[2] C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and J.S. Park. Fast algorithms for

projected clustering. SIGMOD Record, 28(2):61–72, 1999.

[3] C.C. Aggarwal and P.S. Yu. Finding generalized projected clusters in high dimensional

spaces. SIGMOD Record, 29(2):70–81, 2000.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering

of high dimensional data for data mining applications. SIGMOD Record, 27(2):94–105,

1998.

[5] M. Ahmed and L. Khan. SISC: A text classification approach using semi supervised

subspace clustering. In IEEE International Conference on Data Mining Workshops,

pages 1–6, 2009.

[6] H. Akaike. Information theory and an extension of the maximum likelihood principle.

In Proceedings of the 2nd International Symposium on Information Theory, pages 267–

281, 1973.

[7] A. Albatineh, M. Niewiadomska-Bugaj, and D. Mihalko. On similarity indices and

correction for chance agreement. Journal of Classification, 23(2):301–313, 2006.

[8] R. Alexandridis, S. Lin, and M. Irwin. Class discovery and classification of tumor

samples using mixture modeling of gene expression data, a unified approach. Bioinfor-

matics, 20(16):2545–2552, 2004.

[9] G. Ascoli et al. Petilla terminology: Nomenclature of features of GABAergic interneu-

rons of the cerebral cortex. Nature Reviews Neuroscience, 9:557–568, 2008.

[10] L. Avrim and P. Langley. Selection of relevant features and examples in machine

learning. Artificial Intelligence, 97(1-2):245–271, 1997.

163

164 BIBLIOGRAPHY

[11] A. Azevedo and M. Santos. KDD, SEMMA and CRISP-DM: A parallel overview. In

IADIS European Conference on Data Mining, pages 182–185, 2008.

[12] M. Baghshah and S. Shouraki. Metric learning for semi-supervised clustering using

pairwise constraints and the geometrical structure of data. Intelligent Data Analysis,

13(6):887–899, 2009.

[13] M. Baghshah and S. Shouraki. Kernel-based metric learning for semi-supervised clus-

tering. Neurocomputing, 73(7-9):1352–1361, 2010.

[14] F. Baker and L. Hubert. Measuring the power of hierarchical cluster analysis. Journal

of the American Statistical Association, 70:31–38, 1975.

[15] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions using

equivalence relations. In Proceedings of the 20th International Conference on Machine

Learning, pages 11–18, 2003.

[16] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding. In

Proceedings of the 19th International Conference on Machine Learning, pages 19–26,

2002.

[17] S. Basu, A. Banerjee, and R. Mooney. Active semi-supervision for pairwise constrained

clustering. In SIAM International Conference on Data Mining, pages 333–344, 2004.

[18] S. Basu, M. Bilenko, and R. Mooney. Comparing and unifying search-based and

similarity-based approaches to semi-supervised clustering. In Proceedings of the In-

ternational Conference on Machine Learning, pages 42–49, 2004.

[19] S. Basu, M. Bilenko, and R.J. Mooney. A probabilistic framework for semi-supervised

clustering. In Proceedings of the 10th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 59–68. ACM, 2004.

[20] S. Basu, I. Davidson, and K. Wagstaff, editors. Constrained Clustering: Advances in

Algorithms, Theory and Applications. Chapman and Hall/CRC, 2009.

[21] E. Beale. Cluster Analysis. London: Scientific Control Systems, 1969.

[22] R. Bellman. Adaptive Control Processes - A Guided Tour. Princeton University Press,

1961.

[23] R. Benavides-Piccione, F. Sichani, I. Yaez, J. DeFelipe, and R. Yuste. Dendritic size of

pyramidal neurons differs among mouse cortical regions. Cerebral Cortex, 16(7):990–

1001, 2005.

[24] K. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble meth-

ods. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 289–296. ACM, 2002.

BIBLIOGRAPHY 165

[25] P. Berkhin. A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, and

M. Teboulle, editors, Grouping Multidimensional Data, pages 25–71. Springer, 2006.

[26] J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum

Press, 1981.

[27] C. Biernacki, G. Celeux, and G. Govaert. Choosing starting values for the EM al-

gorithm for getting the highest likelihood in multivariate Gaussian mixture models.

Computational Statistics and Data Analysis, 41(3-4):561–575, 2003.

[28] M. Bilenko, S. Basu, and R. Mooney. Integrating constraints and metric learning

in semi-supervised clustering. In Proceedings of the 21st International Conference on

Machine Learning, pages 11–18, 2004.

[29] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[30] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts.

In Proceedings of the 18th International Conference on Machine Learning, pages 19–26,

2001.

[31] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In

Proceedings of the 11th Annual Conference on Computational Learning Theory, pages

92–100. ACM, 1998.

[32] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor. Information

Processing Letters, 24(6):377–380, 1987.

[33] C. Böhm, K. Kailing, H. Kriegel, and P. Kröger. Density connected clustering with

local subspace preferences. In Proceedings of the 4th International Conference on Data

Mining, pages 27–34, 2004.

[34] A. Bouchachia. Learning with partly labeled data. Neural Computing and Applications,

16(1):267–293, 2007.

[35] A. Bouchachia and W. Pedrycz. Data clustering with partial supervision. Data Mining

Knowledge Discovery, 12(1):47–78, 2006.

[36] N. Bouguila and D. Ziou. A hybrid SEM algorithm for high-dimensional unsupervised

learning using a finite generalized Dirichlet mixture. IEEE Transactions on Image

Processing, 15(9):2657–2668, 2006.

[37] N. Bouguila and D. Ziou. High-dimensional unsupervised selection and estimation of

a finite generalized Dirichlet mixture model based on minimum message length. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(10):1716–1731, 2007.

[38] S. Boutemedjet, D. Ziou, and N. Bouguila. Model-based subspace clustering of non-

Gaussian data. Neurocomputing, 73(10-12):1730–1739, 2010.

166 BIBLIOGRAPHY

[39] P. Bradley, K. Bennett, and A. Demiriz. Constrained K-means Clustering. Technical

report, MSR-TR-2000-65, Microsoft Research, 2000.

[40] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classification and Regression Trees.

Chapman and Hall, 1993.

[41] T. Bullock, M. Bennett, D. Johnston, R. Josephson, E. Marder, and Fields R. The

neuron doctrine, redux. Science, 310(5749):791–793, 2005.

[42] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications

in Statistics, 3(1):1–27, 1974.

[43] B. Cauli, J. Porter, K. Tsuzuki, B. Lambolez, J. Rossier, B. Quenet, and E. Audinat.

Classification of fusiform neocortical interneurons based on unsupervised clustering.

PNAS, 91(11):6144–6149, 1987.

[44] M. Ceccarelli and A. Maratea. Improving fuzzy clustering of biological data by met-

ric learning with side information. International Journal of Approximate Reasoning,

47(1):45–57, 2008.

[45] Y. Chan, W. Ching, M.K. Ng, and J. Huang. An optimization algorithm for clustering

using weighted dissimilarity measures. Pattern Recognition, 37(5):943–952, 2004.

[46] A. Chandel, A. Tiwari, and N. Chaudhari. Constructive semi-supervised classification

algorithm and its implement in data mining. In Proceedings of the 3rd International

Conference on Pattern Recognition and Machine Intelligence, pages 62–67. Springer-

Verlag, 2009.

[47] C. Chang and H. Chen. Semi-supervised clustering with discriminative random fields.

Pattern Recognition, 2012.

[48] J. Chang and D. Jin. A new cell-based clustering method for large, high-dimensional

data in data mining applications. In Symposium on Applied Computing, pages 503–507.

ACM, 2002.

[49] O. Chapelle, V. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press,

Cambridge, MA, 2006.

[50] O. Chapelle and A. Zien. Semi-supervised classification by low density separation.

In 10th International Workshop on Artificial Intelligence and Statistics, pages 57–64,

2005.

[51] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth.

CRISP-DM 1.0 Step-by-step Data Mining Guide. Technical report, The CRISP-DM

Consortium, 2000.

BIBLIOGRAPHY 167

[52] N.V. Chawla and G. Karakoulas. Learning from labeled and unlabeled data: An empir-

ical study across techniques and domains. Journal of Artificial Intelligence Research,

23:331–366, 2005.

[53] C. Cheng, A.W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining

numerical data. In Proceedings of the 5th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 84–93, 1999.

[54] H. Cheng, K.A. Hua, and K. Vu. Constrained locally weighted clustering. In Proceedings

of the 34th Internacional Conference on Very Large Data Bases, volume 1, pages 90–

101, 2008.

[55] D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with user feedback.

In S. Basu, I. Davidson, and K. Wagstaff, editors, Constrained Clustering Advances in

Algorithms Theory and Application, pages 17–33. CRC Press, 2003.

[56] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13:21–27, 1967.

[57] T. Cover and J.A. Thomas. Elements of Information Theory. Wiley, 1991.

[58] F. Cozman, I. Cohen, and M. Cirelo. Semi-supervised learning of mixture models. In

20th International Conference on Machine Learning, pages 99–106, 2003.

[59] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis.

IEEE Transactions on Information Theory, 36(5):961–1005, 1990.

[60] I. Davidson and S. Basu. A survey of clustering with instance level constraints. ACM

Transactions on Knowledge Discovery from Data, pages 1–41, 2007.

[61] I. Davidson and S. Ravi. Agglomerative hierarchical clustering with constraints: The-

oretical and empirical results. In Proceedings of the 15th European Conference on

Principles and Practice of Knowledge Discovery in Databases, pages 59–70, 2005.

[62] I. Davidson and S. Ravi. Clustering with constraints: Feasibility issues and the K-means

algorithm. In SIAM International Conference on Data Mining. SIAM, 2005.

[63] I. Davidson and S. Ravi. Using instance-level constraints in agglomerative hierarchical

clustering: Theoretical and empirical results. Data Mining and Knowledge Discovery,

18(2):257–282, 2009.

[64] I. Davidson, K. Wagstaff, and S. Basu. Measuring constraint-set utility for parti-

tional clustering algorithms. In 10th European Conference on Principle and Practice of

Knowledge Discovery in Databases, pages 115–126. Springer-Verlag, 2006.

[65] D. Davies and D. Bouldin. A cluster separation measure. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1:224–227, 1979.

168 BIBLIOGRAPHY

[66] L. de Nó. La corteza cerebral del ratón. Trabajos Laboratorio Investigaciones Biológicas,

20:41–78, 1922.

[67] J. DeFelipe. Sesquicentenary of the birthday of santiago ramón y cajal, the father of

modern neuroscience. Trends in Neurosciences, 25(9):481–484, 2002.

[68] J. DeFelipe et al. Classification and nomenclature of Cortical GABAergic interneurons.

Nature Reviews Neuroscience, 2012. Submitted.

[69] A. Demiriz, K. Bennett, and M. Embrechts. Semi-supervised clustering using genetic

algorithms. In Intelligent Engineering Systems Through Artificial Neural Networks,

pages 809–814, 1999.

[70] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[71] Z. Deng, K. Choi, F. Chung, and S. Wang. Enhanced soft subspace clustering integrat-

ing within-cluster and between-cluster information. Pattern Recognition, 43(3):767–781,

2010.

[72] M.M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.

[73] E. Dimitriadou, S. Dolničar, and A. Weingessel. An examination of indexes for de-

termining the number of clusters in binary data sets. Psychometrika, 67(3):137–160,

2002.

[74] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D. Papadopoulos.

Locally adaptive metrics for clustering high dimensional data. Journal of Data Mining

and Knowledge Discovery, 14:63–97, 2007.

[75] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma. Subspace clustering of

high dimensional data. In SIAM International Conference on Data Mining, pages 517

– 521, 2004.

[76] R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley & Sons, 1973.

[77] D. Dumitriu, R. Cossart, J. Huang, and R. Yuste. Correlation between axonal mor-

phologies and synaptic input kineptics of interneurons from mouse visual cortex. Cere-

bral Cortex, 17(1):81–91, 2007.

[78] J. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact

well-separated clusters. Journal of Cybernetics, pages 32–57, 1973.

[79] J. Dunn. Well separated clusters and optimal fuzzy-partitions. Journal of Cybernetics,

4:95–104, 1974.

[80] B. Efron. Bootstrap methods: Another look at the jacknife. Annals of Statistics, 7:1–26,

1979.

BIBLIOGRAPHY 169

[81] B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-

validation. Journal of the American Statistical Associatio, 78:316–331, 1983.

[82] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discover-

ing clusters in large spatial databases with noise. In 2nd Internacional Conference of

Knowledge Discovery and Data Mining, pages 226–231, 1996.

[83] B. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Wiley Series in

Probability and Statistics, 5th edition, 2011.

[84] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for extracting useful

knowledge from volumes of data. Communications of the ACM, 39(11):27–34, 1996.

[85] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in

Knowledge Discovery and Data Mining. American Association for Artificial Intelligence,

1996.

[86] M. Figueiredo and A. Jain. Unsupervised learning of finite mixture models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(3):381–396, 2002.

[87] D. Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions

on Neural Networks, 5(1):3–14, 1994.

[88] E. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of classi-

fications. Biometrics, 21:768–780, 1965.

[89] G. Forman. An extensive empirical study of feature selection metrics for text classifi-

cation. Journal of Machine Learning Research, 3:1289–1305, 2003.

[90] C. Fraley. Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal

on Scientific Computing, 20:270–281, 1998.

[91] A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.

http://archive.ics.uci.edu/ml.

[92] B. Frey and D. Dueck. Clustering by passing messages between data points. Science,

315:972–977, 2007.

[93] J. Friedman and J. Meulman. Clustering objects on subsets of attributes. Journal of

the Royal Statistical Society, 66(4):815–849, 2004.

[94] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network Classifiers. Machine

Learning, 29(2-3):131–163, 1997.

[95] E. Fromont, A. Prado, and C. Robardet. Constraint-based subspace clustering. In

Proceedings of the 9th SIAM International Conference on Data Mining, pages 26–37,

2009.

170 BIBLIOGRAPHY

[96] A. Galanopoulos and S. Ahalt. Codeword distribution for frequency sensitive competi-

tive learning with one-dimensional input data. IEEE Transactions on Neural Networks,

7(3):752–756, 1996.

[97] L. Galvani. Aloysii Galvani: De Viribus Electricitatis In Motu Musculari. Kessinger

Publishing, latin edition, 1792.

[98] G. Gan and J. Wu. A convergence theorem for the fuzzy subspace clustering (FSC)

algorithm. Pattern Recognition, 41:1939–1947, 2008.

[99] G. Gan, J. Wu, and Z. Yang. A fuzzy subspace algorithm for clustering high dimensional

data. In X. Li, O. Zäıane, and Z. Li, editors, Advanced Data Mining and Applications,

volume 4093 of Lecture Notes in Computer Science, pages 271–278. Springer Berlin /

Heidelberg, 2006.

[100] P. Garćıa-López, V. Garćıa-Maŕın, and M. Freire. The discovery of dendritic spines by

Cajal in 1888 and its relevance in the present neuroscience. Progress in Neurobiology,

83(2):110–130, 2007.

[101] A. Geva. Hierarchical unsupervised fuzzy clustering. IEEE Transactions on Fuzzy

Systems, 7(6):723–733, 1999.

[102] Z. Ghahramani and M. Beal. Variational inference for Bayesian mixtures of factor

analyzers. In Advances in Neural Information Processing Systems 12, pages 449–455,

2000.

[103] S. Goil, H. Nagesh, and A. Choudhary. MAFIA: Efficient and scalable subspace clus-

tering for very large data sets. In International Conference on Data Engineering, 1999.

[104] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., 1989.

[105] S Goldman and Y Zhou. Enhancing supervised learning with unlabeled data. In

Proceedings of the 17th International Conference on Machine Learning, pages 327–334,

2000.

[106] C. Golgi. Sulla struttura della sostanza grigia del cervello. Gazzetta Medica Italiana,

6:244–246, 1873.

[107] D. Gondek and T. Hofmann. Non-redundant data clustering. In Proceedings of the 4th

IEEE International Conference on Data Mining, pages 75–82. IEEE Computer Society,

2004.

[108] A. Gordon. A review of hierarchical classification. Journal of the Royal Statistical,

150:119–137, 1987.

[109] J.C. Gower and P. Legendre. Metric and Euclidean properties of dissimilarity coeffi-

cients. Journal of Classification, 3:5–48, 1986.

BIBLIOGRAPHY 171

[110] M. Graham and D. Miller. Unsupervised learning of parsimonious mixtures on large

spaces with integrated feature and component selection. IEEE Transactions on Signal

Processing, 54(4):1289–1303, 2006.

[111] N. Grira, M. Crucianu, and N. Boujemaa. Unsupervised and semi-supervised clustering:

A brief survey. In A Review of Machine Learning Techniques for Processing Multimedia

Content, Report of the MUSCLE European Network of Excellence (FP6), 2004.

[112] L. Guerra, C. Bielza, V. Robles, and P. Larrañaga. Semi-supervised projected model-

based clustering. Data Mining and Knowledge Discovery, 2012. Submitted.

[113] L. Guerra, L. McGarry, V. Robles, C. Bielza, P. Larrañaga, and R. Yuste. Comparison

between supervised and unsupervised classifications of neuronal cell types: A case study.

Developmental Neurobiology, 71(1):71–82, 2011.

[114] L. Guerra, V. Robles, C. Bielza, and P. Larrañaga. A comparison of clustering quality

indices using outliers and noise. Intelligent Data Analysis, 16:703–715, 2012.

[115] L. Guerra, V. Robles, C. Bielza, and P. Larrañaga. Partially labeled data clustering in

subspaces. International Journal on Artificial Intelligence Tools, 2012. Submitted.

[116] I. Gurrutxaga, J. Muguerza, O. Arbelaitz, J. Pérez, and J. Mart́ın. Towards a standard

methodology to evaluate internal cluster validity indices. Pattern Recognition Letters,

32(3):505–515, 2011.

[117] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques.

Journal of Intelligent Information Systems, 17:107–145, 2001.

[118] M. Hall and L. Smith. Feature subset selection: A correlation based filter approach.

In Proceedings of the International Conference on Neural Information Processing and

Intelligent Information Systems, pages 855–858. Springer, 1997.

[119] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,

2nd edition, 2006.

[120] D. Hand, P. Smyth, and H. Mannila. Principles of Data Mining. MIT Press, 2001.

[121] J. Handl, J. Knowles, and D. Kell. Computational cluster validation in post-genomic

data analysis. Bioinformatics, 21(15):3201–3212, 2005.

[122] H. Hartley. Maximum likelihood estimation from incomplete data. Biometrics,

14(2):174–194, 1958.

[123] M. Helmstaedter, B. Sakmann, and D. Feldmeyer. L2/3 interneuron groups defined

by multiparameter analysis of axonal projection, dendritic geometry and electrical ex-

citability. Cerebral Cortex, 19(4):951–962, 2008.

172 BIBLIOGRAPHY

[124] M. Helmstaedter, B. Sakmann, and D. Feldmeyer. Neuronal correlates of local, lat-

eral, and translaminar inhibition with reference to cortical columns. Cerebral Cortex,

19(4):926–937, 2008.

[125] M. Helmstaedter, B. Sakmann, and D. Feldmeyer. The relation between dendritic

geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat

barrel cortex. Cerebral Cortex, 19(4):938–950, 2008.

[126] J. Hernando. Interactive Visualization of Detailed Large Neocortical Circuit Simula-

tions. PhD thesis, Universidad Politécnica de Madrid, 2011.

[127] P. Hoff. Subset clustering of binary sequences, with an application to genomic abnor-

mality data. Biometrics, 61(4):1027–1036, 2005.

[128] P. Hoff. Model based subspace clustering. Bayesian Analysis, 1(2):321–344, 2006.

[129] J.H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1992.

[130] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis: Methods

for Classification, Data Analysis, and Image Recognition. Wiley, 1999.

[131] D. Hosmer and S. Lemeshow. Applied Logistic Regression. Wiley-Interscience Publica-

tion, 2nd edition, 2000.

[132] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,

1985.

[133] I. Inza, P. Larrañaga, R. Blanco, and A. Cerrolaza. Filter versus wrapper gene selection

approaches in DNA microarray domains. Artificial Intelligence in Medicine, 31(2):91–

103, 2004.

[134] DeFelipe. J. Chapter 17. cortical interneurons: from cajal to 2001. In E.C. Azmitia,

J. DeFelipe, E.G. Jones, P. Rakic, and C.E. Ribak, editors, Changing Views of Cajal’s

Neuron, volume 136 of Progress in Brain Research, pages 215–238. Elsevier, 2002.

[135] A. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters,

31(8):651–666, 2010.

[136] A. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall College Division,

1988.

[137] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys,

31(3):264–323, 1999.

[138] L. Jing, M. Ng, and Z. Huang. An entropy weighting K-means algorithm for subspace

clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data

Engineering, 19(8):1026–1041, 2007.

BIBLIOGRAPHY 173

[139] L. Jing, M. Ng, J. Xu, and J. Huang. Subspace clustering of text documents with

feature weighting K-means algorithm. In Proceedings of the 9th Pacific-Asia Conference

on Knowledge Discovery and Data Mining, pages 802–812, 2005.

[140] T. Joachims. Transductive inference for text classification using support vector ma-

chines. In Proceedings of the 16th International Conference on Machine Learning,

pages 200–209. Morgan Kaufmann Publishers, 1999.

[141] I. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

[142] E.G. Jones. History of cortical cytology. In A. Peters and E.G. Jones, editors, Cerebral

Cortex, vol. 1. Cellular Components of the Cerebral Cortex, Progress in Brain Research,

pages 1–32. Plenum Press, 1984.

[143] K. Kailing, H. Kriegel, and P. Kröger. Density-connected subspace clustering for high-

dimensional data. In Proceedings of International Conference on Data Mining, pages

246–257. SIAM, 2004.

[144] E. Kandel, J. Schwartz, and T. Jessell. Principles of Neural Science. McGraw-Hill, 4th

edition, 2000.

[145] A. Karagiannis, T. Gallopin, D. Csaba, D. Battaglia, H. Geoffroy, J. Rossier, E. Hill-

man, J. Staiger, and B. Cauli. Classification of NPY-expressing neocortical interneu-

rons. The Journal of Neuroscience, 29(11):3642–3659, 2009.

[146] D. Karlis and E. Xekalaki. Choosing initial values for the EM algorithm for finite

mixtures. Computational Statistics and Data Analysis, 41:577–590, 2003.

[147] G. Karypis, E. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic

modeling. IEEE Computer, 32(8):68–75, 1999.

[148] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster

Analysis. Wiley series in Probability and Statistics, 2005.

[149] K. Kira and L. Rendell. The feature selection problem: Traditional methods and a new

algorithm. In Proceedings of the 10th National Conference on Artificial Intelligence,

pages 129–134. AAAI Press, 1992.

[150] J. Kittler. Feature set search algorithms. Pattern Recognition and Signal Processing,

pages 41–60, 1978.

[151] D. Klein, S. Kamvar, and C. Manning. From instance-level constraints to space-level

constraints: Making the most of prior knowledge in data clustering. In Proceedings of

the 19th International Conference on Machine Learning, pages 307–314, 2002.

[152] D. Kleinbaum, L. Kupper, and L. Chambless. Logistic regression analysis of epidemi-

ologic data: Theory and practice. Communications on Statistics, 11(5):485–547, 1982.

174 BIBLIOGRAPHY

[153] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence,

97(1-2):273–324, 1997.

[154] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

[155] T. Kohonen. Self-Organizing Maps. Spriger-Verlag, 2001.

[156] I. Kononenko. Semi-naive Bayesian classifier. In Proceedings of the European Working

Session on Learning on Machine Learning, pages 206–219. Springer-Verlag New York,

1991.

[157] S. Kotsiantis, I. Zaharakis, and P. Pintelas. Machine learning: A review of classification

and combining techniques. Artificial Intelligence Review, 26:159–190, 2006.

[158] J. Kozloski, F. Hamzei-Sichani, and R. Yuste. Stereotyped position of local synaptic

targets in neocortex. Science, 293:868–872, 2001.

[159] H. Kriegel, P. Kroger, M. Renz, and S. Wurst. A generic framework for efficient sub-

space clustering of high-dimensional data. In Proceedings of the 5th IEEE International

Conference on Data Mining, pages 250–257. IEEE Computer Society, 2005.

[160] H. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on

subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans-

actions on Knowledge Discovery from Data, 3(1):1–58, 2009.

[161] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathe-

matical Statistics, 22(1):79–86, 1951.

[162] T. Lange, M. Law, A. Jain, and J. Buhmann. Learning with constrained and unlabelled

data. In Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, volume 1, pages 731–738, 2005.

[163] M. Law, M. Figueiredo, and A. Jain. Simultaneous feature selection and clustering using

mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(9):1154–1166, 2004.

[164] W. Lee, S. Stolfo, and K. Mok. Adaptive intrusion detection: A data mining approach.

Artificial Intelligence Review, 14:533–567, 2000.

[165] J. Li and H. Zha. Two-way Poisson mixture models for simultaneous document classi-

fication and word clustering. Computational Statistics, 50(1):163–180, 2006.

[166] Y. Li, M. Dong, and J. Hua. A Gaussian mixture model to detect clusters embedded in

feature subspace. Journal of Communications in Information and Systems, 7(4):337–

352, 2007.

BIBLIOGRAPHY 175

[167] Y. Li, M. Dong, and J. Hua. Simultaneous localized feature selection and model de-

tection for Gaussian mixtures. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(5):953–960, 2009.

[168] T. Lin, J. Lee, and S. Yen. Finite mixture modelling using the Skew normal distribution.

Statistica Sinica, 17:909–927, 2007.

[169] B. Liu, Y. Xia, and P. Yu. Clustering through decision tree construction. In Proceedings

of the 9th International Conference on Information and Knowledge Management, pages

20–29. ACM, 2000.

[170] G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering with flexible

dimension partitioning. In Proceedings of the 23rd International Conference on Data

Engineering, pages 1250–1254, 2007.

[171] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining.

Kluwer Academic Publishers, 1998.

[172] H. Liu, H. Motoda, R. Setiono, and Z. Zhao. Feature selection: An ever evolving

frontier in data mining. In Proceedings of the 4th International Workshop on Feature

Selection in Data Mining, pages 4–13, 2010.

[173] H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and

clustering. IEEE Transactions on Knowledge and Data Engineering, 17:491–502, 2005.

[174] Y. Liu, R. Jin, and A. Jain. BoostCluster: Boosting clustering by pairwise constraints.

In 13th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 450–459, 2007.

[175] S.P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2):129–137, 1982.

[176] L. Lovmar, A. Ahlford, M. Jonsson, and A.C. Syvanen. Silhouette scores for assessment

of SNP genotype clusters. BMC Genomics, 6(1):1–35, 2005.

[177] Z. Lu and T.K. Leen. Semi-supervised learning with penalized probabilistic clustering.

Advances in Neural Information Processing Systems, 17:849–856, 2005.

[178] L. Luciani. Fisiologia dell’Uomo volume 2. Societa Editrice Libraria, 1905.

[179] J.B. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In 5th Berkeley Symposium on Mathematical Statistics and Probability, pages

281–297, 1967.

[180] S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis: A sur-

vey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1):24–

45, 2004.

176 BIBLIOGRAPHY

[181] R. Maitra. Initializing partition-optimization algorithms. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 6:144–157, 2009.

[182] R. Maitra and V. Melnykov. Simulating data to study performance of finite mixture

modeling and clustering algorithms. Journal of Computational and Graphical Statistics,

19:354–376, 2010.

[183] P. Mallapragada, J. Rong, A. Jain, and Y. Liu. SemiBoost: Boosting for semi-

supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31(11):2000–2014, 2009.

[184] E. Marin, G. Jefferys, T. Komiyama, and H. Zhu. Representation of the glomerular

olfactory map in the drosophila brain. Cell, 149:243–255, 2002.

[185] H. Markram. The Blue Brain Project. Nature Reviews Neuroscience, 7(2):153–160,

2006.

[186] M.M. Masud, Jing Gao, L. Khan, Jiawei Han, and B. Thuraisingham. A practical

approach to classify evolving data streams: Training with limited amount of labeled

data. In Proceedings of the 8th IEEE International Conference on Data Mining, pages

929–934, 2008.

[187] U. Maulik and S. Bandyopadhyay. Performance evaluation of some clustering algorithms

and validity indices. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(12):1650–1654, 2002.

[188] W. McCulloch and W. Pitts. A logical calculus of ideas imminet in nervous activity.

Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[189] G. McLachlan and D. Peel. Finite Mixture Models. Wiley Series in Probability and

Statistics, 2000.

[190] G. McLachlan, G. Peel, K. Basford, and P. Adams. Fitting of mixtures of normal and

t-components. Journal of Statistical Software, 4(2):909–927, 1999.

[191] V. Melnykov and I. Melnykov. Initializing the EM algorithm in Gaussian mixture

models with an unknown number of components. Computational Statistics & Data

Analysis, 56(6):1381–1395, 2012.

[192] D. Miller and J. Browning. A mixture model and EM-based algorithm for class dis-

covery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(11):1468–1483,

2003.

[193] G. Milligan and M. Cooper. An examination of procedures for determining the number

of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

BIBLIOGRAPHY 177

[194] M. Minsky. Steps toward artificial intelligence. In Computers and Thought, pages

406–450. McGraw-Hill, 1961.

[195] T. Mitchell. Machine Learning. McGraw-Hill, 1st edition, 1997.

[196] G. Moise, J Sander, and M. Ester. Robust projected clustering. Knowledge and Infor-

mation Systems, 14(3):273–298, 2008.

[197] G. Moise, A. Zimek, P. Kröger, H. Kriegel, and J. Sander. Subspace and projected

clustering: Experimental evaluation and analysis. Knowledge and Information Systems,

21(3):299–326, 2009.

[198] V. Mountcastle. Modality and topographic properties of single neurons of cat’s somatic

sensory cortex. Journal of Neurophysiology, 20:408–442, 1957.

[199] V. Mountcastle. The columnar organization of the cerebral cortex. Brain, 120:701–722,

1997.

[200] E. Müller, S. Günnemann, I. Assent, and T. Seidl. Evaluating clustering in subspace

projections of high dimensional data. In Proceedings of 35th International Conference

on Very Large Data Bases, volume 2, pages 1270–1281. VLDB Endowment, 2009.

[201] K. Müller, S. Mika, G. Rä, K. Tsuda, and B. Schölkopf. An introduction to kernel-based

learning algorithms. IEEE Transactions on Neural Networks, 12(2):181–201, 2001.

[202] T. Ng, T. Pham, and X. Jia. Feature interaction in subspace clustering using the

Choquet integral. Pattern Recognition, 45(7):2645–2660, 2011.

[203] K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled

and unlabeled documents using EM. Machine Learning, 39(2-3):103–134, 2000.

[204] N. Pal and J. Bezdek. Generalized clustering networks and Kohonen’s self-organizing

scheme. IEEE Transactions on Neural Networks, 4(4):549–557, 1993.

[205] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:

A review. ACM SIGKDD Explorations Newsletter - Special Issue on Learning From

Imbalanced Datasets, 6(1):90–105, 2004.

[206] D. Pascual, F. Pla, and J. Sánchez. Cluster validation using information stability

measures. Pattern Recognition Letters, 31(6):454–461, 2010.

[207] A. Patrikainen and H. Mannila. Subspace clustering of high-dimensional binary data - a

probabilistic approach. In SIAM International Conference on Data Mining. Workshop

on Clustering High Dimensional Data and its Applications, pages 57–65, 2004.

[208] A. Patrikainen and M. Meila. Comparing subspace clusterings. IEEE Transactions on

Knowledge and Data Engineering, 18(7):902–916, 2006.

178 BIBLIOGRAPHY

[209] M. Pazzani. Searching for dependencies in Bayesian classifiers. In Artificial Intelligence

and Statistics, Lecture Notes in Statistics, pages 239–248. Springer-Verlag, 1996.

[210] J. Peña, J. Lozano, and P. Larrañaga. An empirical comparison of four initialization

methods for the K-means algorithm. Pattern Recognition Letters, 20(10):1027–1040,

1999.

[211] K. Pearson. Notes on the history of correlation. Biometrika, 13(1):25–45, 1920.

[212] A. Peters. Number of neurons and synapses in primary visual cortex. Cerebral Cortex,

6(1):267–294, 1987.

[213] N. Pise and P. Kulkarni. A survey of semi-supervised learning methods. In International

Conference on Computational Intelligence and Security, volume 2, pages 30–34, 2008.

[214] C. Procopiuc, M. Jones, P. Aggarwal, and T. Murali. A Monte Carlo algorithm for

fast projective clustering. In Proceedings of the ACM International Conference on

Management of Data, 2002.

[215] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,

1993.

[216] R Development Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2011.

[217] S. Ramón y Cajal. Estructura de los centros nerviosos de las aves. Revista Trimestral

de Histoloǵıa Normal y Patológica, 1:1–10, 1888.

[218] S. Ramón y Cajal. Manual de Histoloǵıa Normal y Técnica Micrográfica. Aguilar, 1889.

[219] S. Ramón y Cajal. La rétine des vertébrés. La Cellule, 9(1):119–257, 1893.

[220] S. Ramón y Cajal. El azul de metileno en los centros nerviosos. Revista Trimestral

Micrográfica, 1:151–203, 1896.

[221] S. Ramón y Cajal. Las espinas colaterales de las células del cerebro teñidas por el azul

de metileno. Revista Trimestral Micrográfica, 1:123–126, 1896.

[222] S. Ramón y Cajal. Textura del Sistema Nervioso del Hombre y de los Vertebrados.

Moya, 1899.

[223] S. Ramón y Cajal. Recreaciones estereocópicas y binoculares. La Fotografia, 27:41–48,

1901.

[224] S. Ramón y Cajal. Recuerdos de mi Vida. Pueyo, 3rd edition, 1923.

[225] W. Rand. Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical Association, 66(336):846–850, 1971.

BIBLIOGRAPHY 179

[226] E. Rendón, I. Abundez, A. Arizmendi, and E. Quiroz. Internal versus external cluster

validation indexes. International Journal of Computers and Communications, 5(1):27–

34, 2011.

[227] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object

detection models. In 7th IEEE Workshop on Applications of Computer Vision, pages

29–36, 2005.

[228] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan Books, 1962.

[229] P. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53–65, 1987.

[230] C. Ruiz, M. Spiliopoulou, and E. Menasalvas. Density-based semi-supervised clustering.

Data Minining and Knowledge Discovery, 21(3):345–370, 2010.

[231] D. Rumerlhart, G. Hinton, and R. Williams. Learning internal representations by

backpropagation errors. Nature, 323:533–536, 1986.

[232] P. Russel and T. Rao. On habitat and association of species of Anopheline Larvae in

south-eastern Madras. Journal of Malaria Institute India, 3:153–178, 1940.

[233] B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regu-

larization, Optimization, and Beyond. MIT Press, 2002.

[234] G. Schwarz. Estimating the dimensions of a model. Annals of Statistics, 6:381–396,

1978.

[235] K. Sequeira and M. Zaki. SCHISM: a new approach to interesting subspace mining.

International Journal of Business Intelligence and Data Mining, 1(2):137–160, 2005.

[236] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaussian mixture

models with EM using equivalence constraints. In Advances in Neural Information

Processing Systems 16, pages 1–8. MIT Press, 2003.

[237] K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. A survey on enhanced subspace

clustering. Data Mining and Knowledge Discovery, pages 1–66, 2012.

[238] P. Sneath. The application of computers to taxonomy. Journal of General Microbiology,

17:201–226, 1957.

[239] R. Sokal and C. Michener. A statistical method for evaluating systematic relationships.

University of Kansas Science Bulletin, 38:1409–1438, 1958.

[240] T. Sorensen. A method of establishing groups of equal amplitude in plant sociology

based on similarity of species content and its application to analyses of the vegetation

on danish commons. Biologiske Skrifter, 5:1–34, 1948.

180 BIBLIOGRAPHY

[241] H. Steinhaus. Sur la division des corp materiels en parties. Bulletin of the Polish

Academy of Sciences, 4(12):801–804, 1956.

[242] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of

the Royal Statistical Society Series B, 36:111–147, 1974.

[243] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,

1998.

[244] M. Szummer and T. Jaakkola. Partially labeled classification with Markov random

walks. In Advances in Neural Information Processing Systems, pages 945–952. MIT

Press, 2002.

[245] F. Tan, X. Fu, Y. Zhang, and A. Bourgeois. A genetic algorithm-based method for

feature subset selection. Soft Computing, 12(2):111–120, 2007.

[246] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, 4th edition,

2009.

[247] M. Tipping and C. Bishop. Mixtures of probabilistic principal component analysers.

Neural Computation, 11(2):443–482, 1999.

[248] A. Tsiola, F. Hamzei-Sichani, Z. Peterlin, and R. Yuste. Quantitative morphological

classification of layer 5 neurons from mouse primary visual cortex. The Journal of

Comparative Neurology, 461:415–428, 2003.

[249] C. Van Rijsbergen. Information Retrieval. Butterworth, 1979.

[250] V. Vapnik. The Nature of Statistical Learning. Springer-Verlag, 1995.

[251] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[252] L. Vendramin, R. Campello, and E. Hruschka. On the comparison of relative clustering

validity criteria. In Proceedings of the 9th SIAM International Conference on Data

Mining, pages 733–744, 2009.

[253] N. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings compar-

ison: Variants, properties, normalization and correction for chance. Journal of Machine

Learning Research, 11:2837–2854, 2010.

[254] K. Wagstaff, S. Basu, and I. Davidson. When is constrained clustering beneficial,

and why? In Proceedings of the 21st National Conference on Artificial Intelligence,

volume 58, pages 59–62, 2006.

[255] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Proceedings

of the 17th International Conference on Machine Learning, pages 1103–1110, 2000.

BIBLIOGRAPHY 181

[256] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained K-means clustering

with background knowledge. In Proceedings of the 18th International Conference on

Machine Learning, pages 577–584. Morgan Kaufmann Publishers, 2001.

[257] H. Waldeyer. Ueber einige neuere forschungen im gebiete der anatomie des central-

nervensystems. Deutsche medicinische Wochenschrift, 17:1213–1218, 1244–1246, 1287–

1289, 1331–1332, 1350–1356, 1891.

[258] F. Wang, C. Zhang, H.C. Shen, and J. Wang. Semi-supervised classification using

linear neighborhood propagation. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, volume 1, pages 160–167, 2006.

[259] J.H Ward. Hierarchical groupings to optimize an objective function. Journal of the

American Statistical Association, 58:236–244, 1963.

[260] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83, 1945.

[261] R. Wirth. CRISP-DM: Towards a standard process model for data mining. In Pro-

ceedings of the 4th International Conference on the Practical Application of Knowledge

Discovery and Data Mining, pages 29–39, 2000.

[262] I. Witten, E. Frank, and M. Hall. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, 3rd edition, 2011.

[263] H. Wold. Encyclopedia of Statistical Sciences, volume 6, chapter Partial least squares,

pages 581–591. Wiley, 1985.

[264] A. Wong, J. Wang, and R. Axel. Spatial representation of the glomerular map in the

Drosophila protocerebrum. Cell, 109:229–241, 2002.

[265] K. Woo, J. Lee, M. Kim, and Y. Lee. FINDIT: A fast and intelligent subspace clustering

algorithm using dimension voting. Information and Software Technology, 46(4):255–

271, 2004.

[266] J. Wu, H. Yuan, H. Xiong, and G. Chen. Validation of overlapping clustering: A

random clustering perspective. Information Sciences, 180(22):4353–4369, 2010.

[267] Y. Xia. A global optimization method for semi-supervised clustering. Data Mining and

Knowledge Discovery, 18(2):214–256, 2009.

[268] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application

to clustering with side-information. In Advances in Neural Information Processing

Systems 15, pages 505–512, 2002.

[269] R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Transactions on Neural

Networks, 16(3):645–678, 2005.

182 BIBLIOGRAPHY

[270] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. IEEE

Intelligent Systems, 13(2):44–49, 1998.

[271] M. Yang, C. Lai, and C. Lin. A robust EM clustering algorithm for Gaussian mixture

models. Pattern Recognition, 2012.

[272] K. Yeung, D. Hayunor, and W. Ruzzo. Validating clustering for gene expression data.

Bioinformatics, 17(4):309–318, 2001.

[273] X. Yin, S. Chen, E. Hu, and D. Zhang. Semi-supervised clustering with metric learning:

An adaptive kernel method. Pattern Recognition, 43(4):1320–1333, 2010.

[274] K. Yip, D. Cheung, and M. Ng. HARP: A practical projected clustering algorithm.

IEEE Transactions on Knowledge and Data Engineering, 16:1387–1397, 2004.

[275] K. Yip, D. Cheung, and M. Ng. On discovery of extremely low-dimensional clusters

using semi-supervised projected clustering. International Conference on Data Engi-

neering, pages 329–340, 2005.

[276] K. Yip, L. Cheung, D. Cheung, L. Jing, and M. Ng. A semi-supervised approach to

projected clustering with applications to microarray data. International Journal of

Data Minining and Bioinformatics, 3(3):229–259, 2009.

[277] M.L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining. IEEE

Transactions on Knowledge and Data Engineering, 17(2):176–189, 2005.

[278] L. Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965.

[279] X. Zhang, Y. Qiu, and Y. Wu. Exploiting constraint inconsistence for dimension selec-

tion in subspace clustering: A semi-supervised approach. Neurocomputing, 74(17):3598–

3608, 2011.

[280] X. Zhang, Y. Wu, and Y. Qiu. Constraint based dimension correlation and distance

divergence for clustering high-dimensional data. In IEEE 10th International Conference

on Data Mining, pages 629–638, 2010.

[281] S. Zhong and J. Ghosh. Scalable, model-based balanced clustering. In SIAM Interna-

tional Conference on Data Mining, pages 71–82, 2003.

[282] S. Zhong and J. Ghosh. A unified framework for model-based clustering. Journal of

Machine Learning Research, 4:1001–1003, 2003.

[283] X. Zhu. Semi-Supervised Learning Literature Survey. Technical report, Computer

Sciences, University of Wisconsin-Madison, 2005.

[284] X. Zhu and Z. Ghahramani. Learning from Labeled and Unlabeled Data with Label

Propagation. Technical report, School of Computer Science, Carnegie Mellon Univer-

sity, 2002.

BIBLIOGRAPHY 183

[285] X. Zhu and A. Goldberg. Introduction to Semi-Supervised Learning. Morgan & Claypool

Publishers, 2009.

	Contents
	Acronyms
	I INTRODUCTION
	1 Introduction
	1.1 Evidences and motivation
	1.2 Hypothesis and objectives
	1.3 Document organization

	II BACKGROUND
	2 Pattern recognition
	2.1 Introduction
	2.2 Supervised classification
	2.2.1 Supervised classification approaches
	2.2.2 Validation

	2.3 Unsupervised classification
	2.3.1 Unsupervised classification approaches
	2.3.2 Validation

	2.4 Semi-supervised learning
	2.4.1 Semi-supervised classification
	2.4.2 Semi-supervised clustering

	2.5 Dimensionality reduction
	2.5.1 Subspace clustering

	III PROPOSALS
	3 Clustering validation indices
	3.1 Introduction
	3.2 Algorithms and indices
	3.3 Experimental results
	3.3.1 Data
	3.3.2 Evaluation process
	3.3.3 Results

	3.4 Summary and discussion

	4 Semi-supervised subspace hard clustering
	4.1 Introduction
	4.2 Knowledge mapping framework (KMF)
	4.3 Knowledge mapping specific instantiation
	4.4 Experimental results
	4.4.1 Data
	4.4.2 Evaluation process
	4.4.3 Results
	4.4.4 Comparison with a constrained clustering algorithm

	4.5 Summary and discussion

	5 Semi-supervised subspace soft clustering
	5.1 Introduction
	5.2 Basic theory
	5.3 Semi-supervised subspace soft clustering (3SMBC)
	5.4 Experimental results
	5.4.1 Data
	5.4.2 Evaluation process
	5.4.3 Results
	5.4.4 3SMBC vs CLWC

	5.5 Summary and discussion

	IV APPLICATIONS IN NEUROSCIENCE
	6 Introduction to neuroscience
	6.1 Introduction
	6.2 History
	6.3 The Blue Brain Project
	6.4 The Cajal Blue Brain Project
	6.5 Problem statement

	7 Pyramidal neurons vs interneurons
	7.1 Introduction
	7.2 Experimental results
	7.2.1 Data
	7.2.2 Evaluation process
	7.2.3 Results
	7.2.4 Algorithms comparison and feature relevance

	7.3 Summary and discussion

	8 Subtypes of interneurons
	8.1 Introduction
	8.2 Classification experiment
	8.3 Experimental results
	8.3.1 Data
	8.3.2 Evaluation process
	8.3.3 Results

	8.4 Summary and discussion

	V CONCLUSIONS AND FUTURE WORK
	9 Conclusions
	9.1 Publications

	10 Future Work
	10.1 Clustering validation
	10.2 Semi-supervised subspace clustering
	10.3 Real applications in neuroscience

	Bibliography

