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Abstract

Neuroscience has undergone great development in recent decades, making it one of the

most relevant biomedical disciplines today. The development of new technologies and in par-

ticular the recent technical advances in microscopy make it possible to have a great amount

of data that collect the nature and the spatial distribution of some neuronal elements that

form the brain. In the current state of development of neuroscience, the need of new compu-

tational techniques is becoming more evident, and in this thesis it is carried out developing

statistical and optimization methods for data analysis giving explicit consideration to spatial

characteristics such as location, spatial organization or distance between elements.

The work developed in this thesis is mainly applied to the study of neuronal morphology.

Despite the numerous efforts to better understand the brain, current knowledge about the

neuron structure is still incomplete. Neuronal morphology reflects the organization of synap-

tic inputs and the way in which a neuron expands plays an important role in its functional

and computational characteristics. Therefore, taking into account the inherent spatiality in

neuronal morphology, key features can be revealed in the design of brain circuits.

This thesis focuses on the modeling of the spatial distribution of different neuronal struc-

tures in order to discover specific patterns and rules in their spatial organizations. To do

this, we develop spatial point process methods for 3D spatial modeling, in particular, using

replicated point patterns. In addition, considering neuronal arborizations as networks con-

necting the points where the synapses are located, we use graph theory and evolutionary

computational techniques with a reverse engineering approach, to analyze if these networks

follow principles of optimality in their design.

Regarding spatial point processes, the 3D spatial distribution of synapses is modeled in

the six layers of the rat somatosensory cortex. Because several samples are available from

each layer, replicated spatial patterns are used to detect similarities and differences between

layers. Then, the existing 2D methodology for network spatial analysis is extended to 3D

space. In addition, replicated spatial patterns are applied for the first time in this context.

These methods are used to model the distribution of spines along the dendritic arborizations

of human pyramidal neurons in both basal and apical dendrites. Next, the hypothesis of

optimal wiring in neuronal circuits is used in conjunction with the analysis of the spatial

distribution of branching and terminal points of dendritic arbors, using a measure related to

the distance to the nearest neighbour to quantify how a set of points are distributed in space.

Regarding network optimization, a new way of representing and solving the structural

constraints that commonly limit network design problems is proposed, namely, restrictions

on the maximum number of edges incident on a node and establishing a priori the roles of

the nodes in the network (root, intermediate or leaf node). Then, using graph theory and

the proposed representation it is analyzed if individual neurons optimize brain connectivity

in terms of wiring length. The analysis is carried out to the dendritic and axonal wiring of

interneurons with very different morphology and to the dendritic wiring of a homogeneous

population of pyramidal neurons, also studying in the latter case if there are differences

between cortical layers.





Resumen

La neurociencia ha experimentado un gran desarrollo en las últimas décadas, convirtiéndola

en una de las disciplinas biomédicas de mayor relevancia. El desarrollo de nuevas tecnoloǵıas

y en concreto los recientes avances en microscoṕıa permiten disponer de gran cantidad de

datos que recogen la naturaleza y la distribución espacial de algunos elementos neuronales

que forman el cerebro. En el estado actual de desarrollo de la neurociencia resulta cada

vez más evidente la necesidad de nuevas técnicas computacionales, y en esta tesis se lleva a

cabo desarrollando métodos estad́ısticos y de optimización para el análisis de datos dando

consideración expĺıcita a caracteŕısticas espaciales como localización, organización espacial o

distancia entre elementos.

El trabajo desarrollado en esta tesis se aplica principalmente al estudio de la morfoloǵıa

neuronal. Pese a los numerosos esfuerzos para comprender mejor el cerebro, el conocimiento

actual sobre la estructura de la neurona es todav́ıa incompleto. La morfoloǵıa neuronal refleja

la organización de las entradas sinápticas y la forma en la que una neurona se expande juega

un papel importante en sus caracteŕısticas funcionales y computacionales. Por ello, teniendo

en cuenta la espacialidad inherente en la morfoloǵıa neuronal se pueden revelar caracteŕısticas

clave en el diseño de los circuitos cerebrales.

Esta tesis se centra en el modelado de la distribución espacial de diferentes estructuras

neuronales con el objetivo de descubrir patrones y reglas espećıficas en sus organizaciones

espaciales. Para ello, se desarrollan métodos de procesos puntuales espaciales para el mod-

elado espacial en 3D, en particular, utilizando patrones espaciales replicados. Además, con-

siderando las arborizaciones neuronales como redes conectando los puntos donde se encuen-

tran las sinapsis, se utilizan teoŕıa de grafos y técnicas de computación evolutiva con un

enfoque de ingenieŕıa inversa, para analizar si estas redes siguen principios de optimalidad

en su diseño.

En relación a los procesos puntuales espaciales, se modela la distribución espacial en 3D

de sinapsis en las seis capas de la corteza somatosensorial del cerebro de rata. Al disponer

de varias muestras de cada capa, se hace uso de patrones espaciales replicados para detectar

similitudes y diferencias entre capas. Después, la metodoloǵıa existente en 2D para el análisis

espacial en redes se extiende al espacio 3D. Además, se aplican patrones espaciales replicados

por primera vez en este contexto. Estos métodos se utilizan para modelar la distribución

de las espinas a lo largo de las arborizaciones dendŕıticas de neuronas piramidales humanas,

tanto en dendritas basales como apicales. A continuación, se trabaja con la hipótesis de un

cableado óptimo en los circuitos neuronales junto con el análisis de la distribución espacial de

los puntos de bifurcación y los puntos terminales de las arborizaciones dendŕıticas, haciendo

uso de una medida relacionada con la distancia al vecino más cercano para cuantificar cómo

se distribuyen un conjunto de puntos en el espacio.

En cuanto a la optimización de redes, se propone una nueva forma de representar y

resolver las restricciones estructurales que comúnmente limitan los problemas de diseño de

redes, en concreto, restricciones de número máximo de aristas incidentes en un nodo y el

establecimiento a priori de los roles que deben tener los nodos en la red (nodo ráız, intermedio



u hoja). Después, utilizando teoŕıa de grafos y la representación propuesta, se analiza si las

neuronas individualmente optimizan la conectividad del cerebro en términos de longitud de

cableado. Se analiza el cableado de dendritas y axones de interneuronas con muy diversa

morfoloǵıa, y el cableado dendŕıtico de una población homogénea de neuronas piramidales,

estudiando también en este último caso si existen diferencias entre capas corticales.



Contents

Contents xv

List of Figures xix

Acronyms xxiii

I INTRODUCTION 1

1 Introduction 3

1.1 Hypotheses and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Document organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II BACKGROUND 9

2 Point process statistics 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Spatial point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Summary characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Point process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Monte Carlo tests and envelopes . . . . . . . . . . . . . . . . . . . . . 23

2.3 Network spatial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Replicated spatial point patterns . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Network design optimization 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Degree-constrained minimum spanning tree . . . . . . . . . . . . . . . . . . . 32

3.3 Evolutionary computation techniques . . . . . . . . . . . . . . . . . . . . . . . 33

4 Neuroscience 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Neuron doctrine and modern neuroscience . . . . . . . . . . . . . . . . . . . . 38

xiii



xiv CONTENTS

4.2.1 Current projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Neurons in the cerebral cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Neuronal wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III CONTRIBUTIONS TO POINT PROCESS STATISTICS 47

5 Three-dimensional replicated point pattern-based analysis applied to cor-

tical synapses 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Modeling of spatial point processes . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Replicated spatial point patterns . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.2 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.3 Modeling of spatial point processes . . . . . . . . . . . . . . . . . . . . 59

5.5.4 Replicated spatial point patterns . . . . . . . . . . . . . . . . . . . . . 59

5.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Three-dimensional network spatial analysis applied to spine modeling along

dendritic networks 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Network spatial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Replicated spatial point patterns . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Nearest neighbour distances to describe dendritic morphology organiza-

tion 83

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Average nearest neighbour ratio R . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Computing the supporting volume of a point cloud . . . . . . . . . . . . . . . 85

7.4 Edge effects and Monte Carlo approximation of R . . . . . . . . . . . . . . . 86

7.5 Point pattern generator with target R . . . . . . . . . . . . . . . . . . . . . . 87

7.6 Nearest neighbour distances in dendritic morphology . . . . . . . . . . . . . . 88

7.6.1 R values for dendrites from NeuroMorpho.Org . . . . . . . . . . . . . 88

7.6.2 Morphological models connecting points with different R values . . . . 90

7.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.7.1 R values for dendrites from NeuroMorpho.Org . . . . . . . . . . . . . 91



CONTENTS xv

7.7.2 Morphological models connecting points with different R values . . . . 93

7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

IV CONTRIBUTIONS TO NETWORK DESIGN OPTIMIZATION 101

8 Network design with degree- and role-constrained minimum spanning trees

103

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3 Problem representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.4 Problem-solving approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.5 Test problem generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.7 Trans-European transport network . . . . . . . . . . . . . . . . . . . . . . . . 115

8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 Neuronal wiring economy 121

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2 Wiring economy of GABAergic interneurons . . . . . . . . . . . . . . . . . . . 122

9.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.2 Wiring analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.3 Axon partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2.6 Analysis of other examples . . . . . . . . . . . . . . . . . . . . . . . . 134

9.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.3 Wiring economy of pyramidal neurons . . . . . . . . . . . . . . . . . . . . . . 136

9.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.3.2 Wiring analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

V CONCLUSIONS AND FUTURE WORK 143

10 Conclusions and future work 145

10.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151



xvi CONTENTS



List of Figures

2.1 Example of edge effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Toroidal edge correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Border area edge correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Three simulated point patterns: random, regular and clustered . . . . . . . . 19

2.5 Example of Poisson cluster process . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Pointwise envelope example for a random point pattern . . . . . . . . . . . . 24

2.7 Examples of network events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Example of MST and DCMST of a graph . . . . . . . . . . . . . . . . . . . . 31

3.2 UML diagram including the main classes of jMetal and their relationships . . 36

4.1 Cortical column development in mammals . . . . . . . . . . . . . . . . . . . 38

4.2 Drawing of Purkinje cell in the human cerebellum by Santiago Ramón y Cajal 39

4.3 Single neuron, microcircuit consisting of several neurons and cortical column

composed of multiple nerve cells . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 3D reconstructions of a pyramidal cell and an interneuron of rat neocortex . 43

4.5 Example of trees with different wiring configurations . . . . . . . . . . . . . . 44

5.1 Diagram of data extraction to analyze whether the synaptic densities of cor-

tical layers are significantly different . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Layer I, Sample 1. An example ofK and L functions for CSR and RSA processes 53

5.3 Diagram of the random thinning process for three groups of replicated point

patterns, A, B and C, for which the Diggle test did not find significant differences. 56

5.4 Mean synaptic density of the six layers of the somatosensory cortex and mean

distance to nearest synapse for each layer . . . . . . . . . . . . . . . . . . . . 58

5.5 Analysis of spatial patterns using global envelopes (sample 1 for each layer of

the somatosensory cortex). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Aggregated K and L functions for each animal . . . . . . . . . . . . . . . . . 62

5.7 For each layer, aggregated L function (dark blue) of experimentally observed

data (dashed blue) along with the average of 99 RSA simulations (green)

fitting the model for all samples of the layer . . . . . . . . . . . . . . . . . . 63

5.8 Aggregated K and L functions for each layer . . . . . . . . . . . . . . . . . . 64

xvii



xviii LIST OF FIGURES

5.9 One dense RSAglobal simulation for the group of layers II to VI and two

thinned RSA simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 Home screen of the tool to analyze the 3D spatial distribution of synapses . 66

6.1 Example of one of the analyzed pyramidal neurons . . . . . . . . . . . . . . . 73

6.2 Example of basal dendritic segment . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 First basal arborization of Neuron 1 illustrating the analysis . . . . . . . . . 75

6.4 Estimate of the intensity of the first basal arborization of Neuron 1 as a

function of the distance (in µm) to the tree root . . . . . . . . . . . . . . . . 78

6.5 5% critical envelopes of the first basal arborization of Neuron 1 . . . . . . . . 78

6.6 Estimated 3D KLI functions used in the studentized permutation test . . . . 80

7.1 Examples of the implemented approximation to compute theRmeasure through

a tight hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Example of non-convex dendrite . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Estimated R values via MC for point clouds with known R . . . . . . . . . . 88

7.4 Point pattern generator for target average NN distance . . . . . . . . . . . . 89

7.5 Sketch describing nearest neighbour distances in branching and terminal points 91

7.6 Nearest neighbour distances in 3D and 2D dendrites of real neurons . . . . . 92

7.7 R values of fly da neurons and TCs subdivided into individual classes . . . . 93

7.8 Correlation matrix between R values and other branching statistics . . . . . 94

7.9 Relation between nearest neighbour distances in the input distribution and in

the branching and terminal points . . . . . . . . . . . . . . . . . . . . . . . . 96

7.10 Relation between RInput and dendritic branching statistics in the morpholog-

ical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.11 Scaling relation of total dendrite length . . . . . . . . . . . . . . . . . . . . . 98

8.1 Example of an infeasible DRCMST instance . . . . . . . . . . . . . . . . . . 106

8.2 Example of a DRCMST forest with two trees . . . . . . . . . . . . . . . . . . 107

8.3 Decoding the proposed permutation-based representation . . . . . . . . . . . 108

8.4 An example of permutation representation . . . . . . . . . . . . . . . . . . . 109

8.5 Evolution of the best fitness found in 20 generations by the NHBSA for prob-

lem number 1 with 20 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.6 Comparison of the four algorithms using the Friedman test and the Bergmann-

Hommel procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.7 Application of forests with DRCSMTs to the nine trans-European transport

network corridors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1 The twelve analyzed interneurons . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Example of point clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.3 Two examples of dendritic trees and their codification with the proposed

permutation-based representation . . . . . . . . . . . . . . . . . . . . . . . . 126



LIST OF FIGURES xix

9.4 Axonal point clouds of some of the analyzed interneurons divided into smaller

clouds to reduce complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.5 Description of the partitioning process for complex problems with a high num-

ber of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.6 Total dendritic length (µm) of the 12 analyzed interneurons versus total length

of the minimum and maximum arborizations found . . . . . . . . . . . . . . 130

9.7 Example of neuron CT2 and differences between real and optimized dendritic

wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.8 Total axonal length (µm) of the 12 analyzed interneurons versus total length

of the minimum and maximum trees found . . . . . . . . . . . . . . . . . . . 133

9.9 Example of one basal dendritic arbor of a pyramidal cell in layer II . . . . . 137

9.10 Mean wiring length (real vs. optimized) . . . . . . . . . . . . . . . . . . . . . 139

9.11 Box plot of the wiring analysis results for all layers . . . . . . . . . . . . . . 140

9.12 Mean optimality percentages of each cortical layer . . . . . . . . . . . . . . . 141



xx LIST OF FIGURES



List of Tables

5.1 Animal ID, volume, counts and density of synaptic junctions per sample in

each layer of the somatosensory cortex . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Mean distances from a synapse to its nearest neighbour and mean Feret’s

diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Estimated intensity λ̂ij for samples in layer II to VI using only the remaining

samples of the same layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Description of the analyzed apical dendrites . . . . . . . . . . . . . . . . . . . 76

6.2 Description of the analyzed basal dendrites grouped by neuron . . . . . . . . 77

8.1 Description of the simulated DRCMST instances . . . . . . . . . . . . . . . . 112

9.1 NeuroMorpho.Org identifier and cell type of the 12 analyzed interneurons . . 124

9.2 Characteristics of the 12 interneurons shown in Fig. 9.1 . . . . . . . . . . . . 130

9.3 NeuroMorpho.Org identifier of the eight analyzed Martinotti and large basket

neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.4 Mean number of points (n̄) and mean and standard deviation (x̄±s) of the

ratios between the total length of the shortest dendritic and axonal wiring

solutions found for each neuron, and the total length of the real trees for ten

Martinotti and ten large basket neurons . . . . . . . . . . . . . . . . . . . . . 134

9.5 Mean and standard deviation (x̄±s) of the number of dendritic trees and the

number of points of the dendritic point clouds (roots, branching points and

terminal points) of the 48 cells of each cortical layer . . . . . . . . . . . . . . 139

xxi



xxii LIST OF TABLES



Acronyms

BAM Brain Activity Map

BBP Blue Brain Project

BRAIN Brain Research through Advancing Innovative Neurotechnologies

CB Common Basket cell

CBBP Cajal Blue Brain Project

CeSViMa Supercomputing and Visualization Center of Madrid

CH Chandelier cell

CSIC Consejo Superior de Investigaciones Cient́ıficas

CSR Complete Spatial Randomness

CT Common Type cell

DCMST Degree-Constrained Minimum Spanning Tree

DRCMST Degree- and Role-Constrained Minimum Spanning Tree

ecdf empirical cumulative distribution function

EDA Estimation of Distribution Algorithm
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Chapter 1
Introduction

A major goal of neuroscience is that in the next few years our knowledge about the structure

and function of the brain is much deeper than it is now. In this way we will better under-

stand some fundamental aspects of the brain, for example, the alterations that some diseases

produce in it, how it forms, develops and ages, or the mechanisms by which we learn and

improve our intellectual capacities.

Guided by this ambitious objective, computational neuroscience studies the brain function

in terms of the information processing properties of structures that make up the nervous

system [Churchland et al., 1993]. Within the field of computational neuroscience, in this

dissertation we focus on computational neuroanatomy that intends to create anatomically

accurate models of neuronal structures through the application of computational techniques,

such as analysis, visualization, modeling and simulation [Berzhanskaya and Ascoli, 2008].

Great efforts to better understand the brain are taking place in several fields. Within them,

computational neuroanatomy is an emerging science that requires advances from statistical

analysis. Here we work at the cellular level, carrying out quantitative descriptions of the

structure of single neurons and the density of neuronal elements within specific areas of the

brain.

The Spanish neuroscientist Santiago Ramón y Cajal, designated by many as the father

of modern neuroscience, already suggested more than a hundred years ago to interpret the

construction planes of the brain by observing individual neuron morphology. Nevertheless,

current knowledge about neuron structure is still incomplete. In this dissertation we propose

to develop Cajal’s idea through the use of spatial statistics techniques, in particular spa-

tial point processes, and also optimization methods, specifically evolutionary computation

techniques for network design optimization.

Spatial point processes may be applied in many areas of research to infer information

on underlying processes that are reflected in the spatial structure. The evolution of new

technologies and, particularly, the recent technical advances in microscopy allow the use of

large databases that collect the nature and spatial distribution of some neuronal elements

that form the brain (e.g., synapses, spines). Thus, neuroscience is one of the fields in which

the application of spatial point processes as a modeling tool may be useful.

3
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In addition to the development of spatial point processes to reveal spatial patterns in dif-

ferent brain structures, the study of the existence of an optimal neuronal design in individual

cell morphologies is also a central part of this dissertation. We consider neuronal arboriza-

tions as networks connecting all points where synapses are located. Using graph theory and

evolutionary computation techniques with a reverse engineering approach, we analyze if these

neuronal networks follow optimality principles.

Chapter outline

This chapter is organized as follows. Section 1.1 details the main hypotheses and objectives

of this dissertation. Then, Section 1.2 presents the complete organization of this manuscript.

1.1 Hypotheses and objectives

As mentioned above, the research of this dissertation is centered on spatial point processes and

network design optimization, with the particular interest of extracting valuable knowledge

in the field of neuroscience. Based on this, this dissertation has the following two main

hypotheses:

❼ Spatial statistics methods can provide a deeper understanding of the spatial organi-

zation of different neuronal structures, discovering specific patterns and rules in their

spatial distributions that may reveal key features in brain design.

❼ Individual neurons optimize brain connectivity. In particular, we hypothesize that by

imposing constraints that provide realistic neuronal arborizations, we can for the most

part explain wiring economy in single neurons considering only wiring length.

Based on these hypotheses, the main objectives of this dissertation can be stated as

follows:

❼ To model the spatial distribution of different neuronal structures (synapses, spines and

branching and terminal points of branching structures) from microscopy images. In

particular, using replicated spatial point patterns taking advantage of the availability

of several samples.

❼ To apply spatial statistics methods specifically designed for events that occur along

networks to neuronal structures for which this constraint may be more appropriate

than traditional spatial statistics techniques, e.g., spines along dendritic trees.

❼ To develop methods for performing spatial modeling in a 3D space, in cases where the

existing methodology is available mainly for two dimensions (both in the whole space

and along networks).
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❼ To study the structural constraints that commonly limit network design problems and

to propose an adequate representation to collect such constraints and optimize the

network design.

❼ To develop optimization algorithms for the wiring optimality analysis of dendritic trees

and axons in different types of neurons (pyramidal neurons and interneurons).

1.2 Document organization

The manuscript is grouped into five parts, each one divided into chapters as follows:

❼ Part I. Introduction

This part introduces the dissertation and is the current part.

– Chapter 1 details the research hypotheses and objectives and the manuscript or-

ganization.

❼ Part II. Background

This part is divided into three chapters that introduce the theory and basic concepts

used throughout the following parts of this manuscript. The state-of-the-art of the

research areas related to this dissertation is discussed in these chapters.

– Chapter 2 is an introduction to the theory and notation of spatial statistics, and

more specifically, point process statistics. The chapter focuses on the basic con-

cepts of spatial point processes, network spatial analysis and replicated point pat-

terns. The theory presented in this chapter is essential to Part III of this disser-

tation.

– Chapter 3 presents the NP-hard problem of finding the degree-constrained mini-

mum spanning tree (DCMST) of a graph, and one of its most important applica-

tions: network design optimization. The chapter also introduces the evolutionary

computation algorithms chosen in this work to solve network design optimization

problems.

– Chapter 4 provides a basic introduction to neuroscience and some biological con-

cepts related to the applications developed in this dissertation. The most impor-

tant neuroscience projects of the last decade are included. The chapter describes

the two main types of neurons in the cerebral cortex and reviews some important

studies about wiring economy principle.

❼ Part III. Contributions to point process statistics

This part of the dissertation includes our proposals on point process statistics and the

application to the modeling of the 3D spatial distribution of synapses, dendritic spines

and branching and terminal points of dendritic arborizations.
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– Chapter 5 presents a complete 3D spatial analysis in the context of replicated

point patterns, illustrated with the study of the 3D distribution of synapses in the

six layers of the cerebral cortex. Taking advantage that we have several samples

from each layer, first, the intensity in each group (layer) is analyzed, examining

whether there are significant differences between groups. Then, a model is fitted for

each replicate (sample) independently. Finally, replicated point patterns are used

to analyze differences and similarities between groups of replicates. To honestly

estimate the goodness-of-fit of the resulting models, this chapter proposes a cross-

validation technique for models within each group of replicates. The tool developed

to process and analyze the 3D spatial distribution of synapses is also presented.

– Chapter 6 expands the existing 2D computational techniques for network spatial

analysis to perform a spatial analysis along 3D networks. Spines can only lie on

the dendritic shaft. Therefore, in this chapter we perform a 3D network spatial

modeling of the spine distribution along the dendritic networks of pyramidal neu-

rons in both basal and apical dendrites. To search for significant differences in the

spine distribution of basal dendrites between different cells and between all the

basal and apical dendrites, we use replicated point patterns together with a recent

variant of Ripley’s K function defined to work along networks.

– Chapter 7 introduces the average nearest neighbour ratio R, a measure that cap-

tures the degree of clustering of the points in a point cloud. To obtain an accurate

estimate of R it is required to estimate the supporting volume of the point cloud

as well as dealing with edge effects. Both problems are covered in this chapter. We

illustrate the utility of measure R by analyzing the spatial distribution of branch-

ing points and terminal points of dendritic structures in both real and synthetic

dendritic trees.

❼ Part IV. Contributions to network design optimization

This part of the dissertation includes our proposals on network design optimization and

the application to the study of neuronal wiring economy.

– Chapter 8 deals with a new variant of the DCMST problem presented in Chap-

ter 3, which consists of finding not only the degree- but also the role-constrained

minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role

of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do

not limit the number of root nodes to one, thereby, generally, building a forest

of DRCMSTs. This chapter also proposes a novel permutation-based representa-

tion to encode these forests. We use the jMetal framework in order to compare

the performance of genetic algorithms (GAs) and estimation of distribution algo-

rithms (EDAs) to solve DRCMST problems. To illustrate the applicability of our

approach and that it is easy to add constraints depending on the specific char-
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acteristics of the problem, we formulate the trans-European transport network

consisting of nine transport corridors as a DRCMST problem.

– In Chapter 9 we hypothesize that both axonal and dendritic networks of individual

cortical neurons optimize brain connectivity in terms of wiring length. We test

this optimization problem using the DRCMST problem introduced in Chapter 8.

In addition, we introduce a parallelization method for large DRCMST problems.

The chapter also presents the software developed to analyze the optimality of the

dendritic and axonal wiring of a 3D neuronal reconstruction.

❼ Part V. Conclusions

This part summarizes and concludes the dissertation.

– Chapter 10 summarizes the most important contributions obtained throughout

this research and describes some lines of future work and open issues. The chapter

also includes the list of publications and submissions produced in this dissertation.
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Chapter 2
Point process statistics

2.1 Introduction

Spatial statistics analyzes data which have a spatial location, giving explicit consideration to

spatial properties such as location, distance or spatial arrangement. Banerjee et al. [2004]

classify the spatial data sets into three basic categories:

❼ Point-referenced data, often referred to as geostatistical data: the location index varies

continuously over a region W , a fixed subset of RD.

❼ Areal data, often referred to as lattice data: W is again a fixed subset but now parti-

tioned into a finite number of areal units with well-defined boundaries and observations

are associated with the areal units.

❼ Point pattern data: unordered collection of n objects/points, where n ≥ 0 is not fixed

in advance, located in some specified region W . The points may have extra information

called marks attached to them (marked point pattern).

A good introduction to the analysis of the above spatial data categories with R1 software

is provided by Bivand et al. [2013]. Here, we focus on analyzing the third type of spatial data

through point process statistics. “Point process statistics is perhaps the most developed and

beautiful branch of the modern field of spatial statistics” [Illian et al., 2008]. Its aim is to

analyze the spatial structure of patterns formed by objects that are distributed in the plane

or in space and that can be modeled as discrete points. These patterns are analyzed in many

scientific disciplines [Baddeley et al., 2006]. Besides the classical fields of application, such as

forestry (locations of trees), particle physics (locations of particles in material samples) and

astronomy (galaxies or stars), today other fields such as ecology (animal nests), geography

(positions of towns or facilities) or neuroscience (organization of neuronal structures such as

synapses, spines...), also apply methods of point process statistics.

1http://www.r-project.org
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Chapter outline

This chapter is an introduction to the notation and theory of point processes statistics.

Section 2.2 provides the basic concepts in the theory of spatial point processes used in the

next chapters. Section 2.3 describes the basic concepts in network spatial analysis, i.e., spatial

statistics techniques to analyze events occurring on or along networks. Finally, Section 2.4

focuses on the theory of replicated spatial point patterns.

2.2 Spatial point processes

Within the field of spatial statistics, spatial point processes are mathematical models that

describe the arrangement of elements randomly or irregularly distributed in space forming

patterns. Illian et al. [2008] provide a good introduction to the topic; Daley and Vere-Jones

[2003, 2008], Møller and Waagepetersen [2004] and Stoyan et al. [1995] include more complex

mathematical introductions to the fundamental theory; and Baddeley [2010] and Baddeley

et al. [2006] present a more applied text. Illian et al. [2008] and Baddeley [2010] represent

the main sources of information used for the development of this section.

2.2.1 Fundamentals

A spatial point process XXX is a random set of points, with a random number of points and

random locations in an abstract space S. We only consider scenarios in which S ≡ R
D, D ≤ 3.

An observed point pattern xxx is a realization or sample of the point processXXX, and is formally

defined as an unordered set of points located in some known subset W (the sampling window)

of S:

xxx = {x1, ..., xn}, xi ∈W ,

where n ≥ 0 is not fixed in advance.

A covariate is any data that we treat as an explanatory variable. It is a spatial function

Z(u) defined at all spatial locations u ∈ W (or at least at all xi and some other locations).

Examples of covariates are altitude, soil pH, etc. in a forestry problem.

Points in a spatial point pattern may have also extra information called ‘marks’ attached

to them. Marks represent an ‘attribute’ of the point, like an additional coordinate. The mark

attached to each point can be either continuous (for example, each point is a tree location and

its attached marks are its height or/and diameter), categorical (for example, points which are

classified into two or more different types, as case/control, color, etc.) or even more complex.

Spatial point patterns with categorical marks are usually called multitype point patterns.

A marked point process of points in space S with marks belonging to a set M is mathe-

matically defined as a point process in S ×M . A marked point pattern is an unordered set

of points:

yyy = {(x1,m1), ..., (xn,mn)}, n ≥ 0, xi ∈W , mi ∈M ,
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where xi are the locations of the points and mi their marks.

In marked point patterns there are different null hypotheses that can be tested. For

example, we might be interested in analyzing if given the locations of the points, the marks

are conditionally independent and identically distributed, if the sub-processes YYY m of points

of each mark m, are independent point processes, etc. The main objective in spatial point

process statistics is to characterize spatial point patterns in terms of the dependency of the

objects on their position, covariates, marks and interaction with other objects.

In general, point patterns are expected to show some properties. Point patterns are

assumed to fulfill the simplicity property, i.e., there is no more than one point lying on each

location. There is another property which is essential: stationarity. A process is considered

stationary if the overall point distribution is invariant to pattern translations. In practical

terms, stationarity implies that the expectation of observing some point configuration is

independent of the particular location, in or outside the sampling window.

The nature of the sampling areaW is not such an obvious matter and it usually depends on

the problem to solve. This can be naturally imposed by the physical limits of the environment

in which objects exist (for example, the distribution of trees in a city park are limited by its

boundaries). In those cases, the process is considered a finite point process. Alternatively,

W may be arbitrarily chosen to reflect that patterns are part of a much larger (supposedly

infinite) structure, in which points are distributed according to the same laws (for example,

distribution of stars in a particular small region of the galaxy). In those cases, the process is

known as infinite point process.

2.2.2 Summary characteristics

Spatial point process statistics provides the tools to characterize patterns in terms of the

number and distribution of the elements. To do this, two aspects are mainly analyzed:

intensity and inter-point interactions, closely related to distances between points.

2.2.2.1 Intensity

The most important numerical summary characteristic for a point process is the intensity or

average density of points. Point intensity is the simplest distributional property and is similar

to the use of the sample mean in classical statistics. The intensity function λ(u), u ∈W of a

point process XXX, is the expected number of points per unit area or volume in the vicinity of

u. λ(u) is a first-order (mean) property of the point process, describing the expected density

of points in any location, i.e., λ(u) is proportional to the point density around a location u.

The intensity of a point process may be constant (uniform or homogeneous) or may vary

from location to location (non-uniform or inhomogeneous):

❼ If it is constant, λ(u) ≡ λ, an unbiased estimator of the true intensity λ is λ̂ = n/|W |,
where n is the number of points in the point pattern and |W | is the area or volume of

W .
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❼ If it is suspected that the intensity may be inhomogeneous, λ(u) can be estimated

non-parametrically by techniques such as quadrat counting and kernel smoothing.

In quadrat counting, W is divided into q quadrats (subregions) B1, ..., Bq of equal area,

and the number of points falling in each quadrat nj for j = 1, ..., q is counted. nj/|Bj |
are unbiased estimators of the corresponding intensity values in each quadrat. Counts

should be approximately equal if there is a uniform density.

In kernel smoothing, the usual kernel estimator of the intensity function is λ̂(u) =

e(u)
∑n

i=1 κ(u − xi), where κ(u) is an arbitrary probability density (the kernel) and

e(u) is an edge effect bias correction (see below).

2.2.2.2 Distance methods

Apart from intensity analysis, one of the first steps often performed to explore the spatial

distribution of a spatial pattern is to obtain the distances between points. Distance methods

are the main classical techniques for investigating interpoint interaction (dependence). The

dependence is assumed to be stronger for points which are close to each other. The following

are usually considered (|| ➲ || denotes the Euclidean distance):

❼ Empty space distances: d(u,xxx) = min
i
{||u−xi|| : xi ∈ xxx}, distance from a fixed location

u in W to the nearest point in a point pattern xxx.

❼ Nearest neighbour distances: ti = min
j 6=i
||xi − xj ||, distance from each point xi to its

nearest neighbour in a point pattern.

When dealing with infinite point process, W introduces a sampling bias. Limiting obser-

vations to W implies that the observed empty space distance d(u,xxx) = d(u,W ∩XXX) to the

nearest data point in W may be greater than the true distance d(u,XXX) in the complete point

process XXX. For nearest neighbour distances ti = minj 6=i||xi− xj || we encounter similar prob-

lems. Limiting observations to W implies that, in general, the observed nearest neighbour

distances are larger than the true nearest neighbour distances of points in the complete point

process XXX (Fig. 2.1).

Two well-known edge-correction techniques are the so-called toroidal edge correction and

the border area edge correction [Yamada, 2009]. The first one maps a finite rectangular

study region into a torus by identifying opposing edges (Fig. 2.2). The second one specifies

a buffer zone inside the boundary of the study region and uses the inner part as the new

study region. Points in the buffer zone are used only to take measurements of points (e.g.,

nearest neighbour distances) that are within the new study region and are further discarded

(Fig. 2.3).

To develop formal statistical analysis, we typically use the empirical cumulative distribu-

tion function (ecdf) of the previously described distances. They are defined for stationary

processes and their estimators are edge-corrected. As mentioned, some possibilities of edge

correction are to consider the window W as a continuous medium (toroidal) or to discard the
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Figure 2.1: Example of edge effects. The point process XXX is observed only inside a region W ,
so the observed distances in W are, in general, larger than the true distances in the entire
point processXXX. (a) Stienen diagram obtained by drawing a circle around each data point of
diameter equal to its nearest neighbour distance in W . Circles are grey if the observed nearest
neighbour distance is observed without edge effects, i.e., it is shorter than the distance to the
window boundary. Top left it is shown a point where the distance to its nearest neighbour
in W (black arrow) is much larger than the nearest neighbour distance in the entire point
process (red arrow). (b) Empty space distances for each point in W . As in (a), the observed
empty space distances to the nearest data points in W are greater than the true distances in
the complete point process

Figure 2.2: Toroidal edge correction. (a) Original study region W . (b) Study region W
transformed into a torus by identifying opposing edges. (c) Another interpretation of the
toroidal edge correction technique is that the study region W is replicated as to form a 3×3
grid of nine identical rectangles (also known as periodic continuation)

points in a buffer zone specified inside the study region (border area). Yet, both techniques

have their drawbacks: the toroidal edge correction cannot be used for non-rectangular regions

and the border area edge correction discards a large number of available points. The most
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Figure 2.3: Border area edge correction. As an example, the application of the border area
edge correction to nearest neighbour (NN) distances analysis is shown. Black arrows show
some examples of NN distances to be measured. Red arrows show NN distances not to be
measured

commonly used strategy is to use a weighted version of the ecdf and there are many types of

edge correction weights.

The most common summary functions are:

❼ Empty-space function F

Assuming XXX is stationary, we can define the cumulative distribution function of the

empty space distance as

F (d) = P{d(u,XXX) ≤ d}, (2.1)

where u is an arbitrary location. If the process XXX is stationary, the F function does

not depend on u.

For the explained reasons, the ecdf of the observed empty space distances is a negatively

biased estimator of F (d). Estimators are typically weighted versions of the ecdf:

F̂ (d) =
r
∑

j=1
e(uj , d)1{d(uj ,xxx) ≤ d},

defined on a grid of locations uj , j = 1, ..., r, where 1{ ➲ } denotes the indicator function
and e(u, d) is an edge correction weight so that F̂ (d) is unbiased and the influence of the

window is reduced. Assuming that the point process is homogeneous, the estimation of

the empty-space function defined by Eq. (2.1) can be unbiased and reasonably accurate.

❼ Nearest-neighbour distance function G

Assuming XXX is stationary, we can define the cumulative distribution function of the

nearest-neighbour distance for a typical point in the pattern as:
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G(d) = P{d(u,XXX\{u}) ≤ d|u ∈XXX}, (2.2)

where u is a typical point in the pattern, and d(u,XXX\{u}) is the shortest distance

from u to the point pattern XXX excluding u itself. If the process is stationary then this

definition does not depend on u. As before, the ecdf of the observed nearest-neighbour

distances is a negatively biased estimator of G(d). Many edge corrections, typically

weighted versions of the ecdf, are available:

Ĝ(d) =
n
∑

i=1
e(xi, d)1{ti ≤ d},

where e(xi, d) is an edge correction weight so that Ĝ(d) is approximately unbiased.

❼ J function

The J function [van Lieshout and Baddeley, 1996] is a useful combination of F and G

functions:

J(d) =
1−G(d)

1− F (d)
, (2.3)

defined for all d ≥ 0 such as F (d) < 1.

❼ Ripley’s K function

For a stationary process, Ripley’s K function for a distance d [Ripley, 1977], K(d), is

defined as the expected number of other points of the process within a distance d of a

typical point of the process divided by the intensity. Formally:

K(d) =
1

λ
E[N(XXX ∩ b(u, d)\{u})|u ∈XXX], (2.4)

where N(XXX ∩B) counts the number of points from XXX falling in a region B and b(u, d)

is the neighbourhood of radius d centred on u.

It has been shown that specifying K(d) for all d is equivalent to specifying the variance

of the number of points occurring in a subregion B for any B. This is why K(d) is

associated with second-order properties of the point process.

Numerous estimators of K(d) have been proposed, typically like:

K̂(d) = 1
λ̂2|W |

∑

i

∑

j 6=i

e(xi, xj , d)1{||xi − xj || ≤ d},

where e(xi, xj , d) is an edge correction weight and |W | is the area or volume of W .

The choice of the estimator does not seem to be very important, as long as some edge

correction is applied [Baddeley, 2010].
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❼ Besag’s L function

Besag’s L function [Besag, 1977] is a commonly used transformation of the K function:

L(d) =

(

K(d)

|WD|

)1/D

, (2.5)

where D is the dimensionality and |WD| is the volume of the unit ball in R
D. |WD| =

πD/2

Γ(1+D
2
)
and Γ( ➲ ) is the gamma function (|WD|=2 if D=1, |WD| = π if D=2, |WD| =

4π/3 if D=3).

❼ Pair-correlation function g

The pair correlation function for a distance d, g(d), is another usual transformation of

the Ripley’s K function. Roughly speaking, it is the probability of observing a pair of

points separated by a distance d, divided by the corresponding probability for a Poisson

process (see below). This is a non-centred correlation, always non-negative:

g(d) =
K ′(d)

D|WD|dD−1
, (2.6)

where K ′(d) is the derivative of K and |WD| is defined as before.

2.2.3 Point process models

2.2.3.1 Homogeneous Poisson process

The homogeneous spatial Poisson point process, also known as complete spatial randomness

(CSR), is considered as the reference model in spatial point process statistics, since it rep-

resents a boundary condition between regular and clustered patterns. A random pattern,

where a point is equally likely to occur at any location regardless of the locations of other

points, follows a CSR process. The patterns known as regular patterns show repulsion, i.e.,

the distances between points are larger than expected in a random pattern of the same in-

tensity. Furthermore, patterns where points tend to be closer than they should be for a given

intensity are known as clustered patterns (Fig. 2.4).

The homogeneous Poisson process has constant intensity λ(u) ≡ λ. The basic properties

of a CSR process with intensity λ > 0 are:

❼ P1: The number of points N(XXX ∩B) falling in any region B has a Poisson distribution.

❼ P2: The mean is given by λ ➲ |B| points falling in B.

❼ P3: For any B1, B2 disjoint sets, then N(XXX ∩ B1) and N(XXX ∩ B2) are independent

random variables.

❼ P4: Given n points inside region B, their locations are independent, identically and

uniformly distributed in B.
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Figure 2.4: Three simulated point patterns: (left) random, (middle) regular, (right) clustered

P1 and P2 introduce the idea of an intensity λ representing the number of points per unit

area or volume (constant but unknown). P4 represents the general concept of CSR, points

uniformly distributed across the study area and independent of each other (with the same

propensity to be found at any location regardless of those of other points).

The CSR process has the following expression for the summary functions presented in the

previous section:

❼ Empty-space function: d(u,XXX) > d if and only if there are no points of XXX in the disc

b(u, d) of radius d centred on u. For a CSR process of intensity λ, the number of points

falling in b(u, d) follows a Poisson distribution with mean µ = λ|b(u, d)| = λ|WD|dD,
so the probability that there are no points in this region is exp(−µ) and for a Poisson

process we have that:

FCSR(d) = 1− exp(−λ|WD|dD),

where, as before, |WD| depends on the dimensionality D, and equals to 2 (D=1), π

(D=2), 4π/3 (D=3).

Values F̂ (d) < FCSR(d) suggest a clustered pattern because empty space distances in

the point pattern are larger than for a CSR process with the same intensity. Values

F̂ (d) > FCSR(d) suggest a regularly spaced pattern.

❼ Nearest-neighbour distance function: for a CSR process of intensity λ it is known that:

GCSR(d) = 1− exp(−λ|WD|dD).

GCSR(d) is identical to FCSR(d) since, due to independence, knowing that u is a point

of XXX does not affect any other points of the process.
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Unlike the F function, values Ĝ(d) < GCSR(d) suggest a regular pattern because nearest

neighbour distances in the point pattern are larger than those for a CSR process with

the same intensity. Values Ĝ(d) > GCSR(d) suggest a clustered spatial pattern.

❼ J function: JCSR(d) ≡ 1 since FCSR(d) = GCSR(d). Values J(d) < 1 suggest clustering,

while values J(d) > 1 suggest regularity.

❼ Ripley’s K function: for a CSR process, the knowledge that u is a point of XXX does not

affect the other points of the process, so XXX\{u} is conditionally a Poisson process. The

expected number of points falling in b(u, d) is λ|b(u, d)| = λ|WD|dD. Thus,

KCSR(d) = |WD|dD

regardless of the intensity. Values K̂(d) < KCSR(d) suggest a regular pattern because

we expect fewer points within a distance d of an arbitrary point than under a CSR

process. Values K̂(d) > KCSR(d) suggest clustering.

❼ Besag’s L function: Eq. (2.5) converts the CSRK function to the straight line LCSR(d) =

d, making the plots much easier to assess visually. Values L̂(d) < d suggest regular spac-

ing, while values L̂(d) > d suggest spatial clustering.

❼ Pair-correlation function: for a CSR process gCSR(d) ≡ 1. Values ĝ(d) < 1 suggest

regularity, while values ĝ(d) > 1 suggest clustering.

The use of summary functions for analyzing point patterns has become established. Nei-

ther function is considered to outperform the rest, although Ripley’s K function and its

derivations are often used extensively. It is important to note that the F , G and K func-

tions are defined and estimated under the assumption that the point process XXX is stationary

(homogeneous). If the process is not stationary, deviations between the empirical and theo-

retical functions (for example, between K̂(d) and KCSR(d)) are not necessarily evidence of

interpoint interaction, since they may also be attributable to variations in intensity. Other

important considerations are that these summary functions do not completely characterize

the process; further, as d increases, edge-effects are more important.

2.2.3.2 Inhomogeneous Poisson process

Spatial point processes methodology starts by testing the simplest hypothesis of CSR and

if rejected it tries with inhomogeneous Poisson point processes which are a straightforward

generalization of the homogeneous Poisson introducing inhomogeneity but no interaction, i.e.,

the intensity function λ(u) depends on the position of the points in the region of interest.

The inhomogeneous Poisson process with intensity function λ(u) modifies basic properties

P2 and P4:

❼ P2’: The mean is E[N(XXX ∩B)] =
∫

B λ(u)du points falling in B.
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❼ P4’: Given n points inside region B, their locations are independent and identically

distributed, with density f(u) = λ(u)/
∫

B λ(u)du (we expect more (fewer) points in

areas/volumes with higher (lower) values of λ(u)).

Points are independent of one another, but clusters appear in areas of high intensity (λ(u)

describes the expected density of points in any location).

Baddeley et al. [2000] proposed a modification of the K function that applies to inhomo-

geneous processes. The inhomogeneous K function is defined as:

Kinhom(d) = E





∑

xj∈XXX

1

λ(xj)
1{0 < ||u− xj || ≤ d}

∣

∣

∣

∣

u ∈XXX



 . (2.7)

If λ(u) is the true intensity function of the point process XXX, λ(u)K(d) is the expected

total ‘weight’ of all random points within a distance d of the point u, where the ‘weight’ of

a point xi is 1/λ(xi). If the process is homogeneous, Eq. (2.7) reduces to Eq. (2.4).

The estimators of the K function can be extended to the inhomogeneous case:

K̂inhom(d) =
1

∑

i 1/λ̂(xi)

∑

i

∑

j 6=i

e(xi, xj , d)
1{||xi − xj || ≤ d}

λ̂(xi)λ̂(xj)
, (2.8)

where λ̂(u) is an intensity function estimate and e(xi, xj , d) is an edge correction weight.

For an inhomogeneous Poisson process with intensity function λ(u):

KinhomCSR(d) = KCSR(d) = |WD|dD.

The inhomogeneous Besag’s L(d) function and the inhomogeneous pair correlation func-

tion g(d), are defined analogously to the homogeneous case using Eq. (2.5) and Eq. (2.6),

respectively, but substituting K(d) for Kinhom(d). For an inhomogeneous Poisson process,

LinhomCSR(d) = d and ginhomCSR(d) ≡ 1.

van Lieshout [2011] introduced the inhomogeneous versions of the F , G and J functions

subject to special conditions (it is assumed that the ‘k-point correlation functions’ for all

k ≥ 2 are invariant under translation, see van Lieshout [2011] for definitions and details).

The inhomogeneous F function is defined as:

Finhom(d) = 1− E





∏

xi∈XXX∩b(u,d)

(

1− λmin

λ(xi)

)



 , (2.9)

and the inhomogeneous G function as:

Ginhom(d) = 1− E





∏

xi∈XXX∩b(u,d)

(

1− λmin

λ(xi)

)
∣

∣

∣

∣

XXX has a point at u



 , (2.10)
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where u is an arbitrary location, λ(u) is the true intensity function of the point process XXX

and λ(u) ≥ λmin > 0 for all u.

The inhomogeneous J function is then defined as:

Jinhom(d) =
1−Ginhom(d)

1− FFinhom(d)
. (2.11)

For an inhomogeneous Poisson process, JinhomCSR(d) ≡ 1.

2.2.3.3 Non-Poisson processes

A point process that is not Poisson is said to exhibit interaction or dependence between

points. Briefly, some models derived from the Poisson process, that retain some of the

tractable characteristics of the Poisson model, are described below:

❼ Poisson cluster processes: we start with a Poisson process YYY of ‘parent’ points. Then,

each point yi ∈ YYY gives rise to a finite set of ‘offspring’ points according to some

stochastic mechanism. XXX comprising all the offspring points is a cluster process (parent

points are not observed). Fig 2.5 shows an example.

❼ Cox processes: let ∆(u) be a random function with non-negative values. Conditional

on ∆, let XXX be a Poisson process with intensity function ∆. Then XXX is a Cox process.

The intensity function of XXX is λ(u) = E[∆(u)]. Cox processes are always overdispersed

relative to a Poisson process, i.e., the variance of the number of points falling in a region

is greater than the mean.

❼ Thinned processes: thinning means deleting some of the points from a point pattern.

If independent thinning is applied to a Poisson process, the resulting process of the

retained points is again Poisson. To get a non-Poisson process we need some kind of

dependent thinning mechanism.

❼ Sequential models: we start with an empty window, and the points are placed into the

window one-at-a-time, according to some criterion. For example, in random sequential

adsorption models [Evans, 1993], also known as simple sequential inhibition, each new

point is generated uniformly in W and independently of preceding points. If the new

point lies closer than a minimum distance from an existing point, it is rejected and

another random point is generated. The minimum distance can be fixed or obtained

according to a probability density function. The process terminates when a certain

number of points are reached or no further points can be added.

Some of these processes have analytic expressions for some summary functions in terms

of the model parameters. For example, suppose that the expression of the K function of the

process with parameters θ, Kθ(d), is known; then, θ is estimated minimizing the discrepancy

between K̂(d) estimated from data and Kθ(d) over some range [a, b] (method of minimum

contrast [Diggle, 2003]):
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Figure 2.5: Example of Poisson cluster process. (a) Parents. (b) Clusters. (c) Offspring

D(θ) =
∫ b
a |K̂(d)q −Kθ(d)

q|pdd,

where 0 ≤ a < b and where p, q > 0 are exponents.

When the true summary function T (d) is not known analytically, we can use Monte Carlo

simulation to approximate it for any given θ. That is, we generate many realizations of the

process with parameter θ, compute T̂ (d) for each simulation and take the pointwise sample

average.

2.2.4 Monte Carlo tests and envelopes

Beyond exploratory purposes, summary functions can be used as a basis for statistical in-

ference. Because of random variability, never perfect agreement between the empirical and

theoretical functions will be found, even with a completely random pattern. In point process

statistics, tests are usually based on simulations. Thus, to test the null hypothesis that some

specific model fits the data we can use Monte Carlo tests whose principle was originated by

Dwass [1957] and Barnard [1963]. A Monte Carlo test is based on simulations from the null

hypothesis and it can be applied to any point process model serving as a null hypothesis.

Suppose that the reference curve is the summary function T (d), then:

1. We generate M independent simulations from the null model of interest using the

estimated parameters inside the study region W .

2. We compute the estimated T functions for each of these realizations, T̂j(d) for j =

1, ...,M .

3. We obtain the pointwise minimum and maximum of these M simulated curves that

define the envelope: Tmin(d) = min
j

T̂j(d) and Tmax(d) = max
j

T̂j(d).

4. We draw three curves Tmin(d), T̂ (d) estimated from the dataset, and Tmax(d) (see

Fig. 2.6).
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5. For a fixed d chosen prior to simulation, the probability that T̂ (d) lies outside the

envelope for the simulated curves (type I error=α) is equal to 2/(1+M). Instead of the

pointwise minimum and maximum, one could use the pointwise order statistics (the

pointwise k-th smallest and k-th largest values) giving a test with significance level

α = 2k/(1 +M).

Figure 2.6: Pointwise envelope example for a random point pattern. (Left) Dataset of n=100
independent uniform random points in a square window [0, 1]× [0, 1]. (Right) Envelopes from
M=39 CSR simulations inside the same window and with the same intensity using Ripley’s
K function (grey), K function estimated from the dataset (black) and theoretical K function
of that CSR process (red). This corresponds to a Monte Carlo test with significance level
2/(1+39)=0.05

Note that the previous pointwise envelopes specify the critical points for a Monte Carlo

test [Ripley, 1981] but they are not ‘confidence intervals’ for the true value of the function.

The test is constructed by choosing a fixed value of d, and rejecting the null hypothesis if the

observed function value lies outside the envelope at this value of d. If we draw the pointwise

envelope as presented above and check whether the empirical summary function T̂ (d) is ever

outside the envelope for all d, this is equivalent to choosing the value of d in a data-dependent

manner, and the true significance level is higher, i.e., less ‘significant’. To avoid this problem

if we have no prior information about the range of spatial interaction, we can use global

envelopes, also called simultaneous critical envelopes, as follows:

1. We generate M independent simulations from the null model of interest using the

estimated parameters inside the study region W .

2. We compute the estimated T functions for each of these realizations, T̂j(d) for j =

1, ...,M .

3. We obtain the theoretical value of the summary function, T (d). If we are testing CSR,

the theoretical value is known. Otherwise we generate a separate set of M ′ simulations,
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compute the average of the estimated T functions of all these M ′ simulations and take

this as an estimate of the theoretical value.

4. For each simulation of the first step, we compare its estimated T̂j(d) function to the

theoretical curve, and compute the maximum absolute difference between them (over

the interval of d values in which we are interested). This gives a deviation value wj =

maxd|T̂j(d) − T (d)| for each of the M simulations, and we take the largest of the

deviation values (wmax). Then, the upper and lower limits that define the envelope are

Tmin(d) = T (d)−wmax and Tmax(d) = T (d)+wmax, i.e., global envelopes have constant

width 2wmax.

5. We draw three curves Tmin(d), T̂ (d) estimated from the dataset, and Tmax(d).

6. The test rejects the null hypothesis if T̂ (d) lies outside the envelope at any value of d

in the analyzed interval. This test has significance level α = 1/(1 + M). As before,

instead of the largest deviation, one could use the k-th largest deviation values giving

a test with significance level α = k/(1 +M).

2.3 Network spatial analysis

Many types of real-world events are constrained by networks, such as stores located alongside

streets, traffic accidents on roads, street crime sites, etc. These events are called network

events (Fig. 2.7). Network spatial analysis refers to statistical and computational methods

for analyzing events occurring on or along networks. Most of these methods have been

developed by Okabe and collaborators [Okabe and Sugihara, 2012] and include techniques

similar to the methods used in traditional spatial analysis but taking into account the network

topology. The main difference from traditional spatial analysis using Euclidean distances is

that network spatial analysis measures shortest path distances. Shortest path distances are

much harder to calculate because they require network topology management. If traditional

spatial analysis assuming a plane with Euclidean distances [Illian et al., 2008] is applied to

network events, then we are likely to draw false conclusions due to short-range clustering

(due to the concentration of events, for example, on a road) and/or long-range regularity (for

example, due to the separation of different roads).

A linear network L in R
3 is defined as the union of a finite collection of line segments

li in R
3 (i = 1, ..., l), where a line segment with endpoints u ∈ R

3 and v ∈ R
3 is defined as

[u, v] = {su+ (1− s)v : 0 ≤ s ≤ 1}. The shortest path distance between two points u and v

located in L, dL(u, v), is the minimum length of all paths along the network from u to v. If

there are no paths from u to v (the network is not connected), then dL(u, v) =∞. A network

that has no cycles is called acyclic network or tree.

Let XXX be a point process on a linear network L. A realization of XXX is a finite set

xxx = {x1, ..., xn} of distinct points xi located in L, where n ≥ 0 is not fixed in advance. Each

point xi is called network event. The intensity function λ(u), u ∈ L of a point process XXX on

a linear network L, is the expected number of points per unit length in the network in the
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Figure 2.7: Examples of network events, i.e., events that occur on a network (car accidents
on a road, left) or events that occur along a network (shops located along a street, right)

vicinity of u. The intensity of the homogeneous Poisson process or CSR is constant λ(u) ≡ λ,

where λ̂ = n/|L| is an unbiased estimator of the intensity, n being the number of points in

xxx and |L| being the total length of all line segments in L. The general intensity function of

a point process XXX on a linear network can be estimated using kernel smoothing estimators

[Okabe et al., 2009].

As previously explained, one of the most commonly used summary functions in spatial

point pattern analysis is Ripley’s K function [Ripley, 1977]. Let L be a linear network with

events at locations x1, ..., xn. Okabe and Yamada [2001] developed a network K function

analogous to Ripley’s K function, where the shortest path distances in the network dL(xi, xj)

replace the Euclidean distances. This function is estimated as:

K̂net(d) =
|L|

n(n− 1)

n
∑

i=1

∑

j 6=i

1{dL(xi, xj) ≤ d}. (2.12)

As shown in Ang et al. [2012], the estimated value of the network K function depends on

the geometry of the network. Therefore, the network K functions of different networks are

not directly comparable.

The solution proposed in Ang et al. [2012] was a geometrically corrected version of the

network K function, KL, that compensated for the geometry of the network. The empirical

estimator of KL is intrinsically corrected for edge effects, and its variance is approximately

stabilized. The geometrically corrected empirical K function for a distance d is defined as:

K̂L(d) =
|L|

n(n− 1)

n
∑

i=1

∑

j 6=i

1{dL(xi, xj) ≤ d}
m(xi, dL(xi, xj))

(2.13)

for 0 ≤ d ≤ R, where m(u, t) = #{v ∈ L : dL(u, v) = t} is the number of points located

in L lying at the exact distance t from the point u measured by the shortest path, and

R =sup{t : m(u, t) > 0 for all u ∈ L} is the circumradius of the network, i.e., the radius of

the smallest disc that contains the entire network, as explained in Ang et al. [2012].

For a homogeneous Poisson process on L, KL(d) = d for all 0 ≤ d ≤ R. This provides
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a simple benchmark for completely spatial random point patterns on a linear network and

also allows comparison between geometrically corrected K functions obtained from different

point patterns in different networks.

For non-constant intensity spatial point processes, Baddeley et al. [2000] introduced the

inhomogeneous version of Ripley’s K function. The contribution to the inhomogeneous K

function of each pair of points xi and xj is weighted by 1/(λ(xi)λ(xj)) (Eq. (2.8)). Con-

sequently, the properties of the inhomogeneous K function are very similar to the original

version of Ripley’s K function. For a spatial point process on a linear network, Ang et al.

[2012] similarly defined the inhomogeneous network K function, estimated as:

K̂LI(d) =
1

∑

i 1/λ̂(xi)

n
∑

i=1

∑

j 6=i

1{dL(xi, xj) ≤ d}
λ̂(xi)λ̂(xj)m(xi, dL(xi, xj))

, (2.14)

where λ̂( ➲ ) is the estimated intensity function.

2.4 Replicated spatial point patterns

Replicated spatial point patterns are a particular situation in the spatial point processes

field where different patterns are considered as instances of the same process and are said to

form a group. Historically, spatial point processes have been more related to applications in

which data collection tended to be costly (e.g. forestry). For this reason, the study of several

independent samples as realizations of the same process was not usually considered. Recently,

the field of replicated point patterns is growing strongly since technological advances have

simplified sampling, particularly 3D sampling.

Pooling or combining several datasets into a single dataset is a common statistical proce-

dure and it may also be applied to summary functions [Baddeley et al., 2015]. In general, a

natural pooled estimate is the ratio-of-sums estimator, i.e., the weighted average of individual

ratios with proportional weights to each dataset.

Let g be the number of different experimental groups. In group i (i = 1, ..., g), we observe

mi point patterns that can be regarded as independent replicates within this group. Let

nij (j = 1, ...,mi) be the number of points for the jth pattern within the ith group xxxij

(i = 1, ..., g). Given an estimate of the summary function T of pattern xxxij , T̂ij(d), the

estimated mean function for each group i is defined as

T̄i(d) =

mi
∑

j=1
wij T̂ij(d)

mi
∑

j=1
wij

, i = 1, ..., g. (2.15)

Different weights wij have been proposed in the literature for function aggregation. Myl-

lymäki et al. [2012] chose to use wij = n2
ij to aggregateK functions together with linear mixed

models to investigate the spatial structure of epidermal nerve fiber. Jafari-Mamaghani et al.

[2010] used wij = nij to study the 3D distribution of pyramidal neurons in the mouse barrel



28 CHAPTER 2. POINT PROCESS STATISTICS

cortex. The weight wij = nij was also recommended by Diggle [2003]. See Pawlas [2011] for

a review.

The main objective in replicated point pattern analysis is to test whether the differences

between groups are statistically significant. The null hypothesis of no difference between

groups establishes that the observed point patterns are independent and identically dis-

tributed patterns. Two proposed tests for testing differences between groups are detailed

below.

❼ Diggle test

Diggle and collaborators proposed a bootstrap Monte Carlo test for difference between

group means of independent replicates of empirical K functions [Diggle et al., 1991,

2000]. The idea is to generate bootstrap samples, K̂∗
ij , from the original sample K̂ij

through the following steps.

Residual functions R̂ij(d) are obtained from the empirical summary functions K̂ij(d):

R̂ij(d) = n
1/2
ij (K̂ij(d)− K̄i(d)),

where K̄i(d) = (1/ni)
∑mi

j=1 nijK̂ij(d) is the mean in group i, nij is the number of points

in the pattern xxxij and ni =
∑mi

j=1 nij is the number of points in group i.

Then, the bootstrap samples are calculated as:

K̂∗
ij(d) = K̄(d) + n

−1/2
ij R̂∗

ij(d),

where R̂∗
ij is a random sample from the set of rescaled residual functions R̂ij , K̄(d) =

(1/n)
∑g

i=1 niK̄i(d) is the overall mean and n =
∑g

i=1 ni.

For the choice of the weight n
1/2
ij the authors used the assumption that the variance

of Ripley’s K function is inversely proportional to the number of points in the point

pattern. Under this assumption, the residuals functions R̂ij are approximately identi-

cally distributed and the distribution of the bootstrap samples K̂∗
ij approximates the

distribution of K̂ij under the null hypothesis of no difference between groups.

Diggle et al. [1991] proposed the following test statistic on an interval [d0, d1] (they

advise drawing the bootstrap residuals R̂∗
ij with replacement from all R̂ij):

D =

g
∑

i=i

∫ d1

d0

(

√

K̄i(d)−
√

K̄(d)

)2

dd. (2.16)

Later, Diggle et al. [2000] changed the test statistic in favor of sampling without re-

placement, i.e., performing a permutation test with:

D =

g
∑

i=i

ni

∫ d1

d0

1

d2
(

K̄i(d)− K̄(d)
)2

dd. (2.17)
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To determine the p-value, the observed value of the test statistic is ranked among the

corresponding bootstrap values of the test statistic.

❼ Studentized permutation test

The idea of using permutations to test for differences between groups comes from Fisher

[1935] and Pitman [1937]. Hahn [2012] proposed the studentized permutation test.

Suppose we have g groups of point patterns, with m1, ...,mg point patterns each. Hahn

[2012] proposed comparing the means of groups corresponding to estimates T̂ij(d), where

T is the summary function of pattern xxxij in an interval [d0, d1] for d, with the test

statistic

H =
∑

1≤i≤j≤g

∫ d1

d0

(T̄i(d)− T̄j(d))
2

1
mi

s2i (d) +
1
mj

s2j (d)
dd, (2.18)

where T̄i(d) = (1/mi)
∑mi

j=1 T̂ij(d) is the mean in group i and

s2i (d) =
1

mi−1

mi
∑

j=1
(T̂ij(d)− T̄i(d))

2

are the estimated within-group variances of the estimates for a distance d.

If we use a summary function that stabilizes the variance, the denominator of Eq. (2.18)

can be improved by pooling over all values of d, and the test statistic would be:

H =
∑

1≤i≤j≤g

∫ d1

d0

(T̄i(d)− T̄j(d))
2

1
mi

s̄2i +
1
mj

s̄2j
dd, (2.19)

where

s̄2i =
1

d1−d0

∫ d1

d0

1

mi − 1

mi
∑

j=1

(T̂ij(d)− T̄i(d))
2dd.

The test is performed by calculating the H statistic for the observed data and for a

large number of random permutations of the set of point patterns, and then computing

the p-value ranking the observed value of the test statistic among the corresponding

permutation values of the test statistic.
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Chapter 3
Network design optimization

3.1 Introduction

In network design problems such as transportation, telecommunications and distribution sys-

tems a basic topological structure is the spanning tree. Well-known-classical algorithms exist

for building a minimum spanning tree (MST) [Kruskal, 1956, Prim, 1957] but, in practice, a

more realistic representation for network design is a degree-constrained minimum spanning

tree (DCMST), i.e., a MST with constraints on the number of edges incident to each node.

Fig. 3.1(a) shows an example of the MST of a graph with 7 nodes. The cost of each connec-

tion is indicated on the edges that join the nodes. Fig. 3.1(b) shows the DCMST of the same

graph, where each node can have a maximum of three incident edges.

Figure 3.1: Example of MST (a) and DCMST (b) of a graph. Each edge has its cost anno-
tated. In (b) the maximum degree of each node is fixed to 3

The DCMST problem can be applied in a transportation system, such as wires, pipes or

canals, where the length of the connections of m nodes should be minimum. The handling

capacity of each node imposes a constraint on the number of edges that can be connected to

that node. In communication networks, the degree constraint limits network vulnerability if

a node fails. The DCMST problem could also be applied to the design of a computer network
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or a road network with a maximum number of roads at a crossing [Krishnamoorthy et al.,

2001].

Chapter outline

Section 3.2 formally describes the DCMST problem, whose resolution requires heuristic tech-

niques due to its complexity. Section 3.3 introduces the evolutionary computation algorithms

chosen for this purpose and the framework used to compare their performance.

3.2 Degree-constrained minimum spanning tree

A DCMST is a minimum spanning tree where we assume that there is a degree constraint on

each node such that, at node v, its degree value deg(v) (i.e., its number of incident edges) is

at most a given value dv ∈ N.

Formally, let G = (V,E) be an undirected complete graph with a set of vertices (nodes)

V and a set of edges E. A spanning tree of G is a subgraph T = (V,ET ), ET ⊂ E that

contains all vertices in V which it connects with exactly |V | − 1 edges. Let cuv ≥ 0 be the

cost of each edge (u, v) ∈ E, u, v ∈ V . The DCMST problem consists of finding a minimum

spanning tree T ∗ = (V,ET ∗), ET ∗ ⊂ E such that

T ∗ = argmin
T

∑

(u,v)∈ET

cuv,

subject to

deg(v) ≤ dv for all v ∈ V .

The DCMST problem is NP-hard (this can be shown by reduction of the Hamiltonian

path problem, Garey and Johnson [1979]). The problem of finding the DCMST of a graph,

and particularly finding a good representation of the tree, has been widely studied in the liter-

ature. For example, Knowles et al. [2000] introduce the randomized primal method, a novel

tree construction algorithm for stochastic iterative search techniques. This method builds

low-cost degree-constrained trees. Krishnamoorthy et al. [2001] compare three heuristics

(simulated annealing, a genetic algorithm and a method based on problem space search) and

two exact algorithms (Lagrangian relaxation and branch-and-bound) for the DCMST prob-

lem. Further, they propose alternative tree representations to facilitate the genetic algorithm

neighbourhood searches. Raidl and Julstrom [2003] propose representing spanning trees for

network design problems directly as sets of their edges. They demonstrate the usefulness of

their encoding for the DCMST problem. Soak et al. [2004] develop another effective encoding

method for use by black-box optimization methods when addressing tree-based combinatorial

problems.

The above representations are based on the construction of a single tree. Some more

recent studies consider building a forest. This extension is not straightforward. In Delbem
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et al. [2004], the proposed forest representation, named node-depth encoding, is composed of

the union of the encodings of all trees of the forest. The union is implemented using an array

of pointers, where each pointer indicates a tree consisting of linear lists containing the tree

nodes and their depths. The proposed approach is evaluated for the DCMST problem. Some

years later, Delbem et al. [2012] propose a new data structure to generate and manipulate a

set of spanning forests, called node-depth-degree representation. This structure improves the

average running time of their previous node-depth encoding (the forest is again composed

of the union of the trees). Also working with a group of trees, Czajko and Wojciechowski

[2009] take a different approach. They formulate the hop- and degree-constrained minimum

spanning forest problem with minimization of the number of trees (this problem is defined

as part of an access network topology design).

3.3 Evolutionary computation techniques

Evolutionary computation is a branch of artificial intelligence inspired by biological evolution

mechanisms to solve optimization problems. Evolutionary algorithms can be considered as

metaheuristic or stochastic techniques of global optimization, distinguished by the use of a

population of candidate solutions that are evolved through iterative processes inspired by

Charles Darwin principles [Darwin, 1859].

We used genetic algorithms (GAs) [Holland, 1975] and estimation of distribution algo-

rithms (EDAs) [Larrañaga and Lozano, 2002] to solve and compare a variety of network

design optimization problems. We opted for two GAs and two EDAs. Specifically, we used

the generational genetic algorithm (gGA) [Cobb and Grefenstette, 1993], the steady-state

genetic algorithm (ssGA) [Syswerda, 1991], the node histogram based sampling algorithm

(NHBSA) [Tsutsui, 2006] and the Mallows kernel EDA (MKEDA) [Ceberio et al., 2015].

The gGA and the ssGA are two of the best-known families of GAs. Alg. 3.1 shows the

pseudo-code of a generic GA. Briefly, these algorithms evolve a population of individuals

until a specified stop condition is met (line 4). The main steps are as follows: select the

parents to be crossed (line 6), recombine them (line 7), and mutate the resulting children

(line 8). Usually, the fittest individuals survive and the least fit individuals are discarded. In

the particular case of the gGA, in each generation, two parents are selected from the whole

population and recombined, generating two children that are then mutated. The resulting

children are placed in an auxiliary population which will replace the current population when

the auxiliary population is completely filled. In our case, the size of the auxiliary population

is the same as the size of the current one. Note that this strategy could remove the best

solution in the current population. By contrast, the ssGA is an elitist strategy because the

best solution is always retained. In each generation of the ssGA, one of the resulting children

is mutated and evaluated and then inserted back into the population if the new individual is

better than the worst individual in the current population.

EDAs are stochastic optimization methods that guide the search for the optimum with the

estimation of probabilistic models of promising individuals and sampling from these models.
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Algorithm 3.1 Generic GA pseudo-code
1: t←− 0
2: P (t)←− GenerateInitialPopulation()
3: Evaluate(P (t))
4: while ! StopCondition() do
5: t←− t+ 1
6: Pp ←− SelectParents(P (t− 1))
7: Pc ←− Crossover(Pp,CrossProb)
8: Mutate(Pc, MutProb)
9: Evaluate(Pc)

10: Pt ←− BuildNextGeneration(Pc, P (t− 1))
11: end while

Both EDAs and GAs are heuristic optimization algorithms based on the stochastic nature

of the search itself and both are based on evolving populations. However, while in GAs

the population evolution is carried out by crossover and mutation operators, in EDAs the

new population of individuals is sampled from a probability distribution. While in EDAs

the interrelations between the variables representing the individuals are expressed explicitly

through the probabilistic model associated with the selected individuals in each generation,

in GAs these interrelationships are taken into account implicitly.

Alg. 3.2 shows the pseudo-code of a generic EDA. We start from an initial population of

M individuals (line 2). In the main loop, until the stop condition is met (line 4), a number

N (N ≤ M) of individuals are selected (usually the individuals with best fitness) (line 6).

Next, the probabilistic model of the selected individuals is estimated (line 7), and the new

population of size M is generated by sampling the learned model (line 8). With regard

to the EDAs used in this work, the NHBSA models frequencies at each absolute position

in the permutation. The other EDA, the MKEDA, calculates as many Mallows models

(distance-based exponential probability models over permutation spaces [Mallows, 1957]) as

individuals in the selected population of solutions. Particularly, we analyzed the MKEDA

under the Cayley distance [Irurozki et al., 2016] because the algorithm performs better with

this distance [Ceberio et al., 2015].

Algorithm 3.2 Generic EDA pseudo-code
1: t←− 0
2: P (t)←− GenerateInitialPopulation(M)
3: Evaluate(P (t))
4: while ! StopCondition() do
5: t←− t+ 1
6: Psel(t− 1)←− Select(N , P (t− 1))
7: Model(t) ←− EstimateModel(Psel(t− 1))
8: P (t)←− Sample(M , Model(t))
9: Evaluate(P (t))

10: end while
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In order to compare the performance of these algorithms we used the jMetal framework

[Durillo and Nebro, 2011, Durillo et al., 2010]. jMetal stands for Metaheuristic Algorithms

in Java, and it is an object-oriented Java-based framework for single and multi-objective

optimization with a variety of metaheuristics techniques. It is licensed under the GNU Lesser

General Public License1 and can be freely obtained from http://jmetal.sourceforge.net.

jMetal provides a rich set of classes that can be used as building blocks of metaheuristics;

making use of code reuse, algorithms share the same basic components, which facilitates not

only the development of new techniques but also carry out different types of studies. Fig. 3.2

shows an Unified Modeling Language (UML) diagram describing the jMetal architecture

with the main components and their relationships. The diagram is a simplified version in

order to make it understandable. The basic architecture of jMetal is based on an Algorithm

that solves a Problem using one or more solution sets (SolutionSet) and a set of Operator

objects. jMetal uses a generic terminology to name classes in order to make them useful for

any metaheuristic. In the context of evolutionary algorithms, populations and individuals

correspond to SolutionSet and Solution jMetal classes, respectively. jMetal already contained

the GAs in which we were interested and we plugged the implementation of EDAs into jMetal

framework.

1LGPL License: http://creativecommons.org/licenses/LGPL/2.1/

http://jmetal.sourceforge.net
http://creativecommons.org/licenses/LGPL/2.1/
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Figure 3.2: UML diagram including the main classes of jMetal and their relationships. Di-
agram extracted from the jMetal user manual available at http://jmetal.sourceforge.net

http://jmetal.sourceforge.net


Chapter 4
Neuroscience

4.1 Introduction

Neuroscience can be defined as the scientific study of the nervous system. The biological

study of the brain is a multidisciplinary area that includes many levels of study, from the

purely molecular to the specifically behavioral and cognitive. Neuroscience has had a great

development in the last decades and it has become one of the most important biomedical

disciplines today. This is partly due, among other factors, to the growing impact of nervous

system diseases in Western societies. The increase in patients suffering from stroke, neu-

rodegenerative diseases (such as Alzheimer’s disease or Parkinson’s disease) or psychiatric

disorders (such as depression or schizophrenia), have caused an increase in material resources

devoted to the research of the brain and its disorders.

One of the fundamental objectives of neuroscience is to understand the biological mech-

anisms responsible for human mental activity. The study of the brain and, in particular, of

the cerebral cortex (nervous tissue that covers the surface of the cerebral hemispheres) is one

of the greatest challenges of science. It is believed that the cerebral cortex is the part of the

brain responsible for conscious thinking and that cerebral cortex activity is related to the

ability to perform extremely complex tasks that distinguish humans from other mammals.

Anatomically, in the cerebral cortex there is a stratification in six horizontal layers, labeled

from the most superficial (layer I) to the innermost (layer VI). Each layer is characterized by

the predominance of a type of nerve cell and the axon destination of these cells within the

brain. The hypothesis of columnar organization is currently the most widely adopted to ex-

plain cortical processing of information [DeFelipe et al., 2012]. According to this hypothesis,

neurons are arranged in structures called cortical columns, considered the basic functional

unit of the brain (Fig. 4.1).

More than a century ago, Santiago Ramón y Cajal suggested interpreting the brain by

observing the morphology of individual neurons. The development of this idea is materialized

in this dissertation through the use of spatial point processes methods (whose basic concepts

have been described in Chapter 2) and network design optimization techniques (introduced

in Chapter 3). We study and develop methods to analyze the spatial distribution of different
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Figure 4.1: Cortical column development in mammals. Source: Blue Brain Project, École
Polytechnique Fédérale de Lausanne

neuronal structures (synapses, spines, branching points, etc.), with the aim of obtaining useful

results in the field of neuroscience. We also develop optimization methods for wiring analysis

of different neuronal arborizations (basal and apical dendrites, and axons) in different types

of neurons.

Chapter outline

This chapter provides a basic introduction to some biological concepts, useful to understand

the applications developed in the next chapters. Section 4.2 presents the neuron doctrine

introduced by Ramón y Cajal in which modern neuroscience continues to be supported, as

well as the most important neuroscience projects of the last decade. Section 4.3 describes

the two main groups of neurons in the cerebral cortex, pyramidal neurons and interneurons,

both involved in the studies carried out in this dissertation. Section 4.4 details the wiring

economy principle and some of the many recent studies related to this topic. In this thesis we

study the existence of optimal neuronal wiring in both pyramidal neurons and interneurons.

4.2 Neuron doctrine and modern neuroscience

At the end of the XIX century, cells were known to be autonomous entities that related to

the rest of body’s cells. However, it was thought that this did not occur in the brain, where

neurons would form a continuous network. In 1888, Santiago Ramón y Cajal (1852-1934)

was able to demonstrate that neurons were also independent cells, what has been called
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the neuron doctrine [Ramón y Cajal, 1888]. He was able to reach this conclusion, which

represented an authentic paradigm shift in the neurological science of the time, thanks to

the help of a microscope and a staining technique designed by the Italian researcher Camillo

Golgi (1843-1926). By their technique and the discovery, respectively, Golgi and Ramón y

Cajal shared the Nobel Prize of Medicine of 1906.

Ramón y Cajal made numerous important contributions to the knowledge of the structure

and function of the nervous system in general, and the microanatomy of the cerebral cortex

in particular. His research contributed decisively in the creation of the scientific atmosphere

necessary for the birth of modern neuroscience and his ideas are still present today. Neuron

doctrine states that the nervous system is composed of independent cells, neurons, whose

interaction, mediated by synapses, leads to the appearance of complex responses.

Figure 4.2: Drawing of Purkinje cell in the human cerebellum by Santiago Ramón y Cajal.
He depicted the thick dendritic forest of the neuron (c and d) that branches off from the cell
body, the axon (a), and the collateral axon (b). Source: Instituto Cajal (CSIC)

In general, the structure of a neuron is composed of the following parts: soma, axon and

dendrites (Fig. 4.2):

❼ Soma: is the body of the neuron. It is a compact structure that contains the cell

nucleus and stores the genetic information of the cell. From it two types of extensions

or neurites arise: the axon and the dendrites.
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❼ Axon: is a thin cellular extension that arises from the soma at the axon hillock and

extends up to even tens of thousands of times the diameter of the soma in length. The

axon carries exit nerve signals. In most connections between neurons, called synapses,

the signals are sent from the axon of a neuron (presynaptic) to the dendrite of another

neuron (postsynaptic), although there are exceptions. Axons can also grow collateral

branches to connect with close neurons.

❼ Dendrites: are cellular extensions with many branches that arise from the soma, forming

complex ‘dendritic trees’. Most neuron inputs occur via dendritic spines (described

for the first time by Ramón y Cajal [1888]). Dendritic spines are small membranous

protrusions of the dendrite of a neuron that typically receive input from an axon at a

synapse. Spines are known to be critical in learning, memory and cognition; moreover,

loss or alteration of these structures has been described in the pathogenesis of major

neurological disorders such as Alzheimer’s disease [Fiala et al., 2002]. Recent studies

also suggest selective alterations in spines with aging in humans [Benavides-Piccione

et al., 2013].

4.2.1 Current projects

In the last decade important and ambitious projects related to the study of the brain have

arisen. The Blue Brain Project1 (BBP) [Markram, 2006], headed by the founding director

Henry Markram, began in 2005 by the Brain Mind Institute at the École Polytechnique

Fédérale de Lausanne (EPFL) and IBM. The goal of the BBP is to build biologically detailed

digital reconstructions and simulations of the rodent, and ultimately the human brain by

means of reverse engineering, using the BlueGene supercomputer from IBM. The project

represents the world’s first comprehensive attempt of reverse engineering the mammalian

brain, with the objective of knowing their functioning and dysfunctions through detailed

simulations, helping to explore solutions to health mental problems and neurological diseases.

At the end of 2006, the initial objective of the project was completed: the simulation of a rat

neocortical column. The BBP website specifies that the final result of the project will be a

facility with the capability to model and simulate:

❼ The brain or any region of the brain of any species, at any stage in its development.

❼ Specific pathologies of the brain.

❼ Diagnostic tools and treatments for these pathologies. The geometric and computa-

tional models of the brain produced by the facility will reproduce the structural and

functional features of the biological brain with electron microscopic and molecular dy-

namic level accuracy.

The Neocortical Microcircuit Collaboration Portal2 provides an online public resource

of the Blue Brain Project’s first release of a digital reconstruction of the microcircuitry of

1http://bluebrain.epfl.ch/
2https://bbp.epfl.ch/nmc-portal/

http://bluebrain.epfl.ch/
https://bbp.epfl.ch/nmc-portal/
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juvenile rat somatosensory cortex, access to experimental data sets used in the reconstruction,

and the resulting models [Markram et al., 2015, Ramaswamy et al., 2015, Reimann et al.,

2015] (Fig. 4.3).

Figure 4.3: Single neuron (left), microcircuit consisting of several neurons (middle) and
cortical column composed of multiple nerve cells (right). Source: Blue Brain Project, École
Polytechnique Fédérale de Lausanne

On January 2009, the Spanish participation within the BBP called Cajal Blue Brain

Project3 (CBBP) was presented. This project is led by the Universidad Politécnica de Madrid

(UPM) and the Instituto Cajal from Consejo Superior de Investigaciones Cient́ıficas (CSIC).

The project uses the resources provided by the Magerit supercomputer installed in the Su-

percomputing and Visualization Center of Madrid (CeSViMa). The CBBP has the following

key long-term objectives specified on its website:

❼ To decode the synaptome or detailed map of the synaptic connections of the cortical

column and, as a result, reconstruct all its components.

❼ To give a strong boost to research on the cortical column, exploring in depth current

hypotheses about its normal function and dysfunctions (especially Alzheimer’s disease).

❼ To devise new methods to process and analyze the experimental data obtained in the

aforementioned research studies.

❼ To develop computer technology to study neuronal functions using graphics tools and

visualization methods.
3http://cajalbbp.cesvima.upm.es/

http://cajalbbp.cesvima.upm.es/
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In 2013, two major international initiatives in Europe and the United States began almost

simultaneously, with the provocative goal of grouping information and acting as an exchange

platform to unravel the mysteries of brain function.

In Europe, the Human Brain Project4 (HBP) [Markram, 2012] is a ten-year scientific

research project whose objective is to understand the human brain and its diseases and, ul-

timately, to emulate its computational capabilities. A key objective is to reconstruct and

simulate the whole human brain. The project has three main areas that are medicine, neu-

roscience and computing. The HBP has the following main objectives:

❼ To create and operate a European Scientific Research Infrastructure for brain research,

cognitive neuroscience, and other brain-inspired sciences.

❼ To gather, organize and disseminate data describing the brain and its diseases.

❼ To simulate the brain.

❼ To build multi-scale scaffold theory and models for the brain.

❼ To develop brain-inspired computing, data analytics and robotics.

❼ To ensure that the HBP’s work is undertaken responsibly and that it benefits society.

The Brain Research through Advancing Innovative Neurotechnologies5 (BRAIN) Initia-

tive [Alivisatos et al., 2012, 2013] or Brain Activity Map (BAM) project is a similar but

completely separate project in the United States. President Obama launched the BRAIN

Initiative to “accelerate the development and application of new technologies that will enable

researchers to produce dynamic pictures of the brain that show how individual brain cells

and complex neural circuits interact at the speed of thought.” The three main goals of the

project are specified in Alivisatos et al. [2013]:

❼ To build new classes of tools that can simultaneously image or record the individual

activity of most, or even all, neurons in a brain circuit, including those containing

millions of neurons.

❼ To create tools to control the activity of every neuron individually in these circuits,

because testing function requires intervention.

❼ To understand circuit function.

The results achieved in these ambitious projects will depend on the progress of computer

science and statistics, as well as the ability to pool a huge amount of data in order to

extract patterns describing their organization. Iteratively, the available information must

be incorporated, models must be programmed according to the known biological rules, and

simulations must be executed, which must be compared with the experimental data, to adjust

the models if necessary.

4https://www.humanbrainproject.eu/
5https://www.braininitiative.nih.gov/

https://www.humanbrainproject.eu/
https://www.braininitiative.nih.gov/
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4.3 Neurons in the cerebral cortex

Although there have been numerous efforts to classify different types of neurons [Armañanzas

and Ascoli, 2015, Ascoli et al., 2008, Bota and Swanson, 2007, DeFelipe et al., 2013] a global

consensus has not yet been achieved. In general, at least there is a consensus that neurons

in the cerebral cortex can be classified into two major groups according to their morphology:

pyramidal neurons and interneurons (Fig. 4.4). Differences in the identification and nomen-

clature of subgroups of this basic classification do not allow at this time to have a rigorous

and complete neuronal classification.

Figure 4.4: 3D reconstructions of a pyramidal cell (left) and an interneuron (right) of rat
neocortex. The location of the soma is shown in red (in the interneuron it is difficult to see
because it is behind the neurites). Axon is shown in gray and dendrites in green (in the
pyramidal neuron basal dendrites are shown in green and apical dendrite in pink). Source:
NeuroMorpho.Org [Ascoli et al., 2007]

The main features of the two major groups mentioned above can be summarized as follows:

❼ Projection neurons also called pyramidal neurons are so named because of the tri-

angular shape of their cell body. The morphology of these neurons is characterized

by a single axon, an apical dendrite and by multiple branched basal dendrites arising

from its triangular cell body. Pyramidal cells have spines in their dendrites and are

usually excitatory, using glutamate as neurotransmitter. They are the most abundant

cortical neurons (70-80%). Pyramidal neurons are considered the main neuronal build-

ing blocks of the cerebral cortex because dendritic spines of these cells are the main

postsynaptic target of excitatory synapses in the cerebral cortex [DeFelipe, 2011]. They

are neurons with long axons that communicate separate and distant regions within the

nervous tissue.
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❼ Interneurons are short axon cells that innervate neighbouring regions with few or

no spines in their dendrites. These cells show a great morphological variability across

brain areas and animal species. Most interneurons are inhibitory and use gamma-

aminobutyric acid (GABA) as the main neurotransmitter. GABAergic interneurons

represent the vast majority of smooth or sparsely spiny non-pyramidal neurons (es-

timated as 15-30% of the total population of all cortical areas), which together with

pyramidal cells and spiny non-pyramidal cells, represent the major classes of cortical

neurons [DeFelipe, 2011].

4.4 Neuronal wiring

Fig. 4.5 shows an example of the variability that may exist in different wiring configurations

passing through the same target points. In order to be considered as possible neuronal trees,

in all configurations the maximum number of branches at each point is limited to two because,

in general, neuronal branching nodes give rise to two branches.

Figure 4.5: Example of trees with different wiring configurations passing through the same
200 target points randomly distributed on a circular surface starting from a root located in
the center

Santiago Ramón y Cajal proposed the wiring economy principle. This principle states

that neurons are arranged in such a way as to minimize the wiring cost where the structure of

axons and dendrites is designed to save space, time and matter [Ramón y Cajal, 1899]. Wiring

economy has been widely used in the literature to explain neuron placement in different brain

areas and species, as well as morphological properties in single neurons.

Regarding placement, some authors consider the minimization of wiring costs in order to

explain neuron placement in simple nervous systems such as Caenorhabditis elegans [Chen

et al., 2006, Kaiser and Hilgetag, 2006, Pérez-Escudero and de Polavieja, 2007, Pérez-Escudero
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et al., 2009]. There are also studies on the relation of wiring economy and neuron placement

in larger brains. For example, Rivera-Alba et al. [2011] try to explain the placement of

neurons in a module of the Drosophila melanogaster brain; Chklovskii et al. [2002] associate

wiring optimization with the optimal arrangement of elements of neuronal circuits in the

mouse neocortex; Kaiser and Hilgetag [2006] further examine the concept of wiring economy

analyzing 3D spatial positions of connected cortical areas in the macaque brain; Rivera-Alba

et al. [2014] use the concept of wiring economy and the dimensions of neuronal components

to predict the microarchitecture of the neuropile across brain areas and species. Karbowski

[2015] combines different forms of wiring minimization with the maximization of dendritic

spine proportion in the cerebral cortex across species.

Regarding the morphological properties of single neurons, Cuntz et al. [2007, 2008, 2010]

and Schneider et al. [2014] use simulations of synthetic neuronal structures to show that opti-

mal wiring explains dendritic branching patterns. Wen and Chklovskii [2008] and Wen et al.

[2009] attempt to disclose the relationship between the dimensions and branching structure of

dendritic arbors and synaptic distribution by minimizing wiring cost. Other studies formulate

mathematically the relation between optimal wiring and different dendritic characteristics.

For example, Cuntz et al. [2012] have shown that optimal wiring predicts a 2/3 power law

between dendritic wiring length and the number of branching points and also a 2/3 power

law between wiring and the number of synapses.
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Part III

CONTRIBUTIONS TO POINT

PROCESS STATISTICS

47





Chapter 5
Three-dimensional replicated point

pattern-based analysis applied to

cortical synapses

5.1 Introduction

The aim of this chapter is to perform a complete analysis of the 3D spatial distribution of

several groups of replicates (groups of patterns considered as instances of the same process).

For that, we first analyzed the intensity in each group and examined whether there were

significant differences between groups. Second, we performed spatial modeling to find a

suitable model for each replicate from different groups. Third, we used replicated spatial point

patterns to analyze similarities and differences in the spatial distribution between groups of

replicates. To illustrate each step of this spatial analysis, it was applied to the study of the

3D distribution of synapses in the cerebral cortex, particularly aiming to find out whether

there is a general pattern of distribution of synapses for the six cortical layers, and identify

any possible similarities and differences between layers.

One major issue in cortical circuitry is to ascertain how synapses are distributed and

whether or not synaptic connections are specific [DeFelipe et al., 2002b]. To understand the

anatomical design principles of cortical circuits, it is essential to analyze the ultrastructure

of all components of the neuropil (i.e., the very dense network of neuronal and glial processes

that occupy the space between the cell bodies of neurons, glia and blood vessels) and in

particular the number and spatial distribution of synapses. Furthermore, synaptic size plays

an important role in the functional properties of synapses [Lüscher et al., 2000, Schikorski

and Stevens, 1997, Takumi et al., 1999, Tarusawa et al., 2009]. Thus, numerous researchers

have been trying to find simple and accurate methods for estimating the distribution, size

and number of synapses. To this end, two sampling procedures are currently available: one

is based on serial reconstructions and the other on single sections. Clearly, serial reconstruc-

tion should be the method of choice for the challenging task of unraveling the extraordinary
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complexity of the nervous system. Indeed, serial sectioning transmission electron microscopy

is a well-established and mature technology for collecting 3D data from ultrathin sections of

brain tissue [Bock et al., 2011, Harris et al., 2006, Hoffpauir et al., 2007, Mishchenko et al.,

2010, Stevens et al., 1980]. It is based on imaging ribbons of consecutive sections with a

conventional transmission electron microscope. However, the major limitation is that it is

extremely time-consuming and difficult to obtain long series of ultrathin sections, often mak-

ing it impossible to reconstruct large volumes of tissue. Hence, the recent development of

automated electron microscopy techniques is a vital step forward in the study of neuronal

circuits [Briggman and Denk, 2006, Knott et al., 2008, Merchán-Pérez et al., 2009]. Us-

ing combined focused ion beam (FIB) milling and scanning electron microscopy (SEM), we

obtained 3D samples from the six layers of the rat somatosensory cortex and identified and

reconstructed the synaptic junctions. A total volume of tissue of approximately 4500 µm3 and

around 4000 synapses from three different animals were analyzed. Different samples, layers

and/or animals were aggregated and compared using replicated spatial point processes.

The research included in this chapter has been published in Anton-Sanchez et al. [2014].

Chapter outline

The chapter is organized as follows. Section 5.2 describes the intensity analysis in each

group of replicates. Section 5.3 introduces the modeling of spatial point processes for each

replicate. Section 5.4 details the proposed methodology for replicated point pattern-based

analysis. Section 5.5 shows the results of the spatial analysis described in the previous sections

applied to the study of the distribution of cortical synapses. Section 5.6 briefly describes the

software developed for the spatial analysis of synapses. Finally, Section 5.7 ends with some

discussion and conclusions.

5.2 Intensity

The first step in our analysis was to estimate the synaptic density of each layer and, more

specifically, to study whether there were significant differences between synaptic densities in

different layers of the somatosensory cortex. We used the simulation process described below

along with a multiple mean comparison test.

We calculated a fixed-volume sampling box to extract subsamples from the original ex-

perimental samples. The x, y, z dimensions of this box were equal to the smallest x, y, z

dimensions of the experimental samples, so the box could be applied to any of the samples

without exceeding their boundaries. We then used this box to extract centroids from ran-

domly selected samples of each layer at random locations. We repeated this process 50 times

for each layer, thus obtaining 50 different synaptic densities per layer. See Fig. 5.1.



5.3. MODELING OF SPATIAL POINT PROCESSES 51

Figure 5.1: Diagram of data extraction to analyze whether the synaptic densities of cortical
layers are significantly different. The figure shows how we randomly selected a sample from
layer III, then we extracted, also randomly, a box inside this sample and counted the number
of synaptic junctions in the box. We repeated this process 50 times for each layer. The
dimensions of the box were the same for all layers, and it had the maximum volume that
could be extracted from all the samples, i.e., it had the minimum length in each dimension
(x, y, z) considering all samples

5.3 Modeling of spatial point processes

The second step in the analysis of the entire cerebral cortex was to find a suitable model for

each of the samples from layer I to VI. Because Merchán-Pérez et al. [2014] recently showed

that the random sequential adsorption (RSA) process [Evans, 1993] adequately describes the

spatial distribution of synaptic junctions in layer III, we tested the RSA model for each

sample of all layers.

An RSA process is a type of hard-core process, i.e., two points cannot be placed closer

than a minimum distance, where locations are chosen randomly, subject only to the distance

constraint. These minimum distances can be fixed or, as in our case, calculated according



52 CHAPTER 5. 3D-REPLICATED POINT PATTERN-BASED ANALYSIS

to a probability density function (Section 2.2.3.3). Considering that the synaptic junctions

cannot overlap, and therefore the minimum distances between synapses are limited by the

size of the junctions at least, the RSA process is particularly well suited here. We have used

Feret’s diameter of each synaptic junction as an estimate of its size (the diameter of the

smallest sphere circumscribing the synaptic junction). As in Merchán-Pérez et al. [2014] for

layer III, we found that Feret’s diameters in all layers were lognormally distributed.

To test the RSA models we used one of the summary characteristics most commonly used

in the analysis of spatial point processes, namely Ripley’s K function and, particularly, a

common transformation of it, Besag’s L function [Ripley, 1977] (see Section 2.2 for details).

The Miles-Lantuéjoul-Stoyan-Hanisch translation edge-correction is often used to estimate

K(d) [Baddeley et al., 1993, Ohser, 1983]:

K̂(d) =
vol(B)2

N(B)2

∑

xk∈B

∑

xl 6=xk

1{||xk − xl|| ≤ d}
γB(xk − xl)

, (5.1)

where N(B) is the number of points falling in a region B ⊂ R
3, xk, k = 1, ..., N(B) are

the observed points, vol(B) is the volume of the region B and γB is the ‘set covariance’,

γB(xk − xl) = vol({x|x+ xk − xl ∈ B}) = vol(B ∩ (B − (xk − xl))).

The 3D CSR process has the following expression for the K function (a clustered pattern

curve will be shifted to the left, whereas a regular pattern curve will be shifted to the right):

KCSR(d) =
4

3
πd3. (5.2)

The 3D expression of Besag’s L function is:

L(d) =
3

√

3

4π
K(d). (5.3)

As explained in Section 2.2.3.1, this transformation converts the CSR K function to

the straight line LCSR(d) = d, making the plots much easier to assess visually. For the L

function, a regular pattern curve will be below the diagonal (CSR) and a clustered pattern

will be above.

The expression of Ripley’s K function for the RSA process is analytically unknown, so

we have to use RSA simulations. To simulate an RSA process we need to know its intensity

and the probability density function of the minimum distances between points. In our case,

we need the synaptic density λ and the µ and σ parameters of the lognormal distribution

of Feret’s diameters. An RSA process simulation starts with an empty window to which

spheres, whose radii follow the lognormal distribution fitted using Feret’s diameters, are

added randomly one at a time. If the new simulated synapse intersects with any existing

sphere, the new sphere is rejected, and another sphere is generated with another location and

radius. The process continues until the target intensity is reached.

For example, Fig. 5.2 shows the K and L summary functions of experimental sample 1

from layer I (blue), the average of 99 RSA simulations performed for this sample (green) and

the functions for a CSR process (red). Each RSA simulation had the same intensity as the
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original sample, and the size of simulated synapses was calculated according to the lognormal

distribution fitted using Feret’s diameters of all the synapses of the sample. Generally, the K

functions were very similar to each other across all distances for all the samples. Moreover,

for short distances (200-300 nm), the L functions of the samples and RSA processes were well

below the diagonal line (CSR) representing the empty space around centroids which should

not contain any centroid (non-overlapping synapse constraint). From about 400 nm onwards,

the L functions of both models and experimental samples were again very similar to each

other.

Figure 5.2: Layer I, Sample 1. An example of K and L functions for CSR and RSA processes.
K (left) and L (right) functions of the experimentally observed data (blue) along with the
theoretical CSR (red) and the average of 99 RSA process simulations fitted for sample 1
(green). The K functions of the sample, CSR and RSA processes are very similar. The L
functions of the RSA and the experimentally observed sample are positioned well below the
diagonal (CSR) for short distances and are fairly close to the diagonal for larger distances

To test differences between two summary functions we used simulation-based envelopes

(Section 2.2.4). The statistical rationale of this common procedure is to be found in Monte

Carlo testing. Taking the advice of Baddeley et al. [2014a], we transformed the K function

into the L function and used global envelopes since we had no prior information about the

range of spatial interaction. Note that Monte Carlo tests ‘are strictly invalid, and probably

conservative, if parameters have been estimated from the data’ [Diggle, 2003]. To overcome

this obstacle, we adjusted an RSA process for each sample j in each layer i (i = I, ..., VI) and

estimated the parameters λ̂ij , µ̂ij and σ̂ij using only the remaining samples of the same layer.

The sizes of the simulated synapses were calculated according to the lognormal distribution

fitted using Feret’s diameters of these remaining (mi-1) samples in layer i, where mi is the

number of samples in layer i. If volit denotes the volume of sample t in layer i, then
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λ̂ij =

mi
∑

t=1
t 6=j

λitvolit

mi
∑

t=1
t 6=j

volit

. (5.4)

The RSA null hypothesis was tested as follows. For each sample, we performed 99 RSA

simulations with the described parameters. We calculated the average L function of all these

simulations and took this average, L̄, to be an estimate of the theoretical mean value of the

L summary statistic for the RSA model. The global envelope is a region of constant width

2wmax, where wmax is determined as the furthest deviation between L̄ and any of the L

functions of a separate set of 99 RSA simulations with the same parameters at any distance

d along the horizontal axis. We rejected the null hypothesis if the L function of the sample

lay outside the envelope for any value of d (see Section 5.5.3 and Fig. 5.5).

Numerous R packages implement functions for spatial data analysis [Bivand et al., 2013],

particularly for the analysis of spatial point patterns. Among the most commonly used

are the spatial package [Venables and Ripley, 2002], the splancs package [Rowlingson and

Diggle, 1993] and the spatstat package [Baddeley and Turner, 2005, Baddeley et al., 2015].

Another tool with a more user-friendly interface for analyzing three-dimensional spatial point

patterns is the matlab-based software Spatial Analysis 3D (SA3D1) [Eglen et al., 2008]. In

this chapter we analyzed spatial patterns using R software and the spatstat package. We

obtained the translation edge-correction estimator of Ripley’s K function in three dimensions

for both the observed samples and the RSA simulations using the K3est function included

in the spatstat package and we directly calculated the L functions from K functions using

Eq. (5.3). To compute the simulation envelopes of the L functions we used the envelope.pp3

function, also included in the spatstat package. We used this function with the 3D point

pattern for each sample and 198 3D point patterns of RSA simulations performed for that

sample.

5.4 Replicated spatial point patterns

We performed the Diggle test [Diggle et al., 1991, 2000] to study similarities and differences

between groups of replicated data (see Section 2.4 for details). This test uses a bootstrap

procedure to check whether there are significant differences between empirical K functions

of independent replicates. Using 5000 bootstrap iterations, we studied whether there were

differences between the study animals and between different cortical layers.

It is scientifically correct to construct an aggregated estimator of the K function without

assuming a common intensity across all replicates because the K function is defined as in-

dependent of the intensity. This assumes that the hypothesis of a common K function and

varying intensity is plausible, as would be the case if the replicates were different intensity

1http://www.nri.ucsb.edu/Labs/breese/SA3D.html

http://www.nri.ucsb.edu/Labs/breese/SA3D.html
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versions of a common underlying process [Diggle, 2013]. To test if this applied in our case,

we adjusted a global spatial model for groups of replicates in which the Diggle test found no

significant differences. Then we applied different random thinning procedures (i.e., randomly

deleting points from the original model, Section 2.2.3.3) and introduced a cross-validation

technique to honestly estimate the goodness-of-fit of the resulting models.

More explicitly, assume that A, B and C were the groups where the Diggle test found

no significant differences, and let mA, mB and mC be the number of samples in each group.

We adjusted the global spatial model RSAglobal with parameters µglobal, σglobal and λglobal.

Parameters µglobal and σglobal were obtained by fitting the lognormal distribution of Feret’s

diameters considering all synapses of all samples from groups A, B and C and were used to

estimate the size of the synapses in the global model. Let λij be the synaptic density for

the jth sample in the ith group, λglobal was chosen such that λglobal > λij for all i,j, i.e., we

considered a global model that was denser than each of the samples separately (we chose to

make λglobal 1% denser than the maximum density of each sample separately).

Our goal, then, was to check whether groups A, B and C, whose K functions were found

not to be significantly different, were different thinned versions of a common underlying

process. In other words, we wanted to find out whether the processes that described the

spatial distribution of samples from groups A, B and C were different thinned versions of the

global spatial model RSAglobal.

To do this, we ran 198 dense RSAglobal simulations with the estimated parameters µglobal,

σglobal and λglobal. Then we thinned each of these dense simulations for each sample in each

group. We used a cross-validation technique to check if these simulations had the same spatial

distribution as the experimentally observed sample. Specifically, we applied the following

cross-validation process for each sample j (test sample) in each group i:

1. First, we estimated λ̂ij using the remaining (mi-1) samples (training samples) in group

i. The aggregated λ̂ij was calculated by weighting the densities of the training samples

by their volume as in Eq. (5.4).

2. Second, we randomly thinned the 198 dense RSAglobal simulations until we obtained

an intensity equal to the estimated density λ̂ij . Thus we obtained a set of 198 thinned

RSAij simulations for sample j of group i. These simulations were like the original

simulations but had a density equal to the intensity estimation for the test sample.

This process is shown in Fig. 5.3.

3. Finally, we again used simulation-based envelopes to test for differences in the spatial

distributions of the thinned simulations and the experimentally observed sample. We

used 99 simulations to estimate the theoretical mean value of the L function for the

RSAij model. We used the other 99 to calculate the maximum absolute difference from

this theoretical mean value, which is necessary to build the envelope.
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Figure 5.3: Diagram of the random thinning process for three groups of replicated point
patterns, A, B and C, for which the Diggle test did not find significant differences. Our
goal is to check if these groups are differentially thinned versions of a common underlying
RSA process. Random thinning of dense simulations is performed for each experimentally
observed sample j in each group i (test sample, shown in blue). Random thinning continues
until we reach the intensity λ̂ij , estimated from all samples in group i excluding sample j.
Then, for each experimentally observed sample j in each group i, we used simulation-based
envelopes to test for differences in the spatial distributions of the thinned RSA simulations
and the sample (we used 99 thinned simulations to estimate the L function for the RSAij

model and the other 99 to calculate the maximum deviation necessary to build the envelope)

5.5 Results

5.5.1 Data

We obtained 25 samples from the six layers of the somatosensory cortex of three 14-day-

old rats by FIB/SEM. Although virtually all cortical synapses can be accurately identified

as asymmetric and symmetric using FIB/SEM [Merchán-Pérez et al., 2009], we considered

synaptic junctions as a whole. This was because it was not feasible to test RSAmodels for such

a small number of symmetric synapses (they accounted for less than 10% of the total number

of synapses found in any cortical layer). Thus, for simplicity’s sake, we will use synaptic

junctions to refer to both types of synapses. Synaptic junctions were visualized, automatically
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segmented and reconstructed in three dimensions using Espina software [Morales et al., 2011].

We had a total reconstructed tissue volume of approximately 4500 µm3 containing almost

4000 3D reconstructions of synapses. For each of these synapses, we had information on

its 3D position (center of gravity or centroid) and an estimate of its size based on Feret’s

diameter. We obtained the density of each sample, that is, the number of synapses per unit

volume, and the mean density for each layer (Table 5.1).

Table 5.1: Animal ID, volume, counts and density of synaptic junctions per sample in each
layer of the somatosensory cortex. Total quantities and mean for each layer are shown

Sample Animal Volume (µm3) No. of synapses synapses/µm3

Layer I
1 w33 210.61 180 0.855
2 w35 177.20 128 0.722

Layer II
1 w33 224.35 230 1.025
2 w35 139.51 127 0.910
3 w35 149.03 206 1.382

Layer III

1 w31 149.13 147 0.986
2 w31 157.15 109 0.694
3 w33 186.45 173 0.928
4 w33 176.44 178 1.009
5 w33 176.28 167 0.947
6 w33 175.55 165 0.940
7 w33 191.28 189 0.988
8 w35 247.58 198 0.800
9 w35 178.40 201 1.127
10 w35 165.06 168 1.018

Layer IV
1 w33 154.59 172 1.113
2 w35 140.63 178 1.266
3 w35 123.81 162 1.308

Layer V
1 w33 165.62 117 0.706
2 w33 218.01 198 0.908
3 w33 207.95 175 0.842

Layer VI

1 w33 185.32 92 0.496
2 w35 183.55 85 0.463
3 w31 179.97 102 0.567
4 w31 280.09 107 0.382

All Samples 4543.55 3954 0.870

MEAN

Layer I 193.91 154 0.794
Layer II 170.96 188 1.098
Layer III 180.33 170 0.940
Layer IV 139.68 171 1.222
Layer V 197.19 163 0.828
Layer VI 207.23 97 0.466



58 CHAPTER 5. 3D-REPLICATED POINT PATTERN-BASED ANALYSIS

5.5.2 Intensity

The density of the samples range from 0.382 synapses/µm3 in a sample of layer VI to 1.382

synapses/µm3 in a sample of layer II. The overall mean density is 0.870 synapses/µm3 in all

layers. See Table 5.1 for details. As shown in Fig. 5.4, the mean density of layer I is 0.794

synapses/µm3, whereas layers II and III have mean densities of 1.098 and 0.940 synapses/µm3

respectively, which increases up to the maximum mean density of 1.222 synapses/µm3 in layer

IV and then drops again in layer V (0.828 synapses/µm3) down to the minimum mean density

in layer VI, 0.466 synapses/µm3.

Figure 5.4: (Left) Mean synaptic density of the six layers of the somatosensory cortex. The
synaptic density of the six layers is significantly different. However, we found no significant
differences between the densities of layers I vs V or between the densities of layers II vs
III. (Right) Mean distance to nearest synapse for each layer. Nearest synapse distances are
significantly different in the six layers of the somatosensory cortex, but we found no significant
differences between distances of layers I vs V, I vs VI, II vs III and III vs V

Following the simulation process described in Section 5.2, we looked for significant differ-

ences between the densities of the different layers of the somatosensory cortex. We performed

a multiple mean comparison test on the 50 extracted densities for each of the six cortical

layers. Because not all of the necessary assumptions for ANOVA were satisfied (data were

normally distributed but homoscedasticity was not met, i.e., the variance of data in each layer

was not the same), we used the Kruskal-Wallis test and then applied the Mann-Whitney test

with the Bonferroni method to adjust the p-values for pair-wise comparisons. We found that

there were differences between the density of layers (p-value ≤ 2.2× 10−16), which is consis-

tent with a recent work [Crandall, 2013]. Pair-wise comparisons revealed that there was no

significant difference between the densities of layers I vs V or between the densities of layers
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II vs III.

In addition to the location and Feret’s diameters of synapses of each sample, which were

on average 404.73 nm, we measured the distance of each synapse to its nearest synapse.

The mean distances to nearest neighbour measured between centroids of synaptic junctions

ranged from 533.78 nm in a sample of layer II to 794.63 nm in a sample of layer VI, and

the overall mean distance to the nearest synapse was 641.58 nm. This information is shown

in Table 5.2. Using the Kruskal-Wallis test we found that there were significant differences

between the distances to the nearest synapse between layers of the somatosensory cortex

(p-value ≤ 2.2× 10−16). We applied the Mann-Whitney test and adjusted the p-values using

the Bonferroni method for pair-wise comparisons. There were no significant differences for

layers I vs V, I vs VI, II vs III and III vs V. Notice that we found no differences between the

synaptic densities of layers I vs V and II vs III either (see Fig. 5.4).

5.5.3 Modeling of spatial point processes

A recent paper [Merchán-Pérez et al., 2014] analyzed the 3D spatial distribution of synapses

in the somatosensory cortex. Merchán-Pérez and colleagues adjusted CSR and RSA models

showing that RSA processes modeled the synaptic distribution more adequately. However,

this study was limited to layer III of the somatosensory cortex. We extend this analysis to

all layers of the cortex here.

To test the null hypothesis of RSA we used simulation-based envelopes. As an example,

Fig. 5.5 shows the envelopes of the first sample of each layer of the somatosensory cortex.

The averages of the L functions of 99 RSA simulations performed for each sample are rep-

resented in green. The shaded area is a region of constant width 2wmax. The width wmax

was calculated with a separate set of 99 RSA simulations as described in Section 5.3 using

the spatstat package. The dashed red lines show the theoretical value for CSR for visual

comparison only.

The null hypothesis is rejected if the L function of the experimentally observed sample

(blue) lies outside the envelope for any value of distance d. The L functions of samples 2

and 7 from layer III and sample 2 from layer IV were very close to the upper boundary of

the envelope at a distance of about d =300 nm but did not lie outside the envelope. The

remaining samples were completely within the envelope for all values of d. So, we did not

reject the RSA model for any of the 25 analyzed samples.

5.5.4 Replicated spatial point patterns

Taking advantage of the fact that we had several samples of each layer of the somatosensory

cortex, we used replicated spatial point patterns in order to detect similarities and differ-

ences between groups. Because we had seen that synaptic densities between layers of the

somatosensory cortex were different, we used the K function because it does not depend

on intensity. We aggregated the K functions of each group using the number of synapses

(wij = nij , Eq. 2.15) [Diggle, 2013, Diggle et al., 1991].
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Table 5.2: Mean distances from a synapse to its nearest neighbour and mean Feret’s diam-
eters. Nearest neighbour distances are measured between centroids of synaptic junctions.
Feret’s diameters are an estimate of the size of synaptic junctions (diameter of the smallest
sphere circumscribing each junction)

Mean distance to Mean Feret’s
nearest neighbour diameter of synaptic

Sample (nm) ± sd junctions (nm) ± sd

Layer I
1 682.09 ± 201.96 459.01 ± 196.20
2 684.95 ± 242.28 442.01 ± 207.62

Layer II
1 613.06 ± 191.74 429.69 ± 183.35
2 680.80 ± 204.30 453.67 ± 184.03
3 533.78 ± 177.72 340.96 ± 143.25

Layer III

1 600.10 ± 193.62 377.19 ± 159.63
2 680.33 ± 200.79 462.18 ± 177.52
3 620.15 ± 206.34 437.62 ± 168.04
4 615.28 ± 208.79 414.22 ± 169.04
5 647.70 ± 228.39 466.03 ± 215.91
6 605.46 ± 231.85 423.38 ± 169.83
7 599.08 ± 244.67 397.29 ± 168.22
8 643.36 ± 193.31 427.90 ± 168.15
9 580.30 ± 203.76 378.35 ± 166.60
10 625.62 ± 209.32 405.43 ± 175.62

Layer IV
1 562.38 ± 228.22 397.83 ± 155.06
2 539.84 ± 208.77 354.90 ± 129.26
3 564.29 ± 214.38 353.52 ± 134.01

Layer V
1 701.03 ± 235.69 414.84 ± 161.68
2 632.66 ± 263.23 380.71 ± 173.12
3 641.75 ± 216.35 404.49 ± 186.79

Layer VI

1 730.74 ± 272.02 425.60 ± 146.11
2 766.04 ± 371.24 394.42 ± 176.28
3 694.07 ± 301.23 325.66 ± 114.03
4 794.63 ± 357.46 351.45 ± 153.30

As discussed, we performed the Diggle test to compare different groups of K functions

[Diggle et al., 1991, 2000]. The first step was to check whether there were any differences

between the three animals. We applied the Diggle test to g = 3 groups of sizes m1 = 12,

m2 = 9 and m3 = 4 and obtained a p-value = 0.724. Thus, we did not detect differences

between animals in the study. Fig. 5.6 shows the aggregated K and L functions for each of

the three animals. After ruling out differences between animals, we studied whether there

were differences in the synaptic distribution between layers.

Considering each layer of the cortex as a group of replicates, we calculated the aggregated

L function of each group transforming the aggregated K function of the group (Eq. (2.15)).
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Figure 5.5: Analysis of spatial patterns using global envelopes (sample 1 for each layer of
the somatosensory cortex). The L functions of the experimentally observed samples are
shown in blue, and the averages of 99 RSA simulations are shown in green. The shaded area
represents the envelopes of values calculated from a separate set of 99 RSA simulations. We
do not reject the RSA null hypothesis for any sample because no observed L function lies
outside the envelope for any value of distance d. The results for all samples in the study were
the same. Dashed red lines show the theoretical value for CSR (for the purpose of visual
comparison only)

Fig. 5.7 shows the L function of each observed sample in each layer as dashed blue lines,

the aggregated L function of each layer in dark blue and the average of 99 RSA simulations

fitting the RSA model for all the samples of the layer in green. We calculated the parameters

λ̂i, µ̂i and σ̂i of the RSAi model for each layer i, i = I, ..., VI, calculating the volume-

weighted average of the parameters λij of each sample j in layer i and fitting the lognormal

distribution of Feret’s diameters using all synapses in this layer. Fig. 5.7 also shows the

envelope obtained using a separate set of 99 RSA simulations with the same parameters,

as explained in Section 5.3. For visual comparison, we added the theoretical L function

for a random pattern (dashed red diagonal). Because all the aggregated L functions were

within the boundaries of the envelopes, we did not reject the RSA model for any layer of the

somatosensory cortex.

Applying the Diggle test for g = 6 groups of sizes m1 = 2, m2 = 3, m3 = 10, m4 = 3,

m5 = 3 and m6 = 4, we obtained a p-value of 0.002. Thus, we could conclude that there

were differences between the six layers of the cortex. To better understand synaptic spatial

distribution, we applied the Diggle test six times with g = 2 groups, each time forming a
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Figure 5.6: Aggregated K and L functions for each animal. The Diggle test found no signif-
icant differences between the three animals used in the study

group with the K functions of all samples of one layer and the other group with the K

function of all samples of the remaining layers. In this analysis, the group of samples from

layer I was the only one significantly different from the other group (samples from layers II to

VI) with a p-value of 0.009. The Diggle test found no significant differences between groups

of replicates formed by layers II to VI (g = 5, p-value = 0.1176). Moreover, the Diggle test

found no significant differences between the distribution of samples from layers II to VI in

pair-wise comparisons of these layers. Fig. 5.8 shows the aggregated K and L functions of

all six layers (the two identified groups are shaded differently, i.e., layer I in green and layers

II to VI in violet). Layer I functions are slightly shifted to the right compared to the other

layers, so the repulsion in the spatial distribution of its synapses appears to be greater.

In Section 5.5.2 we saw that layers of the somatosensory cortex did not have a common

synaptic density, so we wanted to find out whether we had different thinned versions of a

common underlying process in layers from II to VI [Diggle, 2013]. We did this analysis

introducing for the first time in this context a cross-validation technique to honestly estimate

the goodness-of-fit of the resulting models.

With the simulation and thinning process described in Section 5.4, we performed 198

dense RSAglobal simulations with a volume of 300 µm3 and a density of 1.4 synapses/µm3

(λglobal = 1.4, a density greater than the density of any of the samples), i.e., each RSAglobal

simulation had 420 synapses. For each sample j (test sample) in group i (we had a group

consisting of layers II to VI), we calculated the synaptic density of its RSAij model using the

remaining samples of the same layer (Eq. (5.4)). Table 5.3 shows the estimated intensity λ̂ij

for each experimental sample. For each sample, we randomly thinned each of the 198 dense

RSAglobal simulations until they had the estimated intensity λ̂ij . The sizes of the simulated
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Figure 5.7: For each layer, aggregated L function (dark blue) of experimentally observed
data (dashed blue) along with the average of 99 RSA simulations (green) fitting the model
for all samples of the layer. This figure shows the envelope obtained using a separate set of
99 RSA simulations. We do not reject the RSA model for any layer of the somatosensory
cortex because all the aggregated L functions were within the boundaries of the envelopes.
We added the theoretical L function for a random pattern (dashed red diagonal) for the
purpose of visual comparison

synapses were calculated using the lognormal distribution fitted using Feret’s diameters of

all samples of the group. Table 5.3 also shows these parameters. Note that µglobal and σglobal

are equal because all these layers were modeled as a common RSAglobal process. Fig. 5.9

shows one dense RSAglobal simulation for the group of layers II to VI and two thinned RSA

simulations for two different samples in the study.

We validated the RSAij model with the test sample i using simulation-based envelopes.

To do this, we used the function envelope.pp3 included in the spatstat package. The L

functions of sample 7 from layer III and sample 2 from layer IV touched the upper boundary

of the envelope slightly at distances around 200-300 nm but did not lie outside the envelope.

However, sample 1 from layer IV did lie just outside the envelope at distances around 300-400

nm. The remaining samples were completely within the envelope. Thus, for all 23 samples in

layers II to VI, except for only sample 1 in layer IV, we did not reject the null hypothesis of

RSA, i.e., we validated the hypothesis that the synaptic distribution of layers II to VI of the

somatosensory cortex are different thinned versions of a common underlying RSA process.
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Figure 5.8: Aggregated K and L functions for each layer. The Diggle test found no significant
differences between K functions of layers II, III, IV, V and VI (shown in different shades of
violet). Layer I (green) is significantly different from other layers

Figure 5.9: (a) RSA simulation with λ = 1.4 for the group of layers II, III, IV, V and VI.
(b) Thinned RSA simulation, λ = 0.932, for sample 10 of layer III. λ estimated from the
remaining nine samples of layer III. (c) Thinned RSA simulation, λ = 0.457, for sample 1 of
layer VI. λ estimated from the remaining three samples of layer VI

5.6 Software

We developed a tool available at CeSViMa server2 to process and analyze the 3D spatial

distribution of synapses in the cerebral cortex (Fig. 5.10). The tool was developed using R

software with a graphical user, based on shiny, an embedded web-interface, and it uses four

of the summary functions most commonly applied in the analysis of spatial point processes,

namely, the F , G, K and L functions (Section 2.2.2.2).

2http://vps136.cesvima.upm.es:3838/hbp/synapsesSA/

http://vps136.cesvima.upm.es:3838/hbp/synapsesSA/
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Table 5.3: Estimated intensity λ̂ij for samples in layer II to VI using only the remaining
samples of the same layer (Eq. (5.4)). µglobal and σglobal parameters are the same because
layers II to VI form a group, and they were obtained using Feret’s diameters of all samples
of the group. We thinned RSAglobal simulations modeled with λglobal = 1.4 and parameters

µglobal and σglobal until we reached the estimated intensity λ̂ij for each sample

Density Size (Feret’s diameters)

Sample Animal λ̂ij µglobal σglobal

Layer II
1 w33 1.154

5.911 0.4042 w35 1.168
3 w35 0.981

Layer III

1 w31 0.936

5.911 0.404

2 w31 0.963
3 w33 0.941
4 w33 0.932
5 w33 0.939
6 w33 0.940
7 w33 0.934
8 w35 0.962
9 w35 0.919
10 w35 0.932

Layer IV
1 w33 1.286

5.911 0.4042 w35 1.200
3 w35 1.186

Layer V
1 w33 0.876

5.911 0.4042 w33 0.782
3 w33 0.821

Layer VI

1 w33 0.457

5.911 0.4042 w35 0.466
3 w31 0.438
4 w31 0.508

For each synapse, the 3D coordinates (x,y,z) of the centroid, its Feret’s diameter and its

layer must be provided. With this information the user can process and visualize the data

from cortical synapses. The view supports zoom and rotation where each synapse is depicted

as a sphere, using the Feret’s diameter as the spherical diameter. The main tasks that can

be performed with this software are: model the spatial distribution of the synapses to find

out any possible distribution pattern; replicate, via simulations based on real data, samples

of cortical synapses; and perform a layer comparison of synaptic density and distance to the

nearest synapse.
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Figure 5.10: Home screen of the tool to analyze the 3D spatial distribution of synapses

5.7 Conclusions

The field of replicated point patterns is growing strongly due to technological advances,

particularly in 3D sampling. In fact, much of the research on replicated point patterns is

related to biological issues, including applications to neuroanatomical data [Baddeley et al.,

1993, Burguet and Andrey, 2014, Burguet et al., 2011, Diggle et al., 1991, 2000, Jafari-

Mamaghani et al., 2010, Myllymäki et al., 2012, Wager et al., 2004]. Indeed, neuroanatomical

data in the form of spatial point patterns is fundamental for revealing the spatial architecture

of the different brain regions at all levels of analysis, from light microscopy (e.g., spatial

distribution of neurons) to electron microscopy (e.g., spatial distribution of synapses). In this

chapter, we performed an analysis in the context of replicated point patterns by exploiting

the fact that we have been able to obtain a relatively large number of samples containing

the spatial distribution of synapses in the neuropil from several layers of the rat cerebral

cortex. Using the Diggle test [Diggle et al., 1991, 2000] we detected groups of replicates

(groups of patterns considered as instances of the same process) whose spatial distribution

was found not to be significantly different. Then we modeled these groups using a global RSA

replicated spatial point process. In order to collect and explain the variability in each group’s

synaptic density, we introduced a thinning procedure in the global model. We proposed a

cross-validation technique for models within each group of replicates to honestly estimate the

goodness-of-fit of the resulting models.

Our results confirmed the assumption that the spatial distribution of synaptic junctions

in the neuropil is nearly random, with the only constraint that synapses cannot overlap

in space —a scenario that can be modeled by an RSA process. This model had already

been suggested for layer III synapses [Merchán-Pérez et al., 2014] and is now extended to
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all neocortical layers. We found that the spatial distribution of synapses in all samples of

each layer can be described by RSA processes. We also found that the spatial distribution

of synapses in the neuropil of layers II to VI follows a common underlying RSA process

with different synaptic densities. Interestingly, the results showed that the synaptic spatial

distribution in layer I is slightly different than in other layers, suggesting that, although an

RSA process suitably fits layer I synaptic distribution, the repulsion in the spatial distribution

of synapses in this layer is slightly higher than in the other layers.

Since the synaptic density in the cerebral cortex changes with age, e.g., Bourgeois and

Rakic [1993], DeFelipe et al. [1997], Rakic et al. [1986, 1994], and we used P-14 rats, the

conclusion of this study regarding spatial distribution may not be applicable at other time

points during development. Note, however, that the spatial distribution of synapses follows

the same pattern in different cortical layers in spite of significant differences in their synaptic

densities. Furthermore, preliminary results in the adult human cerebral cortex also suggest

that the spatial distribution of synapses is nearly random [Blazquez-Llorca et al., 2013].

Therefore, random spatial distribution of synapses is probably a common general pattern of

cortical synaptic organization. Nevertheless, further studies in other cortical areas, species

and ages would be necessary to verify these conclusions.

The assumption that the distribution of synapses in the neuropil of layers I to VI follows

an RSA model with different intensities (synaptic densities) per layer has several interesting

implications. First, the position of a given synapse in the neuropil is practically independent

of the position of neighbouring synapses, so they can be arbitrarily close to one another

with the only physical constraint that they cannot overlap. Second, the density of synapses

varies by layers and also locally. Importantly, early studies of the cerebral cortex proposed

that the density of synapses was relatively constant throughout the cortical layers, as well

as across different cortical areas and different species. This uniformity in synaptic density

led O’Kusky and Colonnier [1982] to propose that it probably reflects the optimal number of

synapses and that it may be due to some limiting metabolic or structural factor. However,

most comparisons were only qualitative and not based on statistical analyses. It now appears

that, using appropriate stereological counting methods (disector or size-frequency methods;

see DeFelipe et al. [1999]), there are significant differences in the estimated number of synapses

per volume between certain layers in several species (reviewed in DeFelipe et al. [2002a]). In

this study, we also found using FIB/SEM that there may be significant differences between

certain cortical layers. This method has the advantage that it provides the actual number

of synapses per volume (instead of estimations) based on the analysis of single electron

microscope images [Merchán-Pérez et al., 2009].

Our results showed no significant differences in the synaptic distribution between the

different rats used in the study, and RSA processes properly described the spatial distribution

of synapses in all cortical layers. This argues in favor of a common general principle of synaptic

organization. However, the mean density of synapses across the six layers was significantly

different, with the exception of layers I vs V and layers II vs III. This is an important

observation in terms of connectivity, as these differences or similarities in density of synapses
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between layers may provide us with some fundamental rules to generate virtual circuits in

order to gain a better understanding of cortical organization. This also means that, due to

physical constraints, the volume of the neuropil that the dendritic tree of a given neuron

occupies may vary depending of the density of neurons in the layer where this neuron is

located. In turn, its chances of establishing synapses would be greater the more neuropil

volume it occupies. This idea was put forward by Von Economo [1926] in his interpretation

of Nissl’s observation in terms of the evolutionary significance of the differences between

species in cortical neuronal density [Nissl, 1898]. Nissl observed that “in the mole and dog,

cortical neurons were more crowded than in man”. Von Economo proposed that the greater

separation between neurons the richer the fiber plexus between them will be, increasing the

chance for neuronal interactions. Thus, the larger separation of neurons in humans compared

to other species could be construed as a sign of a greater complexity of the connections

between neurons. Using this approach, several authors have identified an inverse relationship

in the adult cerebral cortex between neuronal density and the number of synapses per neuron

in different cortical areas/layers/species, but this principle does not appear to be generally

applicable [DeFelipe et al., 2002a]. Since in this study we found no significant differences in

the density of synapses in layer I vs V —the density of neurons in layer V is much greater

than in layer I—, or between layer II vs III —the density of neurons in layer III is much

less than in layer II —, this principle does not appear to be applicable to the 14-days-old

rat somatosensory cortex either. In this regard it is important to keep in mind that the

dendrites present in the neuropil of a given layer belong to both local neurons and neurons

located below and above that layer, as dendrites, of pyramidal cells particularly, may cross

several layers during their ascending course towards layer I, whereas their basal dendrites

may invade the layer underneath, respectively. It follows that the number of synapses that a

given neuron receives cannot be predicted solely on the basis of the synaptic density of the

layer in which it is located.

Finally, the application of FIB/SEM to analyze the neuropil also revealed the existence

of local variability in the synaptic density within each layer. This local variability would

be the product of mere chance and can be explained (and modeled) by RSA processes.

The between-layers variability, however, cannot be put down to chance, except possibly for

the differences between layers I and V and between layers II and III. This would imply, as

previously suggested [Merchán-Pérez et al., 2014], that spatial specificity in the neocortex

is scale dependent. It is well known that at the macroscopic and mesoscopic scales the

mammalian nervous system is a highly ordered and stereotyped structure, where connections

are established in a highly specific and ordered way, like, for example, the connecting pathways

of the visual system. Even at the microscopic level, it is clear that different areas and layers of

the cortex receive specific inputs [Nieuwenhuys, 1994]. At the ultrastructural level, however,

our results seem to indicate that the number and distribution of synapses follow a nearly

random pattern. This could mean that, as the axon terminals reach their destination, the

spatial resolution that they achieve is fine enough to find a specific cortical layer but not to

make a synapse on a smaller target, such as a specific dendritic branch or dendritic spine
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within that layer. For example, axon terminals from a certain thalamic nucleus reach specific

areas and layers of the cerebral cortex but, once there, they would form synapses randomly

among their possible targets to a greater or lesser extent depending on particular classes of

the postsynaptic neurons.
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Chapter 6
Three-dimensional network spatial

analysis applied to spine modeling

along dendritic networks

6.1 Introduction

Existing techniques for network spatial analysis (Section 2.3) assume that the network is two

dimensional. In this chapter, we extend these techniques to the 3D space in order to model

the spatial distribution of dendritic spines (for simplicity, spines) of pyramidal neurons.

Since spines are the main postsynaptic target of excitatory synapses in the cerebral cortex,

many researchers are interested in ascertaining their spatial distribution within the two main

dendritic domains of pyramidal cells: the apical and basal dendritic trees. The apical arbor

stems from a main apical shaft whose origin is the upper pole of the pyramidal cell body. This

apical dendrite is radially directed towards the pia mater and gives off a number of oblique

branches. A system of large basal dendrites (generally, from three to six) emerges from the

base of the pyramidal cell body and is directed laterally or downward. Generally speaking,

proximal dendrites receive excitatory inputs from local sources (collaterals in the same area

or from an adjacent area), whereas the distal apical tuft receives inputs from more distant

cortical and thalamic locations [DeFelipe and Fariñas, 1992]. While the proximal portions of

pyramidal cell dendrites are devoid of spines (approximately 10-15 µm from the cell body),

there is a progressive increase in the density of spines. The highest densities are found at

variable distances from the soma, depending on the cortical area and species. In the human

temporal cortex, the highest density is found at a distance of 75-125 µm from the cell body.

Thereafter, there is a progressive decrease towards the distal tips of dendrites, where the

density is again low [Elson and DeFelipe, 2002].

Spines must necessarily lie on the dendritic shaft. Therefore, the application of network

spatial analysis is appropriate. Some recent research [Baddeley et al., 2014b, Jammalamadaka

et al., 2013] also used network spatial analysis to analyze spine distribution along dendrites.

71
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However, using the justification that neurons in cell culture in vitro are almost flat, they

ignored the third dimension and used a 2D projection. To the best of our knowledge, this is

the first time that 3D network spatial analysis has been applied.

Taking advantage of the fact that we had several dendritic arborizations from each pyra-

midal cell, which can be treated as a group of instances of the same neuron, we also used

replicated point patterns to detect differences and similarities between different pyramidal

neurons and between apical and basal dendrites. As well as our research of Chapter 5, nu-

merous works related to biological issues, particularly with applications to neuroanatomical

data, use replicated spatial pattern techniques [Baddeley et al., 1993, Burguet et al., 2011,

Diggle et al., 1991, 2000, Myllymäki et al., 2012, Wager et al., 2004]. These techniques are

used here together with network spatial analysis for the first time.

The research included in this chapter has been submitted for publication [Anton-Sanchez

et al., 2017c].

Chapter outline

This chapter is organized as follows. Section 6.2 describes the pyramidal cells involved in this

study. Section 6.3 illustrates the statistical and computational methods used to carry out the

3D analysis of the spatial distribution of spines along the dendritic arborizations. Section 6.4

details the use of these methods with replicated point patterns. Section 6.5 describes the

results for the analyzed pyramidal neurons. Finally, Section 6.6 includes a discussion and

conclusions.

6.2 Data

We analyzed five detailed and complete reconstructions of adult human pyramidal neurons

that were intracellularly injected with Lucifer Yellow (LY) in layer III of the temporal cortex

(area 20 of Brodmann) from two human males (aged 40 and 66) obtained at autopsy (2-3 h

post-mortem) that died in traffic accidents. The brain samples were obtained following the

guidelines and with the approval of the Institutional Ethical Committee. The tissue from

these human brains has been used and described as histologically normal in previous studies

[Blazquez-Llorca et al., 2010, Garcia-Marin et al., 2009]. Detailed information regarding tissue

preparation, injection methodology and immunohistochemistry processing was described in

Benavides-Piccione et al. [2013]. The injected cells were fully imaged at high magnification

using the tile scan mode in a Leica TCS 4D confocal scanning laser attached to a Leitz DMIRB

fluorescence microscope (Fig. 6.1). Consecutive stacks of images at high magnification (x63

glycerol) were acquired to capture dendrites along the apical and basal dendritic arbors.

Using this method, some apical and basal dendrites near to the surface of the section are

lost, but it has been estimated that at least two-thirds of the cell are preserved [Krimer

et al., 1997]. In addition, the apical dendrites that run for more than 900 µm from the

soma were not filled with dye, and therefore apical tuft was not included in the analysis. The

dendritic arborization was reconstructed using Imaris 7.6.5, Filament Tracer module software
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(Bitplane AG, Zurich, Switzerland). Therefore, we were able to place their spines, adjusting

the position, length and volume of each spine individually (Fig. 6.2). We analyzed a total of

more than 32,000 spines, 44% in apical dendrites and 56% in basal dendrites.

Figure 6.1: Example of one of the analyzed pyramidal neurons. (a) Confocal microscopy
image of an intracellularly injected layer III pyramidal neuron of the human temporal cortex
(Neuron 1 in Tables 6.1 and 6.2), visualized in 3D from high-resolution confocal stacks of
images. (b) 3D reconstruction of the complete morphology of the cell shown in (a). (c) 3D
reconstruction of the same neuron showing the apical dendrite in red and the four recon-
structed basal dendrites in blue, green, orange and purple. We use the blue basal tree in (c)
throughout the manuscript to illustrate the analysis performed. Scale bar (in (b)): 50 µm

Figure 6.2: Example of basal dendritic segment. (a) High magnification confocal microscopy
image showing a basal dendritic segment from Neuron 1. (b, c) Reconstruction of the dendritic
shaft and spines shown in (a) in a solid (b) and mesh (c) view
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6.3 Network spatial analysis

Each dendritic arborization is a tree, i.e., a network with no cycles, in which all points

are connected. Considering that spines can only lie on the dendritic shaft, we model spine

distribution along the dendritic networks of pyramidal neurons in both basal and apical

dendrites using network spatial analysis and, particularly, the geometrically corrected K

function proposed by Ang et al. [2012] (see Section 2.3 for details).

To test whether the deviation between two summary functions, usually between the em-

pirical summary function and the summary function of the model to be tested, is statistically

significant, the standard approach is to use a Monte Carlo test based on envelopes of the

summary function obtained from simulated point patterns (Section 2.2.4). We used global

envelopes since we had no prior information about the range of spatial interaction. We cal-

culated the envelopes by generating 19 simulations of the model to be tested, computing

the summary functions of the simulated patterns. The global envelope is a region of con-

stant width 2wmax, where wmax is determined as the maximum absolute difference between

the theoretical mean value of the summary function of the model to be tested and any of

the summary functions of the simulated patterns. This corresponds to a Monte Carlo test

with significance level 1/(1+19)=0.05 [Diggle, 2003]. If the empirical summary function is

completely contained in the envelope, the model is not rejected.

Existing computational techniques for spatial analysis along networks assume that the

network is 2D [Baddeley et al., 2015, Okabe and Sugihara, 2012]. Although dendritic networks

are 3D, recent research analyzing the distribution of spines along dendritic arborizations

[Baddeley et al., 2014b, Jammalamadaka et al., 2013] ignored the third dimension, arguing

that neurons in cell culture in vitro are more or less flat. They used a 2D projection to

represent the spatial layout of the dendrites. In our case, cell reconstructions have a third

dimension that should not be overlooked. For example, Fig. 6.3(a) shows the first basal

dendrite of the first analyzed pyramidal neuron, clearly illustrating that the dendritic tree is

not flat. We extended the functionality provided by the spatstat package [Baddeley, 2010,

Baddeley and Turner, 2005] designed to manage 2D networks in order to handle 3D networks.

Thus, we have performed the first spatial analysis along 3D networks. Eq. (2.12), (2.13) and

(2.14) are applicable to 3D linear networks, although key values like dL(xi, xj) or m(u, t) are

much harder to compute taking into account the third dimension.

From the specifications of pyramidal neurons in .vrml format, we obtained the 3D axes

of the dendritic arborizations and the spine attachment points (network and network events

in the model, respectively, see Fig. 6.3(b)). After processing the .vrml files using R software,

we used the spatstat package and the extensions that we implemented for the 3D analysis

in order to represent the networks and analyze the distribution of the spines along dendritic

networks. The networks (dendrites) and network events (spines) of the five human pyramidal

neurons analyzed in this study can be found on Figshare1.

1https://figshare.com/articles/3D_human_pyramidal_dendrites_with_spines/4892630

https://figshare.com/articles/3D_human_pyramidal_dendrites_with_spines/4892630
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Figure 6.3: First basal arborization of Neuron 1 illustrating the analysis (some of its charac-
teristics are shown in Table 6.2). (a) 3D representation of the basal network. The tree root is
shown in black. (b) Zoom of a small part of the same dendrite (end of the dendritic segment
shown in Fig. 6.2) to illustrate the computation of the dendrite axis (i.e., the network in dark
blue) and the attachment points of the spines (network events in red) from the reconstruction
provided in the .vrml file (light blue)

6.4 Replicated spatial point patterns

For replication in groups with which we are concerned, there are g different experimental

groups. In group i (i = 1, ..., g), we observe mi point patterns that can be regarded as inde-

pendent replicates within this group. Replication provides for the analysis of the differences

in spatial point patterns between and within groups for decision making on whether there

are statistically significant differences between groups. We had several basal dendritic trees

from each pyramidal neuron that can be regarded as replicates of the same observation (the

neuron). By conducting an analysis in the context of replicated point patterns, we investi-

gated whether there were significant differences between the basal arborizations of the same

pyramidal neuron and between different pyramidal neurons, that is, we performed a study

with g=5 groups, where each group was composed of the basal dendrites of each pyramidal

neuron. We were also interested in analyzing whether there were significant differences in

the distribution of spines along the apical and basal networks, that is, in performing a study

with g=2 groups (one group with apical dendrites and the other with all basal dendrites of

all neurons). We tested the null hypothesis of similarity between groups with the studentized

permutation test proposed by Hahn [2012] (Section 2.4).

As mentioned in Section 2.3, the geometrically corrected K function compensates for

the geometry of the network, whereby the corrected K functions obtained from different

point patterns in different networks are directly comparable. Therefore, this is the first time

that the geometrically corrected K function (Eq. (2.13) or (2.14)) has been applied in the

context of replicated point patterns to compare different groups of 3D point patterns on
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linear networks. We used the studentized permutation test provided in spatstat, which we

expanded to be used with the K function on linear networks. Because the geometrically

corrected K function stabilizes the variance we use the studentized permutation test given

by Eq. (2.19). We used 1000 permutations for the test (default value).

6.5 Results

Table 6.1 shows some important characteristics of the apical dendrites of each of the five

analyzed pyramidal neurons: number of spines, total length of the network, average number

of points per unit length in the network, circumradius and number of branching points

(complexity measure of the dendritic tree). Table 6.2 shows the same information for basal

dendrites, grouped according to the pyramidal neuron to which they belong. Apical dendrites

are clearly more complex than basal dendrites, as a comparison of the mean number of

characteristics shown in Tables 6.1 and 6.2 patently shows. While the mean number of spines

in apical dendrites is 2845, it is 1074 in basal dendrites. The mean length is also much

greater in apical than in basal arborizations: 2497.25 µm and 951.85 µm, respectively. The

same applies to the mean number of branching points (20 in apical networks vs 6 in basal

networks).

Table 6.1: Description of the analyzed apical dendrites. The table shows the number of
spines n, total length of the network |L| (in µm) average number of points per unit length in
the network n/|L|, circumradius R (in µm), and number of branching points in the dendrite
#BP

Neuron n |L| n/|L| R # BP

1 2750 2182.42 1.26 237.48 16
2 3019 3073.93 0.98 325.49 22
3 2195 1852.01 1.19 231.55 18
4 2599 2123.39 1.22 261.55 19
5 3660 3254.50 1.12 332.11 23

Mean 2845 2497.25 1.16 277.64 20

The first property to be analyzed is the intensity or average density of points along the

network. Spatial inhomogeneity can be conflated with clustering between points. Therefore,

it is important to analyze any evidence of spatial variation in point intensity. Indeed, the

distribution of dendritic spines along the dendrites of pyramidal cells has been shown not to

be uniform in different cortical areas and species (reviewed in Elson and DeFelipe [2002]). We

defined the distance function to the tree root r by the shortest path in the dendritic network

dL(u, r) = dL(u), u ∈ L, and we analyzed the relationship λ(u) = ρ(dL(u)), where ρ is an

unknown function to be estimated. Kernel smoothing methods can be used to estimate the

intensity function as discussed in Okabe et al. [2009] and in McSwiggan et al. [2016]. Fig. 6.4

shows the kernel-smoothing estimate of function ρ of the first basal dendrite (see Table 6.2),

confirming that spine intensity depends on the distance to the cell body when it is analyzed
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Table 6.2: Description of the analyzed basal dendrites grouped by neuron. The table shows
the number of spines n, total length of the network |L| (in µm), average number of points per
unit length in the network n/|L|, circumradius R (in µm), and number of branching points
in the dendrite #BP

Neuron n |L| n/|L| R # BP

1 1889 1527.45 1.24 257.74 8
1 584 615.79 0.95 208.72 3
1 1214 957.66 1.27 225.92 5
1 1272 1156.29 1.10 235.34 7

2 287 391.74 0.73 137.46 4
2 791 928.87 0.85 220.23 11
2 270 327.29 0.82 139.79 2
2 715 914.87 0.78 184.14 9

3 852 664.26 1.28 237.90 3
3 2149 1467.43 1.46 209.18 8
3 662 594.30 1.11 177.59 4

4 778 556.49 1.40 169.34 4
4 1487 1282.15 1.16 213.84 8
4 1004 834.83 1.20 202.17 5

5 2244 2231.19 1.01 309.20 14
5 978 879.04 1.11 204.76 7
5 1088 851.73 1.28 211.03 6

Mean 1074 951.85 1.10 208.49 6

along the complete network. The results for all analyzed dendritic networks for both basal

and apical dendrites were very similar.

We used the cumulative distribution function (CDF) test to study the hypothesis of inde-

pendence of intensity on a spatial covariate (distance to the cell body, in our case). The CDF

test was first described by Berman [1986] (in the context of spatial data, using Kolmogorov-

Smirnov statistic). For a linear network, the test compares the observed distribution of the

values of the covariate in the network events with the null distribution of the covariate at

random points on the network. For all analyzed apical and basal dendritic networks, we found

strong evidence of the dependence of spine intensity on distance to the cell body (a p-value

< 10−6 was obtained in the CDF test in 90% of the cases, the highest p-value=0.00591 being

in one of the basal dendrites of Neuron 2).

In view of the above results, we fitted an inhomogeneous Poisson model for each dendritic

network, in which the spine intensity λ(u), u ∈ L depends on the distance to the cell body.

Considering the shape of function ρ (Fig. 6.4), we decided to adjust a log-quadratic intensity

in d, that is, λ(u) = exp(θ0+ θ1d(u)+ θ2d(u)
2), where θ0,θ1,θ2 are the parameters for estima-

tion. Fig. 6.5(a) shows the estimation of the geometrically corrected 3D inhomogeneous KLI

function (Eq. (2.14)) for the basal example and 5% critical envelopes based on 19 simulations

of an inhomogeneous Poisson process with log-quadratic intensity in d. The chart shows that
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Figure 6.4: Estimate of the intensity of the first basal arborization of Neuron 1 as a function
of the distance (in µm) to the tree root

the spatial distribution of the spines along the network is consistent with an inhomogeneous

Poisson process. Fig. 6.5(b) is analogous to Fig. 6.5(a) using the 2D implementation of KLI

provided in the spatstat package instead. Although the fit is not bad, it is not as good as in

3D where the estimation of the KLI function is almost completely superimposed on the Pois-

son function for all distances d. Fig. 6.5(c) shows the result of applying the 3D K function

to the spines of the same basal arbor, using only spine spatial coordinates and ignoring the

network. This figure incorrectly suggests that spines are strongly clustered. The error stems,

however, from the choice of a mistaken null hypothesis because the envelopes are computed

from 3D CSR simulations without considering the network.

Figure 6.5: 5% critical envelopes of the first basal arborization of Neuron 1. (a) Estimation of
3D geometrically corrected inhomogeneous KLI function. (b) Estimation of 2D geometrically
corrected inhomogeneousKLI function. (c) Estimation of 3DK function ignoring the network
(the envelope is just below the red dotted line)
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The results were similar for all analyzed dendritic trees, suggesting that there does not

appear to be any evidence of clustering or regularity of dendritic spines after considering

spatial inhomogeneity. For three of the analyzed basal networks, however, the estimation of

the KLI function lay slightly below the lower boundary of the envelope at long distances,

indicating that there were fewer points within distance d of an arbitrary point than within

an inhomogeneous Poisson process with log-quadratic intensity in d. Conversely, the KLI

function estimations of two of the apical networks remained outside the envelope at long

distances but above the upper boundary of the envelope, suggesting that points tended to

be closer than within an inhomogeneous Poisson process at long distances. This could mean

that spine distribution differs slightly in basal and apical arborizations as the distance to

the cell body increases. Then we used the studentized permutation test to analyze if there

were differences between different pyramidal neurons and between basal and apical dendrites

(Section 6.4).

First, we compared groups of basal arborizations of different neurons, that is, we applied

the test with g=5 groups (neurons) using their previously estimated 3D KLI functions in

the range of distances [0,134.70]. We used a maximum distance that was 2% lower than the

minimum circumradius R of all the networks used in the test. We obtained a p-value of 0.808.

Thus, we concluded that there were no significant differences in spine distributions along the

basal trees among the five neurons at the analyzed distances (Fig. 6.6(a)). Then, we applied

the test again, forming a group with all basal arborizations of the five pyramidal neurons and

another group with all apical arborizations. The resulting p-value was 0.109. Therefore, we

concluded that there were no statistically significant differences between spine distributions

of these two groups up to a distance of 134.70 µm (Fig. 6.6(b)).

We wanted to analyze if there were differences in spine distribution between basal and

apical dendrites taking into account distances farthest from the cell body. In the studentized

permutation test, each group should contain at least three patterns to achieve reasonably pre-

cise estimates for the within-group variance of the estimates. To do this, we decided to remove

Neuron 2 from the analysis because two of its basal trees had a small circumradius (137.46

µm and 139.79 µm, respectively), and we repeated the analysis with all the other neurons up

to a distance of 165.96 µm (distance that was 2% shorter than the minimum circumradius

R of the remaining basal networks). First, we compared groups of basal arborizations. We

obtained a p-value of 0.565 for g=4 groups (Neurons 1, 3, 4 and 5). Therefore, we concluded

that there were no significant differences in spine distribution along basal trees in the range

of distances [0, 165.96] either. We applied the test again, forming a group with the 13 basal

dendrites analyzed in the previous step, and another group with all apical dendrites (all with

a circumradius longer than 165.96 µm). We obtained a p-value of 0.045, and, with the usual

5% significance level, we concluded that, contrary to previous cases, there were significant

differences in spine distribution along apical and basal dendritic networks considering dis-

tances up to 165.96 µm. Fig. 6.6(c) suggests that apical dendritic spines are more clustered

than basal dendritic spines as the distance from the cell body increases.
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Figure 6.6: Estimated 3D KLI functions used in the studentized permutation test. (a) Es-
timated 3D KLI functions of all basal networks grouped by neuron in the distance range
[0,134.70] (g=5 groups, p-value=0.808). (b) Estimated 3D KLI functions of all apical net-
works forming a group and all basal networks forming another group in the distance range
[0,134.70] (g=2, p-value=0.109) (c) Estimated 3D KLI functions of all apical networks form-
ing a group and the basal dendrites of Neurons 1, 3, 4 and 5 forming another group in the
distance range [0,165.96] (g=2, p-value=0.045)

6.6 Conclusions

We analyzed the spatial distribution of spines along both basal and apical dendritic networks

of human pyramidal neurons. To do this, we used network spatial analysis, implementing

methods to analyze 3D linear networks for the first time. We studied whether there were

differences in the spatial distribution of spines between different pyramidal neurons and be-

tween basal and apical dendrites, using replicated point patterns in conjunction with network

spatial analysis. To do this, we took advantage of the geometrically corrected K function in

order to compare the corrected K functions obtained from different point patterns in different

networks [Ang et al., 2012].

A non-constant intensity of points can be easily confused with clustering between points.

Therefore, we set out to thoroughly analyze spine intensity in dendritic networks. We found

that there was spatial variation in spine intensity which depended on the distance to the cell

body. Therefore, we fitted an inhomogeneous Poisson model. The model used appeared to

adequately explain the spatial distribution of spines along dendritic networks in most cases.

Additionally, we found that there were no significant differences in spine distribution between

basal trees of the same and different neurons. This suggests that dendritic spine distribution

in the basal dendritic arbors conforms to common rules. Neither did we find statistically

significant differences between basal and apical trees up to distances of 134.70 µm away from

the cell body. Excluding the smaller basal networks and analyzing distances farthest from the

cell body (up to 165.96 µm), however, we did find significant differences in the distribution

of spines along basal and apical networks. The spines of apical dendrites are more clustered

than basal spines. Therefore, not only do apical and basal dendritic arbors have distinct

morphologies, but the rules of spine distribution are also different. These observations further
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emphasize that synaptic input information is processed differently within these two dendritic

domains. Note, however, that, as stated in Baddeley et al. [2014b], the analysis performed

may be very sensitive to the fitted intensity, especially in tree-like networks. Because of

this, it might be interesting to examine other models that further characterize the spatial

distribution of spines along the basal and apical networks, especially at distances further from

the cell body.

Recent research analyzing the distribution of spines along dendritic networks yielded

different results. Jammalamadaka et al. [2013] concluded that spine intensity is completely

spatially random. Baddeley et al. [2014b], who studied only one example pattern of the

cells analyzed by Jammalamadaka et al. [2013], found that different branches may have

different patterns of spine distribution. The dendrites investigated in these studies belong

to cell culture in vitro rat dissociated hippocampal neurons, while we analyzed adult human

neocortical pyramidal cells obtained at autopsy. Thus, differences in spine distribution are not

comparable because of possible differences between human and rat pyramidal cell structures,

as well as between the experimental approaches used to obtain the tissue, neuron labeling

and methods of analysis.

This is the first work to take into account the third dimension of spatial analysis on linear

networks. This approach has been applied to the example of spines along dendritic networks

but could be useful for the spatial analysis of other real-world 3D networks. The shortest path

distances in the network are much harder to compute than Euclidean distances in traditional

spatial statistics. Besides, the inclusion of the third dimension considerably increases the

computational load especially with increased network complexity. As future work, we would

like to improve the efficiency of the implementation developed for 3D networks. Also, it would

be interesting to consider the network (dendrite) volume and the possibility of events (spines)

occurring on the surface of the network with volume. In this case, 3D analysis could be even

more useful, although the methodology would need to be expanded. The inclusion of marks

in the analysis, such as some spine characteristics like length, volume or type [Arellano et al.,

2007, Benavides-Piccione et al., 2013], may also be beneficial for elucidating important aspects

of the spatial distribution of spines. Finally, alterations of spine distribution are common in

the diseased brain (for a review see Fiala et al. [2002]). Thus, the analysis performed in this

study may shed light on the possible alterations of neuronal circuits in brain diseases.
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Chapter 7
Nearest neighbour distances to

describe dendritic morphology

organization

7.1 Introduction

In this chapter we use the average nearest neighbour ratio R, that measures the degree

of clustering of points in a given volume, to study the relationship between spatial input

distributions in dendrites and the respective dendritic morphology. The measure R has

been used in a wide variety of scientific disciplines, such as physics, biology, geography and

astronomy [Bishop, 2007a,b, Chandrasekhar, 1943, Clark and Evans, 1954]. In particular, it

has been applied to graph theoretical problems such as minimum spanning trees (MSTs) [Dry

et al., 2012], but to the best of our knowledge it has not yet been considered to characterize

neuronal morphology.

The primary function of dendritic trees is to collect inputs from other neurons in the

nervous tissue [Chklovskii, 2004, Stepanyants and Chklovskii, 2005]. Different cell types play

distinct roles in wiring up the brain and are typically visually identifiable by the particular

shape of their dendrites [Ramón y Cajal, 1899]. However, so far no branching statistic exists

that reliably associates individual morphologies to their specific cell class [Ascoli et al., 2008,

Torben-Nielsen and Cuntz, 2014], indicating that we have not yet identified the morphologi-

cal features that are characteristic for the differences in how neurons connect to one another.

Theoretical considerations have provided systematic qualitative insight into the question of

how dendrite shape relates to specific connectivity. Dendrites are thought to collect their

inputs using the shortest amount of cable and minimizing conduction times in the circuit

[Cuntz et al., 2007, 2010, Ramón y Cajal, 1899, Wen and Chklovskii, 2008] and they have

been proposed to maximize the possible connection repertoire [Wen et al., 2009]. Of the pos-

sible connections that a neuron could make by anatomical proximity only a small, relatively

invariable number become functional synapses [Fares and Stepanyants, 2009]. But it has

83
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generally been proposed that the connection probability between a dendrite and an axon can

be determined by the amount of anatomical overlap between the two [Binzegger et al., 2004,

Hill et al., 2012, Peters and Payne, 1993]. Furthermore, dendrite shape has been linked to the

number of synapses based on the optimal wiring assumptions described above, linking total

dendrite length and the number of synapses that determine the morphology [Cuntz et al.,

2012]. This leads to the question whether specific axonal arrangements or synapse distri-

bution patterns may lead to specific typical dendritic morphological characteristics [Cuntz,

2012].

A useful concept to relate dendritic trees with their underlying connectivity comes from

extended MSTs that connect a set of target points while minimizing total cable length and

path lengths in the tree toward the root where signals get integrated [Cuntz et al., 2007, 2010].

Such MSTs were shown to produce accurate dendritic morphologies when the corresponding

target points were selected adequately [Beining et al., 2017, Cuntz et al., 2008, 2010, 2012].

This approach has previously linked both the distribution of target points to actual synapse

locations, and as well the number of branching points and terminal points [Cuntz et al., 2012].

Here we analyze the measure R in branching and terminal points of real dendrites to

estimate how regularly the dendrites spread out. Then, we use MST-based morphological

models generated on different target point distributions to compare the spatial distributions

of branching and terminal points with the underlying distribution of target points as a proxy

for their corresponding synaptic input distributions.

The research included in this chapter has been submitted for publication [Anton-Sanchez

et al., 2017b].

Chapter outline

The chapter is organized as follows. Section 7.2 describes the average nearest neighbour ratio

R. Section 7.3 details how we compute the supporting volume of a point cloud in order

to estimate R. Section 7.4 introduces the inconveniences resulting from edge effects in the

estimation of R and our Monte Carlo approximation to avoid them. Section 7.5 describes

our implementation of a point pattern generator with specific R values. Section 7.6 details

how the analysis of nearest neighbour distances in dendritic morphology is performed, both

in real dendrites and in MST-based morphological models. Then, Section 7.7 reports the

results of the nearest neighbour analysis in real and synthetic branching structures. Finally,

discussion and final comments are included in Section 7.8.

7.2 Average nearest neighbour ratio R

The average nearest neighbour (NN) ratio R = r̄0/r̄E compares the observed average NN

distance r̄0 between a set of N points with the expected average distance r̄E between nearest

neighbours under the assumption of a uniform random distribution (with the same number

of points covering the same total area or volume). This approach was first described by Hertz

[1909] and Clark and Evans [1954].
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R provides a measure of the clustering of the points in a point cloud C. Concretely,

the closer the points are to a random (Poisson) distribution, the closer to 1 the value of R

becomes (as the values of r̄0 and r̄E are more similar). Values of R less than 1 correspond to

clustering (r̄0 < r̄E). When all points overlap (R=0) the most clustered condition is reached.

For values of R greater than 1, points are further apart than it would be expected for a

random distribution (r̄0 > r̄E). In 2D arrangements, the most dispersed situation is the one

in which the points are spaced on a triangular lattice, yielding a value of R=2.1491 [Clark and

Evans, 1954]. The measure R has the advantage of being easily interpretable. For example,

R=0.5 indicates that nearest neighbours are, on average, half as distant as expected under

random conditions.

Formally, for a finite point cloud C, i.e., a set of N points, the average NN distance is

r̄0 =
1
N

N
∑

i=1
i 6=j

min{dij},

where dij denotes the Euclidean distance between the i-th and the j-th point in C. This is

the numerator in the definition of R = r̄0/r̄E . The denominator in R is the expected NN

distance r̄E for a Poisson process that can be analytically computed as r̄E = 1/2
√
λ in the

2D case and as r̄E = Γ(4/3)/ 3

√

4πλ/3 in the 3D case, where Γ( ➲ ) is the gamma function

and λ is the point density, i.e., the mean number of points per unit area or volume V . For

a uniform random distribution, an unbiased estimator of λ is λ̂ = N/V . Thus, to obtain

the point density, an accurate estimate of the supporting volume V of the point cloud C is

required.

7.3 Computing the supporting volume of a point cloud

In order to estimate R, a volume V supporting a given point cloud C needs to be estimated.

The most common way to do this is to use the convex hull of C. Yet, with this choice the

supporting volume is overestimated if it is non-convex, which results in incorrect values of

R. Better estimates of R are obtained using α-shapes. α-shapes were devised to characterize

the shapes of point clouds and can be seen as an extension to the notion of a convex hull

[Edelsbrunner and Mucke, 1994, Edelsbrunner et al., 1983].

Formally, to any given finite point cloud C in 2D or 3D Euclidean space a one parameter

family of curves or surfaces Sα called α-shapes can be constructed, with α ∈ [0,∞]. By

construction, S∞ corresponds to the convex hull and S0 to the point cloud itself. For any

finite C, Sα is a finite set and a smallest value α0 exists (called critical value of α) such that

Sα0
is connected and contains all points of C. Furthermore a smallest value αk < ∞ exists

for which Sαk
=S∞. The α-spectrum of C is defined as the monotonically increasing, finite

sequence of values (αi)0≤i≤k, 0 ≤ αi ≤ ∞, αi ≤ αi+1 for which each Sαi is a distinct α-shape

and the shapes do not change between two consecutive values αi, αi+1. To compute what we

call a ‘tight hull’ around a point cloud C we selected the center point αk/2 of the α-spectrum,

for which we rounded the index k/2 to the next integer value. Especially for point clouds
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with non-convex supporting volumes, this yielded much better estimates of the true volume

and thus less biased values of R. Fig. 7.1 shows an example of the convex hull compared to

the tight hull of point clouds with non-convex support, and the resulting R values.

Figure 7.1: Examples of the implemented approximation to compute the R measure through
a tight hull in 2D for an L-shape with 1,000 points (a), and in 3D for a double L-shape with
3,000 points (b). (Left) Expected R using the correct volume V (computed analytically).
(Middle) V and R computed from the convex hull. (Right) V and R computed for a tight
hull

7.4 Edge effects and Monte Carlo approximation of R

Assume that for a given point cloud C we estimate a supporting volume V using α-shapes

as described in the previous section. Note that the expected NN distance of a uniform

random distribution used for calculating R is usually obtained analytically, assuming the

case of infinitely many points contained in an unbounded volume. Yet, in practice all our

volumes V containing a given point cloud C are finite and bounded. The spatial analysis

of any finite region implies that there is a boundary but most spatial statistic theories are

based on the assumption of an infinite space, so the analysis of a bounded region gives rise to

what are known as boundary or edge effects. Two well-known techniques correcting for such

boundary induced biases are the toroidal edge correction and the border area edge correction

(see Section 2.2.2.2). Analytical bias corrections were also derived for convex planar surface

areas as supporting volumes [Ripley and Rasson, 1977].

Without correction for edge effects, nearest neighbour distances will be positively biased

[Donnelly, 1978]. Since we usually work here with point counts with non-convex areas and

volumes (see for example Fig. 7.2) and many of them do not have a high number of points,

instead of computing r̄E analytically from an estimate of the point density and using an edge
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correction technique, we decided to use a Monte Carlo (MC) simulation approach to estimate

r̄E . This approach does not attempt to eliminate edge effects but rather to repeatedly simulate

the phenomenon of interest (Poisson point clouds in our case) for a given study region and

estimate the distribution of a test statistics (average NN distance in our case) in the presence

of edge effects.

For a point cloud C consisting of N points contained in a volume V , we first computed

r̄0 as the observed mean NN distance in C. We then sampled M=100 uniform random point

clouds within V , each containing N points. For each of those point clouds we computed its

average NN distance and obtained an estimate of r̄E as the mean of the M=100 values of

the simulations. No edge corrections are necessary here because all the average NN distances

are biased by the same edge effects. To check the correctness and convergence properties of

this approach, we generated point clouds with known R values and compared them to the R

values estimated from our MC based method (Fig. 7.3).

Figure 7.2: Example of non-convex dendrite. Magenta shows the hull around branching
points and cyan shows hull around terminal points. (Left) Convex hull. (Right) Tight hull

7.5 Point pattern generator with target R

In order to study a wide range of different spatial organizations we implemented a procedure

for obtaining point clouds with specified R values (Fig. 7.4). First, we generated a number

N of random points within a square. We then iteratively estimated the R value using our

MC method and moved each point in the direction of or away from its NN, depending on

whether the target R was smaller or greater than the current R, respectively, (Fig. 7.4(b))

until the target R value was reached. The shift was proportional to the difference between

the current R value and the target R, i.e., the closer the values of both, the smaller the

movements. Fig. 7.4(c) shows the number of iterations required for our algorithm to reach

different values of R, from highly clustered (R=0.2) to highly regular (R=1.8) given 1,000

initial points. We obtained very similar results for different numbers of points. For very small

or very large values of the target R, it was increasingly expensive to find a corresponding

point configuration.
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Figure 7.3: Estimated R values via MC for point clouds with known R in a square area with
N=1,000 points. Dashed lines show the true R values. The mean and standard deviation of
10 estimated R values are shown in green (R=0.5), red (R=1) and cyan (R=1.5). Here we
used from 50 to 100 Monte Carlo iterations to obtain each estimated R

7.6 Nearest neighbour distances in dendritic morphology

7.6.1 R values for dendrites from NeuroMorpho.Org

To evaluate the measure R on real cells, we obtained a number of reconstructions of dendritic

trees from NeuroMorpho.org [Ascoli et al., 2007], version 7.0 (January 2016) using the TREES

toolbox1, an open-source software package for MATLAB (Mathworks, Natick, MA) [Cuntz

et al., 2011]. Specifically, we chose reconstructions belonging to eight cell classes, namely

cortical pyramidal cells, hippocampal pyramidal cells, dentate granule cells, motoneurons,

retinal ganglion cells, cerebellar Purkinje cells, fly larva dendritic arborization (da) neurons

and fly Lobula Plate tangential cells (TCs). The first four classes were 3D cells and the last

four classes were 2D.

For selecting the reconstructions, we obtained all reconstructions from NeuroMorpho.org

that were classified as either having ‘moderate’ or ‘complete’ reconstructions of their dendritic

trees and belonged to the control group (to exclude mutant cells). We then grouped all

reconstructions by archive and sorted out archives that contained poor reconstructions by

manual visual inspection as well as archives containing one cell only. This left us with a

number of reconstructions of each cell type, denoted in parentheses in the following list:

cortical pyramidal cells (3786), hippocampal pyramidal cells (399), dentate granule cells

(154), motoneurons (83), retinal ganglion cells (322), cerebellar Purkinje cells (15), fly da

neurons (68), fly TCs (55).

After downloading the reconstructions in .swc format, these were read into and pre-

processed using the TREES toolbox. For each reconstruction, this process involved deleting

the soma and the axon if present and then re-joining the parts of the tree if the deletion

1www.treestoolbox.org

www.treestoolbox.org
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Figure 7.4: Point pattern generator for target average NN distance. (a) Illustration of NN
distances for uniform random Poisson distribution of 20 colored points and arrows indicating
the individual NN. Scale bar (upper right) shows average nearest neighbour distance r̄0. (b)
Movements of the points in the first 5 iterations (from light grey to dark grey) of our point
pattern generator towards a clustered (left) and a more regular (right) pattern. (c) Number
of iterations required in our algorithm to obtain different values of R (0.2 - purple, 0.6 - blue,
1 - yellow, 1.4 - green and 1.8 - red) from an initial point cloud with 1,000 random points.
Dashed lines show target R values. (d) Sample distributions of 50 points for R=0.5 (left),
R=1 (middle) and R=1.5 (right). Scale bars show average nearest neighbour distance r̄0
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operation yielded several roots, followed by a final removal of higher order multifurcations.

This process was not necessary for fly TCs that were available with the TREES toolbox

[Cuntz et al., 2008]. Da neurons were furthermore subdivided into da class I-IV cells and

TCs into horizontal system northern (HSN) cells, horizontal system equatorial (HSE) cells,

and vertical system (VS2, VS3, and VS4) cells. For each tree we then computed a number of

statistics: total dendrite length, number of branching points, mean branch order of branching

and terminal points, mean branch angle, mean asymmetry, mean path length, R for the set

of branching points (RBP ), R for the set of terminal points (RTP ), volume of the convex hull,

volume of the tight hull and cable density as total length per volume in the tight hull. The

tight hulls as well as their volumes needed for estimating R were computed using α-shapes

as described previously.

7.6.2 Morphological models connecting points with different R values

Using the point pattern generator described in Section 7.5 we generated a large number of

point clouds in 2D or 3D spaces. Planar arrangements were fixed to 200 µm x 200 µm and

3D arrangements were set to 200 µm x 200 µm x 200 µm. A large variety of number of points

(50-800 points) and R values (RInput, 0.2-1.8) were computed. We subsequently computed

morphological models based on optimal wiring principles that connected these point clouds.

In this context, we considered that the simulated target point clouds were the positions of

putative synapses and we computed synthetic branching structures connecting those targets

with minimal resources using the extended MST algorithm described in Cuntz et al. [2010]

and the algorithms available in the TREES toolbox. Briefly, optimal wiring minimizes both

total cable length and the path length from any point along the tree to the root, using a

balancing factor bf to weigh the second cost (that is, total cost = cable length cost + bf ➲

path length cost). For bf=0 the algorithm only seeks to minimize the total cable length while

for large bf it seeks also to minimize the length of the connections from the root to any point.

Values of bf greater than 0 and less than 1 represent a mixture of the two objectives that are

realistic for real dendrites. As a further constraint, we did not allow multifurcations (more

than two daughter branches at each branching point) in the computed synthetic trees.

The minimization was achieved via a greedy minimum spanning tree algorithm [Prim,

1957]. We computed synthetic dendritic trees from all the point clouds, connecting the

points to a root in the center and using bf values from 0.2 to 0.8. We obtained 100 trees for

each individual condition (point density, R and bf value). For each synthetic dendritic tree,

RInput of its target points was known (since the inputs were obtained using the point pattern

generator), and we estimated R values of its branching points (RBP ) and terminal points

(RTP ) in order to study the relation between these measures. In addition, we analyzed the

relation between RInput and other branching statistics commonly used to describe dendritic

morphology. Specifically, we studied the total length, the number of branching points, the

mean path length from the root of branching and terminal points, the mean branching angle,

the mean branching order and the mean asymmetry at the branching points of each synthetic

dendritic tree. The asymmetry for each branching point was defined as the ratio of v1/(v1+
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v2) for v1 < v2, where v1 and v2 are the counts of terminal points in each of the two daughter

branches. All statistics were computed using the TREES toolbox.

7.7 Results

7.7.1 R values for dendrites from NeuroMorpho.Org

We first calculated R for the set of branching and terminal points in real dendrites using our

MC based approach to estimate how regularly the dendrites spread in the circuit (Fig. 7.5).

Figure 7.5: Sketch describing nearest neighbour distances in branching and terminal points.
Sample dendrite and nearest neighbours (colored arrows) between branching points (left),
terminal points (middle) and branching and terminal points (right)

The mean estimated values of R in four 3D and four 2D cell types varied widely (Fig. 7.6).

For almost all cases we observed a tendency of RTP being slightly larger than RBP . Consider-

ing 3D dendrites, the spatial distribution of branching and terminal points was most regular

in dentate granule cells, followed by cortical pyramidal cells, hippocampal pyramidal cells

and finally motoneurons; the latter, on average, exhibited near random distributions with

R close to 1 (Fig. 7.6(a)). In the case of the four planar cell types (Fig. 7.6(b)), dendritic

arborization (da) neurons in the fly larva were well characterized by the clustering of their

branching points. The spatial organization of the terminal points of Lobula Plate tangen-

tial cells (TCs) in the fly appeared to be similar to cerebellar Purkinje cells, but branching

points were clustered more strongly in TCs than in Purkinje cells. Retinal ganglion cells, a

large inhomogeneous group of cell types, exhibited comparably more regular distributions of

branching and terminal points with larger R values than the other planar cell types that we

studied.

It is important to note that all eight populations in Fig. 7.6 were composed of subgroups

with strong differences in their functional role in the nervous system. Moreover, morphologies

within the separate subgroups were partly obtained in different species, preparations and

developmental ages. To illustrate the effect this can have on the analysis, we dissected fly
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Figure 7.6: Nearest neighbour distances in 3D and 2D dendrites of real neurons. (a) R values
of branching points (x-axis) and terminal points (y-axis) for four different populations of 3D
dendrites. (b) Similar analysis as in (a) for four populations of planar dendrites. Data were
obtained from NeuroMorpho.Org [Ascoli et al., 2007]. Colored dots correspond to individual
reconstructions and diamonds represent mean values for each cell type

da neurons and TCs into their respective characteristic subgroups (Fig. 7.7). Da neurons are

known to subdivide into morphologically distinct classes (I-IV) and, apart from the classes

I and II, these can be separated into clusters (Fig. 7.7(a)) corresponding to their specific R

values. In particular, class III da neurons with their large number of small terminal segments

(STS) exhibited small R values consistent with the clustering of branching and terminal points

due to these STS. On the other hand, sub-classes of TCs (two types of horizontal system cells

- HSN and HSE, and three types of vertical system cells - VS2, VS3 and VS4) did not separate

into different clusters according to their R values (Fig. 7.7(b)). Terminal points were more

regularly distributed than branching points in all TC classes but all R values were close

to 1, indicating random distributions. This was not surprising since TCs were previously

characterized in detail using morphological models and shown to have similar inner branch

rules even though their spanning areas are easy to distinguish [Cuntz et al., 2008].

The statistic R for branching and terminal points is therefore a useful measure to distin-

guish between cell classes and characterize the relationship between dendritic tree structure

and input architecture. However, it remains to be shown that the use of this local statistic

in dendritic morphology is not simply an altered version of another traditional branching

statistic. In order to test this and to check whether the input architecture as measured by R
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Figure 7.7: R values of fly da neurons and TCs subdivided into individual classes. (a) Similar
plots as in Fig. 7.6 but subdividing da neurons into their four different classes (I-IV). (b)
Similar subdivision as in (a) but for fly TCs. Here the five difference cell types exhibit
similar R values. Note that the scale is different than in Fig. 7.6. Individual morphologies
are shown to visualize the differences in how regularly the branches are distributed in the
different classes

is reflected in other branching statistics, we computed the correlations between R and other

commonly used statistics in 3D (Fig. 7.8(a)) and 2D (Fig. 7.8(b)) dendrites. We found that

RBP and RTP do not have strong correlations with other typical branching statistics of den-

dritic trees in both cases. Since RBP and RTP were different in distinct cell types and were

weakly correlated with other branching statistics, we postulate that these measures are a

useful addition to the collection of branching statistics used to classify dendritic morphology.

7.7.2 Morphological models connecting points with different R values

In order to estimate how the clustering structure of input locations affects the clustering of

branching and terminal points, we generated morphological models targeting different sets of
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Figure 7.8: Correlation matrix between R values and other branching statistics. (a) Correla-
tion matrix of RBP and RTP with other typical branching statistics in the lumped 3D cells
from Fig. 7.6(a). (b) Similar correlation matrix but using the 2D cells of Fig. 7.6(b)
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input points with specified values RInput of the statistic R. For this, we use the point pattern

generator described in Section 7.5. Dendrites were considered as tree structures connecting

these target points [Cuntz et al., 2010, 2012]. Fig. 7.9(a) shows planar sample trees obtained

from connecting 100 target points in a 200 µm x 200 µm square with different RInput values,

using the extended MST for different values of bf (see Section 7.6.2).

Generating morphological models on different sets of carrier points with specific values

of RInput, we found that with higher RInput the trees became denser and the branches were

more regularly distributed. Compared with RInput, branching and terminal points describing

the dendritic geometry were more regularly distributed in all cases (Fig. 7.9(b) for 3D cases

similar to Fig. 7.9(a)) with much larger values in R and almost no values below 1. Further-

more, the spatial organization of branching and terminal points was clearly different: in line

with reconstructions of real dendritic trees, RTP values were consistently larger than RBP .

As might be expected, more regularly distributed inputs generally resulted in more regular

branching structures. For higher point densities (N > 100) the results were similar, but R

values of branching and terminal points were more similar to the R values of the input config-

uration. We obtained similar results in the 2D case with the exception that the distribution

of branching and terminal points for high point densities was less regular than the input

target point distribution, while in the 3D case both distributions tended to become similar

for high densities. Overall, we believe that constructing synthetic versions of real dendritic

trees with more detailed morphological models would therefore be useful for inferring the

underlying spatial organization of the synaptic inputs.

Apart from its impact on the R values of branching and terminal points, it is interesting to

study the impact ofRInput on branching statistics typically used to characterize dendritic trees

(Fig. 7.10). As was the case for RBP and RTP in real dendritic tree reconstructions, RInput

was weakly correlated with other branching statistics, suggesting that input architecture is

not well captured by traditional branching statistics whereas RBP and RTP would be useful

measures for this and to classify dendritic morphology accordingly. However, both total

length and number of branching points increased reliably with RInput, requiring the minimum

spanning tree to use more cable to connect the points that are more widely spread and more

branches to reach out to all distributed inputs in space. This correlation clearly affected the

scaling behavior that was previously observed between number of inputs and total length

as well as between number of inputs and number of branching points [Cuntz et al., 2012].

Here, the previously reported 2/3 power between these measures was not affected by RInput,

but a clear increase in total length was observed as an offset in the relationship (Fig. 7.11).

MST-based dendrites connecting target points with an increased RInput required much more

cable length. This is consistent with a correlation of around 0.4 observed in Fig. 7.8 between

R values and the cable density in real 3D dendrites.
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Figure 7.9: Relation between nearest neighbour distances in the input distribution and in
the branching and terminal points. (a) Top row: 100 points (grey) distributed with different
values of R (0.2, 0.6, 1, 1.4 and 1.8 from left to right) using our point pattern generator.
Synthetic trees to optimize wiring for different bf values are shown below each point cloud
(from 0.2 to 0.8 in 0.1 increments from top to bottom), in 2D for better visualization. (b)
Relationship between RInput and RBP as well as RTP for all morphological models in (a)
(average of 100 trees for each individual condition) for the 3D morphological models
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Figure 7.10: Relation between RInput and dendritic branching statistics in the morphological
model. Total dendrite length, number of branching points, mean path length from any point
to the root, mean angle at branching points, mean branch order for any point on the dendrite
and mean asymmetry at the branching points for all cases in Fig. 7.9. Colors indicate the
same different values of bf in the morphological model with sample morphologies plotted
from Fig. 7.9 at the top of the figure
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Figure 7.11: Scaling relation of total dendrite length. Total dendritic length vs. number
of branching points in the 3D morphological model of Fig. 7.9 (bf=0.5). Increasing R is
indicated with lighter color, same values as in Fig. 7.9. Results were similar with different bf
values

7.8 Conclusions

We have presented a new branching statistic R, which is based on the average nearest neigh-

bour (NN) distance between points of a given set, capturing their clustering structure. Specif-

ically, R is defined as the ratio of the observed average NN distance to the one expected in

a matching random point cloud. This makes R independent of the absolute scale of the

dendritic arbor, but rather captures the clustering characteristic of the branching and termi-

nal points and allows for comparison of cells of different sizes. We found that the measure

allowed to distinguish dendritic trees from different cell classes for which the local statistics

of the spatial input distribution differed. The values of R computed for the sets of branching

points (RBP ) and terminal points (RTP ) of reconstruction of real dendritic trees correlated

little with most other commonly considered branching statistics, indicating that these mea-

sures provide new descriptive power for dendritic trees that was not captured by existing

measures. Using morphological models, we then found that overall RBP and RTP attained

higher values compared to the value of the input distribution (RInput). This indicates that

dendritic branching structures are more regularly spread than the inputs that they collect.

We also showed that in spatial distributions with higher values of RInput, the total length of

the dendrite increased dramatically. Overall, we expect the proposed measure R to be able to

predict certain features of their input organization for given dendritic tree types better than

the existing branching statistics, such as for example how regularly inputs are spread. As

more realistic morphological models become available based on minimum spanning trees, as

is the case for example for TCs [Cuntz et al., 2008] and dentate gyrus granule cells [Beining

et al., 2017], this information can be further refined.

One issue when computing R that has been given little attention in the literature so far is

the finding that a naive calculation yields a biased result due to edge effects. Our approach
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to remedy these adverse effects was to use Monte Carlo (MC) simulations to predict the

expected NN distances of uniform distributions numerically, using instances of Poisson point

clouds. This MC based approach would most likely be useful in further studies beyond the

scope of dendritic morphology since point processes in small volumes will necessarily exhibit

similar important edge effects.

For most of the different types of real cells that we analyzed, we estimated values of R

close to or greater than 1, indicating a more regular distribution than uniform random. Our

results showed that also for the case of synthetic dendrites, the spatial distribution of dendritic

branching structures is more regular than the distribution of the inputs that they collect, and

that the higher the input density, the more similar both distributions become. Specifically, R

values of branching and terminal points greater than 1 corresponded to slightly lower RInput

values, which indicated that inputs were potentially distributed almost randomly. These

results are consistent with the spatial analysis carried out in Chapter 5 where we concluded

that the 3D spatial distribution of synapses is close to uniformly random, with the only

constraint that they cannot overlap. Furthermore analyses of dendritic spines, on which the

majority of the excitatory synapses in the brain are established, showed that their spatial

distribution is close to random [Morales et al., 2014].

There are several ways in which the measure R could be generalized that were not the focus

of this study. First of all, for simplicity we assumed point clouds with uniform homogeneous

densities when computing R. This can be extended to the non-homogenous case by including

local estimates of point densities. This would lead to a localized version of measure R.

Second, we only considered one nearest neighbour per point. This can easily be extended to

neighbourhoods of higher order, containing the k-th nearest neighbours for each point, k ≥ 2.

Both of these extensions are subject of future studies.

Overall, we presented a new statistic R for dendrites that allows to relate their morpholo-

gies with the specific individual input organization that a neuron implements. It has low

correlation with most commonly used statistics of dendritic branching and is extendable in

several ways, providing a useful new statistic for the classification of dendritic trees. Further-

more, the MC based approach for small point clouds might be of interest to application in

other areas of research.
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Chapter 8
Network design with degree- and

role-constrained minimum spanning

trees

8.1 Introduction

We define a variation on the DCMST problem described in Section 3.2, which we call the

degree- and role-constrained minimum spanning tree (DRCMST) problem. A DRCMST is

a DCMST where we determine a priori the role of each node in the tree by choosing among

the following: root node, intermediate node and leaf node. It may be useful to constrain the

role of the nodes in network design. In computer networking, for example, the service has to

reach the leaf nodes, and these nodes are clearly different from the central processor (which

has a fixed number of ports). In such a network the cost could be associated with distances

between nodes or with the material costs needed to connect nodes. A DRCMST could also be

useful in a business network, for example, for the design of the project staff structure, where

we would differentiate between the project manager (root), middle managers (intermediate

nodes) and the rest of the team who are not in charge of any other staff (leaf nodes). The

cost of this problem might be associated with team member preferences for project managers.

The DRCMST problem is NP-hard, because it contains the particular case where we

determine one root node and one leaf node with the constraint that the degree of each node

has to be less than or equal to two. This is equivalent to the shortest Hamiltonian path

problem between two nodes. In addition, a forest rather than a single tree can be built, i.e.,

we do not limit the number of root nodes to one so we can solve more complex problems, e.g.,

we might design several computer networks and several business networks by simultaneously

considering several central processors and several project managers in the above examples,

respectively.

We introduce a new permutation-based representation for building forests of DRCMSTs.

One permutation simultaneously encodes all the DRCMSTs in the forest. Due to problem

103
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complexity, we address a wide variety of DRCMST problem instances using the evolutionary

computation techniques detailed in Section 3.3. Individuals of the populations are encoded

with the proposed representation.

The research included in this chapter has been published in Anton-Sanchez et al. [2017a].

Chapter outline

The organization of this chapter is as follows. Section 8.2 formally describes the DRCMST

problem. Section 8.3 introduces the proposed permutation-based representation to encode

forests of DRCMSTs. This representation is used to approximate a variety of DRCMST in-

stances using the evolutionary computation algorithms described in Section 8.4. Section 8.5

details the characteristics of the 30 simulated test problem instances used to compare the

performance of the different evolutionary computation techniques for the problem of finding

forests of DRCMSTs. Section 8.6 analyzes the results and compares the algorithms. Sec-

tion 8.7 illustrates the construction of forests with DRCMSTs in a real-world application,

specifically trans-European transport network design. Finally, some discussion and conclu-

sions are provided in Section 8.8.

8.2 Problem definition

A DRCMST is a DCMST where the role of the nodes in the tree is determined a priori (by

the user/expert). In a DRCMST problem, we define three subsets of nodes R, I and L for

root nodes, intermediate nodes and leaf nodes, respectively, where each node v ∈ V must

belong to one and only one subset, {R, I, L} is a partition of the set of nodes and R 6= ∅.
Note that the following conditions must be met: dv ≥ 1 ∀v ∈ R, dv ≥ 2 ∀v ∈ I and dv = 1

∀v ∈ L. If we choose only one root node (|R| = 1), we construct a single tree. With a higher

number of roots, we build a forest of DRCMSTs.

Given an undirected complete graph G = (V,E) with a set of vertices (nodes) V and

a set of edges E, a forest of G is a subgraph F = (V,EF ), EF ⊂ E that contains all

vertices in V and consists of a spanning tree in each connected component of F . Given

a definition of degree constraints and subsets R, I and L that satisfies the requirements

specified in the previous paragraph, the DRCMST problem consists in finding a minimum

forest F ∗ = (V,EF ∗), EF ∗ ⊂ E with |R| connected components such that

F ∗ = argmin
F

∑

(u,v)∈EF

cuv, (8.1)

subject to

deg(v) ≤ dv for all v ∈ V

role(v) = root for all v ∈ R

role(v) = intermediate for all v ∈ I

role(v) = leaf for all v ∈ L,
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where role(v)∈ {root, intermediate, leaf} gives the role of node v in the forest.

Proposition 1. Given an undirected complete graph G = (V,E), the subsets of nodes

R, I and L such that {R, I, L} is a partition of the set V , R 6= ∅, and a degree constraint

for each v ∈ V satisfying dv ≥ 1 ∀v ∈ R, dv ≥ 2 ∀v ∈ I and dv = 1 ∀v ∈ L, the DRCMST

problem is feasible if and only if

∑

v∈R

dv +
∑

v∈I

dv − |I| ≥ |I|+ |L|. (8.2)

Proof. Note that the proof has a double implication. First, we assume that the problem is

feasible, and we see that Inequality (8.2) holds.

⇒
Suppose the problem is feasible, i.e., the subgraph of G, F = (V,EF ), consists of |R| trees

where the constraints of problem (8.1) are satisfied. Let us prove that Inequality (8.2) holds

when dv is replaced by deg(v) for each v ∈ V , and then it will also hold for dv, v ∈ V , because

dv ≥ deg(v), ∀v ∈ V . Then, we prove
∑

v∈R

deg(v) +
∑

v∈I

deg(v)− |I| ≥ |I|+ |L| ⇐⇒ ∑

v∈R

deg(v) +
∑

v∈I

deg(v) ≥ 2|I|+ |L|

We add
∑

v∈L

deg(v) to both sides of Inequality (8.2):

∑

v∈R

deg(v) +
∑

v∈I

deg(v) +
∑

v∈L

deg(v) ≥ 2|I|+ |L|+ ∑

v∈L

deg(v)

It is known that
∑

v∈VG

deg(v) = 2|EG| holds for any graph GG = (VG, EG). Further,

because dv = deg(v) = 1 ∀v ∈ L,
∑

v∈L

deg(v) = |L| and we have

∑

v∈V

deg(v) ≥ 2|I|+ |L|+ |L| ⇐⇒ 2|EF | ≥ 2|I|+ 2|L| ⇐⇒ |EF | ≥ |I|+ |L|

Since |ET | = |VT | − 1 holds for every tree T and our initial assumption was that the

forest F has |R| trees ⇒ |EF | = |V | − |R|. Then, we have that |V | − |R| ≥ |I|+ |L| and this

becomes an equality because |V | = |R|+ |I|+ |L|. Hence, because Inequality (8.2) is true for

deg(v), v ∈ V , it is also true for dv, v ∈ V , and we have proved the first part of the double

implication.

Second, we assume that Inequality (8.2) holds and we prove that the problem is feasible.

⇐
If Inequality (8.2) is satisfied, we can build a forest satisfying the degree constraints with

the following two steps. First, we incorporate into the forest a path starting at one of the

roots and including all the intermediate nodes. Second, we include an edge linking each leaf

to either a root node or an intermediate node. After the first step of the construction, the

sum of the residual degrees is precisely
∑

v∈R

dv +
∑

v∈I

dv − 2|I|, which is greater or equal than

|L| because Inequality (8.2) holds, ensuring that the second step of the construction can be

carried out. Hence, we have also proved this part of the implication.
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In other words, the DRCMST problem is feasible if and only if the maximum allowed

number of ‘outputs’ (left-hand side of (8.2)) is greater than or equal to the number of ‘inputs’

(right-hand side of (8.2)). See Fig. 8.1 for an infeasible example. Notice that we are working

with undirected graphs so no input or output edges exist. By establishing root nodes, however,

tree structure is implicitly directed since the roots (leaves) are considered to be the origins

(ends) of a tree.

Figure 8.1: Example of an infeasible DRCMST instance. The maximum allowed degree dv
is shown on the right of each node. Root nodes are shown in green, intermediate nodes in
brown and leaf nodes in blue. Since |R| = 2, |I| = 2 and |L| = 4, we need six ‘inputs’
(black arrows): two for intermediate nodes and four for leaf nodes. However, we only have
five possible ‘outputs’ (orange arrows): two from the root nodes and three from intermediate
nodes. In this example, node number 7 cannot be connected to either of the two trees in this
forest. This example does not satisfy Inequality (8.2): 2 + 5− 2��≥2 + 4

8.3 Problem representation

We set out to encode the DRCMST problem using a permutation representation. A permu-

tation is understood as a vector σσσ = (σ1, ..., σn) of the indices 1, ..., n such that σk 6= σs for

all k 6= s. We say that index s is in position k in σσσ when σk = s.

In a forest encoded by the proposed representation, all nodes have a degree deg(v) equal

to their maximum allowed degree dv. To enforce this constraint, we add a new type of nodes

called dummy nodes, see Fig. 8.2. We add as many dummy nodes as are necessary to make

deg(v) = dv, ∀v ∈ V . Let D be the subset of dummy nodes. In a forest of DRCMSTs encoded

by our representation, Inequality (8.2) becomes an equality:

∑

v∈R

dv +
∑

v∈I

dv − |I| = |I|+ |L|+ |D|, (8.3)

and hence the number of dummy nodes to be added is

|D| =
∑

v∈R

dv +
∑

v∈I

dv − 2|I| − |L|. (8.4)
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Dummy nodes are added for representation purposes only, and they are all leaf nodes so

their degree is always equal to 1. The cost of every edge that reaches a dummy node is zero.

Then, m = |V |+ |D| = |R|+ |I|+ |L|+ |D| is the total number of nodes in the encoded forest.

Figure 8.2: Example of a DRCMST forest with two trees. The maximum allowed degree dv
is shown on the right of each node. In (a) the degree deg(v) of all nodes is equal to their
maximum allowed degree dv, except node number 4 where deg(4)=2 and d4=3. To encode
this forest with our permutation-based representation, we add one dummy node, node 9,
connected to node 4. Forests (a) and (b) are equivalent because dummy nodes are added for
representation purposes only and do not affect the calculation of tree costs

In our representation, each index of the permutation denotes a connection between two

nodes, i.e., each index represents an edge in the forest. Since |ET | = |VT | − 1 holds for every

tree T and we encode |R| trees in one permutation, the permutation length n (total number

of edges in the encoded forest) can be calculated as n = m− |R|.
The length of the permutation can also be obtained using Eq. (8.3):

n =
∑

v∈R

dv +
∑

v∈I

dv − |I| = |I|+ |L|+ |D|.

To find out which nodes are connected by the edges represented in each position of the

permutation, we need two auxiliary arrays, parent and child, both of length n. These arrays

remain unchanged for all permutations of the same problem. The parent auxiliary array

represents the ‘outputs’ of the edges in the forest. Since each root node has dv ‘outputs’ and

each intermediate node has (dv − 1) ‘outputs’, each root node appears dv times for all v ∈ R

and each intermediate node appears (dv−1) times for all v ∈ I in the parent array. The child

auxiliary array represents the ‘inputs’ of the edges. All intermediate nodes, leaf nodes and

dummy nodes have one ‘input’, therefore the child array includes each node v ∈ I ∪ L ∪D

once. With these arrays, our permutation is such that σk = s represents that node parents in

the forest (note that we use the subscript to indicate the element in position s of the auxiliary

array) is the parent of node childk, see Fig. 8.3. A simple version of this novel representation

considering only binary trees was introduced in Anton-Sanchez et al. [2013].
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Figure 8.3: Decoding the proposed permutation-based representation. σk = s represents
that, in the forest, node parents (node X) is the parent of node childk (node Y)

To illustrate this representation, consider the example in Fig. 8.4. Fig. 8.4(a) shows the

|V | = 10 nodes of an example graph G = (V,E). The maximum allowed degree dv is shown

on the right-hand side of each node v ∈ V . Nodes selected as root nodes are shown in green,

intermediate nodes in brown and leaf nodes are shown in blue, thus, |R| = 2, |I| = 3 and

|L| = 5. This problem is feasible because it satisfies Inequality (8.2). We check whether it is

necessary to add any dummy nodes to solve the problem using Eq. (8.4):

|D| = ∑

v∈R

dv +
∑

v∈I

dv − 2|I| − |L| = 3 + 9− 2 ➲ 3− 5 = 1,

i.e., we have to add one dummy node. Fig. 8.4(b) shows the numbered nodes and the added

dummy node (node number 11 in pink). Then, a forest in the example will have two trees

(|R| = 2) with m = |V |+ |D| = 10+1 = 11 nodes and it will be represented by permutations

of length n = m− |R| = 11− 2 = 9.

We build the parent and child auxiliary arrays both needed to encode the permutations.

As indicated, we add each root node dv times (v ∈ R) and intermediate nodes (dv − 1) times

each (v ∈ I) to the parent array. A possible parent auxiliary array is shown in Fig. 8.4(c).

A possible child auxiliary array, including each intermediate, leaf and dummy node once, is

shown in Fig. 8.4(d). Note that parent and child auxiliary arrays must be established before

starting to solve the problem because they determine which DRCMST problem solution each

permutation represents. The order of the nodes in these arrays is in fact irrelevant.

Fig. 8.4(e) represents the permutation (6,1,2,4,5,8,7,9,3) which would be a correct indi-

vidual (forest) using the defined parent and child auxiliary arrays, i.e., parent6 (node 4) is

the parent of child1 (node 3), parent1 (node 1) is the parent of child2 (node 4) and so on

until the last position of the permutation, which indicates that parent3 (node 2) is the parent

of child9 (node 11).

Our permutation-based representation implicitly ensures that all constraints of problem

(8.1) are satisfied in an encoded forest. However, permutations encoding any cycle repre-

sent invalid forests. For example, Fig. 8.4(f) represents an invalid individual (permutation

(1,8,6,4,5,7,9,2,3)) because it contains a cycle (in red) between nodes 4 and 5. The second
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Figure 8.4: An example of permutation representation. (a) Nodes of an example graph. The
maximum allowed degree dv is specified to the right of each node. The role of each node is
indicated in different colors: root nodes in green, intermediate nodes in brown and leaf nodes
in blue. (b) Numbered nodes. According to Eq. (8.4) (|D| = 3+ 9− 2 ➲ 3− 5 = 1), a dummy
node is needed to solve the problem. This is added as node 11 in pink. (c)-(d) parent and
child auxiliary arrays required to determine which forest each permutation represents. (e)
Example of valid individual, permutation (6,1,2,4,5,8,7,9,3). (f) Example of invalid individual
because it contains a cycle, permutation (1,8,6,4,5,7,9,2,3)
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position of the permutation indicates that parent8 (node 5) is the parent of child2 (node 4)

and the next position indicates that parent6 (node 4) is the parent of child3 (node 5).

We can ensure that permutations corresponding to acyclic graphs are correct forests, i.e.,

they represent the required number of trees |R| = m−n (it is trivial that if a graph G = (V,E)

has m nodes, n edges and no cycles, then it is a forest composed of (m− n) trees).

Note that this representation yields several permutations encoding the same individ-

ual. For example, permutation (6,1,3,4,5,8,7,9,2) is the same individual as permutation

(6,1,2,4,5,8,7,9,3) (Fig. 8.4(e)) because both parent3 and parent2 represent node number 2.

We call these positions redundant positions, and we remove redundancy. To do this, we

always choose the individual whose numbers of redundant positions are ordered from lowest

to highest, i.e., (6,1,2,4,5,8,7,9,3) in the example.

Furthermore, note that cycles of length one, i.e., cycles that indicate that a node is its own

parent, are very easy to detect with our representation. For example, as regards the problem

illustrated in Fig. 8.4, we know that numbers 4 or 5 cannot occupy the first position of the

permutation because this would indicate that parent4 or parent5, i.e., node 3, is the parent

of child1, also node 3. For longer cycles, we must traverse the permutation and build the

trees that it encodes to identify any cycles. We read the permutation, in which each position

indicates a connection between two nodes, sequentially. If the two nodes in the connection

already belong to the same connected component, we will have detected a cycle. Otherwise,

we join the nodes. To do this, we use the weighted quick-union algorithm [Sedgewick and

Wayne, 2011]. The worst-case order of growth of all operations of this algorithm is logn,

where n is the length of the permutation.

8.4 Problem-solving approach

We used genetic algorithms (GAs) [Holland, 1975] and estimation of distribution algorithms

(EDAs) [Larrañaga and Lozano, 2002] to solve and compare a variety of synthetic simulated

DRCMST instances. GAs have been widely studied for solving permutation-based optimiza-

tion problems [Larrañaga et al., 1999], and they are known to perform satisfactorily [Bielza

et al., 2010, Reeves, 1995, Ruiz and Maroto, 2005]. However, although several papers us-

ing probabilistic models on rankings with EDAs have recently been published [Aledo et al.,

2013, Ceberio et al., 2011, 2014, 2015], EDAs have not been so extensively developed for

permutation-based optimization problems [Ceberio et al., 2012]. The probabilistic model

learned in an EDA is expected to reflect the structure of the problem, and therefore this

approach should provide an effective exploitation of promising solutions.

As described in Chapter 3, we used the gGA [Cobb and Grefenstette, 1993], the ssGA

[Syswerda, 1991], the NHBSA [Tsutsui, 2006] and the MKEDA [Ceberio et al., 2015], and

the jMetal framework [Durillo and Nebro, 2011, Durillo et al., 2010] in order to compare the

performance of these algorithms. jMetal already contained gGA and ssGA algorithms, and we

plugged our NHBSA and MKEDA implementations into jMetal. We made improvements to

all the algorithms due to the specific characteristics of our representation. On the one hand,



8.5. TEST PROBLEM GENERATION 111

we ruled out the generation of individuals containing cycles of length one (which are easy

to detect as described in Section 8.3) and, on the other hand, we removed the redundancy

of our representation by selecting a representative individual from the redundant individuals

as already explained. In order to detect cycles of length longer than one, it was necessary,

as already mentioned, to traverse each permutation sequentially, building the trees that it

encoded. If a cycle was identified, the individual was immediately ruled out.

For GAs, we used the default operators provided for permutations in jMetal: partially

matched crossover (PMX) and swap mutation. PMX builds a child by choosing a subsequence

of one parent (permutation) using two random cut points, and it preserves the order and

position of as many indices as possible from the other parent. Swap mutation selects two

indices at random and swaps their positions. We set a crossover probability (CrossProb

in Alg. 3.1) equal to 0.9 and a mutation probability (MutProb in Alg. 3.1) equal to 1/n,

where n is the length of the permutation. For each problem, we established a population

size equal to 10|V | for all GAs and EDAs. For each execution of each problem, the initial

population was randomly generated including the improvements discussed above (length-one

cycles and redundancy). We decided to stop any algorithm if there was no more than a 0.1%

improvement of the best fitness over the last 500 generations.

We applied the non-parametric Friedman test to detect statistically significant differences

considering the whole set of algorithms [Friedman, 1937]. The null hypothesis for the Fried-

man test states equality between all the algorithms. If the null hypothesis is rejected, a

post-hoc test can be applied to find out which pairwise comparisons cause the differences.

We opted for the Bergmann-Hommel procedure [Bergmann and Hommel, 1988]. Although

computationally expensive, this is the best-performing procedure for comparing all the algo-

rithms with one another [Derrac et al., 2011]. We set a significance level of α = 0.05. We used

the implementation of the Friedman test for multiple comparison and the Bergmann-Hommel

procedure provided in the MULTIPLETEST package available at the SCI2S public website1.

8.5 Test problem generation

We simulated five problem instances for each of the following sizes |V |= 20, 40, 60, 80, 100,

200 nodes. The number of roots and intermediate nodes were randomly generated, although

some constraints were included. The number of problem root nodes was less than or equal

to 20% of all problem nodes, i.e., |R| ≤ 0.2|V |. The number of intermediate nodes was less

than or equal to 75% of all problem nodes (|I| ≤ 0.75|V |). The number of leaf nodes was

derived as |L| = |V |− |R|− |I|. The maximum allowed degree of root and intermediate nodes

(leaf nodes always have a degree equal to 1) was also simulated randomly for each node as

follows. The maximum allowed degree dv was between 1 and 4 for root nodes and between 2

and 5 for intermediate nodes. We simulated the coordinates (x, y, z) of each point between

xmin = ymin = zmin = 1 and xmax = ymax = zmax = 100. Then, we computed the cost

matrix with real Euclidean distances between pairs of points. A small fitness was preferred

1http://sci2s.ugr.es/sicidm/

http://sci2s.ugr.es/sicidm/
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Table 8.1: Description of the simulated DRCMST instances. The table shows the number of
root, intermediate, leaf and dummy nodes and the length of the permutations that encode
the problem solutions

|R| |I| |L| |D| n

Problem roots intermediate leaf dummy permutation length

Problem 1-20Nodes 3 9 8 10 27

Problem 2-20Nodes 3 6 11 0 17

Problem 3-20Nodes 1 9 10 3 22

Problem 4-20Nodes 3 11 6 10 27

Problem 5-20Nodes 2 12 6 11 29

Problem 1-40Nodes 5 18 17 15 50

Problem 2-40Nodes 7 12 21 6 39

Problem 3-40Nodes 4 22 14 16 52

Problem 4-40Nodes 4 18 18 8 44

Problem 5-40Nodes 7 16 17 13 46

Problem 1-60Nodes 5 24 31 1 56

Problem 2-60Nodes 1 36 23 13 72

Problem 3-60Nodes 11 17 32 8 57

Problem 4-60Nodes 9 26 25 18 69

Problem 5-60Nodes 11 23 26 22 71

Problem 1-80Nodes 13 42 25 50 117

Problem 2-80Nodes 11 25 44 1 70

Problem 3-80Nodes 13 36 31 36 103

Problem 4-80Nodes 12 33 35 5 73

Problem 5-80Nodes 15 29 36 21 86

Problem 1-100Nodes 15 45 40 29 114

Problem 2-100Nodes 7 56 37 39 132

Problem 3-100Nodes 6 52 42 14 108

Problem 4-100Nodes 18 42 40 39 121

Problem 5-100Nodes 15 56 29 49 134

Problem 1-200Nodes 23 74 103 24 201

Problem 2-200Nodes 30 100 70 91 261

Problem 3-200Nodes 11 102 87 43 232

Problem 4-200Nodes 10 103 87 16 206

Problem 5-200Nodes 20 99 81 59 239

when we evaluated individuals (permutations) of our population.

Table 8.1 shows the characteristics of each of the simulated instances. For each instance,

it lists the number of nodes of each role and the length of the permutation representing the

forest. Note that the length of the permutation for each problem instance depends on the

number of nodes of each role and their maximum allowed degree.

We obtained a wide variety of problem instances. The number of trees in the forest ranged

from a single tree (|R| = 1, two times out of 30) to 30 trees (problem number 2 with 200

nodes). The number of intermediate nodes ranged from 28% to 60% of all network nodes.

The number of leaf nodes ranged from 29% to 55% of |V | depending on the problem. No

dummy node had to be added in one of the problems (problem number 2 with 20 nodes),

whereas problem number 1 with 80 nodes had 50 dummy nodes (62.5% of the problem size).

On average, the permutation length of the problems was 15.6% greater than the number of

nodes in the problem.
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8.6 Results

We used the algorithms described in Section 3.3 to solve the 30 simulated DRCMST instances

described in Section 8.5. Each problem was run 20 times with each algorithm (with a new

randomly generated initial population in each run). All the results were obtained using the

Magerit supercomputer. Magerit is offered by the high performance computing area at the

CeSViMa. Magerit is a general-purpose cluster with dual architecture (Intel and POWER).

We used POWER7 nodes with 3.3 GHz (422.4 GFlops) 32 GB of RAM and 300 GB of local

hard disk.

Figure 8.5: Evolution of the best fitness found in 20 generations by the NHBSA for problem
number 1 with 20 nodes. (a) Fitness evolution over 20 generations (the crosses indicate the
fitness of individuals shown in (b)-(f)). (b)-(f) Forest encoded by the best solutions found
in generations 1, 5, 10, 15 and 20. Root nodes are shown in green, intermediate nodes in
brown and leaf nodes in blue. Edges that differ from the best forest found by the algorithm
are shown in red. The algorithm did not improve after generation 20

Fig. 8.5(a) shows the best fitness values found by the NHBSA in the first 20 generations of

a run for problem number 1 with 20 nodes. For this problem, we were interested in building a

forest of three trees. Fig. 8.5(b)-(f) shows the trees that represent the best individuals found

in generations 1, 5, 10, 15 and 20. Again, the roots are represented in green, intermediate

nodes are shown in brown and leaf nodes in blue. In each forest, the edges that differ from

the best forest found by the algorithm are shown in red. We observe that the number of red

edges gradually diminishes as the number of generations increases because the algorithm is

approaching the best solution found. The forest output in generation 20 does not have any
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red edges because the algorithm did not improve after this generation, i.e., it provides the

best fitness value found for this problem.

As described in Section 8.4, we applied the Friedman test to detect statistically significant

differences among the algorithms [Friedman, 1937]. We applied the test two times: once on

the mean best fitness found by the algorithms for the 30 problem instances and again on the

mean execution time. The Friedman test rejected the null hypothesis of equality for both

the fitness and execution time (p-value ≤ 10−11 in both cases). Once the null hypothesis

of equality between all pairs of algorithms was rejected, we applied the Bergmann-Hommel

procedure [Bergmann and Hommel, 1988] to perform all the pairwise comparisons.

Fig. 8.6 illustrates the results of both the Friedman test and the Bergmann-Hommel pro-

cedure. These diagrams were introduced in Demšar [2006] and neatly illustrate statistically

significant differences between algorithms. The Friedman test ranks the algorithms such that

the best-performing algorithm should have rank 1, the second best rank 2, etc. In the dia-

grams the lowest (best) ranks are to the right so the algorithms on the right-hand side can be

viewed as better. Groups of algorithms that are not significantly different (p-value > 0.05 in

the Bergmann-Hommel procedure pairwise comparisons) are connected. Analyzing pairwise

comparisons, the results showed that there were no significant differences in the best fitness

for the NHBSA, the gGA and the ssGA (Fig. 8.6(a)). Looking at the execution times, how-

ever, we found significant differences between all the algorithms (Fig. 8.6(b)). Both EDAs

had a longer execution time than GAs. The gGA and the ssGA had similar execution times

but the hypothesis of equal mean times was rejected. We could, therefore, conclude that the

ssGA was preferable because it had a better execution time.

Figure 8.6: Comparison of the four algorithms using the Friedman test and the Bergmann-
Hommel procedure. Groups of algorithms that are not significantly different (p-value > 0.05)
are connected. The lowest (best) ranks are to the right so the algorithms on the right-hand
side can be viewed as better. (a) Fitness diagram. (b) Execution time diagram

We also wanted to compare the four heuristic algorithms with an exact method for further

evaluation. The evaluation of all permutations of length n for a DRCMST problem requires

an execution time of order n!. This is unworkable even for small values of n. Therefore, we

implemented the following branch-and-bound method to solve small instances of DRCMST

problems exactly.

We know that, in a DRCMST problem, each permutation position adds the connection

cost between two points to the objective function. Moreover, we build the forest represented
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by a permutation, traversing the permutation and accumulating the cost of each position

sequentially. Suppose that we want to solve exactly a DRCMST problem represented by

permutations of length n. To do this, we start by generating and evaluating the permutations

of length n in lexicographical order. Let x be the best solution found by our heuristic

methods. If, in a specific permutation, we are at position j, such that the cost accumulated

so far is greater than the x cost, then we can rule out the following (n− j)! permutations in

lexicographical order, i.e., all permutations that have the same indices up to position j.

Although, using this branch-and-bound method, a lot of the permutations do not have to

be evaluated, we were unable to solve exactly the instances of 20 nodes (Table 8.1), because it

would have taken several months. Therefore, we simulated some smaller problem instances.

Specifically, we simulated five problems with 10 nodes (with a permutation length equal to

10, 11 and 12) and five problems with 15 nodes (all with a permutation length equal to 13) as

detailed in Section 8.5. We solved these 10 problem instances with the implemented branch-

and-bound method, evaluating, on average, 23.63% of all permutations. The instances with

10 nodes were fairly easy to solve, whereas the execution time on a desktop computer for

each instance with 15 nodes was of the order of several days.

We also solved these 10 problems 20 times using each of the four heuristic algorithms.

This was done sequentially (10 problems x 20 times x 4 algorithms = 800 runs) on the same

computer as for the exact method. The execution time was just over two minutes. The gGA,

ssGA and NHBSA found the global optimum in all cases, and the MKEDA found the global

optimum for six out of the 10 problems (the solutions for the other four problems were 1.75%

worse, on average, than the global optimum).

8.7 Trans-European transport network

We use the trans-European transport network in order to illustrate the applicability of forests

with DRCMSTs in a real-world network design. This transport network, available at the

European Commission website2, is composed of nine corridors and comprises 138 cities. Its

main purpose is to facilitate the transport of passengers and goods throughout the European

Union providing for faster international long-distance travel. To illustrate the interest of

our approach, we tried to design a similar network facilitating transport between the above

European cities by formulating the network design as a DRCMST problem. As in the real

network we built nine corridors and were interested in minimizing the total length of the

transport network.

Not all the corridors of the trans-European transport network are trees in the sense

that some contain cycles. To fit the design of a forest of DRCMSTs, we simplified the real

network by deleting 18 connections between cities to remove cycles. Fig. 8.7(a) shows the

real transport corridors after removing these connections.

We used straight lines to represent connections between pairs of cities. In our simplified

2http://ec.europa.eu/transport/themes/infrastructure/ten-t-guidelines/corridors/
doc/ten-t-corridor-map-2013.pdf

http://ec.europa.eu/transport/themes/infrastructure/ten-t-guidelines/corridors/doc/ten-t-corridor-map-2013.pdf
http://ec.europa.eu/transport/themes/infrastructure/ten-t-guidelines/corridors/doc/ten-t-corridor-map-2013.pdf
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Figure 8.7: Application of forests with DRCSMTs to the nine trans-European transport
network corridors. We consider the geodesic distance between two cities as their connection
cost. (a) Simplified trans-European transport network where we removed 18 connections to
cut out cycles in the real corridors. Total length= 33,138 km. (b)-(d) Solutions provided
by the ssGA. (b) We chose one city from each corridor as the root node. In the example,
the roots are Bilbao, Craiova, Frankfurt, Hamburg, Katowice, London, Perpignan, Vienna
and Warsaw. The cities where a corridor ends in the real network are considered leaf nodes;
the remaining nodes are intermediate nodes. We assigned a city a maximum degree equal
to the number of connections it has in the simplified real corridors. Total length= 32,177
km. (c) Role constraints as in (b). In this case, we relaxed degree constraints and allowed a
maximum degree equal to 3 for all intermediate nodes. Total length=28,759 km. (d) Degree
and role constraints as in (c). We established some compulsory connections between cities
to enforce corridor interconnections, in particular, we enforced the following connections:
Bordeaux-Paris, Marseille-Lyon, Vienna-Wels/Linz and Craiova-Timişoara. Total length=
31,166 km
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example, however, we considered the geodesic distance between two cities as their connection

cost. The total geodesic length of the real corridors (with cycles removed) is 33,138 km

(Fig. 8.7(a)).

There are 138 cities in the trans-European transport network. Given that some cities in

the real network belong to several corridors, we replicated these cities as many times as the

number of corridors they belong to. This strategy makes the network design more flexible.

After replicating these cities, the result was a total of 204 nodes (cities) for our problem.

As regards node roles, we chose one city from each of the real corridors (located more or

less in the middle of the corridors) to play the root role in order to build nine transport cor-

ridors. Specifically, the roots were Bilbao, Craiova, Frankurt, Hamburg, Katowice, London,

Perpignan, Vienna and Warsaw in the examples shown in Fig. 8.7(b)-(d). The cities where

a corridor ended in the real network were considered leaf nodes, and the other cities were

intermediate nodes.

Regarding the degree constraints of each city, we ran two different tests. First, we opti-

mized the design of the nine corridors by defining the maximum allowed degree in each city

as the real number of connections it had in the (simplified) real corridors. In this case, no

dummy nodes had to be added and, since we built nine trees, the length of the permutations

was 204+0-9=195. We used the ssGA to solve the problems since this technique performed

significantly better for DRCMST problems in Section 8.6. The best solution found for the real

degree of each city is shown in Fig. 8.7(b) with a total length of 32,177 km. In this solution

most of the European territory is covered by seven rather than nine transport corridors, since

the orange and cyan corridors were composed of only two cities (Frankfurt and Mannheim)

and three cities (Vienna, Brno and Bratislava), respectively.

Then we relaxed the degree constraints to make the network design more flexible. Specif-

ically, we assigned a maximum number of connections equal to three to every intermediate

node. In this case, we had to add 82 dummy nodes, and the permutation length needed

to represent the nine corridors was 204+82-9=277. Fig. 8.7(c) shows one of the solutions

using these degree constraints with a total length of 28,759 km. Fig. 8.7(c) reveals that the

corridors are divided into four groups: 1) yellow and green corridors, 2) purple and orange

corridors, 3) magenta and cyan corridors and, finally, 4) the remaining three corridors. The

corridors in each group are connected with each other but not with other groups.

The ssGA looks for a forest, in our case with a minimum total length, where the degree

and role constraints hold. We can easily add additional constraints, for example, require

the solution to have specific connections between cities, using the proposed representation.

Since each permutation position represents a connection between two nodes of the forest, if

we want two nodes always to be connected, the permutation should be required to have a

specified number in a specified position. In an attempt to find a good solution with some

interconnected corridors, we optimized the corridor design as in Fig. 8.7(c) but enforced the

following four connections: Bordeaux-Paris, Marseille-Lyon, Vienna-Wels/Linz and Craiova-

Timişoara. One of the solutions provided by the ssGA is shown in Fig. 8.7(d). This solution

had a total length of 31,166 km.
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Besides adding constraints depending on the specific characteristics of the network de-

sign problem, the minimization criterion for building the trees could take into account more

complex criteria, like the varying cost of building the connection between different cities.

Furthermore, alternative distances more in line with reality than the geodesic distance could

be used.

8.8 Conclusions

This chapter has presented a novel permutation-based representation to solve a new variant

of the DCMST problem, which we have called DRCMST problem. A DRCMST is a DCMST

with supplementary constraints that determine the role of the nodes in the tree (root, inter-

mediate or leaf nodes). Establishing the roles of the nodes may be useful in some problems

such as network design. Most research about computing DCMST outputs a single tree. We

increase the flexibility of the problem by not limiting the number of root nodes to one so,

generally, we compute forests of DRCMSTs. We used metaheuristic techniques to approxi-

mate the problem solution because the DRCMST problem is NP-hard. Specifically, we opted

to use two genetic algorithms (gGA and ssGA) and two estimation of distribution algorithms

(NHBSA and MKEDA). Using the proposed representation, we solved a wide range of syn-

thetic simulated DRCMST instances. The results showed that the NHBSA, the gGA and the

ssGA found the best solutions, but the ssGA ran in significantly less time. Finally, we for-

mulated the nine corridors of the trans-European transport network as a DRCMST problem

and optimized it using the ssGA to illustrate the applicability and flexibility of our approach.

The main advantage of our permutation-based representation is that it can encode more

than one tree simultaneously. Moreover, the degree constraint can be different for each node.

Another strength is that it is simple to add constraints related to a specific problem. For

example, if two nodes must (cannot) be connected in the problem statement, then a specific

number will be enforced (forbidden) at a specific position of the permutation.

Probably the weakest point of the proposed representation is that it encodes invalid

individuals (cycles). Cycles of length equal to one are easy to detect and thus avoid (this

is the cause of the highest percentage of invalid individuals). However, the permutation

must be decoded to detect the existence of cycles of length longer than one. We intend

to work on improving cycle detection, which could speed up the algorithms. Furthermore,

different permutations may encode the same forest. We remove this redundancy by selecting

a representative individual within the set of redundant individuals.

Other aspects could be taken into account such as considering a more complete fitness

evaluation function. For example, if the network is designed for signal transmission from

server nodes to leaf nodes, then, distances from root nodes to leaf nodes should be as short

as possible, since distances are closely related to transmission time. In this case, besides

minimizing the total cost (distance) of the resulting forest, it might also be beneficial to

minimize the distances between roots and leaves. If there are several optimization criteria

to be considered, we might also think about the convenience of optimizing either a single-
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objective problem (for example, weighting the different objectives) or moving towards a multi-

objective problem. Another aspect to be considered is problem solving with an extremely

large number of nodes. In this case, it might be handy to decompose the original problem

into subproblems of smaller size and parallelize problem solving.
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Chapter 9
Neuronal wiring economy

9.1 Introduction

Santiago Ramón y Cajal formulated the fundamental anatomical principles of the organi-

zation of nerve cells more than a century ago. He stated that the structure of axons and

dendrites is designed in such a way as to save space, time and matter [Ramón y Cajal, 1899].

In this chapter we aim to show that dendritic and axonal trees of different types of neurons

optimize brain connectivity in terms of neuronal wiring cost. Although the concept of wiring

cost is not clearly defined, it is basically based on the assumption that the further away two

elements are, the more expensive the connection between them is. Therefore, wiring cost can

be expressed as a function of the distance between elements, this being the criterion to be

minimized.

The significance of the neuronal wiring cost hypothesis, regarded as underlying princi-

ples of brain morphology and organization, has been widely studied (reviewed in Chklovskii

[2004]). Some researchers have suggested that the organization of certain regions of the brain

is related to the need to reduce wiring costs [Chklovskii et al., 2002, Wen and Chklovskii,

2008, Wen et al., 2009]. Other studies have constructed synthetic neuronal structures to show

that optimal wiring explains dendritic branching patterns [Cuntz et al., 2007, 2008, 2010]. In

this chapter we analyze wiring economy in single neurons, taking a different approach from

previous research considering a specific criterion of wiring cost assessment, namely, wiring

length. We start from the branching and terminal point cloud of real neuronal trees, which

we search for the shortest arborization. We force the computed wiring to pass through the

branching points to reach the terminal points, and we limit the number of times that the

points branch out, since multifurcations rarely occur in real neurons. We hypothesize that

by imposing constraints that provide realistic synthetic arborizations, we can for the most

part explain the wiring economy of single neurons considering only wiring length.

We use graph theory to test our wiring optimization hypothesis using the DRCMST

presented in Chapter 8. Graph theory is suitable for representing the point clouds and their

connections and has been successfully applied in previous works studying dendritic structures

[Cuntz et al., 2007, 2008] and neocortical axons [Budd et al., 2010]. With the imposed

121
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constraints, our wiring design problem is NP-hard, so we had to use heuristic methods for

problem solving. We opted for evolutionary computation techniques (Section 3.3). Relatively

few heuristics have been used to analyze wiring design. For example, Cuntz et al. [2007, 2008]

used a greedy algorithm which locally minimizes the total amount of wiring in their synthetic

neuronal structures, whereas Pérez-Escudero et al. [2009] and Rivera-Alba et al. [2011] used

simulated annealing [Kirkpatrick et al., 1983] to find low-cost neuronal element configurations.

The research included in this chapter has been published in Anton-Sanchez et al. [2016a,b].

Chapter outline

Section 9.2 presents the analysis of both the dendritic and axonal wiring of a set of single

interneurons with complex and different morphologies through the methodology proposed in

Chapter 8. Section 9.3 tests the hypothesis of optimal neuronal wiring in single pyramidal

cells, a much more homogeneous population of neurons, and examines if there are differences

in wiring optimality across all cortical layers.

9.2 Wiring economy of GABAergic interneurons

9.2.1 Data

In this section we analyze the dendritic and axonal wiring of six morphological types of

neocortical interneurons, including Martinotti (MA), large basket (LB), common type (CT),

horse tail (HT), chandelier (CH) and common basket (CB) cells [DeFelipe et al., 2013].

These interneurons are characterized by different dendritic and axonal morphologies and

synaptic connections (see e.g., Ascoli et al. [2008]). We used a set of 12 3D reconstructed

interneurons (two neurons of each type, Fig. 9.1) classified into different types according to

their morphology by 42 leading neuroscientists [DeFelipe et al., 2013]. These neurons were

originally extracted from NeuroMorpho.Org [Ascoli et al., 2007]. Table 9.1 shows the cell

type and unique identifier of these neurons in NeuroMorpho.Org.

9.2.2 Wiring analysis

Fig. 9.2(a) shows neuron CT2 in Fig. 9.1 with superimposed point clouds formed by the

roots, branching and terminal points of the dendrites (red) and the axon (blue). We searched

for the optimal (the shortest) dendritic wiring from the red point cloud and for the optimal

axonal wiring from the blue point cloud.

All branching points in the analyzed neurons were bifurcations. Therefore, we forced these

nodes to divide into two branches too. Hence, in our neuronal wiring analysis, we are looking

for minimal cost trees, with constraints on the number of bifurcations. Additionally, to assure

that the extent of the dendritic and axonal arborizations is fixed, the roots (i.e., points of

origin of the dendrites and axons from the cell body) and terminal points of real neuronal

trees should also be unchanged in the searched structures. We can deal with this by building

the DRCMSTs presented in Chapter 8. As shown in Section 8.6, genetic algorithms, and,
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Figure 9.1: The twelve analyzed interneurons. Dendrites are shown in red and axons in
blue. We consider six different types of interneurons depending on their morphology: (a,b)
Martinotti (MA), (c,d) large basket (LB), (e,f) common type (CT), (g,h) horse tail (HT),
(i,j) chandelier (CH) and (k,l) common basket (CB), as defined in a previous work for the
classification on GABAergic interneurons [DeFelipe et al., 2013]
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Table 9.1: NeuroMorpho.Org identifier and cell type of the 12 analyzed interneurons. We
analyzed the morphology files of the repository version 6.1 (May 2015)

NeuronNeuroMorpho.Org ID Type

MA1 NMO 02204 Martinotti
MA2 NMO 00334 Martinotti
LB1 NMO 04572 Large basket
LB2 NMO 04582 Large basket
CT1 NMO 02732 Common type
CT2 NMO 04558 Common type
HT1 NMO 04577 Horse tail
HT2 NMO 00337 Horse tail
CH1 NMO 04548 Chandelier
CH2 NMO 00291 Chandelier
CB1 NMO 01858 Common basket
CB2 NMO 04574 Common basket

in particular, the ssGA [Syswerda, 1991], performed significantly better for the DRCMST

problem. Therefore, we solved our neuronal wiring design problems using this technique.

One of the main issues that need to be addressed when using genetic algorithms is the

definition and encoding of individuals. In our case, an individual of the population is a

feasible neuronal arborization, and each individual is encoded by the permutation-based

representation explained in Section 8.3. The smaller the total wiring length is, the fitter an

individual is considered to be.

Axonal arborizations consist of a single tree but dendritic arborizations are, generally,

formed by a group of trees. The methodology proposed in Chapter 8 can simultaneously

optimize one or more trees. Therefore it is applicable to our wiring design problems for

both axons and dendrites. Thus, by restricting the number of branches (degree) and the role

played by each point in the trees, we search for a single tree with optimal wiring in axonal

point clouds and we search for a group of trees with optimal wiring in dendritic point clouds.

Then, we compare the resulting structures and the real arborizations. Fig. 9.2(b) shows the

axonal point cloud of neuron CT2 in three different colors, differentiating the three roles with

which we work. Fig. 9.2(c) shows the colored dendritic point cloud. Note that, in this case,

we have five roots because the neuron has five dendritic trees (none of the roots are readily

appreciable because it is a 3D point cloud).

To search for the optimal arborization that meets the discussed constraints, we formulate

and optimize DRCMST problems where an arborization is represented by a permutation of

length n− t, where n is the total number of points and t is the number of trees to be built.

Each position of the permutation represents a connection between two points. The use of the

auxiliary arrays parent and child to decode the permutation-based representation guarantees

degree and role constraints in the trees.

Fig. 9.3 shows an example with two of the dendritic trees of neuron CT2. Fig. 9.3(a) shows

the point cloud of these two trees and uses different colors to identify the roles. Fig. 9.3(b)
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Figure 9.2: Example of point clouds. (a) Neuron CT2 with superimposed point clouds
formed by the roots, branching points and terminal points of the dendrites (red) and the
axon (blue). (b,c) Axonal (b) and dendritic (c) point clouds: the root points are shown in
black, the branching points in brown and the terminal points in blue

shows a solution which matches the real neuronal trees. Fig. 9.3(c) shows another possible

valid set of trees. This small example has n = 10 points and t = 2 trees. Therefore, the

length of the permutations that represent this arborization is n − t = 8. Fig. 9.3(d) shows

the auxiliary arrays parent and child needed for permutation decoding. Fig. 9.3(e) shows the

permutations that represent the arborizations in (b) and (c).

9.2.3 Axon partition

As reported in Section 8.5, DRCMST problems up to 200 nodes can be readily solved. This is

the case of dendritic wiring design problems. The computational cost of solving axonal design

problems in the same way would be huge because they are much more complex, and it would

be very time consuming. Therefore, we introduce parallel computing to address complex

problems, that is, we partition the overall axonal point cloud into smaller clouds, and we

solve these smaller clouds separately. We can simultaneously solve each of the parts (which

takes a few seconds or minutes depending on their size) and then combine the best (shortest)

solutions found in each part to ouput the solution that provides the complete axonal tree

(negligible time compared to the rest of the process).

The axon is represented by a permutation of length n − 1, where n is the total number

of points in the axonal point cloud. The creation of sub-regions in the overall point cloud

is equivalent to partitioning this permutation into as many parts as sub-regions we need to

solve. First, we optimize each of the parts into which we divide the permutation, searching

for the shortest tree structures in different regions of the point cloud (different colors in

Fig. 9.4). Each sub-region is solved according to the procedure reported in Chapter 8 as

described above. Second, we put together the shortest solutions found in each sub-region

(sub-part of the global permutation) to output a permutation that represents the entire

axonal tree. Third, we try to improve the global solution found. To do this, we iteratively

swap permutation positions that are close to the junctions of the parts making up the whole

permutation (Fig. 9.5).
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Figure 9.3: Two examples of dendritic trees of neuron CT2 shown in Fig. 9.1 and their
codification with the proposed permutation-based representation. (a) Numbered point cloud
of the two trees. The roots are shown in black, terminal points in blue and branching
points (bifurcations) in brown. (b) Equivalent structure to real trees. (c) Another valid
solution. Differences to (b) are shown in red. Note that as the roots are unchanged, the
number of constructed trees is always equal to the number of trees in the neuron. However,
branching and terminal points from different dendritic trees can be mixed. (d) Auxiliary
arrays parent and child needed to decode the permutations. (e) Permutations that represent
the arborizations in (b) and (c). Decoding is as follows. A number s at position k of the
permutation means that the node at position s of auxiliary array parent is connected to the
node at position k of auxiliary array child. For example, in the permutation shown in (e),
top, representing arborization (b), we find s = 5 at position k = 1. This means that the node
at position 5 in auxiliary array parent (node 4) is connected to the node which is at position
1 of auxiliary array child (node 3). The number at position k = 2 is s = 1, which means that
the node at position 1 of auxiliary array parent (node 1) is connected to the node at position
2 of auxiliary array child (node 4), and so on (see Section 8.3 for further details on decoding)
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Figure 9.4: Axonal point clouds of some of the analyzed interneurons divided into smaller
clouds to reduce complexity. Sub-regions are shown in different colors and the root of the
tree is shown in black. (a) Neuron MA2. 274 points. Groups created using the k-means
algorithm with k=3 groups. (b) Neuron LB1. 500 points. k=6 groups. (c) Neuron CH2.
800 points. Groups created by distances from nodes to the soma with group size of 125. (d)
Neuron CB2. 674 points. Group size of 165

Due to the diversity of axon shapes (spherical, elongated, etc.), we try out two different

methods to create the smaller point clouds within the overall set of points. For all the

analyzed neurons, we optimize the axonal wiring using the two methods described below.

For each neuron, we choose the result provided by the method that performs best, that is,

the method that provides the shortest total axonal wiring, and we compare its length with

the real axonal wiring.
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Figure 9.5: Description of the partitioning process for complex problems with a high number
of nodes. Example with the axon of neuron LB1. (a) The axonal point cloud (500 nodes)
is divided into six smaller point clouds (using the k-means algorithm in this case): cyan,
magenta, red, blue, yellow and green. The genetic algorithm (ssGA) is applied to each sub-
region separately searching for the shortest arborization in each of the smaller point clouds. A
sub-region is part of the global permutation depicting the complete axon. Each position of the
permutation represents a connection between two nodes (e.g., the first three positions of the
cyan permutation correspond to the three connections of the magnified region in this color).
(b) We put together the best solutions found in each part to output the global permutation
for the complete axonal tree. We apply a local optimization process in the neighbourhoods
where the sub-region solutions meet: we iteratively switch positions near the junctions of the
parts that form the global permutation trying to find better solutions. Switching positions
at those permutation locations means changing connections between nearby nodes of two
different sub-regions (an example is shown in the magnified region of the yellow and green
zones). After the local optimization processes we choose the permutation depicting the best
(shortest) complete axonal tree. We repeat the procedure in (a) and (b) 20 times for each
neuron (maintaining the same sub-regions). Then we choose and compare with the real
axonal tree the best arborization found

k-means algorithm

One method for creating subsets of nodes is the k-means unsupervised clustering algorithm

[MacQueen, 1967] to group nodes according to the distance between them (Fig. 9.4(a) and

9.4(b)). We choose a value of k nearest to how many hundreds of nodes there are in the

point cloud. For example, we choose k = 3 for neuron MA2 whose axonal point cloud has

274 nodes.



9.2. WIRING ECONOMY OF GABAERGIC INTERNEURONS 129

Soma distance

The other method is to form groups of nodes based on their distance to the soma. By setting

a group size, e.g. 100, we form the first group with the first 100 nodes of the point cloud that

are closest to the soma, the second group with the next 100 nodes closest to the soma, after

excluding the nodes used in previous groups, and so on. We test several group sizes for each

of the neurons in order to achieve good results for comparison with the real neuronal trees

(Fig. 9.4(c) and 9.4(d)).

9.2.4 Software

We developed software enabling the user to analyze the wiring optimality of a three-dimensional

neuron from its specification in .asc format. The software and a user manual are available for

download at the Computational Intelligence Group’s webpage1 (Software section). It is ca-

pable of processing wiring design problems with point clouds up to size 200. Larger problems

are costly for a personal computer and are better addressed using parallel computing. Both

dendritic and axonal wiring can be analyzed. We implemented the necessary preprocessing

for the .asc files in Java and we used the single-objective ssGA implementation provided in

jMetal framework [Durillo and Nebro, 2011, Durillo et al., 2010].

9.2.5 Results

Table 9.2 summarizes the characteristic features of the 12 neurons analyzed in this study:

number of dendritic trees, total number of points (roots, branching and terminal points) of

the dendritic point cloud and total number of points of the axonal point cloud (always a

single tree). Furthermore, it shows the ratio between the total length of the shortest trees

found and the total length of real neuronal trees (see below). The wiring length between two

connected points is measured, in both the real and found tree structures, using the Euclidean

distance between them. Therefore, we use an approximate real wiring length because we

ignore the path tortuosity.

Dendritic wiring optimization

The number of dendritic trees in the analyzed neurons varies from 2 to 11 (Table 9.2); the

total number of nodes in these cases is between 32 and 132. For dendritic wiring optimization,

we did not apply the partitioning methods described in Section 9.2.3 because they were not

complex problems. The results for dentritic trees are similar across all types of neurons. In all

cases, the ssGA algorithm slightly improves upon the real neuronal arborization, i.e., it finds

a slightly lower total wiring. The ratio between the length of the best dendritic structure

found and the length of the real dendritic trees (fourth column of Table 9.2) shows that

1http://cig.fi.upm.es/

http://cig.fi.upm.es/
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Table 9.2: Characteristics of the 12 interneurons shown in Fig. 9.1. Number of dendritic trees.
Total number of points in the dendritic point cloud (considering all trees). Total number of
points in the axonal point cloud (always a single tree). Ratio between the total length of
the best (shortest) structure found for each neuron and the total length of the real neuronal
trees. Below 100% (boldface), the length of the best found structure is shorter than the real
wiring

Dendrites Axon
Neuron Trees Points Best/Real Points Best/Real

MA1 4 54 95.50% 476 102.59%
MA2 4 66 97.33% 274 92.98%

LB1 6 100 93.34% 500 97.98%

LB2 7 58 98.00% 822 111.04%
CT1 3 32 97.51% 236 96.00%

CT2 5 60 99.91% 168 88.21%

HT1 3 44 98.92% 228 98.12%

HT2 2 90 97.97% 156 86.46%

CH1 3 46 95.24% 780 101.36%
CH2 3 48 98.59% 800 113.01%
CB1 7 46 95.29% 560 94.20%

CB2 11 132 91.98% 674 109.36%

the greatest improvement is achieved for neuron CB2, where the genetic algorithm finds a

solution whose total length is 8% shorter than the real neuronal wiring.

To check the range of variation of the wiring function, we performed the optimization

process by reversing the direction, that is, we searched for structures that maximized the

wiring length while meeting the constraints. As shown in Fig. 9.6, the maximum wiring of

the dendritic arborizations was much longer than the real dendritic wiring (the results ranged

from 270.51% in neuron LB2 to 605.42% in neuron CT1).

Figure 9.6: Total dendritic length (µm) of the 12 analyzed interneurons (red) versus total
length of the minimum and maximum arborizations found (green and purple, respectively).
In all cases, the optimization algorithm finds a better (shorter) solution than the real wiring.
The maximum wiring found is much longer than the real wiring (four times on average)
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Going back to our running example with the dendrites of neuron CT2, Fig. 9.7 illustrates

the difference between the real dendritic wiring and some structures found during the opti-

mization process for the entire dendritic arborization of this neuron. Fig. 9.7(a) shows the

dendritic point cloud with the connections between nodes that exist in the real trees of this

neuron. The five dendritic trees of this neuron are shown in five different colors. Fig. 9.7(b)

shows the dendritic connections in the shortest structure found. It is a slight improvement

upon the real dendritic wiring. Fig. 9.7(d) shows the connections of the structure that max-

imizes the wiring of this neuron. It is more than five times longer than the real wiring

(Fig. 9.6). Fig. 9.7(c) shows a wiring which is in-between the minimum and maximum found

by the optimization algorithm. It is about three times longer than the real wiring. Note

that all connections are drawn as straight lines as we measure the (straight) length between

points.

Axonal wiring optimization

The axonal point clouds of the 12 analyzed neurons have from 156 to 822 nodes (Table 9.2)

with an average number of nodes greater than 470. As mentioned in Section 9.2.3, we use two

different techniques to create sub-regions in the overall point cloud of each axon to reduce

complexity. For each method, we combine the shortest solutions found in each sub-region so

that our approach outputs the global minimum arborization (Fig. 9.5). We choose the result

of the technique that returns the shortest total wiring for each neuron.

For Martinotti, large basket and common type neurons (Fig. 9.1(a)-(f)), the best solutions

found were clearly better with the k-means algorithm (in the case of neuron LB1, there was

a 15% difference in the best solutions found by both methods). For chandelier and common

basket neurons (Fig. 9.1(i)-(l)), the best solutions found were vastly better creating groups of

nodes depending on their distances to the soma (up to 33% better than k-means algorithm

in the case of neuron CB2). For horse tail neurons (Fig. 9.1(g)-(h)), we also achieved better

results by grouping the nodes by their distance to the soma. However, the best solutions

found for this type of neurons were very similar using both methods.

The results of the two methods used to split the axonal point clouds clearly differentiated

which method it is better to apply for each type of neuron. This was predictable consider-

ing the shape of the axons. In spherical-shaped axons, like chandelier and common basket

neurons, it is better to group the nodes around the root tree. In axons with much less ho-

mogeneous shapes, like Martinotti and large basket neurons, it is better to group the nodes

taking into account the distance between them regardless of a reference point.

Unlike dendrites, the tree structures output by the optimization algorithm do not improve

upon the real axonal wiring in all cases. In the last column of Table 9.2, a figure below 100%

shows that the best solution found by the ssGA has a total wiring length shorter (better)

than the real axonal tree. A number greater than 100% indicates that the algorithm cannot

find a solution that improves the real wiring. For neuron HT2, for example, we obtain a tree

whose total length is almost 14% less than the real axonal tree. However, for neuron CH2

(one of the most complex axons analyzed with 800 nodes), the best solution found was 13%
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Figure 9.7: Example of neuron CT2 and differences between real and optimized dendritic
wiring. (a) Dendritic point cloud with real connections between points. Five dendritic trees
are shown in different colors: brown, green, magenta, cyan and red. (b) Dendritic point
cloud with the connections in the shortest structure found by the algorithm. The optimization
algorithm finds a structure that improves the real neuronal wiring by only two microns. With
the exception of only two edges, the tree structure provided by the algorithm is identical to
the real dendritic wiring (black connections in the magnified regions in (a) and (b)). (c)
Structure whose wiring is three times longer than the real wiring. (d) Dendritic point cloud
with the connections in the largest structure found, which is five times longer than the real
wiring. The trees in (c) and (d) are very different from the real dendritic trees, and their
colors were chosen arbitrarily

worse (longer total length) than the real axonal wiring. We also searched for the trees that

maximized the axonal wiring of each neuron. The results varied from 409.15% in neuron

CT2 to 2403.15% in neuron HT1, i.e., the maximum wiring found was between four and 24

times longer than the real wiring. Fig. 9.8 shows the total real lengths of the 12 axons and

the total length of the minimum and maximum solutions found for each neuron.

In some of the axonal wiring design problems, the algorithm was unable to find the real

configuration, which was known to exist. Therefore, we performed the following test to check

algorithm performance. We generated random point clouds with n points and built their

MSTs using Prim’s algorithm [Prim, 1957]. From these MSTs, we constrained the degree

and role of each point to match the degree and role in the MSTs. Then, from the original

point clouds and with the imposed constraints, we searched for the DRCMSTs. We did this
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Figure 9.8: Total axonal length (µm) of the 12 analyzed interneurons (blue) versus total
length of the minimum and maximum trees found (green and purple, respectively). For most
axons, the optimization algorithm finds a solution that is shorter than or very close to real
wiring. The maximum axonal wiring found is much longer than the real wiring (12 times on
average)

for n = 50, 100 without problem partitioning. For n = 200, 400, 800, we divided the point

clouds into smaller sub-regions using both of the partitioning methods described in Section

9.2.3.

For small problems, the optimization algorithm was very close to the MST length (2%

larger for n = 50 and 6% for n = 100). For larger problems, we applied the partitioning

methods to create sub-regions. By optimizing the sub-regions of the point cloud separately,

we may not come as near to the global optimum. This is the price we pay for making these

problems computationally tractable. For random problems with n = 200, the optimization

algorithm yielded solutions 14% larger than the MST length. For n = 400, 800, the solutions

were 23% and 26% larger than their MSTs, respectively. For n = 200, 400, we found the best

results, i.e., shortest wirings, creating the sub-regions according to the soma distance. For

n = 800, the ssGA found the best solutions using the k-means algorithm.

The mean number of points in the 12 dendritic wiring design problems was 65, and the

mean best-to-real ratio for the shortest solutions found was 96.63%. Therefore, we concluded

that, because the algorithm performed quite well for similar values of n, dendritic wiring was

very nearly optimal in terms of wiring length. Comparing axons and dendrites, axonal wiring

was not as optimal in terms of wiring length for neurons whose axonal point clouds had the

lowest number n of points (although n was greater than the largest dendritic point clouds).

Specifically, the best-to-real ratios in neuron HT2 (n = 156) and neuron CT2 (n = 168)

were 86.46% and 88.21%, respectively (Table 9.2). Neuronal trees appear to expand more

optimally in less complex branching structures. Consequently, dendritic wiring, generally

simpler than axonal wiring, should come closer to the optimum in terms of the wiring length

discussed in this study. In future research, we intend to refine the resolution of large problems

in order to explore what happens in the axons for which our algorithm failed to improve upon

the real wiring length.
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The test that we conducted gives an idea of how well the genetic algorithm performs for

problems of different sizes using both partitioning methods, but we must take into account

that the comparison of the MST and DRCMST solutions is unfair. The MST for a big point

cloud is easily obtainable in polynomial time. However, if the problem has degree and/or

role constraints, the problem becomes NP-hard, and large problems are extremely difficult

to solve. On this ground, it is necessary to use heuristic methods.

9.2.6 Analysis of other examples

In addition, we extended the study to analyze both the optimality of dendritic and axonal

wiring of another 16 neurons to substantiate that the results were similar with groups con-

sisting of more than two neurons. In addition to the cells illustrated in Fig. 9.1, we optimized

the wiring of the eight Martinotti cells and the eight large basket cells shown in Table 9.3.

These cell types were selected because they are common place in the literature and they have

recognizable morphological characteristics [DeFelipe et al., 2013]. We applied the k-means

algorithm to create the sub-regions in the axonal point clouds of the new neurons because

this technique worked best for Martinotti and large basket cells. As shown in Table 9.4,

the results for all ten neurons were very similar to what we found for individual neurons

(Table 9.2).

Table 9.3: NeuroMorpho.Org identifier of the eight analyzed Martinotti and large basket
neurons. Repository version 6.1 (May 2015)

Martinotti Large basket

NMO 01848 NMO 00366
NMO 02629 NMO 00293
NMO 01839 NMO 01851
NMO 02203 NMO 04560
NMO 02579 NMO 04581
NMO 02648 NMO 00272
NMO 00306 NMO 00382
NMO 00427 NMO 04576

Table 9.4: Mean number of points (n̄) and mean and standard deviation (x̄±s) of the ratios
between the total length of the shortest dendritic and axonal wiring solutions found for each
neuron, and the total length of the real trees for ten Martinotti and ten large basket neurons.
The results include eight cells of each type (Table 9.3) on top of the two neurons already
analyzed in Fig. 9.1

Dendrites Axon
Type n̄ x̄±s n̄ x̄±s

Martinotti 81.0 96.66%±2.2% 527.2 101.58%±10.7%

Large basket 53.4 97.81%±1.8% 488.4 104.85%±14.1%
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9.2.7 Conclusions

In this section we have presented a new approach to test the hypothesis of optimal neuronal

wiring in single neurons using graph theory and evolutionary computation. We analyzed

both the dendritic wiring and the much more complex axonal wiring. We found that the

tree structure of different types of neocortical interneurons, which included Martinotti, large

basket, common type, horse tail, chandelier and common basket cells, is near-optimal in

terms of wiring length, although dendritic wiring was generally nearer to the optimum than

axonal wiring. This is a remarkable finding since a characteristic of these neurons is that the

postsynaptic targets and spatial characteristics of their dendritic and axonal arborizations

are rather different (see below). Our analysis stresses the importance of the wiring cost to

which some morphological and organizational principles in the brain have been attributed

[Chklovskii, 2004].

Dendritic wiring optimization was solved properly using the method described in Chap-

ter 8. To address axonal wiring design problems, however, we had to reduce their size. The

method proposed here is to divide the axonal point cloud into different sub-regions and find

the shortest tree structures in each of these sub-regions. The results show that this method

performs well in many cases, providing a more efficient method in terms of time and com-

putational cost savings. However, for some of the more complex axons, the optimization

algorithm output a tree structure whose total length was close to but larger than real wiring

(i.e., the algorithm could not find an equal or better solution than the real situation). Future

research needs to improve the way in which the sub-regions are created and how the best

solutions found in these sub-regions are combined to output the overall solution. Thus, it

would be possible to deal with larger problems.

For all dendrites and many axons, the genetic algorithm (ssGA) used output tree struc-

tures with a total length slightly shorter than the real trees. This indicates that dendrite

and axon spanning uses the least amount of wiring needed to achieve their functions but that

there are also other important factors that influence neuron growth. For example, we might

consider a more complete wiring cost function minimizing the distance of each non-root point

to the root of the tree. This is closely related to minimizing the time that it takes for a signal

to reach a synaptic contact from the soma (see e.g., Budd et al. [2010], Cuntz et al. [2007],

Wen and Chklovskii [2008]).

For dendritic trees of the same neuron, we could check if the optimal arborization found

has the same number of trees as the real neuron by not fixing the number of trees in advance.

Note also that there are ‘obstacles’, like blood vessels and cell somata, that the dendrite

and axon trajectory has to circumvent. The more such obstacles there are, the greater the

wiring cost would be. Moreover, the larger the arbor is, the more the trajectory modifications

are. Thus, the wiring may not be perfectly optimal, particularly in axons. However, we did

not take tortuosity into consideration (although it would have been more realistic) on the

grounds of the complexity of the problem. Moreover, tortuosity is, at least in part, due to the

presence of obstacles, and we did not have access to this information. In addition, different

types of interneurons connect with different postsynaptic targets, and this is related to the



136 CHAPTER 9. NEURONAL WIRING ECONOMY

spatial characteristics of their axons. For example, the pattern of postsynaptic contacts may

be ‘distributed’ or evenly spaced, whereas others may show a ‘gradient’ pattern where the

distribution of contacts changes in a specific direction. ‘Clustered’ terminal branches are

characteristic of chandelier cells that innervate pyramidal-cell axon initial segments (see, e.g.,

Ascoli et al. [2008], Blazquez-Llorca et al. [2015]). Further studies using more complete data

on the synaptic characteristics of the cells under study and the local spatial distribution and

density of the blood vessels and somata where the neuron is localized will make the wiring

rules of single neurons easier to interpret.

9.3 Wiring economy of pyramidal neurons

In Section 9.2, we found that wiring was near optimal in most of the tested dendritic and

axonal trees of the different types of interneurons that we examined, including Martinotti,

large basket, common type, horse tail, chandelier and common basket cells. These GABAergic

interneurons account for no more than a minority of all neurons in the cerebral cortex and

are genetically, molecularly, anatomical and physiologically distinct from pyramidal cells, the

most abundant type of neuron in the cerebral cortex [Anderson et al., 1999, DeFelipe, 1993,

DeFelipe and Fariñas, 1992, Fishell and Rudy, 2011, Spruston, 2008].

In this section we analyze the neuronal wiring of individual pyramidal cells to check if

this type of neuron also optimizes brain connectivity in terms of neuronal wiring cost. Since

it is well established that pyramidal cell structure varies between different cortical areas

and species (see Elston [2007] and DeFelipe [2011] for reviews), our study focuses on the

hindlimb somatosensory cortex of Wistar rats at postnatal day 14. Furthermore, we used

this experimental animal and at this age since we intended to integrate these data with other

anatomical, molecular, and physiological data that have already been collected from the same

cortical region of the postnatal day 14 Wistar rats. The final goal is to create a detailed,

biologically accurate model of circuitry across all layers of the primary somatosensory cortex

within the framework of the Blue Brain Project [Markram et al., 2015].

Unfortunately, current methodological limitations restrict the analysis to either the com-

plete basal arbors (horizontal sections) or truncated apical and basal arbors (coronal sections)

of pyramidal cells. For the sake of consistency with our previous studies, we opted to study

the basal dendrites first. Therefore, we investigated the dendritic architecture of complete

basal arbors of pyramidal neurons in all cortical layers (layers II, III, IV, Va, Vb and VI) as

it has been shown that dendritic morphologies are statistically different in each cortical layer

[Rojo et al., 2016]. Thus, we were also interested in examining whether, within a cortical

area, there are possible differences in wiring optimality across all cortical layers.

9.3.1 Data

We analyzed the neuronal wiring of 288 3D-reconstructed complete basal arborizations of

pyramidal cells across cortical layers II, III, IV, Va, Vb and VI of the somatosensory neocortex

of the P14 rats (48 cells per layer). These basal dendritic arbors are made up of several main
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trunks, which are in turn composed of several dendrites. For the sake of simplicity and unless

otherwise stated, we refer to these single trunks of basal dendritic arbors as dendritic trees

(Fig 9.9). Data on the reconstruction and dendritic structure of these cells has been already

published [Rojo et al., 2016] and can be found on Figshare2.

Figure 9.9: Example of one basal dendritic arbor of a pyramidal cell in layer II. (a) Real
3D Neurolucida reconstruction where each dendritic tree is shown in a different color. (b)
Simplified real dendritic arbor where all connections are drawn as straight lines as we measure
the (straight) length between points. (c) Example of the identification of the root (black),
branching points (brown) and terminal points (blue) of one dendritic tree. (d) Point cloud
formed by all the roots, branching and terminal points of the six basal dendritic trees. (e)
Shortest arborization found for the point cloud shown in (d)

9.3.2 Wiring analysis

We analyzed the neuronal basal wiring of single pyramidal neurons following the procedure

described in Section 9.2 for dendritic wiring. Briefly, for each neuron, we started from a

point cloud formed by the roots, branching points and terminal points of the real neuron and

searched for the optimal dendritic arborization. This is defined as the arborization that has

the shortest total length, subject to the output structure retaining the roots and terminal

points of real neuronal trees. In addition, the output structure also contained the same

number of branches of each real branching point. Then we compared the output minimal

wiring length with the real wiring length. We used an approximate wiring length in both the

2https://figshare.com/articles/pyramidalCells_ascFiles_zip/4193457/1

https://figshare.com/articles/pyramidalCells_ascFiles_zip/4193457/1


138 CHAPTER 9. NEURONAL WIRING ECONOMY

real and output tree structures, because we measured the Euclidean distance between two

connected points, that is, we ignored the path tortuosity.

Fig 9.9 illustrates this procedure with a pyramidal cell from layer II (all the neurons

analyzed in this study are shown in Rojo et al. [2016]). The basal dendritic arbor of the

neuron in Fig 9.9 has six main dendritic trees (shown in different colors in Fig 9.9(a)).

Fig 9.9(b) shows the simplified dendritic arbor where all connections are straight lines with

a total wiring length of 1954.97 µm. For each dendritic tree, we identify the root of the tree,

the branching points and the terminal points. Fig 9.9(c) shows the three types of points in

the red tree (the root is shown in black, the branching points in brown and the terminal

points in blue). We form the point cloud (Fig 9.9(d)) with the roots, branching and terminal

points of all dendritic trees. We search for the minimum length arborization going through

the above points. Fig 9.9(e) shows the best (shortest) structure found for this neuron, with

a total length of 1912.79 µm (2.16% shorter than the real wiring in Fig 9.9(b)). Note that

since the roots are unchanged, the number of constructed trees always matches the number

of trees in the real neuron. The branching and terminal points of different dendritic trees can

be combined to arrive at an arborization with minimum length wiring.

As in Section 9.2, to get the shortest arborization, we formulated the search for the

optimal wiring of each neuron as a combinatorial optimization problem. Specifically, we

used the steady-state genetic algorithm [Syswerda, 1991] through graph theory with the

permutation-based representation presented in Chapter 8. Due to the stochasticity of genetic

algorithms, we repeated the search for the optimal dendritic wiring 20 times for each cell

and then chose the best (shortest) structure found for comparison with the real dendritic

arborization.

9.3.3 Results

The dendritic structure of the 288 analyzed cells are described in detail in Rojo et al. [2016].

The mean length of basal dendritic wiring, in microns, grouping the cells by layer is shown

in red in Fig 9.10. This figure shows that, on average, the wiring of the neurons in layers Va,

Vb and VI is longer than the neurons belonging to the three more superficial layers.

The mean number of trees in the basal arborizations of the 48 cells analyzed in each

cortical layer ranges from 4.96 (layer IV) to 7.48 (layer VI), while the mean number of points

in these arborizations is between 42.67 (layer IV) and 66.67 (layer Va) (Table 9.5). To check

whether there were significant differences between layers, we performed a multiple mean

comparison test on the number of trees and the number of points. First, we checked if the

necessary assumptions to apply ANOVA were satisfied, i.e., if data were normally distributed

(Kolmogorov-Smirnov test) and if homoscedasticity was met (Levene’s test). For the number

of trees, none of the above assumptions were met, on which ground we used the Kruskal-Wallis

test. The resulting p-value was 3.605e-12, i.e., there were differences in the number of trees

between layers. Then, we applied the Mann-Whitney test with the Bonferroni method to

adjust the p-values for pairwise comparisons. We found that there were differences between

the number of trees in layers II vs. Vb, II vs. VI, III vs. IV, III vs. VI, IV vs. Va, IV



9.3. WIRING ECONOMY OF PYRAMIDAL NEURONS 139

Figure 9.10: Mean wiring length (µm) of the 48 analyzed cells in each cortical layer (red)
versus mean wiring length of the shortest arborizations found by our optimization algorithm
for each layer (green). The optimization algorithm found an equal or slightly better (shorter)
wiring for all the neurons in all the layers. We found the biggest difference with respect to
the real wiring in layer Va, where the synthetic wiring was, on average, 2.06% shorter than
the real wiring. The smallest difference occured in layer IV, where the optimized wiring was,
on average, 1.01% shorter than the real wiring

vs. Vb and IV vs. VI. For the number of points in the arborizations of each layer, data

were normally distributed but homocedasticity was not met. Therefore, we again applied the

Kruskal-Wallis test and found significant differences between layers (p-value = 3.05e-11). In

pairwise comparison, we found differences between layer IV and all the remaining layers.

Table 9.5: Mean and standard deviation (x̄±s) of the number of dendritic trees and the
number of points of the dendritic point clouds (roots, branching points and terminal points)
of the 48 cells of each cortical layer

Layer Trees Points

II 5.50±1.01 61.98±9.19

III 5.94±1.29 64.04±10.56

IV 4.96±1.20 42.67±15.67

Va 6.52±2.04 66.67±22.12

Vb 6.75±1.72 60.63±17.70

VI 7.48±2.03 62.75±18.82

We computed the optimal wiring length of the 288 cells. In order to compare the optimized

wiring with the real wiring of each neuron, we calculated the percentage resulting from

dividing the length of the shortest solution found by the real neuronal length. A figure of

100% shows that the length of the best solution found by our algorithm is equal to the total

real wiring length of the neuron. A figure below 100% denotes that the solution found is

better (shorter) than the real length, while a figure above 100% shows that the optimization

algorithm is not able to improve the real dendritic tree.

Fig 9.11 shows the box plot of the results. We found a shorter wiring than the real wiring

for all neurons, except for one neuron in layer IV, for which the best solution found matched
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the real situation, that is, the percentage optimality for this neuron was 100%. A neuron

in layer Va was found to have a wiring length that was nearly 5% shorter than the real one

(95.06%, best result found). The percentage optimality for the remaining neurons ranged

from 95.06% to 100%. The mean wiring length of the best solutions found for the 48 cells of

each layer is shown in green in Fig 9.10.

Figure 9.11: Box plot of the wiring analysis results for all layers. All the solutions are equal
to or less than 100%, signifying that the solutions found by the optimization algorithm had
a length equal to or shorter than the real wiring of the cells. For layers II, III and IV, the
real neuronal wiring was closer to the shortest solutions found. Deeper layers had a higher
degree of dispersion (steeper spacing between the parts of the box)

Fig 9.12 shows the mean percentage optimality for the neurons of each layer. Bluish

colors denote that the wiring length of the best solutions found was further removed from

the real wiring length, i.e., represented structures that offer a bigger improvement on the real

neuronal structures. Reddish colors show that the total length of the resulting solutions was

closer to the real neuronal length. Note, however, that the results ranged from 97.94% in

layer Va to 98.99% in layer IV. Accordingly, all the results were very close to 100%.

We analyzed whether there were any significant differences in the wiring optimality, group-

ing neurons by layer. Since the data were normally distributed and homoscedasticity was met,

we applied ANOVA. The resulting p-value was 1.54e-08, i.e., we rejected the null hypothesis

of equal optimality in all six cortical layers. To find the differences between groups, we ran

Tukey’s HSD (honest significant difference) test to evaluate all pairwise comparisons. The

results showed that there were significant differences between the following pairs of layers: Va

vs. II, Va vs. III, Va vs. IV, Vb vs. II, Vb vs. III, Vb vs. IV and VI vs. IV. Analyzing the

results, we concluded that the behavior of our algorithm by layers could be divided into two
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Figure 9.12: Mean optimality percentages of each cortical layer. Figures closer to 100%
denote that the real neuronal wiring was closer to the shortest solutions found

groups: (i) layers II, III and IV (reddish in Fig 9.12) and (ii) layers Va, Vb and VI (bluish

in Fig 9.12). We grouped cells accordingly and found that the percentage optimality of the

second group (layers Va, Vb and VI) was significantly lower.

9.3.4 Conclusions

In this section we analyzed the neuronal basal wiring of single pyramidal neurons across

cortical layers following the procedure described in Section 9.2 for dendritic and axonal wiring

optimization of GABAergic neurons. The interneurons discussed in Section 9.2 had rather

complex morphologies and they showed many different anatomical characteristics, whereas

pyramidal cells represent a much more homogeneous population of neurons. Thus, we tested

the hypothesis of optimal neuronal wiring in single pyramidal cells with this method which

represents a different approach from previous research on neuronal wiring. Specifically, the

method imposes constraints that provide realistic synthetic arborizations, that is, forces the

synthetic wiring of a specific cell to pass through the branching points to reach the terminal

points of this neuron. It also limits the number of times that the points branch out. With

this procedure, we proved that we can explain the wiring economy of single pyramidal cells

considering only one specific criterion, i.e., wiring length.

The morphological characteristics of the same 288 pyramidal cells were analyzed in Rojo

et al. [2016], concluding that there is a systematic layer-specific variation of the basal dendritic

pattern in pyramidal cells. More specifically, the branching structure of pyramidal cells

became progressively larger and more complex from superficial to deeper layers, save for

layer IV, which contained the simplest cells. Although the morphological characteristics are

statistically different in each cortical layer, our study has found that basal wiring arborizations

were near optimal in terms of wiring length in all cases (the biggest difference between the

shortest solution found for a neuron and the length of its real basal wiring was less than 5%).
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However, there appears to be a relationship between dendrite complexity and wiring economy

since the solutions for the most superficial layers found by our algorithm were closer to the

real wiring in our study, that is, the real cells manage to grow more optimally if they have

a simpler branching structure. More specifically for cells in layer IV, the simplest according

to Rojo et al. [2016], the real and optimal neuronal wirings were closer than in other layers.

Nevertheless, it is noteworthy that neuronal connectivity depends not only on the dendritic

wiring; but also on the density of dendritic spines, at least in the case of pyramidal cells.

This is because most synapses on pyramidal cells are on their dendritic spines, and there

are variations in the density of spines [DeFelipe and Fariñas, 1992]. However, we do not

know whether or not the density of spines and wiring optimization are related. Thus, further

studies should be performed to determine whether neurons with high densities of dendritic

spines have more or less optimal wiring attributes compared to neurons with low densities of

dendritic spines.

9.4 Conclusions

On the whole, the studies of this chapter show that the wiring economy of cortical neurons

is not related to the type of neurons or their morphological complexities but to general prin-

ciples of wiring economy. The study on the wiring of GABAergic interneurons in Section 9.2

concluded that dendritic wiring was near optimal in the tested neurons in spite of the clear

morphological differences between Martinotti, large basket, common type, horse tail, chande-

lier and common basket cells. Nevertheless, this rule seems to apply to dendrites in particular

since the wiring length of axonal trees of interneurons was, albeit near optimal, less so than

for dendrites. In addition, in Section 9.3 we found that, although the differences in the wiring

optimality between the basal dendritic arbors of pyramidal cells in different layers were small,

they were statistically significant. As a result, the real wiring of the analyzed cells was nearer

optimal in layers II, III and IV, whose branching structures are less complex according to

Rojo et al. [2016], than in the deeper layers. Therefore, although wiring economy seems

to be the general rule of optimization for cortical neurons irrespective of their anatomical

and functional features, other factors may have an influence on the growth of the neuronal

arborizations. More specifically, as previously discussed in Section 9.2, the trajectory of cellu-

lar processes could have ‘obstacles’, like blood vessels and cell somata, that the dendrite and

axon trajectories have to circumvent. The more obstacles there are, the greater the wiring

cost would be. Therefore, less optimal wiring might be expected in regions with a higher

density of blood vessels and neurons.

Further studies in other cortical areas, layers and species are necessary to examine whether:

(i) wiring economy is applicable to the dendritic and axonal arborizations of other types of

neurons, including the apical dendrites and axons of pyramidal cells, and (ii) what is the bio-

logical significance, if any, of the small differences in the wiring of the basal dendritic arbors

between pyramidal cells in different layers identified in Section 9.3 or between the dendritic

or axonal arborization of certain types of interneurons (Section 9.2).
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Chapter 10
Conclusions and future work

Chapter outline

This concluding chapter is organized as follows. Section 10.1 summarizes the main contri-

butions and conclusions of this dissertation. Section 10.2 includes the list of publications

and submissions derived from this research. Finally, Section 10.3 discusses the main lines of

future work and some open issues.

10.1 Summary of contributions

The contributions have been organized into two parts:

❼ Part III includes our work on point process statistics. In Chapter 5 we perform a

replicated point pattern-based analysis applied to the 3D spatial distribution of synapses

in the cerebral cortex. The chapter describes a simulation process, along with a multiple

mean comparison test, to investigate whether there were differences in the intensity

(synaptic density) between groups (layers). We find that RSA processes described the

spatial distribution of synapses in all samples of each layer which argues in favor of

a common general principle of synaptic organization. We also find that the synaptic

distribution in layers II to VI conforms to a common underlying RSA process with

different synaptic densities per layer. Interestingly, the results show that synapses in

layer I have a slightly different spatial distribution from the other layers. In order to

collect and explain the variability in each group’s intensity, we introduce for the first

time in this context a simulation and thinning procedure in conjunction with a cross-

validation technique to honestly estimate the goodness-of-fit of the resulting models

within each group of replicates. This chapter also presents the software developed to

process and analyze the 3D spatial distribution of synapses in the cerebral cortex.

Chapter 6 expands the existing 2D computational techniques for spatial analysis along

networks to perform a 3D network spatial analysis. In this chapter we apply this

3D analysis to the modeling of spine distribution along dendritic networks of human
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pyramidal neurons in both basal and apical dendrites. Considering the dendritic ar-

borizations of each pyramidal cell as a group of instances of the same observation (the

neuron), we use replicated point patterns together with network spatial analysis for the

first time to search for significant differences in the spine distribution of basal dendrites

between different cells and between all basal and apical dendrites. To do this, we use a

recent variant of Ripley’s K function defined to work along networks. Our results sug-

gest that dendritic spine distribution in basal dendritic arbors adheres to common rules

and highlight that synaptic input information processing is different between apical and

basal dendritic arborizations.

In Chapter 7 we characterize the spatial distribution of branching and terminal points of

dendritic trees using nearest neighbour distances, particularly, a measure R defined as

the ratio between the observed mean nearest neighbour distance of any set of points in

a given volume and the expected mean nearest neighbour distance of the same number

of points distributed uniformly in the same volume. We find that the distribution

of branching and terminal points depend strongly on the cell types. Moreover, we

find that R is only weakly correlated with other commonly used branching statistics,

suggesting that it might reflect features of dendritic morphology that are not captured

by commonly studied branching statistics. Besides studying the spatial distribution of

these points in different types of real cells, in this chapter we also use morphological

models based on optimal wiring principles to study the relation between different initial

point distributions and resulting dendritic branching structures. Using our models, we

find that branching and terminal points in dendrites are generally spread out more

regularly than the target points from which the dendrite structures are determined. The

most common way to obtain the unknown enclosing volume of a point cloud is to use the

convex hull. However, with this choice the supporting volume is often overestimated.

In this chapter, we use an extension to the notion of convex hull called α-shapes to

obtain an accurate tight hull of the volume surrounding a given point cloud. Further, a

naive calculation of R yields a biased result due to edge effects. We address this issue

by developing a Monte Carlo based approach to estimate R values.

❼ Part IV includes our work on network design optimization. Finding the DCMST of a

graph is a widely studied NP-hard optimization problem whose one of its most impor-

tant applications is network design. Chapter 8 proposes a new variant of the DCMST

problem: the DRCMST problem. A DRCMST is a DCMST where the role of each

node in the tree is determined a priori by choosing among root node, intermediate node

and leaf node. In addition, the number of root nodes is not limited to one, i.e., a forest

rather than a single tree can be built. In this chapter we propose a novel permutation-

based representation to encode forests of DRCMSTs. In this new representation, one

permutation simultaneously encodes all the trees to be built. We compare the perfor-

mance of GAs and EDAs to solve a variety of synthetic simulated DRCMST instances

using the jMetal framework. jMetal already contained the implementation of GAs and
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we include the implementation of EDAs. The modeling of network design problems

can benefit from the possibility of generating more than one tree and determining the

role of the nodes in the network. To illustrate the applicability of our approach, we

formulate the trans-European transport network as a DRCMST problem. In this net-

work design, we simultaneously optimize nine transport corridors and show that it is

straightforward using the proposed representation to add constraints depending on the

specific characteristics of the network.

In Chapter 9 we test the hypothesis that individual cortical neurons optimize brain

connectivity in terms of wiring length, formulating it as a network design optimization

problem, particularly, a DRCMST problem. The optimal arborization is defined as that

with the shortest total wiring length provided that all neuron bifurcations are respected

and the extent of the neuronal arborizations remains unchanged. We analyze both the

axonal and dendritic trees of a set of different types of cortical GABAergic interneurons

and the basal dendritic arborizations of a homogeneous population of pyramidal cells,

examining in the latter group if there are differences in wiring optimality across all

cortical layers. Our results show that wiring economy of cortical neurons is related to

the way in which neuronal arborizations grow irrespective of the type of neurons or

their morphological complexities. We develop and make available to the user software

enabling to analyze the wiring optimality of a 3D neuron from its specification in .asc

format. Both dendritic and axonal wiring can be analyzed, in both pyramidal neurons

and interneurons. This chapter also introduces a parallelization strategy in order to

solve large DRCMST problems (like those of axonal arbors). Complex problems are

divided into sub-problems that are solved using parallel computing; then their solutions

are put together and recombined.

10.2 List of publications

The publications and submissions derived from this research are listed below.

A. Peer-reviewed JCR journals

❼ L. Anton-Sanchez, C. Bielza, A. Merchán-Pérez, J. R. Rodŕıguez, J. DeFelipe, and

P. Larrañaga. Three-dimensional distribution of cortical synapses: A replicated point

pattern-based analysis. Frontiers in Neuroanatomy, 8:Article 85, 2014. Also available in

the ebook: http://www.frontiersin.org/books/Quantitative_Analysis_of_Neuroanatomy/

829. Impact factor (JCR 2014): 3.544. Ranking: 3/21 (Quartile 1). Category:

Anatomy & morphology.

❼ L. Anton-Sanchez, C. Bielza, R. Benavides-Piccione, J. Felipe, and P. Larrañaga. Den-

dritic and axonal wiring optimization of cortical GABAergic interneurons. Neuroin-

formatics, 14(4):453-464, 2016. Impact factor (JCR 2015): 2.864. Ranking: 15/104

(Quartile 1). Category: Computer science, interdisciplinary applications.

http://www.frontiersin.org/books/Quantitative_Analysis_of_Neuroanatomy/829
http://www.frontiersin.org/books/Quantitative_Analysis_of_Neuroanatomy/829
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❼ L. Anton-Sanchez, C. Bielza, P. Larrañaga, and J. DeFelipe. Wiring economy of pyrami-

dal cells in the juvenile rat somatosensory cortex. PLoS One, 11(11):1-10, 2016. Impact

factor (JCR 2015): 3.057. Ranking: 11/63 (Quartile 1). Category: Multidisciplinary

sciences.

❼ L. Anton-Sanchez, C. Bielza, and P. Larrañaga. Network design through forests with

degree- and role- constrained minimum spanning trees. Journal of Heuristics, 23(1):31-

51, 2017. Impact factor (JCR 2015): 1.344. Ranking: 36/105 (Quartile 2). Category:

Computer science, theory & methods.

B. Submissions

❼ L. Anton-Sanchez, P. Larrañaga, R. Benavides-Piccione, I. Fernaud-Espinosa, J. De-

Felipe, and C. Bielza. Three-dimensional spatial modeling of spines along dendritic

networks in human cortical pyramidal neurons. Submitted, 2017.

❼ L. Anton-Sanchez, F. Effenberger, C. Bielza, P. Larrañaga and H. Cuntz. Local statis-

tics of input space shape dendritic morphology. Submitted, 2017.

C. Communications

❼ L. Anton-Sanchez, C. Bielza, and P. Larrañaga. Towards optimal neuronal wiring

through estimation of distribution algorithms. In Proceedings of the Genetic and Evo-

lutionary Computation Conference, GECCO 2013 Companion, pages 1647-1650, 2013.

1st award at the Student Workshop.

D. Collaborations

❼ J. Morales, R. Benavides-Piccione, M. Dar, I. Fernaud, A. Rodŕıguez, L. Anton-Sanchez,

C. Bielza, P. Larrañaga, J. DeFelipe, and R. Yuste. Random positions of dendritic

spines in human cerebral cortex. Journal of Neuroscience, 34(30):10078-10084, 2014.

Impact factor (JCR 2014): 5.924. Ranking: 26/256 (Quartile 1). Category: Neuro-

sciences.

10.3 Future work

The open issues and future lines of this dissertation have been already discussed in the specific

conclusions section of each chapter. This section summarizes the most relevant.

In Chapter 5 we perform a 3D spatial analysis in the context of replicated point patterns.

Replicated point patterns and point pattern analysis in more than two dimensions, are two

of the spatial point process areas that need more development, as well as marked point

patterns. We intend to continue research in these areas and provide improvements in existing

methodology in order to realistically model complex spatial datasets.
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In this dissertation the third dimension has been taken into account for the first time

when working with spatial analysis on linear networks (Chapter 6). We aim to improve the

computational efficiency of our approach in order to be really useful for the spatial analysis

of 3D real-world networks (the inclusion of the third dimension considerably increases the

computational load especially with increased network complexity). In addition, we believe

that considering the network volume and the possibility of events occurring on the surface of

the network with volume, 3D network spatial analysis could still be more useful. We intend

to develop additional methodology for this purpose.

The statistic R, used in Chapter 7 to measure the degree of clustering of a set of points

in a given volume based on average nearest neighbour distances, can be extended to deal

with more general cases. On the one hand, we would like to extend R to the inhomogeneous

case. On the other hand, we are interested in analyzing the behavior of nearest neighbour

distances considering the k-th nearest neighbours of each point with k ≥ 2.

In relation to our proposal for network design optimization, i.e., the DRCMST presented

in Chapter 8, we intend to work on improving cycle detection, which could speed up the

algorithms. Depending on the problem, it might be interesting to consider a more complete

fitness evaluation function and, if there were several optimization criteria to be considered,

we might also think about the convenience of moving towards an approach based on multi-

objective. Our proposal to solve DRCMST problems with a large number of nodes is to

decompose the original problem into subproblems of smaller size and parallelize problem

solving (Chapter 9). In future research, we aim to improve the way in which the subproblems

are created and how the best solutions found in these subproblems are combined to output

the overall solution.

Regarding neuroscience applications developed in this dissertation, in Chapter 5 we model

the 3D spatial distribution of cortical synapses in P-14 rats. We found that random spatial

distribution of synapses is probably a common general pattern of cortical synaptic organiza-

tion. Nevertheless, since the synaptic density in the cerebral cortex changes, the conclusion

of this study regarding spatial distribution may not be applicable at other time points during

development. We intend to analyze other cortical areas, species and ages to verify our conclu-

sions. In Chapter 6 we model the 3D spatial distribution of dendritic spines along dendritic

arborization. We found that apical and basal dendritic arbors not only show distinct mor-

phologies but also different rules of spine distribution. As future work, we intend to examine

other models that further characterize the spatial distribution of spines along the basal and

apical networks, especially at distances further from the cell body where these two types of

arborizations show more differences.

Both in the study developed using spatial point process techniques with Euclidean dis-

tances (Chapter 5) and in the case of the study using network spatial analysis (Chapter 6), we

could incorporate marks to the analysis, such as the type of synapse (symmetric or asymmet-

ric) in the first case, or some characteristics of the spines as their length, volume or type, in

the second case. The use of marked point patterns may be beneficial to elucidate important

aspects of the spatial distribution of synapses and dendritic spines, respectively.
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Regarding the study of wiring neuronal economy carried out in Chapter 9, we intend

to analyze if wiring economy principle also holds in dendritic and axonal arborizations of

other types of neurons, as well as in the apical dendrites and axons of pyramidal cells. In

addition, our approach could easily be extended to consider other possible important aspects

in wiring neuronal economy. For example, it would be easy to extend the wiring cost function

to consider the minimization of both wiring length and the distance of each non-root point to

the root of the tree (closely related to minimize the time that it takes for a signal to reach a

synaptic contact from the cell body). Further, by not fixing the number of trees in advance,

we would like to check if the optimal arborization found for a single neuron has the same

number of trees than the real cell. We are also interested in analyzing whether neurons with

high densities of dendritic spines have more or less optimal wiring compared to neurons with

low densities of dendritic spines.
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input space shape dendritic morphology. Submitted, 2017b.
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J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A practical tutorial on the use of nonpara-

metric statistical tests as a methodology for comparing evolutionary and swarm intelligence

algorithms. Swarm and Evolutionary Computation, 1(1):3–18, 2011.

P. J. Diggle. Statistical Analysis of Spatial Point Patterns. Edward Arnold. 2003.

P. J. Diggle. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. Chapman

& Hall/CRC. 3rd edition, 2013.

P. J. Diggle, N. Lange, and F. M. Benes. Analysis of variance for replicated spatial point

patterns in clinical neuroanatomy. Journal of the American Statistical Association, 86

(415):618–625, 1991.

P. J. Diggle, J. Mateu, and H. E. Clough. A comparison between parametric and non-

parametric approaches to the analysis of replicated spatial point patterns. Advances in

Applied Probability, 32(2):331–343, 06 2000.

K. Donnelly. Simulations to determine the variance and edge-effect of total nearest neighbour

distance. In Simulation Studies in Archaeology, pages 91–95. Cambridge University Press,

1978.

M. Dry, K. Preiss, and J. Wagemans. Clustering, randomness, and regularity: Spatial dis-

tributions and human performance on the traveling salesperson problem and minimum

spanning tree problem. The Journal of Problem Solving, 4(1):Article 2, 2012.



158 BIBLIOGRAPHY

J. J. Durillo and A. J. Nebro. jmetal: A java framework for multi-objective optimization.

Advances in Engineering Software, 42(10):760–771, 2011.

J. J. Durillo, A. J. Nebro, and E. Alba. The jmetal framework for multi-objective optimiza-

tion: Design and architecture. In IEEE Congress on Evolutionary Computation, pages 1–8,

2010.

M. Dwass. Modified randomization tests for nonparametric hypotheses. Annals of Mathe-

matical Statistics, 28(1):181–187, 1957.

H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes. ACM Transactions on

Graphics, 13:43–72, 1994.

H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane.

IEEE Transactions on Information Theory, 29(4):551–559, 1983.

S. Eglen, D. Lofgreen, M. Raven, and B. Reese. Analysis of spatial relationships in three

dimensions: tools for the study of nerve cell patterning. BMC Neuroscience, 9:68, 2008.

G. Elson and J. DeFelipe. Spine distribution in cortical pyramidal cells: A common organi-

zational principle across species. Progress in Brain Research, 136:109–133, 2002.

G. Elston. Specialization of the neocortical pyramidal cell during primate evolution. In

Evolution of Nervous Systems: A Comprehensive Reference, volume 4, pages 191–242.

Academic Press, 2007.

J. W. Evans. Random and cooperative sequential adsorption. Reviews of Modern Physics,

65:1281–1329, 1993.

T. Fares and A. Stepanyants. Cooperative synapse formation in the neocortex. Proceedings

of the National Academy of Sciences, 106(38):16463–16468, 2009.

J. C. Fiala, J. Spacek, and K. M. Harris. Dendritic spine pathology: Cause or consequence

of neurological disorders? Brain Research Reviews, 39(1):29–54, 2002.

G. Fishell and B. Rudy. Mechanisms of inhibition within the telencephalon: Where the wild

things are. Annual Review of Neuroscience, 34(1):535–567, 2011.

R. A. Fisher. Design of Experiments. Oliver and Boyd, Edinburgh, 1935.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis

of variance. Journal of the American Statistical Association, 32(200):675–701, 1937.

V. Garcia-Marin, L. Blazquez-Llorca, J.-R. Rodriguez, S. Boluda, G. Muntane, I. Ferrer, and

J. DeFelipe. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to

amyloid plaques. Frontiers in Neuroanatomy, 3:Article 28, 2009.



BIBLIOGRAPHY 159

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1979.

U. Hahn. A studentized permutation test for the comparison of spatial point patterns. Journal

of the American Statistical Association, 107(498):754–764, 2012.

K. M. Harris, E. Perry, J. Bourne, M. Feinberg, L. Ostroff, and J. Hurlburt. Uniform serial

sectioning for transmission electron microscopy. The Journal of Neuroscience, 26(47):

12101–12103, 2006.
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