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logros, es suya.

Finalmente, a mi pequeña familia, que comencé a construir a la vez que inicié la
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Resumen

Los modelos gráficos representan independencias condicionales de una distribución mul-
tivariante mediante aristas ausentes en un grafo, que t́ıpicamente es dirigido, no dirigido
o mixto. Esta modelización compacta permite descomponer la inferencia estad́ıstica en
computaciones eficientes sobre el correspondiente grafo. Es por ello que los modelos
gráficos se originaron en la intersección entre la estad́ıstica y la inteligencia artificial,
siendo las redes de Markov (grafo no dirigido) y las redes Bayesianas (grafo dirigido
aćıclico) los representantes clásicos. Hoy en d́ıa los modelos gráficos se aplican exten-
samente y una cantidad significativa de investigación se dedica a ellos, incluyendo las
clásicas redes de Markov y Bayesianas.

Las redes de Markov Gaussianas y las redes Bayesianas Gaussianas, a pesar de no
ser modelos equivalentes, comparten una intersección común consistente en los grafos
cordales (o grafos dirigidos aćıclicos sin v-estructuras). Un método habitual para la
selección del modelo en ambas clases es el contraste de hipótesis, y supone la selección del
grafo que parametriza el modelo. Las aristas ausentes en ambos modelos se representan
mediante un patrón de ceros en la matriz inversa de covarianza o de correlación parcial
(redes de Markov Gaussianas) o en su descomposición de Cholesky (redes Bayesianas
Gaussianas). Después, sus parámetros son estimados por máxima verosimilitud. Como
alternativa, existen en el estado del arte métodos de regularización para ambas clases de
modelos, que simultáneamente realizan la selección y estimación del modelo.

Un método popular para la selección del modelo mediante contraste de hipótesis es el
algoritmo PC, que se puede aplicar tanto para redes de Markov Gaussianas como para re-
des Bayesianas Gaussianas. Este método depende fundamentalmente de dos parámetros:
el tipo de test estad́ıstico y el nivel de significatividad al que se contrastan las hipótesis.
Sin embargo, el enfoque actual en la literatura es usar un test Gaussiano para una trans-
formación de la correlación parcial, y una búsqueda en rejilla para su nivel de signi-
ficatividad. Por contra, cuando se usa un procedimiento automático para afinar los
parámetros, como la optimización Bayesiana, se muestra cómo se mejora significativa-
mente el rendimiento de la selección del modelo cuando se emplea un test no usado
habitualmente en la literatura. Es más, estos procedimientos automáticos de afinación
de parámetros permiten seleccionar un nivel de significatividad optimizado para cada
tipo de test.

A la validación de metodoloǵıas para selección de modelos gráficos Gaussianos le afecta
profundamente, además de cómo se hace la afinación de parámetros, cómo se simulan los
modelos de test sintéticos. Se puede mostrar que las metodoloǵıas que tratan esta tarea en
el estado del arte, tanto para redes de Markov Gaussianas como para redes Bayesianas
Gaussianas, están sesgadas hacia ciertas regiones, influenciando aśı significativamente
sobre los resultados de validación. Seŕıa por tanto deseable disponer de un proceso para
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muestrear uniformemente modelos gráficos Gaussianos. En concreto, las redes Bayesianas
Gaussianas y las redes de Markov Gaussianas están ı́ntimamente relacionadas con la
matriz de correlación parcial, por lo que métodos de muestreo uniforme de dicho conjunto,
llamado elliptope, pueden ser un punto de partida. Se propone un nuevo método tipo
Metrópolis para muestrar uniformemente del elliptope, extensible de manera directa a
modelos gráficos Gaussianos cordales. Sin embargo, en el caso general, se debe usar un
método de ortogonalización parcial para las redes de Markov Gaussianas, y no queda
garantizado que los resultados sean uniformes. Pese a esta dificultad, se muestra cómo
constituye una metodoloǵıa de simulación alternativa de modelos gráficos Gaussianos que
ilustra cómo resultan profundamente afectados los resultados de validación, y por tanto
cómo los experimentos de simulación se deben examinar cuidadosamente, si no se usa
muestreo uniforme.

Finalmente, ya se ha mencionado que el grafo asociado tanto con las redes Bayesianas
Gaussianas como con las redes de Markov Gaussianas está codificado directamente en la
matriz de correlación parcial o de covarianza inversa, o en su descomposición de Cholesky.
Otro modelo gráfico Gaussiano, el grafo de covarianza, se puede leer del patrón de ceros en
una matriz de covarianza. Sin embargo, no exiten trabajos en la literatura que propongan
un modelo gráfico Gaussiano sobre el factor de Cholesky de una matriz de covarianza.
Se muestra cómo este modelo es un análogo de la red Bayesiana Gaussiana, de la misma
manera que un grafo de covarianza lo es de una red de Markov Gaussiana. Cuando las
variables siguen un orden conocido, este nuevo modelo gráfico Gaussiano se puede estimar
fácilmente como una factorización de la matriz de covarianza restringida a tener muchos
ceros. Esto ya se ha tratado en la literatura, pero solamente mediante una transformación
del modelo a regresión. Este vaćıo puede llenarse usando un enfoque de pérdida matricial
regularizada que penaliza directamente la función de verosimilitud, u otras funciones de
pérdida de interés. Se muestra cómo este modelo de aprendizaje produce una mejor
recuperación del patrón de ceros aśı como resultados competitivos en escenarios reales.
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Abstract

Graphical models represent conditional independences of a multivariate distribution by
absent edges in a graph, which typically is directed, undirected or mixed. This com-
pact modelling allows to decompose statistical inference into efficient computations over
the associated graph. As such, graphical models originated mainly at the interface be-
tween statistics and artificial intelligence, with Markov networks (undirected graph) and
Bayesian networks (acyclic digraph) being the classic representatives. Nowadays graphi-
cal models are widely applied and a significant amount of research is devoted to them.

Gaussian Markov networks and Gaussian Bayesian networks, although not being
equivalent models, share a common intersection consisting of chordal graphs (or acyclic
digraphs with no v-structures). A typical approach for model selection in both model
classes is hypothesis testing, which amounts to selecting the graph that parametrizes the
model. Absent edges in both models are represented by a zero pattern in the inverse co-
variance or partial correlation matrix (Gaussian Markov networks) or in its Cholesky de-
composition (Gaussian Bayesian networks). Afterwards, their parameters are estimated
by maximum likelihood. Alternatively, there exist state-of-the-art regularisation methods
for both model classes, which simultaneously perform model selection and estimation.

A popular method for model selection via hypothesis testing is the PC algorithm,
which can be applied for both Gaussian Markov networks and Gaussian Bayesian net-
works. This method mainly depends on two parameters: the statistical test type and the
significance level at which the hypotheses are tested. However, the usual approach in the
literature is to use a Gaussian test for a transformation of the partial correlation, and
a grid search for its significance level. By contrast, when using an automatic procedure
for parameter tuning, such as Bayesian optimization, it is shown how model selection
performance is significantly improved when employing an uncommonly used test in the
literature. Furthermore, these automatic parameter tuning procedures allow to select a
significance level optimized for each test type.

Validation of methodologies for Gaussian graphical model selection is also deeply
affected, apart from how parameter tuning is performed, by how synthetic test mod-
els are simulated. It can be shown that state-of-the-art methodologies addressing this
task are biased towards certain regions, thereby significantly influencing validation re-
sults. It would be therefore desirable to have a uniform sampling procedure for Gaussian
graphical models. In particular, both Gaussian Bayesian networks and Gaussian Markov
networks are intimately related with the partial correlation matrix, thereby uniform sam-
pling methods for such set, called elliptope, can be a departing point. A novel Metropolis
uniform sampling from the elliptope is proposed, which can be straightforwardly extended
to chordal Gaussian graphical models. However, in the general case, a partial orthogo-
nalization method has to be used for Gaussian Markov networks, and the results are not
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guaranteed to be uniform. Despite this difficulty, it is shown to be an alternative simu-
lation methodology for Gaussian graphical models which also illustrates how validation
results are deeply affected, and therefore how simulated experiments need to be carefully
examined, when not using uniform sampling.

Finally, it has already been mentioned that the graph associated with both Gaussian
Bayesian networks and Gaussian Markov network models is directly encoded in the partial
correlation or inverse covariance matrix, or in its Cholesky decomposition. Another
Gaussian graphical model, the covariance graph, can be read from a zero pattern in the
covariance matrix. However, there is no work in the literature that proposes a Gaussian
graphical model over the Cholesky factor of a covariance matrix. It is shown that this
model is an analogue of the Gaussian Bayesian network, in the same way that a covariance
graph is of a Gaussian Markov network. When the variables follow a known order, this
new Gaussian graphical model can be easily estimated as a sparse Cholesky factorization
of the covariance matrix. This has been previously addressed in the literature, but only
via a regression transformation of the model. This gap can be filled by using a regularized
matrix loss approach that directly penalizes the likelihood function, or other losses of
interest. It is shown how this learning model yields better zero-pattern recovery as well
as competitive results in real scenarios.
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Chapter 1

Introduction

Graphical or Markov models provide a graphical way of modelling a multivariate dis-
tribution, which at the same time allows to decompose statistical inference. They are
essentially determined by three aspects:

� The statistical family of distributions under consideration.

� The graphs allowed for representing the distribution.

� How graph separation properties are related to statistical independences in the
probability distribution, the so-called Markov properties of the graphical model.

With such interdisciplinary nature, it is not a surprise that historically graphical
models originated at the interface between many fields, including physics, statistics and
artificial intelligence. Indeed, they can be traced to the Ising model for ferromagnetic
materials (Kindermann and Snell, 1980; Isham, 1981), Markov random fields (Grim-
mett, 1973; Besag, 1974; Moussouris, 1974), or path analysis for genetics (Wright, 1934).
Wermuth (1976a) hinted that the work of Dempster (1972) was a Gaussian undirected
graphical model, by noting the similarities with log-linear contingency tables (Darroch
et al., 1980). In addition, she implicitly introduced Gaussian acyclic directed graphical
models as zero values for coefficients in linear recursive regressions (Wermuth, 1980),
which she further compared with Dempster’s models and path analysis. The explicit ter-
minology graphical model, however, was not introduced until Darroch et al. (1980) linked
log-linear models for contingency tables with discrete Markov fields. In parallel, within
the artificial intelligence community, Pearl (1988) actively developed acyclic directed and
undirected graphical models, terming them Bayesian and Markov networks, respectively.
It was the birth of graphical model’s research (see also Córdoba et al., 2020c, §2).

Nowadays graphical models are still widely applied and a significant amount of re-
search is devoted to them (Maathuis et al., 2018). This thesis contains an exposition
of some contributions to the statistical analysis of graphical models for the multivariate
Gaussian distribution, commonly called Gaussian graphical models, from a unifying per-
spective, that is, taking into account how the proposed methodologies can be transferred
throughout different Gaussian graphical models.
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1.1 Aims and scope

The contributions of this thesis exclusively focus on statistical methodology related to
Gaussian graphical models. Therefore it will generally be assumed that random vectors
follow a multivariate Gaussian distribution. In any case, this will usually be explicitly
stated whenever defining a random vector. With the scope restricted to this assumption,
the following hypotheses are formulated in this thesis:

� State-of-the-art learning methods for Gaussian graphical models can be improved
by using modern methodologies for parameter optimisation.

� Different ways of simulating Gaussian graphical models may deeply affect synthetic
evaluation of state-of-the-art learning methods. In particular, special instances of
Gaussian graphical models can be uniformly sampled to allow fair synthetic model
comparison.

� The analogies between parameters of Gaussian Markov and Bayesian networks
(Dempster, 1969; Wermuth et al., 2006) can be used for defining an alternative
Gaussian graphical model.

Based on such hypotheses, the main thesis objectives are therefore:

1. To show how modern parameter optimisation techniques can improve the perfor-
mance of a state-of-the-art learning algorithm for Gaussian graphical models.

2. To develop simulation methods for Gaussian graphical models different from the
traditional ones, and show how synthetic validation can be deeply affected.

3. To detail the analogies between parametrizations of Gaussian Markov and Bayesian
networks, and show how they motivate the introduction of a new Gaussian graphical
model.

1.2 Contributions

In this thesis the objectives previously outlined have been achieved. In particular,

� In Córdoba et al. (2018a) the state-of-the-art PC algorithm (Spirtes et al., 2000)
improves its performance when selecting the parameters with Bayesian optimization
(Garrido-Merchán and Hernández-Lobato, 2019), thereby fulfilling Objective 1.

� Objective 2 has yielded several contributions. It is primarily addressed in Córdoba
et al. (2018c), where a new simulation method for Gaussian Markov networks is
proposed, and it is shown how it deeply affects different validation scenarios where
several state-of-the-art learning methods are tested. In parallel, as a first step
towards providing unbiased simulation for Gaussian graphical models, in Córdoba
et al. (2018b) a new method for uniform sampling of correlation matrices is detailed.
This method is extended in Córdoba et al. (2020a), providing uniform sampling for
special types of Gaussian Markov and Bayesian networks.
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� In Córdoba et al. (2020b) a new learning method for the sparse Cholesky decom-
position of a covariance matrix is proposed. Motivated by the analogy with sparse
inverse covariance decompositions, and Gaussian Markov and Bayesian networks,
a new Gaussian graphical model is introduced, thereby fulfilling Objective 3.

Furthermore, the review Córdoba et al. (2020a), unrelated with the above methodological
objectives, constitutes another contribution of this thesis to state of the art of Gaussian
graphical models.

1.3 Document structure

This thesis is organized as follows. Chapter 2 contains an overview of the main statis-
tical theory related to Gaussian graphical models that will be necessary to follow the
thesis remainder, specially Markov and Bayesian networks. Maximum likelihood estima-
tion, stepwise model selection, and penalized learning are covered. Chapter 3 contains
an illustration of how the PC algorithm’s model selection performance is improved by
automatically tuning its parameters with Bayesian optimisation. This also serves as an
introduction to another significant issue that affects numerical validation of Gaussian
graphical model selection methods: how synthetic models are simulated. Chapter 4 con-
tains an exemplification of how to uniformly sample from the set of correlation matrices,
intimately related to Gaussian graphical models. Its results are then combined with a
partial orthogonalization method in Chapter 5, providing thus several alternatives to
traditional synthetic model simulation in Gaussian graphical model literature. It also
contains an illustration of how these different simulation methodologies can deeply affect
validation results and conclusions, confirming what was previously theorised in Chap-
ter 3. Finally, the attention is switched in Chapter 6 to the sparse parametrization of
the covariance matrix in a multivariate Gaussian distribution, motivated by the inverse
analogue, which plays a key role for Gaussian Markov and Bayesian networks. The con-
clusions and open research that could be drawn from this thesis are exposed in Chapter
7. Finally, it is closed by a bibliography containing details of all the references made
throughout the text.
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Chapter 2

Background

This chapter contains a review of the main statistical theory about Gaussian graphical
models, specially Markov and Bayesian networks. Maximum likelihood estimation, step-
wise model selection, and penalized learning are covered. The reader already familiarized
with this theory can go quickly through this chapter and just focus on familiarizing with
the notation.

2.1 Graph preliminaries

A graph G = (V,E), where V is the vertex set and E ⊆ V × V is the edge set, is called
undirected if (u, v) ∈ E ⇐⇒ (v, u) ∈ E, and directed or digraph otherwise. A cycle of
length k ≥ 2 in u ∈ V is an ordered sequence of vertices u(= v0), v1, . . . , vk−1, u(= vk)
where (vi−1, vi) ∈ E for i ∈ {1, . . . , k} and v0, . . . , vk−1 are distinct. An acyclic digraph
is a directed graph with no cycles (see Figure 2.1(a) where 1, 3, 5, 6, 1 is a cycle of length
4, and Figure 2.1(b) for an acyclic digraph). The set of neighbours of a vertex v ∈ V

1

3

2

4 5

6

(a) Cyclic digraph

1

3

2

4 5

6

(b) Acyclic digraph

Figure 2.1: Directed graphs.

is defined as ne(v) = {u ∈ V : (u, v) ∈ E}. If the graph is acyclic directed, such set is
commonly called the parent set and denoted as pa(v).

The remainder of this section contains an introduction to chordal graphs, which are
key for this thesis and graphical models in general, and some relationships they have with
acyclic digraphs.
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2.1.1 Chordal graphs

An undirected graph G = (V,E) is called chordal if all cycles (u =)v0, . . . , vk, (= u)
of length k ≥ 4 have an edge joining two non-consecutive nodes, that is, if there ex-
ist i, j ∈ {0, . . . , k} with |i − j| 6= 1 such that (vi, vj) ∈ E. Such edge is commonly
denominated a chord. As an example, in Figure 2.2(a), the cycle 1, 3, 5, 6, 1 does not
have a chord, whereas the graph in Figure 2.2(b) is chordal. Observe that solid lines are
used for undirected graphs because direction is unimportant. Because of the graphical
representation that arises, chordal graphs are often called triangulated. A chordal cover

1

3

2

4 5

6

(a) Non-chordal graph

1

3

2

4 5

6

(b) Chordal graph

Figure 2.2: Undirected graphs.

or triangulation of an undirected graph G = (V,E) is a chordal graph G = (V,E) that
contains G as a sub-graph, that is, such that E ⊆ E. For example, the graph in Figure
2.2(b) is a chordal cover of that in Figure 2.2(a).

Chordal graphs may be characterized in alternative ways (Lauritzen, 1996). Some of
them will be used in the thesis remainder, and thus appear in Proposition 2.1.1. They
build upon further graph concepts that will be explained below.

An undirected graph G = (V,E) is complete if every two vertices are connected, that
is, if ne(u) = V \ {u} for every u ∈ V . Furthermore, a vertex subset C ⊆ V that induces
a complete sub-graph GC = (C,EC = E ∩ (C×C)) is called a clique. Let C1, . . . , Ck be a
sequence of vertex subsets in G, not necessarily cliques. Define for each i = 1, . . . , k the
subsets Hi = C1 ∪ · · · ∪ Ci, Ri = Ci \Hi and Si = Hi−1 ∩ Ci. The sequence C1, . . . , Ck
is said to be perfect if for all i the sets Si are cliques, and Si ⊆ Cj when i > 1 for
some j < i. A perfect numbering of the vertices in V is an ordering v1 ≺ · · · ≺ vk such
that Cj = ({vj} ∪ ne(vj)) ∩ {v1, . . . , vj} with j = 1, . . . , k is a perfect sequence of vertex
subsets.

Proposition 2.1.1 (Lauritzen, 1996). The following statements are equivalent for an
undirected graph G:

� G is chordal.

� The vertices of G admit a perfect numbering.

� The maximal cliques of G can be numbered to form a perfect sequence.

Note that, following Proposition 2.1.1, in a chordal graph G = (V,E) an immediate
perfect ordering of V may be formed from a perfect sequence of the maximal cliques
C1, . . . , Ck by taking first those vertices in C1, then those in R2, R3 and so on.
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2.1.2 Acyclic digraphs and chordal graphs

An acyclic digraph G = (V,E) is contained by two special undirected graphs, its skeleton
and moral graph, which will be explained subsequently. The undirected graph GU =
(V,EU = E ∪ {(v, u) : (u, v) ∈ E} is called the skeleton of G, and, conversely, G is one
of its orientations. For example, the undirected graph in Figure 2.2(b) is the skeleton
of the acyclic digraph in Figure 2.3(a). Let u,w1, w2 ∈ V with (w1, u), (w2, u) ∈ E and

1

3

2

4 5

6

(a) Orientation

1

3

2

4 5

6

(b) v-structures

1

3

2

4 5

6

(c) Moral graph

Figure 2.3: Chordal graphs and acyclic digraphs.

(w1, w2), (w2, w1) /∈ E (see vertices 1, 2 and 3 in Figure 2.1(b)). Such configurations are
usually called v-structures and denoted as w1 → u← w2. The moral graph of G is defined
as the undirected graph Gm = (V,Em = EU ∪{(w1, w2) : w1 → u← w2 for some u ∈ V }.
Figure 2.3(b) has the v-structures 1 → 3 ← 2 and 1 → 6 ← 5, whereas Figure 2.3(a)
contains none. The equivalence between an acyclic digraph’s moral graph and skeleton
is closely related to chordal graphs, as Proposition 2.1.2 states.

Proposition 2.1.2 (Koller and Friedman, 2009). The moral graph Gm and the skeleton
GU of an acyclic digraph G coincide if and only if G has no v-structures. In such case,
both Gm and GU are chordal.

Continuing with the example, since the acyclic digraph of Figure 2.3(a) has no v-
structures, its moral graph is its skeleton, Figure 2.2(b). However, the acyclic digraph in
Figure 2.3(b) has two v-structures, therefore its moral graph, depicted in Figure 2.3(c),
contains two edges more than its skeleton (Figure 2.2(a)). Note that, in general, neither
the moral graph nor the skeleton are chordal.

Conversely to Proposition 2.1.2, any chordal undirected graph G = (V,E) can be
oriented into an acyclic digraph with no v-structures. Indeed, a well-known property of
acyclic digraphs is that their nodes can be totally ordered such that each node is preceded
by its parents in such order; this is usually called ancestral or topological ordering. It can
be shown (Lauritzen, 1996) that if v1 ≺ · · · ≺ vp is a perfect ordering of V , then ≺ is also
an ancestral ordering for an orientation of G that contains no v-structures.

2.2 Gaussian graphical models

Let X = (X1, . . . , Xp)
t be a p-variate random vector. In graphical models, the vertex set

V of a graph G = (V,E) is typically used as an index set for X, thus V = {1, . . . , p}. In
the following, for an arbitrary subset I ⊆ V , XI will denote the |I|-variate random vector
indexed by I. Furthermore, the notation of Dawid (1979) for conditional independence
will be followed, thus for disjoint I, J,K ⊆ V , XI ⊥⊥ XJ | XK will mean that XI and
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XJ are independent given XK = xK , for any value of xk. Note that, in terms of density
functions, this means, among other identities, that f(xI ,xJ | xK) = f(xI | xK)f(xJ |
xK) (see also Studenỳ, 2018, §1.3).

2.2.1 Markov and Bayesian networks

There are several Markov properties that can be defined for both acyclic directed and
undirected graphs (Lauritzen, 1996; Studenỳ, 2018, §1.7 and §1.8). For the multivari-
ate Gaussian distribution they are all equivalent (Pearl, 1988; Lauritzen et al., 1990),
therefore hereby only those relevant for this thesis will be described.

If G = (V,E) is an undirected graph, then the probability distribution of a random
vector X is said to be pairwise Markov or satisfy the pairwise Markov property with
respect to G if

Xi ⊥⊥ Xj |XV \{i,j} for all (i, j) /∈ E. (2.1)

Analogously, in an acyclic digraph G = (V,E), denoting as ≺ an ancestral order of V , the
probability distribution of X is said to be ordered Markov or satisfy the ordered Markov
property with respect to G if

Xi ⊥⊥ Xj |Xpa(i) for all (j, i) /∈ E with j ≺ i. (2.2)

Given a statistical family F of distributions, such as the multivariate Gaussian in
the case of this thesis, and a graph G, the graphical or Markov model M(G) is defined
as the set of distributions in F that satisfy the corresponding Markov property with
respect to G, Equation (2.1) or (2.2) depending on whether it is undirected or acyclic
directed. They are also called Markov networks and Bayesian networks, respectively.
The interested reader may look at Lauritzen and Sadeghi (2018) for an account of other,
more complex, graph types and their associated Markov properties, which give rise to
other graphical models.

There is a key difference between undirected and acyclic directed graphical models:
the former are uniquely parametrized by the graph (Pearl and Paz, 1987), whereas for
the latter this uniqueness does not hold. Instead, if G is an acyclic digraph, then any
other that shares the skeleton and v-structures (Verma and Pearl, 1991) will yield the
same graphical model. This gives rise to the Markov equivalence class of G, [G], which
contains all acyclic digraphs sharing skeleton and v-structures with G.

Finally, Markov equivalence can also be established between acyclic directed and
undirected graphical models. A chordal graph is Markov equivalent to an orientation
that does not contain v-structures (Frydenberg, 1990). Conversely, if G is an acyclic
digraph and Gm is its moral graph, then M(G) ⊆ M(Gm) (Lauritzen et al., 1990).
Furthermore, if G contains no v-structures, then Gm is chordal and equal to the skeleton
(Proposition 2.1.2), therefore the respective Markov modelsM(G) andM(Gm) coincide.

2.2.2 The multivariate Gaussian parametrization

From now on the statistical family F underlying a graphical model M(G) over graph G
will be restricted to the multivariate Gaussian, that is, distributions of the form N (µ,Σ)
where µ is the mean vector and Σ is the covariance matrix, which belongs to the set of
positive definite symmetric matrices, S>0. If G is undirected, the parameters ofM(G) are
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in correspondence with the inverse covariance matrix Ω = Σ−1, whereas if it is an acyclic
digraph this correspondence is with its Cholesky decomposition (Wermuth, 1976a, 1980;
Uhler, 2018, §9.1). Therefore, in the remainder we will assume a zero mean, µ = 0 for
a lighter notation. In the following, MIJ will be the |I| × |J | sub-matrix of a real q × r
matrix M, where I ⊆ {1, . . . , q} and J ⊆ {1, . . . , r}; and M−1

IJ will mean (MIJ)−1.
Let G = (V,E) be an acyclic digraph with vertex set V = {1, . . . , p} indexing a p-

variate random vector X = (X1, . . . , Xp)
t. Denote with ≺ the ancestral order of G and

for a vertex i ∈ V let pr(i) = {j ∈ V : j ≺ i} be its predecessor set. Observe that, by
definition of ancestral order, pa(i) ⊆ pr(i). Assume that X follows a p-variate N (0,Σ).
For every j ∈ pr(i) \ pa(i) (Anderson, 2003)

Xi ⊥⊥ Xj |Xpa(i) ⇐⇒ βij|pr(i) = 0, (2.3)

where βij|pr(i) is the j-th entry of vector βi|pr(i) = Σi pr(i)Σ
−1
pr(i) pr(i), that is, the coefficient

of Xj in the regression of Xi over Xpr(i), following a slight adaptation of the notation by
Yule (1907). Thus a Gaussian Bayesian network model, where Equation (2.3) holds, is
equivalent to the set of linear regressions (Anderson, 2003)

Xi =
∑
j∈pr(i)

βij|pr(i)Xj + Ei =
∑
j∈pa(i)

βij|pa(i)Xj + Ei, (2.4)

where i ∈ V and Ei are zero mean independent Gaussian variables.
The regression coefficients of Equation (2.4) can be arranged in a matrix B where

bij = βij|pa(i) = βij|pr(i) if j ∈ pa(i) and zero otherwise. This leads to the matrix form of
Equation (2.4), X = BX + E where E ∼ N (0,D) with D diagonal. We can rearrange
it and take variances, arriving at

Ω = Σ−1 = UD−1Ut = WWt, (2.5)

where U = (I − B)t, I is the identity matrix and W = U
√

V−1. Thus defining the set
MG of matrices with positive diagonal and a zero pattern compatible with G, that is, such
that mji = 0 for all (j, i) /∈ E, j 6= i, the Gaussian Bayesian network can be expressed as

M(G) = {N (0,Σ) : Σ−1 = WWt, W ∈MG}. (2.6)

Remark. Let τ be the permutation of X1, . . . , Xp associated with the ancestral order
≺. If ≺ is the natural order, 1 ≺ · · · ≺ p, which means that τ is the identity, then
matrix B is strictly lower triangular, W is the upper Cholesky factor (Eaton, 1983; Horn
and Johnson, 2012) of Ω and M(G) is usually called a linear structural equation model
(Drton, 2018) or recursive regression system (Wermuth, 1980). In a general Gaussian
Bayesian network M(G), however, this will not be the case, and τ(W) will be the upper
Cholesky factor of τ(Ω), but neither B nor W will be strictly lower and upper triangular,
respectively. In fact, if Ω̃ is the matrix obtained from Ω by reordering rows and columns
following the reverse of ≺, also known as fill-in free or perfect elimination ordering
(Roverato, 2000), and N is its lower Cholesky factor, it can be verified that Nt is equal
to the transpose of τ(U) with respect to its anti-diagonal.

Conversely to Equation (2.3), we also have for every i, j ∈ V (Anderson, 2003)

Xi ⊥⊥ Xj |XV \{i,j} ⇐⇒ ωij = 0, (2.7)
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where ωij is the (i, j) entry of the inverse covariance matrix Ω. This means that if
G = (V,E) is an undirected graph and we consider the set S>0

G = S>0 ∩MG, that is, the
set of positive definite matrices whose zeros are compatible with G, then we may express
a Gaussian Markov network as

M(G) = {N (0,Σ) : Σ−1 ∈ S>0
G }. (2.8)

2.3 Maximum likelihood estimation

The expression of Gaussian Bayesian and Markov networks in Equations (2.6) and (2.8),
respectively, hints that maximum likelihood estimation in each model is going to differ
significantly. In the former case, it amounts to simple linear regression coefficients and
variances, whereas in the latter a sparse positive definite matrix is sought.

When the graphical model M(G) is a Gaussian Markov network, which is a regular
exponential family (Barndorff-Nielsen, 1978; Uhler, 2018), in general there are no closed
formulas for the maximum likelihood estimators. Consider N independent observations
from a distribution N (0,Σ) ∈ M(G) arranged in a N × p matrix x. Let QG be the
projection of Q = XtX onto S≥0G = MG ∩ S≥0, that is, QG has zeros compatible with G
and entries coinciding with Q otherwise. The sufficient statistic for M(G) is QG, whose
closed convex support is S≥0G . Therefore, a maximum likelihood estimator for Σ exists if
and only if QG is extendable to a positive definite matrix. This condition for existence is
not easily established: for a general graph the problem is still open, see Uhler (2018) for
an up-to-date overview of the advances made so far.

By contrast, obtaining the maximum likelihood estimates in a multivariate Gaussian
distribution following a Bayesian network model is easy, since theory from multivariate
linear regression can be applied (Anderson, 2003). In particular, if G is an acyclic digraph,
recall that if X = (X1, . . . , Xp)

t ∼ N (0,Σ) ∈ M(G), then the statistical model for X
coincides with the system of linear regression equations in Equation (2.4). Thus, if X is
the corresponding N × p random sample matrix, usual least squares estimation may be
used,

β̂ti| pa(i) = Qipa(i)Q
−1
pa(i) pa(i),

d̂ii =
1

N
(qii − β̂ti| pa(i)Qt

i pa(i)),

where Q = XtX, qii is the i-th diagonal entry in Q, d̂ii is the estimator for the i-th
conditional variance (i-th diagonal entry of D in Equation (2.5)), and i ∈ V .

2.4 Stepwise model selection

Model selection for a graphical model M(G) consists of learning the graph G = (V,E)
that determines it. When a random vector X = (X1, . . . , Xp)

t is assumed to follow a
multivariate Gaussian N (0,Σ) ∈ M(G), the classical approach is to test conditional
independence via partial correlation testing, as follows. Let i, k ∈ I ⊆ V = {1, . . . , p}
and J ⊆ V \ I. The partial correlation coefficient between Xi and Xk given XJ is

ρik|J =
σik|J

√
σii|Jσkk|J

, (2.9)
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where σik|J , σii|J and σkk|J are the respective entries in matrix ΣI|J = ΣII −ΣIJΣ
−1
JJΣJI ,

the conditional covariance matrix. Xi and Xk are independent given XJ = xJ , for any
value xJ , if and only if ρik|J = 0 (Anderson, 2003).

When selecting the graph for a Gaussian Markov network model, a starting graph
G = (V,E) (usually the complete one over V ) is fixed, and sub-graphs raising from one
edge removal are tested (Wermuth, 1976b), that is H0 : ρij|V \{i,j} = 0 is tested for every
(i, j) ∈ E. The edge leading to the highest likelihood ratio statistic is then removed,
and the procedure is iterated backwardly until no edge can be significantly removed.
Under H0, the likelihood ratio statistic distribution can be approximated by a product
of univariate Beta distributions (Eriksen, 1996; Lauritzen, 1996).

The above method, however, becomes impractical for high values of p and the sample
size N . Alternatively, the first phase of the PC algorithm (Spirtes and Glymour, 1991)
may be used. This method, although targeted at selecting a Gaussian Bayesian network
modelM(G), proceeds by first estimating the skeleton GU and then orienting it. Starting
from the complete undirected graph, at iteration l for each edge (i, j) ∈ E such that
|ne(i) \ {j}| ≥ l, a subset J ⊆ ne(i) \ {j} of cardinality |J | ≤ l is selected. Then the
hypothesis H0 : ρij|J = 0 is tested, and if it cannot be rejected, edges (i, j),(j, i) are
removed from GU . This procedure is outlined in Algorithm 1.

Algorithm 1 The PC algorithm for recovering the skeleton of a Gaussian Bayesian
network model M(G)

Input: Sample x1, . . . ,xN from M(G)
Output: Undirected graph

1: V ← {1, . . . , p}
2: Ê ← V × V \ {(i, i) : i ∈ V }
3: ĜU ← (V, Ê) // Complete undirected graph
4: l← −1
5: repeat
6: l← l + 1
7: repeat
8: Select (i, j) ∈ Ê such that |ne(i) \ {j}| ≥ l
9: repeat

10: Choose new J ⊆ ne(i) \ {j} with |J | = l
11: if H0 : ρij|J = 0 cannot be rejected then

12: Ê ← Ê \ {(i, j), (j, i)}
13: end if
14: until (i, j), (j, i) are deleted or all J ⊆ ne(i) \ {j} with |J | = l are tested
15: until all (i, j) ∈ Ê such that |ne(i) \ {j}| ≥ l are tested
16: until |ne(i) \ {j}| < l for all (i, j) ∈ Ê
17: return ĜU

The methodology for the PC algorithm is based on what are called faithful distribu-
tions. A distribution N (0,Σ) following a Gaussian Markov network modelM(G), where
Ω = Σ−1 ∈ S>0

G (Equation (2.8)), is faithful to G if ωij = 0 for all (i, j) /∈ E (note that
the converse always holds because Ω ∈ S>0

G ). For faithful distributions, if ρij|J = 0, then
ρij|K = 0 for all K ⊆ J ; this is what inspires iterative backward testing in Algorithm 1.
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However the faithful condition is not enough for the PC algorithm’s consistency, issue
that has been and is currently thoroughly studied (Robins et al., 2003; Zhang and Spirtes,
2003; Kalisch and Bühlmann, 2007; Uhler et al., 2013). The PC algorithm is a versa-
tile method since it allows to estimate either an undirected or acyclic directed Gaussian
graphical model. In the latter case, the output of Algorithm 1 is oriented following a
set of rules (see for example Kalisch and Bühlmann, 2007), and a graph estimate of the
Markov equivalence class (Andersson et al., 1997) is returned.

2.5 Regularization

Certain regularization techniques that impose a zero pattern in vectors or matrices are
useful alternative methods for selecting a Gaussian graphical model, as will be shown in
the remainder.

A multivariate Gaussian N (0,Σ) belonging to a Gaussian Markov networkM(G) can
be learned by solving the following optimization problem

arg min
Ω∈S>0

G

tr(ΩQ)−N ln det(Ω) + λf(Ω),

where Ω = Σ−1, Q = XtX with X the N × p sample matrix, λ > 0, tr and det are
respectively the matrix trace and determinant functions, and f is a sparsity inducing the
penalty function. Yuan and Lin (2007a) were the first to pursue this approach, and they
chose the l1 norm penalization, also called lasso (Tibshirani, 1996), over the off-diagonal
elements of Ω. Banerjee et al. (2008) instead included the diagonal; however, since
1/ωuu = σuu|V \{u}, this choice for the penalty favours larger values for the error variances
in the regression of Xu on the rest of variables (Bühlmann and van de Geer, 2011).
Nonetheless, this latter estimator is the one chosen in the extensively used graphical
lasso algorithm (Friedman et al., 2008).

Alternatively, if X = (X1, . . . , Xp)
t is a Gaussian random vector then βij|V \{i} =

−ωij/ωii for each i, j ∈ V (Anderson, 2003), which means that linear regressions can also
be used for learning the Gaussian Markov network model. Specifically, let xi denote a
sample of size N corresponding to variable Xi, i ∈ V , then βi|V \{i} is estimated as the
solution of

arg min
β∈Rp−1

‖xi − (x1 · · ·xi−1xi+1 · · ·xp)β‖22 + λf(β),

where (· · · ) denotes vector concatenation into a matrix, λ > 0, f is a sparsity inducing
penalty function and ‖·‖2 is the Euclidean or l2 norm. If f is the l1 norm, then the result is
a consistent estimator of the edge set for certain choice of λ under a rather restrictive con-
dition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Zou, 2006; Yuan and Lin,
2007b). Some variants have thus been proposed that under milder assumptions achieve
model selection consistency (Meinshausen and Yu, 2009) or other attractive, so-called
oracle, properties (van de Geer and Bühlmann, 2009); see Bühlmann and van de Geer
(2011, §7) for a review. It is not known whether the conditions required for consistency of
penalized likelihood estimators (Lam and Fan, 2009; Ravikumar et al., 2011) are strictly
stronger than those for regression-based approaches, as some examples (Meinshausen,
2008) seem to indicate.
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For selecting a Gaussian Bayesian network modelM(G), the likelihood minimization
problem becomes (recall Equation (2.6))

arg min
W∈MG

tr(WWtQ)− 2N ln

p∑
i=1

wii + λf(W),

where λ > 0. When f(W) = |{wji 6= 0}| (l0 regularization, van de Geer and Bühlmann,
2013; Aragam and Zhou, 2015), this estimator has been suggested as an alternative for
the PC algorithm, in order to avoid the restrictive strong faithfulness assumption that
guarantees uniform model selection consistency (Zhang and Spirtes, 2003). However, it is
unclear how the assumptions of both methods are related (Uhler et al., 2013). Naturally,
the penalized regression approach may also be used as an alternative (recall Equation
(2.4)) if the ancestral variable ordering is known (Shojaie and Michailidis, 2010; Yu and
Bien, 2017). The estimators would be those solving, for each i ∈ V , and assuming the
natural order 1 ≺ · · · ≺ p is already ancestral for notational simplicity,

arg min
β∈Ri−1

‖xi − (x1 · · ·xi−1)β‖22 + λf(β).

13



14



Chapter 3

Model selection with the PC
algorithm: parameter tuning

The PC algorithm, explained in the previous chapter, is used for model selection of
both Gaussian Bayesian and Markov networks. Two main parameters govern it: the
statistical test over partial correlations, line 11 of Algorithm 1, and its significance level
α. Typically the usual test choice is Gaussian (Bühlmann and van de Geer, 2011), based
on the Fisher’s Z transformation,

Z(t) =
1

2
ln

(
1 + t

1− t

)
. (3.1)

Denoting as ρ̂ij|J the sample partial correlation coefficient, then
√
N − |J | − 3(Z(ρ̂ij|J)−

Z(ρij|J)) ∼ N (0, 1) (Anderson, 2003). By contrast, α is usually fixed after a grid
search (Kalisch and Bühlmann, 2007) or directly set by expert knowledge (Colombo and
Maathuis, 2014) to a value ranging within (0, 0.05]. Nevertheless, such an approach for
parameter selection can suffer from human bias, leading to suboptimal model selection.
In this chapter a more principled approach is considered: the use of Bayesian optimisa-
tion (Shahriari et al., 2016). This is a natural choice when optimising the parameters
of a function expensive to evaluate and without a closed-form expression (Snoek et al.,
2012). In particular, predictive entropy search (Hernández-Lobato et al., 2014) will be
used, since it achieves competitive results in a wide range of scenarios.

3.1 Evaluation of the output

When applying the PC algorithm to Gaussian Markov network selection, standard error
rates, such as the true positive rate, can be used for evaluation. These rates simply take
into account the original undirected graph G = (V,E), used for data simulation, and the
estimated one Ĝ = (V, Ê). Then, the edge sets E and Ê are compared element-wise,
considering the presence of an edge a positive case.

However, if selecting a Gaussian Bayesian network modelM(G), an additional orien-
tation step needs to be executed over the output of Algorithm 1, which is just an estimate
of the acyclic digraph skeleton, ĜU . Recall that two acyclic digraphs G1 and G2 yield the
same Bayesian network model whenever they share skeleton and v-structures. Therefore,
a mixed graph with every edge undirected except those corresponding to v-structures
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uniquely characterizes a Markov equivalence class (Andersson et al., 1997). For example,
the mixed graph of Figure 3.1(c) is the graph representation that corresponds to the
acyclic digraphs of Figures 3.1(a) and 3.1(b). The second step of the PC algorithm is an
application of several orientation rules (Meek, 1995), and it returns an estimate of the
mixed graph representation of a Markov equivalence class, [Ĝ]. Importantly, observe that
if no v-structures are estimated, then the output of this step is an undirected graph that
coincides with ĜU and M(Ĝ) =M(ĜU) for every acyclic digraph Ĝ ∈ [Ĝ].
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(a) Acyclic digraph
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(b) Markov equivalent
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(c) Class representation

Figure 3.1: Markov equivalence among acyclic digraphs.

It is clear that when selecting Bayesian network models with the two phases of the
PC algorithm, classic measures are more difficult to apply because of the mixed edge set
output. The usual approach instead is to use the structural Hamming distance (SHD),
firstly defined by Tsamardinos et al. (2006), which counts the number of operations
that have to be performed over two mixed graphs, representing the respective Markov
equivalence classes, so that they coincide (Algorithm 2).

Algorithm 2 Calculation of the structural Hamming distance

Input: Learned mixed graph Ĝ and true graph G
Output: SHD(Ĝ,G)

1: s← 0
2: for every edge e different in Ĝ than G do
3: if e is missing in Ĝ then
4: s← s+ 1
5: end if
6: if e is extra in Ĝ then
7: s← s+ 1
8: end if
9: if e has incorrect direction in Ĝ then

10: s← s+ 1 // Includes edges of different type (undirected/directed)
11: end if
12: end for
13: return s

3.2 Parameter values

As discussed above, there are two main parameters governing the PC algorithm’s output:
the statistical test over partial correlations and its significance level α. For the former,
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apart from the Gaussian test based on Fisher’s Z function (Equation (3.1)), there are
other choices available in the literature.

Under hypothesis H0 : ρij|J = 0 the distribution of
√
N − |J | − 2ρ̂ij|J/

√
1− ρ̂2ij|J

is a Student’s t with N − |J | − 2 degrees of freedom (Anderson, 2003). Furthermore, if
GU = (V,E) and GU0 = (V,E0) are the skeletons with and without edge (i, j), respectively,
and TL is the likelihood ratio statistic for the respective nested graphical models (also
proportional to the mutual information), then −2 ln(TL) is asymptotically distributed as
a χ2 distribution with |E| − |E0| degrees of freedom (Wilks, 1938). In addition to these
standard tests for H0, many more are available in the literature that could be considered
(Edwards, 2000).

The significance level α is the probability of rejecting H0 when it is true. In particular,
for Gaussian graphical models the alternative hypothesis is H1 : ρij|J 6= 0, therefore tests
are two sided (Anderson, 2003). For example, in the case of Fisher’s Z transformation of
ρ̂ij|J , the p-value

√
N − |J | − 3|Z(ρ̂ij|J)| is compared against Φ−1(1 − α/2), where Φ is

the distribution function of N (0, 1). If it is smaller or equal, then there is no statistical
evidence to reject H0 and edge (i, j) is removed. Therefore, the probability of incorrectly
maintaining edge (i, j), also called Type I error (Bühlmann and van de Geer, 2011),
is precisely PH0(

√
N − |J | − 3|Z(ρ̂ij|J)| > Φ−1(1 − α/2)) = α. For the other tests, the

procedure would be analogous, but comparing with the respective asymptotic distribution
instead of a standard Gaussian. In every case, the significance level α is typically set to
a positive value smaller or equal than 0.05.

3.3 Experiments

As an illustration of the impact that automatic parameter tuning has over Gaussian
Bayesian and Markov network model selection, the SHD measure will be optimised,
parametrized by the significance level α and the statistical test.1 The former will range
over 10−5 and 0.1, whereas possible tests will be those available in the extensively used R
(R Core Team, 2020) package bnlearn (Scutari, 2010), which includes the three standard
alternatives previously explained, as well as an improved χ2 test based on the shrinkage
James-Stein estimator for the likelihood ratio TL (Hausser and Strimmer, 2009).

The simulation scope will therefore be restricted to Gaussian Bayesian network models
M(G) where the acyclic digraph G = (V,E) will have a node set of size ranging over
values 25, 50, 75 and 100, and average neighbour set size of n ∈ {2, 8}. The sample size
of simulated data from those models will be N ∈ {10, 50, 100, 500}, thereby giving a total
of 32 different model selection scenarios, which are moderately high-dimensional, sparse,
and representative of those from relevant literature on the PC algorithm (Kalisch and
Bühlmann, 2007; Colombo and Maathuis, 2014). A total of 40 replicas for each of the
32 model selection scenarios will be used, and for generating each Gaussian distribution
the methodology of Kalisch and Bühlmann (2007) will be followed, implemented in the
R package pcalg (Kalisch et al., 2012). Since the acyclic digraphs will have different node
size, the SHD validation measure has to be normalized with respect to the maximum
edge number p(p− 1)/2.

1Code for reproducing the experiments and figures of this section is publicly available at https:

//github.com/EduardoGarrido90/bopc.
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Regarding Bayesian optimisation, the predictive entropy search is averaged across
10 Monte Carlo iterations, and the transformation described by Garrido-Merchán and
Hernández-Lobato (2020) is used in order to deal with the test type, which is a categor-
ical parameter. The results are compared with a random search strategy and with the
expert criterion, taken from Kalisch and Bühlmann (2007), who recommend a value of
α = 0.01 after a grid search, and use the Fisher’s Z partial correlation test. At each iter-
ation, Bayesian optimisation provides a candidate solution which corresponds to the best
observation made so far, and the search is stopped after 30 evaluations of the objective,
where some stability in the results can be appreciated. The Spearmint2 tool was used.

The average normalized SHD results obtained of the described simulation setting are
shown in Figure 3.2. We show the relative difference in log-scale with respect to the best
observed result, since after normalisation the SHD differences become small because of
the combinatorial network space. Therefore, the lower the values obtained, the better.
We show the mean and standard deviation of this measure along the 40 replicas of
the experiment, for each of the three methods compared: Bayesian optimisation (BO),
random search (RS) and expert criteria (EC). We can see that EC is easily improved after
only 10 iterations of BO and RS. Furthermore, BO outperforms RS providing significantly
better results as more evaluations are performed. Importantly, the standard deviation of
the results of BO is fairly small in the last iterations. This means that BO is very robust
with respect to the different replicas of the experiments.
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Figure 3.2: Logarithmic difference with respect to the best observed average normalized
SHD obtained in 40 replicas of the 32 considered Gaussian Bayesian network models.

Since the expert criterion is outperformed, it is of interest to explore the parame-
ter suggestions delivered by Bayesian optimisation. Figure 3.3 contains two histograms
summarising the suggested parameters by Bayesian optimisation in the last iteration.
Observe that the most frequently recommended test is the shrinkage χ2, while the signif-
icance level recommendation is concentrated at values lower than 0.025.

These results are very interesting from the viewpoint of model selection in graphical
models. The first observation is that the optimal value obtained for the significance level
is fairly close to that suggested in Kalisch and Bühlmann (2007). However, the SHD
results are arguably better when using Bayesian optimisation rather than when using

2https://github.com/HIPS/Spearmint
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Figure 3.3: Histograms with the recommended parameters by Bayesian optimisation in
the last iteration. alpha: Significance level; Fisher: Gaussian test based on the Fisher’s
Z transform of the partial correlation coefficient; James-Stein: χ2 improved test based
on a shrinkage estimator of the nested likelihood ratio; Mutual Information: χ2 test for
the likelihood ratio/mutual information of the nested models; Student: Student’s test
for the untransformed partial correlation coefficient.

parameters from an expert criterion. This may be explained by the second interesting
result, namely, that the shrinkage χ2 test is suggested more often than the extensively
used classic Fisher’s Z partial correlation test. Therefore, in the context of sparse, high-
dimensional networks, where we may have p > N (such as in the above experimental
set-up and the one in Kalisch and Bühlmann (2007)), it may be better to focus on the
statistical test selection, rather than on carefully adjusting the significance level. In the
literature, however, this is often done the other way around, and more effort is put on
carefully adjusting the significance level.
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Chapter 4

Uniform sampling of correlation
matrices

There is an important remark regarding how model selection is approached in simulation
experiments for Gaussian graphical models. In the previous chapter parameter tuning
was addressed, but simulation methodology needs also to be examined. Recall that both
the Gaussian Bayesian network model M(G) and the distribution N (0,Σ) ∈ M(G)
for each experiment replica were simulated following the methodology by Kalisch and
Bühlmann (2007), extensively used for Gaussian Bayesian network models (Kalisch and
Bühlmann, 2008; Colombo and Maathuis, 2014; Goudie and Mukherjee, 2016). Edges
in G are sampled as ones in a strictly upper triangular matrix U (Equation (2.5)) from
a Bernoulli distribution with success probability d = n/(p − 1), with n and p being
neighbour and vertex set sizes in G, respectively. The value d can be thought of as an
indicator of the network density: smaller d values mean sparser networks. Afterwards,
ones in the upper triangle of U are replaced by values from a uniform distribution over
the [0.1, 1] interval, and Σ−1 = UUt. It is easy to see that inverse covariance matrices
thus generated have an increasing diagonal, thereby restricting the simulation space, see
Figure 4.1. This issue could also be influencing model selection performance results for
the PC algorithm.

As a first approximation to the above-described problem, in this chapter a novel
Metropolis-Hastings algorithm for uniform sampling of correlation matrices is described.
These are intimately related to Gaussian graphical models, both acyclic directed and
undirected: letting S =

√
diag(Σ) be the diagonal matrix of standard deviations, then

the correlation matrix is R = S−1ΣS−1. The set of correlation matrices is known to form
a convex body E called elliptope (Laurent and Poljak, 1996), whose volume has been
explicitly computed by Lewandowski et al. (2009). Uniform sampling therefore amounts
to sampling with respect to the volume measure over the elliptope (Diaconis et al., 2013).
Existing methods in the literature for this task are either based on vine representations of
the correlation matrix (Joe, 2006; Lewandowski et al., 2009), or on spherical parametriza-
tions of its Cholesky decomposition (Pourahmadi and Wang, 2015). By contrast, the
method proposed in this chapter is intuitive, combining the upper Cholesky factorization
(Eaton, 1983; Horn and Johnson, 2012) with Markov chain Monte Carlo theory (Robert
and Casella, 2004), and allows for a direct application to Gaussian graphical models, as
will be discussed in subsequent chapters.
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Figure 4.1: Illustration of Kalisch and Bühlmann (2007) simulation methodology for
Ω = Σ−1 when N (0,Σ) belongs to a Gaussian Bayesian network M(G) (left). By
contrast, uniform sampling (right) explores the whole space. The diagonal of Ω has been
fixed to 1, and the skeleton of G complete, therefore the upper right plot depicts the set
of 3-dimensional correlation matrices.

4.1 Cholesky parametrization and uniform sampling

Let U1 denote the set of upper triangular p × p matrices with positive diagonal entries
and unitary row vectors. Consider now

Φ : U1 −→ S>0

U 7−→ UUt,

which is the upper Cholesky parametrization of the elliptope E , that is, Φ(U1) = E .
In order to sample uniformly from E via parametrization Φ (Diaconis et al., 2013), the
approach is to sample from U1 following a density proportional to its Jacobian (Eaton,
1983)

det

(
∂Φ(U)

∂U

)
∝

p−1∏
i=1

uiii, (4.1)
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where uii is the i-th diagonal element of U and upp has been omitted because it is equal
to 1. Following such density, the induced distribution on E by Φ is the uniform measure
(Diaconis et al., 2013).

Observe that Equation (4.1) factorises across the rows of U, therefore each row can
be sampled independently. Furthermore, ui belongs to the positive hemisphere

Sp−i+ = {v ∈ Rp−i+1 : vtv = 1 and v1 > 0}, (4.2)

as it has its first i − 1 entries equal to zero and uii > 0. Therefore row-wise sampling
amounts to generating vectors v ∈ Sp−i+ with respect to the density f(v) ∝ vi1. This
sampling procedure is described in Algorithm 3.

Algorithm 3 Uniform sampling in E
Input: Sample size N
Output: Uniform sample from E of size N

1: for n = 1, . . . , N do
2: Un ← 0
3: for i = 1, . . . , p do
4: v ← sample from f(v) ∝ vi1 on Sp−i+

5: J ← {i, . . . , p}
6: Un

iJ ← v
7: end for
8: end for
9: return {Φ(U1), . . . ,Φ(UN)}

4.2 Metropolis sampling from the positive hemisphere

The step 4 of Algorithm 3 can be performed with a Metropolis scheme (Robert and
Casella, 2004). In the induced Markov chain, a new state is generated as a normalized
perturbation of the current vector, specifically,

ṽ =
v + ε

‖v + ε‖
, (4.3)

where ε ∼ N (0, σ2
εI) is a (p− i+1)-dimension random vector. With such transformation,

the induced proposal density q(ṽ | v) is a projected Gaussian over the (p− i)-dimensional
unit sphere Sp−i (Mardia and Jupp, 1999), with parameters v and σ2

εI, whose expression
is simplified in Proposition 4.2.1.

Proposition 4.2.1. The expression for the proposal density is

q(ṽ|v) ∝
∫ ∞
0

rp−i exp

(
−1

2

(
r2 − 2r

vtṽ

σε

))
dr. (4.4)

Proof. Let X = (X1, . . . , Xk) ∼ N (µ,Σ) and consider Y = X/‖X‖, that is, the pro-
jection onto the unit sphere Sk−1 of X. Define the quantities

k1 = Y tΣ−1Y , k2 = µtΣ−1Y , k3 = µtΣ−1µ. (4.5)
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The density of Y on the sphere Sk−1 is (Pukkila and Rao, 1988)

f(Y ) ∝ exp

(
−1

2

(
k1 − k22k−13

))∫ ∞
0

rk−1 exp

(
−1

2
(r − k2k−1/23 )2

)
dr

∝ exp

(
−1

2

(
k1 − k22k−13

))∫ ∞
0

rk−1 exp

(
−1

2
(r2 + k22k

−1
3 − 2rk2k

−1/2
3 )

)
dr

∝ exp

(
−1

2
k1

)∫ ∞
0

rk−1 exp

(
−1

2
(r2 − 2rk2k

−1/2
3 )

)
dr.

(4.6)

If k = p − i + 1, being p the correlation matrix dimension and i the row number,
Y = ṽ and µ = v, Equation (4.5) simplifies to

k1 = ṽt(σ2
εI)−1ṽ = σ−2ε ṽ

tṽ = σ−2ε
k2 = vt(σ2

εI)−1ṽ = σ−2ε v
tṽ

k3 = vt(σ2
εI)−1v = σ−2ε v

tv = σ−2ε ,

where the fact that vtv = ṽtṽ = 1 has been used. Substituting in Equation (4.6), the
desired result is obtained,

q(ṽ | v) ∝ exp

(
−1

2
σ−2ε

)∫ ∞
0

rp−i exp

(
−1

2

(
r2 − 2r

vtṽ

σε

))
dr

∝
∫ ∞
0

rp−i exp

(
−1

2

(
r2 − 2r

vtṽ

σε

))
dr.

The density for the proposal q(ṽ|v) in Equation (4.4) is a function of the scalar
product vtṽ, therefore it is symmetric because the roles of v and ṽ can be exchanged,
and the Hastings correction (Robert and Casella, 2004) can be omitted from the sampling
scheme. Thus, the acceptance probability at each step of the algorithm becomes

min

(
1,
f(ṽ)

f(v)

)
= min

(
1, I≥0(ṽ1)

(
ṽ1
v1

)i)
,

where ṽ1 is the first component of the proposed vector ṽ and I≥0 denotes the indicator
function of the positive real numbers. Therefore the Metropolis sampling over Sp−i would
follow the steps outlined in Algorithm 4.

4.3 Theoretical convergence properties

If the Metropolis chain previously constructed is irreducible and aperiodic, then it con-
verges to its stationary distribution (see Robert and Casella, 2004, Theorem 7.4). The
first condition holds because the proposal q(ṽ | v) is strictly positive for all v, ṽ ∈ Sp−1+ .
A sufficient condition for aperiodicity is that the probability of remaining in the same
state for the next step is strictly positive, that is, P (f(v) ≥ f(ṽ)) > 0. Expanding this,

P (f(v) ≥ f(ṽ)) = P
(
vi1 ≥ I≥0(ṽ1)ṽi1

)
= P (v1 ≥ ṽ1, ṽ1 ≥ 0) + P (ṽ1 ≤ 0) ,
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Algorithm 4 Metropolis sampling of a vector v in Sp−i+ from f(v) ∝ vi1

Input: Values for p and i; burn-in time tb
Output: A vector v sampled from Sp−i+

1: v ← p− i+ 1-dimensional observation from N (0, I)
2: v1 ← |v1|
3: v ← normalize v
4: for t = 0, . . . , tb + 1 do
5: ε← p− i+ 1-dimensional observation from N (0, σ2

εI)
6: ṽ ← v + ε
7: ṽ ← normalize ṽ
8: δ ← random uniform observation on [0, 1]
9: if ṽ1 ≥ 0 and δ ≤ (ṽ1/v1)

i then
10: v ← ṽ
11: end if
12: end for
13: return v

where, using the fact that v1 > 0,

P (ṽ1 ≤ 0) = P (ε1 ≤ 0)−P (−v1 ≤ ε1 ≤ 0) =
1

2
−
∫ v1

0

1√
2πσε

exp

(
− s2

2σ2
ε

)
ds > 0. (4.7)

Therefore P (f(v) ≥ f(ṽ)) is strictly positive, the chain is aperiodic, and Algorithm 4
converges to f .

Some additional insights can be gained on the algorithm’s convergence when the
variance σ2

ε increases. From Equation (4.4), note that the density q(ṽ | v) approaches to
a constant,

lim
σε→∞

q(ṽ | v) = q(ṽ) ∝
∫ ∞
0

rp−i exp

(
−r

2

2

)
dr,

that is, to the uniform distribution over the unit sphere Sp−i. The expression for such
limiting proposal, which coincides with the inverse sphere volume, is

lim
σε→∞

q(ṽ | v) =
Γ((p− i+ 1)/2)

2π(p−i+1)/2
, (4.8)

where Γ is the gamma function (Anderson, 2003). In this scenario, where the sampled
values do not depend on the previous state, the resulting sampling algorithm is called
independent Metropolis and satisfies desirable convergence properties, in particular, the
chain is uniformly ergodic (see Robert and Casella, 2004, Theorem 7.8).

4.4 Experiments

For reproducibility, the scripts used for generating the data and figures described through-
out this section are publicly available at https://github.com/irenecrsn/rcor. Also,
an implementation of Algorithm 3 can be found in the R (R Core Team, 2020) package
gmat1, function chol mh.

1CRAN latest release at https://CRAN.R-project.org/package=gmat, with version under develop-
ment available at https://github.com/irenecrsn/gmat.
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4.4.1 Empirical convergence monitoring

The convergence of Algorithm 4 can also be empirically monitored. As an illustration,
the focus of this section is on the high-dimensional case, p = 1000, and the acceptance
ratio, that is, the percentage of times the proposed value has been accepted. This latter
quantity can therefore be thought of as an approximation for P (f(v) ≤ f(ṽ)). In Figure
4.2 the acceptance ratio is depicted as a function of the row number i, which influences
the form of target density f(v) ∝ vi1, and, complementarily, of the perturbation variance
σ2
ε .

●
● ●

●
●

●
● ●

●

●●

●
●

●

●
●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Row number

A
cc

ep
ta

nc
e 

ra
tio

eps
●

●

●

●

●

●

●

●

1e−04
0.001

0.005
0.01

0.05
0.1

0.5
1

●
●●

●

●
●
●

●
●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●
●

●

●

●●●●●●●●

●

●
●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Perturbation variance

A
cc

ep
ta

nc
e 

ra
tio

i
●

●

●

●

●

●

●

●

●

●

10
25

50
100

250
400

600
750

850
999

Figure 4.2: Acceptance ratio as a function of the row number (left) and the perturbation
variance (right). eps: perturbation variance σ2

ε ; i: row number.

It is noticeable how as σ2
ε increases the proposed value is rejected more often, which

could be already expected by looking at Equation (4.7) above, where the second term
goes to zero as σ2

ε increases, yielding limσ2
ε→∞ P (f(v) ≤ f(ṽ)) ≤ 1/2. Furthermore, recall

that as σ2
ε increases the proposal distribution is more similar to the uniform density on

the (p − i)-dimensional sphere (Equation (4.8)), which also hints the higher rejection
rate since only those values in the positive hemisphere are accepted. The row number
i also has a significant influence on the acceptance ratio, because as it increases the
target density f(v) ∝ vi1 approaches a delta function, and the dimensionality of v ∈ Sp−i
decreases.

Because all of the above, it is reasonable to conclude that the larger i is, the smaller
σ2
ε should be for achieving a high acceptance ratio, since new candidate states should be,

with high probability, very close to the current state in order to be accepted. This is
further illustrated in Figure 4.3, where the contour lines of the acceptance ratio surface
as a function of σ2

ε and the row number i are depicted. Observe that small values for
σε always lead to high acceptance ratios, which, although being desirable in the delta
situation explained above, can also be a sign of slow convergence in different scenarios.
By contrast, a low acceptance ratio can be expected when approaching to a delta in
moderately high dimensions, as is the case for row numbers approximately between 250
and 750, where almost all except extremely small values for σ2

ε yield low acceptance
ratios. As a conclusion, in Monte Carlo methods there is no recipe for assuring fast
convergence (Robert and Casella, 2004), even when the chain is theoretically assured to
converge. Thus, parameter selection can be approached by monitoring procedures such as
the ones illustrated throughout this section, or automatic methodologies such as Bayesian
optimisation, as in the previous chapter.
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4.4.2 Comparative analysis

In this section Algorithm 3 will be compared against the existing state-of-the-art alter-
natives: the c-vine and onion methods from Lewandowski et al. (2009) and the spherical
or polar parametrization by Pourahmadi and Wang (2015).

Since all of them sample from the same uniform distribution over the elliptope, some
results are expected to be similar across the methods. As an illustration, recall that a
closed formula for the elliptope’s volume vol(E) was computed by Lewandowski et al.
(2009). Therefore, for a sample R1, . . . ,RN from E , the expected number of matrices
mQ in a hypercube Q of edge length d inside E can be obtained as follows,

mQ = E

(
N∑
n=1

IQ(Rn)

)
= N

vol(Q)

vol(E)
=

Ndp

vol(E)
.

Table 4.1 shows the empirical Q volume obtained by each method for the cube centred
at the origin of edge length 0.2 inside an elliptope of p = 3 dimensions over 50 repetitions
of N = 5000 samples from E . The expected theoretical volume is mQ ≈ 16.21, and it can
be seen that all methods yield an empirical volume close to that magnitude.

Uniform sampling method for E Empirical volume for Q

chol 16.36
c-vine 16.34
onion 16.02
polar 16.00

Table 4.1: Empirical volumes of Q for each method. chol: our proposal; c-vine, onion:
methods by Lewandowski et al. (2009); polar: method by Pourahmadi and Wang (2015).

Now methods will be compared in terms of computational performance. Specifically,
each method will generate 5000 correlation matrices of dimension p = 10, 20, . . . , 100.
Methods from Lewandowski et al. (2009) are available via function genPositiveDefMat
from the R package clusterGeneration2, whereas for the method by Pourahmadi and
Wang (2015), the R package randcorr (Makalic and Schmidt, 2020) has been used. The

2https://CRAN.R-project.org/package=clusterGeneration
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experiment has been executed on a machine equipped with Intel Core i7-5820k, 3.30
GHz×12 and 16 GB of RAM.

The time experiment results are shown in Figure 4.4. Notice that the proposed
Metropolis method is the fastest. This can be explained as it takes advantage of the
direct representation provided by the Cholesky factorization, as well as the simple form
of the target distribution and proposed values on each iteration.
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Figure 4.4: Execution time of available methods for uniform sampling of correlation
matrices, both in linear (left) and logarithmic (right) scale. chol: our proposal; c-vine,
onion: methods by Lewandowski et al. (2009); polar: method by Pourahmadi and Wang
(2015), as implemented by Makalic and Schmidt (2020).
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Chapter 5

On Gaussian graphical model
simulation

Gaussian graphical model selection methods are often validated on synthetic models,
usually obtained by generating a symmetric positive definite matrix compatible with
some, possibly also synthetic, graph. Gaussian Bayesian networks were analysed at the
end of Chapter 3, where it was explained how the commonly used simulation methodology
of Kalisch and Bühlmann (2007) yields an inverse covariance matrix Ω = Σ−1 which has
a diagonal with increasing values. In the case of Gaussian Markov networks, where the
zeros are present directly in Ω instead of its Cholesky decomposition, diagonally dominant
matrices are employed (Lin et al., 2009; Arvaniti and Claassen, 2014; Stojkovic et al.,
2017) to guarantee the positive definiteness of Ω. In this chapter, the limitations of these
approaches when validating model selection methods will be discussed, as well as some
alternatives will be provided. The uniform sampling Metropolis method from the previous
chapter will be adapted for uniform sampling of chordal Gaussian Markov networks or
Gaussian Bayesian networks with no v-structures. The R scripts for replicating the
experiments described throughout this chapter are available online at https://github.
com/irenecrsn/ggmsim.

The results may also be applied to another Gaussian graphical model: the covariance
graph (Cox and Wermuth, 1993; Kauermann, 1996)

M(G) = {N (0,Σ) : Σ ∈ S>0
G }, (5.1)

where G = (V,E) is an undirected graph. Observe that this model is the same as
a Gaussian Markov network (Equation (2.8)), but with the graphical constraints over
the covariance matrix directly instead of its inverse. Therefore, marginal independences
are captured instead of conditional ones, since for each random vector X following a
covariance graph distribution N (0,Σ),

(i, j) /∈ E =⇒ σij = 0 =⇒ Xi ⊥⊥ Xj.

A covariance graph M(G) and a Gaussian Markov network model M(H) coincide if
and only if G and H consist of the same complete, disconnected sub-graphs (Wermuth
and Sadeghi, 2012; Drton and Richardson, 2008; Jensen, 1988). This implies in practice
that the statistical independences in most multivariate Gaussian distributions can be
represented only by one of the two models.
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5.1 Classical simulation methodologies

When a symmetric matrix M satisfies that |mii| >
∑

j 6=i|mij| for each i ∈ {1, . . . , p},
commonly called diagonal dominance, then M is guaranteed to be positive definite (Horn
and Johnson, 2012). Thus a simple method to generate a matrix in S>0

G consists in
generating a random symmetric matrix in MG and then choosing diagonal elements so
the final matrix is diagonally dominant. This procedure is outlined in Algorithm 5.
The usual approach for generating the initial matrix in line 1 is to use independent and
identically distributed non-zero entries.

Algorithm 5 Simulation of a diagonally dominant matrix in S>0
G

Input: Undirected graph G = (V,E) with |V | = p
Output: Matrix belonging to S>0

G
1: M← symmetric matrix in MG
2: for i = 1, . . . , p do
3: mii ←

∑
j 6=i|mij|+ random positive perturbation

4: end for
5: return M

Diagonal dominance has been extensively used in the literature mainly due to its
simplicity and the ability to control the generated matrix singularity. In particular, it is
possible to control its minimum eigenvalue (Honorio et al., 2012) as follows. Let G be an
undirected graph, M a symmetric matrix in MG, and ε > 0 the desired lower-bound on
the eigenvalues. If λmin is the minimum eigenvalue of M, then M+(λ−min+ε)I belongs to
S>0
G and has eigenvalues greater or equal to ε, where λ−min = max(−λmin, 0) denotes the

negative part of λmin and I is the identity matrix. Similarly, one can control the condition
number, with respect to the Frobenious norm, of the generated matrix (Cai et al., 2011):
if κ0 > 1 is the desired condition number and λmax > 0 the maximum eigenvalue of M,
then

M +
λmax − κ0λmin

κ0 − 1
I

belongs to S>0
G and has condition number equal to κ0. The main drawback of diagonally

dominant inverse covariance matrices is that off-diagonal elements, often interpreted as
link strengths, are extremely small with respect to the diagonal entries and thus model
selection becomes a challenge, thereby compromising the synthetic validation (Schäfer
and Strimmer, 2005a,b; Krämer et al., 2009; Cai et al., 2011).

On the other hand, the simulation methodology proposed by Kalisch and Bühlmann
(2007), extensively used for Gaussian Bayesian network models (Kalisch and Bühlmann,
2008; Colombo and Maathuis, 2014; Goudie and Mukherjee, 2016), also yields matrices
satisfying a pattern. In particular, assume that the acyclic digraph G = (V,E) has
already been simulated, with each edge drawn from a Bernoulli with success probability
d and an arbitrary ancestral order ≺. Then, a matrix U is filled with zeros for absent
edges of G, whereas those corresponding to the diagonal or edges are replaced by values
from a uniform distribution over the [0.1, 1] interval, following Algorithm 6. The inverse
covariance matrix is thus obtained as Ω = Σ−1 = UUt, that is, the error variables of
Equation (2.4) are assumed to have unit variance and therefore D = I in Equation (2.5).
Matrix Ω has an interesting property regarding its diagonal: it consists of increasing
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values, which is proved for completeness in Proposition 5.1.1. However, as was shown
in Figure 4.1 for the case of correlation matrices, this methodology leaves a significant
region of the space unexplored.

Algorithm 6 Simulation of matrix in MG
Input: Acyclic digraph G = (V,E) with |V | = p
Output: Matrix belonging to MG

1: U← 0
2: for i = 1, . . . , p do
3: for j ∈ pa(i) do
4: uji ← random uniform observation over [0.1, 1]
5: end for
6: uii ← random uniform observation over [0.1, 1]
7: end for
8: return U

Proposition 5.1.1. Let U be a matrix output by Algorithm 6, and denote as τ the
permutation associated with the ancestral order ≺ of G. Then matrix τ(Ω) = τ(U)τ(U)t

is expected to have an increasing diagonal, that is, E(ωτ(k)τ(k)) < E(ωτ(j)τ(j)) for all k ≺ j.

Proof. Denote as ch(j) = {i ∈ V : (j, i) ∈ E} the children set of vertex j ∈ V . Observe
that τ(U) is upper triangular, and there are τ(j) − 1 candidate parent nodes for τ(j),
whereas the candidate children nodes are p − τ(j). Also note that the j-th row of τU
contains information about ch(j), whereas column i informs about pa(i). Non-zero entries
of U are sampled from a uniform distribution over the same interval, which means that
for every j ∈ {1, . . . , p} and i ∈ ch(j), E(ujj) = E(uji) = C. Therefore the expected
values for Ω diagonal entries are

E(ωjj) =
∑

i∈E(ch(j))

E(uji)
2 + E(ujj)

2 = d(p− τ(k))C2 + C2,

and thus if k ≺ j

E(ωτ(k)τ(k)) = d(p− τ(k))C2 + C2 < d(p− τ(j))C2 + C2 = E(ωτ(j)τ(j)).

5.2 A partial orthogonalization simulation method

First, as noted by several authors, matrices sampled with Algorithm 5 suffer from what
could be called weak link strength, referring to low absolute value of the off-diagonal
entries with respect to those in the diagonal (Schäfer and Strimmer, 2005a,b; Krämer
et al., 2009; Cai et al., 2011). In order to overcome such issue, an alternative method
which does not rely on diagonal dominance will be subsequently described. It is based
on the following simple idea. Consider an arbitrary full rank matrix Q, then its product
QQt, which is always positive definite and symmetric, belongs to S>0

G , with G = (V,E)
an undirected graph, if and only if qtiqj = 0 for every (i, j) /∈ E, where qi and qj are the
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i-th and j-th rows of Q, respectively. That is, if for each (i, j) ∈ E, the i-th and j-th
rows of Q are orthogonal.

Thus, given an undirected graph G = (V,E) and an arbitrary matrix Q of full rank, in
order to obtain another in S>0

G a simple procedure is to iteratively orthogonalise the rows of
QQt corresponding to elements in E. Recall that the set of positive definite matrices with
ones along the diagonal, or correlation matrices, is called elliptope (Laurent and Poljak,
1996) and denoted as E . Since a Gaussian distribution can be equivalently parametrized
by its (inverse) covariance matrix or the scaled (partial) correlation matrix, instead of
simulating from S>0

G , one could sample directly from EG, the set of (partial) correlation
matrices complying with a given undirected graph G. For the diagonal dominance method
of Algorithm 5, the output would just be normalised, retaining a dominant diagonal.
Alternatively, the pseudocode for partially orthogonalising the rows of Q and obtaining
a matrix in EG is described procedure can be found in Algorithm 7.

Algorithm 7 Simulation of a matrix in EG using partial orthogonalization

Input: Undirected graph G = (V,E) with |V | = p
Output: Matrix belonging to EG

1: Q← arbitrary matrix of full rank
2: for i = 1, . . . , p do
3: orthogonalize qi with respect to the span of {qj : (i, j) /∈ E and j < i}
4: normalize qi
5: end for
6: return QQt

5.2.1 Numerical and computational properties

If the entries of matrix Q are initially simulated as independent and identically distributed
centred sub-Gaussian, then its condition number κ(Q) ≥ p with high probability (Rudel-
son and Vershynin, 2009). Therefore, in such case the condition number of the matrices
QQt returned by Algorithm 7 will satisfy κ(QQt) ≥ p2 as the graph structure becomes
denser, as shown in Figure 5.1.
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Figure 5.1: Logarithm of the condition number median. K: condition number of the
matrix.
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The step 3 of Algorithm 7 can be implemented in several ways, for example by using
a modified Gram-Schmidt orthogonalization procedure, as reflected in Algorithm 8. The
loop in line 1 constructs a set of orthogonal vectors q̃j which span the same subspace
than the original rows in {qj : j /∈ ne(i) and j < i}. This orthogonal base is later used
in the loop at line 9 for ensuring that qi is jointly orthogonal to all the vectors.

Algorithm 8 Modified Gram-Schmidt orthogonalization for a row i of Q

Input: Undirected graph G, row number i and matrix Q
Output: Row qi orthogonal to {qj : j /∈ ne(i) and j < i}

1: for j = 1, . . . , i− 1 do
2: if j /∈ ne(i) then
3: q̃j ← qj
4: for k < j and k /∈ ne(i) do
5: orthogonalise q̃j with respect to q̃k
6: end for
7: end if
8: end for
9: for j = 1, . . . , i− 1 do

10: if j /∈ ne(i) then
11: orthogonalise qi with respect to q̃j
12: end if
13: end for
14: return qi

The computational complexity of Algorithm 8 is mainly given by the loop in line
1, which in the worst case scenario is O(i2p) because |ne(i)| ≤ i − 1. Therefore, the
overall worst case complexity of Algorithm 7 becomes O(p4) when using a modified Gram-
Schmidt procedure. Figure 5.2 contains the execution time of both Algorithms 5 and 7,
when sampling 5000 matrices for the each d value. This experiment has been executed
on a machine equipped with Intel Core i7-5820k, 3.30 GHz×12 and 64 GB of RAM,
and both methods are available in the R (R Core Team, 2020) package gmat1, functions
diagdom and port, respectively.
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Figure 5.2: Execution time to simulate 5000 matrices.

1CRAN latest release at https://CRAN.R-project.org/package=gmat, with version under develop-
ment available at https://github.com/irenecrsn/gmat.
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It can be observed that the diagonal dominance method is two orders of magnitude
faster than the proposed partial orthogonalization method, which is somewhat expected
given its relative simplicity. Furthermore, the computational cost of the partial orthogo-
nalization method depends on the structure density d. For small values of d the undirected
graph contains a lot of disconnected vertices and thus the loop in line 1 of Algorithm 8
is repeated for many matrix rows, being closer to the worst case scenario of O(p4).

5.2.2 Link strength comparison

In this section, 10 random Erdös-Rényi (Erdös and Rényi, 1959) undirected graphs
G1, . . . ,G10 are generated for different values of the vertex set size p and density d. After-
wards, 10 matrices in S>0

Gn are sampled using both Algorithms 5 and 7, for n ∈ {1, . . . , 10}.
Thus, in total 100 matrices are sampled. Both methods need to generate an arbitrary
matrix as an initial step, and for that independent and identically distributed entries are
sampled from a uniform distribution over [0, 1]. Since the literature traditionally men-
tions a concern over link strength in the generated matrix M, as previously mentioned,
the average of the maximum ratio R = maxj 6=i|mij|/|mii| is computed, with results shown
in Figure 5.3. Both methods show a comparable behaviour, with the main difference be-
ing that the partial orthogonalization method effectively avoids zero values for average
R even in dense settings, which are usually found in applications (Krämer et al., 2009).
Also for every value of d, the partial orthogonalization method yields a higher average R
than diagonally dominant matrices.
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Figure 5.3: Average of R as a function of p for different graph densities d.

The above mentioned conclusion is complementarily drawn from Figure 5.4, where
the performance of both methods is jointly plotted for the two extreme density values:
d = 0.0025 (very sparse) and d = 0.5 (very dense), with a shade indicating the standard
error of the mean. In the sparse scenario both methods perform reasonably good, however
in the dense case the diagonal dominance method performance is deeply affected early,
being almost zero for p > 125, approximately. The partial orthogonalization method,
however, manages to maintain an arguably reasonable value for the average ratio.

5.3 Uniform sampling for chordal models

Recall that if G = (V,E) is a chordal undirected graph, then there exists an orientation
G→ = (V,E→) that has no v-structures and with ancestral order ≺ equal to the perfect
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Figure 5.4: The average of R as a function of p, for the two extreme values of d: very
sparse matrices (left) and very dense matrices (right). diagdom: Diagonal dominance
method; port: Partial orthogonalization method; ename: Experiment name.

ordering of G, and the respective graphical models M(G) and M(G→) coincide (Chap-
ter 2). In the Gaussian case this implies in particular that N (0,Σ) ∈ M(G) if and only
if Ω = Σ−1 ∈ S>0

G and Ω = WWt with W ∈ MG→ (Wermuth, 1980). Therefore the
upper Cholesky factorisation may be used to parametrize EG, similarly to what was done
in Chapter 4. Specifically, denoting, for an acyclic digraph G, as M1

G the subset of MG
where rows are unitary, then the parametrization is

Φ : M1
G → EG

W 7→ WWt.

The Jacobian of Φ has been obtained by Roverato (2000) (note the similarity with
Equation (4.1))

det

(
∂Φ(W)

∂W

)
∝

p∏
i=1

w
|pa(i)|+1
ii , (5.2)

where pa(i) is the parent set of vertex i in G→. As in Chapter 4, it factorises across
rows wi of W, thus they can be sampled independently (Algorithm 9). Specifically, wi

contains non-zero entries corresponding to children of i in G→, ch(i) = {j : (i, j) ∈ E→}.
Therefore, wi ∈ S |ch(i)|+ (Equation (4.2)) and Algorithm 4 may be used, substituting p− i
with |ch(i)|. This procedure is outlined in Algorithm 9.

Algorithm 9 Uniform sampling in EG for a chordal graph G
Input: Chordal graph G = (V,E) with |V | = p
Output: A matrix uniformly sampled from EG

1: G→ ← orientation of G with no v-structures
2: W← 0
3: for i = 1, . . . , p do
4: v ← sample from f(v) ∝ v

|pa(i)+1|
1 on S |ch(i)|+ // pa(i) and ch(i) computed in G→

5: Wi ch(i) ← v−1 // Vector v except its first entry
6: wii ← v1
7: end for
8: return Φ(W)
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Algorithm 9 allows to sample uniformly from EG when G is a chordal graph or, equiva-
lently, an acyclic digraph with no v-structures. When the undirected graph G = (V,E) is
not chordal it is not possible to obtain an orientation with no v-structures. Furthermore,
if applying Algorithm 9 to a triangulation G = (V,E) of G then the resulting matrix
will have more non-zero entries than desired, specifically those corresponding to edges
in E \ E. As such, a complementary method to partial orthogonalization for sampling
from EG for a general graph G could be an hybrid method combining both approaches:
firstly sample a factor W ∈M1

G using Algorithm 9 for triangulation G, and then partially

orthogonalize it so that Φ(W) belongs to EG. This method is detailed in Algorithm 10.

Algorithm 10 Sampling from EG for a general undirected graph G
Input: Undirected graph G = (V,E) with |V | = p
Output: Matrix belonging to EG

1: G→ ← orientation of a triangulation of G, with no v-structures
2: W← 0
3: for i = 1, . . . , p do
4: v ← sample from f(v) ∝ v

|pa(i)+1|
1 on S |ch(i)|+ // pa(i) and ch(i) computed in G→

5: Wi ch(i) ← v−1 // Vector v except its first entry
6: wii ← v1
7: end for
8: for i = 1, . . . , p do
9: orthogonalize wi with respect to the span of {wj s.t. (i, j) /∈ E and j < i}

10: normalize wi

11: end for
12: return Φ(W)

The two methods described in this section are also available in the R package gmat,
functions chol mh (Algorithm 9) and port chol (Algorithm 10). Recall that at the end of
Chapter 3 a visual exploratory analysis was performed and in Figure 4.1 it was shown how
Algorithm 6 failed to sample from a significant space region when compared to uniform
sampling (Algorithm 9 for acyclic digraphs with no v-structures). A similar analysis
can be performed in the undirected case for chordal graphs and Algorithms 5 and 7, as
follows.

5.3.1 Comparative analysis: Three variables

Consider the simple chordal graph G = (V = {1, 2, 3}, E = {(1, 2), (2, 1), (2, 3), (3, 2)}),
depicted in Figure 5.5.

1 2 3

Figure 5.5: Chordal undirected graph with three variables.

A sample of size N = 5000 is obtained from EG using Algorithms 5 (diagonal domi-
nance), 7 (partial orthogonalization) and 9 (uniform sampling), with independent N (0, 1)
entries to initialize both Algorithms 5 and 7. Matrices in EG have two non-zero upper tri-
angular entries (1, 2) and (2, 3). Moreover, EG can be represented as the two dimensional
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unit ball’s interior:

EG =


1 x 0
x 1 y
0 y 1

 : x2 + y2 < 1

 ' {(x, y) ∈ R2 : x2 + y2 < 1},

yielding the scatter plots shown in Figure 5.6

Figure 5.6: Scatter plots of the two non-zero entries for correlation matrices sampled
from EG, with G as in Figure 5.5.

As expected, the uniform sampling method of Algorithm 9 recovers the whole space
uniformly. By contrast, the diagonal dominance method and the partial orthogonalization
methods have somehow the opposite behaviour: the former are concentrated on the ball’s
interior, whereas the latter are more frequently sampled close to its frontier. Furthermore,
this implies that partially orthogonalized matrices tend to have large off-diagonal values,
while the diagonal dominance method produces matrices with smaller values for the off-
diagonal entries, which coincides with what was previously shown in Figures 5.3 and
5.4.

5.3.2 Marginal distribution of matrix entries

In order to gain a deeper insight of the above method’s behaviour with respect to matrix
entries, the chain of 50 vertices (Figure 5.7),

G = (V = {1, . . . , 50}, E = {(1, 2), (2, 1), (2, 3), (3, 2), . . . , (49, 50), (50, 49)}),

is considered, which generalizes the graph in Figure 5.5.

1 2 . . . 49 50

Figure 5.7: Chordal undirected chain with 50 variables and 49 edges

A total of 5000 matrices are sampled from the chain G, and Figure 5.8 contains
the marginal densities of the 49 non-zero entries of the generated matrices with the three
different methods: diagonal dominance, partial orthogonalization and the general method
of Algorithm 10, which in this case amounts to uniform sampling since G is chordal. It
can be observed that the diagonal dominance method produces matrices with off-diagonal
entries more concentrated around 0. The partial orthogonalization method produces
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Figure 5.8: Marginal densities of the non-zero entries of matrices sampled from EG with
G the chain of 50 vertices. The first entry in the lower triangle, (2, 1), corresponds to the
red colour, while the last entry in the last row of the lower triangle, (49, 48), corresponds
to the pink colour.

matrices M ∈ EG with the first non-zero entries m1 2,m2 3,m3 4, . . . more centred around
0 than the last entries . . . ,m48 49,m49 50. This behaviour is due to the independent and
identically distributed entries for initializing factor Q in Algorithm 7, similarly to what
occurred in the case of Gaussian Bayesian networks (Proposition 5.1.1). Intuitively this
can be seen as a consequence of the fact that vectors of independent random components
are approximately orthogonal in high-dimensions. Indeed, partial orthogonalization part
mitigates this fact: the first entries of the matrix, m1 2,m2 3, are the ones where no
orthogonalization is applied by Algorithm 7. On the contrary, uniform sampling correctly
produces matrices with the same marginal density for each entry.

Finally, a general random undirected graph G is generated over 50 vertices using the
Erdös-Rényi model (Erdös and Rényi, 1959) with a probability of edges equal to 0.05,
and again 5000 matrices are sampled from EG using Algorithms 5, 7 and 10. Note that in
this case Algorithm 10 will not in general be equal to uniform sampling. The marginal
densities of the non-zero entries for the three methods are plotted in Figure 5.9. It can be
observed that partial orthogonalization is the more robust method in the sense that its
performance is relatively unchanged from Figure 5.8. Diagonal dominance and Algorithm
10, by contrast, now show a higher degree of variability for different entries, whereas in
Figure 5.8 the marginal density was similar for all entries.
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Figure 5.9: Marginal densities of the non-zero entries of matrices sampled from EG, where
G is a random graph with 50 vertices and probability of edges 0.05. The first entry in the
lower triangle (2, 1) corresponds to the red colour, while the last entry in the last row of
the lower triangle (50, 49) corresponds to the pink colour.
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5.4 Validation of model selection methods

The main motivation for this simulation study are the observations that can be found
in the literature on Gaussian graphical models regarding the difficulties of validating the
performance of model selection methods (Schäfer and Strimmer, 2005a; Krämer et al.,
2009; Cai et al., 2011). As an illustration, the work of Krämer et al. (2009, page 7) has
been selected. Therein, the authors highlight how they obtain significantly poorer graph
recovery results as the density d of the graphs grows. They simulate the corresponding
undirected Gaussian graphical models using the diagonal dominance method (Algorithm
5), so in this section their experiments have been replicated using instead as true mod-
els those generated with both partial orthogonalization (Algorithm 7) and the hybrid
approach combining uniform sampling (Algorithm 10).

The results can be seen in Figures 5.10 and 5.11, which depict the true positive rate
(TPR, also called power by Krämer et al. (2009)) and the positive predictive value (PPV)
or precision for p = 100 and their sparsest (d = 0.05) and densest (d = 0.25) scenarios.
The different structure learning methods are the same than those studied by Krämer et al.
(2009): adaptive l1 regularization (adalasso), l1 regularization (lasso), partial least
squares regression (pls), shrinkage estimator of Schäfer and Strimmer (2005b) (shrink),
and l2 regularization (ridge). Note that in the computations for TPR and PPV, the
indefinite fraction 0/0 is correctly defined to be equal to 1. For some learning methods
such as shrink and pls this drastically affects their curve when comparing to Krämer
et al. (2009).

diagdom port port_chol

P
P

V
T

P
R

50 100 150 200 50 100 150 200 50 100 150 200

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

Sample size

adalasso lasso pls shrink ridge

Density 0.25

Figure 5.10: TPR and PPV of model selection methods for Gaussian Markov networks
validated by Krämer et al. (2009), for the highest density, 0.25. diagdom: Diagonal dom-
inance sampling method; port: Partial orthogonalization; port chol: Uniform sampling
with partial orthogonalization of the Cholesky factor.

Note that there is a significant improvement in the densest case (d = 0.25) when using
our method (Algorithm 10). All the learning algorithms are close to zero TPR for every
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Figure 5.11: TPR and PPV of model selection methods for Gaussian Markov networks
validated in (Krämer et al., 2009), for the lowest density, 0.05. diagdom: Diagonal domi-
nance sampling method; port: Partial orthogonalization; port chol: Uniform sampling
with partial orthogonalization of the Cholesky factor.

sample size when validating on diagonally dominant matrices, which highlights a poor
performance (the high PPVs are thus not significant). However, when using matrices
obtained via partial orthogonalization, some methods (lasso and adalasso) are able
to achieve a TPR of 0.5 approximately. Importantly, partial least squares regression
(pls) and the shrinkage estimator (shrink) greatly improve, whereas when only using
diagonal dominance one could erroneously conclude that those methods are not well fitted
for dense structure scenarios. In the sparsest scenario (d = 0.05) it can be observed that
the PPV for partial least squares extremely drops when using our proposed simulation
method, while the other algorithms rank similarly using either one. This behaviour is
expected: the densest scenario (d = 0.25) is not intrinsically difficult, but it indeed
poses special difficulties when using diagonally dominant matrices, because correlations
are in general small (Figures 5.9 – 5.8) and therefore structure recovery amounts to
discriminating an absent edge from an extremely small entry, which is a significantly
hard task. The behaviour of partial orthogonalization and the hybrid method combining
uniform sampling is rather similar, even though, as was shown in the previous section, in
some scenarios they exhibit different numerical properties.

The most important conclusion to draw from these results is that simulation meth-
ods for Gaussian graphical models highly influence how the respective model selection
methods are ranked. However, it would be incorrect to claim that one of the simulation
methodologies is superior to another. Indeed, what is of importance is to choose the
correct simulation method for each synthetic validation scenario. For example, if the
goal is to assess performance for a wide range of Gaussian Markov networks, then the
hybrid method (Algorithm 10) should be used, since it guarantees uniform sampling for
chordal models, and therefore unbiased validation. On the contrary, if target models are
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known to exhibit small correlations, then using diagonally dominant models would be
justified because they have such property. When in doubt, it can be argued to use partial
orthogonalization or the hybrid method, because it samples from a wider space range
(Figure 5.6), while the diagonal dominance method is largely biased towards matrices
away from the space frontier.
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Chapter 6

Sparse Cholesky covariance
parametrization

When a zero pattern is present in the inverse covariance matrix Ω = Σ−1, it represents
absent edges in the undirected graph of a Gaussian Markov network (Equation (2.8)).
Furthermore, letting Ω = WWt be its Cholesky decomposition, a zero pattern in the
triangular matrix W yields the acyclic digraph associated with a Gaussian Bayesian
network model (Equation (2.6)), up to a permutation of the variables. As a result, much
of the academic focus has been on sparsity in either the inverse covariance matrix or its
Cholesky decomposition (Pourahmadi, 1999; d’Aspremont et al., 2008; Friedman et al.,
2008; Rothman et al., 2008; Córdoba et al., 2020a). Conversely, a zero pattern in the
covariance matrix Σ represents missing edges from the undirected graph of a covariance
graph model (Equation (5.1)). However, a structured zero pattern on the Cholesky
decomposition Σ = TTt of the covariance matrix has been only addressed by few works.
Wermuth et al. (2006) briefly analyse zeros in T as a tool for better understanding
of a higher-level graphical model called covariance chain, which is the main focus of
their work. Rothman et al. (2010) directly explore a new regression interpretation of T;
however, they focus on a banding structure for T instead of a general zero pattern. In
fact, a significant amount of the paper is devoted to analysing the relationship between
the covariance matrix, or its inverse, and banded Cholesky factorization. In contrast, the
focus of this chapter is on arbitrary zero patterns in T.

6.1 Cholesky decomposition of a covariance matrix

A Gaussian random vector modelX ∼ N (0,Σ) can be equivalently expressed as a system
of recursive regressions,

Xi =
∑
j<i

βij|1...,i−1Xj + εi, (6.1)

which is the same as Equation (2.4) ifX additionally follows a Gaussian Bayesian network
model M(G) and 1 ≺ · · · ≺ p is assumed to be the ancestral order of G. Taking
variances and inverting, the upper Cholesky factorization (Equation (2.5)) is obtained,
Σ = UD−1Ut. This factorization contains all parameters of the model in Equation (6.1):
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D = var(E) and

U =


1 −β21|1 · · · −βp1|1,...,p−1
0 1

. . .
...

...
. . . . . . −βpp−1|1,...,p−1

0 · · · 0 1

 . (6.2)

If omitting the inversion step from Equation (6.1), then the Cholesky decomposition
of the covariance matrix Rothman et al. (2010) is obtained

Σ = LDLt = TTt, (6.3)

where now L = (Ip −B)−1 and T = L
√

D are lower triangular. Observe that Equation
(6.3) is a direct analogue of Equation (2.5). Furthermore, the entries of L are also
regression coefficients, as shown in Proposition 6.1.1. Alternative derivations of this result
can be found in (Dempster, 1969, p. 158) and (Wermuth et al., 2006, p. 846). The one in
Dempster (1969) is computational, based on the sweep matrix operator Beaton (1964),
whereas Wermuth et al. (2006) provides a sketch based on a recursive expression for
regression coefficients. This proof uses instead simple identities over partitioned matrices.

Proposition 6.1.1. For i ∈ {1, . . . , p} and j < i, the (i, j) entry of matrix L, denoted
as lij, is equal to βij|1,...,j.

Proof. For each i ∈ {1, . . . , p}, j < i and J = {1, . . . , j}, the following partitioned
identities hold (Dempster, 1969, Equation (4.2.18)):

ΣiJ = LiJDJJL
t
JJ ,

ΣJJ = LJJDJJL
t
JJ .

Therefore,
βti|J = ΣiJΣ

−1
JJ

= LiJDJJL
t
JJ(LJJDJJL

t
JJ)−1

= LiJL
−1
JJ .

Furthermore, observe that, since LJJ is lower triangular with ones along the diagonal,
the last column of L−1JJ is always a vector of zero entries except the last entry, which is
1. This means, in particular, that for each i ∈ {1, . . . , p}, j < i and J = {1, . . . , j}, the
j-th element of row vector LiJL

−1
JJ is equal to lij, which in turn is equal to the j-th entry

of βi|J , βij|J .

The explicit expression in terms of regression coefficients for L is therefore,

L =


1 0 · · · 0

β21|1 1
. . .

...
...

. . . . . . 0
βp1|1 · · · βpp−1|1,...,p−1 1

 . (6.4)

In terms of model estimation, in U (Equation (6.2)) each column corresponds to
the parameters of a single recursive regression, whereas each entry of matrix L (Equa-
tion (6.4)) corresponds to a different regression model. Fortunately, Rothman et al.
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(2010) gave an alternative interpretation for matrix L, as follows. The model of Equa-
tion (6.1) is equivalent to a linear model X = LE where E ∼ N (0,D), since in such case
X ∼ N (0,LDLt). Unfolding such matrix equation, the following regression system is
obtained

Xi =
i−1∑
j=1

lijEj + Ei, (6.5)

which is an analogue of Equation (6.1), but now instead of recursively regressing the
original variables, each regression is performed over the ordered error terms in Equa-
tion (6.1).

Remark. The (i, j) entry of matrix L for j < i, lij, has therefore two interpretations as
a regression coefficient:

1. It is the coefficient of the error Ej on the regression of Xi over E1, . . . , Ei−1.

2. It is the coefficient of variable Xj in the regression of Xi over X1, . . . , Xj.

Furthermore, from Equations (6.1) and (6.5) variable Ei has also a dual interpretation:
it is the regression error of Xi onto X1, . . . , Xi−1, but also of Xi onto E1, . . . , Ei−1.

6.2 A sparse model for the Cholesky factor

If allowing an arbitrary zero pattern in T, a sparse Cholesky decomposition model for
the covariance matrix is obtained. The entries of T are in correspondence with those
in L and D (see Equation (6.3), tij = lij

√
dii), and therefore sometimes they will be

indistinctly used.

6.2.1 Hidden variable interpretation

The sparse Cholesky parametrization of the covariance matrix naturally models a hid-
den variable structure (Chandrasekaran et al., 2012; Yatsenko et al., 2015; Zorzi and
Sepulchre, 2016; Basu et al., 2019) over ordered Gaussian observables (Equation (6.5)).
Interpreting the error terms E as latent signal sources, then the model is a sort of re-
stricted Gaussian Bayesian network with the following constraints:

� All arcs are from hidden variables E to the observed ones X.

� There is always an arc from Ei to Xi, for all i ∈ {1, . . . , p}.

� For each i ∈ {1, . . . , p}, only variables E1, . . . , Ei−1 can have arcs to Xi.

Figure 6.1 represents one such restricted Gaussian Bayesian network compatible with
the sparse Cholesky factorization model for the covariance. The sparse Cholesky factor
for Figure 6.1 would have the following lower triangular pattern∗

0 ∗

 , (6.6)

where an asterisk means a non-zero entry. Observe that the zero value in entry (3, 1)
corresponds to the missing edge from E1 to X3 in Figure 6.1.
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E1 E2 E3

X1 X2 X3

Figure 6.1: Hidden variable model interpretation. The index set notation has been
omitted for vertices and variables have been directly used for clarity.

6.2.2 A graphical model extension for unordered variables

In direct analogy with Gaussian Bayesian networks and Equation (2.6), a new graph-
ical model can be defined which is parametrized by the Cholesky factorization of the
covariance, up to a permutation: for a given arbitrary acyclic digraph G = (V,E), such
graphical models is defined as

M(G) = {N (0,Σ) : Σ = TTt, Tt ∈MG}, (6.7)

where recall that MG is the set of matrices compatible with G, that is, such that mji = 0
for all (j, i) /∈ E, j 6= i.

Remark. As in the case of Gaussian Bayesian networks, the parameter matrix T in
Equation (6.7) will only be lower triangular, and thus coincide with the Cholesky factor
of Σ, if the variables are already ancestrally ordered.

Note that Equation (6.4) holds for an unordered version of L, and thus tij ∝ βij| pr≺(j)
for j ≺ i. Therefore, a sort of ordered Markov property can be retrieved for this new
graphical model (comparable to Equation (2.2))

Xi ⊥⊥ Xj|Xpr≺(j) for all (j, i) /∈ E with j ≺ i. (6.8)

A simple example of an arbitrary graph would be that in Figure 6.2. In this model,
factor T would be lower triangular after reordering its rows and columns following the
ancestral ordering of the graph, 2 ≺ 1 ≺ 3, obtaining a new matrix τ(T),

T =

∗ ∗ 0
0 ∗ 0
∗ 0 ∗

 , τ(T) =

∗ 0 0
∗ ∗ 0
0 ∗ ∗

 .

X2 X1 X3

Figure 6.2: Graph with ancestral order 2 ≺ 1 ≺ 3. The index set notation has been
omitted for vertices and variables have been directly used for clarity.

In the example of Figure 6.1, where variables already exhibit a natural order, the graph
that would represent such interactions would be that in Figure 6.3, whose parameter
matrix T is already lower triangular.

6.3 Model estimation

We will first review two regression-based existing estimators for this model that can be
found in Rothman et al. (2010), and then will detail our proposed penalized matrix loss
estimation method.
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X1 X2 X3

Figure 6.3: Graph corresponding to the model in Figure 6.1. The index set notation has
been omitted for vertices and variables have been directly used for clarity.

6.3.1 Existing work: Banding and lasso

Throughout this section denote as xi a sample of size N corresponding to variable Xi,
where X = (X1, . . . , Xp) is assumed to follow the regression model of Equation (6.5).

The banding estimate for T builds upon the respective for L. The idea is to estimate
by standard maximum likelihood only the first k sub-diagonals of L and set the rest to
zero. Specifically, if b(k) = max(1, i− k) denotes the starting index, with respect to the
band parameter k, of the i-th row vector li = (lib(k), . . . , lii−1)

t in matrix L, then, letting
ε̂b(k) = xb(k),

l̂i = arg min
li
‖xi − (ε̂b(k) · · · ε̂i−1)li‖22

ε̂i = xi − (ε̂b(k) · · · ε̂i−1)l̂i

d̂ii =
1

N
‖ε̂i‖22, .

(6.9)

In order to ensure positive definiteness of all matrices involved in the computations, k

must be smaller than min(N−1, p) (Rothman et al., 2010). Matrix T̂ = L̂
√

D̂inherits the

band structure from L̂. The main drawback of this banding estimator is the restrictive
zero pattern that it imposes. Note also that this method requires previous selection of
the parameter k.

An alternative to banding which gives more flexibility over the zero pattern is to use
l1 penalization over Equation (6.5),

l̂i = arg min
li
‖xi − (ε̂1 · · · ε̂i−1)li‖22 + λ‖li‖1 (6.10)

where this time ε̂i = xi − (ε̂1 · · · ε̂i−1)l̂i with ε̂1 = x1 and li = (li1, . . . , lii−1)
t, and λ > 0

is the penalisation parameter. Observe that such penalty could be replaced with any
other sparsity inducing penalty over li.

6.3.2 Penalized learning of the covariance Cholesky factor

The above approaches are based on the regression interpretation of the sparse Cholesky
factor model, Equation (6.5). By contrast, all of the parameters could be directly esti-
mated by solving one optimization problem. This allows for example to recover maximum
likelihood estimates, as well as to be easily extended to the graphical model interpretation
(Equation (6.7)) following an approach similar to Zheng et al. (2018).

Denote as Σ(T) the parametrization of a covariance matrix Σ with its Cholesky
factor T (Equation (6.3)). A sparse model for T can be learned by solving the following
optimization problem

arg min
T
φ (Σ(T)) + λ‖T‖1, (6.11)

where φ(·) is a differentiable loss function over covariance matrices, λ > 0 is the pe-
nalisation parameter, and ‖·‖1 is the l1-norm for matrices, which induces sparsity on T
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(Bach et al., 2012). Note that, as in the regression case, the l1 penalty could be replaced
with any other sparsity inducing matrix norm. Solving Equation (6.11) can be done via
proximal gradient algorithms, which have optimal convergence rates among first-order
methods (Bach et al., 2012) and are tailored for a convex φ but also competitive in the
non-convex case Varando and Hansen (2020). As an illustration, two such smooth loss
functions have been selected: the negative Gaussian log-likelihood and the Frobenious
norm.

The negative Gaussian log-likelihood for a sample x1, . . . ,xN when µ is assumed to
be zero is proportional to

φNLL(Σ) = ln det(Σ) + tr(Σ−1Σ̂), (6.12)

where Σ̂ = 1/N
∑N

n=1 xnx
t
n is the maximum likelihood estimator for Σ. On the other

hand, the Frobenious norm loss is

φFR(Σ) = ‖Σ− Σ̂‖2F =

p∑
i=1

p∑
j=1

(σij − σ̂ij)2 (6.13)

Both φNLL and φFR are smooth, and in general φNLL renders the optimization problem
of Equation (6.11) non-convex (Boyd and Vandenberghe, 2004), whereas φFR is a convex
function.

6.3.3 Computational details of the proximal gradient algorithm

A simplified expression for the gradient of φ(Σ(T)) with respect to T can be obtained
as a function of the one with respect to Σ. These gradients will be denoted as ∇Tφ and
∇Σφ, respectively.

Proposition 6.3.1. For any differentiable loss function φ(Σ(T)),

∇Tφ = 2∇ΣφT. (6.14)

Proof. This proof follows some ideas from Varando and Hansen (2020), Proposition 2.1.
By matrix calculus (Petersen and Pedersen, 2008),

∂φ(Σ(T))

∂tij
= tr

(
∇Σφ

∂Σ(T)

∂tij

)
, (6.15)

since ∇Σφ is symmetric. Furthermore, note that (Petersen and Pedersen, 2008)

∂Σ(T)

∂tij
=
∂TTt

∂tij
= TEij + EjiTt,

where Eij (Eji) has its (i, j) ((j, i)) entry equal to one and zero elsewhere. Then, from
Equation (6.15),

∂φ(Σ(T))

∂tij
= tr

(
∇Σφ(TEij + EjiTt)

)
= tr

(
∇ΣφTEij

)
+ tr

(
∇ΣφEjiTt

)
= tr

(
EjiTt∇Σφ

)
+ tr

(
EjiTt∇Σφ

)
=2 tr

(
EjiTt∇Σφ

)
.

Since aji = tr(EjiA) for any matrix A, the desired result is obtained.
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The above proposition implies that once a loss function φ(Σ(T)) is fixed, it is only
necessary to compute ∇Σφ in order to obtain ∇Tφ. The gradient for φNLL and φFR can
thus be easily obtained. Standard matrix calculus (Petersen and Pedersen, 2008) gives
∇ΣφNLL = Σ−1 −Σ−1Σ̂Σ−1. Therefore,

∇TφNLL = 2∇ΣφNLLT

= 2Σ−1(T)(Ip − Σ̂Σ−1(T))T

= 2T−t(Ip −T−1Σ̂T−t).

Conversely, ∇ΣφFR = 2(Σ− Σ̂). Thus ∇TφFR = 2(TTt − Σ̂)T.

6.4 Experiments

In all experiments the four estimation methods outlined in the previous section are com-
pared: banding T (Equation (6.9)), l1 or lasso regularization (Equation (6.10)), and the
two proposed penalized losses φNLL (Equation (6.12)) and φFR (Equation (6.13)). These
four methods will be denoted in the remainder as band, lasso, grad lik and grad frob, re-
spectively. All data was standardized, and therefore for grad lik and grad frob the sample
correlation matrix was used instead of Σ̂. The implementation of our loss optimization
methods grad frob and grad lik can be found in the R package covchol1. The experiments
described throughout this section can be reproduced following the instructions and using
the code available at the repository https://github.com/irenecrsn/chol-inv.

6.4.1 Simulation

Two different simulation scenarios have been selected. First, because as the work of
Rothman et al. (2010) is the most directly related to the proposed sparse covariance
Cholesky factorization model, their simulation setting has been replicated for complete-
ness. Therein they select three fixed covariance matrices with either a fixed known banded
sparsity pattern or no zeros at all. By contrast, in the second experiment an arbitrary
pattern is explored.

In both experiments two statistics have been measured in order to assess both model
selection and estimation. These metrics are evaluated over Σ and Σ̂ in the first ex-
periment instead of T and T̂, for better comparability with Rothman et al. (2010).
Specifically, the F1 score is used for evaluating the zero pattern,

F1(T, T̂) = 2
TPR(T, T̂) TDR(T, T̂)

TPR(T, T̂) + TDR(T, T̂)
, (6.16)

where TPR and TDR are the true positive and discovery rate, respectively,

TPR(T, T̂) =
|{tij 6= 0 and t̂ij 6= 0}|

|{tij 6= 0}|
,

TDR(T, T̂) =
|{tij 6= 0 and t̂ij 6= 0}|

|{t̂ij 6= 0}|
;

1Version under development: https://github.com/irenecrsn/covchol.
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and the induced matrix 1-norm is used for numerical evaluation,

NORM(T, T̂) = ‖T− T̂‖1 = max
1≤j≤p

p∑
i=1

|t̂ij − tij|.

Fixed covariance matrices

The fixed covariance matrices used in the simulations by Rothman et al. (2010) are:

� The autoregressive model of order 1, where the true covariance matrix Σ1 has
entries σij = ρ|i−j|, with ρ = 0.7.

� The 4-banded correlation matrix Σ2 with entries σij = 0.4I(|i− j| = 1) + 0.2I(2 ≤
|i− j| ≤ 3) + 0.1I(|i− j| = 4) for i 6= j, I being the set indicator function.

� The dense correlation matrix Σ3 with 0.5 in all of its entries except for the diagonal.

Similarly to Rothman et al. (2010), the matrix dimension p ranges from 30 to 500,
and the sample size N is fixed to 200, which allows to visualize both the p > N and
p < N scenarios. This experiment measures how sparsity inducing methods for learning
T behave in scenarios which are not specially suited for them, except for band and Σ2.

Figure 6.4 shows the results. Σ1 and Σ3 are both dense matrices, with Σ1 having
entries that decay when moving away from the diagonal. Observe that the inexistent
sparsity pattern is best approximated by grad lik and lasso, but interestingly grad frob
and band achieve competitive norm results, sometimes even outperforming the rest. Ma-
trix Σ2 is banded, therefore, as expected, band achieves both the highest F1 measure
and lowest norm difference.
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Figure 6.4: Results of the simulation experiment set out in Rothman et al. (2010). Metric
NORM is in logarithmic scale for a better comparison between the methods, since there
were significant disparities.
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Arbitrary sparsity pattern in the Cholesky factor T

In this experiment the sparse Cholesky factor T is simulated using essentially Algorithm
9 with a random acyclic directed orientation to represent zero pattern, that is, the latent
structure (see Figure 6.1). Observe that in general this does not yield a uniformly sampled
Cholesky factor, but it is more flexible that the standard diagonal dominance procedure.
Three Cholesky factors Ti are generated with a proportion of i/p non-zero entries, where
i ∈ {1, 2, 3}. Sample size N and matrix dimension p are as in the previous experiment.

Figure 6.5 depicts the results. Note that as the density decreases, the F1 score and
matrix norm results slightly worsen, but in general the methods behaviour is main-
tained. The band estimator exhibits a performance similar to the previous experiment:
although achieving a small F1 score, it has a relatively small matrix norm difference.
This behaviour is shared in this case with grad lik, which has in general poor perfor-
mance. However, the worst performing method is lasso, which neither is able to recover
the sparsity pattern, nor gets numerically close to the original Cholesky factor (it has a
significantly high value for the norm difference). Conversely, method grad frob has the
best performance, with a significantly high F1 score when compared with the rest and
competitive or best norm difference results.
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Figure 6.5: Results of the simulation experiment for an arbitrary sparsity pattern in T.
Metric NORM is in logarithmic scale. Density indicates the average proportion of lower
triangular non-zero entries in the simulated Cholesky factors.

6.4.2 Real data

In this section two data sets from the UCI machine learning repository (Dua and Graff,
2020), where a natural order arises among the variables, have been selected. Both of
them are labelled with a class variable, therefore after estimating the respective Cholesky
factors with each method, classification performance is assessed. For classifying a sample
x quadratic discriminant analysis (Rothman et al., 2010) is used, and x is classified in
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the class value c that maximizes

ln f̂(x, c) = ln f̂(x|c) + ln f̂(c),

where f̂(c) is the proportion of observations for class c and f̂(x|c) is expressed in terms
of T instead of Σ,

ln f̂(x|c) ∝ 1

2
ln det(Σ̂c)−

1

2
(x− µ̂c)tΣ̂

−1
c (x− µ̂c)

= ln det(T̂c)−
1

2
(x− µ̂c)tT̂

−t
c T̂

−1
c (x− µ̂c)

=

p∑
i=1

ln tii −
1

2
(T̂
−1
c (x− µ̂c))tT̂

−1
c (x− µ̂c),

(6.17)

with µ̂c, Σ̂c and T̂c the respective estimates from training samples belonging to class c.
Finally, for evaluating classification performance the following metrics have been used:

� The F1 score, already defined in Equation (6.16) in terms of TDR and TPR, but
adapted to classification instead of matrix entries.

� The true negative rate, TNR, since it is not contained in the F1 score, which is the
proportion of observations that have been correctly not classified as class c.

� The accuracy, ACC, which measures the proportion of observations that have been
correctly assigned a class. Observe that this last metric, unlike the other two, is
not class-dependent, but instead global.

Sonar: Mine vs. Rocks

The first real data set explored is the Connectionist Bench (Sonar, Mines vs. Rocks) data
set, which contains numeric observations from a sonar signal bounced at both a metal
cylinder (mine) and rocks. It contains 60 variables and 208 observations. Each variable
corresponds to the energy within a certain frequency band, integrated over a period of
time, in increasing order. Each observation represents a different beam angle for the
same object under detection. Over this data set the objective is to classify a sample as
rock or mine. This data set was also analysed by Rothman et al. (2010), but without the
expression in terms of T for Equation (6.17) and only using method band for T.

As a first exploratory step, each of the methods for learning the Cholesky factor T has
been applied to all instances labelled as M (mines), and R (rocks), shown as a heatmap
in Figure 6.6. The Cholesky factor for mines retrieved by grad lik and lasso look fairly
similar, whereas the one for rocks that lasso estimates is nearly diagonal. Bands can be
clearly observed from heatmaps by band, and all methods impose zero values for variables
near to or higher than 50, which could be motivated by the problem characteristics and
hint at high sonar frequencies being nearly noiseless. The entries in the Cholesky factor
estimated by grad frob are the most extreme, since most of them are zero, and the ones
which are not have the highest and lowest values among all the estimates recovered.

For the quadratic discriminant analysis leave-one-out cross-validation was used, since
the sample size was sufficiently small to allow it. Table 6.1 contains the results thus
obtained. Observe that lasso is the method that performs poorest overall. Conversely,
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Figure 6.6: Heatmaps of the Cholesky factors of rock and mine samples. M: Mines; R:
Rocks.

band is arguably the best for this problem, except for the TNR of rock samples, which
is highest for grad frob. However, observing the rest of statistics for grad frob, it can
be deduced that this method over-classifies samples as mines: it has the lowest TNR for
them. On the other hand, grad lik performs competitively for this problem, but is in
general outperformed or matched by band. Since the sonar behaviour hints at a band
structure for the covariance (frequency patterns being related to those close to them),
and therefore for its Cholesky factor, the good performance of band could be expected.

band grad frob grad lik lasso
TNR (M) 0.78 0.08 0.78 0.62
F1 (M) 0.8 0.7 0.55 0.33
TNR (R) 0.79 0.97 0.45 0.26
F1 (R) 0.78 0.15 0.65 0.5
ACC 0.79 0.56 0.61 0.43

Table 6.1: Statistics for the sonar problem. M: mines; R: rocks.

Wall-Following Robot Navigation

The other real data set used is the Wall-Following Robot Navigation one. Here a robot
moves in a room following the wall clockwise. It contains 5456 observations and 24
variables. Each variable corresponds to the value of an ultrasound sensor, which are
arranged circularly over the robot’s body. Here the increasing order reflects the reference
angle where the sensor is located. Since the robot is moving clockwise, here the clas-
sification task is between four possible class values: Move-Forward, Sharp-Right-Turn,
Slight-Left-Turn or Slight-Right-Turn.

As in the previous problem, the Cholesky factors are estimated for each of the move-
ments, depicted in Figure 6.7. Notice that grad frob outputs a similar matrix (except
for the Slight-Left-Turn movement) than the other three methods, which means that the
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extreme behaviour observed in the sonar experiment was problem-related. By contrast,
the Cholesky factor for Slight-Left-Turn is nearly diagonal. The other matrices are rather
similar among the methods, with band notably choosing in general a high banding pa-
rameter k (few to no bands). Here a similar structure as in the sonar problem can be
observed: for all the movements except Slight-Left-Turn it can be appreciated that most
entries close to the diagonal are positive, whereas distant ones are frequently negative.
Regarding Slight-Left-Turn, these matrices are the sparsest and have near zero values on
the diagonal. Since the robot is moving clockwise, this movement is related to obstacles,
therefore it could hint that sensor readings are correctly identifying them.
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Figure 6.7: Heatmaps of the Cholesky factor of the wall-following robot navigation sam-
ples.

In this problem there is a larger sample size, and therefore data has been split into
train and test, with half of the samples on each set. The classification results are shown
in Table 6.2. Observe that all methods perform arguably good, in fact they achieve
nearly identical accuracy. It is noticeable how competitive are lasso and grad lik, which
performed much worse in the sonar problem. Also notice that arguably the best results
are obtained for the Slight-Left-Turn movement, which confirms the previous intuition
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over heatmaps about sensors correctly identifying obstacles. The worst performance over
all methods is for the Slight-Right-Turn movement, but is not noteworthy when compared
with the rest (except for Slight-Left-Turn).

band grad frob grad lik lasso
TNR (MF) 0.87 0.86 0.85 0.84
F1 (MF) 0.64 0.64 0.61 0.62
TNR (SHR) 0.89 0.88 0.87 0.85
F1 (SHR) 0.72 0.72 0.73 0.73
TNR (SLL) 0.96 0.95 0.98 0.98
F1 (SLL) 0.67 0.65 0.72 0.7
TNR (SLR) 0.82 0.83 0.81 0.84
F1 (SLR) 0.56 0.57 0.55 0.57
ACC 0.66 0.66 0.65 0.66

Table 6.2: Statistics for the robot problem. MF: Move-Forward; SHR: Sharp-Right-Turn;
SLL: Slight-Left-Turn; SLR: Slight-Right-Turn.

6.4.3 Discussion of the results

Several conclusions can be drawn from both the simulated and real experiments. Firstly,
Figure 6.8 depicts the execution time for each method, where it can be seen that grad lik
is the slowest one and band is the fastest.
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Figure 6.8: Logarithm of the execution time (in seconds) for each of the methods under
evaluation. Density indicates the average proportion of lower triangular non-zero entries
in the simulated T Cholesky factors.

Whenever there is a clear dependence between variables that are close in the ordering,
such as in the sonar example, the band method could be preferred, because it is the
one that more naturally approximates the structure induced in the Cholesky factor (as
happened in the sonar example).

The new proposed method grad frob has shown to be competitive both in execution
time as well as in recovery results: when interested in model selection, that is, how
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accurately zeros in the Cholesky factor are estimated, it yields the best results. Con-
versely, grad lik has shown to be the most robust: in simulations it achieved reasonable
performance even when the true covariance matrix was dense, and it also performed
competitively in the sonar example, which was mostly suited for band as we discussed.

Finally, lasso has achieved overall poor results, except for the wall-following robot
navigation data set. Specially, in simulations it failed to correctly recover the zero pattern
in the Cholesky factor and was the numerically farthest away from the true matrix.
Despite this, it is the second fastest of the four methods, so when model selection or
robustness are not a concern it is a good alternative to band, since it provides more
flexibility over the zero pattern in the Cholesky factor.
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Chapter 7

Conclusions and future research

This thesis has contributed to the classical yet actively researched topic of Gaussian
graphical models. The detailed list of publications by the author directly related to this
thesis is:

� I. Córdoba, E. C. Garrido-Merchán, D. Hernández-Lobato, C. Bielza, and P. Larrañaga.
Bayesian optimization of the PC algorithm for learning Gaussian Bayesian net-
works. In Advances in Artificial Intelligence, volume 11160 of Lecture Notes in
Artificial Intelligence, pages 44–54. Springer, 2018a

� I. Córdoba, G. Varando, C. Bielza, and P. Larrañaga. A fast Metropolis-Hastings
method for generating random correlation matrices. In Intelligent Data Engineering
and Automated Learning, volume 11314 of Lecture Notes in Computer Science,
pages 117–124. Springer, 2018b

� I. Córdoba, G. Varando, C. Bielza, and P. Larrañaga. A partial orthogonalization
method for simulating covariance and concentration graph matrices. In Interna-
tional Conference on Probabilistic Graphical Models, volume 72 of Proceedings of
Machine Learning Research, pages 61–72. PMLR, 2018c

� I. Córdoba, C. Bielza, and P. Larrañaga. A review of Gaussian Markov models
for conditional independence. Journal of Statistical Planning and Inference, 206:
127–144, 2020a

� I. Córdoba, C. Bielza, P. Larrañaga, and G. Varando. Sparse Cholesky covariance
parametrization for recovering latent structure in ordered data. IEEE Access, 8:
154614–154624, 2020b

� I. Córdoba, G. Varando, C. Bielza, and P. Larrañaga. On generating random Gaus-
sian graphical models. International Journal of Approximate Reasoning, 125:240–
250, 2020c

The relationship between each exposed chapter and the contributed papers outlined
above is as follows:

� Chapter 2 is mainly based on the journal article Córdoba et al. (2020a); most of
the content about chordal graphs is new, whereas Bayesian estimation and multiple
hypothesis testing have not been incorporated to the thesis because they are not
related to it.
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� Chapter 3, covering Bayesian optimization of the PC algorithm, is essentially the
conference article Córdoba et al. (2018a), with the modification that more emphasis
has been put on explaining the PC algorithm’s parameters, and less emphasis on
Bayesian optimization, which is merely a tool for the thesis objectives.

� Gaussian graphical model simulation is covered in both Chapters 4 and 5. In
particular, Chapter 4 is based on the conference article Córdoba et al. (2018b),
with Section 4.4.2 and the proof of Proposition 4.2.1 being novel material first
appearing in this thesis. Such chapter serves as an introduction to the sampling
methodology that is later applied to Gaussian graphical models in Chapter 5, largely
based on both the conference article Córdoba et al. (2018c) and the journal article
Córdoba et al. (2020c). Proposition 5.1.1 and Algorithm 6 are novel content, and
serve to further illustrate sampling problems in acyclic directed models, which were
not covered in the aforementioned papers but are nevertheless relevant to the thesis
content. Some figures also differ because of such unification, for example, Figures
5.10 and 5.11 merge the respective versions of Córdoba et al. (2018c) and Córdoba
et al. (2020c), for better clarity and to avoid duplication.

� A relatively different topic, but also related to Gaussian graphical models and the
concepts discussed throughout the thesis, is explored in Chapter 6, where the sparse
covariance Cholesky parametrization is explored. This last contribution chapter
contains most of what is described in the journal article Córdoba et al. (2020b).

Future research

Model selection with the PC algorithm: parameter tuning

Other objective measures that do not rely on knowing the true graph structure, such
as Gaussian Bayesian network scores, could be explored. On the methodological side,
a comparison could be carried out with alternative parameter optimization methods
such as genetic algorithms. Finally, the Bayesian optimization method used is able to
handle multi-objective scenarios, several constraints and noise, thereby the proposed
methodology could be extended to such scenarios in Gaussian graphical models.

Uniform Metropolis sampling of correlation matrices

Variants of the proposed Markov chain algorithm could be explored, such as the inde-
pendent Metropolis or adaptive schemes. The theoretical convergence analysis of such
variants is also relevant, as well as the extension of empirical convergence monitoring to
other relevant quantities apart from the acceptance ratio. It would be also interesting
to perform a thorough theoretical and empirical study of the similarities and differences
between the proposed method and others in the literature for uniform sampling of corre-
lation matrices.

On Gaussian graphical model simulation

Since very promising results have been obtained when using the proposed simulation
methods in a real validation scenario, it would be very interesting to explore how other
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performance measures, and other model selection methods, are also affected. From the
computational point of view, exploring alternatives to the modified Gram-Schmidt or-
thogonalization or taking into account special structures in the graph topology could
reduce the complexity of partial orthogonalization. Finally, the main theoretical direc-
tion for future research would to investigate how to sample uniformly from the space EpG
for a non-chordal graph G, or, conversely, for an acyclic digraph with no v-structures.

Sparse Cholesky covariance parametrization

As future research, the most direct and interesting derivative work would be to further
analyse, both theoretically and empirically, the Gaussian graphical model extension to
unordered variables of the sparse covariance Cholesky factorization model. Also in this
direction, its relationship with the already established covariance graph model (Equation
(5.1)), could yield interesting results. Regarding the proposed proximal gradient esti-
mation method, other alternatives could be explored to solve the optimization problems
that arise from both the likelihood and Frobenious loss, as well as try other losses related
to matrices and the multivariate Gaussian distribution.
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