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Abstract

Since the directional nature of certain data present in multiple areas makes traditional

statistics ineffective, directional statistics has gained relevancy in the last decades, having

special importance in fields such as meteorology, geology, biology or neuroscience. This

importance is connected to the development of new technologies that allow obtaining and

processing huge amounts of data.

One of the most frequent problems when dealing with any data is uncertainty. In order to

work under uncertainty conditions, probabilistic graphical models are a very useful resource.

In particular, Bayesian networks combine probability theory with graph theory to provide

a powerful data mining tool. In this dissertation, we apply directional statistics techniques

in Bayesian networks. We develop Bayesian network models able to deal with data of a

directional nature, which we later adapt to address supervised classification problems where

the predictor variables are all directional.

Usually, this directional nature data is jointly observed with linear nature data. Several

methods have already been used to deal with data from directional and linear nature together.

Nevertheless, never in Bayesian networks. Therefore, this problem is also addressed in this

dissertation, where we propose a Bayesian network model that allows the use of variables

from either directional or linear nature. To do this, we introduce a dependence measure

between variables from different nature. This dependence measure is based on the similarity

between the joint density function and the product of its marginal density functions. Thus,

we use this measure to capture the dependence between directional and linear variables to

develop a Bayesian network model with tree-structure.

Neuroscience is another research field that has experimented a great impulse in recent

times. The development of new study techniques and advances in microscopy are driving

significant advances in this science. These advances require the use of new statistical and

computational techniques that allow the data management and data analysis of the results

obtained by neuroscientific experiments. In this dissertation we work on the study of neuronal

morphology. Despite the numerous advances and scientific investment being made in this

area, the structure of the neurons is not known with precision yet. Furthermore, neuronal

morphology plays an important role within the functional and computational characteristics

of the brain. Hence, making further advances in this field of study can provide relevant

information about the brain and the nervous system.

Within the morphology of the neuron, dendrites are responsible for the synaptic reception

and the spread of the neuron through the brain. In the study of the dendrites there are

measures of discrete, continuous and directional type. Fitting probability distributions to

these measures can be complex or even non-existent, so this type of problem represents a

modelling challenge.

This dissertation addresses the study of basal dendritic structure in pyramidal neurons.

We propose a method to study and model basal dendritic arbors from the branching angles

produced by the dendritic split starting from the soma. To do this, we use directional statistics

techniques that allow the proper management of directional data (i.e., the bifurcation angles).



Afterwards, we study the behaviour of these angles depending on the type of dendrite from

which it originates and the brain layer in which its neuron (its soma) is located.

Going further on neuronal morphology, we also study the pyramidal neuron classification

problem into cerebral cortex layers based on their basal dendrites bifurcation angles. To do

this, we use the supervised classification Bayesian network models for directional variables

developed in this dissertation. Later, we compare the classification accuracy among these

directional classification models to evaluate their efficiency. We also compare with random

classification.



Resumen

Debido a la naturaleza direccional de ciertos datos presentes en múltiples areas para los

que la estad́ıstica tradicional es ineficaz, la estad́ıstica direccional ha ido ganando relevancia en

las últimas décadas, cobrando especial importancia en campos como meteoroloǵıa, geoloǵıa,

bioloǵıa o neurociencia. Esta importancia viene ligada al desarrollo de nuevas tecnoloǵıas

que permiten la obtención y proceso de una elevada cantidad de datos.

Uno de los problemas más recurrentes cuando se trabaja con todo tipo de datos es la

incertidumbre. Para trabajar bajo condiciones de incertidumbre, los modelos gráficos prob-

abiĺısticos son un recurso muy útil. En concreto, las redes Bayesianas combinan teoŕıa de

la probabilidad con teoŕıa de grafos para proporcionar una potente herramienta en mineŕıa

de datos. En esta tesis, aplicamos técnicas de estad́ıstica direccional en redes Bayesianas.

Desarrollamos modelos de redes Bayesianas capaces de trabajar con datos de naturaleza direc-

cional, que posteriormente adaptamos para aplicar a problemas de clasificación supervisada

donde las variables predictoras son todas de dicha naturaleza.

Generalmente, estos datos de naturaleza direccional se encuentran junto a datos de nat-

uraleza lineal. Ya se han desarrollados métodos para trabajar conjuntamente con datos

direccionales y lineales, pero nunca en redes Bayesianas. Por lo tanto, también se aborda

este problema en esta tesis, donde proponemos un modelo de red Bayesiana que permite

tratar variables tanto de naturaleza direccional como lineal. Para ello, proponemos una

medida de dependencia entre las variables de diferente naturaleza contenidas en el modelo,

basada en la similitud entre su función de densidad conjunta y sus funciones de densidad

marginales. De este modo, utilizamos esta medida para capturar la dependencia entre las

variables direccionales y lineales para desarrollar un modelo de red Bayesiana con estructura

de árbol.

La neurociencia es otro de los campos que ha experimentado un fuerte progreso en los

últimos tiempos. El desarrollo de nuevas técnicas de estudio y avances en microscoṕıa están

impulsando significativamente el avance de esta ciencia. Estos avances demandan la incorpo-

ración de nuevas técnicas estad́ısticas y computacionales que permitan el manejo y análisis de

los datos y resultados obtenidos por los experimentos neurocient́ıficos. En esta tesis se trabaja

en la morfoloǵıa neuronal, ya que pese a los numerosos avances y la inversión cient́ıfica que

se está realizando en este área, la estructura de las neuronas no se conoce aún con precisión.

Además, la morfoloǵıa neuronal desempeña un importante papel dentro de las carácteŕısticas

funcionales y computacionales del cerebro, de forma que los avances en este campo de estudio

pueden aportar valiosa información sobre el cerebro y el sistema nervioso.

Dentro de la morfoloǵıa de la neurona, las dendritas son las que se encargan de la recepción

sináptica y la propagación de la neurona por el cerebro. En el estudio de las dendritas se

encuentran medidas de tipo discreto, continuo y direccional. El ajuste de distribuciones de

probabilidad a estas medidas puede ser complejo e incluso inexistente, por lo que este tipo

de problemas representa un reto en su modelización.

Esta tesis aborda el estudio de la estructura dendŕıtica basal en neuronas piramidales.

Se propone un método para estudiar y modelizar árboles dendŕıticos basales a partir de los



ángulos de bifurcación producidos por la división de las dendritas partiendo desde el soma.

Para ello, se usan técnicas de estad́ıstica direccional que permiten el manejo de los datos

direccionales (es decir, de los ángulos de bifurcación) adecuadamente. Posteriormente, se

estudia el comportamiento de dichos ángulos en función del tipo de dendrita del que provienen

y la capa cerebral en la que esta localizada su neurona (su soma).

Ahondando en el estudio de la morfoloǵıa neuronal, también se estudia el problema de la

clasificación de las neuronas piramidales entre las capas de la corteza cerebral con respecto

a los ángulos de bifurcación de sus dendritas basales. Para ello, se usan los modelos de redes

Bayesianas desarrollados para clasificación supervisada con variables predictoras direccionales

desarrollados en esta tesis. Posteriormente, se compara la precisión de clasificación entre estos

modelos de clasificación direccional para evaluar su eficiencia. También se compara con la

clasificación aleatoria.
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Chapter 1
Introduction

Probabilistic graphical models [Koller and Friedman, 2009] and their family of directed acyclic

graphs called Bayesian networks [Pearl, 1988] combine graph theory with probability theory

to produce a useful tool in data mining. The network structure retains the independence

relationships between the variables through conditional probabilities, easily interpretable to

find associations between them. The joint probability distribution factorization of a Bayesian

network reduces the computational cost for high dimensional distributions. Applying math-

ematical methods, any type of inference can be conducted. Furthermore, feature selection

methods and missing data handling can be performed easily either in the learning or the in-

ference process. Thus, for these reasons among others, Bayesian network models are chosen

as a reference paradigm to deal with uncertainty.

Directional statistics [Mardia and Jupp, 2009; Ley and Verdebout, 2017] deals with n-

dimensional directions, axes or rotations. Data in the form of angles, day time, weeks, etc.

can be also considered directional (i.e., they present a directional nature). Directionality

arises in almost every field in science, e.g., in earth sciences as earthquakes, in biology as the

animals path, in meteorology as the wind direction, in neuroscience as the direction of axons

and neuronal dendrites, in microbiology as the protein dihedral angles, etc.

Circular data refers to information measured in radians and distributed on the circle, while

directional data is a more general term referring to directional vectors in an n-dimensional

Euclidean space. Its properties do not allow the use of classical statistics.

Despite of their ability to model the relationship between variables, Bayesian networks are

hardly developed on directional domains. Directionality in Bayesian networks can be found

in simple classifiers for specific directional distributions [López-Cruz et al., 2015]. Indeed,

it is difficult to find Bayesian networks that combine variables from different nature, where

discrete nature is the most developed area, continuous nature is only used for small networks

and nothing for directional. Here, we propose a Bayesian network model that deals with data

defined on the circle. Furthermore, we go one step further and present a Bayesian network

model that allows the use of linear variables and circular variables together.

Unrevealing brain functioning is an important XXI century scientific challenge in neuro-

science. Improvements in modern technology and methodology have enabled a huge increase

3



4 CHAPTER 1. INTRODUCTION

on the data acquisition quality, revealing important details of different components of the

brain, such as the neuron morphology. Neurons are the most basic unit of the nervous sys-

tem. The human has about 86 billion neurons in his brain [Herculano-Houzel, 2016], and

all of them have different morphology (i.e., there are not two equal neurons). Despite the

broad research to reveal the neuron structure by Santiago Ramón y Cajal from the late

1890s, its knowledge is still incomplete. In this dissertation, we intend to contribute to the

neuron structure research by shedding light on the dendritic pyramidal neurons structure. In

particular, we apply directional statistics techniques together with Bayesian network mod-

els to study and model the bifurcation angles produced by the basal dendrite branching in

pyramidal neurons. In addition, we extend the circular Bayesian network models to develop

several directional Bayesian network-based classification models that capture the interaction

between directional variables. These classification models are capable to identify the cortical

layer that a neuron comes from, based on its basal dendritic bifurcation angle arrangement.

Chapter outline

This chapter is organized as follows. Section 1.1 presents the main hypotheses and objectives

of this dissertation. Then, in Section 1.2 the organization of this manuscript is explained.

1.1 Hypotheses and objectives

The research hypotheses of this dissertation can be stated as the following two main points:

� Directional statistics methods can be applied to build well-behaved Bayesian network

models, using these methods to deal with variables in the circular domain instead of

these of the traditional statistics.

� Angles and directional measures found in the basal dendritic tree neuronal structure

play an important role in neuron morphology. In particular, basal dendritic bifurcation

angles can be modelled using directional statistics to predict the cerebral cortex layer

where the neuron soma lies.

Based on these hypotheses, the main objectives of this dissertation are:

� To develop the methodology to model a Bayesian network that deals with circular

variables.

� To develop Bayesian network-based classification models capable to deal with circular

variables.

� To develop a dependence measure between circular and linear variables. In addition,

to use this measure to model a Bayesian network model that allows the presence of

circular variables as well as linear variables.
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� To study and model basal dendritic bifurcations in pyramidal neurons. In particular,

to apply directional statistics techniques together with Bayesian networks to identify

some of the neuron characteristics, such as their position in the brain (i.e., the layer

where the soma is located).

1.2 Document organization

The manuscript includes six parts and nine chapters, organized as follows:

Part I. Introduction

This part presents the dissertation.

- Chapter 1 presents the hypotheses and objectives that motivate this dissertation, as

well as the manuscript organization.

Part II. Background

This part includes three chapters that introduce the theory and basic concepts used through

this dissertation. The state-of-the-art is discussed within each of these chapters.

- Chapter 2 introduces some basic directional statistics concepts, necessary for dealing

with data presented in the form of directions or angles. This chapter is focused on

the statistics on the circle: some common circular statistics measures, graphical rep-

resentations, and some of the best-known circular distributions, i.e., the von Mises

distribution, the wrapped Cauchy distribution and the Jones-Pewsey distribution. A

list of directional statistics used software is also provided.

- Chapter 3 presents probabilistic graphical models, focused on Bayesian networks as the

most important part for this research. This chapter gives an overview of the necessary

concepts that are used through this dissertation: learning and inference processes in

Bayesian networks, supervised classification Bayesian network models and a description

of the used software related to Bayesian networks.

- Chapter 4 provides some basic neuroscience concepts related to the research carried

out in this dissertation. This includes a brief introduction to the brain structure and

its parts, focused on the neuron functions, types and morphology. Nowadays most

remarkable neuroscience projects are also presented.

Part III. Contributions to Bayesian networks and directional statistics

This part includes two chapters that present our proposals in Bayesian networks related to

directional statistics techniques.
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- Chapter 5 presents four different supervised Bayesian classification algorithms where

the predictor variables follow all circular wrapped Cauchy distributions. These are the

wrapped Cauchy naive Bayes, the wrapped Cauchy selective naive Bayes, the wrapped

Cauchy semi-naive Bayes and the wrapped Cauchy tree-augmented naive Bayes classi-

fiers. Here, synthetic data is used to illustrate, compare and evaluate the classification

algorithms, as well as a comparison with the Gaussian tree-augmented naive Bayes

classifier.

- Chapter 6 introduces a circular-linear mutual information as a measure of dependence

between circular and linear variables. Furthermore, a general dependence measure for

circular variables is presented, available for variables that follow any circular distribu-

tion and can be expressed in a closed form for a general family of distributions. Using

this measure, a circular-linear tree-structured Bayesian network that combines circular

and linear variables is presented. Finally, this chapter also presents the evaluation of

our proposal, as well as a real-world application in meteorology with public data.

Part IV. Contributions to neuroscience

This part includes two chapters that present our proposals in neuroscience related to direc-

tional statistics and Bayesian networks techniques.

- Chapter 7 presents the study of the dendritic branching angles of pyramidal cells across

layers to further shed light on the principles that determine their geometric shape.

Furthermore, this chapter shows the analysis carried out for this purpose as well as the

discussion of the obtained results.

- Chapter 8 shows two application of some of the models developed in Chapter 5. This

chapter explains the process to model the bifurcation angles generated by the splitting

of the dendritic segments of basal dendritic trees from pyramidal neurons. Furthermore,

the models developed in Chapter 5 are used to predict which layer a given pyramidal

neuron belongs to. The comparison between the models is also presented.

Part V. Conclusions

This part concludes the dissertation.

- Chapter 9 summarizes the contributions provided in this dissertation and discusses

the open issues and future work related to this research. Furthermore, this chapters

presents the list of publications and current submissions produced in this dissertation.

Part VI. Appendices

This part includes the appendix.
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- Appendix A includes the proofs of the theorems for the Wehrley–Johnson conditionals,

the circular mutual information and the circular-linear mutual information, proposed

in Chapter 6.
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Chapter 2
Directional statistics

2.1 Introduction

Directional data is ubiquitous in science, present in areas such as biology, geology, medicine,

oceanography, geophysics or geography [Batschelet, 1981]. Nowadays this kind of data have

become specially relevant in geophysics, focused on wind direction to obtain a profitable

wind energy utilization, and also in neuroscience measuring the orientation of the neurons

and modelling the bifurcation angles produced by the split of the dendritic arbors in order

to better comprehend the cerebral functioning. The natural periodicity of directional data is

the main difference between directional and non-directional data. This characteristic makes

classical statistics methods ineffective for dealing with it. While 0◦ and 360◦ are considered

the same point in directional data, both are considered different in non-directional data.

Thus, directional data analysis is different and more challenging than non-directional data.

Directional statistics [Jammalamadaka and Sengupta, 2001; Mardia and Jupp, 2009; Ley

and Verdebout, 2017] is a branch of mathematics that provides the techniques and background

to deal with directional data. The foundations of directional statistics arise together with

those in more common linear statistics. R. A. Fisher wrote in 1953 [Fisher, 1953]:

“The theory of errors was developed by Gauss primarily in relation to the needs of as-

tronomers and surveyors, making rather accurate angular measurements. Because of this

accuracy it was appropriate to develop the theory in relation to an infinite linear continuum,

or, as multivariate errors came into view, to a Euclidean space of the required dimensionality.

The actual topological framework of such measurements, the surface of a sphere, is ignored

in the theory as developed, with a certain gain in simplicity. It is, therefore, of some little

mathematical interest to consider how the theory would have had to be developed if the ob-

servations under discussion had in fact involved errors so large that the actual topology had

had to be taken into account. The question is not, however, entirely academic, for there are

in nature vectors with such large natural dispersions.”

Directional information can be found in two different ways: circular data and directional

data. We talk about circular data for those measures represented by the compass or the

clock [Mardia and Jupp, 2009]. These circular observations are commonly presented as unit

11
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vectors on the circle. There are many situations where the data consist of directions in three

dimensions. These data may be represented as points on the sphere, and they are commonly

called directional data.

Chapter outline

Section 2.2 explains the techniques for dealing with circular data and reviews some of the

best-known circular densities functions such as von Mises, wrapped Cauchy or the Jones-

Pewsey family. In Section 2.3 the software for working with directional statistics is briefly

presented.

2.2 Statistics on the circle

A circular observation can be regarded as a point on a circle of unit radius or a unit vector

in the plane. Once an initial direction and orientation of the circle have been chosen, each

circular observation can be defined by the angle from the initial direction to the point on

the circle corresponding to the observation. Circular data is commonly measured in degrees,

nevertheless, it is sometimes useful to measure in radians by multiplying by π/180.

A random variable Θ is said to be circular if it is defined in the unit circumference, which

domain is ΩΘ = [−π, π). As previously mentioned, the main characteristic of this data is the

periodicity, where −π and π are considered the same point. Therefore, due to the specific

circular data properties [Jammalamadaka and Sengupta, 2001; Mardia and Jupp, 2009] some

special techniques are necessary to deal with circular data, where traditional non-directional

statistics are unsuitable. In this section, a basic introduction for the analysis of circular data

is presented.

2.2.1 Summary statistics

Likewise for linear domain, it is useful to summarise the data by appropriate descriptive

statistics. It turns out that the appropriate way of constructing these statistics for circular

data is to regard points on the circle as unit vectors in the plane and then to take polar

coordinates of the sample mean of these vectors. Note that angles θ, θ ± 2π, θ ± 4π,..,

θ ± 2πk, k = 1, 2, .., are the same point on the circle, therefore the angle to identify a point

in the unit circle is not unique. Thus, referring to an angle, we will implicitly mean that its

value will be module 2π.

Given θ1, .., θN circular values defined in the unit circle with θi ∈ [−π, π), i = 1, .., N

and unit vectors with Cartesian coordinates xi = (cos(θi), sin(θi)), the most popular location

measure is the mean direction θ̄ of θ1, .., θN , defined as the direction of the centre of mass

x̄ of x1, ..,xN , which Cartesian coordinates are (C̄, S̄). Hence

θ̄ = arctan

(
C̄

S̄

)
, (2.1)
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with

C̄ =

N∑
i=1

cos(θi), S̄ =

N∑
i=1

sin(θi).

Note that in circular statistics, θ̄ is not defined as in linear domains (θ1 + .. + θN )/N , as it

depends on where the circle is cut.

Another popular location measure is the Fisher median direction [Fisher, 1995] φ. It

is calculated as

φ̂ = arg min
φ
π −

N∑
i=1

|π − |θi − φ||,

where φ̂ is the value of the sample θ1, .., θN that minimizes the sum of circular distances.

The length of the centre of mass vector x̄, called mean resultant length, is denoted as

R̄. It is defined as

R̄ =
(
C̄2 + S̄2

)1/2
.

Since xi, i = 1, .., N are unit vectors, R̄ ∈ [0, 1]. If the directions of θ1, .., θN are widely

dispersed then R̄ will be almost 0, otherwise if θ1, .., θN are tightly clustered then R̄ will be

almost 1. Therefore, R̄ is a measure of data concentration.

To compare circular data with data on the real line it is useful to use dispersion measures.

The circular variance [Fisher, 1995] V̄ is the simplest of these measures. It is defined as

V̄ = 1− R̄.

Since R̄ ∈ [0, 1], then V̄ ∈ [0, 1] too. Note that some authors (e.g., [Batschelet, 1981])

refer to circular variance as V̄ = 2(1− R̄) ∈ [0, 2].

2.2.2 Graphical representation of circular data

Graphical representation of data is a way of analysing linear data as well as circular data.

The simplest circular data representation is the circular raw data plot. This circular

representation plots each observation as a point on the unit circle. Fig. 2.1 compares the

representation of circular data in a circular plot against a traditional linear plot. It is easy

to appreciate how the linear plot does not reflect the periodicity of the data.

When the data is grouped, there is also an homologous to the linear histogram but for

circular data. This is the rose diagram, where the frequencies are represented by areas of

sectors around the circle instead of bars in the real line. The circumference is divided into

sectors of the same arc length and the area of each sector is proportional to the frequency

in the corresponding group. Fig. 2.2 shows the comparison of a rose diagram with the

corresponding linear histogram, where the latter clearly ignores the periodical nature of the

circular data and displays two modes in a “U” shape.

The boxplot [Tukey, 1977] is a simple and flexible graphical tool. It entails the identifica-

tion of extreme values and outliers in univariate sets. The circular boxplot [Abuzaid et al.,

2012] also provides that information for circular data. Fig. 2.3.(a) represents the circular
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Figure 2.1: (a) Circular plot and (b) linear plot representing the same circular data where
the number of instances is 1000.

Figure 2.2: (a) Rose diagram and (b) linear histogram representing the same circular data
where the number of instances is 1000. The dataset is unimodal and symmetric around 0.
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Figure 2.3: (a) Circular boxplot and (b) multiple circular boxplot represented together.

boxplot. The black dot is the median direction, the colored lines are the boxes (from the

lower quartile (Q1) to the upper quartile (Q3)), the black lines are the whiskers that depend

on the circular interquartile range (CIQR ≡ Q3-Q1) and a concentration parameter of the

distribution, and the colored dots are the outliers that do not belong to the box-and-whiskers

interval. In addition, as shown in Fig. 2.3.(b), the circular boxplot allows the representation

of multiple univariate sets in the same circumference [Leguey et al., 2016b].

2.2.3 Probability density functions

Several probability densities, fΘ(θ), have been used to model circular data. The simplest way

to obtain a circular density is by wrapping. A random variable X on the real line is wrapped

around the circumference of the unit circle to generate a circular random variable Θ, as

Θ = X mod 2π. (2.2)

Perhaps, the simplest distribution on the circle, is the circular uniform. This distribu-

tion is appropriate when no direction is more likely than other. It is obtained by applying

Equation (2.2) over a Uniform distribution (i.e., f(θ) = 1/2π for θ ∈ (−π, π]). There exist

several circular distributions developed by using this method, such as the wrapped Cauchy

distribution [Lévy, 1939].

Nevertheless, some special probability densities have been proposed for circular data. The

best-known of these is the von Mises distribution [von Mises, 1918], which is an analogous

of the Normal distribution in the real line. However, there are more flexible proposals to

model circular data. The Jones-Pewsey distribution [Jones and Pewsey, 2005] is a family

of symmetric circular distributions where the von Mises distribution and wrapped Cauchy
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distribution among others are special cases.

Many other distributions have been proposed in the literature to model circular data,

such as the wrapped Normal distribution [de Haas-Lorentz, 2013] or the generalized von

Mises distribution [Gatto and Jammalamadaka, 2007] among others [Yfantis and Borgman,

1982; Pewsey, 2008; Kato and Jones, 2010, 2013]. Sections 2.2.3.1 - 2.2.3.3 review the von

Mises, wrapped Cauchy and Jones-Pewsey distributions, respectively.

2.2.3.1 The von Mises distribution

The most popular distribution on the circle is the von Mises distribution [von Mises, 1918].

This distribution was introduced by von Mises when studying the deviations of measured

atomic weights from integral values. Subsequently Mardia and Jupp [Mardia and Jupp,

2009] proposed five different constructions which lead to it. The von Mises distribution is

considered as the analogous of the Normal distribution for linear data, in the literature it is

sometimes referred to as Normal Circular distribution indeed.

A circular random variable Θ that follows a von Mises distribution, denoted as vM(µ, k),

has density function

f(θ) =
1

2πI0(k)
ek cos(θ−µ), θ ∈ (−π, π] (2.3)

where 0 < µ ≤ 2π is the mean direction parameter, k ≥ 0 is the concentration parameter and

Ip(k) =
1

2π

∫ 2π

0
cos(pθ)ek cos θdθ

is the modified Bessel function of the first kind and order p (p ∈ Z). When k = 0, Equation

(2.3) is the circular uniform distribution, otherwise it is unimodal and symmetric about µ.

The mode is at θ = µ and the antimode is at θ = µ + π. The higher is the k value, the

greater is the concentration around the mode. Fig. 2.4 shows the representation of von Mises

densities with µ = 0 and different values for the k parameter.

Let θ1, .., θN be a random sample from Θ ∼ vM(µΘ, kΘ), defined in Equation (2.3). The

maximum likelihood estimators for the parameters µ and k, are the mean direction described

in Equation (2.1),

µ̂ = θ̄,

and k̂ = A−1(R̄) respectively, where

A(k̂Θ) =
I1(k̂Θ)

I0(k̂Θ)
= R̄ =

(
C̄2 + S̄2

)1/2
.

Since the value of k̂ cannot be obtained in an exact manner, it has to be approximated
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Figure 2.4: The von Mises distribution densities with µ = 0 and k = 0, 0.5, 1, 3, 10.

numerically [Sra, 2012]. Fisher [Fisher, 1995] proposed the approximation:

k̂Θ =


2R̄+ R̄3 + 5R̄5/6 0 ≤ R̄ < 0.53

−0.4 + 1.39R̄+ 0.43/(1− R̄) 0.51 ≤ R̄ < 0.85

1/(R̄3 − 4R̄2 + 3R̄) 0.85 ≤ R̄ ≥ 1.

2.2.3.2 The wrapped Cauchy distribution

Another of the best-known distributions defined on the circle is the wrapped Cauchy distribu-

tion. This was proposed by Lévy [Lévy, 1939] and furthermore studied by Wintner [Wintner,

1947]. It was later obtained by mapping Cauchy distributions onto the circle [McCullagh,

1996] by the transformation x 7→ 2 tan−1 x.

A circular random variable Θ that follows a wrapped Cauchy distribution, denoted as

wC(µ, ε), has density function

f(θ) =
1

2π

1− ε2

1 + ε2 − 2ε cos(θ − µ)
, (2.4)

where −π ≤ µ < π is the mean direction parameter and 0 ≤ ε ≤ 1 is the concentration

parameter. f in Equation (2.4) is unimodal and symmetric about µ unless ε = 0, which

yields the circular uniform distribution. Fig. 2.5 represents the densities of wrapped Cauchy

distributions with µ = 0 and ε = 0, 0.25, 0.5, 0.75, 0.9. Further properties of the wC can be

found in [Kent and Tyler, 1988] and [McCullagh, 1996].

For parameter estimation of the wrapped Cauchy, the method of moments [Bowman and
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Figure 2.5: The wrapped Cauchy distribution density with µ = 0 and ε = 0, 0.25, 0.5, 0.75, 0.9.

Shenton, 1985] is demonstrated to be more efficient than the maximum likelihood estimators

[Kato and Pewsey, 2015].

Let θ1, .., θN be a random sample from Θ ∼ wC(µ, ε), defined in Equation (2.4). The

method of moments-based estimators for parameters µ and ε are

µ̂ = arg(W̄ ), ε̂ = |W̄ |,

respectively, where

W̄ =
1

N

N∑
j=1

eiθj .

2.2.3.3 The Jones-Pewsey family of distributions

The circular uniform distribution, von Mises distribution and wrapped Cauchy distribution

are some of the classical models for directional statistics. These, together with the cardioid

[Mardia and Jupp, 2009] and Cartwright power-of-cosine [Cartwright, 1963] distributions are

special cases of a wider three-parameter family of distributions on the circle referred to as

the Jones-Pewsey family [Jones and Pewsey, 2005].

A circular random variable Θ that follows a Jones-Pewsey distribution, denoted as JP (µ, k, φ),

has density function

f(θ) =
(cosh(kφ) + sinh(kφ)cos(θ − µ))

1
φ

2πP1/φ(cosh(kφ))
, (2.5)

where −π ≤ µ < π is the location parameter, k ≥ 0 is the concentration parameter akin to
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Table 2.1: The five Jones-Pewsey family of distributions submodels

Submodel Parameters

Circular uniform k = 0 or φ = ±∞ and k=finite
Cardioid φ = 1

Catwright’s power-of-cosine φ > 0 and k →∞
wrapped Cauchy φ = −1

von Mises φ→ 0

Figure 2.6: Example of Jones-Pewsey distribution densities with µ = 0 and combinations of
k = 0 with φ = 0 and k = 2 with φ = −1, 0, 1, 10.

that in the von Mises distribution, −∞ < φ < ∞ is a shape parameter and P1/φ(z) is the

associated Legendre function of the first kind of degree 1/φ and order 0 [Zwillinger, 1998;

Gradshteyn and Ryzhik, 2007]. This family of distributions is symmetric and unimodal on

the circle. The five submodels are obtained in the cases presented in Table 2.1.

Fig. 2.6 represents the density of a Jones-Pewsey distribution with µ = 0 and different

combinations of k and φ. In all cases (but for the circular uniform), it is observable that the

densities are unimodal and symmetric around µ.

Let θ1, .., θN be a random sample from Θ ∼ JP (µΘ, kΘ.φΘ), defined in Equation (2.5).

Since there are no maximum likelihood estimators for the three parameters, then numerical

methods have to be used to approximate them as proposed by [Jones and Pewsey, 2005].

2.3 Software

In this section a brief review of the tools used in this dissertation for working with circular

data and directional statistics is given. The software used is the R software [R Development
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Core Team, 2008], which is a free software environment for statistical computing, graphics

and data analysis.

� For basic manipulation and statistical techniques for circular data, circular package

for R [Agostinelli and Lund, 2013] is available at CRAN repository. The content of

this package is based on Jammalamadaka and SenGupta book [Jammalamadaka and

Sengupta, 2001]. It provides methods for summary statistics, computing, plotting and

data testing for non-parametric circular data as well as for different well-known circular

distributions such as the von Mises distribution or the wrapped Cauchy distribution,

among others.

� The CircStats package [Lund and Agostinelli, 2012] is also available at CRAN repos-

itory. It is also based on Jammalamadaka and SenGupta book [Jammalamadaka and

Sengupta, 2001]. It implements descriptive and inferential statistical analysis of direc-

tional data. Also, it includes von Mises distribution and wrapped Cauchy distribution,

among others.

� Finally, the book entitled Circular statistics in R [Pewsey et al., 2013] is a useful R

programming for circular statistics guide. It provides in-depth treatments of directional

statistics. It stresses the use of likelihood-based and computer-intensive approaches to

inference and modelling. This book provides a useful revision of some well-known

circular and directional distributions such as the von Mises, wrapped Cauchy or Jones-

Pewsey, and provides the guidance and the tools to handle with them efficiently in the

R environment.



Chapter 3
Probabilistic graphical models

3.1 Introduction

Probabilistic graphical models (PGMs) [Koller and Friedman, 2009; Pearl, 1988] are useful

tools for data modelling that connect probability theory with graph theory. These models

use the graph-based representation to compactly encode a complex distribution over a high-

dimensional space. PGMs are composed by two elements: the graphical element and the

probabilistic element. In the graphical representation, the nodes correspond to the variables

and the edges correspond to the probabilistic interaction between them. The probabilistic

element models these probabilistic interactions using conditional probability distributions.

The graphical representation can be also seen as the skeleton of the high-dimensional distri-

bution representation. This distribution is split into smaller factors in order to simplify the

model. The overall joint distribution is defined by the product of these factors.

Depending on the set of independences that can be encoded and the factorization of the

induced distribution, there are two main types of graphical representation of distributions.

The first type are called Markov networks, where the used graph is undirected, and the second

type are called Bayesian networks, where the graph is directed. In this work, we mainly work

with Bayesian networks, as they are more extended for reasoning with uncertainty and several

real-world problems have been solved using Bayesian networks [Pourret et al., 2008; Koller

and Friedman, 2009].

Chapter outline

Section 3.2 defines useful concepts and notation in order to understand the Bayesian network

properties and definitions. Section 3.3 introduces Bayesian networks and how to perform

learning and inferences by using them. Extending Bayesian networks as supervised classifi-

cation models is explained in Section 3.4. In Section 3.5 the software tools used for working

with Bayesian networks is briefly presented.

21



22 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

3.2 Useful Bayesian networks concepts

The following concepts are useful for understanding and better comprehend of Bayesian

network definitions and their properties.

� A graph G is a data structure consisting of a set of nodes X = {X1, .., Xn} and a set of

edges E = {(Xi, Xj)|Xi, Xj ∈ X} that connect the nodes, where Xi denotes the source

node of the edge and Xj denotes the target node of the edge. The edges can be directed

or undirected. The latter case ignores the source and target nodes position, since there

is no direction.

� A directed acyclic graph (DAG) is a graph G = (X ,E) with only directed edges,

called arcs. In addition, the presence of cycles is not allowed, i.e., given the path

{(Xi, Xj), ..., (Xt, Xs)}, it is not allowed that Xi = Xs.

� In a DAG, a set of nodes in X are said to be the parents of Xj ∈ X , denoted as

Pa(Xj), if the directed arcs from them have the node Xj as the target node, i.e.,

Pa(Xj) = {Xi|i 6= j, (Xi, Xj) ∈ E}.

3.3 Bayesian networks

Bayesian networks are based on exploiting conditional independence properties in order to

perform a compact representation of the underlying joint probability distribution. A Bayesian

network is defined as a pair B = (G,P), where G is the graphical element defined as a DAG,

G = (X ,E), and P represents the probabilistic element, that includes the parameters of the

conditional probability functions for each node Xi, i = 1, .., n given the value of its parents

Pa(Xi) = pa(xi). Hence, P =
(
PX1|Pa(X1), ...,PXn|Pa(Xn)

)
According to the G structure, a Bayesian network encodes in P the factorization of the

joint probability distribution over the variables in X as:

PX (X1, ..., Xn) =

n∏
i=1

PXi|Pa(Xi)(xi|pa(xi);PXi|Pa(Xi)). (3.1)

This factorization avoids the use of high-dimensional probability distributions.

Bayesian networks are efficient probabilistic models with a distinctive property; since the

graphical element represents compactly the problem domain, they are easily interpretable.

As an example of a Bayesian network, Fig. 3.1 shows a typical Bayesian network struc-

ture. In this example, B = (G,P), where G = (X ,E) with X = {X1, X2, X3, X4, X5} and

E = {(X1, X3), (X2, X3), (X2, X4), (X3, X5)}, and P = {PX1|Pa(X1), PX2|Pa(X2), PX3|Pa(X3),

PX4|Pa(X4), PX5|Pa(X5)}. Note that X1 and X2 nodes do not have parents, Pa(X3) =

{X1, X2}, Pa(X4) = {X2} and Pa(X5) = {X3}. Hence, the Bayesian network shown in Fig.
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X1 X2

X3 X4

X5

x0
4 x1
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x0
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0.70 0.30
x0

1 x1
1
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x0
3 x1

3 x2
3

x0
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x0
1, x

1
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x1
1, x

0
2 0.80 0.01 0.19

x1
1, x

1
2 0.25 0.60 0.15

x0
5 x1

5

x0
3 0.30 0.70
x1

3 0.50 0.50
x2

3 0.77 0.23

Figure 3.1: Discrete Bayesian network example with five nodes and four arcs. The tables with
the probabilistic element are included next to each node. Columns indicate the node value
and rows indicate the parents value. The joint probability distribution is shown in Equation
(3.2).

3.1 encodes the factorization of the joint probability distribution as:

PX (X1, ..., X5) = PX1(x1)PX2(x2)PX3|X1,X2
(x3|x1, x2)PX4|X2

(x4|x2)PX5|X3
(x5|x3). (3.2)

3.3.1 Parametrization

Depending on the nature of the variables used in the Bayesian network model, there are

discrete Bayesian networks, continuous Bayesian networks and hybrid Bayesian networks.

The latter is a combination of continuous and discrete variables. Discrete Bayesian networks

and continuous Bayesian networks are briefly presented in the following subsections. There

is no further information about hybrid Bayesian networks because they are not used in this

dissertation.

3.3.1.1 Discrete Bayesian networks

Discrete Bayesian networks have their variables defined in discrete domains. As shown in Fig.

3.1, for each variable Xi ∈ X , there is an associated probability distribution for each value

pa(xi) of its parents Pa(Xi). The table representation used in Fig. 3.1, called conditional

probability table (CPT), is frequently used to display the parameters and probability distri-

bution of each variable given the value of its parents. Let ΩXi be the possible values that Xi

takes, then a CPT consists of the parameters Pijk = PXi|Pa(Xi)(xij |pa(xi)k), where xij is the
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jth value of variable Xi and pa(xi)k is the kth combination of values of the parents of Xi.

Hence, the number of parameters in a CPT is the product of the number of possible values of

the variable minus one by the number of possible combinations of values of its parents, i.e.,

(‖ΩXi‖ − 1)‖ΩPa(Xi)‖.
Therefore, the total number of parameters in a discrete Bayesian network is

n∑
i=1

(‖ΩXi‖ − 1)‖ΩPa(Xi)‖.

3.3.1.2 Continuous Bayesian networks

Continuous Bayesian networks have their variables defined in continuous domains. Gaussian

Bayesian networks are the most used, other alternative is to discretize the variables [Fu,

2005].

Discretization approaches

After discretizing the continuous variables, the procedures for the Bayesian network model

induction and inference are the same as for discrete Bayesian networks. There are several

discretization procedures [see Garcia et al., 2013, for a review]. Nevertheless, often when

discretizing a continuous variable, there is a loss of the structure that characterizes it. Fur-

thermore, there are several studies that prove the effect of the discretization in a Bayesian

network [Dougherty et al., 1995; Hsu et al., 2000; Yang and Webb, 2003; Hsu et al., 2003;

Fu, 2005; Flores et al., 2011a].

Gaussian Bayesian networks

In Gaussian Bayesian networks variables from X are all Gaussian and have conditional prob-

ability distributions that follow Gaussian distributions [Johnson et al., 1970; Wermuth, 1980;

Shachter and Kenley, 1989; Tong, 1990; Kotz et al., 2004]. Some interesting properties of the

Gaussian assumptions makes this kind of Bayesian networks the most commonly used. Some

of these properties are the availability of tractable learning algorithms or the allowance of

exact inference [Lauritzen, 1992; Geiger and Heckerman, 1994; Lauritzen and Jensen, 2001],

among others. Another important characteristic of the Gaussian Bayesian networks, as ex-

plained in [Shachter and Kenley, 1989], is that a Gaussian Bayesian network always define

a joint multivariate Gaussian distribution and vice versa. Let Y be a linear Gaussian with

parents X = {X1, .., Xn}, that is f(Y |X ) = N (β0 + βTX ;σ2), where β coefficients are the

linear regression coefficients of Y over X . Assuming that X1, .., Xn are jointly Gaussian and

follow N (ι; Σ), then, the distribution of Y is a Gaussian distribution with ιY = β0 +βT ι and

σ2
Y = σ2 + βTΣβ. The joint distribution over {X1, .., Xn, Y } is a Gaussian distribution with

Cov[Xi;Y ] =

n∑
j=1

βjΣi,j .
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Therefore, if B is a Gaussian Bayesian network, then it defines a multivariate Gaussian

distribution and vice versa.

It can be seen from Equation (3.1), that the joint probability density of {X1, .., Xn, Y } is

given by

f(X1, .., Xn, Y ) =

n∏
i=1

fY |X

(
Y |X ;β0Y |X , βY |X , σ

2
Y |X

)
.

Therefore, the total number of parameters in a Gaussian Bayesian network is

2n+

n∑
i=1

(
‖X‖+

‖X‖(‖X‖ − 1)

2

)
.

Other methods

There are other continuous Bayesian network methods apart from the discretization ap-

proaches and the Gaussian assumptions. Some of these different methods do not assume any

underlying distribution followed by the variables (i.e., non-parametric methods) [John and

Langley, 1995; Hofmann and Tresp, 1996; Bach and Jordan, 2003; Pérez et al., 2009].

Several methods have been used for conditional density estimation in continuous Bayesian

networks, such as in Monti and Cooper [1997], where they used neural networks, or in Imoto

et al. [2001] and Imoto et al. [2003] where they both used non-parametric regression models.

3.3.2 Learning Bayesian networks

The learning process in a Bayesian network is divided in two steps; the structure learning of

the network, and the parameter estimation. These two steps can be addressed in two ways;

by expert knowledge [Garthwaite et al., 2005; Flores et al., 2011b], and automatically from

a dataset D, when it is available. Both learning ways can be used together, as explained in

Heckerman et al. [1995]; Masegosa and Moral [2013]. This dissertation is only focused on

learning from data, thus, expert knowledge methods are not reviewed.

3.3.2.1 Structure learning

In a Bayesian network, the associated DAG is called the structure of the network. It has been

proven that learning Bayesian network structures is NP-hard [Chickering et al., 1994; Chick-

ering, 1996]. There are three different approaches for structure learning problems: constraint-

based criterion, score-search criterion, and hybrid methods, that use both constraint-based

and score-search techniques [Koski and Noble, 2012]. The latter is out of the scope of this

dissertation, thus it is no reviewed.

Constraint-based

The constraint-based criterion for structure learning of a Bayesian network consists of finding

conditional independences between triplets of variables through the use of statistical inde-

pendence tests. This identifies the edges that are part of skeleton to build the DAG. Once
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the undirected graph is built, then the direction of the edges completes the Bayesian network

structure. There are several constraint-based methods to find the structure of a Bayesian

network [see Spirtes et al., 2000; Koller and Friedman, 2009, among others]. Nevertheless,

the best-known is the PC algorithm [Spirtes et al., 2000]. This algorithm (Algorithm 3.1)

starts with a complete undirected graph (i.e., edges connecting every pair of nodes) and

performs the statistical independence tests in some order to avoid unnecessary calculations.

This order is based on the size of the conditional sets of the conditional independence tests.

This reduces the number of performed statistical tests and hence, runs faster than other

constraint-based algorithms. This algorithm runs in the worst case in exponential time (as

a function of the number of variables) and thus it is inefficient when being applied to high

dimensional data. Nevertheless, when the true underlying DAG is sparse, which is often a

reasonable assumption, this reduces to a polynomial runtime.

Algorithm 3.1 The PC algorithm

1: Given X = {X1, .., Xn} variables, start with a complete undirected graph on all n vari-
ables, with edges between all nodes.

2: For each pair of variables Xi and Xj with i 6= j, check if Xi and Xj are independent (i.e.,
Xi ⊥⊥ Xj); if so, remove the edge between Xi and Xj .

3: For each Xi and Xj that are still connected, and each subset Z of all neighbours of Xi

and Xj , check if Xi ⊥⊥ Xj |Z; if so, remove the edge between Xi and Xj .
4: For each Xi and Xj that are still connected, and each subset Z1 of all neighbours and

each subset Z2 of all neighbours of Z1, check if Xi ⊥⊥ Xj |Z1,Z2; if so, remove the edge
between Xi and Xj .

5: ...
6: For each Xi and Xj that are still connected, check if Xi ⊥⊥ Xj given all the n − 2 other

variables; if so, remove the edge between Xi and Xj .
7: Find colliders (i.e., pair of edges such that they meet in a node) by checking for conditional

dependence; orient the edges of colliders.
8: Try to orient undirected edges by consistency with already-oriented edges; do this recur-

sively until no more edges can be oriented.

Score-search

The score-search criterion for structure learning of a Bayesian network consists of tackling

the problem as an optimization problem. Heuristic methods are used to find the appropriate

structure, and a scoring function is used to evaluate it and leads the searching procedure.

The structure with the highest score from among those considered is selected. There are a

large number of scoring functions in the literature. All of them have the characteristic of

giving a higher score to those networks where the best fitting distribution, given G, is closest

to the empirical distribution, with a penalty for the number of parameters.

The likelihood function for a graph structure G, given a datasetD = {x(i) = x
(i)
1 , ..., x

(i)
n , i =
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1, .., N} with X = {X1, .., Xn} variables and N instances is defined by

L(G;D) =
N∏
i=1

n∏
j=1

f(x
(i)
j |x

(i)
pa(j);G), (3.3)

where pa(j) represents the indexes of the parents of Xj in G.

Since the formula presented in Equation (3.3) has some practical difficulties (e.g., to

specify a large number of parameters), it is useful to work with the log likelihood (LL), given

by

LL(G;D) =

N∑
i=1

n∑
j=1

log f(x
(i)
j |x

(i)
pa(j);G). (3.4)

This measure cannot be used as a score function directly, due to the lack of a penalization

term in the number of arcs.

The Bayesian Information Criterion (BIC) [Schwarz, 1978] is the best-known score func-

tion. It uses the LL from Equation (3.4) with a penalization in the number of the parameters:

BIC(G;D) = LL(G;D)− 1

2
log(N)|w|,

where |w| is the number of required parameters. Alternatively, the negative of BIC is

another score function, known as minimum description length (MDL) [Rissanen, 1978]:

MDL = −BIC. Another well-known score function is the Akaike Information Criterion

(AIC) [Akaike, 1974]. AIC is similar to BIC, but for the penalization term, where N is

used instead of 1
2 log(N).

The search step explores the space of DAGS and tries to find that with the highest score.

The number of possible structures increase more than exponentially with the number of

variables. For this reason an exhaustive evaluation sometimes is not suitable. One of the

best known search procedures is the K2 algorithm [Cooper and Herskovits, 1992], which is

summarized in Algorithm 3.2. In this search procedure, considering an ordering over the

variables in X , for each node Xi, in the ordering provided, the node from X1, .., Xi−1 that

most increases the score of the network is added to Pa(Xi), until no node increases the score

or the size of Pa(Xi) exceeds a predetermined number.

The K2 algorithm is an heuristic algorithm. There are other heuristic algorithms for

search step. One of the simplest is the local search [Hoos and Stützle, 2004]. Let E be a set

of eligible changes in the structure and ∆(e) the change in the score of the network resulting

from the modification of e ∈ E. Then, ∆(e) is evaluated for all e, and the positive change

for which ∆(e) is a maximum is performed. The search finishes when there is no e with a

positive value for ∆(e).

The evolutionary algorithms have become more important in the last decades [see Larrañaga

et al., 2013, for a review]. Depending on the space where the searching procedure is performed

we distinguish between three different categories: DAG space, ordering space and equivalence
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Algorithm 3.2 K2 algorithm

1: Given X = {X1, .., Xn} nodes, an upper bound u on the number of parents a node may
have, and a dataset D.

2: Consideran order for X . Create an empty Bayesian network B = (G = (X ,E),P) with
E = ∅.

3: The score value is set as Scoremax = Score(D,B).
4: Following the order for X , for each Xi find Xj , j = 1, .., i − 1 that maximizes
Score(D,B′(G = (X ,E ′),P ′)), where E ′ = E ∪ (Xj , Xi). If Scoremax < Score(D,B′),
then Scoremax = Score(D,B′).

5: Repeat step 4 until ‖Pa(Xi)‖ = u or Scoremax > Score(D,B′), then go to the next
variable.

class space.

The algorithms to search the DAG space consider the learning process by searching in

the space of possible DAG structures. Larrañaga et al. [1996c] proposed a genetic algorithm

that encodes the connectivity matrix structure in its individuals. In Larrañaga et al. [1996b]

they hybridized two versions of a genetic algorithm with a local search operator to obtain

better structures. Blanco et al. [2003] demonstrated that using estimation of distribution

algorithms (EDAs) leads to comparable or even better results than using genetic algorithms.

There are several studies in DAG space algorithm [see Etxeberria et al., 1997; Myers et al.,

1999; Wong et al., 1999; Tucker et al., 2001, among others].

The search of the equivalent class space eliminates the redundancy in the DAG space,

as demonstrated in [van Dijk and Thierens, 2004]. An evolutionary programming algorithm

was also proposed to perform the search in this space [Muruzábal and Cotta, 2004]. They

also compared three versions of evolutionary programming algorithms [Cotta and Muruzábal,

2004]. In this space, greedy search seemed to be faster than in the DAG space. Nevertheless,

the size of the search space is exponential in the number of variables. van Dijk and Thierens

[2004] demonstrated that using an algorithm that consists of hybridizing evolutionary algo-

rithms with local search, improve the results.

To search for the best ordering space (i.e., ordering between the variables) Larrañaga

et al. [1996a] used a travelling salesman problem permutation representation with a genetic

algorithm. A Bayesian network structure representation composed of dual chromosomes was

proposed by Lee et al. [2008]. Romero et al. [2004] used two type of EDAs to obtain the best

ordering space for the K2 algorithm.

All of these types of algorithms are used to capture problem regularities and generate

a new solution for searching the best structure in Bayesian networks. Several studies have

compared the traditional Bayesian network structure learning algorithms [see Tsamardinos

et al., 2006, for an example], and the use of evolutionary algorithms leads to improvements

in the computational time and performance [Larrañaga et al., 2013].
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3.3.2.2 Parameter estimation

Bayesian network learning process also involves to estimate the parameters P of the model

after the structure G is fixed. Given a dataset D, there are two ways to fit the parameters:

maximum likelihood estimation (MLE) and Bayesian estimation.

MLE consists of finding the parameter set that minimizes the negative log likelihood given

by Equation (3.4):

P̂ = arg min
P
−LL(B = (G,P);D)

Bayesian estimation consists of estimating the parameters modelled with a random vari-

able Γ including prior information encoded in the probability distribution fΓ(P) into the

problem, and use experience (database) to update the distribution. The problem is based on

finding the parameters that maximize the posterior distribution of Γ given the database D:

P̂ = arg max
P

fΓ|D(P |D).

3.3.3 Inference

One of the most interesting Bayesian network properties is the ability to modelling and

reasoning in domains with uncertainty. Therefore, Bayesian networks are well designed to

answer probabilistic queries. Typically, the Bayesian network will provide some evidence,

that is, some of the variables will be instantiated, and the aim is to infer the probability

distribution of some other variables.

Given a Bayesian network B with structure G = (X ,E) fixed, the most common query

type is the conditional probability P (Xq|Xe), where Xe ∈ X represents the variables that

provide some evidence and Xq ∈ X are the queried variables. For this type of inference

problem, evidence propagation is the most extended method, computing

P (Xq|Xe) =
P (Xq, Xe)

P (Xe)
.

This inference process has been proved to be NP-hard [Cooper, 1990; Dagum and Luby, 1993]

in the worst scenario case (which is not common).

There are two types of inference: exact and approximate. Exact inference is based on

computing analytically the conditional probability distribution over the variables of interest

and can be performed in polynomial time when the Bayesian network structure is a polytree

[Good, 1961; Kim and Pearl, 1983; Pearl, 1986, 1988]. Otherwise several approaches have

been proposed in the literature [Shachter, 1986, 1988; Shachter and Kenley, 1989; Suermondt

and Cooper, 1990; Jensen et al., 1990a,b; Suermondt and Cooper, 1991; Dı́ez, 1996; Park

and Darwiche, 2003; Darwiche, 2003, etc]. Unfortunately, sometimes inference on complex

Bayesian networks may be still infeasible and some approximation techniques based on sta-

tistical sampling are used to approximate the result. This is approximate inference. These

algorithms provide results in shorter time, albeit inexact. Some of the methods are based

on Monte Carlo simulations [see Hernandez et al., 1998; Lemmer and Kanal, 1988, for an
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example], and others rely on deterministic procedures [see Bouckaert et al., 1996; Cano et al.,

2011, among others].

3.4 Bayesian networks classifiers

Bayesian network classifiers [Friedman et al., 1997] are special types of Bayesian networks

designed for classification problems. Supervised classification [Duda et al., 2001] deals with

the problem of assigning a label to an instance, based on a set of variables that characterize it.

Bayesian network classifiers have several advantages over other classification models, some of

these are that they offer an explicit, graphical and interpretable representation of uncertain

knowledge, decision theory is naturally applicable for dealing with cost-sensitive problems,

they can easily accommodate feature selection methods and handle missing data in both

learning and inference phases, etc. [see Bielza and Larrañaga, 2014].

3.4.1 Learning Bayesian network classifiers

Let X = {X1, ..., Xn} be a vector of features, and C be a class variable. Given a simple

random sample D = {(x(1)
1 , ..., x

(1)
n , c(1)), ..., (x

(N)
1 , ..., x

(N)
n , c(N))}, of size N , the Bayesian

network classifier structure encodes the conditional independences between the variables

X1, .., Xn, C. To assign a label c∗ ∈ C to a new instance (x∗1, ..., x
∗
n) a maximum a pos-

teriori decision rule is used to assign the maximum a posteriori (MAP) label to it:

c∗ = arg max
c
PC|X (c|x∗1, .., .x∗n) = arg max

c
PC(c)PX |C(x∗1, ..., x

∗
n|c), (3.5)

where PX |C(x∗1, ..x
∗
n|c) factorizes according to the Bayesian network classifier structure, as in

Equation (3.1).

Most works in Bayesian network classifiers are mainly focused on discrete domains for the

predictive variables. Nevertheless, Bayesian networks with continuous variables have been

also studied [Yang and Webb, 2002; Pérez et al., 2006; Flores et al., 2009].

3.4.1.1 Structure learning

Depending on the network structure there are different Bayesian network classifiers. The sim-

plest classifier is the naive Bayes (NB) classifier [Minsky, 1961]. An example of its structure

with five predictive variables is shown in Fig. (3.2). This classification model assumes condi-

tional independence between the predictive variables given the class, transforming Equation

(3.5) into

c∗ = arg max
c
PC|X (c|x∗1, ..x∗n) = arg max

c
PC(c)

n∏
i=1

PXi|C(x∗i |c). (3.6)

This assumption is useful when n is high and/or N is small, making PX |C(x∗1, ..x
∗
n|c) difficult

to estimate.
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C

X3X2X1 X4 X5

Figure 3.2: Naive Bayes classifier structure with five nodes, from which PC|X (c|x∗1, .., x∗5) ∝
PC(c)PX1|C(x∗1|c)PX2|C(x∗2|c)PX3|C(x∗3|c)PX4|C(x∗4|c)PX5|C(x∗5|c).

The classification performance of the naive Bayes classifier could be improved if only non-

redundant variables are selected to build the model. Feature subset selection (FSS) techniques

[Saeys et al., 2007] makes this possible in the so-called selective naive Bayes (SnB) classifier.

An example of its structure is shown in Fig. (3.3). This model works with a subset X S ∈ X
with S ⊆ {1, .., n}, that contains the selected features, turning Equation (3.6) into

c∗ = arg max
c
PC|X (c|x∗1, ..x∗n) ∝ arg max

c
PC|XS (c|x∗1, ..x∗n) = arg max

c
PC(c)

∏
i∈S

PXi|C(x∗i |c).

These FSS requires to consider 2n structures. Therefore heuristic approaches are used for

this search. It may be used a filter approach to perform feature selection prior to building

the classifier, or a wrapper approach is used to build the model by using the classification

performance [Saeys et al., 2007]. For the filter approach, the most used method consists of

scoring the variables through the mutual information (MI) between each feature and the class

variable [Pazzani and Billsus, 1997]. Given a pair of discrete variables Xi and Xj , the MI

between them is defined as

MI(Xi, Xj) =
∑
xi∈Xi

∑
xj∈Xj

p(xi, xj) log

(
p(xi, xj)

p(xi)p(xj)

)
,

where p(xi, xj) is the joint probability function of Xi and Xj , and p(xi) and p(xj) are the

marginal probability distributions of Xi and Xj respectively. When both variables are defined

in continuous domain, the MI is given by

MI(Xi, Xj) =

∫ ∞
−∞

∫ ∞
−∞

f(xi, xj) log

(
f(xi, xj)

f(xi)f(xj)

)
,

where f(xi, xj) is the joint density function of Xi and Xj , and f(xi) and f(xj) are the

marginal probability density functions of Xi and Xj respectively.

The wrapper approach outputs the feature subset with a higher computational cost since
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C

X3X2X1 X5

Figure 3.3: Selective naive Bayes classifier structure with four nodes se-
lected from the original set of five nodes, from which PC|X (c|x∗1, .., x∗5) ∝
PC(c)PX1|C(x∗1|c)PX2|C(x∗2|c)PX3|C(x∗3|c)PX5|C(x∗5|c).

the model has to be built for each feature subset. Simple heuristic methods are used to

asses this approach, like greedy search [Langley and Sage, 1994] or floating search [Pernkopf

and OLeary, 2003], which is based on a method for adding and on a method for removing

attributes and/or arcs from the network structure and capable of removing previously added

arcs at a later stage of the search if they turn out to be irrelevant. Nevertheless, owing

to the computational cost, heuristics methods are infeasible for a high number of variables.

Therefore, combinations of filter and wrapper approaches are used, creating the filter-wrapper

method [Inza et al., 2004].

In order to relax the conditional independence assumptions of naive Bayes models, it is

possible to introduce new features obtained as the Cartesian product of two or more original

variables. This is the semi-naive Bayes classifier [Pazzani, 1998]. An example of its structure

is shown in Fig. (3.4). This model also allows a variable selection. Thus, if Lk with k = 1, .., T

is representing the kth feature (original or new feature), Equation (3.6) turns into

c∗ = arg max
c
PC|X (c|x∗1, ..x∗n) = arg max

c
PC(c)

T∏
k=1

PXLk |C
(x∗Lk |c).

This model is built from an empty structure and a forward sequential selection and joining

greedy search [Pazzani, 1998] is used to decide whether (i) add a variable as conditionally

independent of the others (original or new variables), or (ii) joining a non-used variable by

the current model with each variable (original or new one) already used in the model.

The tree-augmented naive Bayes (TAN) classifier [Friedman et al., 1997] keeps the original

predictor variables and models the relationships between them, of at most order 1. An

example of its structure, which is tree-shaped, is shown in Fig. (3.5). To learn the structure

of this classifier, it is necessary to build a directed tree. Kruskal’s algorithm [Kruskal, 1956]

is used to find the maximum weighted spanning tree. The weight of an edge between Xi and
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C

X2X1, X4 X5

Figure 3.4: Semi-naive Bayes classifier structure with four nodes selected from the original
set of five nodes, and two of them joined in a supernode, from which PC|X (c|x∗1, .., x∗5) ∝
PC(c)PX1,X4|C(x∗1, x

∗
4|c)PX2|C(x∗2|c)PX5|C(x∗5|c).

Xj is calculated as the conditional MI between the variables given the class C:

MI(Xi, Xj |C) =

∫
ΩXi

∫
ΩXj

∑
c

fXi,Xj |C(xi, xj |c)PC(c) log
fXi,Xj |C(xi, xj |c)

fXi|C(xi|c)fXj |C(xj |c)
dxidxj ,

(3.7)

where ΩXi and ΩXj represents the domain of variablesXi andXj respectively, fXi,Xj |C(xi, xj |c)
is the joint density function of Xi and Xj given C = c, and fXi|C(xi|c) and fXj |C(xj |c) are

the conditional probability density functions of variables Xi and Xj given C = c respectively.

Note that if variables Xi and Xj are defined in discrete domains, then the integrals from

Equation (3.7) are changed to sums over the values of the variables. This procedure is based

on the Chow-Liu algorithm [Chow and Liu, 1968], which approximates a joint probability

distribution as a product of second-order conditional and marginal distributions. Thus, this

algorithm enables to learn the network structure with no more than second-order relation-

ships. The resulting undirected tree is turned into directed by selecting a random root node

and following the unique possible path from that root node, transforming the edges into arcs.

For this classification model, Equation (3.6) turns into

c∗ = arg max
c
PC|X (c|x∗1, ..x∗n) = arg max

c
PC(c)PXr|C(xr|c)

n∏
i=1,i6=r

PXi|C,Pa(Xi)(x
∗
i |c, pa(x∗i )),

where Xr is the selected root node and Pa(Xi) is the only (feature) parent of Xi.

Other Bayesian network classifiers can be found in the literature. There is an extension

of the TAN classifier, called k-dependence Bayesian classifier [Kohavi, 1996; Sahami, 1996;

Zheng and Webb, 2000] that allows more than one predictive variable as parent in the network

structure. Bayesian network classifiers that can adopt any Bayesian network structure was

studied in Cheng and Greiner [2001]. Furthermore, Bayesian multi-net-based classifiers were

proposed by Friedman et al. [1997].
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C

X3X2X1 X4 X5

Figure 3.5: Tree-augmented network classifier structure with five nodes, from which
PC|X (c|x∗1, .., x∗5) ∝ PC(c)PX1|C,X2

(x∗1|c, x∗2)PX2|C,X3
(x∗2|c, x∗3)PX3|C(x∗3|c)PX4|C,X3

(x∗4|c, x∗3)PX5|C,X4
(x∗5|c, x∗4).

The selected root node of the tree is X3.

3.4.1.2 Parameter estimation

Estimating the parameters of Bayesian network classifiers can be done in generative or dis-

criminative ways. The generative technique fits the parameters via MLE or Bayesian esti-

mation, both described in Section 3.3.2.2. Discriminative technique consists of finding the

parameters that maximize the classification accuracy, which is the main task of Bayesian net-

work classifiers. Alternatively, this technique looks for the maximization of the conditional

LL of the class given the predictive variables [Grossman and Domingos, 2004; Greiner et al.,

2005; Pernkopf and Bilmes, 2005; Su et al., 2008; Carvalho et al., 2011].

3.5 Software

In this section the tools used in this dissertation for working with Bayesian networks are

reviewed. The software used is the R software [R Development Core Team, 2008], introduced

in Section 2.3.

� The bnlearn package [Scutari, 2010] is used for basic manipulation of Bayesian networks

structure learning and simple inference with Gaussian networks or discrete networks.

This package is available at CRAN repository. It implements for discrete and continuous

variables several constraint-based structure learning algorithms, parameter learning,

conditional independence tests and network scores. Some Bayesian network classifiers

are also implemented, those are the NB and TAN.

� Focused on Bayesian networks classification, the bnclassify package [Mihaljevic et al.,

2015] provides useful basic algorithms and score functions for discrete variables. It also

provide the algorithms for prediction and properties inspection of the implemented

classification models, such as the naive Bayes, selective naive Bayes, semi-naive Bayes

or tree-augmented naive Bayes. This package is used as a reference to implement several

Bayesian network classification models in a different domain.



Chapter 4
Neuroscience

4.1 Introduction

The brain is the most unknown organ from the human body, and its functioning is one of

the main challenges of modern sciences. Neuroscience is defined as the science that studies

the nervous system. Latest technological and methodological advances have highly improved

the insights of this field. However its complexity makes it to remain almost unexplored. The

advances in neuroscience are mainly focused on the study of the cerebral cells: the neurons.

Thousands of neurons are connected in an extremely complex circuit, with very different ac-

tivation behaviours and synchronization patterns. Santiago Ramón y Cajal is considered the

father of the modern neuroscience for his original investigations of the microscopic structure

of the brain. He was awared with the Nobel Prize in Physiology or Medicine in 1906 for his

neuroanatomy studies.

Computational sciences and neuroscience converge in the so-called computational neu-

rosciences [Sejnowski et al., 1988; Schwartz, 1993; Dayan and Abbott, 2001; Feng, 2003;

Trappenberg, 2009], defined as the theoretical study of the brain used to uncover the princi-

ples and mechanisms that guide the development, organization, information-processing and

mental abilities of the nervous system.

The applied work developed in this dissertation is focused on the study of neuronal mor-

phology, which analysis and modelling seem to be performed efficiently using machine learning

and statistical techniques. This chapter introduces the basic neuroscience notions used in this

dissertation.

Chapter outline

Section 4.2 contains some concepts of the organization and structure of the brain, including

some basic concepts of the neuronal cells and their classification, given special attention to the

pyramidal neuron characteristics as well as their basic structure. In Section 4.3 the nowadays

most important modern neuroscience projects are briefly presented.
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Figure 4.1: Schema of the layers I - VI from the cerebral cortex. Source: Dorland's Medical
Dictionary for Health Consumers1.

4.2 Brain structure

Golgi introduced the concept of the brain as a connected neuronal network [Sporns, 2011].

Santiago Ramón y Cajal followed his research and created the research field known as neu-

romorphology, the study of the structure of the nervous system.

The brain is an electrical organ. It controls the nervous system, that can be divided into

[Kandel et al., 2000]: the medulla oblongata, the pons, the spinal cord, the cerebellum, the

midbrain, the diencephalon and the cerebral hemispheres. Each of these has a specific role.

Cognitive functions, such as the memory, are located in different areas of the cerebral cortex

in the outer part of the cerebral hemispheres.

The cerebral cortex is divided into six layers (Fig. 4.1), named from I (the most superficial

layer) to VI (the deepest layer). Each layer has different width. Layer V is sometimes divided

into layers Va and Vb, owing to the difference in neuronal density within layer V, where layer

Vb has significantly higher neuronal density than layer Va. The cerebral cortex is also divided

into cortical areas, depending on their main features. Nevertheless, the number and types of

cortical areas are not consolidated, owing to the disagreement between neuroscientists.

Nowadays, the neuromorphology field is divided into two branches: the first is focused

on the study of the brain by its synaptic activity (i.e., the signal transmission and reception

among neurons), the second is based on the individual analysis of each neuron, finding mor-

phological characteristics that allow the formulation of general neuron structure rules. The

neuroscience work presented in this dissertation is based on the latter.

4.2.1 Neurons

Neurons are the most basic working unit of the nervous system. An average human has about

86 billions neurons in his brain [Herculano-Houzel, 2016]. All of them have three basic roles:

1https://www.dorlandsonline.com
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Figure 4.2: Stained neuronal network from Cajal studies. The Golgi method of staining
brain tissue renders the neurons and their interconnecting fibres visible in silhouette. Source:
Cognitive Consonance2.

receive signals, integrate them and transmit them.

Following Golgi's research, Santiago Ramón y Cajal used novel staining methods to high-

light the parts of the neuronal network (Fig. 4.2). This allowed him to distinguish that each

neuron is a single cell separated from the others. This discovery is known as the neuron doc-

trine. Furthermore, he found that neurons communicate among them by sending electrical

signals through a prolongation of the neuron called axon. These signals are received through

other prolongations of the neuron, called dendrites.

4.2.1.1 Structure

Neurons are composed of three main parts (Fig. 4.3): dendrites, cell body (called soma) and

axon. Most neurons follow the same general structural plan. Nevertheless the structure of

individual neurons may vary depending on their specific function [Jacobs et al., 2001; Elston

et al., 2005; Benavides-Piccione et al., 2006; Komendantov and Ascoli, 2009].

� The soma includes the cellular structures such as the nucleus, mitochondria, etc. The

dendrites and the axon grow from the soma, which morphology is highly affected by the

number of dendrites and the orientation of them together with the axon. The chemical

processing of incoming information takes place mainly in the soma. There is not an

established solid definition for the soma boundaries. Therefore, usually experts must

trace these boundaries under their criteria.

� The dendrites are composed by the dendritic arbors and the dendritic spines. The den-

dritic arbors are prolongations that born in the soma and are subsequently bifurcated

creating branched structures. These are covered by thousands of small membranous

2http://cognitiveconsonance.info/
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Figure 4.3: Basic structure of a neuron.

bumps, called dendritic spines, each of which takes part of the neuron-to-neuron con-

nection, called synapses [Nimchinsky et al., 2002]. Most neurons receive the signals

through their dendritic spines.

Some neurons show two types of dendrites: basal dendrites, which arise from the soma

creating a spherical arborization, and the apical dendrite, that arises from the apex of

pyramidal soma .

� The axon is also a prolongation of the neuron. It is born in the soma, it can be extended

a long distance from it and its diameter is smaller than the dendrites diameter. Usually,

the axon grows until it connects to a group of dendrites of other neurons (i.e., the axon

terminals connect with the dendritic spines of other neurons). The function of the

axon is to transmit the information from the axon terminals to the dendritic spines

through synapses. Some neurons are axonless [Wu et al., 2011], nevertheless they are

not covered in this dissertation.

4.2.1.2 Classification

Based on their functions, neurons can be divided into three main classes: sensory neurons,

motor neurons and interneurons (Fig. 4.4).

The function of sensory neurons is to get information about what happen with anything

related to the body, either inside or outside it, e.g., when somebody is cooking and touches

the pan, the sensory neurons transmit the information that the pan is hot to the brain.

Motor neurons are those that are responsible of getting information from the sensory

neurons to transmit orders to the muscles, organs or glands, e.g., following the sensory neurons

example, when they transmit the information about the hot pan, the motor neurons will order

the body part that was in contact with the pan to come off it.

The interneurons have the function to connect one neuron to another (i.e., receptors

from either sensory neurons or interneurons and transmitters to either motor neurons or

interneuros). Despite there is not an universal accepted catalogue of interneurons, they
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Figure 4.4: Different types of neurons based on their functions. Source: Wichterle et al.
[2013].

can be also subclassified depending on their morphological characteristics [DeFelipe, 1993;

Mihaljević et al., 2014, 2015b,a].

Different types of neurons show great diversity in size and shape (Fig. 4.5) [P.I.N.G,

2008; Ding and Glanzman, 2011]. Perhaps, the best-known of these types of neurons are

the pyramidal neurons, which are the most abundant type of neuron in the cerebral cortex

(about 70-85%).

4.2.1.3 Pyramidal neurons

Pyramidal neurons were discovered by Santiago Ramón y Cajal. Their name comes from

their pyramidal shape soma. These neurons are characterized by their large apical dendrites

and short basal dendrites (Fig. 4.6), which represent about the 90% of the dendritic length

of cortical pyramidal neurons from layers II, III and V [Larkman, 1991]. They can be found

in many different areas of the brain such as the cortex and hippocampus, and their charac-

teristics may vary depending on their location. Furthermore, the pyramidal neurons soma is

usually represented as a tetrahedron with an acute angle pointing towards the cerebral cortex

surface.

Neurons in the cortex can be excitatory, which release the neurotransmitter glutamate,

and inhibitory, which release γ-amino-butyric acid (GABA). Pyramidal neurons are the most

abundant excitatory neurons [Spruston, 2008]. They are sometimes enwrapped by the axons

of inhibitory basket cells, which are interneurons that control and refine the firing of pyramidal

neurons through their inputs [David and Pierre, 2009].

The structure of pyramidal neurons may vary between regions or layers (Fig. 4.7). Never-

theless, all of them share the separation between apical and basal dendrites characterization

[Spruston, 2008]. Furthermore, both basal and apical dendrites are studded with dendritic

spines.
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Figure 4.5: Different types of neurons by shapes and sizes based on the drawings made by
Ramón y Cajal. The types of neurons shown are Pyramidal, double Pyramidal, Thalamic
nucleus, Spinal Trigeminal nucleus, inferior Olivary nucleus, Putamen of Lentiform nucleus,
Spindle-shaped, Granule, Purkinje, Ovoid, large Reticular, small Reticular, small Gelatinosa
and Globus Pallidus. Source: The Mind Project [Stufflebeam, 2008] .

Figure 4.6: Schema of the morphology of a typical pyramidal neuron. This neuron has been
obtained from layer V in the rat somatosensory cortex.
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Figure 4.7: A variety of pyramidal neurons from different parts of the brain. CA3 and CA1
are the Cornu ammonis areas 3 and 1 respectively, located next to the subiculum, all of them
from the Hippocampus of the cerebral cortex. Source: Spruston [2008].

4.3 Current neuroscience research projects

Recently, the researching community has shown an important interest in the study of the

brain. The Blue Brain Project3 (BBP) [Markram, 2006] is an ambitious project from the

Brain Mind Institute at the École Polytechnique Fédérale de Lausanne (EPFL) and Inter-

national Business Machines (IBM). The goal of the BBP is to build biologically detailed

digital reconstructions and simulations of the rodent, and ultimately the human brain. It

started on 2005, headed by Henry Markram from the EPFL (Switzerland) under the premise

of assimilating the wealth of data that have been produced for neuroscience studies over the

past century in order to build accurate models of the brain. For this purpose, the project

counts with the IBM's Blue Gene supercomputer, a massively parallel, tightly interconnect

machine with 65.536 processors, 839 Teraflops of peak performance, 65 TeraBytes of RAM,

128 TeraBytes of BlueGene Active Storage (BIGAS) and more than 4 PetaBytes of hard disk

that provide a high level of detail at which the brain can be modelled.

In 2006, the BBP announced the first rat's neocortical column model, that was the initial

objective of the project. Its website states that the results produced by this project will

provide the capability to model and simulate: the brain or any region of the brain of any

species, at any stage in its development; specific pathologies of the brain; and diagnostic tools

and treatments for these pathologies. The geometric and computational models of the brain

produced by the facility will reproduce the structural and functional features of the biological

brain with electron microscopic and molecular dynamic level accuracy.

Spanish representations, through the Universidad Politécnica de Madrid (UPM) and In-

stituto Cajal (IC) from Consejo Superior de Investigaciones Cient́ıficas (CSIC), are involved

in the BBP with an initiative named Cajal Blue Brain Project4 (CBBP), presented at the

3http://bluebrain.epfl.ch/
4http://cajalbbp.cesvima.upm.es/
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beginning of 2009. Different research groups and laboratories from Spanish institutions take

part in this initiative, grouping together a large number of scientists, engineers and practi-

tioners. This interdisciplinary project requires the expert-knowledge of scientists from various

researching fields. As stated on its website, the aim of the CBBP is to achieve the following

objectives:

� To decode the synaptome or detailed map of the synaptic connections of the cortical

column and, as a result, reconstruct all its components;

� To give a strong boost to research on the cortical column, exploring in depth cur-

rent hypotheses about its normal function and dysfunctions (especially Alzheimer rat's

disease);

� To devise new methods to process and analyse the experimental data obtained in the

aforementioned research studies;

� To develop computer technology to study neuronal functions using graphical tools and

visualization methods.

And secondarily:

� To understand the implication of glial cells and blood vessels in the organization of the

cortical column;

� To study the modulation of the functional organization of the cerebral cortex by cortical

and subcortical afferent connections;

� To decipher the functional organization of cortical circuits in vitro;

� To simulate in silico the activity of the cortical column by means of a supercomputer.

In 2013, two remarkable projects focused on the study of the brain were presented: the

Human Brain Project (HBP) in Europe and the Brain Research through Advancing Innova-

tive Neurotechnologies (BRAIN) in the United States.

The HPB5 [Markram, 2012] is one of the two selected projects for the European Com-

mission's Future and Emerging Technologies (FET) Flagship Program, which strives to ac-

celerate the fields of neuroscience, computing and brain-related medicine. This project has

the following main objectives:

� To create and operate a European Scientific Research Infrastructure for brain research,

cognitive, neuroscience, and other brain-inspired sciences

� To gather, organise and disseminate data describing the brain and its diseases;

� To simulate the brain;

5HBP url: http://humanbrainproject.eu/
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� To build multi-scale scaffold theory and models for the brain;

� To develop brain-inspired computing, data analytics and robotics;

� To ensure that the HBP’s work is undertaken responsibly and that it benefits society.

The BRAIN6 [Alivisatos et al., 2012, 2013], also called Brain Activity Map (BAM) project

is the United States counterpart of the HPB, but completely independent and presented by

former President Obama almost at the same time. This project is also aimed to revolution-

izing our understanding of the human brain. In [Alivisatos et al., 2013] the main objectives

of the project are presented. These are:

� To build new classes of tools that can simultaneously image or record the individual

activity of most, or even all, neurons in a brain circuit, including those containing

millions of neurons;

� To create tools to control the activity of every neuron individually in these circuits,

because testing function requires intervention;

� To understand circuits' function.

The successful development of these projects depends on the strides in statistics and

computer sciences, as well as the capacity to gather the required data. In particular, the

input of data must be done, as well as the programming of models and simulations in order

to find those biological keys for breakthrough discovers in the study of the brain. Thus, these

are multidisciplinary projects that serve as an example of how the connection between several

different disciplines may lead to important insights for the human being evolution.

6BRAIN url: http://braininitiative.nih.gov/
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Chapter 5
Circular Bayesian classifiers using

wrapped Cauchy distributions

5.1 Introduction

As stated in Chapter 2, the natural periodicity of circular data sometimes makes traditional

statistics methods ineffective. In addition, in Chapter 3 we reviewed probabilistic graphical

models [Koller and Friedman, 2009]. We outlined some of the advantages of using probabilis-

tic graphical models, such as the fact that they are easily interpreted, they handle missing

data effectively and they can cope with inference and learning tasks. In particular we ex-

plained that Bayesian networks [Pearl, 1988] can deal efficiently with supervised classification

(i.e., via the Bayesian network classifiers [Bielza and Larrañaga, 2014]) and offer an explicit,

graphical and interpretable representation of uncertain knowledge, which has made it possible

to successfully apply them to real-world problems.

Yet circular data has been commonly treated as linear data in supervised classification

tasks. Only a few circular classifiers exist, and almost none of them are based on the principles

of Bayesian networks, capable of capturing multivariate relationships among variables. Most

of them focus on discriminant analysis and assume several circular distributions such as

the vM distribution [Morris and Laycock, 1974], later extended to the von Mises-Fisher

distribution [Romanazzi, 2014]. SenGupta and Roy [2005] used a classification discriminant

rule based on the mean chord-length to classify a new observation into one of two different

circular populations that are vM, when training samples are available for each of them. Also

a likelihood ratio test based on a bootstrapping approach for classifying into two populations

was proposed for linear and circular data [SenGupta and Ugwuowo, 2011]. Kirby and Miranda

[1996] proposed a variation of an artificial neural network, including a circular node, which

was able to keep and send circular information. More recently, Fernandes and Cardoso [2016]

proposed a binary circular logistic regression as the discriminative counterpart to the naive

Bayes model, which does not make assumptions on the input data distribution. López-Cruz

et al. [2015] is the only study in which Bayesian classifiers were used. For the vM and vM-
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Fisher distributions, López-Cruz et al. proposed adaptations of the naive Bayes classifier

and selective naive Bayes classifier, which are two of the simplest and best-known supervised

classification models based on Bayesian network principles.

The lack of Bayesian network classifiers for circular data is due to the absence of cir-

cular Bayesian network models, which are very difficult to develop because of their circular

multivariate distribution nature. A family of distributions is said to be closed under marginal-

ization and conditioning when the marginals and conditionals of the multivariate distribution

follow the same distribution. However, the marginals and conditionals of most circular dis-

tributions do not belong to the same family of distributions, making the modelling phase and

posterior inference processes difficult.

We presented the vM distribution in Section 2.2.3.1. A bivariate vM distribution also ex-

ists and was introduced by Mardia [1975], who subsequently extended it to the multivariate

case [Mardia et al., 2008]. He showed that the conditional distributions are also vM distribu-

tions. Nevertheless, the marginal distributions are either unimodal or bimodal, and only the

unimodal case could be approximated to a vM distribution when the concentration parameter

is large. Therefore, as explained in [Bielza and Larrañaga, 2014] for discrete distributions, it

would be much more complicated to achieve an efficient learning and inference. Therefore,

we ruled out the use of vM distributions for our particular purpose. In Section 2.2.3.2 we

overviewed the wC distribution. Kato and Pewsey [2015] developed a five-parameter bivari-

ate wC distribution for toroidal data, whose marginals and conditionals follow univariate wC

distributions. This family of bivariate wC distributions is therefore closed under conditioning

and marginalization. Following these properties, we develop the first tree-structured Bayesian

network model that deals with circular data which follows a wC distribution [Leguey et al.,

2016a]. However, this model only accounts for the discovery of conditional independence

relationships of a set of random variables, without considering any as a class variable. This

is a specificity of supervised classification problems that requires special learning algorithms.

In this chapter, building on previous work regarding supervised classification using Bayesian

networks for circular statistics, we propose four circular Bayesian network classification mod-

els capable of dealing with supervised data following wC distributions. The models to be

presented are called wrapped Cauchy naive Bayes (wCNB), wrapped Cauchy selective naive

Bayes (wCsNB), wrapped Cauchy semi-naive Bayes (wCsmNB) and wrapped Cauchy tree-

augmented naive Bayes (wCTAN) classifiers.

Chapter outline

Section 5.2 reviews the bivariate wC distribution of Kato and Pewsey [Kato and Pewsey,

2015]. Section 5.3 describes the four wC classifiers presented in this Chapter. In Section 5.4,

we assess the four models in synthetic domains, requiring the design of a simulation method

for these wC Bayesian network classifiers. Finally, Section 5.5 provides concluding remarks

and proposals for future work.
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5.2 Wrapped Cauchy distribution

5.2.1 Definitions

A five-parameter bivariate wC distribution was proposed by Kato and Pewsey [Kato and

Pewsey, 2015]. A random vector (Θ1,Θ2) that follows the five-parameter circular bivariate

wC distribution [Kato and Pewsey, 2015], denoted by bwC(µ1, µ2, ε1, ε2, ρ), has the density

function

f(θ1, θ2) = c[c0 − c1 cos(θ1 − µ1)− c2 cos(θ2 − µ2)− c3 cos(θ1 − µ1) cos(θ2 − µ2)

−c4 sin(θ1 − µ1) sin(θ2 − µ2)]−1, with θ1, θ2 ∈ (−π, π],
(5.1)

where c = (1 − ρ2)(1 − ε2
1)(1 − ε2

2)/4π2, c0 = (1 + ρ2)(1 + ε2
1)(1 + ε2

2) − 8|ρ|ε1ε2, c1 =

2(1 + ρ2)ε1(1 + ε2
2) − 4|ρ|(1 + ε2

1)ε2, c2 = 2(1 + ρ2)(1 + ε2
1)ε2 − 4|ρ|ε1(1 + ε2

2), c3 = −4(1 +

ρ2)ε1ε2 + 2|ρ|(1 + ε2
1)(1 + ε2

2), c4 = 2ρ(1 − ε2
1)(1 − ε2

2), µ1, µ2 ∈ (−π, π], ε1, ε2 ∈ [0, 1), and

ρ ∈ (−1, 1). Here, µ1 and µ2 are the marginal location parameters, ε1 and ε2 are the marginal

concentration parameters, and ρ is the parameter controlling the association between Θ1 and

Θ2, from total independence (ρ = 0) to perfect correlation (ρ = ±1). When ε1 > 0 and

ε2 > 0, f in Equation (5.1) is unimodal and pointwise symmetric about (µ1, µ2).

Using the complex form to represent univariate and bivariate wC models can simplify

their computation issues [McCullagh, 1996; Kato and Pewsey, 2015].

Let Z = e(iΘ), where Θ is distributed as the univariate wC given by Equation (2.4). Then,

Z has a density function given by

f(z) =
1

2π

|1− |λ|2|
|z − λ|2

, z ∈ Ω, λ ∈ Ĉ \ Ω, (5.2)

where λ = εe(iµ), Ĉ = C ∪ {∞}, and Ω = {z ∈ C : |z| = 1}. Similarly to [McCullagh, 1996],

we denote Z distributed as in Equation (5.2) as Z ∼ C∗(λ).

Let (Z1, Z2) = (e(iΘ1), e(iΘ2)), where (Θ1,Θ2) is distributed as the bivariate wC in Equa-

tion (5.1). Then, the density function of (Z1, Z2) is

f(z1, z2) =
(4π2)−1(1− ρ2)(1− ε2

1)(1− ε2
2)

|a11(z1η1)qz2η2 + a12(z1η1)q + a21z2η2 + a22|2
, z1, z2 ∈ Ω, (5.3)

where q ∈ {−1, 1} is the sign of ρ, ηk = e(iµk) ∈ Ω with k ∈ {1, 2}, zk is the complex conjugate

of zk, ε1, ε2 ∈ [0, 1), ρ ∈ (−1, 1), and

A =

(
a11 a12

a21 a22

)
=

(
ε1ε2 − |ρ| |ρ|ε2 − ε1

|ρ|ε1 − ε2 1− |ρ|ε1ε2

)
. (5.4)

We denote (Z1, Z2) distributed as in Equation (5.3) as (Z1, Z2) ∼ bC∗(η1, η2, ε1, ε2, ρ).

This five-parameter bivariate wC complex form representation verifies the following result:
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Theorem 5.1. (Kato and Pewsey [Kato and Pewsey, 2015]) A random vector (Z1, Z2) with

density as in Equation (5.3) has marginals Z1 ∼ C∗(ε1η1) and Z2 ∼ C∗(ε2η2), and condi-

tionals Z1|Z2 = z2 ∼ C∗(−η1[A ◦ (z2η2)q]) and Z2|Z1 = z1 ∼ C∗(−η2[AT ◦ (z1η1)q]), where

A is defined as in Equation (5.4), AT is the transpose of A, and

A ◦ z =
a11z + a12

a21z + a22
.

As far as we know, there is no other bivariate circular distribution for which conditional

and marginal distributions belong to the same family. Therefore, we consider the wC dis-

tribution to be suitable for developing our classification models, as the requirements for the

classifier structures that we will develop are of at most a tree-structure (i.e., only bivariate,

marginal and conditional densities are required). Furthermore, we require the definition of a

conditional circular mutual information measure between variables that follow wC distribu-

tions. Hence, the development of these classification models and their corresponding learning

algorithms is suitable and far from straightforward.

5.2.2 Parameter estimation

Working with the density given by Equation (5.1), numerical methods have to be used to

find the parameter estimates, since there is no closed-form expression for the maximum

likelihood estimates. Kato and Pewsey [Kato and Pewsey, 2015] demonstrated that the

method of moments [Bowman and Shenton, 1985] is more efficient (see Section 2.2.3.2); it is

computationally very fast, easy to implement and with closed form formulas for the parameter

estimates.

Let {(θ1j , θ2j) , j = 1, ..., N} be a random sample from a bwC(µ1, µ2, ε1, ε2, ρ) (Equation

(5.1)). Then, the estimators obtained using the method of moments for µ1, µ2, ε1, ε2 and ρ

are [Kato and Pewsey, 2015]

µ̂k = arg(R̄k), ε̂k = |R̄k|, k = 1, 2,

with Rk = 1
N

∑N
j=1 e

(iθkj), and

ρ̂ =
1

N

| N∑
j=1

e(i(Φ1j−Φ2j))| − |
N∑
j=1

e(i(Φ1j+Φ2j))|

 , (5.5)

where Φrj = 2 arctan
(

1+ε̂r
1−ε̂r tan

(
θrj−µ̂r

2

))
, r = 1, 2.

5.3 Wrapped Cauchy classifiers

Let Θ = (Θ1, ..,Θn) be a vector of circular predictor random variables or features, and let

C be a discrete class variable which takes values (labels) in the set Λ(C). Given a sample of

N labelled instances (Θ1, C1), .., (ΘN , CN ), the supervised classification problem consists in
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Figure 5.1: wCNB structure with five circular predictor nodes, from which p(c|θ) ∝
p(c)fΘ1|c(θ1|c)fΘ2|c(θ2|c)fΘ3|c(θ3|c)fΘ4|c(θ4|c)fΘ5|c(θ5|c).

developing a model capable of assigning a class label to a new object based on the values of

its features.

In Section 3.4 we overview the Bayesian network classifiers [Bielza and Larrañaga, 2014].

Our purpose is to develop the circular domain counterpart of the well-known Bayesian network

classifiers described in Section 3.4.1.1 (naive Bayes, selective naive Bayes, semi-naive Bayes

and tree-augmented naive Bayes), when the underlying variables follow wC distributions.

5.3.1 Wrapped Cauchy naive Bayes

The wrapped Cauchy naive Bayes (wCNB) classifier is the simplest of the four Bayesian

network classifier models that we present in this Chapter, where C is the parent of all circular

features and these are assumed to be conditionally independent among them given C (Fig.

5.1)

p(C = c|Θ = θ) ∝ p(C = c)
n∏
i=1

fΘi|C=c(θi|c). (5.6)

The wCNB determines the class value c∗ for a new instance using a maximum a posteriori

decision rule

c∗ = arg max
c∈Λ(C)

p(C = c|Θ = θ).

Since each predictor variable Θi given C = c follows a wC distribution with location

parameter µi,c and concentration parameter εi,c, we can express Equation (5.6) as

p(c|θ) ∝=
p(C = c)

∏n
i=1 αi,c∏n

i=1(1− βi,c)
, (5.7)

where αi,c = 1
2π

(1−ε2i,c)
(1+ε2i,c)

and βi,c =
2εi,c cos(θi−µi,c)

(1+ε2i,c)
.

5.3.2 Wrapped Cauchy selective naive Bayes

As explained in Section 3.4.1.1, sometimes there are several predictor variables that do not

contribute to classification (i.e., they are redundant), and NB classifier is affected by such

variables [Langley and Sage, 1994]. Therefore, FSS techniques [Saeys et al., 2007] could

increase the accuracy of the classification model significantly [Blanco et al., 2005]. Wrapped
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Figure 5.2: wCsNB structure with three nodes selected from the original set of five predictive
variables, from which p(c|θ) ∝ p(c)fΘ1|c(θ1|c)fΘ4|c(θ4|c)fΘ5|c(θ5|c).

Cauchy selective naive Bayes (wCsNB) is a classification model with a structure similar to that

of wCNB, but not all the variables are necessarily used by the classifier. FSS techniques were

previously employed in a circular classification model with vM and vM-Fisher distributions

in [López-Cruz et al., 2015], where a filter-wrapper algorithm is applied to rank the variables

according to the MI between them and the class, and therefore, using the ranking provided

by the filter step, the variables are selected to induce a new classifier until the best model is

achieved.

We also use a filter-wrapper algorithm (see Section 3.4.1.1) at this point. The filter step is

based on the computation of the MI between each circular variable and the class, followed by

the ranking of the predictive variables according to their MI value. Since there is no equation

to compute the MI between circular and discrete variables, we approach the problem using

Monte Carlo methods, as in [López-Cruz et al., 2015]; we model the conditional density

functions of Θi|C = c as wC distributions. Hence

MI(Θi, C) ≈ 1

M

M∑
j=1

log
f̂Θi|c∗(j)

(
θ
∗(j)
i |c∗(j)

)
p̂
(
C = c∗(j)

)
f̂Θi

(
θ
∗(j)
i

)
p̂
(
C = c∗(j)

) , (5.8)

where M is the number of instances
(
θ
∗(j)
i , c∗(j)

)
sampled from f̂Θi|c (θi|c) p̂ (C = c), with

f̂Θi|c (θi|c) the fitted wC density function of the conditional density function of Θi given

C = c, and p̂ (C = c) the relative frequency of instances that belong to class c in the training

set.

The wrapper step consists in creating a new classifier by deciding whether or not to

include the predictive variables from the ranked list of the filter step. Each iteration of the

wrapper step induces a new classifier adding the next predictive variable from the list. This

step finishes when no accuracy improvement is achieved by including the next predictive

variable from the ranked list. This model is similar to the wCNB, but including only the

selected wC variables (set S) (Fig. 5.2) and therefore

p(c|θ) ∝ p(c|θS) = p(C = c)
∏
i∈S

fΘi|C=c(θi|c). (5.9)
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As for the wCNB, the wCsNB determines the class value c∗ for a new instance using a

maximum a posteriori decision rule

c∗ = arg max
c∈Λ(C)

p(C = c|ΘS = θS).

Likewise for Equation (5.7), we can express Equation (5.9) as

p(c|θS) =
p(C = c)

∏
i∈S αi,c∏

i∈S(1− βi,c)
,

where αi,c = 1
2π

(1−ε2i,c)
(1+ε2i,c)

and βi,c =
2εi,c cos(θi,c−µi,c)

(1+ε2i,c)
.

5.3.3 Wrapped Cauchy semi-naive Bayes

Usually, the assumption of conditional independence between predictive variables given the

class variable is dismissed. In Section 3.4.1.1 we state that the semi-naive Bayes classifier

considers dependencies between predictive variables.

Our proposal for this model, called wrapped Cauchy semi-naive Bayes (wCsmNB) classi-

fier, takes into account the possible dependence between predictive wC variables by introduc-

ing new features obtained as the Cartesian product of two of the original circular predictor

variables. Thus we work with a bivariate wC distribution. These new features remains

conditionally independent given the class variable.

Given Lk with k = 1, ..., T , representing the kth feature (original or new features)

p(c|θ) ∝ p(C = c)
T∏
k=1

fΘLk |C=c(θLk |c).

To determine those original variables that are candidates to create new features from the

Cartesian product between them, we develop an adaptation of the forward sequential selection

and joining (FSSJ) algorithm [Pazzani, 1998] described in Algorithm 5.1. It is important to

note that once the new features are created by joining two original features, these new features

cannot be used to create others. However, these new features can be separated in order to

use one of the two original features to create another new feature by joining with a different

original feature that had not yet been added to the model. This algorithm may result in

a selection of variables that provide the best achievable solution, before all of the original

variables are included in the model (Fig. 5.3).

Again, as for the previous models presented in this section, the wCmNB determines the

class value c∗ for a new instance using a maximum a posteriori decision rule

c∗ = arg max
c∈Λ(C)

p(C = c|Θ = θLk).
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Algorithm 5.1 Adaptation of the FSSJ algorithm of [Pazzani, 1998]

1: Let T be the variable list, initialized as T = ∅.
2: Given Θ1,Θ2, ...,Θn circular wC predictor variables from a variable list A, move the first

variable from A to T .
3: Move the next variable from A to T , considering:

� Joining the variable to another variable currently in T . If the latter variable was
previously joined to another variable from T , remove this from T and add it to A,
and consider adding it later.

� Add the variable as conditionally independent of the other variables given C to the
current classifier.

4: Repeat Step 3 until the best model is achieved

Figure 5.3: wCsmNB structure with four nodes from the original set of five predictive vari-
ables, from which p(c|θ) ∝ p(c)fΘ1,Θ2|c(θ1, θ2|c)fΘ3|c(θ3|c)fΘ5|c(θ5|c).

5.3.4 Wrapped Cauchy tree-augmented naive Bayes

Wrapped Cauchy tree-augmented naive Bayes (wCTAN) classifier is a variation of the TAN

classifier (Section 3.4.1.1) with the novelty of the allowance of the use of wC circular variables

for predictive features. wCTAN assumes that the class variable has no parents, and the rest

of the variables have at most one other variable as parent apart from C (Fig. 5.4).

The process for building a wCTAN is summarized in the following three steps:

� Step 1: The structure of the tree for predictive features is learned using Algorithm 5.2.

We use the conditional circular mutual information, denoted as MIC(Θi,Θj |C), which

is defined as

MIC(Θi,Θj |C) =
∑
c

MIC(Θi,Θj |C = c)p(C = c),

with

MIC(Θi,Θj |C = c) =

∫ π

−π

∫ π

−π
f(θi, θj |c) log

(
f(θi, θj |c)

f(θi|c)f(θj |c)

)
dθidθj .

where the marginal density functions given the class, f(θi|c) and f(θj |c), and the joint

density function given the class, f(θi, θj |c), have been previously estimated from data.

This structure learning algorithm (Algorithm 5.2) is based on score and search, where

structure learning is posed as an optimization problem, using a maximum weighted
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spanning tree algorithm (where the weights are given by the MIC), a variant of the

Chow Liu algorithm [Chow and Liu, 1968].

Algorithm 5.2 Adaptation of the Chow Liu algorithm of [Chow and Liu, 1968]

1: Given Θ1,Θ2, ...,Θn wC variables, estimate the bivariate joint density function f(θi, θj |c)
for all pairs of variables, and the marginals f(θi|c), for each c ∈ Λ(C), i, j = 1, ..., n

2: Using these, compute all conditional MIC(Θi,Θj |C) values, (i.e., the n(n − 1)/2 edge
weights) and order them

3: Assign the largest two edges to the undirected tree to be represented
4: Examine the next-largest edge, and add it to the tree unless it forms a loop, in which

case discard it and examine the next largest edge
5: Repeat Step 4 until n− 1 edges have been selected (and the spanning undirected tree is

finished)

For Step 1 in Algorithm 5.2, the estimate of the bivariate and marginal densities are

performed for each c using the methods explained in Section 5.2. Like the traditional

mutual information measure for linear variables, the MIC(Θi,Θj |C) denotes the entropy

reduction of Θi (Θj) when the value of Θj (Θi) is known given C, and represents the

weight that links Θi and Θj . Once we have learned the undirected structure, a root

node must be selected in order to determine the root of the tree by following the

structure learned by Algorithm 5.2. Depending on the selected root node and given the

undirected tree structure with n nodes, there are n possible resulting directed trees.

� Step 2: We add a class node C to the network structure. We connect this class node

to every other node with an arc from C (Fig. 5.4).

� Step 3: Finally, we complete the classification model with the estimation of the param-

eters for each node given its parent node(s).

Therefore the conditional probability of C given the predictors is

p(C = c|Θ = θ) ∝ p(C = c)fΘroot|C=c(θroot|c)
n∏

i=1,i6=root
fΘi|C=c,PaΘi

(θi|c, paθi),

where PaΘi is the wC parent of variable Θi and Θroot is the root node of the tree.

Similar to the approach used in the rest of the models presented in this Chapter, the

maximum a posteriori decision rule is used to determine the predicted class c∗

c∗ = arg max
c∈Λ(C)

p(C = c|Θ = θ).

5.4 Experimental results

In this Section, we report experiments carried out to show the behaviour of each proposed clas-

sification model in Section 5.3. We include the comparison among the four circular classifiers
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Figure 5.4: wCTAN structure with five nodes, from which p(c|θ) ∝
p(c)fΘ1|c,θ2(θ1|c, θ2)fΘ2|c,θ3(θ2|c, θ3)fΘ3|c,θ4(θ3|c, θ4)fΘ4|c(θ4|c)fΘ5|c,θ4(θ5|c, θ4). The asso-
ciated tree-structured Bayesian network has Θ4 as its root node.

and also with the Gaussian TAN classifier (GTAN) for continuous data, with the structure

learned with the algorithm in [Geiger and Heckerman, 1994] where predictor variables given

the class value are assumed to follow Gaussian distributions.

Simulating data that follows wC distributions is easy and computationally very fast.

Given the parameters, the “Circular” R package [Agostinelli and Lund, 2013] simulates wC

data by wrapping the simulation of a Cauchy distribution whose location parameter is the

same as the wC location parameter and the scale parameter is the negative logarithm of the

wC concentration parameter. If the wC concentration parameter is equal to 1, therefore the

value of the simulation will be the location parameter, whereas if the concentration parameter

is equal to 0, the simulation is performed from a Uniform distribution in [0, 2π).

In order to test the algorithms, we enforced dependence between nodes giving values of |ρ|
in [0.5, 1). The remaining parameters were assigned randomly to each node with −π < µ < π

and 0 < ε < 1. For each classifier, we simulated 10 datasets each with 1000, 200 and 50

instances and 3, 5, 10, 20, 30, 45, 65, and 100 wC predictor variables and a discrete class

variable with 3, 6, 10, 15 and 20 different labels, so we simulated 1200 different datasets

for each type of classifier. A 10-fold cross-validation was used to estimate the classification

accuracy. Results are shown in Table 5.1.

We also applied the non-parametric Friedman test to detect statistically significant dif-

ferences among our classification models as a whole set [Friedman, 1937]. When the null

hypothesis was rejected, we proceeded with post-hoc tests. We chose the Nemenyi test [Ne-

menyi, 1963], as suggested by [Demšar, 2006]. The significance level α for all tests was 0.05.

Since multiple classifiers are compared, it is useful to represent the results of the post-hoc

tests visually. The graph proposed by Demšar [Demšar, 2006] is a simple diagram to easily

represent these results. The top line is the axis on which we plot the average Friedman test

ranks of the classifiers. The lowest (best) ranks are to the right, and we therefore consider

the classifiers to the right as better. For the comparison results of all classifiers against each

other, those that are not significantly different (p-value ≥ 0.05 in the Nemenyi post-hoc test)

are connected.
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N
u
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b
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o
f
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ri

a
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s

Classifiers
wCNB wCsNB wCsmNB wCTAN wCTAN

3 0.735±0.108 0.755±0.097 0.754±0.109 0.743±0.108 0.352±0.171
5 0.866±0.069 0.877±0.069 0.879±0.066 0.876±0.074 0.409±0.174
10 0.976±0.015 0.948±0.021 0.983±0.011 0.974±0.018 0.491±0.159
20 0.998±0.001 0.970±0.017 0.998±0.001 0.998±0.001 0.610±0.122
30 0.998±0.001 0.976±0.015 0.999±0.001 0.999±0.001 0.674±0.116
45 0.999±0.001 0.980±0.013 0.999±0.001 0.999±0.001 0.790±0.091
65 0.999±0.001 0.984±0.013 0.999±0.001 0.999±0.001 0.824±0.076
100 0.999±0.001 0.989±0.012 0.999±0.001 0.999±0.001 0.873±0.062

Table 5.2: Mean ± standard deviation accuracy of wCNB, wCsNB, wCsmNB, wCTAN and
GTAN classifiers for different number of variables. Results are averaged from the classification
performance from Table 5.1 with 3, 6, 10, 15 and 20 different labels with 1000 instances.

5.4.1 Comparison of classification models

In this section, we compare the performance of the wCNB, wCsNB, wCsmNB and wCTAN

models, as well as the GTAN algorithm, which ignores the circular nature of the data.

Table 5.2 shows the mean± standard deviation accuracy for each classifier for different

number of variables. Each mean± standard deviation accuracy values was obtained from the

results of 50 independent 10-fold cross-validation procedures varying the number of labels of

the class variable (3, 6, 10, 15 and 20 different labels) with 1000 instances.

The statistical analysis after Friedman test rejection (p-value=0.00035) reveals (Fig. 5.5A)

that, varying the number of variables, the best classifiers are wCsmNB, wCTAN and wCNB,

with no statistically significant differences among them, whereas the GTAN classifier is the

worst, presenting significant differences with respect to the rest of the classifiers and demon-

strating that treating circular data as linear-continuous is not effective. The wCsNB also

presents statistical differences when compared with the wCsmNB classifier, which outper-

forms the wCsNB results. Nevertheless, there were no significant differences between the

wCsmNB and the rest of the circular classifiers (i.e., wCTAN and wCNB).

Performing the same statistical analysis with 50 and 200 instances yields similar results.

The Friedman test is rejected for both (p-value=0.00021 and p-value=0.00004, respectively).

The post-hoc analysis displays quite similar results to the 1000 instances one; in both cases,

there are no statistically significant differences among the wCsmNB, wCTAN and wCNB

classifiers, which are the best. Nevertheless, for 50 and 200 instances, there are no significant

differences among GTAN and wCsNB classifiers. Furthermore, as observed for the statistical

results with 1000 instances, there are significant differences between the wCsNB and the

wCsmNB classifier for the analysis with 50 instances, whereas for 200 instances, statistical

differences were seen between the wCsNB classifier and both the wCsmNB and the wCTAN.

We also calculated the mean accuracy for each classifier for different number of labels in

the class variable (see Table 5.3). Each mean accuracy value was obtained from the results

of 60 independent 10-fold cross-validation procedures varying the number of variables to be
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Figure 5.5: Demšar diagrams presenting the statistical comparison among wCNB, wCsNB,
wCsmNB, wCTAN and GTAN classification models for synthetic datasets with 1000 in-
stances. Those classifiers that are not connected show differences that are statistically signif-
icant (p-value < 0.05). The lowest rank classifiers are to the right side of the graph (i.e., they
can be considered the best). (A) Comparison varying the number of labels. (B) Comparison
varying the number of variables.
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b

el
s

Classifiers
wCNB wCsNB wCsmNB wCTAN wCTAN

3 0.973±0.042 0.970±0.034 0.979±0.035 0.976±0.043 0.709±0.061
6 0.940±0.083 0.939±0.054 0.952±0.069 0.946±0.074 0.526±0.097
10 0.910±0.118 0.901±0.089 0.921±0.106 0.918±0.106 0.384±0.124
15 0.884±0.146 0.862±0.117 0.906±0.128 0.884±0.148 0.311±0.096
20 0.858±0.167 0.839±0.134 0.872±0.171 0.860±0.164 0.253±0.098

Table 5.3: Mean ± standard deviation accuracy of wCNB, wCsNB, wCsmNB, wCTAN and
GTAN classifiers for different number of labels. Results are averaged from the classification
performance with 3, 5, 10, 20, 30 and 45 different variables with 1000 instances.

used: 3, 5, 10, 20, 30 and 45 with 1000 instances. We do not include the results of the

experiments with more than 45 variables due to the high mean accuracy values obtained in

most of the classifiers from Table 5.1, which would bias the results.

Since the Friedman test null hypothesis was rejected (p-value=0.00058), we performed

the corresponding Nemenyi post-hoc analysis. Statistical test results (Fig. 5.5B) reveal

that based on changing the number of labels, the best classifiers are wCsmNB, wCTAN

and wCNB, with no statistically significant differences between them. GTAN and wCsNB

classifiers are the worst, with no significant differences among them. GTAN shows significant

differences with the rest of classifiers, whereas wCsNB only presents significant differences

with the wCsmNB classifier.

The analysis for 50 and 200 instances again yielded quite similar results to those obtained

for 1000 instances. After Friedman test rejections (p-value=0.0325 for 50 instances, and p-

value=0.00066 for 200 instances), post-hoc tests for 200 instances reveal the same statistically

significant differences as for 1000 instances, where there is no statistical differences among the

wCsmNB, wCTAN and wCNB classifiers, which are the best. For 50 instances, wCsmNB,

wCTAN and wCNB are also the best classifiers together with the wCsNB, with no statistically

significant differences among them. Likewise, for 1000 instances, GTAN is the worst for the

analysis with 50 instances as well as the 200 instances, with no significant differences with

the wCsNB classifier.

Therefore, this suggested that it does not seem adequate to use Gaussian distributions
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for this kind of data.

5.5 Conclusions and future work

In this chapter, we showed the first set of supervised Bayesian classification models capable of

dealing with circular wC predictive variables. We presented four models and their algorithms,

designed to perform classification. We demonstrated using synthetic data that these models

could perform classification accurately given circular datasets. We also provided evidence of

the improvement of the circular classifiers over linear classifiers for datasets of circular nature

that follow wC distributions.

We performed statistical comparisons among the classifiers using synthetic data with 50,

200 and 1000 instances. Based on the results, we realised that the wCsmNB, the wCTAN

and the wCNB are the best classification models for circular data that follows wC distribu-

tions, with no statistically significant differences among them. The GTAN classifier never

outperformed any of the wC classifiers and it is therefore never recommended for this type

of data.

The models shown in this chapter are limited to no more than bivariate relationships. In

future work, we intend to develop multivariate models in order to extend the Bayesian network

classifiers for circular data to other more-sophisticated Bayesian network classifiers (like k-

dependence Bayesian network classifiers) capable of representing and taking into account

multivariate relationships between circular variables.



Chapter 6
Circular-linear dependence

measures under Wehrly–Johnson

distributions and their Bayesian

network application

6.1 Introduction

Several models exist for data consisting of circular and linear observations, most of which

focus on a circular-linear regression [Gould, 1969; Fisher and Lee, 1992; SenGupta, 2004].

In addition, Mardia and Sutton [1978] proposed a bivariate distribution that combines the

vM distribution with Gaussian distributions on the cylinder. Abe and Ley [2016] proposed

the WeiSSVM, a cylindrical distribution based on combinations of the sine-skewed vM dis-

tribution and the Weibull distribution. Furthermore, Johnson and Wehrly [1978] presented

circular-linear distributions, and proposed a method to obtain a bivariate circular-linear dis-

tribution with specified given marginal distributions. In this chapter, we prove that the

conditional distributions of a subfamily of Johnson–Wehrly family are well known and math-

ematically tractable.

Many studies have determined measures for the mutual dependence between linear vari-

ables [see Rényi, 1959a,b; Lloyd, 1962, among others], with the MI measure [Shannon, 1948;

Cover and Thomas, 2012] being one of the best known. This measure is based on the similar-

ity between the joint density function and the product of its marginal density functions. As

mentioned in Chapter 5, we developed the CMI measure [Leguey et al., 2016a]. However, this

measure is only applicable for circular variables with marginal distributions that follow wC

distributions, and its calculation has to be approximated using numerical methods. To the

best of our knowledge, there are no measures of MI for pairs of circular and linear variables.

Therefore, in this chapter we propose a circular-linear mutual information measure (CLMI)

of the dependence between a circular variable and a linear variable. Furthermore, for the

61
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case when the two variables are in the circular domain, we propose a CMI measure with no

constraints on the underlying circular distributions, and that can be expressed in a closed

form for a general family of bivariate distributions.

As stated in Chapter 3, one of the main areas in which mutual information measures are

applied is that of Bayesian networks. In this chapter, we develop a circular-linear Bayesian

network model with a tree structure that captures the relationship between circular and linear

variables. The model is based on the proposed CLMI and CMI measures, together with the

traditional MI of linear variables and the bivariate distribution proposed by Johnson and

Wehrly [1978].

Recently, the study of wind characteristics has become an important field owing to the

importance of the location and orientation of wind turbines for profitable wind energy utiliza-

tion. In this chapter, we use our proposed circular-linear tree-structured Bayesian network to

model the relationship between wind speed, wind direction, and other meteorological features

from various stations around Europe.

Chapter outline

Section 6.2 reviews the angular-linear Johnson–Wehrly bivariate distribution, and shows that

its conditional distributions are tractable and well known. Section 6.3 discusses the proposed

CMI and CLMI measures. Section 6.4 applies the measures presented in Section 6.3, and

presents the proposed circular-linear tree-structured Bayesian network model, as well as its

evaluation in synthetic domains. Section 6.5 compares the proposed model to a Gaussian

Bayesian network model and a discrete Bayesian network model over a real-world meteoro-

logical data set recorded from meteorological stations located in Europe. Lastly, Section 6.6

concludes the paper and discusses possible avenues for future work.

6.2 Circular-linear distribution of Johnson and Wehrly

In this section, we review the method proposed by Johnson and Wehrly [1978] to obtain

angular-linear bivariate distributions with arbitrary marginal distributions.

After reviewing the general form of the Johnson–Wehrly angular-linear distribution, we

propose a subfamily in which the conditionals and marginals are mathematically tractable.

6.2.1 Definition

Let fΘ(θ) and fX(x) be probability density functions on the circle and on the line, respec-

tively. Suppose that FΘ(θ) is the cumulative distribution function (CDF) of fΘ(θ) defined

with respect to a fixed, arbitrary origin, and that FX(x) is the CDF of fX(x). Then, the

distribution of Johnson and Wehrly [1978] is defined by the density

f(θ, x) = 2πg (2πFΘ(θ)− 2πqFX(x)) fΘ(θ)fX(x), (6.1)
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where 0 ≤ θ < 2π, x ∈ R, q ∈ {−1, 1} decides the positive or negative association between

the two variables, and g(.) is a density on the circle.

Let a random vector (Θ, X) have the density given by Equation (6.1). Then the marginal

distribution of Θ has the density fΘ(θ) and CDF FΘ(θ), while the marginal distribution of

X has the density fX(x) and CDF FX(x). However the conditional distributions are not

tractable in general.

6.2.2 Conditionals

Let a random vector (Θ, X) follow the distribution given by Equation (6.1). Then, changing

the variables U = 2πFΘ(Θ) and V = 2πFX(X), the density function of (U, V ) can be

expressed as

f(u, v) =
1

2π
g(u− qv),

where g(.) is a density on the circle and q ∈ {−1, 1}.
We propose the following subfamily of the family given by Equation (6.1) which has

tractable conditional distributions.

Theorem 6.1. Let a random vector (Θ, X) follow the distribution given by Equation (6.1)

with g(.) being the wC density given by Equation (2.4) with location parameter µg and

concentration parameter εg. Assume that U = 2πFΘ(Θ) and V = 2πFX(X). Then

U |X = x ∼ wC(2πqFX(x) + µg, εg) and V |Θ = θ ∼ wC(q(2πFΘ(θ)− µg), εg).

In particular, if Θ ∼ wC(µθ, εθ), X ∼ N(ιx, σ
2
x) and FΘ(θ) =

∫ t
0 fΘ(t)dt, then, it holds that

Θ|X = x ∼ wC(µ, ε),

where µ = arg(φ̂θ|x), ε = |φ̂θ|x|,

φ̂θ|x =
εge

(i(2πqFX(x)+µg−ν)) + εθe
(iµθ)

1 + εgεθe(i(2πqFX(x)+µg−µθ−ν))
,

and ν = arg{(1− εθe(−iµθ))/(1− εθe(iµθ))}.

See A.1 for the proof.

Therefore, the conditional of the circular variable, given the linear variable, follows a

known and tractable distribution (i.e. a wC distribution (Equation (2.4))).

The conditional X|Θ = θ itself does not follow any well-known distribution. However,

Theorem 6.2 implies that

2πΦ

(
X − ιx
σx

)
|Θ = θ ∼ wC(q(2πFΘ(θ)− µg), εg),

where Φ denotes the CDF of the standard Gaussian distribution N(0, 1), namely, Φ(x) =∫ x
−∞ φ(t)dt, where φ is the the Gaussian density with ιx = 0 and σx = 1. Since it is easy to
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evaluate the CDF of the standard Gaussian distribution numerically, numerical calculations

associated with the conditional distribution of X given Θ = θ can be conducted efficiently.

6.3 Measures of mutual dependence

Mutual dependence measures between two linear variables have been studied at length, in-

cluding the works of [Rényi, 1959b,a; Lloyd, 1962], among many others. In the case of linear

data, one of the best-known measures is mutual information [Shannon, 1948; Cover and

Thomas, 2012], which determines the similarity between the joint density and the product of

its marginal densities. For circular data, the CMI was developed recently by [Leguey et al.,

2016a]. However, the CMI is defined for circular variables only, each of which follows a wC

distribution and has a joint density that follows a bivariate wC distribution.

In this section, we redefine the CMI such that the measure can be used for any circular

variables. Then, we present a closed-form expression for the CMI for the general family of

bivariate circular distributions. This study is also the first to propose a mutual-information

measure for circular and linear variables, which we call CLMI.

6.3.1 Circular mutual information

Because the CMI presented in [Leguey et al., 2016a] has to be approximated using numerical

methods, we present a closed-form expression for CMI that does not rely on the underlying

distribution of the circular variables.

Let Θ,Ψ be a pair of circular variables. Then, the CMI between Θ and Ψ is defined by

CMI(Θ,Ψ) =

∫ 2π

0

∫ 2π

0
f(θ, ψ) log

{
f(θ, ψ)

f(θ)f(ψ)

}
dψdθ, (6.2)

where fΘ(θ) is the marginal density of Θ, fΨ(ψ) is the marginal density of Ψ, and f(θ, ψ) is

the joint density of (Θ,Ψ).

Following a similar method to that in Johnson and Wehrly [Johnson and Wehrly, 1978],

Wehrly and Johnson presented a general family for circular variables in [Wehrly and Johnson,

1980]. Here we consider the following subfamily with the joint density function

f(θ, ψ) = 2πδ(2πFΘ(θ)− 2πqFΨ(ψ))fΘ(θ)fΨ(ψ), (6.3)

where 0 ≤ θ, ψ < 2π, fΘ(θ) and fΨ(ψ) are any probability density functions on the circle,

FΘ(θ) and FΨ(ψ) are the CDFs of fΘ(θ) and fΨ(ψ), respectively, q ∈ {1,−1} decides the

positive or negative association between the two variables, and δ(ν) is the wC probability

density proposed in [Kato and Jones, 2015], with µδ as the location parameter and εδ as the

concentration parameter.

Assume that a random vector (Θ,Ψ) has the distribution given by Equation (6.3). Then

it holds that the marginal distribution of Θ has the density fΘ(θ) and the CDF FΘ(θ) and

that the marginal distribution of Ψ has the density fΨ(ψ) and the CDF FΨ(ψ). The bivariate
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wC distribution from Equation (5.1) proposed in [Kato and Pewsey, 2015] is a special case

of the Wehrly and Johnson general family [Wehrly and Johnson, 1980].

Theorem 6.2. Let (Θ,Ψ) have the distribution given by Equation (6.3). Then, the CMI

between Θ and Ψ defined in Equation (6.2) is given by

CMI(Θ,Ψ) = 2π

∫ 2π

0
δ(t) log{δ(t)}dt.

In particular, if δ is the wC density given in Equation (2.4), with location parameter µδ and

concentration parameter εδ, then

CMI(Θ,Ψ) = − log(1− ε2
δ). (6.4)

The proof of this theorem is given in A.2.

This CMI measure is expressed in a closed form. Therefore, it is computationally very

fast and can be used for pairs of variables that fit any circular distribution that allows the

calculation of the CDF.

In order to estimate εδ in Equation (6.4) which is unknown, we use an estimate from

[Kato and Pewsey, 2015] based on a sample of size N : {(θ1, ψ1), .., (θN , ψN )}, given by

ε̂δ =
1

N

| N∑
j=1

e(i(2πF̂Θ(θj)−(2πF̂Ψ(ψj)))| − |
N∑
j=1

e(i((2πF̂ (θj)+(2πF̂ (ψj)))|

 ,

where F̂Θ(θj) and F̂Ψ(ψj) denote the empirical CDFs of Θ and Ψ in the sample, respectively.

Considering the particular case where both variables follow wC distributions, as described

in Equation (2.4), the estimate of εδ simplifies to the correlation parameter ρ between Θ and

Ψ described in Equation (5.5).

6.3.2 Circular-linear mutual information

Following the development of the CMI, we next present the CLMI, which allows a closed-form

expression for the mutual-information measure for a general family of distributions.

Let Θ be a circular variable, and let X be a linear variable. Then, the CLMI between Θ

and X is defined by

CLMI(Θ, X) =

∫ ∞
−∞

∫ 2π

0
f(θ, x) log

{
f(θ, x)

fΘ(θ)fX(x)

}
dθdx, (6.5)

0 ≤ θ < 2π, x ∈ R,

where fΘ(θ) is the marginal density of Θ, fX(x) is the marginal density of X, and f(θ, x) is

the joint density of (Θ, X).
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Theorem 6.3. Let (Θ, X) have the distribution density of Equation (6.1). Then, the CLMI

between Θ and X, defined in Equation (6.5), is given by

CLMI(Θ, X) = 2π

∫ 2π

0
g(t) log{g(t)}dt.

In particular, if g is the wC density, as in Equation (2.4), with location parameter µg and

concentration parameter εg, then

CLMI(Θ, X) = − log(1− ε2
g). (6.6)

The proof of this theorem is given in A.3.

Because εg in Equation (6.6) is unknown in the usual settings, we need to estimate εg

in order to estimate the value of CLMI. Similarly to the CMI, an estimate of εg based on a

sample of size N : {(θ1, x1), .., (θN , xN )} is given by

ε̂g =
1

N

∣∣∣∣∣∣|
N∑
j=1

e(i(2πF̂Θ(θj)−2πF̂X(xj)))| − |
N∑
j=1

e(i(2πF̂Θ(θj)+2πF̂X(xj)))|

∣∣∣∣∣∣ ,
where F̂Θ(θ) and F̂X(x) are the estimated distribution functions of Θ and X, respectively. It

can be seen that ε̂g is a method of moments estimator of εg by noting that |E[e(i(2πFΘ(Θ)−2πFX(X)))]| =
εg and |E[e(i(2πFΘ(Θ)+2πFX(X)))]| = 0. Similarly to the CMI, the CLMI for the Johnson–

Wehrly family of distributions provided by Equation (6.1) is computationally very fast be-

cause it is expressed in closed form. In addition, it can be used to compute the mutual-

information measure between circular and linear variables without needing any assumptions

on their marginal distributions.

If we consider the particular case where Θ ∼ wC(µθ, εθ) and X ∼ N(ιx, σx), then the

estimate of εg simplifies to

ε̂g =
1

N

∣∣∣∣∣∣|
N∑
j=1

e(i(Φj−τj))| − |
N∑
j=1

e(i(Φj+τj))|

∣∣∣∣∣∣ ,
where Φj = 2πF̂Θ(θj) = 2 arctan

(
1+ε̂θ
1−ε̂θ tan

(
θj−µ̂θ

2

))
and τj = 2πF̂X(xj) = π erf

(
xj−ι̂x
σ̂x
√

2

)
,

where ε̂θ and µ̂θ are as in Section 2.1, ι̂x and σ̂x are as in Section 2.2, and erf is the Gauss

error function.

6.4 Circular-linear tree-structured Bayesian network learning

In this section, we apply the CLMI and the CMI measures presented in Section 6.3.

We use score-search (Section 3) for the structure learning in a Bayesian network with a

tree-structure. The importance of this application is that it allows the use of both linear and

circular variables to develop this kind of Bayesian network model.
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Our proposed algorithm (Algorithm 6.1) is based on the algorithm introduced by Chow

and Liu [Chow and Liu, 1968] to find a maximum weight spanning tree structure. The

weight between a pair of variables is measured as the CLMI, CMI, or MI between them,

depending on the nature of the pairwise joint densities. Note that the range of values for the

mutual-information measures is [0,∞).

Algorithm 6.1 Adaptation of the Chow–Liu algorithm

1: Given Θ1,Θ2, ...,Θn circular random variables and X1, X2, ..., Xm linear random vari-
ables,

(i) Estimate the parameters of all marginals f(θi) and of f(xi).

(ii) Estimate the dependence parameters εδ, γ, and εg of the joint density functions
f(θi, θj), f(xi, xj), and f(θi, xj), respectively, for all pairs of variables based on the
estimated parameters of the marginals.

2: Using these distributions, compute all values of CLMI(Θi, Xj), CMI(Θi,Θj), and
MI(Xi, Xj) (i.e. the (n+m)(n+m− 1)/2 edge weights), and order them.

3: Assign the largest two edges to the undirected tree to be represented.
4: Examine the next-largest edge, and add it to the current tree, unless it forms a loop, in

which case discard it and examine the next largest edge.
5: Repeat step 4 until n+m−1 edges have been selected (and the spanning undirected tree

is complete).
6: Choose a root node and follow the structure to create the maximum weight spanning

directed tree structure.

Given the undirected tree structure from Algorithm 6.1, there are n + m possible trees,

depending on the selected root node. Note that if the estimate of the parameters method

in Step 1 is performed via MLE, the generated maximum weight spanning directed tree is

also a maximum likelihood tree. Otherwise, while we can confirm that the resulting tree is a

maximum spanning tree, we cannot ensure that it is a maximum likelihood tree.

6.4.1 Experimental results

Owing to the properties explained in Sections 2.2.3.2, 5.2 and those well-known from the

Gaussian distribution [see Johnson et al., 1970; Tong, 1990; Kotz et al., 2004, for good

reviews] that make the structure-learning phase easier, the data used in the experiments are

simulated from Gaussian distributions and wC distributions. We generate 12250 different

simulated structures: 250 different structures for every combination of 3, 5, 7, 10, 15, 20,

and 30 linear Gaussian variables with 3, 5, 7, 10, 15, 20, and 30 circular wC variables (i.e.

49 combinations of variables). From each of these structures we simulate a data set with

N = 500 instances, where the parameters of the variables are assigned based on the uniform

distributions on the following ranges: −1000 < ι < 1000 and 0 < σ < 100 for the Gaussian

marginal distributions and −π < ι < π and 0 < ε < 1 for the wC marginal distributions. In

addition, to enforce the dependence between the parent and children nodes of the network, we

assign a correlation parameter between them as a uniform random value 0.5 < |ρ| < 1, with
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Table 6.1: Mean accuracy ± standard deviations of the simulation results for the circular-
linear tree-structured Bayesian network for different combinations of circular and linear vari-
ables.

C
ir

cu
la

r
va

ri
ab

le
s

Linear variables
3 5 7 10 15 20 30

3 0.710±0.191 0.723±0.185 0.703±0.185 0.691±0.191 0.697±0.194 0.710±0.192 0.689±0.208
5 0.744±0.173 0.741±0.169 0.774±0.166 0.749±0.172 0.736±0.169 0.749±0.170 0.766±0.163
7 0.804±0.146 0.780±0.144 0.791±0.139 0.796±0.140 0.791±0.136 0.811±0.137 0.788±0.147
10 0.830±0.119 0.828±0.123 0.825±0.120 0.808±0.125 0.831±0.115 0.817±0.123 0.837±0.122
15 0.858±0.096 0.854±0.090 0.866±0.094 0.867±0.092 0.863±0.096 0.860±0.095 0.863±0.095
20 0.879±0.077 0.884±0.075 0.886±0.079 0.876±0.084 0.879±0.078 0.882±0.079 0.878±0.084
30 0.900±0.061 0.901±0.060 0.910±0.067 0.903±0.062 0.899±0.060 0.900±0.065 0.904±0.060

q = 1. Then, we apply the structure-learning algorithm proposed in Algorithm 6.1 over the

generated data sets. To measure the accuracy of the results, we compare the misplaced arcs of

the learned structure to the initial simulated structure. The results of these experiments are

displayed in Table 6.1, where the results of the 49 combinations of variables are shown as mean

accuracy ± standard deviations. We refer to accuracy as the percentage of non-misplaced arcs

(i.e. how accurate a replicated structure is when compared against the original structure).

To better understand the algorithm behaviour when varying the number of circular and

linear variables, we apply the Friedman test [Friedman, 1937] (further information in Section

5.4) (significance level α = 0.05). Here, the null hypothesis of equality between the sets was

rejected (p-value ≤ 0.05). Therefore, we proceeded with the Nemenyi post-hoc test [Nemenyi,

1963](further information in Section 5.4) (significance level α = 0.05) to compare the sets of

results with each other.

Figure 6.1 provides the statistical test results using Demšar’s diagram [Demšar, 2006]

(further information in Section 5.4).

Analysing Table 6.1 and Figure 6.1(a), which shows the results of changing the number of

linear variables, we find that the Friedman test is not rejected (p-value = 0.61). This implies

that there is no statistically significant difference between the experimental results when the

number of linear variables varies. Nevertheless, Figure 6.1(b), in which the number of circular

variables varies, shows that the Friedman test is rejected (p-value = 0.000018). Furthermore,

the accuracy increases as the number of circular variables increases. The case of 30 circular

variables is the most accurate, and the case with 3 circular variables is the least accurate. In

addition, conducting Nemenyi’s post-hoc tests for every pair of cases, we find no statistically

significant differences between consecutive trios of cases (i.e. 3-5-7, 5-7-10, 7-10-15, 10-15-20,

and 15-20-30).

6.5 Real example

In this section, we apply the proposed structure learning for our circular-linear Bayesian

network to a meteorological data set. The data include circular and linear measurements

collected from seven wind stations located in Europe: Baltic Sea in Poland, Black Sea in Ro-
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Figure 6.1: Demšar diagram to compare the experimental results by varying the number of
(a) linear variables or (b) circular variables.

mania, Dwejra in Malta, Hegyhatsal in Hungary, Lampedusa in Italy, Pallas-Sammaltunturi

in Finland, and the M Ocean station in Norway (Figure 6.2). Each station records wind

direction and wind speed measurements. In addition, relative humidity, atmospheric tem-

perature, and atmospheric pressure are recorded at the Lampedusa station. These data are

available at the World Data Centre for Greenhouse Gases1 (WDCGG). In our data set, we

consider the records for the period 16 July 1992 to 29 December 2005. Since some stations

report more than one record per day, we calculate the mean value per day for linear mea-

surements and the mean direction per day for circular measurements. Thus, the data set has

n+m = 7 + 10 = 17 variables (i.e. wind speed and wind direction from every station, as well

as the additional three measures from the Lampedusa station) and N = 3301 instances.

Table 6.2 shows the names of the variables, the numbers of samples of the variables, and

the parameter estimates of the marginal distributions. Note that some circular variables are

close to circular uniformity because ε̂ ' 0.05. Owing to the nature of the data, which are

recorded over a long period, the circular data show low concentration parameters. The highest

concentration parameter is in the Dwejra station in Malta, where ε̂ = 0.39, with µ̂ = −0.77

(about 311 degrees). Note that Lampedusa station, which is close to Dwejra station, shows a

similar mean wind direction of µ̂ = −0.58 (about 327 degrees) and a concentration parameter

of ε̂ = 0.20. With regard to wind speed linear variables, note that the highest values are

shown in the M Ocean station and Baltic sea station, both of which are located in the sea

or on the coast of the Northern Europe territory.

The circular-linear tree-structured Bayesian network model (Figure 6.3) reveals the con-

ditional relationship between the variables measured from each meteorological station. Note

that most Lampedusa station nodes are connected to Dwejra station nodes. This is because

these two stations are geographically close together, as previously mentioned. The figure

1WDCGG URL: http://ds.data.jma.go.jp/gmd/wdcgg/
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Figure 6.2: European locations of the meteorological stations from the WDCGG data set
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Table 6.2: Station name, variable described, variable used in the model, number of non-
missing cases (Ni), circular mean µ̂ or linear mean ι̂ (where applicable), unit of measure,
concentration ε̂ or standard deviation σ̂ (where applicable), and type of variable (C: Circular;
L: Linear) for the 17 numeric variables of the WDCGG data set. The circular variables range
from −π to π.

Station Variable Name Ni µ̂/ι̂ Units ε̂/σ̂ Type

M Ocean
Wind direction stmWD 1288 -1.86 radians 0.06 C
Wind speed stmWS 1288 8.93 m/s 3.91 L

Pallas- Wind direction palWD 150 -2.76 radians 0.18 C
Sammaltunturi Wind speed palWS 150 6.4 m/s 3.21 L

Lampedusa

Wind direction lmpWD 446 -0.58 radians 0.20 C
Wind speed lmpWS 446 6.62 m/s 3.94 L
Relative humidity lmpRH 446 56.4 % 27.8 L
Atmospheric pressure lmpAP 446 1010 hPa 6.29 L
Atmospheric temp. lmpAT 446 19.59 Celsius 5.26 L

Hegyhatsal
Wind direction hunWD 557 -0.67 radians 0.07 C
Wind speed hunWS 557 3.82 m/s 3.20 L

Dwejra
Wind direction gozWD 157 -0.77 radians 0.39 C
Wind speed gozWS 157 2.79 m/s 2.17 L

Black Sea
Wind direction bscWD 550 0.47 radians 0.22 C
Wind speed bscWS 550 4.73 m/s 2.56 L

Baltic Sea
Wind direction balWD 1169 -1.77 radians 0.21 C
Wind speed balWS 1169 9.93 m/s 4.90 L

also shows other geographically close node connections, such as the arc between the Pallas-

Sammaltunturi and M Ocean stations, both located at the Northern Europe territory, and

the arc between the Black Sea and the Hegyhatsal stations, which are the two Eastern Eu-

rope stations. Therefore, it seems that our circular-linear model is capturing the dependence

relationships between the variables of the data set properly.

The Schwarz Bayesian information criterion (SBIC) [Schwarz, 1978] is a variation of the

BIC, presented in Section 3.3, where the lowest value is preferred. It is based on the likelihood

function with an overfitting penalty, and is defined as

SBIC = −2lnL̂+ ln(N)w,

where L̂ is the likelihood function value, N is the sample size, and w is the number of

parameters to be estimated in the model.

We use the SBIC to compare our model to a Gaussian Bayesian network model, where

we assume that all variables follow Gaussian continuous distributions. We also compare

our model to a discrete Bayesian network model using the discretization of variables. This

discretization is carried out by considering each variable as linear, and then creating 10

partitions of equal width (these vary for each variable, depending on their corresponding

domain). Note that for those cases where the variables are circular, the linear domain is

considered to be between −π and π.
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Figure 6.3: Circular-linear tree-structured Bayesian network for the WDCGG meteorological
data set. The names of the variables are shown in Table 6.2. The selected root node is
the wind direction at the M Ocean station. Dashed border node lines indicate circular
variables, while solid border node lines indicate linear variables. Nodes with the same colour
are recorded at the same station. Nodes with similar colour tones are located close to each
other geographically.

Table 6.3: SBIC comparison between the circular-linear Bayesian network model, Gaussian
Bayesian network model, and discrete Bayesian network model for the WDCGG data set.

Bayesian network
Model SBIC

Circular-Linear −5.9197 ∗ 10192

Gaussian −2.0896 ∗ 10169

Discrete −3.9851 ∗ 104
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Comparing the SBIC values in Table 6.3, we observe that our circular-linear model clearly

outperforms the other two models, which ignore the circular nature of the circular variables

and treat them as (linear) continuous or discrete variables.

6.6 Conclusions

Circular data are often observed together with linear data in the sciences. In this chapter, we

showed that the subfamily of Johnson–Wehrly bivariate distributions has tractable properties,

such as well-known marginals and conditionals and a closed-form expression for the estimators

of the parameters. We presented a CLMI measure, which measures the mutual dependence

between a circular variable and a linear variable by determining the similarity between the

joint density and the product of their marginal densities. We also extended the definition

of the CMI measure. We showed that the CLMI and CMI can be expressed in a simple

and closed form for our distributions for circular-linear data and bivariate circular data,

respectively.

In addition, we described experimental results that illustrate how to use these measures

(i.e., the CLMI and CMI) with the well-known MI between linear variables. To the best of

our knowledge, this study is the first to develop a circular-linear tree-structured Bayesian

network model that can capture the dependence between any possible pair of linear and

circular variables.

Then, we applied our tree-structured Bayesian network to a real data set in order to

model the relationships between circular and linear measurements recorded at seven mete-

orological stations located in Europe. Here, we observed that the proposed model captures

well the strong dependence between variables recorded in geographically close stations, and

outperforms other models, which assume that all variables are Gaussian or discrete.

Working with a combination of circular and linear statistics is a non-trivial task. Appli-

cations within Bayesian networks and machine learning research for graphical models open a

challenging field. As future work, we intend to adapt the proposed circular-linear graphical

model for supervised classification models. In addition, dropping the dimension constraint

(of one parent) in our model would be another interesting path to explore in order to extend

this model to a more general Bayesian network case.
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Chapter 7
Dendritic branching angles of

pyramidal cells across layers of the

juvenile rat somatosensory cortex

7.1 Introduction

As we explained in Chapter 4, pyramidal neurons represent the most abundant neuronal type

in the cerebral cortex. Their dendritic spines constitute the major postsynaptic elements of

cortical excitatory synapses and are fundamental to memory, learning, and cognition [Sprus-

ton, 2008; Yuste, 2010; DeFelipe, 2015]. Thus, our understanding of the synaptic organization

of the neocortex largely depends on the available knowledge regarding pyramidal cells. To

date several studies have shown that pyramidal cells sampled from different areas of differ-

ent species, including rodents and primates, present quantitative differences in the size and

complexity of the dendritic arbor and the density of spines [Elston et al., 2001; Jacobs et al.,

2001; Elston, 2003; Benavides-Piccione et al., 2006]. Also differences between layers and age

have been reported in various species [Larkman, 1991; Petanjek et al., 2007; Oberlaender

et al., 2011; Benavides-Piccione et al., 2012]. These variations reflect differences in cortical

information processing. For example, different branch structures are responsible for differ-

ent forms of processing within the dendritic tree before input potentials arrive at the soma

[reviewed in Stuart and Spruston, 2015]. Therefore, there may be a greater potential for

compartmentalization in areas that contain highly branched pyramidal cells than in areas

with less branched cells [reviewed in Elston, 2003].

Previous studies have identified several rules that seem to be common in dendritic ge-

ometry. For example, it has been proposed that geometric theory predicts bifurcations in

minimal wiring cost trees [Cuntz et al., 2008; Wen et al., 2009; Cuntz et al., 2010; van Pelt

and Uylings, 2011; Cuntz et al., 2012; Kim et al., 2012]. Also, it has been described that

dendrites usually branch when they are close to the soma to produce short segments, whereas

the segments that do not branch spread away from the soma [Samsonovich and Ascoli, 2003;

77
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López-Cruz et al., 2011]. These studies have shown that segment orientation is mainly con-

trolled by the orientation of the previous segments and that dendritic trees tend to first spread

rapidly when they are close to the soma and then, once they have reached a minimum size,

grow straight away from the soma. Additionally, the first bifurcation of a particular basal

tree is the widest, and subsequent bifurcations become progressively narrower [López-Cruz

et al., 2011; Bielza et al., 2014]. Moreover, the final bifurcation of a particular cortical region

is rather similar, regardless of the branch order of the dendrite [Bielza et al., 2014]. In this

chapter, we analyse the geometry of pyramidal cell basal arbors in different cortical layers of

the juvenile Wistar rat somatosensory cortex to determine if the above rules are applicable

to the different cortical layers. We used Wistar rats at postnatal day 14 since we intended

to integrate these data with other anatomical, molecular and physiological data that have

already been collected from the same cortical region of the P14 Wistar rats. The final goal

is to create a detailed, biologically accurate model of circuitry through layers II - VI in the

primary somatosensory cortex, within the framework of the BBP (see Section 4.3 for further

details of the BBP).

The research included in this chapter has been published in Leguey et al. [2016b].

Chapter outline

Section 7.2 includes information about the dendritic dataset, an overview of the used methods

for this study and information about the supplementary material not presented in this dis-

sertation. In Section 7.3 the results of the study are reported. Finally, Section 7.4 discusses

these results as well as some future work.

7.2 Materials and methods

7.2.1 Supplementary material

A website1 has been set up containing supporting information from the experiments reported

in this section. This includes the Supplementary Figures 1-7 with the remaining cases not

shown in the figures of this chapter, and the Supplementary Tables S1-S16 with the experi-

ment sample sizes and the performed statistical tests results.

7.2.2 Data

A set of 288 3D pyramidal neurons from six different layers of the 14-day-old (P14) rat hind

limb somatosensory (S1HL) neocortex was used for the analysis. Current methodological

limitations restrict us to the study of either the complete basal arbors (horizontal sections)

or truncated apical and basal arbors (coronal sections). For the sake of consistency with

our previous studies, we opted to study the basal dendrites. Thus, pyramidal neurons were

intracellularly injected in horizontal sections to allow the study of complete basal dendritic

1Supplementary material url: http://cig.fi.upm.es/suppmaterialLegueyetal
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arbors. Briefly, cells in layers II, III, IV, Va, Vb and VI were individually injected with Lucifer

Yellow, which was applied by continuous current until the distal tips of each dendrite fluo-

resced brightly. Following injections, the sections were processed with an antibody to Lucifer

Yellow to visualize the complete morphology of the cells (Figure 7.1A, 7.1B). Only neurons

that had an unambiguous apical dendrite and whose basal dendritic tree was completely filled

and contained within the section were included in the analysis (48 cells from each layer; 6

cells per layer, 6 layers, 8 animals). The Neurolucida package (MicroBrightField2) was used

to three-dimensionally trace the basal dendritic arbor of each pyramidal cell (Figure 7.1C).

Reconstruction of the same neurons has been used previously in another study for differ-

ent purposes [Rojo et al., 2016]. Further information regarding tissue preparation, injection

methodology, immunohistochemistry processing and 3D reconstruction is outlined in [Rojo

et al., 2016]. In the present study we measured the angle between two sibling segments orig-

inating from a bifurcation of the basal dendritic trees (Figure 1A). Given a bifurcation point

O with coordinates (x0, y0, z0) and two points A = (x1, y1, z1) and B = (x2, y2, z2) defining

the end points of the segments growing from the bifurcation, the angle φ between the vectors

OA and OB is given by

φ = arccos

(
OA ·OB

‖OA‖‖OB‖

)
,

where · represents the scalar product of the vectors and |u| is the magnitude of the vector

u. The above angles were grouped based on the number of bifurcations that take place in

the path that starts at the soma and ends at the angle, meaning that the first bifurcation

that takes place in a dendritic arbor would be “Order 1” (denoted by O1), the next possible

bifurcations would be “Order 2” (O2), etc. Branch order angles greater than O5 were not

included in the analysis due to the relatively low number (Supplementary Table S1).

7.2.2.1 Directional statistics

For this study, we use the vM and JP distributions to model the data. For graphical repre-

sentation we use the rose diagrams, circular histograms and circular boxplots. See Chapter

2 for further details.

Statistical tests

We used the following statistical tests.

Goodness-of-fit

In order to test the goodness-of-fit to a vM distribution, we used the Watson U2 test

adaptation for the vM distribution [Lockhart and Stephens, 1985] at a significance level of

α = 0.05 (Supplementary Tables S2-S3). In the case of the JP distribution, we tested the

goodness-of-fit using four tests: Rayleigh test [Watson and Williams, 1956], Kuiper test and

Rao spacing test [Batschelet, 1981; Upton and Fingleton, 1989; Mardia and Jupp, 2009] and

2MicroBrightField url: http://www.mbfbioscience.com/neurolucida
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Figure 7.1: (A) Low-power photomicrograph showing injected neurons in layers III from the
S1HL region of P14 rats, as seen in the plane of section parallel to the cortical surface. (B)
Higher magnification photomicrograph showing an example of a pyramidal cell basal dendritic
arbor. (C) Schematic drawing of the basal arbor of the pyramidal neuron shown in B. Angles
of different branch orders (shown on the right in different colors)were measured between
sibling segments. (D) Example of a rose diagram overlapped with a circular histogram of
the distribution of branching angles (in degrees) of the same branch order 1 in layer II. (E)
Circular boxplot of the angles showing the summary statistics of a dataset as arcs inside a
semicircle. The black dot is the median direction, the colored lines are the boxes (from the
lower quartile (Q1) to the upper quartile (Q3)), the black lines are the whiskers that depend
on the interquartile range (Q3-Q1) and the concentration parameter (κ) of the distribution,
and the colored dots are the outliers that do not belong to the box and whiskers interval.
The respective graphs correspond to the comparison between different branch order angles
in layer II. (F) Test-based diagram illustrating the pairwise comparisons of the mean angles
from datasets shown in D. Two nodes (each node is a dataset) between which there is no
statistically significant difference are connected, meaning that the null hypothesis of the
Watson nonparametric test cannot be rejected. Scale bar = 200 µm for A; 90 µm for B.
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Watson U2 test [Watson, 1961]. Results for the Watson U2 test are shown in Supplementary

Table S4. We also performed these tests at a significance level of α = 0.05.

Comparing the mean direction between datasets

We were also looking for differences between the datasets of angles. Therefore we per-

formed tests to compare the mean directions. In order to compare mean directions between

several datasets that fit the vM distribution, we used the Watson-Williams test [Watson and

Williams, 1956]. We used the Watson nonparametric test for pairwise comparisons [Wat-

son and Statisticien, 1983]. For datasets that fit the JP distribution, we used the Watson

nonparametric test [Watson and Statisticien, 1983] for both comparisons of mean directions

between several datasets and pairwise comparisons. We used a significance level of α = 0.05

for all the comparison of mean directions tests.

Test-based diagrams

In order to easily visualize the results of the Watson nonparametric pairwise comparison

tests, we built a graph (Figure 7.1F) where each node represents a dataset and two nodes

that are not statistically significantly different are connected by an edge. This kind of graph

has been used before in statistical tests to compare branching angles in cells from different

cortical areas [Bielza et al., 2014].

Software

In this Chapter, statistical analysis was performed with R3 software, and we used circular

statistics in the R package [Pewsey et al., 2013].

7.3 Results

We analyzed the branching angles of basal dendrites from 288 pyramidal neurons across

layers (II, III, IV, Va, Vb, VI) of the S1HL cortex of P14 rats (Figure 7.1A-C). The images

of the 288 reconstructed cells organized by layers are available as supplementary material

in [Rojo et al., 2016]. A visual inspection of the rose diagram and the circular histogram

(Figure 7.1D and Supplementary Figure 1) revealed that the distribution of the angles were

unimodal and symmetric around the mean in all branch orders. The goodness-of-fit test to a

vM distribution revealed that this distribution was not good enough to model the branching

angles of the same order (Supplementary Table S2), where 14 out of 30 cases were rejected. We

searched further for another distribution and found that the JP distribution was appropriate

for modelling these angles (Supplementary Table S4), where only two out of 30 cases were

rejected. There is a visually appreciable fitting improvement of the JP distribution over

the vM distribution (Supplementary Figure 1). The distribution of the angles was further

analyzed using the maximum tree order. In this case, the distribution was again found to be

unimodal and symmetric around the mean (Supplementary Figure 7). The goodness-of-fit

3R url: https://www.r-project.org
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test to a vM distribution revealed that this distribution was appropriate for modelling angles

of same maximum tree order (Supplementary Table S3).

Angles of different branch order

We used circular boxplots to compare angles of a different branch order in different layers.

We observed that the angles tend to decrease as the branch order increases in every layer

(Figure 7.1E and Supplementary Figure 2). We also found that the CIQR is the widest at

O1 and subsequent orders get narrower. The results of the statistical tests (Supplementary

Tables S5-S6) are illustrated in the test-based diagrams (Figure 7.1F and Supplementary

Figure 2).Statistically significant differences were found for the angles in the first orders, but

angles for higher orders were not significantly different.

Angles of different branch order originating from dendritic trees of similar

complexity

We compared angles of different branch orders within dendritic trees that were grouped by

the maximum tree order of their arbors. We compared the angles from dendritic trees of

the same complexity. Regarding the boxplot (Figure 7.2) and the statistical test results

(Supplementary Tables S7-S8) that are illustrated in the test-based diagrams, the analysis

revealed even more clearly what we observed without grouping by maximum tree order:

there are statistically significant differences between the angles of first orders and there are

no significant differences in higher orders. Therefore, by grouping by maximum tree order, we

were able to conclude that the branching angles of lower orders are wider than the branching

angles of higher orders.

Angles of the same branch order originating from dendritic trees of different

complexity

We compared the bifurcation angles of the same branch order that belong to trees of varying

complexity. We observed in the boxplots (Figure 7.3) that angles are wider for more complex

arbors. This behavior is similar in all cortical layers. However, there is no statistically

significant difference (Supplementary Tables S9-S10) between angles of the same branch order

that belong to arbors with a maximum tree order greater than three, and the maximum tree

order is equal to three in most cases. Additionally, we compared the final branching angles

from trees of varying complexity, which, from the boxplots (Supplementary Figure 5), we

found to be very similar in all cases. The statistical tests (Supplementary Tables S15-S16)

reveal that there are no differences between the final angles of different branch order, and, as

we observed graphically in the test-based diagrams, this behavior is the same for every layer.
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Figure 7.2: Left column: Diagram showing different dendritic arbors of varying complexity
(different dendritic trees were grouped according to their maximum branch order). Therefore
arbors with only the first bifurcation (O1) would be denoted as “T1” arbors, arbors with a
maximum branching order equal to 2 as “T2”, etc. Middle column: Circular boxplots showing
comparisons of angles of different branch orders from dendritic trees of same maximum tree
order from layer II. Right column: The test-based diagrams corresponding to the pairwise
statistical test results from Supplementary Tables S7-S8 are illustrated next to each graph.
See Supplementary Figure 3 for the remaining layers.
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Figure 7.3: Circular boxplots showing comparisons of angles of branch order 1 from dendritic
trees of different maximum tree order. The test-based diagrams corresponding to the pairwise
statistical test results from Supplementary Tables S9-S10 are illustrated next to each graph.
See Supplementary Figure 4 for the remaining branch orders.
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Angles of different cortical layers

Finally, we compared angles between layers (II, III, IV, Va, Vb, VI). As shown in Figure

7.4, angles of the same branch order are similar between layers. Nevertheless, we found

that the closer the layer in which the neuron is located is to the pia, the less concentrated

the distribution of the angles. The statistical test results (Supplementary Tables S11-S12)

illustrated in the test-based diagrams (Figure 7.4) showed that there were no statistically

significant differences between the angles of the same order from different layers, with the

exception of layer II at O1, which did exhibit statistically significant differences. Furthermore,

O1 branching angles from layer II are wider than O1 branching angles from the other layers.

We also analyzed the differences between branching angles from different layers grouped by

trees of similar complexity. An example of the boxplots (Supplementary Figure 6) showed

that the distribution of the angles is again less concentrated the closer the layer is to the pia.

Similarly, statistical test results (Supplementary Tables S13-S14) showed that there were no

statistically significant differences between the branching angles from different layers of the

same order in arbors of the same complexity (as also illustrated in the test-based diagram).

7.4 Discussion

The main findings of this study are three: 1) the first bifurcation of a particular basal tree is

the widest, and subsequent bifurcations become progressively narrower in all cortical layers;

2) the final bifurcation angle of a dendritic tree is similar regardless of its complexity; and 3)

angles of the same branch order are similar to each other in the different cortical layers. We

used circular distributions to model the branching angles in 3D reconstructed basal arbors.

Previous studies showed that the vM distribution seems to be suitable for modelling the angles

generated from dendritic arbor bifurcations in neurons from different cortical areas [Bielza

et al., 2014]. Here we reveal that the vM distribution is also suitable for modelling angles in

neurons from different layers when grouped according to their maximum tree order, whereas

angles grouped just by branch order fit the Jones-Pewsey distribution (a generic circular

distribution of which the vM distribution is one instance). Importantly, the results of this

and a previous study regarding the geometry of pyramidal cell basal arbors in different cortical

areas of adult mice [Bielza et al., 2014] are similar: the first bifurcation of a particular basal

tree is the widest and subsequent bifurcations become progressively narrower in both studies.

This suggests that the first orders (1 and 2) determine the space that the growing dendritic

tree is to fill. In addition, the final bifurcation of a particular tree is rather similar, regardless

of the maximum tree order of the arbor. Furthermore, they found, in mice, that 90% of these

angles were within a range of 20− 97◦ (per cortical area, mean angles ranged from 59− 687◦

and concentrations ranged from 5−87◦). These are similar values to the results of this study

(angles ranged from 10− 1047◦ per cortical layer, mean angles ranged from 41.82− 64.177◦

and concentrations ranged from 4.71−9.62). We should stress that these rules were observed

regardless of the differences in the size and complexity of the basal dendritic arbors of these

cells between the cortical areas of the mice [Bielza et al., 2014] or between the cortical layers
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Figure 7.4: Circular boxplots showing comparisons of angles of same branch order in different
layers. The test-based diagrams corresponding to the pairwise statistical test results from
Supplementary Tables S11-S12 are illustrated next to each graph.
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of the rats [Rojo et al., 2016]. Thus, these rules seem to be a general organizational principle

in the design of pyramidal cell architecture, despite the different functional specializations of

cortical layers and areas and species. In the mouse cerebral cortex, however, it was observed

that the mean final branch order angle was remarkably different in the seven examined

cortical regions [Bielza et al., 2014]. In general, cortical regions with larger dendritic trees

had smaller final bifurcation angles. However, no significant differences were found between

the branch order angles of pyramidal cells across layers of the juvenile rat somatosensory

cortex despite the systematic variation in the basal dendritic pattern [Rojo et al., 2016].

Briefly, cells became larger and progressively more complex in their branching structure from

superficial to deeper layers, except for those in layer IV, which were the simplest cells. Taken

together, these results suggest that the final branch order angle may constitute an area-

specific feature. Further studies of the different dendritic compartments (e.g. apical arbor),

cortical regions and species would need to be performed to make such a generalization. In

addition, since we examined juvenile rats, it would be interesting to analyze if branching

angle structure in the adult rat cortex remains the same as in the juvenile rats in order to

make species comparisons. Clearly, it is of critical importance to determine these rules since

general principles of cortical synaptic connections also exist. Therefore, the integration of

the morphological rules of pyramidal cells with the principles of their synaptic connection is

fundamental in order to gain a better understanding of the design of cortical circuits. For

instance, most excitatory, glutamatergic synapses on pyramidal neurons are established with

their dendritic spines, whereas most inhibitory GABAergic synapses are established mainly

in the dendritic shafts, but the vast majority of synapses are established on the dendritic

spines [reviewed in DeFelipe and Fariñas, 1992], the length of which is typically < 2µm, (e.g.,

[Ballesteros-Yáñez et al., 2006; Benavides-Piccione et al., 2012]). Therefore, differences in the

complexity, dendritic length and dendritic spine density of the dendritic tree between layers

reflect differences in the total number of excitatory and inhibitory synapses in the pyramidal

neurons. However, the fact that no significant differences were found between the branch

order angles of pyramidal cells across layers suggests that there is some predictability in the

synaptic connections of pyramidal cells in all cortical layers that is independent of the total

number of synaptic inputs. Thus, the variations in pyramidal cell structure indicate that

the cortical circuits in which these cells participate are likely to be characterized by different

functional capabilities (integration of excitatory and inhibitory synapses). However, we do

not know whether the branch angles have a significant direct impact on signal processing per

se. Computational simulations performed by Ferrante et al. [Ferrante et al., 2013] have shown

that minor changes in dendritic branch-point morphology of CA1 apical trees of pyramidal

cells can lead to major modifications in the integrative properties of oblique dendrites. In

this regard, further computational modelling studies could also contribute towards attempts

to predict the biophysical consequences of varying branch angles of the basal dendrites from

the first (the wider) to the subsequent bifurcations which become progressively narrower.

A further point to note is the fact that the structure between the branch order angles of

pyramidal cells is unchanged across layers, which supports the idea that the factors that
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intrinsically regulate dendritic branching development are probably related to the rules that

determine the general connectivity of the pyramidal cell. More specifically, our results seem

to indicate the existence of spatial synaptic connectivity rules of pyramidal neurons which

are constrained by the relatively narrow value windows of the bifurcation angles. Finally, the

computational attributes of pyramidal cells do not only depend on their basal dendritic arbors,

but also on the structure of their apical dendrites. Thus, we are planning to address some of

these questions by analyzing the apical arbor in the near future. Additional studies in other

species/cortical areas and ages are necessary to further elucidate the generally applicable and

specific rules governing the geometry of cortical pyramidal cells.



Chapter 8
Bayesian network-based circular

classifiers for dendritic branching

angles of pyramidal cells

8.1 Introduction

As stated in Chapters 4 and 7, the dendritic bifurcation angles produced by the branch of

the dendrites are an important part of the geometry of pyramidal cell arbors. Understanding

and modelling them is challenging but crucial for advances in neuroscience to replicate brain

functioning and structure.

Predicting which layer a neuron belongs to is an important task to help understand any

neural circuit, and it represents part of the picture regarding the identification and charac-

terization of all its components. To the best of our knowledge, there is no any supervised

classification model that predicts the layer using circular predictive variables. Thus, in this

Chapter we use the real neuromorphological dataset obtained from juvenile rat somatosen-

sory cortex cells introduced in Chapter 7, where we measure the bifurcation angles of the

dendritic basal arbors. Here, we use the classification models for circular data presented in

Chapter 5 to predict which layer a given neuron belongs to, i.e., layers II, III, IV, Va, Vb or

VI.

Chapter outline

Section 8.2 addresses the real-world neuromorphology data problem using the wrapped Cauchy

classifiers. In Section 8.3 the conclusions are reported.

8.2 Results

In this Section, we apply the GTAN and the classification models presented in Chapter 5 to

the dataset used in Chapter 7. This consists of 3027 combinations of dendritic bifurcation

89



90 CHAPTER 8. BN CLASSIFIERS FOR DENDRITIC BRANCHING ANGLES

Figure 8.1: (A) Low-power photomicrograph showing injected neurons in layers III from the
S1HL region of P14 rats, as seen in the plane of section parallel to the cortical surface. (B)
Higher magnification photomicrograph showing an example of a pyramidal cell basal dendritic
arbor. Scale bar (in B) = 200µm in A; 90µm in B. Adapted from [Leguey et al., 2016b].

Bifurcation Order Variable Number of angles µ̂ (in radians) ε̂

1 Θ1 1607 1.02 0.90
2 Θ2 2072 0.90 0.91
3 Θ3 1773 0.82 0.92
4 Θ4 998 0.78 0.92
5 Θ5 382 0.77 0.92
6 Θ6 106 0.81 0.92

Table 8.1: Characteristics of the six different branching orders shown in Fig. 8.2.

angles coming from the basal arbors of 288 3D pyramidal neurons in layers II, III, IV, Va,

Vb and VI (48 neurons per layer) of the P14 rat S1HL neocortex, published in [Leguey et al.,

2016b] (Fig. 8.1).

We model the bifurcation angles produced by the splitting of the dendritic segments of

basal dendritic trees. Following the notation used in Chapter 7, Θ1 will correspond to the

first bifurcation angle (Order 1) generated for the first split of the dendritic segments starting

from the soma. The second angle generated by the next consecutive splits will be represented

as variable Θ2 (Order 2), etc. (Fig. 8.2). Angles of orders higher than six which were

relatively scarce were not included in the model. Therefore, following the notation stated in

Chapter 5, the vector of circular predictor features is Θ = (Θ1,Θ2,Θ3,Θ4,Θ5,Θ6) and the

discrete class variable C is de layer, which takes values in the set Λ(C) =(II, III, IV, Va, Vb,

VI). For each set of angles of the same order, a wC distribution was fitted (Table 8.1). We

performed a goodness-of-fit test by transformation on the circle of the variables into circular

uniform variables via 2πF (Θ1), .., 2πF (Θ6), where F is the cumulative distribution function,

and applied Kuiper’s test [Kuiper, 1960] for circular uniformity with a significance level of

α = 0.05.

Note that in Table 8.1 the circular mean tends to decrease as the order increases. A

neuroscientific explanation for this behaviour relates to the fact that it is the first bifurcation

orders that determine the volume of space to be filled by the dendritic trees [Leguey et al.,



8.2. RESULTS 91

Figure 8.2: Angles of different branch orders (from 1 to 6) measured between sibling segments
in a dendritic arbor. The dendritic arbor has a maximum branching order of (A) 2 (B) 3 (C)
4 (D) 5 (E) 6.
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Classifiers
wCNB wCsNB wCsmNB wCTAN wCTAN

2 0.182 ± 0.034 0.184 ± 0.055 0.182 ± 0.039 0.182 ± 0.034 0.158 ± 0.038
3 0.191 ± 0.035 0.219 ± 0.035 0.203 ± 0.057 0.205 ± 0.057 0.113 ± 0.030
4 0.222 ± 0.016 0.224 ± 0.034 0.239 ± 0.057 0.222 ± 0.046 0.212 ± 0.081
5 0.196 ± 0.091 0.235 ± 0.127 0.239 ± 0.063 0.189 ± 0.055 0.128 ± 0.131
6 0.220 ± 0.113 0.270 ± 0.094 0.290 ± 0.137 0.240 ± 0.126 0.047 ± 0.069

Table 8.2: Mean ± standard deviation of layers II, III, IV, Va, Vb and VI classification
accuracy results of the battery of classifiers for each type of classifier applied over the dataset
of dendritic bifurcation angles coming from the basal arbors of 288 3D pyramidal neurons of
P14 rat S1HL neocortex.

2016b]. This regulates the dendritic branching development rules that seem to determine the

synaptic connectivity of pyramidal neurons. We also observe that the concentration values

are high (around 0.91) and quite similar in every bifurcation order. This fact demonstrates

that the dendritic structure (in terms of bifurcation angles) is determined by the location

parameter.

Since not all dendritic arbors present angles of all orders, one classifier for the whole

dataset is not suitable. Therefore, for each classification model proposed in this paper, we

created a battery of five classifiers depending on the maximum bifurcation order of the arbor,

when this is higher than 1 (Fig. 8.3). Before predicting class c∗, we have to check the

maximum bifurcation order of the instance to be classified. For the wCTAN and GTAN

structures (which require a root node in addition to the class node) we select as root node Θ2

for every classifier of the battery. We performed 10 fold cross-validation procedures in order

to obtain the mean classification accuracy values for each classifier and maximum bifurcation

order (Table 8.2).

We observe in Table 8.2 that the wCsNB classifier leads to the best results for arbors

with a maximum branching order of Θ2 and Θ3. Furthermore, for arbors with a maximum

branching order of Θ4, Θ5 or Θ6, the wCsmNB seems to perform best in terms of classifica-
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Figure 8.3: Bayesian network classifier structures associated with the battery of classifiers
depending on the maximum bifurcation order, for each type of classification algorithm: (A)
wCNB, (B) wCsNB, (C) wCsmNB, (D) wCTAN, (E) GTAN.
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Figure 8.4: Demšar diagram for the comparison of wCNB, wCsNB, wCsmNB, wCTAN and
GTAN classification models using Friedman test and Nemenyi post-hoc test.

tion accuracy. The wCTAN and wCNB classifiers also report acceptable values in comparison

with the highest ones for each maximum bifurcation arbor, although the wCsNB or wCsmNB

classification models always perform better for this neuronal dataset. Comparing the accu-

racy results with the random label assignation (i.e., 1/6 = 0.16), we observe that all of these

results are over 0.16. In addition, for every case, the GTAN classifier exhibits the lowest

accuracy values, below 0.16 except for Θ4. This classifier was especially inaccurate for arbors

that had maximum branching order of 6; the mean accuracy value was 0.047 for such cases.

We applied the Friedman non-parametric test (see Section 5.4 for detailed information)

to detect statistically significant differences in the results provided by our algorithms. Since

the null hypothesis was rejected (p-value = 0.004), we used Nemenyi post-hoc test (further

information in Section 5.4) to determine which pairwise of algorithms was the cause of the

Friedman test rejection. In Figure 8.4, the statistically significant differences between our

classifiers are represented as a Demšar diagram (see Section 5.4 for further information). We

noted that there are no statistically significant differences between our classification algo-

rithms except for two cases; between the wCTAN and wCsNB and between GTAN and the

wCsmNB.

Therefore, we can conclude that (i) apart from the difficulty identifying the layer a case

belongs to, it seems reasonable to use any of our four proposed circular classifiers for this

neuronal dataset, since there are no any statistically significant differences between them and

(ii) GTAN is never recommended.

8.3 Conclusions

In this chapter, we evaluated a battery of classifiers using a real-world neuroscience dataset for

each of the classifiers presented in Chapter 5, in order to predict the layer that an instance

belongs to. Results revealed that all our four classification models are suitable. Perform-

ing Friedman test and its corresponding Nemenyi post-hoc test after rejection, we realised

that there are no any statistically significant differences between wCNB, wCsNB, wCsmNB

and wCTAN for this dataset. Wrapped Cauchy classifiers always outperformed their linear

(Gaussian) counterparts.

Regarding the limitations of our model, stated in Chapter 5, it seems interesting to repeat

this experiment and compare the results using an extension of these models, able to consider

the (possible) multivariate relationships between the bifurcation angles from different orders.
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Chapter 9
Conclusions and future work

This chapter summarizes the most important contributions and describes some future work

and open issues. The chapter also shows a list of publications and submissions produced in

this research.

Chapter outline

Section 9.1 summarizes the main contributions and conclusions reported in this dissertation.

Section 9.2 includes the list of publications and current submissions produced during this

research. Finally, in Section 9.3 the future work and open issues are discussed.

9.1 Summary of contributions

The contributions are organized in two parts:

� Part III includes our contribution to Bayesian networks and directional statistics. In

Chapter 5 we present a set of supervised classification models capable of dealing with

circular wrapped Cauchy predictive variables. These are the wrapped Cauchy naive

Bayes, the wrapped Cauchy selective naive Bayes, the wrapped Cauchy semi-naive

Bayes and the wrapped Cauchy tree-augmented naive Bayes classifiers. The chapter

details the four classification models and describes the experimental process performed

to evaluate their behaviour. We find that given circular datasets these wrapped Cauchy

classifiers perform classification accurately. We also demonstrate that these circular

classifiers outperform linear classifiers for datasets of circular nature that follow wrapped

Cauchy distributions. Based on the conducted statistical tests, the wrapped Cauchy

naive Bayes classifier, wrapped Cauchy semi-naive Bayes classifier and wrapped Cauchy

tree-augmented naive Bayes classifier outperform the results obtained for the wrapped

Cauchy selective naive Bayes with no statistical differences among them.

In Chapter 6 we go one step further to combine circular variables with linear variables.

In this chapter, we present the circular-linear mutual information measure and extend
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the definition of the circular mutual information measure. We show that these measures

can be expressed in a simple and closed form. The chapter describes the experimen-

tal process, where we illustrate an application of these measures in a Bayesian network

model. This model is tree-structured and is capable to capture the dependence between

any possible pair of linear and circular variables. In this chapter, we also apply this

circular-linear Bayesian network model to the study of the relationship between several

meteorological variables with circular and linear nature recorded in Europe. We demon-

strate that our proposal outperforms other models, which assume that all variables are

Gaussian or discrete.

� Part IV includes our contribution to neuroscience. In particular, this part is focused on

the basal dendritic structure of pyramidal cells (i.e., neuron morphology). The studies

are conduced over a set of 288 pyramidal neurons from six different layers of the 14-day-

old rat hind limb somatosensory neocortex. In Chapter 7 we use circular distributions

to model the branching angles in 3D reconstructed basal arbors. We show that the

von Mises distribution is suitable to model angles from the dendritic bifurcations in

neurons from different layers when grouped according to their maximum arbor order.

Nevertheless, when the branching angles are grouped by bifurcation order the von Mises

distribution is not suitable to model them, whereas the Jones-Pewsey distribution is.

This chapter also shows, that concurring with previous studies in mice [Bielza et al.,

2014], the first bifurcation of a particular basal arbor is the widest and subsequent

bifurcations become progressively narrower (i.e., the first orders (1 and 2) determine

the space that the growing dendritic arbor is to fill). The results reported in this study

also suggest that cells become larger and progressively more complex in their branching

structure from superficial to deeper layers, except for those in layer IV, which were

the simplest cells. Furthermore, our results seem to indicate the existence of spatial

synaptic connectivity rules of pyramidal neurons that are constrained by the relatively

narrow value windows of the bifurcation angles.

In Chapter 8 we apply the classification models presented in Chapter 5 over the set

of dendritic bifurcation angles studied in Chapter 7. In this chapter, we model the

branching angles of the basal dendrites from pyramidal neurons using the wrapped

Cauchy distribution. We apply the wrapped Cauchy classifiers to predict which layer a

neuron belongs to, helping to understand any neural circuit. Owing to data nature, we

perform classification with a battery of classifiers grouping the branching angles by its

maximum dendritic arbor order. The statistical tests results performed for this study

show that all the four classification models outperform their linear counterparts and

are suitable to identify the layer that a neuron belongs to, based on its basal dendritic

bifurcation angles.

� Following the above conclusions, we achieve the preliminary objectives of this disser-

tation listed in Chapter 1. Therefore, we verify the original hypotheses that motivate

this work:
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– We demonstrate that Bayesian network models can be improved using directional

statistics techniques to deal with circular variables.

– We develop a model capable to predict the cerebral cortex layer of a neuron given

the information of its basal dendritic branching angles.

9.2 List of publications

The conducted research for this dissertation has produced to the following dissemination

results:

Peer-reviewed JCR journals

� C. Rojo, I. Leguey, A. Kastanauskaite, C. Bielza, P. Larrañaga, J. DeFelipe, and R.

Benavides-Piccione. Laminar differences in dendritic structure of pyramidal neurons in

juvenile rat somatosensory cortex. Cerebral Cortex, 26(6):2811-2822, 2016.

� I. Leguey, C. Bielza, P. Larrañaga, A. Kastanauskaite, C. Rojo, R. Benavides-Piccione

and J. DeFelipe. Dendritic branching angles of pyramidal cells across layers of the

juvenile rat somatosensory cortex. Journal of Comparative Neurology, 524(13):2567-

2576, 2016.

� P. Fernandez-Gonzalez, R. Benavides-Piccione, I. Leguey, C. Bielza, P. Larrañaga, and

J. DeFelipe. Dendritic branching angles of pyramidal neurons of the human cerebral

cortex. Brain Structure and Function, 222(4):1847-1859, 2017.

� I. Leguey, C. Bielza and P. Larrañaga. Circular Bayesian classifiers using wrapped

Cauchy distributions. Submitted, 2017.

� I. Leguey, P. Larrañaga, C. Bielza and S. Kato. A circular-linear dependence measure

under Johnson–Wehrly distributions and its application in Bayesian networks. Submit-

ted, 2017.

� I. Leguey, R. Benavides-Piccione, C. Rojo, P. Larrañaga, C. Bielza and J. DeFelipe.

Patterns of dendritic basal field orientation of pyramidal neurons in the rat somatosen-

sory cortex. Submitted, 2018.

Communications

� I. Leguey, C. Bielza and P. Larrañaga. Tree-structured Bayesian networks for wrapped

Cauchy directional distributions. In: Advances in Artificial Intelligence, Proceedings

of the 17th Conference of the Spanish Association for Artificial Intelligence, CAEPIA,

volume 9868 of Lecture Notes in Artificial Intelligence, pages 207-216, Springer, 2016.
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� I. Leguey, S.Kato, C. Bielza and P. Larrañaga. Hybrid mutual information. In: Ad-

vances in Directional Statistics, ADISTA Workshop, Rome, 2017. 2nd best poster

award.

9.3 Future work

This section summarizes the future work and open issues of the research conducted in this

dissertation. Detailed discussions can be found in the specific section of each chapter.

In this dissertation, as part of the contributions to Bayesian networks and directional

statistics, we propose four supervised classification wrapped Cauchy classifiers in Chapter

5. The models presented are limited to no more than bivariate relationships. Therefore to

extend these circular classification models to other more sophisticated, like k-dependence

wrapped Cauchy classifiers, capable to represent and take into account multivariate relation-

ships between circular variables is an open issue.

We also intend to extend our work presented in Chapter 6 and adapt the proposed circular-

linear graphical model to supervised classification models. Furthermore, the constraint di-

mension of the model to one parent is another interesting task to develop, extending this

model to a more general case that allows more than one parent per node. This is a difficult

task owing to the non-closed nature of the circular families that are known to date. There-

fore, the development of a family of multivariate circular distributions whose marginals and

conditionals belong to the same family, is also a challenge.

Regarding to the applications in neuroscience developed in this dissertation, in Chapter 7

we study and model the branching angles of the basal dendritic arbors of pyramidal neurons.

We find that the final branch order angle may constitute an area-specific feature. Never-

theless, further studies of the different dendritic compartments (e.g., apical arbor), cortical

regions, and species would need to be performed to make such a generalization. In addition,

for this experiment we examined juvenile 14-days-old rats, therefore it would be interesting

to analyze if branching angle structure in the adult rat cortex remains the same as in the

juvenile rats in order to make species comparisons.

In Chapter 8 we classify the pyramidal neurons regarding to their branching angles of the

basal dendritic arbors. Since the models used for this classification are those presented in

Chapter 5, it would be interesting to extend this analysis using circular classification models

capable to deal with multivariate relationship between the variables.

The basal dendritic arbors play an important role on the pyramidal neurons characteri-

zation. Additional studies to make further on this issue are critical. For example, we intend

to study the orientation of the basal dendrites of pyramidal neurons in order to find whether

nearby neurons present common basal dendritic growing orientation.

Furthermore, the computational attributes of pyramidal cells depend not only on their

basal dendritic arbors, but also on the structure of their apical dendrites. Thus, we intend to

address some of the open issues in Chapters 7 and 8 by analyzing the apical arbor. Additional

studies in other species/cortical areas and ages are necessary to further elucidate the general
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and specific rules governing the geometry of cortical pyramidal cells.
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Appendix A
Circular-linear dependence

measures under Wehrley–Johnson

distributions

A.1 Proof of Theorem 6.1

The conditional density function of Θ, given X = x, and that of X, given Θ = θ, can be

expressed as

f(θ|x) =
f(θ, x)

fX(x)

and

f(x|θ) =
f(θ, x)

fΘ(θ)
,

respectively. Changing the variable U = 2πFΘ(Θ) in f(θ|x), we obtain

f(u|x) = f(θ|x)

∣∣∣∣∂θ∂u
∣∣∣∣ = g(u− 2πqFX(x)),

where q ∈ {−1, 1}. Similarly, changing the variable V = 2πFX(X) in f(x|θ) leads to

f(v|θ) = f(x|θ)
∣∣∣∣∂x∂v

∣∣∣∣ = g(2πFΘ(θ)− qv).

Let g(.) be the wrapped Cauchy density function given by Equation (2.4), with location

parameter µg and concentration parameter εg, as defined in Kato [Kato, 2009]. Then, the

following hold:

U |X = x ∼ wC(2πqFX(x) + µg, εg)

and

V |Θ = θ ∼ wC(q(2πFΘ(θ)− µg), εg). (A.1)
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Consider the case where Θ ∼ wC(µθ, εθ) and X ∼ N(ιx, σ
2
x). Without loss of generality,

the origin of the cumulative distribution function of Θ is assumed to be zero (i.e. FΘ(θ) =∫ θ
0 fΘ(t)dt). In this case, the conditional of X, given Θ = θ, does not follow any well-known

distribution. However, Equation (A.1) implies that

2πΦ

(
X − ιx
σx

)
|Θ = θ ∼ wC(q(2πFΘ(θ)− µg), εg),

where Φ denotes the CDF of the standard Gaussian distribution N(0, 1), namely, Φ(x) =∫ x
−∞ φ(t)dt, where φ is the Gaussian density with ιx = 0 and σx = 1. Since it is easy to

evaluate the CDF of the standard Gaussian distribution numerically, numerical calculations

associated with the conditional distribution of X, given Θ = θ, can be conducted efficiently.

The conditional of Θ, given X = x, has a wrapped Cauchy distribution. To see this, we

first note that U and Θ have the following relationship:

e(iU) = e(iν) e
(iΘ) − εθe(iµθ)

1− εθe(i(Θ−µθ))

or

e(iΘ) =
e(i(U−ν)) + εθe

(iµθ)

1 + εθe(i(U−ν−µθ))
,

where e(iν) = (1− εθe(−iµθ))/(1− εθe(iµθ)). McCullagh [McCullagh, 1996] showed that

e(iU) ∼ C∗(α1e
(iβ1)) =⇒ e(iU) + α2e

(iβ2)

1 + α2e(i(U−β2))
∼ C∗

(
α1e

(iβ1) + α2e
(iβ2)

1 + α1α2 exp (i(β1 − β2))

)
,

where 0 ≤ α1, α2 < 1 and −π < β1, β2 ≤ π. Using this result, we have e(iΘ)|X = x ∼ C∗(φ̂θ|x)

or, in polar-coordinate form, Θ|X = x ∼ wC(arg(φ̂θ|x), |φ̂θ|x|), where

φ̂θ|x =
εge

(i(2πqFX(x)+µg−ν)) + εθe
(iµθ)

1 + εgεθe(i(2πqFX(x)+µg−µθ−ν))
.

A.2 Proof of Theorem 6.2

Let f(θ, ψ) be the joint density function given by Equation (6.3) and defined in Johnson and

Wehrly [Wehrly and Johnson, 1980]. Then, the CMI between Θ and Ψ is given by

CMI(Θ,Ψ)

=

∫ 2π

0

∫ 2π

0
2πδ(2πFΘ(θ)− q2πFΨ(ψ))fΘ(θ)fΨ(ψ) log {2πδ(2πFΘ(θ)− q2πFΨ(ψ))} dψdθ.

Changing the variables U = 2πFΘ(Θ) and V = 2πFΨ(Ψ), we have

CMI(Θ,Ψ) =
1

2π

∫ 2π

0

∫ 2π

0
δ(u− qv) log {2πδ(u− qv)} dudv.
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It follows from the change of variables t1 = u− qv and t2 = v that

CMI(Θ,Ψ) =

∫ 2π

0
δ(t1) log {2πδ(t1)} dt1.

Let δ(.) be the wrapped Cauchy density function given by Equation (2.4), with location

parameter µδ and concentration parameter εδ, as defined in Kato [Kato, 2009]. Then,

CMI(Θ,Ψ) =

∫ 2π

0

1

2π

1− ε2
δ

1 + ε2
δ − 2εδ cos(t1)

log

{
1− ε2

δ

1 + ε2
δ − 2εδ cos(t1)

}
dt1

= − log(1− ε2
δ),

where the second equality follows from Equation (4.396.16) of Gradshteyn and Ryzhik [Grad-

shteyn and Ryzhik, 2007].

A.3 Proof of Theorem 6.3

Theorem 6.3 can be proved in a similar manner to Theorem 6.2 by changing the variables

U = 2πFΘ(Θ) and V = 2πFX(X).
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arising from, Möbius transformation. Journal of the American Statistical Association, 105

(489):249–262, 2010.

S. Kato and M. Jones. An extended family of circular distributions related to wrapped

Cauchy distributions via Brownian motion. Bernoulli, 19(1):154–171, 2013.

S. Kato and M. Jones. A tractable and interpretable four-parameter family of unimodal

distributions on the circle. Biometrika, 102(1):181, 2015.
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