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MOTIVATION
Mutual information [1]: general measure that determines the similarity between the joint distribution
and the product of their marginal distributions.

Circular mutual information [2]: mutual information in directional domains.

– Numerical methods to approach it.

– Suitable when the variables follow wrapped Cauchy distributions [3].

–> Improvement

Directional-linear data is ubiquitous in science –> directional-linear mutual information

JOHNSON & WEHRLY BIVARIATE DISTRIBUTIONS [4][5]
Let Θ be a specific directional variable and let X be a specific linear variable, with f(θ) and f(x) their
marginal density functions and F (θ) and F (x) their cumulative density functions. Then, the joint den-
sity function can be expressed as [4]

f(θ, x) = 2πδ[2πF (θ)± 2πF (x)]f(θ)f(x).

where 0 ≤ θ < 2π, −∞ < x <∞ and δ(.) is a density on the circle.

Likewise, let Ψ a specific directional variable with f(ψ) its marginal density function and F (ψ) its CDF.
Then, the joint density function of Θ and Ψ can be expressed as [5]

f(θ, ψ) = 2πδ[2πF (θ)± 2πF (ψ)]f(θ)f(ψ).

where 0 ≤ θ, ψ < 2π.

MAIN RESULTS
Let f(θ, x) be the joint density function defined by Johnson & Wehrly [4], with δ(.) as a wrapped Cauchy
presented in Kato & Jones [6]. Then, the hybrid mutual information (HMI) between a directional specific
variable Θ and a specific linear variable X is

HMI(Θ, X) = − log(1− ε2δ).

where εδ is the concentration parameter from δ(.), which is defined as

εδ =
1

n

| n∑
j=1

ei(2πF (θj)−(2πF (xj))| − |
n∑
j=1

ei((2πF (θj)+(2πF (xj))|

 .

with F (θ) and F (x) the CDFs of Θ and X respectively.

Likewise, let f(θ, ψ) be the joint density function for directional variables defined by Johnson & Wehrly
[5]. Then, the circular mutual information (CMI) between two specific directional variables Θ and Ψ is

CMI(Θ,Ψ) = − log(1− ε2δ).

where εδ is the concentration parameter of δ(.).

These two measures share two important properties:

– Both are expressed in a closed form, therefore are computationally very fast and easy to handle.

– Allows the use of variables that follows any directional or linear distribution to compute them.

DENSITY ON THE CIRCLE: WRAPPED CAUCHY [6]
A directional random variable Θ, that has probability density function

g(θ) =
1

2π

[
1 +

2ε2{ε cos(θ − µ)− α}
ε2 + α2 + β2 − 2ε{α cos(θ − µ) + β sin(θ − µ)}

]
,

where µ is the location parameter, ε is the concentration parameter, α is the circular kurtosis and β is the
circular skewness. When α = ε2 and β = 0, g(θ) follows wrapped Cauchy distribution wC(µ, ε) with density

g(θ) =
1

2π

1− ε2

1 + ε2 − 2ε cos(θ − µ)
, θ, µ ∈ (−π, π], ε ∈ [0, 1)

When ε = 0, g(θ) follows the circular uniform distribution, otherwise is unimodal and symmetric about µ.

FUTURE WORK
Extending these measures to the multivariate case in order to understand the interactions among many
random variables regardless of their nature.

Develop Bayesian networks and supervised classification models using this measures.
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