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Abstract

Probabilistic modeling is the defining characteristic of estimation of distribution algo-
rithms (EDAs) which determines their behavior and performance in optimization. Regu-
larization is a well-known statistical technique used for obtaining an improved model by
reducing the generalization error of estimation, especially in high-dimensional problems.
`1-regularization is a type of this technique with the appealing variable selection property
which results in sparse model estimations.

In this thesis, we study the use of regularization techniques for model learning in
EDAs. Several methods for regularized model estimation in continuous domains based
on a Gaussian distribution assumption are presented, and analyzed from different aspects
when used for optimization in a high-dimensional setting, where the population size of
EDA has a logarithmic scale with respect to the number of variables. The optimization
results obtained for a number of continuous problems with an increasing number of vari-
ables show that the proposed EDA based on regularized model estimation performs a more
robust optimization, and is able to achieve significantly better results for larger dimensions
than other Gaussian-based EDAs. We also propose a method for learning a marginally
factorized Gaussian Markov random field model using regularization techniques and a
clustering algorithm. The experimental results show notable optimization performance on
continuous additively decomposable problems when using this model estimation method.

Our study also covers multi-objective optimization and we propose joint probabilistic
modeling of variables and objectives in EDAs based on Bayesian networks, specifically
models inspired from multi-dimensional Bayesian network classifiers. It is shown that
with this approach to modeling, two new types of relationships are encoded in the esti-
mated models in addition to the variable relationships captured in other EDAs: objective-
variable and objective-objective relationships. An extensive experimental study shows the
effectiveness of this approach for multi- and many-objective optimization. With the pro-
posed joint variable-objective modeling, in addition to the Pareto set approximation, the
algorithm is also able to obtain an estimation of the multi-objective problem structure.

Finally, the study of multi-objective optimization based on joint probabilistic model-
ing is extended to noisy domains, where the noise in objective values is represented by
intervals. A new version of the Pareto dominance relation for ordering the solutions in
these problems, namely α-degree Pareto dominance, is introduced and its properties are
analyzed. We show that the ranking methods based on this dominance relation can re-
sult in competitive performance of EDAs with respect to the quality of the approximated
Pareto sets. This dominance relation is then used together with a method for joint prob-
abilistic modeling based on `1-regularization for multi-objective feature subset selection in
classification, where six different measures of accuracy are considered as objectives with
interval values. The individual assessment of the proposed joint probabilistic modeling
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and solution ranking methods on datasets with small-medium dimensionality, when using
two different Bayesian classifiers, shows that comparable or better Pareto sets of feature
subsets are approximated in comparison to standard methods.
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Resumen

La modelización probabilista es la caracteŕıstica definitoria de los algoritmos de estimación
de distribuciones (EDAs, en inglés) que determina su comportamiento y rendimiento en
problemas de optimización. La regularización es una técnica estad́ıstica bien conocida
utilizada para obtener mejores modelos al reducir el error de generalización de la esti-
mación, especialmente en problemas de alta dimensionalidad. La regularización `1 tiene
la atractiva propiedad de seleccionar variables, lo que permite estimaciones de modelos
dispersos.

En esta tesis, estudiamos el uso de técnicas de regularización para el aprendizaje de
modelos en EDAs. Se presentan y analizan dos aproximaciones para la estimación del
modelo regularizado en dominios continuos basado en la asunción de distribución Gaus-
siana desde diferentes aspectos en situaciones de alta dimensionalidad, donde el tamaño
de la población del EDA es logaŕıtmico en el número de variables. Los resultados de
optimización obtenidos para algunos problemas continuos, con un número creciente de
variables, muestran que el EDA propuesto, basado en la estimación del modelo regular-
izado, realiza una optimización más robusta y es capaz de lograr resultados significativa-
mente mejores para dimensiones más grandes en comparación con otros EDAs basados en
la asunción de distribución Gaussiana. También proponemos un método para aprender
un modelo de campo aleatorio de Markov Gaussiano que está marginalmente factorizado
utilizando técnicas de regularización y un algoritmo de clustering. Los resultados ex-
perimentales muestran un rendimiento notable en optimización de problemas continuos
aditivamente descomponibles cuando se utiliza este método de estimación del modelo.

Nuestro estudio también cubre optimización multi-objetivo y proponemos una mod-
elización probabiĺıstica conjunta de variables y objetivos en EDAs basada en redes Bayesi-
anas, espećıficamente redes Bayesianas multidimensionales. Se demuestra que con este
enfoque de modelización, en los modelos estimados se codifican dos nuevos tipos de rela-
ciones además de las relaciones de variables capturadas en otros EDAs: relaciones de
objetivo-variable y de objetivo-objetivo. Un amplio estudio experimental muestra la efec-
tividad de este enfoque para optimización multi-objetivo y para muchos objetivos. Con la
modelización propuesta, conjunta para variables y objetivos, además de la aproximación
del conjunto de Pareto, el algoritmo es también capaz de obtener una estimación de la
estructura del problema multi-objetivo.

Por último, el estudio de optimización multi-objetivo basado en modelización prob-
abiĺıstica conjunta se extiende a dominios con ruido, donde el ruido en los valores de
los objetivos se representa por intervalos. Se introduce una nueva versión de la relación
de dominancia de Pareto para ordenar las soluciones en estos problemas, denominada
dominancia de Pareto de grado α, y se analizan sus propiedades. Mostramos que los
métodos de ordenación basados en esta relación de dominancia pueden resultar en EDAs
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con un rendimiento competitivo con respecto a la calidad de la aproximación del con-
junto dePareto. Esta relación de dominancia se utiliza después junto con un método
de modelización probabiĺıstica conjunta basado en regularización `1 para selección multi-
objetivo de subconjuntos de caracteŕısticas en clasificación, donde se consideran seis me-
didas diferentes de precisión como los objetivos con valores de intervalo. La evaluación
individual de estas dos propuestas de modelación probabiĺıstica conjunta y los métodos
de ordenación en conjuntos de datos de pequeña-mediana dimensionalidad, cuando se
utilizan dos clasificadores Bayesianos diferentes, demuestra que se aproximan conjuntos
de Pareto de subconjuntos de caracteŕısticas que comparables o mejores que con métodos
estándar.
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Preface

In the everyday life we face different optimization problems, like the fastest way to reach
the workplace considering traffic conditions, proper scheduling of our daily tasks so that
it can be done in the shortest time with minimum effort, or even when we are selecting
the food menu in a restaurant. From this point of view, humankind can be considered
as a general-purpose problem-solver. Similarly, many of the computer-based intelligent
systems used nowadays need to find solutions to real-world problems, and therefore op-
timization algorithms have become an indispensable part of these systems.

Evolutionary algorithms (EAs) are a type of meta-heuristic search methods, devel-
oped in the field of artificial intelligence, which have been successfully applied to find
satisfactory solutions for problems with complicated and huge search spaces. These algo-
rithms perform a rapid stochastic exploration of the search space guided by the survival
of the fittest principle in evolution. As a relatively new class of EAs, EDAs employ a sys-
tematic approach to account for the uncertainty in the exploration of the search space by
incorporating probabilistic modeling into the evolutionary framework for optimization.

Learning a probabilistic model which allows an effective search for the solutions of
complex optimization problems remains a challenging task in the development of EDAs.
As a step in this direction, in this thesis, we use model estimation based on regularization
in EDAs, and study how it influences these optimization algorithms. Regularization is a
technique used in machine learning and statistics for improving model estimation from
a limited dataset of samples. This technique is especially effective for model learning
in high-dimensional domains, where many parameters should be estimated from a small
number of samples. This property of regularized model estimation is very interesting for
EDAs, since the size of the population used for model estimation is always a point of
concern in these algorithms.

Another important motivation for using regularization is the promising properties
of a special type of this technique, known as `1-regularization. In model estimation
based on `1-regularization, some of the model parameters become exactly zero, ruling out
the relationships between the corresponding problem variables. This, in effect, permits
EDAs to perform an implicit linkage learning when using `1-regularized model estimation.
We also study this effect of regularization in the thesis, mainly considering continuous
problem optimization.

Multi-objective optimization is another major part of consideration in this thesis,
since many of the real-world problems involve several conflicting criteria. So far, the
probabilistic modeling used in multi-objective EDAs for search space exploration only
comprises variables. In order to explicitly exploit the quality information of the solu-
tions, provided by objective functions, in the generation of new solutions, and moreover,
to model the relationships between variables and objectives, we propose and study joint
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variable-objective modeling in EDAs for multi-objective optimization. We are especially
interested in the performance of this approach as the number of problem objectives in-
creases.

In some of the real-world problems, the objective values of the solutions are not exact
and can change in different evaluations of the objective functions. The classification
accuracy measures used for feature subset selection is an example of these problems,
where the estimated quality of a feature subset depends on the dataset used for its
evaluation. Therefore, usually techniques like k-fold cross-validation are used to obtain
better estimation of the feature subsets quality by averaging over the quality values
estimated in different folds. However, another possibility is to consider the confidence
interval of the real quality, based on the quality values estimated in different folds. In
this thesis, we introduce α-degree Pareto dominance relation for ordering the solutions in
multi-objective optimization when the values of objective functions are given as intervals.
Using ranking methods based on this dominance relation, we study the performance of
joint probabilistic modeling for multi-objective optimization of this type of problems, and
specifically multi-objective feature subset selection.

The thesis is organized in four parts. The first part gives an introduction on proba-
bilistic modeling in EDAs and some of their applications, and consists of three chapters.
Chapter 1 briefly introduces probabilistic graphical models. It presents the related terms
and concepts and reviews some of the properties of the probabilistic models used later
in the thesis together with their learning and sampling methods. Chapter 2 reviews
probabilistic modeling in different EDAs proposed in the literature and discusses some
of the implications and characteristics of this approach to optimization. In Chapter 3,
we show that one of the interesting application domains of EAs is the optimization prob-
lems defined in the learning and inference of Bayesian networks, which are one of the
probabilistic models frequently used in EDAs.

The second part, which is composed of four chapters, presents regularized model es-
timation and its use for continuous optimization. Regularization is introduced in Chap-
ter 4 and some of the employed regularization techniques are explained. In Chapter 5,
we present two main approaches to regularized model estimation in continuous EDAs
based on Gaussian distributions, and analyze both from several aspects like model accu-
racy and time complexity. Chapter 6 introduces RegEDA, an EDA based on regularized
model estimation, and studies its performance in continuous optimization under a high-
dimensional setting. The statistical analysis of the difference in the optimization results
compared with several state-of-the-art Gaussian-based EDAs is also presented. Chap-
ter 7 proposes a method for learning marginally factorized models using regularization
techniques in an EDA based on Gaussian Markov random fields, and applies it for the
optimization of continuous deceptive function and protein folding prediction problems.

In the third part of the thesis, we describe joint probabilistic modeling for multi-
objective optimization. This part comprises five chapters. Chapter 8 gives an introduc-
tion to multi-objective optimization and reviews EDAs proposed for this purpose in the
literature. Joint variable-objective modeling is proposed in Chapter 9, and the corre-
sponding methods for learning and sampling such a model in an EDA based on Gaussian
Bayesian networks is explained. The performance of the proposed algorithm is then eval-
uated on a set of difficult multi-objective problems in comparison with other algorithms.
In Chapter 10, this approach is extended and studied in more detail by using a specific
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probabilistic model inspired from multi-dimensional Bayesian network classifiers for joint
variable-objective modeling. The resulting MBN-EDA is then applied for many-objective
optimization and compared with several competitive multi-objective EAs. Moreover, an
analysis of the joint probabilistic modeling in the proposed algorithm is presented. Chap-
ter 11 extends the application of MBN-EDA to noisy domains by introducing α-degree
Pareto dominance relation for dealing with the noisy objective values given as intervals.
This idea is then used in Chapter 12 to apply MBN-EDA for multi-objective feature sub-
set selection by employing a specific joint modeling scheme based on `1-regularization.

Finally, the thesis is concluded in Chapter 13, the sole chapter of the fourth part,
where the conclusions and some perspectives of future works for extending the research
conducted in this thesis are given.
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Chapter 1

Probabilistic Graphical Models

1.1 Introduction

Probability theory has provided a sound basis for many of the scientific and engineering
tasks. Artificial intelligence, and more specifically machine learning, is one of the fields
that has exploited probability theory to develop new algorithms and theorems. Proba-
bilistic graphical models (PGMs) combine the concepts in probability and graph theories
to provide a more comprehensible representation of the joint probability distribution over
a vector of random variables. The main characteristic of this type of models is that they
consist of a graphical structure and a set of parameters that together encode a joint
probability distribution for the random variables.

A popular class of PGMs, Bayesian networks (BNs), first introduced in [Pearl, 1985],
has been highly favored and extensively used in many machine learning applications. This
tool can point out useful modularities in the underlying problem and help to accomplish
the reasoning and decision making tasks especially in uncertain domains. The application
of BNs has been further improved by the development of different methods proposed for
inference (reasoning) [Lauritzen and Spiegelhalter, 1988] and automatic induction [Cooper
and Herskovits, 1992] from a set of samples.

Different types of PGMs have been introduced in the literature so far: Markov net-
works, Bayesian networks, dependency networks [Heckerman et al., 2001], chain graphs
[Frydenberg, 1990]. In this chapter, some of the important concepts related to prob-
abilistic graphical modeling, mainly in the context of Bayesian and Markov networks,
which will be later referenced and used throughout the thesis, are reviewed. For more
detailed information on PGMs and their use, see specific references related to the topic,
e.g. [Koller and Friedman, 2009] and [Larrañaga and Moral, 2011].

1.2 Probability-Related Notations

Let X = (X1, . . . , Xn) be a vector of random variables and x = (x1, . . . ,
xn) a possible value-setting for these variables. xi denotes a possible value of Xi, the
ith component of X, and y denotes a possible value-setting for the sub-vector Y =
(XJ1 , . . . , XJk), J = {J1, . . . , Jk} ⊆ {1, . . . , n}.

If all variables in vector X are discrete, P (X = x) (or simply P (x)) is used to denote
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the joint probability mass of a specific value-setting x for the variables. The conditional
probability mass of a specific value xi of variable Xi given that Xj = xj is denoted by
P (Xi = xi | Xj = xj) (or simply P (xi | xj)). Similarly, for continuous variables, the
joint density function will be denoted as p(x) and the conditional density function by
p(xi | xj). When the nature of variables in X is irrelevant or X consists of both discrete
and continuous variables, ρ(x) will be used to represent the generalized joint probability
distribution.

Let Y , Z and W be three disjoint sub-vectors of variables. Then, Y is said to be
conditionally independent of Z given W (denoted by I(Y ,Z | W )), iff ρ(y | z,w) =
ρ(y | w), for all y, z and w.

1.3 Bayesian Networks

A BN B(S,Θ) for a vector of variables X = (X1, . . . , Xn) consists of two components:

• A structure S represented by a directed acyclic graph (DAG), expressing a set of
conditional independencies between variables [Dawid, 1979].

• A set of local parameters Θ representing the conditional probability distributions for
the values of each variable given different value-settings of their parents according
to the structure S.

Figure 1.1(a) shows an example of a BN structure for a problem with six variables. Let
Ndi represent the set of non-descendants of variable Xi, i.e. all of the variables except
Xi, its children and grandchildren to any level in the structure S. Also, let Pai denote
the set of parents of variable Xi, i.e. the set of variables with a direct link outgoing
to variable Xi in the structure S. Then, for each variable Xi, i = 1, . . . , n, structure
S represents the assertion that Xi and its non-descendants excluding its parents are
conditionally independent given its parents:

I(Xi, {Ndi \ Pai} | Pai).

This property is known as the Markov condition of BNs. Because of this condition, it
can be shown that a BN encodes a factorization for the joint probability distribution of
the variables in X

ρ(x) = ρ(x1, . . . , xn) =
n∏
i=1

ρB(xi | pai), (1.1)

where pai denotes a possible value-setting for the parents Pai. Equation (1.1) states that
the joint probability distribution of the variables represented by a BN can be computed
as the product of univariate conditional probability distributions of the variables given
their parents. These conditional probability distributions are encoded as local parameters
θi in the BN.

A related notion in BNs is the so-called Markov blanket (MB) [Pearl, 1988] of the
variables. The MB of a variable in a BN consists of its parents, its children and the
parents of its children (spouses). The important property of this subset is that a variable
in the BN is only influenced by its MB. In other words, given its MB, a variable is
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(a) Structure (b) Conditional probability table

(c) GBN parameter ta-
ble

(d) CGN parameter table

Figure 1.1: An example of a) a Bayesian network structure, and three possible types of
parameters for one of its variables (X4): b) Discrete domain, assuming that ri = i+ 1; c)
Continuous domain with Gaussian variables; d) Mixed domain with continuous Gaussian
variables, assuming that variables X1 and X4 are continuous and X2 is discrete.

conditionally independent of all other variables excluding its MB. If the MB of variable
Xi is denoted with Mbi, then this property can be stated as:

I(Xi,X \Mbi |Mbi).

1.3.1 Bayesian Network Parameterization

The set of local parameters Θ = {θ1, . . . ,θn} determine the conditional probability dis-
tributions in Equation (1.1). Depending on the type of variables and the underlining
assumptions, the conditional probability distributions can be represented with different
parameters.

Discrete Bayesian Networks

In discrete domains, when a variable Xi has ri possible values, {x1
i , . . . , x

ri
i }, and its

parents Pai have qi possible value-settings, {pa1
i , . . . ,pa

qi
i }, then the local parameters

of the corresponding node of the BN can be represented with a conditional probability
table. Each entry of this table, θijk = PB(xki | pa

j
i ), denotes the probability of variable

Xi being in its kth value given that its parents are in their jth value-setting. Since all
variables are discrete, the number of possible value-settings for the parents can be easily
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computed as qi =
∏

Xm∈Pai rm. Thus, the local parameters of the BN for the ith variable
can be represented by θi = ((θijk)

ri
k=1)qij=1. Figure 1.1(b) shows an example of a conditional

probability table for a discrete variable in a BN.

Gaussian Bayesian Networks

In continuous domains, it is usually assumed that X = (X1, . . . , Xn) is a vector of
Gaussian random variables with joint probability distribution p(x) = N (µ,Σ), where µ,
the mean vector, and Σ, the covariance matrix, are the parameters of the multivariate
Gaussian distribution. Although these parameters encode a type of PGM (which will be
discussed later in this chapter), BNs have also been used for encoding the joint density
function of an n-dimensional Gaussian random vector which are then called Gaussian
Bayesian networks (GBNs) [Geiger and Heckerman, 1994].

The conditional probability distribution represented by the local parameters of each
node of a GBN is a univariate Gaussian distribution for the variable corresponding to that
node, determined by the values of its parents [Lauritzen, 1992; Geiger and Heckerman,
1994]

pB(xi | pai) = N (µi +
∑

Xj∈Pai

wij(xj − µj), ν2
i ), (1.2)

where

1. µi is the mean of variable Xi in vector µ,

2. wi is a vector of linear regression coefficients reflecting the strength of the linear
relationship between each parent variable Xj and variable Xi, computed as

wi = Σ<Xi,Pai>Σ−1
<Pai,Pai>

,

3. ν2
i is the conditional variance of variable Xi, computed as

ν2
i = Σ<Xi,Xi> −Σ<Xi,Pai>Σ−1

<Pai,Pai>
Σ<Pai,Xi>.

Here, Σ<U ,V > denotes a sub-matrix of Σ consisting of the rows corresponding to the
variables in set U and columns corresponding to the variables in set V . Thus, the local
parameters of each node in a GBN can be represented with the triplet θi = (µi,wi, νi).
Figure 1.1(c) shows an example of the parameters for a node of a GBN.

Conditional Gaussian Bayesian Networks

More generally, X = (X1, . . . , Xn) can be considered to be an n-dimensional mixed
random vector containing both discrete and continuous variables. Assume a reordering
of the variables that is partitioned into two disjoint sub-vectors, Y = (Y1, . . . , Yr) and
Z = (Z1, . . . , Zn−r), such that

1. X = (Y ,Z),

2. Y contains only the r discrete variables and Z represents an (n − r)-dimensional
continuous random vector.
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Using this decomposition, X is said to follow a conditional Gaussian distribution
[Lauritzen and Wermuth, 1989] if the conditional joint probability density function for Z
given each value-setting y of variables in Y , such that P (y) > 0, is an (n−r)-dimensional
Gaussian distribution

p(z | y) = N (µy,Σy). (1.3)

Assuming certain conditions and restrictions, a BN can be used to encode the prob-
ability distribution of an n-dimensional mixed random vector X = (Y ,Z), with Gaus-
sian continuous variables. Such a BN is called a conditional Gaussian Bayesian network
(CGN). One of the restrictions in CGNs is that discrete variables should only have discrete
parents in the structure S. The local parameters of the nodes of a CGN vary depend-
ing on the type of their corresponding variable. For nodes with discrete variables, they
simply represent conditional probability mass distributions, similar to those explained
for discrete BNs. For nodes corresponding to continuous variables they represent a con-
ditional Gaussian distribution (Equation (1.3)) for each of the possible value-settings of
the discrete parent variables. Figure 1.1(d) shows an example of the parameters for a
continuous node of a CGN.

Other Types of Parameterization

Probability functions other than the Gaussian distribution have also been used to encode
the parameters of Bayesian networks in continuous and mixed domains. Moral et al.
[2001] proposed the use of exponential distributions in a piecewise function called mixture
of truncated exponentials (MTEs) by partitioning the domain of continuous variables
into disjoint hypercubes. MTE densities can be used to approximate other types of
distributions and, in some cases (e.g., uniform or categorical), the target distribution can
be exactly represented with an MTE density. MTE densities provide a more versatile
alternative than discretizing continuous variables (which is another way of dealing with
vectors of mixed variables and can be seen as an approximation with a mixture of uniform
distributions). With this type of models, there is no restriction on the order of the
variables in the network (i.e. discrete variables can have continuous parents).

Another recently proposed parameterization for Bayesian networks is based on poly-
nomial functions [Shenoy and West, 2011]. This piecewise function that is defined by
partitioning the domain of continuous variables into disjoint hyper-rhombuses [Shenoy,
2011] is called mixture of polynomials. Each piece of such a mixture can be a polynomial
function of a different degree. Like MTEs, the Bayesian networks defined with the mix-
ture of polynomials densities do not have any restriction on the order between discrete
and continuous variables.

Both types of density functions are closed under the basic operations (multiplication
and integration) required for probability propagation in Bayesian networks (see below).
However, because of their complex definitions requiring the specification of many param-
eters (e.g. number of pieces, number of terms in each piece, coefficients, powers), they
have only been applied to problems with few variables and they are still a topic of active
research. Bielza et al. [2011a] compared these parameterization types with each other and
with conditional Gaussian distributions in the context of influence diagrams, a specific
type of Bayesian networks for decision making applications.
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1.3.2 Inference in Bayesian Networks

The BN tool is mainly used to reason in domains with intrinsic uncertainty by propagating
some given evidence through the model. Generally speaking, the propagation of evidence
involves assigning probabilities to the values of a subset XE of non-instantiated or unob-
served variables XU given the values of some other (observed) variables XO = X \XU .
Basically, this can be done by a process called marginalization. In this process the
marginal probability of variables in XE is computed by summing or integrating the joint
probability distribution over all possible value-settings for the remaining unobserved vari-
ables XR = XU \XE. This reasoning mechanism inside the model (i.e. the propagation
of evidence through the model) depends on the structure reflecting the conditional inde-
pendencies between the variables. Cooper [1990] proved that this task is NP-hard in the
case of BNs with general multiply connected structures.

The methods proposed for this task can be divided into two main categories: a) exact
algorithms [Pearl, 1988; Lauritzen and Spiegelhalter, 1988], and b) approximate algo-
rithms which include deterministic methods [Jensen and Anderson, 1990; van Engelen,
1997; Cano et al., 2003] and methods based on generating samples from the BN [Henrion,
1986; Shachter and Peot, 1989; Casella and George, 1992; Chib and Greenberg, 1995].
For detailed information about these algorithms the reader can refer to [Castillo et al.,
1997; Jensen and Nielsen, 2007; Darwiche, 2009]. Here, we describe the probabilistic logic
sampling (PLS) method [Henrion, 1986], also known as forward sampling, as an example
of the approximate algorithms based on sampling, which is used later in the thesis for
generating new samples from a BN.

PLS starts with finding an ancestral or topological ordering of the nodes in BN. In
such an ordering, each node appears after its parent nodes according to the BN structure.
Next, the conditional probability distributions encoded in the nodes of BN are sampled
one-by-one according to their order of appearance in the ancestral ordering. Since the
turn for sampling variable Xi is only after its parents in BN structure S are already
sampled, the probability distribution related to this variable can be fully determined,
and therefore easily sampled. If the values of some of the variables are given before
inference (i.e. XO), these variable are only set to the given values during the sampling
process. A set of individuals (or samples) are generated from the BN by repeating the
sampling process of the unobserved variables XU . Finally, the probabilities of the values
for the variables in XE are computed from the sampled set (e.g. by computing the
frequencies).

Instead of finding the probability of a subset of the variables in the BN, we sometimes
need to find a value-setting for these variables that results in the highest probability. The
following two inference tasks are directly related to this requirement.

Total Abductive Inference

Also known as the most probable explanation (MPE) problem [Pearl, 1987], this type
of inference finds the most probable value of each unobserved variable of the BN, given
the values of the observed variables (XO). More formally, the aim is to obtain the
configuration x∗U for XU such that

x∗U = arg max
xU

ρ(xU | xO). (1.4)
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Searching for the MPE is just as complex (NP-hard) as probability propagation [Shimony,
1994]. In fact, the MPE can be obtained by using probability propagation algorithms,
and replacing the final summation or integration operator in marginalization with a
maximization operator [Nilsson, 1998].

Partial Abductive Inference

Also known as the maximum a posteriori (MAP) problem, this type of inference outputs
the most probable configuration for just a subset of the unobserved variables XE in BN,
known as the explanation set. Here, the aim is to obtain the configuration x∗E for XE

such that

x∗E = arg max
xE

ρ(xE | xO). (1.5)

This problem can be reformulated using an MPE problem, and then marginalizing over
all variables in XR. Hence, finding the MAP is more complex than the MPE problem as
it can have an intractable complexity (NP-hard) even for cases in which the MPE can be
computed in polynomial time (e.g. polytrees) [Park and Darwiche, 2004].

1.3.3 Learning Bayesian Networks

The structure and conditional probabilities necessary for characterizing a BN can be
provided either externally by experts, which is time consuming and prone to error, or by
automatic learning from a database of samples. The task of learning BNs can be divided
into two subtasks:

• structural learning, i.e., identification of the topology of the BN, and

• parametric learning, estimation of the numerical parameters defining the conditional
probabilities, for a given network topology.

The different methods proposed for inducing a BN from a dataset of samples are usu-
ally classified by modeling type into two approaches [Buntine, 1996; Heckerman, 1998;
Neapolitan, 2004; Daly et al., 2011]:

1. methods based on detecting conditional independencies, also known as constraint-
based methods, and

2. score+search methods.

Constraint-based methods

The input of these algorithms is a set of conditional independence relations between
subsets of variables, which they use to build a BN that represents a large percentage (and,
whenever possible, all) of these relations [Spirtes et al., 2001]. The PC algorithm [Spirtes
and Glymour, 1991] is a well-known example of these methods. Typically, hypothesis
tests are used to find conditional independencies from a dataset. Once the structure has
been learned, the conditional probability distributions, required to fully specify the BN
model are estimated from the dataset. The usual method for estimating the parameters
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is maximum likelihood (ML) estimation, although Laplace estimation and other Bayesian
estimation approaches based on Dirichlet priors are also common.

Many of the other constraint-based algorithms are inspired by or can be considered
as an improved version of the PC algorithm. Cheng et al. [2002] proposed a three-phase
dependency analysis algorithm to learn Bayesian networks for encoding monotonic DAG-
faithful probability distributions. The algorithm uses a polynomial number of conditional
independence tests (a great improvement on PC, which uses an exponential number of
tests) that are based on information-theoretic analysis. They also discuss the conditions
under which the algorithm is able to obtain correct network structures.

Kalisch and Bühlmann [2007] applied the PC algorithm to estimate the network struc-
ture of very high-dimensional problems assuming Gaussian probability distributions for
parameters. They adapted their algorithm to estimate the skeleton and equivalence
class of the DAG structure (see below). A proof of the algorithm consistency in high-
dimensionality was also given. They also proposed an improved version of the algorithm
with further robustification [Kalisch and Bühlmann, 2008].

Yehezkel and Lerner [2009] recursively applied a sequence of conditional indepen-
dence tests, edge direction and structure decomposition to autonomous substructures. In
this way their recursive autonomy identification algorithm obtains a hierarchical struc-
ture helping it to considerably reduce the number of conditional independence tests.
Bühlmann et al. [2010] proposed a simple-PC algorithm based on the concept of par-
tial faithfulness of probability distributions and used it for variable selection in Gaussian
linear models.

Score+search methods

Constraint-based learning is quite an appealing approach as it is close to the semantics
of BNs. However, most of the algorithms developed for structure learning fall into the
score+search category. As the name implies, these methods have two major components:

1. a scoring metric that measures the quality of a candidate BN with respect to a
dataset of samples, and

2. a search procedure to intelligently move through the space of possible BNs, as this
space is enormous (see below for further discussion).

Scoring metrics. Most of the popular scoring metrics are based on one of the follow-
ing approaches: i) marginal likelihood, and ii) penalized maximum likelihood. Given a
dataset D = {x1, . . . ,xN} of N independent and identically distributed samples, each
consisting of a value-setting for the n-dimensional random vector X, metrics based on
marginal likelihood maximize the likelihood of BN structure S with respect to this dataset,
ρS(D), assuming certain prior distributions for the parameters of BN which allows to
compute the likelihood in a closed form [Cooper and Herskovits, 1992; Heckerman et al.,
1995].

In discrete domains, a common prior probability assumption for the BN parameters
is the Dirichlet distribution, characterized with parameters αijk, which results (assuming
a uniform prior distribution for the structures) in a scoring metric usually referred to as
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the Bayesian Dirichlet equivalence (BDe) metric [Heckerman et al., 1995]:

n∏
i=1

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)
, (1.6)

where Γ(v) is the Gamma function given by Γ(v) = (v−1)!, ∀v ∈ N, and αij =
∑ri

k=1 αijk,
where ri shows the number of different values for the ith variable and qi represents the
number of possible value-settings for its parents. Nij is the number of samples in the
dataset that have the jth value-setting for the parents of the ith variable, and likewise
Nijk is the number of samples for which the ith variable has its kth value and its parents are
in their jth value-setting. In the specific case where all Dirichlet distribution parameters
are uniformly set to αijk = 1, the resulting scoring metric is usually called K2 metric,
initially proposed for use in the K2 algorithm [Cooper and Herskovits, 1992].

A problem of metrics only considering the likelihood of the BN is that they give
better scores to more complex models, thus leading to overfitting to the dataset used for
learning BN. The metrics based on penalized maximum likelihood try to overcome this
shortcoming by adding a penalization term to the likelihood of BN B(S,Θ) with respect
to dataset D:

N∏
j=1

n∏
i=1

ρB(xj<Xi> | xj<Pai>)− f(N)dim(B), (1.7)

where xj<U> denotes part of the value-setting xj corresponding to sub-vector U ⊆ X,
dim(B) is the dimension of BN (number of individual parameters needed to specify the
model), and f(N) is a non-negative penalization function depending on the size of the
dataset. Popular scoring metrics like Akaike’s information criterion (AIC) [Akaike, 1974]
and the Bayesian information criterion (BIC) [Schwarz, 1978] differ in their choice for
this penalization function with values f(N) = 1 and f(N) = 0.5 logN , respectively. In
discrete domains, this metric reduces to

n∏
i=1

qi∏
j=1

ri∏
k=1

(
Nijk

Nij

)Nijk
− f(N)dim(B), (1.8)

where the dimension of BN can be computed as dim(B) =
∑n

i=1 qi(ri − 1).
Minimum description length (MDL) score [Rissanen, 1978; Grünwald, 1998] is another

type of scoring metric based on information theory and data compression. This score,
which is justified by Occam’s razor principle favoring less complex models, is closely
related to the logarithm of the penalized maximum likelihood score. In simple terms this
metric can be described as follows. Suppose that the cost of encoding a dataset D with
a model B is equal to the cost of describing the model plus the cost of describing the
data with this model: Cost(B) + Cost(D | B). Then the MDL score tries to select the
model with the least total cost of description. Usually, the cost is expressed in terms of
the number of bits required to represent the description.

A feature of scoring metrics that can greatly help the search algorithm is decom-
posability. With a decomposable metric, the score of a BN can be computed as the
combination of scores obtained for smaller factors (e.g., a single variable). This property
will allow the search algorithm to measure the effect of operations involving each factor
independently of the effects of other BN factors. The metrics introduced here are all
decomposable.
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Search methods. The number of possible DAG structures for n nodes is given by the
following recursive formula [Robinson, 1977]:

f(n) =

{∑n
i=1(−1)i+1

(
n
i

)
2i(n−i)f(n− i) n > 1

1 n = 0 ∧ n = 1.
(1.9)

In fact it has been shown that searching this huge space for the optimal structure (accord-
ing to a scoring metric) is NP-hard, even with a constraint on the maximum number of
parents for each node [Chickering et al., 1994; Chickering, 1996; Chickering et al., 2004].
Therefore, greedy local search techniques [Buntine, 1991], as well as many heuristic search
methods such as simulated annealing [Heckerman et al., 1995], Tabu search [Bouckaert,
1995] and EAs (see Section 3.4.1) have been frequently employed for this purpose in the
literature.

Here, we explain a basic greedy local structure search method for learning BNs [Bun-
tine, 1991], which is relatively fast and is used in this thesis for inducing a BN from a
dataset of samples. The algorithm starts with an initial structure for the network, which
can be generated randomly or given based on some prior knowledge of the problem. At
each iteration of the algorithm, all possible edge addition, removal and reversal operations
are considered, and the one resulting in the best improvement of the scoring metric is
selected and applied to the structure of BN. This step is repeated until no more operation
can be found to further improve the scoring metric of BN, in which case the algorithm
stops.

1.3.4 Bayesian Networks in Machine Learning

In machine learning, BNs have been used for both classification and clustering tasks. In
these applications the node(s) of BN corresponding to the class variable(s) has a specific
interpretation and therefore is treated different than other nodes corresponding to the
feature or predictor variables.

Supervised Learning

In recent years, there has been a sizable increase in published research using BNs for
supervised classification tasks [Larrañaga et al., 2005]. Bayesian classifiers compute the
class-value with the highest posterior probability (c∗) for each value-setting of predictor
variables (x1, ..., xn):

c∗ = arg max
c

P (C = c | X1 = x1, . . . , Xn = xn)

= arg max
c

ρ(X1 = x1, . . . , Xn = xn | C = c)P (C = c).
(1.10)

Different Bayesian classifiers can be obtained depending on the factorization of ρ(X1 =
x1, . . . , Xn = xn | C = c). Figure 1.2 shows examples of some Bayesian classifiers. Näıve
Bayes (NB) [Minsky, 1961] (Figure 1.2a) is the simplest Bayesian classifier. It is built
on the assumption that the predictor variables are conditionally independent given the
class value

ρ(x1, . . . , xn | c) =
n∏
i=1

ρ(xi | c). (1.11)
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(a) Näıve Bayes (b) Semi näıve Bayes

(c) TAN (d) kDB, k = 2

Figure 1.2: Examples of different types of Bayesian classifier structures.

The semi-näıve Bayes (SNB) classifier [Pazzani, 1996] (Figure 1.2b) considers forming
new composite variables to avoid the conditional independence assumption of classical
NB. These new variables are formed by joining the original predictor variables, and their
values are obtained from the Cartesian product of the values of the constituent variables.
Pazzani [1996] proposed a greedy wrapper approach for building a SNB classifier, where
the irrelevant variables are removed from the model and the correlated variables are
joined with the Cartesian product of their values. The tree augmented näıve Bayes
(TAN) classifier [Friedman et al., 1997] (Figure 1.2c) extends the structure of NB classifier
by constructing a tree over predictor variables to account for their relationships. The
k-dependence Bayesian (kDB) classifier [Sahami, 1996] (Figure 1.2d) also extends NB
classifier with a more general structure allowing each variable to have k parents from the
predictor variables. Bayesian classifiers can also be defined using the MB of the variables.
Specifically, the MB of the class variable specifies the set of predictor variables affecting
its posterior probability computation: P (C | X1, . . . , Xn) = P (C |MbC).

Unsupervised Learning

Another major area of machine learning employing BNs is unsupervised learning or
clustering. The clustering of the samples given for an n-dimensional random vector
X = (X1, . . . , Xn) should consider the structural constraint assumptions imposed by the
data generation mechanism. In the case of BNs, the constraint states that there should be
an edge from the random variable representing the cluster, C, to every predictor variable
Xi. Thus, the factorization of the joint probability distribution for the (n+1)-dimensional

13



(a) Structure (b) Parameter table

Figure 1.3: An example of a discrete Markov network with a parameter table for the
factor {X1, X2, X4}. It is assumed that X1, X2 and X4 respectively have 2, 3 and 2
possible states.

random vector (C,X) is given by

ρB(c,x) = PB(c)
n∏
i=1

ρB(xi | c,pai). (1.12)

Note that this is similar to the factorization considered for BNs in supervised classifica-
tion. The main difference, however, is that the value of variable C is unknown in cluster-
ing problems and has to be estimated using techniques like the expectation-maximization
(EM) algorithm [Dempster et al., 1977].

1.4 Markov Networks

When the interactions between the variables are symmetrical and there is no specific
direction for the influence of the variables over each other, an undirected graph is more
appropriate for representing the correlations. Markov networks (MNs) are a type of PGM
fitted to this need. An MN M(S,ΦC) has two components:

• an undirected graphical structure S, where each variable is depicted by a node and
the undirected edges represent homogeneous dependencies between the variables,
and

• a set of factors (non-negative functions) ΦC, each defined over a clique (complete
subgraph) of S, that express the affinity of their associated variables and the com-
patibility of their values.

Figure 1.3 shows an exemplary MN structure and the parameters for one of its factors in
discrete domains.

The normalized product of MN factors (according to a specific multiplication rule)
define a joint probability distribution over X. Let C = {C1, . . . ,Cκ} be a set of cliques
of MN structure, such that

⋃κ
k=1Ck = X. Then, the so-called Gibbs distribution ρΦC ,
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parameterized by the set of factors ΦC = {φ1(C1), . . . , φκ(Cκ)}, and factorized over MN
structure is given by:

ρΦC(x) =
1

Z

κ∏
k=1

φk(xCk), (1.13)

where Z is a normalizing term, called the partition function, and is obtained by summing
or integrating the unnormalized product of factors over all possible value-settings of
the variables. It should be noted that MN parameters (i.e. factors) do not necessarily
correspond to marginal or conditional probabilities.

In MNs, two subset of variables Y and Z are conditionally independent given a third
subset W , I(Y ,Z |W ), if and only if W separates Y and Z (Y ,Z,W ⊆X, and each
two of these subsets are mutually disjoint). That is, all of the paths between every two
nodes respectively in Y and Z passes through at least one node of W .

Except the above property, known as the global Markov property, there are also two
simple types of local conditional independencies encoded in MNs. If Mbi represents the
set of immediate neighbors of variable Xi in MN structure, sometimes referred to as the
MB of a variable in MN, then

• Local Markov property : Each variable Xi is conditionally independent of all of its
non-neighbor variables, given its MB

∀Xi ∈X =⇒ I(Xi, {X \Mbi} |Mbi)

• Pairwise Markov property : Each variable Xi is conditionally independent of its
non-neighbor variable Xj given all other variables

∀Xi, Xj ∈X : Xj /∈Mbi =⇒ I(Xi, Xj |X \ {Xi, Xj})

The independencies encoded in MN structure and those of factorized Gibbs distri-
bution are related to each other under some specific assumptions. Specifically , the
Hammersley-Clifford theorem [Hammersley and Clifford, 1971] states that if all of the
conditional independencies encoded in MN structure S exist in the set of independencies
implied by a positive Gibbs distribution ρΦ (i.e. a distribution that assigns non-zero
probabilities to all possible value-settings of input variables), then ρΦ factorizes over a
covering set of cliques, C, of S:

∀φk(Ck) ∈ Φ =⇒ Ck ∈ C.

1.4.1 Multivariate Gaussian Distribution

A multivariate Gaussian distribution (MGD)N (µ,Σ) over a vector of n random variables
X = (X1, . . . , Xn) is defined with two parameters: µ is the n-dimensional vector of mean
values for each variable, and Σ is the n × n positive semidefinite (i.e. xΣxT ≥ 0,
∀x ∈ {Rn \0}) and symmetric covariance matrix. Here, we consider MGDs with positive
definite covariance matrices. Positive definite matrices are guaranteed to be full-ranked
and non-singular, and therefore their inverse can be computed.

Geometrically, MGDs specify a set of parallel ellipsoidal contours around the mean
vector in Rn. The mean vector determines the bias of each variable’s values from origin
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and the variances, i.e. entries along the diagonal of the covariance matrix, are responsible
for specifying the spread of these values. The covariances (i.e. the off-diagonal entries in
the covariance matrix) determine the shape of the ellipsoids.

The typical representation of an MGD, sometimes referred to as the moment form, is
given by

p(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)Σ−1(x− µ)T

)
. (1.14)

This equation can be transformed to the information form representation of MGD [Koller
and Friedman, 2009], also known as the canonical or natural form

p(x) =
exp

(
−1

2
hΘ−1hT

)√
(2π)n|Θ−1|

exp

(
−1

2
xΘxT + xhT

)
(1.15)

where h = µΣ−1 is called the potential vector and Θ = Σ−1 is the inverse covariance
matrix, also known as the precision, concentration or information matrix.

For a valid MGD represented in the information form, the precision matrix should be
positive definite. This matrix, gives the partial covariances between pairs of variables. A
zero value in any entry θij of this matrix implies that the corresponding two variables are
conditionally independent given all other variables and vice versa:

θij = 0 ⇐⇒ I(Xi, Xj |X \ {Xi, Xj}).

1.4.2 Gaussian Markov Random Fields

Pairwise MNs [Hammersley and Clifford, 1971] are a widely used class of MNs, where all
of the factors are defined over either single or pairs of variables, i.e. a pairwise MN has
two types of factors:

i) Node factors φi(Xi) defined over every single variable Xi,

ii) Edge factors φij(Xi, Xj) defined over the ending variables Xi and Xj of every edge.

Pairwise MNs are closely related to MGDs. More specifically, the precision matrix
of an MGD defines a set of pairwise Markov properties [Lauritzen, 1996] which can be
encoded by a pairwise MN. Therefore the zero pattern of the precision matrix of an
MGD directly induces a Gaussian MN, which is known as Gaussian Markov random field
(GMRF) [Speed and Kiiveri, 1986; Rue and Held, 2005], a PGM successfully applied for
handling uncertainty in many practical domains.

To obtain the structure of this MN, an edge is introduced between every two nodes
whose corresponding variables are partially correlated (with a non-zero entry in the preci-
sion matrix). The parameters of the MN are node and edge factors obtained, for example,
by decomposing the variable exponent of MGD in Equation (1.15) to terms consisting of

16



single and pairs of variables

exp
(
− 1

2
XΘXT +XhT

)
=
[

exp(−1

2
θ11X

2
1 + h1X1) · · · exp(−1

2
θnnX

2
n + hnXn)

]
·
[

exp(−θ12X1X2) · · · exp(−θ1nX1Xn) · · ·

exp(−θn−1,nXn−1Xn)
]
.

Then, the joint Gibbs distribution factorizing over this MN can be obtained by computing
the partition function as

Z =

∫ ∞
−∞

exp

(
−1

2
XΘXT +XhT

)
dX =

√
(2π)n|Θ−1|

exp
(
−1

2
hΘ−1hT

) .
The possibility of transforming every MGD to a corresponding GMRF allows to work

with this type of MNs in an indirect way. On the other hand, converting a pairwise
MN with log-quadratic factors to an MGD is not straightforward. In fact, not every
pairwise MN with log-quadratic factors can be converted into a valid MGD, as it may
not necessarily result in a positive definite precision matrix [Koller and Friedman, 2009].

1.4.3 Learning and Sampling Gaussian Markov Networks

Because of the close relation between MGDs and GMRFs, here we consider learning
MGDs from data and how to sample them for generating new individuals. The mean
vector and covariance matrix of an MGD are computed as the first two moments of the
distribution (considering row-wise vectors):

µ = E(X)

Σ = E((X − µ)T (X − µ)) = E(XTX)− µTµ.

The total number of individual parameters that have to be estimated in order to determine
an MGD is (n2 + 3n)/2, i.e. of O(n2) complexity. Given a dataset D = {x1, . . . ,xN}
of N independent and identically distributed samples, the (unbiased) ML estimation of
MGD parameters (mean vector and covariance matrix) is given by

m =
1

N

N∑
j=1

xj, (1.16)

S =
1

N − 1

N∑
j=1

(xj −m)T (xj −m). (1.17)

To generate new individuals from a given MGD N (µ,Σ), first its covariance ma-
trix should be decomposed. Two types of matrix decomposition are often used for this
purpose:

• Eigen-decomposition, with Σ = UD2UT , where U is an orthogonal matrix (i.e.
UUT = I) consisting of the eigenvectors of Σ, and D is a diagonal matrix con-
taining the square roots of eigenvalues of Σ.
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• Bartlett or Cholesky decomposition Bilodeau and Brenner [1999], with Σ = LLT ,
where L is a lower triangular matrix.

Having a decomposition of covariance matrix, the sampling algorithm generates a vector
z of n random values, where each value is sampled independently from the standard
univariate Gaussian distribution N (0, 1). The new individual is then obtained by setting
x = µ+ zDUT (or x = µ+ zLT in case of Cholesky decomposition).

1.5 Conclusions

In PGMs, the probability distribution for a vector of random variables is accompanied
with a graphical representation. This graphical structure allows a better understanding
and interpretation of the relationships between variables. BNs are one of the popular
types of PGMs where the graphical structure is a DAG. The reasoning process in BNs
usually tries to find the probability of the values for some of the variables given the values
of other variables. However, sometimes the goal of inference is to find the value-setting of
a subset of variables with the highest probability. Several algorithms have been proposed
for learning a BN from a dataset of samples, usually classified into two general strategies:
constraint-based learning and score+search. BNs have been used in machine learning
tasks, where several types of Bayesian classifiers have been introduced.

MNs are another type of PGMs that encode symmetric interactions between variables,
where the direction of the dependency is not important. The parameters of MN define
a Gibbs distribution, factorized over the cliques of the MN structure. MN structure can
encode several types of conditional independence properties. One of these properties
known as the pairwise Markov property is in direct accordance with the correlations
between variables encoded in the precision matrix of an MGD. Therefore the parameters
of each MGD implicitly encode a pairwise MN.
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Chapter 2

Evolutionary Optimization with
Probabilistic Modeling

2.1 Introduction

The difficult and complex problems existing in real-world applications have increased the
demand for effective meta-heuristic algorithms that are able to achieve good (and not
necessarily optimal) solutions by performing an intelligent search of the space of possible
solutions. Evolutionary computation is one of the most successful of these algorithms
that has achieved very good results across a wide range of problem domains. Applying
their nature-inspired mechanisms, e.g., survival of the fittest and genetic crossover and
mutation, on a population of candidate solutions, evolutionary approaches like genetic
algorithms [Holland, 1975] have been able to perform an effective and diverse search of
the vast solution space of problems.

EDAs [Mühlenbein and Paaß, 1996; Larrañaga and Lozano, 2001; Pelikan, 2005;
Lozano et al., 2006] are a relatively recent class of EAs developed by using probabilis-
tic modeling in the framework of EAs. They have proven to be promising optimization
algorithms for many difficult problems with high computational complexity. These algo-
rithms explore the search space by building a probabilistic model from a set of selected
candidate solutions. This probabilistic model is then used to sample new candidate solu-
tions in the search space. As the result, these algorithms will provide a model expressing
the regularities of the problem structure, as well as the final solutions. In this chapter
we review the probabilistic models used in EDAs and discuss how they are employed for
optimization. This review is published in [Larrañaga et al., 2012].

2.2 Evolutionary Algorithms

Over the last few decades several types of EAs, like genetic algorithms (GAs) [Holland,
1975], evolutionary strategy (ES) [Rechenberg, 1973], evolutionary programming (EP)
[Fogel, 1966] and genetic programming (GP) [Cramer, 1985; Koza, 1992] have been pro-
posed. They are considered as important meta-heuristic algorithms for solving many
real-world problems. Figure 2.1 shows the common framework of a typical EA. Given a
fitness function that evaluates the quality of solutions, the algorithm iteratively evolves a
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Figure 2.1: Flowchart of a typical evolutionary algorithm.

population of candidate solutions to the problem. Fitter solutions of the population are
used to reproduce new offspring solutions (survival of the fittest principle) by applying
genetic operators, i.e. crossover and mutation.

2.2.1 Genetic Algorithms

GAs are perhaps the most well-known and widely used EAs. Since their introduction
[Holland, 1975], they have received an increasing amount of attention and interest, and
numerous works have studied their different aspects. A typical GA works by evolving a
population of candidate solutions to the problem across a number of generations in order
to obtain better solutions. Solutions are usually represented as binary strings, the same as
the representation of information in machine language. The algorithm, selects a subset of
fitter solutions from the population according to a selection mechanism, e.g. tournament
selection, as the parents. These parent solutions reproduce new offspring solutions by
applying genetic operators like crossover and mutation. The newly generated solutions
then compete for survival with the solutions in the population according to their fitnesses.

The simple and easy to understand mechanism of GAs with their simple solution
representation method, has led to their intensive utilization for optimization in a vast
variety of domains, from engineering tasks [Gen and Cheng, 2000] to medicine [Alander,
2012]. They have been also extensively used in multi-objective [Deb, 2001], uncertain and
dynamic [Goh and Tan, 2009] domains under the general term of evolutionary algorithms.
Despite their simple mechanics, several works have also studied the performance of these
algorithms from a theoretical point of view [Holland, 1975; Harik et al., 1999a]. For
further information on these algorithms see [Goldberg, 1989, 2002].

2.2.2 Evolutionary Strategy

ES is one of the early types of EAs designed mainly to deal with continuous domain
optimization. A typical ES is specified by two parameters λ and µ which respectively
determine the population size and the parents size after applying selection. The main
evolutionary operator in this algorithm is mutation, applied together with the selection
operator to continue the search. Since the size of the search space in continuous opti-
mization is infinite, ES algorithms usually use smaller population sizes and larger number
of generations to evolve the solutions toward the optimum. More details about this type
of EAs can be found in [Schwefel, 1995; Beyer, 2001; Beyer and Schwefel, 2002].
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2.2.3 Genetic Programming

The objective of GP is to evolve functions or computer programs to obtain a desired
functionality. The main difference of GP and GA is in the way that the solutions are rep-
resented. The usual representation used to encode the solutions in GP is tree structures,
where operations are shown as intermediate nodes and operands as terminal nodes of the
tree. GP evolves a population of these trees in the general framework of EAs, trying
to generate programs that can better achieve the required functionality. In a broader
perspective, GP can be used for automatic generation of new content.

To deal with program-tree representation of solutions, the genetic operators used
to reproduce new solutions should be adapted accordingly. Crossover usually involves
switching the compatible branches of two solutions. In mutation the values of specific
tree nodes or a branch of the tree is changed (while respecting the compatibility of the
whole solution). Therefore, the solutions in the population can have different sizes. GP
and EP are closely related and usually used interchangeably, with the latter putting more
emphasis on mutation in the generation of new solutions. The interested reader is referred
to the series of books by Koza [Koza, 1992, 1994; Koza et al., 1999, 2003].

2.2.4 Complementary Methods

In order to improve the performance of EAs in optimization, several methods have been
proposed which modify or add to the general framework of EAs. Here we briefly introduce
two of these methods that have been employed to enhance the optimization performance
of EAs in some of the applications discussed later in this thesis.

Hybridization

Hybridization of an algorithm usually refers to the case where this algorithm is used in
conjunction with a different type of method, and thus can cover various types of hybridiza-
tion between different algorithmic frameworks. The most likely type of hybridization for
EAs, is to use a local search method for improving new solution reproduction, which is
sometimes referred to as memetic algorithms [Hart et al., 2005]. In these algorithms after
generating a new solution using genetic operators, its local neighborhood is searched for
fitter solutions using a local search method like hill climbing. This type of hybridization
can improve the exploitation ability of EAs in search for optimal solution(s).

Cooperative Coevolution

Co-evolutionary algorithms are an extension to the original EAs and are specially designed
for optimization problems in complex systems. In coevolution, the fitness of each solution
is determined by the way it interacts with other solutions in the population. Basically,
two types of coevolution can be considered: competition and cooperation. In competitive
coevolution [Stanley and Miikkulainen, 2004], the increase in the fitness of an individual
negatively affects the fitness of other solutions. Cooperative coevolution, on the other
hand, rewards those solutions that have better collaboration with other solutions [Potter
et al., 1995]. In this type of coevolution, usually the problem is decomposed into a
number of subproblems and the individuals in the population represent sub-solutions to
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these subproblems. Therefore these subsolutions need to cooperate with each other to
obtain complete solutions with higher fitness values. The sub-solutions can be either
evolved in different populations or in a single population, known as Parisian approach
[Ochoa et al., 2008].

2.3 Estimation of Distribution Algorithms

A key to the success of EAs is the identification, preservation and effective combination of
the fitter partial solutions to the problem during evolution [Harik et al., 1999a]. However,
it has been shown that the operators used in traditional EAs fail to properly accomplish
this task when certain characteristics are present in the problem. A main reason for
this shortcoming is that these algorithms do not properly consider the dependencies and
relationships between the variables of the problem, and are not able to thoroughly exploit
the information obtained so far, up to the current stage of the search, in order to speed
up convergence. There are properties like non-linearity, ill-conditioning and deception in
real world problems that without considering them, traditional EAs can have significant
challenges for optimization.

Probabilistic modeling offers a systematic way of acquiring this kind of regularities,
and therefore can help to achieve a quick, accurate and reliable problem solving [Goldberg,
2002; Pelikan et al., 2002]. EDAs try to overcome the shortcomings of traditional EAs
by incorporating probabilistic modeling. For this purpose, instead of genetic operators
used in traditional EAs, new candidate solutions to the problem in each iteration are
generated using the following two steps:

1. Estimating a probabilistic model based on the statistics collected from the set of
candidate solutions, and

2. Sampling the estimated probabilistic model.

In this way the problem regularities encoded in the probabilistic model are used when
generating new solutions. Algorithm 2.1 shows the basic steps of an EDA. Worthy of note
is that probabilistic models can also be used in EAs for other purposes. For instance,
to make decisions on the application of mutation operators, to assess the influence of
the different EA parameters on the algorithm behavior, to obtain an estimation of solu-
tion qualities without direct fitness evaluation, or even to implement local optimization
procedures.

Implicitly, EDAs assume that it is possible to model the promising areas of the search
space, and to use this model to guide the search for the optimal solution(s). The proba-
bilistic model learnt in EDAs captures an abstract representation of the features shared
by the selected solutions and encodes the different patterns of interactions between sub-
sets of the problem variables. Probabilistic modeling gives EDAs an advantage over other
non-model based EAs by allowing them to deal with problems containing important in-
teractions among their variables. This, together with their capacity to solve different
types of problems in a robust and scalable manner [Pelikan, 2005; Lozano et al., 2006],
has popularized these algorithms, which are sometimes even referred to as competent
GAs [Goldberg, 2002; Pelikan et al., 2002] to differentiate them from traditional GA
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Estimation of Distribution Algorithm
Inputs:

A representation of solutions,
An objective function f

1 P0 ← Generate initial population according to the given representation
2 F0 ← Evaluate each individual x of P0 using f
3 g ← 1
4 while termination criteria not met do
5 Sg ← Select a subset of Pg−1 according to Fg−1 using a selection mechanism
6 ρ̂g(x)← Estimate the probability of solutions in Sg
7 Qg ← Sample ρ̂g(x) according to the given representation
8 Hg ← Evaluate Qg using f
9 Pg ← Replace Qg in Pg−1 according to Fg−1 and Hg

10 Fg ← Update Fg−1 according to the solutions in Pg
11 g ← g + 1
12 end while

Output: The best solution in Pg−1

Algorithm 2.1: The basic steps of an estimation of distribution algorithm

algorithms. The successful application of EDAs to many real-world problems in differ-
ent domains like: machine learning Inza et al. [2000, 2001a], bioinformatics Armañanzas
et al. [2008]; Santana et al. [2010c]; Armañanzas et al. [2011], scheduling Zhang and Li
[2011]; Wang and Fang [2012]; Chen and Chen [2013], industrial design and management
Sun et al. [2008]; Jiang et al. [2006], protein folding Santana et al. [2007, 2008], software
testing Sagarna and Lozano [2006] and composite materials Grosset et al. [2006] have
proved their usefulness in practice. There are also many EDA implementations avail-
able online, providing a range of possibilities for the application of EDAs to real-world
problems [Santana, 2011].

Because of the different nature of both optimization and probabilistic modeling in
discrete and continuous domains, EDAs developed for each of these domains also have
differences depending on the representation type they use for the problem. Therefore, in
the following sections each of these two categories are discussed separately. Here, we do
not intend to give an exhaustive list of all proposed EDAs. Rather the aim is to review the
different probabilistic models and machine learning methods employed in EDAs. Another
common way of categorizing EDAs is by the complexity of the probabilistic models they
use. In general, one of the rationales in EDA development has been to find a satisfactory
trade-off between the complexity of the probabilistic models they use and how accurately
these models represent particular optimization problem characteristics. This is another
factor taken into account in reviewing EDAs here. Moreover, for readability we use the
algorithm acronyms. Table 2.1 lists the algorithms full names. For recent review papers
on EDAs, the interested reader is referred to [Hauschild and Pelikan, 2011; Larrañaga
et al., 2012].
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2.3.1 Discrete EDAs

Early EDAs were developed for discrete and especially binary domains, as it is a common
practice in EAs to represent problem solutions with bit strings. Univariate EDAs, such
as PBIL [Baluja, 1994], cGA [Harik et al., 1999b] and UMDA [Mühlenbein and Paaß,
1996], assume that all variables are independent and thus their joint probability can be
factorized as a product of univariate marginal probabilities. The probabilistic model in
this case consists of separate nodes containing the probability distribution for each of
the problem variables. While some algorithms (e.g., PBIL and UMDA) learn the model
from a population of solutions, others (e.g., cGA) update the model using only a few
individuals. Consequently, these algorithms are the simplest EDAs and thanks to their
simplicity, univariate EDAs are particularly suitable for the theoretical analysis of EDA
behavior [González et al., 2002; Zhang, 2004].

To extend the modeling capability of EDAs, bivariate models were used in EDAs.
Bivariate models can represent pairwise dependencies between variables using efficient
learning methods. MIMIC [De Bonet et al., 1997] uses a chain structured probabilistic
model where the probability distribution of all the variables except the head node is
conditioned on the value of the variable preceding them in the chain. The structure
of the probabilistic model in COMIT [Baluja and Davies, 1997] is a tree, while it is
generalized to a forest of trees (dependency graph) in BMDA [Pelikan and Mühlenbein,
1999].

In univariate and bivariate EDAs, the probabilistic model structure is either fixed or
is very restricted. Therefore, while they can be efficiently applied to separable problems
(without any dependency) or to problems with low degrees of dependency among the
variables, they might still rapidly lose their efficiency when applied to more complicated
problems, with larger number of variable interactions. A further attempt to improve
EDAs is to use models that can capture dependencies between an arbitrary number
of variables. Thus the joint probability distribution can be decomposed into factors
involving several variables of the problem. Of course, this more flexible modeling by
multivariate EDAs, capable of learning complex structures, comes at the cost of a greater
computational effort. Figure 2.2 shows some examples of possible model structures of
different complexity learnt by EDAs.

Multivariate EDAs

FDA [Mühlenbein and Mahnig, 1999; Mühlenbein et al., 1999] gives a factorization of the
joint probability distribution for a class of problems known as additively decomposable
functions. EcGA [Harik et al., 2006] factorizes the joint probability distribution into a
number of marginal distributions defined over non-overlapping subsets of variables in a
probabilistic model called marginal product model (MPM). An MDL scoring metric is
used to search for the proper partitioning of the variables.

EBNA [Etxeberria and Larrañaga, 1999] and BOA [Pelikan et al., 1999] learn a BN
from the selected set of solutions in every generation. While both of the algorithms use a
greedy local search method to explore the space of possible BN structures, EBNA mea-
sures the quality of the structures using the BIC metric and BOA utilizes the BDe metric
to score them. BOA is also further extended to hierarchical BOA [Pelikan, 2005] by incor-
porating diversity-preserving techniques and an improved representation for BN parame-
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(a) Univariate
structure

(b) Chain structure (c) Tree structure (d) Forest structure

(e) FDA model structure (f) EcGA model
structure

(g) EBNA, BOA
model structure

Figure 2.2: Examples of different types of model structures used in EDAs.

ters using decision graphs. An improved version of FDA, known as learning FDA, is also
proposed that uses BNs to dynamically learn the interdependent variables [Mühlenbein
and Mahnig, 1999]. Thanks to the powerful probabilistic model that these algorithms
use, they can be applied to solve many difficult problems [Larrañaga et al., 2000b; Pelikan
and Hartmann, 2006].

Because of the model learning complexity in general, MN-based EDAs [Santana, 2003;
Wang and Wang, 2004; Shakya, 2006; Alden, 2007] are usually applied to applications
where the structure of the optimization problem is known and can be easily represented
using an undirected graphical model. However, an approximation of the probability
distribution, like Kikuchi approximations [Santana, 2005], can also be estimated to obtain
the factorization of problem variables. The use of this type of probabilistic models for
optimization is still topic of active research and very recently Shakya and Santana [2012]
have reviewed the new developments in this type of EDAs.

EDNA [Gámez et al., 2007] uses dependency networks [Heckerman et al., 2001] to
model the problem structure. Based on a heuristic approximation, this algorithm uses
second-order statistics (similar to bivariate EDAs) for model learning. Dependency net-
works can represent cyclic dependencies between variables which cannot be encoded in
BNs. However, this property prevents the application of sampling techniques used for BNs
like PLS method. Therefore, similar to MN-based EDAs, EDNA uses relatively complex
Gibbs sampling [Geman and Geman, 1984] procedures to generate new solutions from
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the probabilistic model.

Other Modeling Types

Apart from basic probabilistic models, EDAs have also used other modeling techniques.
Mixture of models increases the flexibility of joint probability estimation in EDAs, espe-
cially for solving multi-modal optimization problems (containing several optima). Pelikan
and Goldberg [2000] studied the effect of clustering the set of selected solutions on the
performance of UMDA. UEBNA [Peña et al., 2005] represents the mixture with a BN
which is learnt by the structural EM algorithm. Santana et al. [2009b] discussed several
topics concerning model building in discrete EDAs.

A promising technique is to take into account the fitness information of individuals in
the modeling process. EBCOA [Miquélez et al., 2004] adopts this idea, first introduced by
Michalski [2000], by dividing the set of selected individuals into different classes according
to their fitness values. The probabilistic model of this algorithm can be any of the BN
classifiers (Section 1.3.4) with the class node corresponding to the different levels of
fitness values (after discretization). Similarly, Shakya and McCall [2007] directly used
the fitness values in the estimation of MN parameters in their proposed DEUM framework
[Shakya, 2006], assuming that the probability of each solution in the search space can
be approximated by its fitness value. Another related idea is to learn EDA probability
distributions from both low and high fitness individuals [Hong et al., 2009]. Valdez-Peña
et al. [2009] have extended this idea by estimating a distribution for selection operators
and used it to identify which solutions would be used for model learning.

Probabilistic models in EDAs can also be used to estimate or predict the fitness
values of the new solutions. This approach can be especially useful for problems with
a very difficult and time-consuming fitness function. Fitness inheritance modeling has
been incorporated into EcGA [Sastry et al., 2004] and BOA [Pelikan and Sastry, 2004] to
estimate the fitness value of new individuals and, consequently, reduce the total number
of function evaluations consumed by the algorithm to reach the optimum. Brownlee et al.
[2008] and Brownlee [2009] used a MN-based fitness model in DEUM to predict the fitness
value of the new individuals and also compare their correlations to the true fitness values.

Propagation methods, used for inference in BNs, also have applications in EDAs.
Mendiburu et al. [2007] used total abductive inference to find the most probable value-
setting of BN variables, as one of the solutions generated from the probabilistic model in
EBNA to improve the sampling procedure. Lima et al. [2009] used loopy belief propaga-
tion in a local search method in BOA as a way to compute optimal local value-settings
of the problem. An analysis of EBNA performance at different stages of evolution is
also given by computing the most probable value-setting at each generation [Echegoyen
et al., 2009]. AffEDA [Santana et al., 2010b] uses affinity propagation [Frey and Dueck,
2006], another propagation algorithm based on probabilistic modeling, to obtain non-
overlapping factorizations of the joint probability distribution.

There have been also attempts to hybridize EDAs with other optimization algorithms,
like differential evolution [Sun et al., 2005] and artificial immune systems [de Castro and
Zuben, 2009]. Recently, Bengoetxea and Larrañaga [2010] and Ahn et al. [2012] have pro-
posed very similar frameworks for hybridizing EDAs with particle swarm optimization, in
continuous and discrete domains respectively. The central idea of these techniques is to
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combine the global search ability of EDAs with better local exploitation of other meth-
ods. LTGA [Thierens, 2011] takes advantage of structure learning in EDAs and genetic
recombination in GAs by building a linkage tree using an agglomerative hierarchical clus-
tering algorithm with mutual information as its distance metric. Using this linkage tree
the algorithm determines the crossing point of the parents when applying the crossover
operator to the selected solutions for generating new solutions.

2.3.2 Continuous EDAs

The usual choice, adopted by most EAs in continuous domain optimization, is to assume
a Gaussian distribution for problem variables. Many of the early continuous EDAs as
well as their recent improvements are also based on this assumption. PBILC [Sebag and
Ducoulombier, 1998] extends its discrete version to continuous domains by updating a
vector of independent Gaussian distributions. UMDAC [Larrañaga et al., 1999, 2000a]
uses ML estimation to learn the parameters of the Gaussian distribution for each variable
from the population of solutions. MIMICC [Larrañaga et al., 1999, 2000a] learns the
chain structured probabilistic model for continuous variables by adapting the concept of
(conditional) entropy for univariate and bivariate Gaussian distributions.

EGNA [Larrañaga et al., 1999, 2000a; Larrañaga and Lozano, 2001] can be considered
as the continuous version of EBNA based on a GBN. Two approaches have been proposed
for learning the network structure in this algorithm: (i) starting from a complete DAG,
likelihood ratio hypothesis tests are used to decide whether the edge between two nodes
should be excluded from the network; (ii) performing a greedy local search in the space
of possible DAGs using a scoring metric like BGe (continuous version of the BDe metric)
or BIC. EBCOA has also been extended to continuous domains [Miquélez et al., 2006]
by building BN classifiers that assume Gaussian distributions for the variables given the
class variable value. Karshenas et al. [2011b] proposed learning a joint GBN consisting
of both variables and objectives in their JGBN-EDA for multi-objective optimization.

IDEA [Bosman and Thierens, 2000a,b] and EMNA [Larrañaga and Lozano, 2001] learn
an MGD from the set of selected solutions. While EMNA uses ML estimation, IDEA
employs Kullback-Leibler divergence in conjunction with a greedy search algorithm, as
well as likelihood ratio statistical hypothesis tests. Further improvements of IDEA have
been proposed by scaling the diminishing variances [Grahl et al., 2006] and shifting the
distribution mean [Bosman and Grahl, 2008; Bosman et al., 2008].

Mixture of Distributions

An extended version of IDEA [Bosman and Thierens, 2001] uses a mixture of normal
distributions over clusters of solutions, obtained by applying a clustering algorithm before
learning mixture components. rBOA [Ahn et al., 2004] first learns a GBN to obtain
a decomposition of the problem variables into smaller subproblems. Then, a separate
mixture of GBNs is learnt for each of the subproblems by clustering the solutions in
that subproblem. In BGMMEDA [Li et al., 2006], instead of clustering the samples, a
boosting technique is applied to estimate a Gaussian mixture model.

MB-GNG [Mart́ı et al., 2011] adopts growing neural gas, a specific single-layer neural
network, to determine the location of the components of the mixture of Gaussian distri-
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butions. This model learning algorithm is sensitive to, and therefore does not neglect,
outliers and is able to automatically adapt its topology while decreasing the accumu-
lated error of the network nodes. The multi-model EDA framework [Weise et al., 2011]
extends these mixture methods by applying traditional EA recombination operators to
the individual models learnt for each of the clusters in order to improve search space
exploration. RM-MEDA [Zhang et al., 2008] learns a piece-wise continuous manifold
for multi-objective optimization using the local principle component analysis algorithm.
Each model component is a hyper-rectangle with an added Gaussian noise.

Other Modeling Approaches

Poš́ık [2008, 2009] proposed the use of Cauchy distribution for the purpose of preventing
premature convergence. Since the moments of an n-dimensional variable with multivari-
ate Cauchy distribution are not defined, the mean vector and covariance matrix of an
MGD are computed instead. For sampling new solutions, the scaling factor of the Cauchy
distribution is used to obtain isotropically distributed new solutions.

More recently some EDAs have employed copula theory to relax the Gaussian as-
sumption for the variables. Copula-based EDAs (CEDAs) [Salinas-Gutiérrez et al., 2009;
Wang et al., 2009; Wang and Zeng, 2010; Cuesta-Infante et al., 2010] use the copula
function for estimating the joint probability distribution of the variables according to
Sklar’s theorem. The copula function only uses the marginal univariate probabilities to
compute the joint probability distribution. This reduces the computational complexity
of model learning. Two-dimensional elliptical copulas as well as Archimedean and em-
pirical copulas and their extensions to higher dimensions are studied in the literature.
These copula functions provide the variable interaction structure of the problem when
sampling new solutions from the learnt model. In each generation the algorithm selects
or constructs a copula function after estimating the univariate marginal distributions and
then, generates new samples according to the copula distribution.

CMA-ES [Hansen, 2006] incorporates model estimation into ES. The algorithm learns
an MGD as its probabilistic model to generate new solutions. The probabilistic model
estimated in each generation is a combination of information collected over several gen-
erations, taking into account the path that the optimizer has traversed in the search
space (the gradient information). Instead of estimating a new probabilistic model in each
generation, the algorithm adapts the model during evolution. Thus, the algorithm is able
to use smaller population sizes for optimization by spanning model learning over several
generations. Because of such an adaptation strategy, some researchers do not completely
consider this algorithm as an EDA [Poš́ık, 2009]. It is worth to note that similar tech-
niques have been proposed for improving the efficiency of other EDAs in optimization
[Pelikan et al., 2008; Bosman et al., 2008].

Non-parametric Probabilistic Models

Other probabilistic models that estimate a non-parametric probability distribution for
the variables have also been used in continuous EDAs. IDEA, for example, has employed
other models, apart from MGD, like Gaussian kernel distribution (a Gaussian kernel for
each sample) or histograms in its framework [Bosman and Thierens, 2000b,a].
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Cho and Zhang [2002] proposed a continuous EDA that learns a mixture of factor
analyzers using EM algorithm. They also employed a more complicated mixture of vari-
ational Bayesian independent component analyzers in a later study [Cho and Zhang,
2004]. MOPEDA [Costa and Minisci, 2003] applies a Parzen estimator that convolves
the empirical estimation obtained from a finite data set with a squared integrable kernel
function in order to reduce the variance of the probability distribution estimation. Both
Gaussian and Cauchy kernels are used alternatively during evolution to utilize their in-
trinsic complementary characteristics. In KEDA [Luo and Qian, 2009], the width of each
kernel is dynamically computed during the optimization.

Histogram-based EDAs (HEDAs) discretize each variable’s values by dividing their
range to a number of bins. Tsutsui et al. [2001] proposed two types of marginal histogram
models: (i) a fixed-width histogram (FWH) where the domain of each variable is divided
into a fixed number of bins whose height may differ depending on the variable values; (ii)
a fixed-height histogram (FHH) where all bins have an equal value generation probability
but can have different widths. Consequently, there will be more bins in denser regions
and thus modeling will be more accurate.

Ding et al. [2008] proposed two improvements to the above histogram modeling in
their HEDA. They introduced a surrounding effect, where the values of each bin can
affect the values of its surrounding bins using a special surrounding factor. They also
employed a shrinkage strategy where the height of the bin containing the best value of
the variable can exceed a predefined threshold. PBILC is also extended with histograms
[Xiao et al., 2009], combining the original updating rule with bin updating, where the
bins reaching a predefined height are divided.

Histogram modeling has also been applied to optimization in permutation domains
[Tsutsui, 2002; Tsutsui et al., 2006] using two different types of models. The first is
an edge histogram matrix where each entry indicates the frequency of two permutation
values occurring adjacent to each other in the population. The second is a node histogram
matrix that encodes the frequency at which a special value in the permutation occurs at
a specific location in the solution. Specific sampling algorithms are developed for these
models where a new value is generated according to the value of adjacent permutation
locations or the position for which the value is going to be generated.

2.3.3 Discrete-Continuous EDAs

MBOA [Očenášek and Schwarz, 2002; Očenášek et al., 2004] adopts binary classification
and regression decision trees to solve mixed discrete-continuous optimization problems.
The algorithm uses a BDe-like scoring metric to build a decision tree for each variable
to encode its related probability distribution. The decision trees allow the algorithm to
build individual models (like Gaussian kernels) for specific regions of the search space,
stored in different tree leaves.

2.3.4 Discussion

Table 2.1 gives a summary of the presented EDAs and their probabilistic models. The
algorithms are divided into three different classes according to the complexity of their
probabilistic models: univariate, bivariate and multivariate EDAs. Within each class,
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Table 2.1: Full name of EDAs and the models they use. Discrete EDAs are shown on
a white, continuous on a green and mixed discrete-continuous on a blue background,
respectively.
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the algorithms are ordered chronologically to show how the use of probabilistic models
in EDAs has evolved during time.

Initial EDAs mainly considered about the probability distribution of individual vari-
ables, in order to perform a more effective search for the solutions of separable problems.
In this kind of problems the optimal value of each variable can be obtained regardless of
the value of the other variables. In other terms, the way that the value of each variable
influences the fitness of the whole solution is not affected by the values of other variables
at all.

The limitations of univariate EDAs, brought up the need for a more advanced prob-
abilistic modeling. The main advantage of these new probabilistic models is that they
consider a kind of structure for the problem, reflecting an estimation of the interactions
between variables. Some algorithms put certain constraints on the structures, e.g. bi-
variate EDAs can only consider mutual interactions. Some others like FDA consider a
fixed structure given beforehand (e.g. for a specific class of problems), and try to find
the best parameter estimation that fits this structure. But most of EDAs try to learn the
structure dynamically during evolution. A number of algorithms require the variables
to be clustered into completely disjoint dependence groups (e.g. EcGA and AffEDA),
whereas in others overlapping groups of dependent variables is allowed (e.g. MIMIC and
EBNA).

Because of their ability to represent complex patterns of interactions between the
problem variables, the use of multivariate probabilistic models has become dominant in
EDAs. Usually these algorithms perform a kind of structure learning to estimate the
probabilistic model, which is very time-consuming in comparison to other parts of the
algorithm. Therefore, in practice an upper bound is imposed on the order of interac-
tions that is considered in the structure learning. This restriction can also be imposed
implicitly, e.g. using penalized scoring metrics for learning BNs (Section 1.3.3).

The choice of the type of EDA to be used, depends very much on the problem. If the
problem at hand is linear, or the variables are not believed to be strongly dependent, then
one should use univariate EDAs since they are computationally more efficient. On the
contrary, if we are dealing with a problem that has high order of interactions between its
variables, then EDAs that use probabilistic models with higher representational capability
should be used in order to be able to reach the optimal solution(s) of the problem. The
structures estimated by these EDAs can also give a better understanding of unknown
problems. Several works have studied the accuracy of these structures and the information
we can obtain from them [Lima et al., 2007; Karshenas et al., 2009; Santana et al., 2009a].

In reality, one should compromise between the computational complexity and the
optimization capability of these algorithms when applying them to different problems.
Based on this observation, there has been many efforts to increase the efficiency of EDAs
while keeping their complexity at an acceptable range. Techniques like parallelization
and hybridization (discussed in Section 2.2.4) are introduced in the literature which are
usually referred to as efficiency enhancement techniques [Pelikan, 2005].

2.3.5 Model-Based Genetic Programming

Although probabilistic models were first built into GAs, the idea was soon adopted also in
GP. Because of the complex solution representation used in GP, model learning and sam-
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pling can be a challenging task. However, several GP algorithms based on probabilistic
modeling have been proposed in the literature.

Probabilistic incremental program evolution (PIPE) [Sa lustowicz and Schmidhuber,
1997] is a GP algorithm based on univariate factorization of program distribution. A
probabilistic prototype tree (PPT) model encodes the probability distribution and is
later used to generate new program trees at each generation of the algorithm. Extended
compact genetic programming (ECGP) [Sastry and Goldberg, 2003] incorporates the use
of marginal product distributions into the context of GP. Also based on a PPT model,
ECGP constructs a factorization of the tree program distribution equal to the product
of marginal distributions. Each marginal distribution is associated with a subtree of the
PPT. The structure of the factorization is learned using a greedy algorithm, similar to
EcGA.

The use of BNs for GP was proposed by Yanai and Iba [2003]. This estimation of
distribution programming approach is based on the use of the PPT. The conditional
probabilities between the nodes of the PPT are computed for the purpose of representing
a wider class of probability distributions than PIPE and ECGP. More recently, Hasegawa
and Iba [2008] proposed a BN modeling approach for GP that significantly reduces the
size of the conditional probability tables. The algorithm also requires fewer samples to
construct the BN from the selected solutions.

Another type of model-based GP algorithms involve the use of grammars. These
algorithms [Shan et al., 2006; McKay et al., 2010; Bosman and de Jong, 2008] depart
from the traditional uses of PGMs since the probability distributions are often associated
with the grammar rules and their different contexts of application. For example, Bosman
and de Jong [2008] estimate the distribution of programming trees based on the subtrees
that actually occur in the data. The representation specifies a set of rules whose expansion
leads to trees, and the probability distributions are defined on these rules. For a review
of these algorithms, see [Shan et al., 2006] and [McKay et al., 2010].

2.4 Conclusions

One of the disciplines that has greatly taken advantage of probabilistic modeling is evo-
lutionary computation, resulting in a new class of algorithms which are called estimation
of distribution algorithms. Although this is a relatively new paradigm, numerous stud-
ies have investigated their different aspects, and several types of algorithms have been
proposed based on this paradigm. These algorithms cover both discrete and continuous
domains, and within each domain probabilistic models with different complexities have
been used.

EDAs are still a topic of intensive research, and every year many new works related
to the theory or application of these algorithms are published. New studies are trying to
extend the application of these algorithms to other domains like multi-objective, noisy or
dynamic problems. Nevertheless, because of the close relationship that these algorithms
have with probabilistic modeling, any new development in the area of probabilistic mod-
eling, specially regarding the efficiency of the learning and sampling methods, can help
to achieve competent problem optimization with EDAs.
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Chapter 3

Evolutionary Algorithms in Bayesian
Network Inference and Learning

3.1 Introduction

Some of the most relevant inference and learning problems in Bayesian networks are
formulated as the optimization of a function. These problems usually have an intractable
complexity and therefore are a potential domain for the application of meta-heuristic
methods. In the previous chapter we discussed how PGMs and in general probabilistic
modeling is used in EA framework to improve the optimization performance in EDAs.
However, this collaboration has not been all one-sided, and EAs have also been extensively
applied to solve many optimization tasks in PGMs and especially in BNs. In this chapter
we review how EAs have been applied for solving some of the combinatorial problems
existing in the inference and learning of BNs. This review is published in [Larrañaga
et al., 2013].

3.2 Triangulation of the Moral Graph

Lauritzen and Spiegelhalter [1988] proposed one of the most popular algorithms for exact
inference in BN. The first step of this algorithm is to moralize the BN structure. In this
step all variables with a common child are linked together and then all edge directions are
removed. The resulting graph is called a moral graph. The second step of the algorithm
is the so-called triangulation of the moral graph. A graph is triangulated if any cycle of
length greater than 3 has a chord. This step is considered as the hardest step (in terms
of computational complexity) of this inference algorithm. The resulting structure is then
used for evidence propagation and probability computation.

The basic technique for triangulating a moral graph (see also Figure 3.1) is through
successive elimination of graph nodes. Before eliminating a node and its incident edges,
we check that all of its adjacent nodes are directly connected to each other by adding the
required edges to the graph. The nodes are chosen for elimination according to a given
order of the variables. The quality of a triangulation is measured by the weight of the
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Figure 3.1: An example of the triangulation algorithm. Nodes are eliminated in order:
X1, X5, X3, X4, X2, X6 and it is assumed that ri = i+ 1, i = 1, . . . , 6. a) Initial DAG. b)
Related moral graph. c) Eliminate X1: C1 = {X1, X2, X3, X4}, added edges: <X2, X3>
and < X3, X4 >. d) Eliminate X5: C2 = {X4, X5}. e) Eliminate X3: C3 = ∅. f)
Eliminate X4: C4 = {X2, X4, X6}, added edges: <X2, X6>. g) Eliminate X2: C5 = ∅.
h) Eliminate X6: C6 = ∅. i) Total weight of the triangulated graph: log2(2 · 3 · 4 · 5 + 5 ·
6 + 3 · 5 · 7) = log2 255.

triangulated graph St

w(St) = log2

(∑
C∈C

∏
Xi∈C

ri

)
, (3.1)

where C denotes a clique of the triangulated graph St composed of vertices Xi, each with
ri possible different states. Evidently, the quality of triangulation is fully determined by
the order in which the nodes are eliminated. Hence, the search for an optimal trian-
gulation is equivalent to the search for an optimal node elimination sequence, i.e. the
search for an optimal permutation of nodes. Several criteria are proposed to search for
the optimal node elimination order, from which most of the works try to minimize the
weight of the corresponding triangulated graph (Equation (3.1)). It is already demon-
strated that the search for an optimal triangulation is NP-hard [Wen, 1991]. Kjærulff
[1992] performed an empirical comparison of several triangulation methods, obtaining the
best results with the simulated annealing algorithm.

The problem of searching for an optimal node elimination sequence resembles the
much researched traveling salesman problem (TSP). The aim of both problems is to find
an optimal variable ordering. One important difference, however, is that only the relative
order is important in the standard TSP, whereas the absolute order also matters in the
node elimination problem. Taking these ideas, Larrañaga et al. [1997] applied a GA
with crossover and mutation operators adapted for the TSP path representation. They
achieved competitive results compared to simulated annealing, which is the best method
to date.

More sophisticated recombination operators are a way to enhance the search for opti-
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Table 3.1: Application of evolutionary algorithms to inference in Bayesian networks

Task Reference Representation Algorithm
T

ri
a
n

g
u

l.

Larrañaga et al. [1997] Permutation of Variables GA

Wang et al. [2006] Permutation of Variables GA

Romero and Larrañaga [2009] Permutation of Variables REDA

Dong et al. [2010b] Permutation of Variables GA

M
P

E

Gelsema [1995] Value-setting for Variables GA

Rojas-Guzmán and Kramer [1996] Graph GP

Mengshoel [1999] Value-setting for Variables GA

Sriwachirawat and Auwatanamongkol [2006] Value-setting for Variables GA

M
A

P de Campos et al. [1999] Value-setting for Variables GA

de Campos et al. [2001] Value-setting for Variables UMDA, MIMIC, EBNA

mal variable ordering. Wang et al. [2006] proposed an adaptive GA able to self-adapt the
crossover and mutation operators probabilities, and provided a ranking-based selection
operator that adjusts the pressure of selection according to the population evolution. Re-
cently, Dong et al. [2010b] proposed a new GA based on a new rank-preserving crossover
operator and a two-fold mutation mechanism that utilizes the minimum fill weight heuris-
tic.

Another alternative to improve search efficiency for this problem has been to use
probabilistic modeling. Romero and Larrañaga [2009] proposed an approach based on
recursive EDAs (REDAs) for both discrete and continuous representation of the variables.
REDAs partition the set of vertices (that are to be ordered) into two subsets. In each
REDA call, the vertices in the first subset are fixed, whereas the other subset of variables
is evolved with a standard EDA. In the second call, the subsets switch roles.

The research on this problem so far has shown that GAs can obtain results comparable
to simulated annealing. A very close behavior is seen when using REDAs, with improved
convergence speed. The comparison with other types of optimization algorithms that use
other optimization criteria also show that GAs which use the minimizing graph weight as
the optimization criterion can find better node elimination orders, provided that proper
operators and parameters are used.

3.3 Total and Partial Abductive Inference

EAs have also been used to search for the MPE in a BN. Gelsema [1995] used a GA where
each individual is a value-setting for the unobserved variables, i.e., a string of integers.
Rojas-Guzmán and Kramer [1996] employed a GP where each individual represents the
whole BN with all the nodes in the explanation set instantiated to one of their possible
states. Mengshoel [1999] used a GA coupled with his proposed probabilistic crowding
replacement to perform a more efficient search for the MPE by better preservation of
the diversity. Sriwachirawat and Auwatanamongkol [2006] proposed a GA for solving the
more complex problem of finding the k MPEs [Nilsson, 1998].

De Campos et al. [1999] proposed a GA for approximate partial abductive inference
(MAP) given an evidence set. The individuals in the GA population represent a possible
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value-setting only for the variables in the explanation set. The proposed algorithm is also
able to find the k MPEs of the explanation set. Discrete EDAs with different degrees of
model complexity (UMDA, MIMIC and EBNA) are also used to find the MAP [de Campos
et al., 2001].

The common trend in finding the k MPEs is to search in the space of possible value-
settings for unobserved variables. The reported results show that if these value-settings
are represented on the original BN structure, better results can be obtained in less time
using evolutionary search. GAs can reach high probable explanations faster than conven-
tional methods like max-flow propagation [Nilsson, 1998]. Furthermore, the probabilistic
modeling of EDAs can speed up the convergence compared to GA, especially when using
probabilistic models with high descriptive abilities (e.g. EBNA) [de Campos et al., 2001].
Table 3.1 summarizes the discussed algorithms for BN inference tasks.

3.4 Structure Search

Finding the correct BN structure is an important part of the learning process in the
search+score strategy which also directly affects BN parameter learning. Heuristic search
algorithms and especially EAs can be a promising approach to this problem as the car-
dinality of the search space is huge (Equation (1.9)). Although most of the proposed
algorithms search the space of DAGs, there other spaces where the search can be con-
ducted. One of these spaces is the space of variable orderings (permutations). Given a
total ordering of variables, a simple greedy method, called the K2 algorithm [Cooper and
Herskovits, 1992] can be used to obtain a full DAG structure of a BN. With different
variable orderings, this algorithm can result in different BN structures. Thus, the space
of variable ordering can be searched to obtain the orderings that result in higher scoring
BNs.

The K2 algorithm is one of the first algorithms proposed for learning a BN from
a dataset. This algorithm uses the K2 metric to score different BN structures (Sec-
tion 1.3.3). The K2 metric is computed for each variable separately to take advantage
of decomposability. Starting from an empty parent set for each node, the variable that
results in the highest increase of the node’s scoring metric is added to its parent set.
This greedy process is repeated until the network score reaches its maximum. Candi-
date parents are selected according to the variable ordering given to the algorithm. This
means that parents can only include variables that have preceded a variable in the given
ordering. The algorithm also restricts the maximum number of parents allowed for each
node (also given as an input parameter).

Besides the previous two spaces, another possibility is to search the space of equiv-
alence classes of BNs [Chickering, 2002], when the scoring metric complies with the
equivalence property. Two DAGs are said to be Markov equivalent if they encode the
same statistical model, i.e., the same set of conditional independence assertions. This
model can be represented by a partial DAG (PDAG), where some of the edges are undi-
rected. A metric that assigns equal scores to Markov equivalent BNs is said to comply
with the equivalence property. Using this algebraic relation (which is reflexive, symmetric
and transitive), the space of equivalence classes can be searched for the best BN. The
BDe metric, for example, is a Markov equivalence-compliant scoring metric.
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In this section, we review some of the EA-based methods proposed for BN structure
search. Note that we focus our review on the EAs introduced in Chapter 2, which are
more relative to the line of research in this thesis, although some other evolutionary
approaches like ant colony optimization have also been used for this task [de Campos
et al., 2002]. The reviewed methods are divided into three categories depending on the
space where they perform the search for finding the best BN structure. The methods are
also listed in Table 3.2.

3.4.1 DAG Space

Larrañaga et al. [1996c] proposed a GA that encodes the connectivity matrix of the BN
structure in its individuals. The algorithm, which uses a marginal likelihood-based metric
to score the BN structures, considers two different approaches. In the first approach there
is a total ordering assumption between the variables (parents before children), and thus
the variation operators (one-point crossover and bit mutation) are closed. This restriction
also reduces the cardinality of the search space. In the second approach, there is no such
assumption, and the algorithm should deal with a larger space. In this case, a repairing
operator is needed to ensure that the variation operators result in a valid BN structure.

To overcome the requirement for a repairing operator, Etxeberria et al. [1997] used the
fuse-DAGs algorithm [Matzkevich and Abramson, 1992] to guarantee that the crossover
operator satisfies the closure property. Larrañaga et al. [1996b] hybridized two versions
of a GA with a local search operator to obtain better structures. Myers et al. [1999]
extended the use of GAs for BN learning to domains with missing data, simultaneously
evolving the structure of the BN and the missing data in separate populations. At each
generation the new solutions generated in both populations are used to compute the BDe
score of each network structure.

Cotta and Muruzábal [2002] built phenotypic information into gene-based and allele-
based recombination operators in a GA to search for the best structure according to
a penalized likelihood-based scoring metric. Using guidelines on how GAs work [Harik
et al., 1999a], van Dijk et al. [2003] designed a GA where the recombination operator tries
to prevent the disruption of the good BN substructures obtained so far in the population.
The algorithm uses an MDL metric as the fitness function for scoring the network struc-
tures, and a repairing operator to ensure that structures are acyclic. In the domains with
mixed discrete-continuous variables, Mascherini and Stefanini [2005] proposed a mixed
GA to search for the optimal CGN, where invalid structures are corrected by deleting
inadmissible arcs at random. An extension of the BDe metric is used to measure the
fitness of the model for the mixed domain dataset.

Blanco et al. [2003] compared the performance of GAs with two univariate EDAs,
namely, UMDA and PBIL, using three different scoring metrics. The reported results,
both with and without a total ordering assumption between variables, showed that EDAs
are able to obtain better or comparable BN structures. Kim et al. [2005] used fitness
sharing in an EA to obtain a diverse population of BN structures. The BNs learnt at the
end of evolution are then combined according to Bayes’ rule for providing a more robust
inference.

Hanzelka [2008] also proposed a hybridization of GA with local search methods per-
formed on single solutions under the term of Lamarckian evolution. It uses a Chi-squared
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test to determine the edges that should be removed for repairing the structure. After GA
terminates, an additional exhaustive search is conducted in the most promising subspace
of BN structures found.

Barrière et al. [2009] proposed an EA which uses a cooperative coevolution strategy
to evolve a population of conditional independence assertions. The scoring criteria is the
Chi-squared test. At the end of evolution, the best conditional independence assertions
found (partly stored in an archive) are used to build the structure of the BN.

The EP algorithm proposed by Wong et al. [1999] is based on a set of mutation
operators and uses the MDL metric to search for good BN structures. Because of its
flexibility in representing the structures without any encoding, no further assumptions
on the ordering of the variables are needed in order to apply the mutation operators.
The proposed algorithm is later extended by first introducing a merge operator and then
hybridizing it using the two-phase constraint-based method [Wong and Leung, 2004]. In
the first phase, conditional independencies among the variables are used to reduce the
size of the DAG search space. In the second phase, good BN models are searched for
using an EA. Replacement of the EA with a cooperative coevolution algorithm is also
studied in [Wong et al., 2004].

Most of the works that consider learning BNs by searching in the space of possible
DAG structures use a string representation of the connectivity matrix. In this representa-
tion the order of variables is important or else a repair operator will be necessary to ensure
valid DAG structures after applying genetic operators. Because of this, some methods
simultaneously search for variable orderings and topology of BN whereas some others
use structure-aware operators to ensure the validity of the resulting DAGs. A similar
representation is the list of parents of each variable, leading to solutions of varying sizes.
If GP is used for search, DAG structures can be directly evolved and the reported results
show better performance of this approach, in terms of the final BN structure score, its
closeness to the reference structure and computational time needed for the search [Wong
et al., 1999].

Another point is the importance of local search or in general higher exploitation which
is shown to find better BN structures. Significant improvement has been reported when
the initial search space is reduced by incorporating information about the conditional
independencies between variables [Wong and Leung, 2004]. These information is gathered
in a pre-evolution phase by performing conditional independence tests, usually with a
small order of variables in the condition part to keep the computational complexity of
the whole algorithm low. Comparison of different EAs with some standard methods like
K2 algorithm or simple deterministic methods like hill climbing show that, especially
when the size of the datasets used for learning BNs increases, EAs are able to estimate
better structures and usually have a faster convergence.

3.4.2 Equivalence Class Space

To eliminate redundancy in the DAG space, van Dijk and Thierens [2004] extended their
initial representation to PDAGs to perform the search in the equivalence class space. They
also studied the effect of hybridizing the algorithm with local search methods. Jia et al.
[2008] proposed an immune GA to search this space, hybridizing principles of artificial
immune systems (based on immunology) [de Castro and Timmis, 2002] with GAs. They
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employed conditional independence tests for extracting the interactions between variables
prior to the evolutionary search of GA and use it (as immune vaccines) in order to reduce
the search space.

Muruzábal and Cotta [2004] proposed an EP algorithm to perform the search in
the equivalence class space. The algorithm uses several mutation operators to move
between Markov equivalent classes [Chickering, 2002] according to BDe metric. Cotta
and Muruzábal [2004] compared three versions of EP algorithm that perform the search
in the equivalence class space, either directly or with a restriction (inclusion boundary
[Castelo and Kočka, 2003]) on the operators.

Two milestone works have paved the way for most other approaches proposed to search
the equivalence space: the equivalence class aware operators that allow moving between
different classes when applied to any PDAG member of that class; and the inclusion
boundary property of the operators that when preserved, can prevent the search from
falling into local optima. The greedy search in this space results in faster convergence
compared to the search in the DAG space. However, it should be noted that the size
of the search space is still exponential in the number of variables. Moreover, many of
the EAs that are proposed for performing the search in this space involve operations
to convert PDAGs back and forth to/from DAGs which is computationally expensive.
Hybridizing EAs with local search has also been reported to improve the results [van
Dijk and Thierens, 2004].

3.4.3 Ordering Space

Larrañaga et al. [1996a] used the TSP-inspired permutation representation (Section 3.2)
to search for the best ordering between the variables using a GA. The K2 algorithm was
applied on each ordering to evaluate the quality of different orderings. They compared
the performance of different combinations of crossover and mutation operators. Using the
same representation and evaluation scheme, Habrant [1999] proposed improved mutation
and crossover operators to search for the best BN structure in the real-world problem of
time series prediction in finance. Similarly, Hsu et al. [2002] proposed a GA based on the
order crossover operator to search in the space of permutations. In their method, the
fitness of each BN resulting from an ordering after applying the K2 algorithm is measured
according to its inference quality (using cross-validation).

The chainGA [Kabli et al., 2007] assumes a chain structure between the variables
in the given ordering and evaluates them using the K2 metric in order to bypass the
need for the time-consuming K2 algorithm. At the end of evolution however, the K2
algorithm is applied to the best found orderings to obtain a good structure. The algorithm
is also applied to the real-world problem of prostate cancer management [Kabli et al.,
2008]. Lee et al. [2008] proposed a novel representation of BN structure composed of
dual chromosomes: a node ordering chromosome and a connectivity matrix chromosome
in accordance with its dual (ordering). They applied their proposed GA, with special
crossover and mutation operators developed for this representation, to a number of real-
world problems which involve learning BNs.

Romero et al. [2004] applied two types of discrete- and continuous-encoded EDAs
(UMDA and MIMIC) to obtain the best ordering for the K2 algorithm. For discrete en-
coding they used a bijective mapping to represent possible orderings of n variables with
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Table 3.2: Application of evolutionary algorithms to learning Bayesian networks.

Space Reference Representation Algorithm
D

A
G

s
Larrañaga et al. [1996c] Connectivity Matrix GA

Larrañaga et al. [1996b] Connectivity Matrix GA+Local Search

Etxeberria et al. [1997] Connectivity Matrix GA

Myers et al. [1999] Connectivity Matrix GA

Wong et al. [1999] Graph EP

Tucker et al. [2001] Edge-Time Tuples EP

Cotta and Muruzábal [2002] Connectivity Matrix GA

van Dijk et al. [2003] Connectivity Matrix GA

Blanco et al. [2003] Connectivity Matrix GA, PBIL, UMDA

Tucker et al. [2003] Set of Spatial points GA

Wong and Leung [2004] Connectivity Matrix EP

Wong et al. [2004] Connectivity Matrix Cooperative Coevolution

Kim et al. [2005] Connectivity Matrix GA

Mascherini and Stefanini [2005] Connectivity Matrix GA

Jia et al. [2005] String of Possible Parents Immune GA

Ross and Zuviria [2007] String of Possible Parents Multi-Objective GA

Hanzelka [2008] Connectivity Matrix GA+Local Search

Barrière et al. [2009] Connectivity Matrix Cooperative Coevolution

P
D

A
G

s Muruzábal and Cotta [2004] Graph EP

Cotta and Muruzábal [2004] Graph EP

van Dijk and Thierens [2004] Connectivity Matrix GA+Local Search

Jia et al. [2008] Connectivity Matrix Immune GA

O
rd

er
in

g
s

Larrañaga et al. [1996a] Permutation GA

Habrant [1999] Permutation GA

Hsu et al. [2002] Permutation GA

Romero et al. [2004] Permutation UMDA, MIMIC

Kabli et al. [2007] Chain Permutation GA

Lee et al. [2008] Permutation+Connectivity Matrix GA

n− 1 random variables. The sampling step of EDAs is accordingly adapted to output a
valid permutation of the variables. This adaptation is not necessary for continuous en-
coding, where each n-dimensional real vector can be transformed into a valid permutation
of the n variables.

An important decision to make when performing the search in the space of orderings is
how to evaluate different candidate orderings. Most of the proposed methods use the K2
algorithm for this purpose which results in a high fitness evaluation cost. Approximating
the quality of a solution with a less computationally expensive method, can greatly reduce
the overall running time of the algorithms (e.g. as in chainGA). However, this can also
cause the quality of the learned BNs to reduce. The reported results on datasets with
small number of variables has shown that the evolutionary search with GA obtains results
comparable to those of exhaustive search of all possible orderings, while only visiting a
small percentage of the whole solution space.

3.5 Learning Dynamic Bayesian Networks

BNs have also been used to model time series data. Basically, a natural choice for
modeling time series data is to use directed graphical models which can appropriately
capture the forward flow of time. If all arcs of the probabilistic model are directed, both
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within and between different time slices while the structure is unchanged, the resulting
model is called a dynamic Bayesian network (DBN) [Murphy, 2002]. Several works have
used EAs to learn DBN structures from data. Tucker et al. [2001] use an EP algorithm
to seed the population of a GA which then evolves the structures of DBNs. Ross and
Zuviria [2007] use a multi-objective GA, where the multi-objective criteria are network
likelihood and structural complexity scores. Tucker et al. [2003] propose evolutionary
and non-evolutionary operators for learning BN structures from spatial time series data.
Jia et al. [2005] apply their immune GA for learning DBNs.

Many of the methods proposed for learning the structure of normal BNs can be
adapted to learn DBNs. Simplifying assumptions, e.g. no edges between the nodes in
the same time slice, can greatly reduce the computational complexity of learning DBNs.
The BNs learned with simple GAs are not so satisfactory, sometimes worse than hill
climbing. Because of this, complementary techniques have been employed in the reported
works, including generation of non-random initial population with GP, incorporation of
additional operators in the recombination process (e.g. the add vaccine of immune GA),
and performing a multi-objective search instead of single objective search to take into
account several criteria when learning DBNs. All of these complementary techniques have
been reported to yield better DBNs in terms of the scoring metric or structural accuracy
compared with simple GA.

3.6 Learning Bayesian Network Classifiers

Finding an appropriate subset of predictor variables by removing redundant and irrelevant
variables can be remarkably helpful for classification using BNs. EAs are one of the
search techniques extensively used for this task, which is usually called feature subset
selection. Liu et al. [2001] used GAs to search for an optimal subset of predictor variables
for their improved NB classifier, whereas Inza et al. [2000] applied EBNA for feature
subset selection in a number of different datasets. They also compared the proposed
method with two GA-based and two greedy search algorithms [Inza et al., 2001a]. PBIL
and COMIT are used for feature selection in the problem of predicting the survival of
cirrhotic patients, and the results are compared with two versions of GA [Inza et al.,
2001b]. Blanco et al. [2004] used EDAs for gene selection in cancer classification problem
using an NB classifier.

The reported results show that both GA and EDA versions perform better than simple
deterministic hill climbing algorithms like forward selection and backward elimination. A
comparison between EDAs also show that using more powerful probabilistic models allow
selecting better feature subsets, which for many of the tested data sets are also better
than the feature subsets found by GA.

Robles et al. [2003] used EDAs in their interval estimation NB classifier to search
for proper class and conditional probabilities within their respective confidence intervals.
An EDA with a continuous representation is used to search for the best combination of
probability values in these intervals. They also used EDAs to improve the search for new
hybrid variables in the SNB classifier [Robles et al., 2004]. A comparison with standard
techniques like “forward selection and joining of variables”, or “backward elimination and
joining of variables” [Pazzani, 1996] show that EDA-based search and joining of variables
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Table 3.3: Learning Bayesian classifiers with evolutionary algorithms.

Reference Classifier Algorithm

F
S

S
Inza et al. [2000] Näıve Bayes EBNA

Liu et al. [2001] Näıve Bayes GA

[Inza et al., 2001a] Näıve Bayes EBNA, GA, Greedy Search

Inza et al. [2001b] Näıve Bayes PBIL, COMIT, GA

Blanco et al. [2004] Näıve Bayes EDA

C
la

ss
ifi

ca
ti

o
n

Sierra and Larrañaga [1998] Markov Blanket GA

Sierra et al. [2001] Markov Blanket GA

Robles et al. [2004] Näıve Bayes, Semi-Näıve Bayes EDA

Kline et al. [2005] General Bayesian Network GA

Flores et al. [2007] Näıve Bayes UMDAC

Zhu et al. [2007] Markov Blanket GA

Reiz et al. [2008] TAN GA

Dong et al. [2010a] TAN GA

can find significantly better classifiers, though at a higher computational complexity.

Flores et al. [2007] proposed the use of UMDAC to search for the optimal discretization
of all predictor variables simultaneously for the NB classifier. Reiz et al. [2008] employed
Prüfer numbers to encode TAN classifiers and search for the optimal structure using GAs.
AIC, BIC and Hannan-Quinn information criteria were employed as fitness measures.
Dong et al. [2010a] designed genetic operators to evolve TAN classifier structures with
the objective of maximizing the likelihood function.

Sierra and Larrañaga [1998] used GAs to search for the optimal MB of the class
variable in a real-world classification problem. They compared the resulting MB-based
classifiers with NB classifier and a Bayesian classifier learned by likelihood maximization
and show that the MB-based classifiers have higher classification accuracy. This method
was also employed in a multi-classifier schema to classify intensive care unit patient data
[Sierra et al., 2001]. Zhu et al. [2007] proposed an MB-embedded GA for gene selection in
microarray datasets and showed that using GA to search for the MB of the class variable
results in higher classification accuracy. Kline et al. [2005] applied GAs to search for the
most accurate BN structure to predict venous thromboembolism according to gathered
data. Also in the field of BN-based clustering, Peña et al. [2004] applied UMDA to
search for the optimal dependency structure between predictor variables in unsupervised
learning using a specific representation of BNs.

Table 3.3 shows these methods along with the classifiers and EAs they used.

3.7 Conclusions

BNs are an important class of PGMs, which have proven to be very useful and effective
for reasoning in uncertain domains. They have been successfully used in machine learning
tasks like classification and clustering. They have been studied at length over the last
three decades and many methods have been proposed to automate their learning and
inference. Nevertheless, many of these methods involve difficult combinatorial search
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problems that directly affect their widespread use, especially for large problem instances,
and thus they require advanced search techniques like meta-heuristics.

EAs are general-purpose stochastic search methods inspired from natural evolution
and have been frequently applied to solve many complex real-world problems. Because of
their advantages, different types of EAs have been used in BN learning and inference tasks.
A wide range of tasks like triangulation of the moral graph in BN inference, abductive
inference, BN structure learning in difference search spaces, BN classifier learning and
learning dynamic BNs from data streams have employed evolutionary algorithms, which
has led to significant improvements in the computational time and performance of these
tasks.

This topic is still an active field of research and with the intrinsic complexity of
BN tasks, EAs are always a potential competitor. Especially, EDAs with their ability to
account for the interactions between variables seem to be a promising approach for further
study. So far, several works have empirically compared the conventional approaches to BN
tasks (e.g. see [Tsamardinos et al., 2006] for a comparison between several BN structure
learning methods). An interesting future work that can complement this review is to
perform similar empirical comparisons of the evolutionary approaches presented here, on
standard datasets.
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Part II

Regularization-Based Continuous
Optimization
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Chapter 4

Introduction to Regularization

4.1 Introduction

Estimating the parameters of mathematical models or solutions to systems of equations
is a common task in statistics and machine learning problems. Methods like least squares
error or ML estimation are commonly used to obtain unbiased solutions to these problems,
and there are theoretical studies justifying these methods. However, in certain situations,
e.g. when the problem at hand is ill-posed [Tikhonov and Arsenin, 1977; Neumaier,
1998], the application of these methods is not possible or can result in unstable solutions
which are highly sensitive to the changes in the training dataset. This directly affects
the generalization of these solutions and the wide-spread use of the machine learning
techniques based on them.

Regularization is an approach to improve the estimation of solutions (e.g. model pa-
rameters) by reformulating the model estimation problem. Regularization-based model
estimation attempts to decrease the generalization error of the solutions (i.e. estimated
models) by reducing their high variance at the cost of introducing a little bias into the
model, and therefore obtaining a better bias-variance trade-off in model estimation [Stein,
1956; Efron, 1982]. The approach is applicable considering both the expected or the
worst-case generalization error [Sugiyama et al., 2004]. In addition to obtaining numeri-
cally stable solutions, i.e. robust estimation, this approach allows solving problems which
would be otherwise unsolvable. An example is small-sample model estimation where the
number of parameters to be estimated is more than the number of observations in the
training dataset, also known as “large n, small N” or “n � N” problems. Estimat-
ing covariance matrices from high-dimensional datasets is one of these problems where
employing the commonly-used ML estimator can result in ill-conditioned estimations.

There are many works, especially in the statistics community, studying the application
of regularization techniques for model estimation. These techniques have been applied
to the estimation of different types of models like kernels [Sugiyama et al., 2004; Guo
et al., 2008], probability distributions [Dud́ık et al., 2007; Fraley and Raftery, 2007], linear
regression [Tibshirani, 1996; Schmidt, 2005; Hesterberg et al., 2008; Beck and Eldar, 2008],
logistic regression [Wainwright et al., 2006; Koh et al., 2007; Ravikumar et al., 2010],
log-linear models [Andrew and Gao, 2007], generalized linear models [Friedman et al.,
2010a] and graphical models, especially under Gaussian distribution assumption [Schäfer
and Strimmer, 2005a; Li and Gui, 2006; Kramer et al., 2009]. One of the application
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domains frequently used to evaluate Gaussian graphical model estimations is discovering
the associations between genes in genetics, a problem characterized by a large number of
genes (i.e. variables) and a small number of observations. In the following sections, we
take a closer look at the use of regularization in the estimation of regression and graphical
models, and introduce some of the methods proposed in the literature. It has been shown
that under a Gaussian distribution assumption, these two types of regularized models are
closely related [Witten and Tibshirani, 2009].

4.2 Regularized Regression Models

Consider a simple linear regression model for estimating the values of a continuous re-
sponse (output) variable Y , given a set of n predictor (input) variables X = (X1, X2, . . . ,
Xn):

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ε,

where ε is a homoscedastic zero-mean Gaussian noise: N (0, σ2). Given a set of N ob-
servations of the form (xi, yi), where xi is a value-setting for the variable vector X and
yi is the corresponding response value, ordinary least squares (OLS) estimation of the
response variable (Ŷ ) minimizes the sum of squared errors between the predicted value
and the actual value:

arg min
(β0,β)

(
N∑
i=1

(yi − ŷi)2

)
= arg min

(β0,β)

(
N∑
i=1

(
yi −

(
β0 + βxT

i

))2

)
, (4.1)

where β = (β1, . . . , βn). This kind of estimation has often shown bad prediction accuracy
and interpretability [Tibshirani, 1996]. The decomposition of the expected prediction
error of the estimation shows that despite its low bias, this type of model fitting often
has a large variance of prediction accuracy. Moreover, the interpretability of the models
is especially important when dealing with a large number of variables where only a strong
subset of dependencies are required to appear in the model.

Regularization techniques try to improve model estimations like that in Equation (4.1)
by introducing a penalization term, imposed on the values of model parameters, denoted
by J(β). For example, the regularized OLS estimation is given by

arg min
(β0,β)

(
N∑
i=1

(
yi −

(
β0 + βxT

i

))2
+ λJ(β)

)
, (4.2)

where λ > 0 controls the amount of penalization. From a prediction accuracy point of
view, the use of penalization term in the least squared error, will reduce the estimation
variance at the cost of introducing some bias. Some of the most popular regularization
techniques are as follows.

• Ridge regression [Hoerl and Kennard, 1970] with J(β) =
∑n

j=1 β
2
j . This penaliza-

tion term (also called an `2-regularization term) causes the regression parameters
to shrink towards zero, although they do not become exactly zero.
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• LASSO (Least Absolute Shrinkage and Selection Operator) [Tibshirani, 1996] or
`1-regularization with J(β) =

∑n
j=1 |βj|. This type of penalization term has the

appealing property of setting some of the regression parameters exactly equal to
zero, which will result in a behavior similar to that of variable selection and hence
the name [Hastie et al., 2009].

• Elastic net [Zou and Hastie, 2005], which is a combination of the previous two
terms, i.e. J(β) =

∑n
j=1

(
αβ2

j + (1− α)|βj|
)
, where α ∈ (0, 1) controls the combi-

nation of the two previous regularization terms. This type of regularization has a
grouping effect where correlated variables will be in or out of the model together. A
difference between elastic net and LASSO penalties is that with elastic net penalty
the maximum number of variables which can be selected in the estimated model
is not limited to at most the number of observations (N). Therefore, this kind of
regularization is especially useful for problems with a large number of variables and
a small number of observations for model estimation.

In all of the above penalization terms, since the intercept parameter (β0) can be
estimated by the average absolute value of the responses (yi), it is usually left out, and
without loss of generality we can assume it is equal to zero.

An important parameter that affects the outcome of regularized model estimation
is the value of the regularization parameter λ. Larger values of this parameter impose
a higher penalization on the model parameters and therefore more parameters will be
shrunk toward zero whereas smaller values (those close to zero) allow larger values for
the model parameters. Although in some cases there are theoretical proposals [Ledoit and
Wolf, 2004] for selecting the value of this parameter or the bounds of an effective value,
one should usually use a trial-and-error strategy to select the best value. A more general
approach is to obtain the solutions for a range of possible λ values. The solutions thus
obtained, by varying λ values, form the regularization path or the profile of the regular-
ization technique. Having the entire path of solutions to model estimation, methods such
as (k-fold) cross-validation, mean squared error, Mallows’ Cp statistic [Mallows, 1973],
AIC [Akaike, 1974] or BIC [Schwarz, 1978] can be used to select one of the models.

Adding the regularization term changes how the model parameters (solutions of the
model estimation) are computed. In the case of ridge regression, optimal values can be
computed using a closed-form formula. However, the LASSO penalization will render the
equation non-differentiable and thus there are no closed-form formulas for calculating the
optimal solutions. Nevertheless, there are numerical optimization algorithms that can
very efficiently compute the solutions along the whole regularization path and with the
same computational cost as that of ridge regression [Hastie et al., 2009].

A well-known technique for regularized model estimation is the least angle regression
(LARS) [Efron et al., 2004]. This method can be considered as an improvement of the
forward stage-wise model selection [Hastie et al., 2009] which adds the variables one by
one to the model. LARS is an iterative method in which the variables are added to
the model but never removed from it. In each step, the (absolute) correlation between
the current residual (error in estimation) and the predictor variables are used to choose
which variables should next be added to the model. From a geometrical point of view,
this corresponds to the angle between predictor variables and the response variable.

The LARS algorithm can be used, with a simple modification, to efficiently fit models

49



for LASSO [Efron et al., 2004] and elastic net [Zou and Hastie, 2005] estimations. The
entire sequence of LARS steps with n < N variables requires O(n3 +Nn2) computations,
which is the cost of an OLS model fitting with n variables. If n� N , the computational
cost is of order O(N3), since the algorithm will terminate at the saturated OLS fit after
N variables are added to the model.

The promising variable selection property of LASSO or `1-regularization has encour-
aged its wide-spread use and several variants of this type of regularization have been
proposed. Fused LASSO [Tibshirani et al., 2005] puts an additional penalty on the dif-
ference between parameter values so that the parameters of adjacent variables would
have similar values. In group LASSO [Yuan and Lin, 2006] an `1-regularization term
is applied on predefined groups of parameters to reduce the number of variable groups
included in the model. Smoothed LASSO [Meier and Bühlmann, 2007] is proposed for
model estimation from time series data, where adjacent data points are believed to be
more relevant than distant ones. To decrease the amount shrinkage in the parameters
values towards zero, in adaptive LASSO [Zou et al., 2006] a weighted penalization is
applied on the model parameters depending on the importance of the variables which
is adapted according to the training dataset. A similar approach is the relaxed LASSO
technique [Meinshausen, 2007] which first selects the subset of important variables using
a standard LASSO estimation, and then another model is estimated only considering
the selected variables and this time with a zero or very small value of the regularization
parameter (λ). Hesterberg et al. [2008] reviewed many of these methods and discussed
their properties.

4.3 Regularized Graphical Models

Many methods are proposed in the literature which use regularization techniques to
obtain a better estimation of models with a graphical structure. Specifically, when using
LASSO-based methods, one of the main motivations is the sparsity of the estimated
graphical structures. MNs are one of the models for which several works have studied
the use of regularization in their estimation. Considering the correspondence between
the zero-pattern of precision matrix and the structure of GMRF, different algorithms are
proposed to obtain a regularized estimation of MGD, usually called regularized Gaussian
graphical model (GGM) estimation.

Some of these GGM learning methods directly regularize the estimation of the co-
variance matrix [Bien and Tibshirani, 2011] to obtain a sparser covariance graph model
[Chaudhuri et al., 2007]. Others consider regularized estimation of the precision matrix
[Schäfer and Strimmer, 2005a; Li and Gui, 2006; Yuan and Lin, 2007; Levina et al., 2008;
Banerjee et al., 2008; Ravikumar et al., 2009], and study the properties of this type of
GGM estimation, like its consistency. There are also works which have studied regular-
ization in the estimation of both covariance matrix and its inverse [Bickel and Levina,
2008]. The efficiency of these methods is of special importance in order to allow their
application to high-dimensional data [Yuan, 2008]. Friedman et al. [2010b] performed a
comparison of several GGM estimation methods based on `1-regularization. In a differ-
ent approach, Chen et al. [2010] proposed a regularized version of the Tyler’s method
[Tyler, 1987] for covariance matrix estimation in elliptical distributions for application to
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high-dimensional data.
Regularized estimates of GGMs are also obtained in a Bayesian framework, where

using a special prior probability distribution on the model parameters, a MAP estimation
is performed [Li and Yang, 2005; Marlin and Murphy, 2009]. In addition, regularization
has been used to obtain a sparse estimation of covariance matrices from non-Gaussian
data [Ravikumar et al., 2011], and also for the estimation of discrete MNs [Lee et al., 2007;
Banerjee et al., 2008]. The use of regularization techniques for graphical model estimation
is still a topic of active research and there are still several aspects of this approach like
its efficiency or accuracy when applied to different types of high-dimensional problems
which need a more thorough investigation. In the rest of this section we will introduce
in more detail some of the methods for regularized GGM estimation which are used later
in the next chapters of the thesis.

Regularized Neighborhood Selection

Meinshausen and Bühlmann [2006] proposed a method to discover the conditional inde-
pendence relationships of the precision matrix from a set of observations. The method
computes the set of potential neighbors for each variable using regularized regression on
other variables. They define the neighborhood set of a variable Xj as the smallest subset
of variables so that, when given, Xj is conditionally independent of all remaining vari-
ables. To compute the complete dependency structure between all variables, n distinct
`1-regularized regression models are estimated:

arg min
(β0,β)

(
N∑
i=1

(
xi<j> − (β0 +

∑
∀k∈J,k 6=j

βkxi<k>)
)2

+ λ
∑

∀k∈J,k 6=j

|βk|

)
, (4.3)

where J denotes the set of indices of the variables in X.
Since the dependency between two variables is computed in two different regression

models, they used two different strategies to decide about the existence of such depen-
dency in the final structure. An AND strategy requires both variables to be present in
the neighborhood set of each other, whereas an OR strategy will insert the dependency
as soon as one of the variables appears in the other’s neighborhood set. Based on a num-
ber of assumptions, they showed that this method can asymptotically obtain consistent
sparse models for high-dimensional data.

A similar technique has also been applied in the estimation of a directed graphical
structure for GBNs. In this approach, first an estimation of each variable’s MB is obtained
with `1-regularized regression models. Then this information is incorporated in the search
for BN structure within different search spaces [Schmidt et al., 2007; Vidaurre et al., 2010].

Covariance Shrinkage

Schäfer and Strimmer [2005b] proposed a method for shrinkage estimation of covariance
matrix. In shrinkage estimation an unrestricted high-dimensional model S (e.g. the ML
estimation of the covariance matrix) is shrunk towards a restricted lower-dimensional
target model T with fewer parameters (e.g. a diagonal covariance matrix where all off-
diagonal elements are set to zero):

W = λT + (1− λ)S, (4.4)
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where λ ∈ [0, 1] denotes the shrinkage intensity and its optimal value can be analytically
computed using a closed formula, assuming certain consistency conditions [Ledoit and
Wolf, 2004]. When working with finite populations where these conditions cannot be
assured, the shrinkage intensity can be estimated from the data by minimizing a mean
squared error loss function.

Since there are many parameters in the high-dimensional model (S) that need to
be fitted, the estimation variance will be high. On the other hand, the variance of the
estimation of fewer parameters in the low-dimensional model (T ) is lower but it is con-
siderably biased with respect to the true model. It has been shown that the combination
in Equation (4.4) is a systematic way to obtain a regularized estimate of the model that
outperforms each of the individual estimators in terms of both accuracy and statistical
efficiency.

This method has been successfully used for detecting gene associations networks from
high-dimensional microarray data [Kramer et al., 2009; Yates and Reimers, 2009]. Schäfer
and Strimmer [2005b] compared the structure recoverability of this method and that of the
previous technique [Meinshausen and Bühlmann, 2006], when using `1-regularization, on
a number of synthesized covariance matrices. The reported results suggested that the true
positive rate of the models built with the covariance shrinkage approach is considerably
higher than those built with the neighborhood selection method, which tends to insert a
lot of spurious dependencies to the structure.

Graphical LASSO

Based on the previous works for regularized GGM estimation, Friedman et al. [2008]
proposed a method to maximize the regularized log-likelihood estimation of an MGD:

max
Θ

{
log det(Θ)− trace(SΘ)− λ‖Θ‖1

}
, (4.5)

where Θ denotes the estimation of precision matrix and S is the empirical covariance
matrix computed from the dataset. det(·) is the determinant operator, trace(·) gives the
sum of the main diagonal elements of the input matrix, and ‖ · ‖1 computes the sum of
absolute values of the matrix entries.

To solve the optimization problem in Equation (4.5), its derivative is computed using
element-wise sub-gradients (to overcome the non-differentiability of the absolute value
function), and then set to zero. Thus, the problem is decomposed into a number of
block-wise optimizations over rows (or columns) of W = Θ−1 and S, partitioned as

W =

[
W 11 wT

12

w12 w22

]
.

S is partitioned similarly. It can be shown that each of these block-wise optimization
problems is equivalent to an `1-regularized OLS of the form

min
β

{
1

2

∥∥∥βW 1
2
11 − s12W

− 1
2

11

∥∥∥2

2
+ λ‖β‖1

}
. (4.6)

After estimating the parameters β of optimization problems for each row (column), the
covariance matrix estimation is updated by setting w12 = βW 11. The process is repeated
until the estimated values for the entries of covariance matrix converge.
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Instead of solving n separate regularized regression problems, the graphical LASSO
algorithm couples and solves these problems together in the same matrix W . In fact,
as the same matrix is used the information can be shared across the problems. The
regularized neighborhood selection proposed in [Meinshausen and Bühlmann, 2006] can
be seen as a special case of graphical LASSO approximation related to the case where
W 11 = S11.

4.4 Conclusions

In order to decrease the generalization error of the estimated models, regularization tech-
niques reformulate the model estimation problem by penalizing the values of the model
parameters. This approach improves the stability of model estimations in the sense that
they have a lower variance, though at the cost of a little bias. Regularization techniques
are especially used for model estimation in high-dimensional domains, where the number
of variables is larger than the number of observations in the data.

Regularization has been incorporated in the estimation of different types of models,
and several regularization techniques have been proposed in the literature. One of these
methods is regularization with an `1 penalty, which causes some of the model parameters
to become exactly zero, an appealing property which can be used for variable selection,
and in general parsimonious model estimation. Several variants of this type of regulariza-
tion have been proposed and applied for estimating different types of models, including
GGMs, which will be used in the next chapters for probabilistic modeling in EDAs.
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Chapter 5

Regularized Model Learning in
EDAs

5.1 Introduction

The ultimate goal of the model learning step in EDAs is to estimate probabilistic models
that assign higher probabilities to a neighborhood close to the optimal problem solutions
(specified by the corresponding fitness function). This is based on the assumption that
the regions of the search space with a higher probability are more likely to be sampled
when generating a set of new solutions in EDAs. However, it is almost impossible to
estimate such a probabilistic model directly at one go, especially for high-dimensional
problems with a complex structure.

Iterative model learning and factorized estimation of the probability distribution are
two main techniques employed to facilitate model learning in EDAs. If the model is esti-
mated across several generations, the algorithm can visit more regions of the search space
and gradually improve its estimation as, due to the limitation of computational resources,
algorithms have to work with a finite population of solutions. Moreover, techniques like
univariate or bivariate factorization, or more generally, multivariate BN learning, which
imposes a factorization over problem variables, are able to estimate the joint probability
distribution as the product of simpler factors.

Despite promising performance for solving many real-world problems, there are still
shortcomings in the behavior of EDAs that have made them the topic of active research.
Several studies have tried to analyze the behavior of EDAs [Mühlenbein et al., 1999;
Pelikan et al., 2000; González et al., 2002; Zhang and Mühlenbein, 2004; Grahl et al.,
2005; Yuan and Gallagher, 2009]. However, their results are mainly based on impracti-
cal assumptions or are limited to only specific problems and/or models. For example,
convergence analysis of FDA is based on infinite population size assumption [Zhang and
Mühlenbein, 2004], or only the univariate modeling in UMDAC is considered for the anal-
ysis of the optimization behavior on different fitness functions [Grahl et al., 2005; Yuan
and Gallagher, 2009]. Especially in continuous domains, which is the scope of this chap-
ter, there are many difficulties with model estimation that prevent EDAs from exhibiting
the expected behavior.

The ability of the chosen probabilistic model to fit the solutions of a given problem,
which is referred to as model capacity [Bosman and Grahl, 2008], can greatly affect
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model estimation. Thanks to their good analytical properties, Gaussian distributions
have been the probabilistic model of choice in most of continuous EDAs [Sebag and
Ducoulombier, 1998; Bosman and Thierens, 2000a; Larrañaga et al., 2000a; Larrañaga and
Lozano, 2001; Ahn et al., 2004]. However, a robust estimation of the Gaussian distribution
relies on acquiring adequate statistics that are often not available from the population of
continuous EDAs. This will usually cause EDAs to fall into premature convergence (or
rather stalemate). To overcome this shortcoming, techniques like variance scaling [Yuan
and Gallagher, 2005; Bosman and Thierens, 2007; Poš́ık, 2008] or eigenvalue resetting
[Wagner et al., 2004; Dong and Yao, 2008] have been proposed in the literature.

Regularization techniques are widely used in statistics and machine learning to ob-
tain a more robust estimation of probabilistic models with lower prediction error. Model
estimation in EDAs has some characteristics that motivate the use of regularization tech-
niques. Lack of adequate statistics can cause the estimated model to become highly
biased to specific regions of the search space. This reduces the generalization ability of
the estimated model which is an important factor affecting the generation of new so-
lutions. The use of regularization can reduce the generalization error of the estimated
model in EDAs. Another important issue is the EDA scalability with regard to problem
size. Estimating the probability distribution model of huge search spaces requires large
population sizes. Since the model estimation and sampling parts of EDAs are very time-
consuming, algorithm efficiency will decline steeply for increasing population sizes, not
to mention the memory constraints regarding large datasets. Being able to estimate a
model of comparable quality using much smaller populations is a major requirement in
these algorithms.

Very recently, regularization has been used in EDAs for discrete optimization. Yang
et al. [2010] used regularized regression in the context of a BOA to obtain a reduced set of
candidate parents for each variable before searching for the correct BN structure. Malagó
et al. [2011] proposed the use of regularized logistic regression to learn the structure of
the MN in the DEUM framework. In a different context, Karshenas et al. [2011a] studied
some of the methods for integrating regularization techniques into the model estimation
of continuous EDAs. In this chapter we analyze some of the methods to regularized model
learning in EDAs for continuous optimization in high-dimensional settings. This study
is published in [Karshenas et al., 2013b].

5.2 Approaches to Regularized Model Learning

We focus on continuous domain optimization, modeled with Gaussian distributions. For
this reason, two approaches for employing regularization techniques in model learning are
considered:

• The first approach is based on obtaining a regularized estimation of the dependency
structure between variables, and uses this structure to estimate the covariance ma-
trix of an MGD.

• The second approach applies techniques that directly obtain a regularized estima-
tion of MGD.
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The first approach, has to explicitly obtain a structure of variable dependencies. The
method we consider here for structure estimation consists of three steps. In the first step,
regularized regression models (Equation (4.2)) are used to determine the dependencies
between each variable and the other variables. These models estimate the value of a
variable given the value of other variables. To favor sparser structures, which can be
of considerable help for model estimation in high-dimensional problems and thus allow
for better EDA scalability, only those regularization techniques that result in explicit
variable selection (i.e. LARS, LASSO and elastic net) are considered in this step.

Since the whole regularization path is computed for the regression model of each
variable, in the second step, the regression solution (vector of regression coefficients)
resulting in the lowest generalization error of the estimated model is selected. The variable
dependency information obtained from n independent regularized regression models is
then combined in the third step to construct a single structure. Apart from the AND
and OR strategies proposed by Meinshausen and Bühlmann [2006], a third strategy,
denoted as “DAGS”, is considered by searching the reduced search space constrained
with variable dependencies [Schmidt et al., 2007].

Finally, the variable dependency structure learnt in this approach is used to obtain
an estimation of the MGD. If the resulting structure is a DAG, the the final model will
be a GBN. The local greedy search algorithm explained in Section 1.3.3 with BIC metric
is used to learn the GBN within a search space constrained by the variable dependency
structure. If an undirected graph is learnt as the structure, it can be transformed to a
DAG [Lauritzen, 1996], be used as a dependency network [Heckerman et al., 2001], or be
used as the zero pattern in the estimation of covariance matrix or its inverse [Chaudhuri
et al., 2007; Bien and Tibshirani, 2011]. Here we adopt a simple algorithm proposed by
Hastie et al. [2009, Section 17.3.1] to estimate the covariance matrix of MGD, whereas its
mean vector is obtained using ML estimation. This algorithm obtains a constrained ML
estimation of the MGD by adding Lagrange constants for all independencies imposed by
the given structure.

For the second approach, the shrinkage estimation and graphical LASSO methods are
considered for estimating an MGD1. The estimated probabilistic models in either of the
approaches (with directed or undirected structures) will then be used in the sampling
step of EDA to generate new solutions. In the case of models with directed structure,
the PLS algorithm, and for models with undirected structure, the sampling algorithm
explained in Section 1.4.3 is used to generate new solutions.

5.3 Analyzing Regularized Model Learning Methods

To better examine the methods introduced in the two approaches for regularized model
estimation, they are evaluated from different perspectives in this section, comparing their
merits and disadvantages. For this purpose, a number of reference Gaussian models with
a predefined variable dependence structure are synthesized. Table 5.1 shows the details
of these reference models. In these models, which all have 100 variables (except the
tri-variate model which has 99 variables), the variables are organized in different blocks.

1In fact, these methods obtain an estimation of the covariance matrix, and the mean vector of MGD
is obtained with ML estimation.
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Table 5.1: Synthesized Gaussian distributions used as reference models.

Name Block Size Num. Blocks Num. Dependencies Num. Independencies
Uni 1 100 0 10000
Bi 2 50 100 9900
Tri 3 33 198 9603

Quad 4 25 300 9700
Quint 5 20 400 9600
Vigint 20 5 1900 8100

All variables within a block are correlated, whereas there is no inter-block dependency
at all. The reference models differ as to the size of their blocks of dependent variables.
They range from a block size of one (no dependency) in the univariate model to 20 in
the vigint-variate model.

These reference Gaussian models are used to generate a population of solutions that
will be used for model estimation with each of the regularization methods. In this study,
a combination of 3 × 3 methods from the first approach and two methods from the
second approach, namely the shrinkage estimation and graphical LASSO, are considered.
Different combinations in the first approach result from considering each of the LARS,
LASSO and elastic net regularization techniques with each of the AND, OR and DAGS
merging strategies. In all of these combinations, the Mallows’ Cp statistic is used for
selecting the best regression solution in the regularization path of each variable’s model.
The n/N ratio, where N is the population size, is fixed to 10 for all populations generated
from the reference models to resemble model estimation in a high-dimensional problem.

5.3.1 True Structure Recovery

Recovering the true structure of the probabilistic model is one of the requirements for
a good model estimation algorithm. The structural accuracy of the estimated models
can reveal the learning algorithm capability to capture the interdependencies between
problem variables. One of the ways to measure the accuracy of structures learnt in the
regularized model estimation methods is to compute the confusion matrix entries, i.e. the
number of true positive (TP), false positive (FP), false negative (FN) and true negative
(TN) links of the model structure. Here, we consider two well-known indicators computed
using these measures:

• Sensitivity (TP/(TP+FN)): what percentage of the actual dependencies are cor-
rectly learnt.

• Specificity (TN/(TN+FP)): what percentage of the actual independencies are cor-
rectly learnt.

These indicators can give a clearer insight into the effects of different regularized estima-
tion methods on the inclusion of spurious and excess links, or missing real dependencies.
Figures 5.1 and 5.2 show, respectively, the sensitivity and specificity of the model struc-
tures estimated with the methods in the first approach. Since the univariate model
actually does not have any dependencies, it is not included in the analysis of structure
sensitivity. All the results are averaged over 30 independent runs. When the resulting
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Figure 5.1: Average sensitivity of the model structures learnt with the methods in the
first approach.
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Figure 5.2: Average specificity of the model structures learnt with the methods in the
first approach.

structure is a DAG, its undirected counterpart, obtained by removing the direction of
the links, is considered for computing the indicators. This is because from a variable
interdependency point of view, the important thing is the existence of a dependency not
its direction.

The sensitivity results show that the proportion of true links captured by the methods
in the first approach using different combinations of the regularization techniques and
merging strategies drops as the size of the blocks of dependent variables increases. The
OR strategy combined with all three regularization techniques has resulted in better
sensitivity, as expected because it greedily adds links to the structure. On the other hand,
the performance of the AND strategy changes with different regularization techniques
from the sensitivity point of view. Whereas the LARS-AND combination is capturing
more TP links than the LARS-DAGS combination, their sensitivity behavior comes very
close to the LASSO technique, and the sensitivity of the AND strategy falls below the
DAGS strategy when using the elastic net technique. The sensitivity results of all merging
strategies decrease for elastic net, but this regularization technique appears to affect the
AND strategy more than other strategies. One possible explanation for this behavior is
the grouping effect of the elastic net technique, which causes several variables to be added
to or removed from the regression model together. Therefore, when the AND strategy is
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Figure 5.3: Average accuracy of the model structures learnt in the second approach.

used to couple all regression models, a group of variables is less likely to have a mutual
relationship (as required by the AND strategy). Thus the resulting structure becomes
sparser and may miss many TP links.

From the specificity point of view, the results show that the tendency of regularization
techniques to obtain sparser models causes the structures learnt by the methods in the
first approach to include very few spurious links. Increased block sizes do not seem to
considerably affect these methods. Note at this point that, as shown in Table 5.1, the
number of model independencies is larger with smaller block sizes. Therefore, normally
one expects to see smaller specificity values for smaller block sizes. As block size increases,
regularization techniques like LARS and LASSO tend to add more dependencies between
the variables. However, as we saw with the sensitivity results, many of these links are
incorrect and, thus, the number of FP links increases. Another point to be considered here
is the total number of dependencies in a model compared with the sample size used for
learning. This can affect the sparsity assumption based on which the consistency of some
of the regularized model estimation methods in the first approach is shown [Meinshausen
and Bühlmann, 2006].

When comparing the specificity and sensitivity results of different combinations of
regularization techniques and merging strategies, they seem to be complementary. For
example, the DAGS strategy results in poorer sensitivity results compared with the other
two merging strategies combined with the LARS technique, but specificity is better.
Whereas the sensitivity behavior of the AND strategy combined with the elastic net
technique is worse than others, the same combination obtains better specificity results
compared with all other combinations for all block sizes. Therefore, if a specific method
tends to add more links to the structure (like the LARS-OR combination), the probability
of recovering TP links will clearly increase, but so will the possibility of adding FP links.
On the other hand, conservative methods like the ELNET-AND combination will hit
fewer TP links but also add fewer spurious links to the structure.

Figure 5.3 shows the sensitivity and specificity of the structures learnt by the methods
in the second approach. Since these methods do not explicitly obtain a structure, the
structure encoded in the covariance matrix of the estimated MGD is used to evaluate their
ability to recover the true structure. This structure is obtained from the zero pattern in
the inverse covariance matrix by introducing a link between every two variables whose
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respective entry in the inverse covariance matrix is not zero. The results show that the
two methods in the second approach also follow a similar trend to the methods in the
first approach: a decrease in the sensitivity and an almost uniform specificity as the size
of the dependent variables block increases. These two methods discover more links than
the methods in the first approach. Shrinkage estimation, especially, tends to add many
links to the structure, and the increase in the number of dependent variables has less
effect on this method. This results in a sensitivity of more than 50% for all block sizes.
However, the specificity results show that many of the links that this method adds to
the model are spurious and this method generally tends to obtain denser structures than
other methods in either of the approaches. The graphical LASSO method behaves more
like the methods in the first approach, and especially the LARS-OR and LASSO-OR
combinations, as this method also uses a similar regularization mechanism by adding a
LASSO penalization term to the ML estimation of the MGD.

5.3.2 Time Complexity

The computational time needed by an algorithm is an important feature that can affect
its range of application and how it is going to be applied. In the case of EDAs, it is
particularly critical since they make intensive use of learning methods. In this section,
we examine the time complexity of the methods in each of the two approaches. The
methods in the first approach have include three-step structure learning plus a parameter
estimation of the target MGD. As already mentioned, the computational complexity of
computing the whole regularization path of a regularized regression model for a variable
with the LARS technique (which is also used as the base algorithm for the other two
regularization techniques considered here) is O(n3 +Nn2). Note that in high-dimensional
problems, which is the case in our study, it is far less than this. The cost of selecting
the best regression solution from the regularization path is O(lN), where l is the number
of different solutions found for the regression model, and it is of order O(n). These two
steps are repeated for each of the n variables.

The AND and OR strategies used in the third step to merge the n models learnt
for the variables are simple and only require O(n2) computations. However, the DAGS
strategy is usually very costly and has a computational complexity of O(kNn2 + kn4),
where k is the number of iterations that it takes the local greedy algorithm to search
the constrained space. Finally, the algorithm used to estimate the covariance matrix
according to the structure obtained by AND and OR strategies has a cost of O(Nn2).

The shrinkage estimation and graphical LASSO methods both have a total compu-
tational complexity of O(Nn2). The covariance matrix computation dominates the time
requirement of computing the mean vector of the MGD, which thus does not influence
the total cost of model estimation. The sampling algorithm used to generate M new
solutions from the estimated MGD requires O(n3 +Mn2) computations. This is also the
case for the PLS algorithm when sampling a Bayesian network.

Figures 5.4 and 5.5 show the total time that it takes all the methods in the first
approach to learn a probabilistic model and then sample this model to generate a popu-
lation of 1000 solutions, on a machine with 2.66 GHz Intel Core-i5 processor and 6 GB
of memory. All the results are averaged over 30 independent runs. As expected, the
DAGS strategy takes longer than the other merging strategies, though the choice of the
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Figure 5.4: Average model building time for the methods in the first approach.
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Figure 5.5: Average model sampling time for the methods in the first approach.

regularization technique has a big influence on this strategy, with the LARS technique
requiring less and elastic net technique more time. The regularization technique also has
an impact on the AND and OR strategies combined with the elastic net technique, which
takes less time than the other two regularization techniques. This can be explained by
the sparser structures obtained by this regularization technique which in turn would lead
to the estimation of fewer parameters. However, sparser structures have the opposite
effect on the time requirement of the DAGS strategy. This can be traced back to the
fact that the greedy local search algorithm is forced to reject many of the possible moves
when searching a constrained space and it therefore takes longer to find a valid move.

The question is then whether searching in a constrained space can cause the learning
time of a Bayesian network to decrease at all. Figure 5.6 compares the model learning
time required when searching an unconstrained space and a space constrained using the
LARS technique. Both methods use the same greedy local search algorithm with a BIC
scoring metric. Here, reference models with the increasing number of variables and equal
size of dependent variables blocks, set to 5 (quint variate model), were sampled to generate
populations of solutions, with a fixed n/N ratio of 10. These populations were then used
for learning Bayesian networks. The results are averaged over 30 independent runs. The
LARS-AND method is also included in the results for better comparison. We found that
while, the model learning time of the constrained DAGS is larger, for smaller number of
variables the computational time required by the unconstrained DAGS grows faster as
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Figure 5.6: Average model-building time for constrained and unconstrained DAG search
algorithms on different problem sizes.
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(a) Model Building Time
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(b) Model Sampling Time

Figure 5.7: Average model-building (left) and sampling (right) time for the methods in
the second approach.

the number of variables increase and becomes considerably larger than its constrained
counterpart. This is because for larger number of variables, the search space becomes so
huge that any kind of space-constraining information can serve as a heuristic to improve
the search. For the difference in the estimation accuracy of these two methods, see
[Schmidt et al., 2007; Vidaurre et al., 2010].

As the model sampling times show (Figure 5.5), it takes longer to generate new
solutions from a Bayesian network using the PLS algorithm than the algorithm used to
sample an MGD. Although the same algorithm is used to sample the models learnt by
the AND and OR strategies, the results show that the estimated models can affect the
sampling time depending on the regularization technique and the block size. Generally,
however both the model learning and sampling times do not appear to change considerably
by increasing the size of dependent variables block, since all these models have the same
dimension. Figure 5.6 shows, on the other hand, that the increase in the number of
variables raises the algorithm time requirement, as expected from the computational
complexity analysis.

Figure 5.7 shows the average model-learning and sampling times for the two meth-
ods in the second approach, on the same machine. Sampling times are computed for
generating a population of 1000 solutions from the learnt model. The graphical LASSO
method takes significantly longer to estimate the model than shrinkage estimation, and

63



1 2 3 4 5 20

3.5

4

4.5

5

5.5
x 10

5

Block Size

N
e
g

a
ti

v
e
 L

o
g

−
L

ik
e
li
h

o
o

d

LARS

 

 

OR

AND

DAGS

1 2 3 4 5 20

3.5

4

4.5

5

5.5
x 10

5

Block Size
N

e
g

a
ti

v
e

 L
o

g
−

L
ik

e
li

h
o

o
d

LASSO

 

 

OR

AND

DAGS

1 2 3 4 5 20

3.5

4

4.5

5

5.5
x 10

5

Block Size

N
e

g
a

ti
v

e
 L

o
g

−
L

ik
e

li
h

o
o

d

ELNET

 

 

OR

AND

DAGS

Figure 5.8: Average negative log-likelihood of the reference Gaussian distributions ob-
tained for model estimation methods in the first approach.

its time requirements closely follow those of the methods in the first approach, especially
the LARS-OR and LASSO-OR combinations (whose structural accuracy is similar, too).
Again, the size of blocks of dependent variables does not have a substantial effect on
the computational time of these two methods, although further experiments have shown
that graphical LASSO is highly sensitive to the violation of the conditions in the sparsity
assumption. Section 5.3.4 discusses this issue in more detail. The time requirements of
the shrinkage estimation method make it a perfect candidate for use within more complex
algorithms like EDAs that require very fast-performing components.

5.3.3 Likelihood Function

Estimating an accurate structure is an important feature of a probabilistic model estima-
tion method. For the purpose of model estimation and sampling in EDAs (Algorithm 2.1),
however, it is more important to be able to generate solutions that are very close to the
real problem solution, which is assumed to be representable with a probability distribu-
tion. One way to investigate this closeness is to compare the model estimated in EDA with
the actual probabilistic model underlying the problem. Measures like Kullback-Leibler
divergence [Kullback and Leibler, 1951] or Hellinger distance [Le Cam and Lo Yang,
2000] can be used for this purpose. Another possibility is to evaluate the overall model
estimation and sampling of EDAs in order to also take into account the inevitable model
sampling error that is present in practice. This is also closer to the actual procedure
enacted in each generation of an EDA. The evaluation measure computed in this study is
the negative log-likelihood (NLL) of the reference Gaussian models (see Table 5.1) given
the population of solutions generated from the estimated models.

Figure 5.8 shows the NLL values of the reference Gaussian models with different block
sizes, computed from the populations generated using the models learnt with the methods
in the first approach. Each of the generated populations had a size of 1000. For the
first two regularization techniques, the NLL values obtained with the DAGS strategy on
larger block sizes tend to infinity and are therefore not included in the figures. Merging
strategies are ordered similarly for all regularization techniques, with the NLL of OR
strategy turned out to be better and DAGS worse. This is consistent with the structural
accuracy results and reveals the mixed effect of sensitivity and specificity analysis for the
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Figure 5.9: Average negative log-likelihood of the reference Gaussian distributions ob-
tained for the estimation methods in the second approach.

methods in the first approach. The NLLs computed for these methods grow visibly as
block size increases, suggesting that as the number of dependent variables in the problem
increases the estimated models and populations generated from these models move farther
from the reference models, from a log-likelihood point of view.

Figure 5.9 shows the NLL results for the two methods in the second approach, where
graphical LASSO results in better NLL values than the shrinkage method. Shrinkage
estimation is able to capture more dependencies, but, at the same time, it adds many
spurious links to the structure. As a result, the estimated probability distribution gener-
ates solutions that are less likely producible by the reference models. From the NLL values
for graphical LASSO, and for LARS-OR and LASSO-OR used in the first approach, we
also find that these methods behave similarly. Also, the NLL values computed for graph-
ical LASSO and for the ML estimation of the MGD are almost equal, showing that, from
a log-likelihood point of view, the addition of a LASSO penalization term does not have
much impact on the probability estimation of the graphical LASSO method.

5.3.4 Regularization Parameter in Graphical LASSO Method

The regularization techniques employed in the first approach output the whole regular-
ization path for varying values of the regularization parameter (λ) and then select the
parameter resulting in the best regression solution according to a model selection metric.
Also, the value of the shrinkage intensity in the shrinkage estimation method is analyti-
cally computed according to the learning data set. However, the regularization parameter
of the graphical LASSO method is left open, as it is not practicable to compute the whole
regularization path for this method, especially for high-dimensional problems.

To examine the influence of the regularization parameter, we apply the graphical
LASSO method with different values of this parameter for model estimation. The model
learning times and the corresponding NLL values computed for this method are shown
in Figure 5.10. Models are estimated from populations with increasing sizes, generated
from the bivariate reference model by decreasing the n/N ratio from 10 to 0.2 (gradually
getting away from high-dimensionality) in order to also investigate the effect of population
size on this method. NLL values are computed using populations of size 1000 generated
from the estimated models. All of the results are averaged over 30 independent runs.
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Figure 5.10: Average model-building time (left) and negative log-likelihood of the bivari-
ate Gaussian distribution (right) obtained for the graphical LASSO method with different
regularization parameter (λ) values.

Clearly, whereas model estimation is faster with larger values of the regularization
parameter, the solutions generated from these models are less likely from the reference
model point of view. On the other hand, small values of this parameter (close to zero)
will result in better NLL values, though at a higher computational cost. This observation
suggests that, as reported in a previous study [Karshenas et al., 2011a], the choice of a
value for the regularization parameter of this method call for a trade-off between how
good an estimation is and the time required to estimate the model.

The model learning times also show that, as population size grows the time required
by the graphical LASSO method with a specific value of the regularization parameter
gradually decreases. This is why it is expected to be more costly to estimate a model,
with a specific dimension and block size, from populations with larger sizes. One possible
explanation for this behavior is that with larger populations that better fulfill the spar-
sity assumption [Meinshausen and Bühlmann, 2006], more harmonious statistics can be
collected from the population, allowing the method to converge faster. However, as the
computed NLL values show, the population size increase does not affect the probability
of the generated solutions from the reference model point of view. Based on these re-
sults, a 0.1 value is used for the regularization parameter of the graphical LASSO method
throughout the thesis.

5.4 Conclusions

The use of regularized model estimation in EDAs for continuous optimization was pro-
posed and studied in this chapter. It was argued that the use of regularization techniques
can lead to a more robust model estimation in EDAs. This improves performance in
high-dimensional settings, while keeping the population size and therefore the number of
function evaluations relatively low.

Considering a high-dimensional setting, different methods for regularized estimation
of Gaussian distributions in two general approaches were analyzed from several points
of view: true structure recovery, time complexity, and likelihood. The analysis results
showed the properties of these methods, like their tendency in including dependencies
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between variables and the learning/sampling times as the number of variables and their
interactions increase. It was observed that an important factor affecting regularized model
estimation is the level of variable dependencies in the problem.
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Chapter 6

Regularization-Based EDA in
Continuous Optimization

6.1 Introduction

Given a fitness or objective function f : D 7→ R, the goal of (single-objective) optimization
is to find solution(s) x∗ such that (assuming smaller values of f are preferred)

x∗ = arg min
x∈D

f(x) (6.1)

If the optimization algorithm does not use any problem-specific information for finding
the optimal solution(s), it is called a black-box or general-purpose optimization algorithm.
In continuous domains, we have D ⊆ Rn, where n is the dimension of the input domain.
Since this set is uncountable, in general it is not possible to find an upper bound on the
number of steps required to reach the optimal solution(s) to a continuous optimization
function. Therefore, in this case the algorithms that can get closer to the optimal solutions
faster (e.g. in smaller number of steps) are favorable.

In the last chapter, we saw how regularization techniques can be used for model
estimation in EDAs. The analysis especially considered high-dimensional settings to
study the performance of regularized model learning from small populations with respect
to several criteria. In this chapter we analyze this type of model learning from the
continuous function optimization point of view and compare its performance with several
other well-known continuous EDAs. This work is published in [Karshenas et al., 2013b].

6.2 RegEDA: Regularization-based EDA

The results of the regularized model estimation analysis can be used as a guideline for
employing these methods in EDAs. The regularization-based EDA (RegEDA) proposed
in this chapter utilizes the regularized model estimation methods in the course of opti-
mization, trying to obtain a better estimation of the distribution of the problem solutions,
in order to improve performance.

The constraints on time and computational resources restrict the number of differ-
ent regularized estimation methods that can be tested and compared. Therefore, for
the experiments in the rest of the chapter, some of the discussed methods were selected
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for use in RegEDA. We selected the LARS-OR and LARS-AND methods from the first
approach. They appear to offer a better compromise between the computational time
requirements and the quality of the estimated models, from both the structural accu-
racy and NLL points of view. The resulting algorithms are called “RegEDA-LARS-OR”
and “RegEDA-LARS-AND”, respectively. From the second approach, both the shrink-
age estimation and graphical LASSO methods were selected and respectively used in
“RegEDA-Shr” and “RegEDA-GL” algorithms. The properties of both methods moti-
vate further investigation regarding optimization. In the rest of this chapter, we study
the performance of these four versions of RegEDA in function optimization.

6.3 Experiments

The proposed RegEDAs are applied for continuous function optimization in order to
investigate how regularized model estimation affects the optimization behavior and per-
formance of EDAs when applied in a high-dimensional setting. The optimization results
of the four versions of RegEDA are compared against another four Gaussian distribution-
based EDAs, which are: i) Continuous UMDA [Larrañaga et al., 2000a], ii) EGNA
[Larrañaga et al., 2000a], iii) EMNA [Larrañaga and Lozano, 2001], and iv) CMA-ES
[Hansen, 2006]. All of the algorithms are implemented in Matlab R©. Specifically, we have
used Mateda-2.0 package1 [Santana et al., 2010a], which provides the implementation of
UMDA and EMNA, as the basis of our implementation framework. For the implementa-
tion of LARS technique in RegEDA-LARS-OR and RegEDA-LARS-AND algorithms, we
have used the code provided by K. Sjöstrand2, and the covariance shrinkage method is
implemented with the code provided by K. Murphy3. The implementation of the graph-
ical LASSO is adapted for Matlab4 from the original code provided for the algorithm
[Friedman et al., 2008].

For the implementation of EGNA and especially its GBN learning, we have used the
code provided by M. Schmidt and K. Murphy5 [Schmidt et al., 2007]. It slightly differs
from the method described in Section 1.3.3 by allowing the greedy method to restart
the structure search from a new random structure after reaching a local optimum of the
score function, up to a maximum number of node score evaluations. At the end, the
highest scoring BN in all these sub-searches is returned. Since the PLS algorithm is
used to sample the estimated GBN, the algorithm is referred to as “EGNA-PLS” in the
presented results. Finally, we have used the Matlab implementation of CMA-ES provided
by N. Hansen6.

6.3.1 Optimization Functions

The continuous optimization functions used for the experiments are listed in Table 6.1.
These optimization functions, defined on n input variables, have different properties that

1http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/MATEDA.html
2http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3897/zip/imm3897.zip
3http://www.uni-leipzig.de/~strimmer/lab/software/m-files/covshrink-kpm.zip
4http://cig.fi.upm.es/components/com_phocadownload/container/GraphicalLasso.zip
5http://www.cs.ubc.ca/~murphyk/Software/DAGlearn/DAGLearn.zip
6http://www.lri.fr/~hansen/cmaes_inmatlab.html
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allow to examine the performance of the tested optimization algorithms, in the presence
of different problem features. The 2D fitness landscape of some of these functions, is
shown in Figure 6.1. The definitions of the functions are as follows.

• Sphere

f(x) =
n∑
i=1

x2
i .

• Ackley

f(x) = −a exp

−b
√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(cxi)

)
+ a+ e,

where a, b and c are the parameters of the function and are set to 20, 0.2 and 2π,
respectively. e is Euler’s number.

• Tablet

f(x) = 106x2
1 +

n∑
i=2

x2
i .

• Cigar-Tablet

f(x) = x2
1 + 104

n−1∑
i=2

x2
i + 108x2

n.

• Michalewicz

f(x) = −
n∑
i=1

sin(xi) sin2m

(
ix2
i

π

)
,

where m is the parameter of the function and is set to 10. The optimum value of
the function is different for different numbers of variables.

• Sum Cancellation

f(x) =

(
10−5 +

n∑
i=1

∣∣∣∣∣
i∑

j=1

xj

∣∣∣∣∣
)−1

.

The Sphere function is a simple optimization problem without any interdependency
between variables. Following the smooth downhill path will lead an optimization al-
gorithm to the optimal solution of the function. The Ackley function has a rugged
landscape, although some local regions of the search space can provide information about
the global structure of the problem. The first variable of the Tablet function is scaled
causing the optimization algorithms to be more sensitive to changes of this variable, and
therefore the promising values of other variables may not be properly encoded in EDA
model estimation. The Cigar-Tablet function extends the Tablet function by introducing
three different levels of scalings for the variables. The Michalewicz function does not have
a proper global structure and requires more exploration for detecting promising basins
of attraction. The Sum Cancellation function is very similar to a problem called nee-
dle in the haystack, especially for larger dimensions, and the function is not separable.
Therefore, a very small search space is considered for this function.

71



Table 6.1: The optimization functions used in the experiments, their optimum solution
(x∗) and optimum function value (f ∗). The number of variables is denoted with n.

Name Type Domain x∗ f ∗

1 Sphere min [−5, 5]n 0 0
2 Ackley min [−32, 32]n 0 0
3 Tablet min [−7.5, 7.5]n 0 0
4 Cigar-Tablet min [−7.5, 7.5]n 0 0
5 Michalewicz min [0, π]n –a –a

6 Sum Cancellation max [−0.16, 0.16]n 0 105

a Depends on n.
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Figure 6.1: Fitness landscape of some of the optimization functions in two dimensions.

6.3.2 Experimental Design

Five different dimensions are tested for each of the functions: 10, 20, 50, 100 and 200
variables. Population size is set to N = 10 ln(n) for all of the algorithms in an at-
tempt to emulate high-dimensional settings as the number of variables increase, starting
with a certain number of solutions. For each algorithm-function-dimension combination,
20 independent runs are performed. The initial population is randomly generated us-
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Figure 6.2: Average time requirements for the main steps of RegEDAs and their compar-
ison with other EDAs. The number of variables is 50.

ing a uniform distribution over the domain of variables. All algorithms terminate when
the maximum number of generations, set to 500, is reached. Apart from this stopping
criterion, when an algorithm gets stuck in a stalemate situation for 100 consecutive gen-
erations, it stops so as not to waste computational time. A stalemate situation is verified
if the improvement in the fitness function is less than 10−8. Figure 6.2 gives an insight
into the computational time requirements of the main steps of RegEDAs, which are com-
pared with three other Gaussian-based EDAs used in the experiments of this section.
The presented results are obtained on a machine with 2.66 GHz Intel Core-i5 processor
and 6 GB of memory, and are averaged over 500 generations of a run.

For all EDAs, solutions are selected using truncation selection with a τ = 0.5 thresh-
old. Except for CMA-ES, which completely replaces the population in each generation
with new solutions, all other algorithms generate N/2 new offspring solutions in the
sampling step. The newly generated solutions are repaired using a simple repairment
strategy, where unacceptable values are replaced by a new value randomly chosen from
the domain of the corresponding variable. An elitist replacement strategy is used to in-
corporate the offspring solutions into the population, where the best N solutions from
the combination of offspring solutions and solutions in the population are selected to
form the next-generation population. The initial standard deviation of CMA-ES (one
of algorithm’s input parameters) is set to one third of each variable’s domain, as it is
suggested in [Hansen, 2006]. This algorithm is considered to be in a stalemate situation
if the improvement in the fitness function is less than 10−12 (which is less strict than
other algorithms).

6.3.3 Results

Figures 6.3–6.8 show the average best achieved values (BAVs) along the evolution path of
RegEDAs and the other four EDAs, applied to the optimization functions. The presented
results are averaged over the 20 runs performed. For runs that an algorithm terminates
before reaching the maximum number of generations, the rest of evolution path is padded
with the BAV of the last executed generation. For some of the functions, the BAVs are
depicted on a logarithmic scale so as to better discriminate algorithms’ performance.

The results for all functions show that, when considering the distance between BAVs
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Figure 6.3: Average BAVs for Sphere function

and the optimal function value, the performance of all algorithms drops as the number
of variables increases. However, this curse of dimensionality affects some algorithms
(like CMA-ES and EGNA-PLS) a lot more than others. The optimization behavior of
RegEDAs for most of the tested functions, suggests that these algorithms are less affected
by this phenomenon.

The comparison of ML estimation in EMNA and UMDA with the regularized model
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Figure 6.4: Average BAVs for Ackley function

estimation in RegEDAs better illustrates the difference in the performance of RegEDAs
and how they are affected by the increases in the problem size. Since all other parts of the
tested algorithms are the same (except for CMA-ES), the similarities and differences in the
optimization performance of these algorithms can be attributed to the model estimation
methods that they employ. For example, the performance of RegEDA-Shr and UMDA is
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Figure 6.5: Average BAVs for Tablet function

very close for most of the functions, suggesting that the shrinkage estimation method is
shrinking most of the off-diagonal entries in the covariance matrix to close-to-zero values.
This property is especially useful when dealing with separable optimization problems.
A comparison of the performances of RegEDA-Shr, and UMDA and EMNA for Sphere
functions (Figure 6.3), clearly shows that the model estimation employed in RegEDA-Shr
is more efficient, since it leads to a regularized combination of the models used in EMNA
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Figure 6.6: Average BAVs for Cigar-Tablet function

and UMDA.

The conservative merging strategy used in RegEDA-LARS-AND model estimation
causes fewer dependencies to be added to the model, leading to sparser structures. The
fact that, for many of the functions, this algorithm behaves similarly to UMDA, and
therefore RegEDA-Shr, shows that the sparsity pattern of these structures is very similar
to diagonal matrices in the presence of problem separability. When the problem is not
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Figure 6.7: Average BAVs for Michalewicz function

separable (like the Sum Cancellation function – Figure 6.8), RegEDA-LARS-AND can,
thanks to this regularized model estimation method, perform a more concentrated search
by including only what are, according to the regularization technique, the more important
links. Therefore this algorithm is able to outperform other algorithms with the increase
in problem dimensionality.
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Figure 6.8: Average BAVs for Sum Cancellation function

The optimization performance of RegEDA-GL compared with EMNA is especially
interesting in these experiments. The model estimation method in the two algorithms
differs only as to the regularization term added to ML estimation of MGD in the graph-
ical LASSO method (see Section 4.3). The results show that, for some of the functions
(like Sphere and Ackley – Figures 6.3 and 6.4), regularization improves the average per-
formance of RegEDA-GL while, for some others (Michalewicz and Sum Cancellation –
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Figures 6.7 and 6.8), this algorithm is not able to obtain good BAVs as EMNA. Con-
sidering the properties of these functions, it appears that the use of regularization will
result in better model estimation if the problem has a global structure, whereas lack
of such information has a negative effect on the regularized model estimation used in
RegEDA-GL.

The similar optimization behavior of RegEDA-LARS-OR and EMNA for many of
the functions suggests that the MGDs estimated with the greedy merging strategy em-
ployed in RegEDA-LARS-OR are very similar to those obtained by ML estimation. For
example, a good option, in the absence of useful properties in some of the functions
(like Michalewicz – Figure 6.7), for use by the optimization algorithm, could be a coarse
estimation of the search space. Model estimation in RegEDA-LARS-OR simulates this
coarse estimation by adding many links to the structure considering all possible variable
dependencies. However, the use of regularization to detect the dependencies, in the pres-
ence of specific problem properties (like separability) causes the algorithm to perform a
finer search.

6.3.4 Discussion

There are some common points concerning the performance of the algorithms on the
tested functions. First, most of the algorithms show a different optimization behavior
from one function to another depending on the different features of these functions.
This suggests that although no explicit rotation and translation is applied, the set of
selected functions form a good benchmark for the experiments. On the other hand, the
Gaussian distribution-based model estimation used in the algorithms is invariant to these
transformations (except UMDA). Second, the performance of all the algorithms is affected
by the increase in the number of variables, from the viewpoint of the distance between
BAVs and optimal function value. Some of the algorithms, like CMA-ES, appear to be
able to improve their BAVs if given more time, but it is evident from the results that their
performance is influenced considerably more than the RegEDAs proposed here, when the
number of variables increase.

Thirdly, the population size of all algorithms is equally set to be of a logarithmic
order of the problem size, resembling a high-dimensional setting. Thus, for most of
the functions and especially larger dimensions, almost all the algorithms get stuck in a
stalemate situation in the early generations of the search. For the purpose of studying the
effect of regularized model estimation, none of the algorithms (except CMA-ES, which
uses specific variance scaling techniques) use any kind of explicit diversity preservation
techniques. The fact that all other parts of the algorithms are the same is helpful for
gaining a better understanding of how different model estimation methods affect the
optimization behavior.

Table 6.2 shows the statistical analysis results for the BAVs obtained by the algorithms
on each dimension of each function. The non-parametric Friedman rank test [Derrac et al.,
2011] is used to check for the statistical difference in algorithm’s performance. The null
hypothesis that all the algorithms have an equal average rank is rejected with a p-value
less than 10−8 for all functions and all dimensions. The values shown in each entry of
Table 6.2 are the final average BAVs obtained by the algorithm in the column, applied
on the function-dimension combination in the row. The numbers in parentheses show
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Table 6.2: The results of statistical tests on BAVs of the algorithms (refer to text for
more explanation).
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the results of pairwise comparisons using Bergmann-Hommel’s procedure as the post-hoc
test. The significance level for this test is set to 0.05. The first number shows how many
algorithms are significantly worse than the algorithm in each column, and the second
number shows how many algorithms are significantly better.

The results of statistical tests are evidently consistent with the average algorithms
performance. For example, RegEDA-Shr and UMDA do not have a statistically different
performance for most of the functions. Also whereas, CMA-ES is able to obtain sig-
nificantly better BAVs for smaller dimensions of the functions, it rapidly becomes less
proficient as the number of variables increases and ends up being significantly worse than
many other algorithms. For larger dimensions, one of the proposed RegEDAs are always
ranked as first or second (without any statistical difference from the first ranked algo-
rithm) for all functions, except Sphere. The pairwise statistical comparisons also show
that these algorithms are able to obtain statistically better BAVs than most other algo-
rithms. Looking at the performance over all functions, RegEDA-LARS-AND appears to
have a better overall performance than other RegEDAs for larger problem sizes.

6.4 Conclusions

The use of regularized model estimation in EDAs for continuous optimization was studied.
Based on the results of the analysis, some of the regularized model estimation methods
were selected for use, resulting in four different versions of RegEDA. These different
versions were applied to a set of continuous optimization functions, featuring different
properties, and the results were compared with those of other Gaussian-based EDAs.
The results showed that the increase in problem dimensionality, with a population size
which is logarithmic in the number of variables, affects the performance of the proposed
RegEDAs less than other Gaussian-based EDAs. Specific problem properties can play
a vital role in the algorithm performance. The statistical analysis results showed that
RegEDAs are able to obtain BAVs that are significantly better than those of the other
algorithms for larger dimensions of most tested functions.

Of all the versions of RegEDA, RegEDA-LARS-AND and RegEDA-Shr have proved
to have a better average optimization behavior, with RegEDA-LARS-AND having statis-
tically better overall performance for larger dimensions. The comparison of the behavior
of RegEDA-LARS-OR and RegEDA-GL with EDAs using ML estimation (like EMNA)
helped to clarify how the use of regularization can affect the optimization performance
of EDAs. RegEDA-GL is usually able to maintain a relatively diverse population along
the whole evolution path because of its regularized model estimation. We found that this
property can help the algorithm to obtain better optimization results in the presence of
specific function characteristics.
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Chapter 7

Regularization in Factorized
Gaussian Markov Random
Field-Based EDA

7.1 Introduction

Approaches to continuous optimization with EDAs [Kern et al., 2004], can be divided
into two general categories: (i) Discretization of problem domain and then application
of discrete EDAs [Tsutsui et al., 2001]; (ii) Direct application of EDAs based on contin-
uous probabilistic models [Gallagher et al., 1999; Bengoetxea et al., 2002; Bosman and
Thierens, 2006]. In the latter approach, Gaussian distributions have been commonly used
as probabilistic models in this area [Bosman and Thierens, 2000a; Larrañaga and Lozano,
2001; Ahn et al., 2004], considering either non-overlapping factorized distributions (e.g.
continuous UMDA) or the distributions defined by dependencies encoded in PGMs (e.g.
GBNs).

In Chapter 2, we saw that most of the research on the use of MNs in EDAs has been
mainly focused on discrete domain optimization, like Santana [2003]; Shakya and McCall
[2007]; Shakya et al. [2012]. In this chapter a continuous EDA based on the Gaussian
distribution is proposed which is analyzed from a GMRF perspective. It is shown that
the analysis of undirected models, as it is done in discrete MN-based EDAs, can be
also extended to continuous domains. We especially consider the role of the precision
matrix and use marginal product factorizations as a particular case of undirected PGMs.
The previously studied regularization methods are employed in this type of modeling
accompanied by a clustering technique, namely the affinity propagation algorithm, to
find the factorized components of the model. The work in this chapter is published in
[Karshenas et al., 2013b].

7.2 GMRF-Based EDA with Marginal Factorization

Factorization of the joint probability distribution can represent both marginal and con-
ditional independence relationships between the variables. If the factorization is only
based on the marginal independence relationships between the sets of variables then it is
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called a marginal product factorization or an MPM. MPMs can be represented with both
directed and undirected PGMs. In particular, when a GMRF represents an MPM, its set
of cliques can be partitioned into non-overlapping groups and therefore it is possible to
independently estimate the probability distribution for the variables in each group.

EDAs using MPM representation of the probability distribution are appropriate when
variables in the problem can be divided into a number of disjoint groups. Many of the real-
world problems actually consist of several smaller components that are either independent
or weakly connected. In the discrete case, two well known examples of EDAs that use
MPMs are UMDA [Mühlenbein and Paaß, 1996] and EcGA [Harik et al., 2006]. A review
of some of the continuous EDAs based on marginal product factorization is given later
in Section 7.3.

In this section, we describe a new approach for learning a subclass of GMRFs that
represent MPMs. There are several alternatives for learning undirected continuous models
within EDAs, from which some are:

i) Estimation of MGD’s covariance or precision matrix.

ii) Learning the structure of GMRF and its factors.

iii) Hybrid approaches.

The first approach includes ML estimation as well as other covariance matrix selection
techniques discussed in the literature [Yuan and Lin, 2007; Ravikumar et al., 2009; Witten
and Tibshirani, 2009]. The methods for inducing an undirected (in)dependence structure
between variables are the typical choice in the second approach. Usually these methods
use techniques like statistical hypothesis tests or mutual information (entropy) between
variables to decide about their (in)dependence. Based on these (in)dependencies, the
local neighborhood of each variable is obtained which can then be combined to obtain a
full structure and compute the factors for the related variables. The third class of methods
combines the computation of the covariance or precision matrix with the identification
of the neighborhood structure of the variables. The approach introduced here belongs to
the third class of methods.

7.2.1 A Hybrid Approach to Learn GMRF

The main idea of our algorithm is to identify the putative neighborhood of each variable
by learning a regularized regression model, similar to the first approach in Section 5.2.
Knowing that in this model, the dependence of Xi on each of the variables in X \Xi is
represented with a weight, in the second step, variables are clustered into disjoint factors
according to the strength of their dependency weights. Finally, an MGD is estimated
for each factor separately. The main steps of the proposed method are presented in
Algorithm 7.1.

Detecting Variables Dependencies using Regularization

We have seen that some of the regularization techniques have the promising property
of setting some of the model parameters exactly to zero. In the case of regularized re-
gression models, these parameters are the weights of the dependencies between variables.
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1 for each variable do
2 Compute its linear dependence weights on all other variables
3 end for
4 Cluster the variables into disjoint cliques using the weight matrix
5 for each clique do
6 Estimate an MGD for the variables in the clique
7 end for

Algorithm 7.1: Hybrid GMRF-EDA learning algorithm

Therefore, the use of regularization leads to sparser dependency structures which can be
partitioned into separate groups of variables. The three techniques considered in the first
approach to regularized model learning in Section 5.2 are used here to obtain the weight
of dependencies between variables: LARS, LASSO and ELNET.

Clustering by Affinity Propagation

Clustering methods are used to group objects into different sets or clusters, in such a
way that each cluster comprises similar objects. Clusters can then be associated to labels
that are used to describe the data and identify their general characteristics. Among the
best known clustering algorithms are k-means [Hartigan and Wong, 1979] and k-center
clustering [Agarwal and Procopiuc, 2002] methods.

Affinity propagation (AP) [Frey and Dueck, 2007] is a recently introduced clustering
method which takes as input a set of measures of similarity between pairs of data points
and outputs a set of clusters of those points. For each cluster, a typical or representative
member, which is called exemplar, is identified. We use AP as an efficient way to find
the MN neighborhood of the variables from the linear weights output by regularized
regression methods.

AP takes as input a matrix of similarity measures between each pair of points and
a set of preferences which are a measure of how likely each point is to be chosen as
exemplar. The algorithm works by exchanging messages between the points until a stop
condition, which reflects an agreement between all the points with respect to the current
assignment of the exemplars, is satisfied. These messages can be seen as the way the
points share local information in the gradual determination of the exemplars. For more
details on AP, see [Frey and Dueck, 2007].

In the context of our GMRF-EDA, each variable will correspond to a point and as
the similarity between two points Xi and Xj, the absolute value of weight wij obtained
from the regularized regression model of variable Xi is used. Since in general wij 6=
wji, the similarity matrix is not symmetric. AP also takes advantage of the sparsity
of the similarity matrix obtained from regularized estimation, when such distribution of
similarity values is available. The message-passing procedure may be terminated after a
fixed number of iterations, when changes in the messages fall below a threshold, or after
the local decisions stay constant for some number of iterations.
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Estimating MGDs for the Factors

In the final step of the proposed hybrid model learning algorithm, an MGD of the variables
in each factor is estimated. We expect that the factorized distribution obtained by this
model estimation will give a more accurate estimation of the target MGD (of all variables)
in comparison to learning a single multivariate distribution for all of the problem variables.

7.2.2 Sampling Undirected Graphical Models for Continuous
Problems

Sampling is one of the most problematic steps in EDAs based on undirected PGMs. The
problem is mainly related to the loops existing in the model structure that does not allow
a straightforward application of simple sampling techniques like PLS method [Henrion,
1986] for BNs. The application of Markov Chain Monte Carlo (MCMC) methods like
Gibbs sampling [Geman and Geman, 1984] also has a high computational complexity.

Obtaining decomposable approximations of MNs to allow the application of PLS al-
gorithm [Santana, 2003], merging cliques of an MN to capture as many dependencies
as possible before applying exact or approximate sampling algorithms [Höns, 2005], and
computation of MPE based on belief propagation [Mendiburu et al., 2007] are among
other options for sampling undirected graphical models that have been used in discrete
EDAs and could be applied to continuous problems. The method we adopt here is to
independently sample the MGDs for each of the factors.

7.3 Related Work

A number of works have proposed the use of MPMs for continuous problems. In [Fossati
et al., 2007] and [Li et al., 2008] two different algorithms are proposed that learn variants of
EcGA for real-valued problems. Both algorithms are based on discretizing the continuous
variables previous to the construction of MPM. Lanzi et al. [2008] propose a version of
EcGA that instead of mapping real values into discrete symbols, models each cluster of
variables using a multivariate probability distribution and guides the partitioning process
using an MDL metric for continuous distributions. To learn the clusters of variables,
an adaptive clustering algorithm, namely the BEND random leader algorithm, is used.
Recently, Dong et al. [2011] have proposed to compute the correlation matrix as an
initial step to do a coarse learning such as identifying weakly dependent variables. These
variables are independently modeled using a univariate Gaussian distribution while the
other variables are randomly projected into subspaces (clusters) that are modeled using
an MGD.

Regularization techniques have been very recently used for learning MNs in EDAs.
They have been used for optimization based on undirected models both in discrete [San-
tana et al., 2011] and continuous domains [Karshenas et al., 2011a]. In [Malagó et al.,
2011], the task of selecting the proper structure of the Markov network is addressed by
using `1-regularized logistic regression technique. In [Ochoa, 2010], the class of shrinkage
EDAs has been introduced. The results presented there show that shrinkage regular-
ization can dramatically reduce the critical population size needed by EMNA in the
optimization of continuous functions.
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Figure 7.1: 2-dimensional continuous trap function

Finally, AP has also been applied in EDAs. AffEDA [Santana et al., 2010b], uses this
method to learn MPMs for discrete optimization with EDAs. In a different context, AP
has been applied as a niching procedure for EDAs based on Markov chain models [Chen
and Hu, 2010].

7.4 Experiments

The main objective of our experiments is to study the proposed GMRF-EDA in opti-
mization when learning a factorized distribution model, and compare its behavior with
that of other EDAs. For this purpose, RegEDA-Shr and RegEDA-GL from the previous
section and continuous UMDA [Larrañaga et al., 2000a], the EDA that assumes a total
independence between the variables are selected. We also analyze the accuracy of the
estimated methods in recovering an accurate structure of the problem.

7.4.1 Benchmark Functions

Two classes of functions that represent completely different domains of difficulty in terms
of optimization are used to evaluate the performance of the algorithms: an additive
deceptive function and a simplified protein folding model. The 2D-deceptive function
[Pelikan et al., 2003], which is a maximization problem, is composed of the aggregation of
2-dimensional continuous trap functions which have a local optimum with a large basin
of attraction and an isolated global optimum (Figure 7.1)

f2D−deceptive(x) =

n/2∑
i=1

f2D−trap(x2i−1, x2i)

where

f2D−trap(x, y) =

0.8−
√

x2+y2

2
if
√

x2+y2

2
≤ 0.8

−4 + 5
√

x2+y2

2
otherwise

.
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Figure 7.2: One possible configuration of the Fibonacci sequence S5 = BABABBAB

Off-lattice models are simplified protein models that, in opposition to the HP sim-
plified model [Dill, 1985], do not follow a given lattice topology. Instead, the 2D or 3D
coordinate in the real axis define the positions of the protein residues. Among the off-
lattice models with known lowest energy states is the AB model [Stillinger et al., 1993],
where A stands for hydrophobic and B for polar residues. The distances between con-
secutive residues along the chain are held fixed to b = 1, while non-consecutive residues
interact through a modified Lennard-Jones potential. There is an additional energy con-
tribution from each angle θi between successive bonds. The energy function for a chain
of n residues, which should be minimized, is shown in Equation (7.1).

E =
n−1∑
i=2

E1(θi) +
n−2∑
i=1

n∑
j=i+2

E2(rij, ζi, ζj), (7.1)

where

E1(θi) =
1

4
(1− cosθi)

and

E2(rij, ζi, ζj) = 4(r−12
ij − C(ζi, ζj)r

−6
ij ).

Here, rij is the distance between residues i and j (with i < j). Each ζi is either A or B,
and C(ζi, ζj) is +1, +1

2
, and −1

2
respectively for AA, BB, and AB pairs, giving strong

attraction between AA pairs, weak attraction between BB pairs, and weak repulsion
between A and B pairs [Hsu et al., 2003]. We only consider Fibonacci sequences defined
recursively by

S0 = A, S1 = B, Si+1 = Si−1 ∗ Si (7.2)

where ∗ is the concatenation operator. Figure 7.2 shows a possible configuration for
sequence S5 = BABABBAB.

A 2D off-lattice solution of the AB model can be represented as a set of n− 2 angles.
Angles are represented as continuous values in [0, 2π]. The first two residues can be fixed
at positions (0, 0) and (1, 0). The other n − 2 residues are located from the angles with
respect to the previous bond. We look for the set of angles that defines the optimal
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Figure 7.3: Results of different EDAs for the f2D−deceptive function.

off-lattice configuration. As instances, we consider Fibonacci sequences for numbers 6
and 7. The respective sizes of these sequences, in the same order, are n = 21 and n = 34.

7.4.2 Results

Figure 7.3 shows the average BAVs in each generation of different algorithms for the
2D-deceptive function with 30 variables. All of the EDA variants in this experiment use
truncation selection with τ = 0.5. The population size is set to N = 5n and the maximum
number of generations is 2000. The results are averaged over 30 independent runs.

It can be appreciated that UMDA, which considers a fixed total factorization of the
distribution, starts outperforming other algorithms in the earlier generations but as the
evolution continues, the initial lead of this algorithm is lost. The EDAs based on regu-
larized model learning with graphical LASSO and shrinkage estimation methods, which
consider no explicit factorization of the distribution, have a poor behavior and are not able
to reach the best solutions achieved by UMDA. On the other hand, the hybrid GMRF-
EDA, with different regularization techniques (LARS, LASSO and ELNET), is able to
constantly improve the average BAV and obtain better results at the end of optimization.

Next, we investigate the behavior of the algorithms on the off-lattice protein folding
model. It is worth to mention that this is a very hard problem where the structural
interactions between the variables are not clearly defined. There seems to be dependen-
cies between adjacent variables in the AB sequence. However, the way in which other
interactions between the AB residues are translated to dependencies in the model is not
clear.

Figure 7.4 shows the average BAVs obtained during evolution for the off-lattice protein
folding models corresponding to Fibonacci sequences 6 and 7. For the smaller instance
of this problem (with sequence number 6) the results are averaged over 30 independent
runs and for the larger instance over 15 runs. It can be seen that UMDA is outperformed
by all other EDAs from the initial stages of the search for the first folding problem
(Figure 7.4(a)). In this instance, the best results are achieved when estimating a single
MGD with graphical LASSO, although the MPMs learnt with ELNET regularization
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Figure 7.4: Results of different EDAs for two different instances of the off-lattice AB
models.

technique in the hybrid GMRF-EDA closely follows.

On the second instance of the off-lattice protein problem (Figure 7.4(b)), the per-
formance of UMDA gets very close to RegEDA-GL and RegEDA-Shr, and outperforms
GMRF-EDA which tries to decompose the problem by learning dependencies between
variables. There seems to be an important variability between the characteristics of the
different off-lattice protein instances. In some situations such as the Fibonacci sequence
number 6, capturing dependencies between the variables of the problem contributes to
improvement of the quality of the obtained solutions. However, there are cases where
learning the dependencies explicitly does not improve the results of the simpler univari-
ate models. Similar optimization behavior has also been reported for some of the discrete
additively decomposable problems like 2D Ising spin glasses [Hauschild et al., 2007] where
the necessity of discovering the dependencies between variables is not clear.

An interesting issue is to observe the disparate behavior exhibited by RegEDA-GL.
It behaves very different in comparison to all other algorithms for 2D-deceptive function,
achieving the worst results. Nevertheless, it reaches the best results for the off-lattice pro-
tein models. More research on this type of regularized model learning is needed to discern
which mechanisms explain the difference between the performance of the algorithm for
these two classes of functions.

7.4.3 Influence of the Regularization Parameter

The properties of regularized model learning were studied from different points of view
in Chapter 5. There, we saw how the value of the regularization parameter can affect
the models estimated with graphical LASSO algorithm (Section 5.3.4). To extend that
study, in this section we also examine how the change in the values of this parameter can
influence the models estimated during evolution in RegEDA-GL. For this purpose, the
models estimated for optimizing the 2D-deceptive function with cross-related variables
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(a) λ = 0.001 (b) Dynamic λ

Figure 7.5: Precision matrices learned by two different learning methods

(i.e. first with last, second with penultimate, etc.) are analyzed.

Since the variable dependency structure of this problem is known, we can study the
accuracy of the estimated model structures when using different configurations for setting
the regularization parameter (λ) during optimization. Figure 7.5 represents the precision
matrices obtained at the end of an RegEDA-GL run on 2D-deceptive function with 10
variables with two different configurations.

The precision matrix depicted in Figure 7.5(a) is obtained when using a constant value
for the regularization parameter throughout the whole EDA run. On the contrary, the
precision matrix shown in Figure 7.5(b) is obtained when EDA starts with a small value
for the regularization parameter in the early generations and dynamically increases it
along the evolution. As it can be seen, while using a constant value for the regularization
parameter a relatively good structures can be estimated, but with a dynamic parameter
setting, this regularization method can obtain a better estimation of the MGD’s precision
matrix and its corresponding GMRF structure.

7.5 Conclusions

Based on the correspondence between MGDs and GMRFs, we discussed some topics
in learning and sampling these probabilistic graphical models, when employed in EDAs.
Specifically, some of the methods that can be used to approach the learning and sampling
of GMRFs were presented. GMRF-EDA was introduced as an algorithm that combines
regularized regression with affinity propagation to learn regularized MPMs. This is a
different approach to learn more accurate MPMs for continuous problems with separa-
ble components. Preliminary results on the continuous 2D-deceptive function showed
promising optimization performance of this regularized model learning approach.

The proposed method was also tested on the real-world problem of predicting the
secondary structure of proteins using the off-lattice protein folding model. The results
of the experiments on two instances of this problem showed that the proposed hybrid
GMRF-EDA has a comparable performance on one of the instances to that of RegEDAs
which learn a single MGD without factorization, but is outperformed on the other. We
also studied the influence of regularization parameter setting during optimization to de-

91



termine how the characteristics of the regularization method influence the outcome of the
EDAs.
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Part III

Multi-objective Optimization
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Chapter 8

Evolutionary Multi-Objective
Optimization with Probabilistic
Modeling

8.1 Introduction

Many of the real world optimization problems are often best characterized by more than
one objective. When trying to solve these problems, several, possibly conflicting, criteria
should be fulfilled simultaneously. Usually none of the objectives can be preferred over
the others by the decision maker (DM) in order to apply single-function optimization
methods for solving these problems. Moreover, the existence of conflicting criteria means
that trying to improve one of the objectives will result in worse values for some other.
Therefore, it is more reasonable to solve these problems by considering all the objectives
together.

Let F = {f1, . . . , fm} be the set of objective functions for a problem, where each
objective function is defined as fj : D 7→ R, and assume that all of them should be mini-
mized. Then an unconstrained continuous multi-objective optimization problem (MOP)
is defined as

min
x∈D⊆Rn

f(x) =
(
f1(x), . . . , fm(x)

)
. (8.1)

D determines the set of feasible value-settings for the vector of input variables X =
(X1, . . . , Xn) and sometimes it is referred to as the decision space. The objective functions
of an MOP map the solutions in D to another space which is called the objective space
of the problem.

In general, with more than one objective function, the optimum solution to the MOP
in Equation (8.1) is not unique anymore, even if the constituting objective functions are
not multi-modal. Thus, the goal of a multi-objective optimization algorithm is to search
for solutions which result in an optimal trade-off between different objectives of the
problem. One of the most frequently used approaches is to employ the notion of Pareto
optimality [Pareto, 1897] and the corresponding Pareto dominance relation [Goldberg,
1989].

Definition 8.1. (Pareto Dominance) Let x and y be two solutions of the MOP defined
in Equation (8.1) in the decision space D. Then x Pareto dominates y, denoted as x ≺ y,
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if and only if:

1. ∀fj ∈ F fj(x) ≤ fj(y), and

2. ∃fk ∈ F fk(x) < fk(y).

Pareto dominance defines a partial order between the solutions, i.e. an irreflexive,
antisymmetric and transitive relation. Using this relation, the solutions to an MOP can
be ranked into a number of disjoint Pareto non-dominated sets (or Pareto sets for short)
where every two solutions in the same set have exactly equal objective values or are in-
comparable in terms of Pareto dominance. The corresponding projections of these Pareto
sets onto the objective space are called Pareto non-dominated fronts (similarly Pareto
fronts). The best Pareto set containing optimal trade-off solutions (no other solution in
D dominates them) is called the Pareto optimal set, denoted as D∗, and its projection
onto the objective space is called the Pareto optimal front. No further improvement in
one of the objectives of the solutions in the Pareto optimal set can be obtained without
aggravating another objective. In general, the number of solutions in the Pareto optimal
set can be exponentially large or even infinite in the case of continuous domains and thus
multi-objective optimization algorithms try to obtain a good approximation of this set.

Because of the complexity of solving MOPs, a promising approach which is gaining an
increasing interest is to use EAs, giving rise to evolutionary multi-objective optimization
(EMO) algorithms [Zitzler et al., 2000; Deb, 2001; Abraham et al., 2005; Coello Coello
et al., 2007], otherwise known as multi-objective EAs. Although these algorithms do not
ensure the optimality of the solutions compared with some of the conventional mathe-
matical optimization techniques, they have been successfully applied to many complex
real-world MOPs. Besides their simple mechanism which motivates their wide-spread use
in different applications, another advantage of these algorithms encouraging their use for
multi-objective optimization is their population-based search allowing them to simulta-
neously explore several regions of the search space, and find a set of trade-off solutions
in contrast to a single solution, in an individual run.

A successful strategy adopted by many EMO algorithms is to use the same solu-
tion reproduction method (see Figure 2.1) as the one used in single-objective EAs (e.g.
crossover and mutation operators) and only modify the way solutions are selected for
reproduction or replacement by considering several objectives for solution evaluation.
Specifically, many of the methods that are proposed for solution ranking in EMO algo-
rithms are based on the Pareto dominance relation. One of the EA classes that has been
used for multi-objective optimization is EDAs.

8.2 EDAs in Multi-Objective Optimization

In Chapter 2, we discussed some of the main motivations for the use of probabilistic
modeling in EAs. In the context of multi-objective optimization, the traditional genetic
operators used for solution reproduction in EAs usually provide a good and efficient
exploration of the search space. However, the same shortages explained for traditional
EAs in single-objective optimization can affect the effectiveness of their search for the
optimal solutions of an MOP. Therefore, several multi-objective EDAs have been proposed
in the literature [Thierens and Bosman, 2001; Pelikan et al., 2006b; Mart́ı et al., 2010],
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which combine the model building in EDAs with a multi-objective solution ranking and
selection mechanism to solve MOPs. In the following, we review some of the methods
proposed in the literature for multi-objective optimization based on probabilistic model
estimation. A summary of the multi-objective EDAs is given in Table 8.1.

8.2.1 A Survey of Multi-Objective EDAs

In several multi-objective EDAs proposed in the literature, a BN is estimated as the
probabilistic model. Pareto BOA [Schwarz and Očenášek, 2001] integrates the Pareto
strength-based solution ranking method [Zitzler and Thiele, 1999] into BOA [Pelikan
et al., 1999] for multi-objective optimization. In a similar study, the non-dominated
sorting algorithm [Deb et al., 2002a] is used in BOA [Khan et al., 2002]. Bayesian multi-
objective optimization algorithm (BMOA) [Laumanns and Očenášek, 2002] uses an ε-
Pareto dominance based ranking method (a relaxed version of the Pareto dominance
relation) to select a subset of solutions for estimating a BN. Decision tree based multi-
objective EDA (DT-MEDA) [Zhong and Li, 2007] uses regression trees with Gaussian
kernels in their leaves as the probabilistic model. It uses a slightly modified version of the
non-dominated sorting algorithm for selecting a subset of solutions in each generation.

Some of the proposed EDAs explicitly estimate a mixture of probability distributions
by means of a clustering method to obtain a well-spread approximation of the Pareto
solutions. Multi-objective mixture-based IDEA (MIDEA) [Bosman and Thierens, 2002]
clusters the selected solutions into several groups in the objective space and learns a
separate component for each group of solutions. Probabilistic models with different orders
of complexity (e.g. encoding univariate, bivariate or multi-variate dependencies) are
tested as the components of the mixture. The proposed algorithm is also further improved
by maintaining an ε-Pareto archive and introducing adaptive variance scaling to prevent
premature convergence in continuous MOPs [Bosman and Thierens, 2007].

Multi-objective Parzen-based EDA (MOPEDA) [Costa and Minisci, 2003] applies a
Parzen estimator to learn a mixture of kernel functions in order to reduce the variance of
the probability distribution estimation. Both Gaussian and Cauchy kernels are used alter-
natively during evolution. Voronoi-based EDA (VEDA) [Okabe et al., 2004b] constructs
a Voronoi diagram by considering the inferior solutions in addition to good solutions in
each generation. It also uses principal component analysis to reduce the dimensionality
of the objective space.

In multi-objective hierarchical BOA (mohBOA) [Pelikan et al., 2005] each component
of the mixture is a BN. To obtain a well-distributed approximation of the Pareto front,
approximately equal shares are allocated to the mixture components during model sam-
pling. In the multi-objective EcGA (meCGA) [Sastry et al., 2005] an MPM is used for
each component of the mixture. The algorithm is later improved by using an ε-Pareto
dominance based clustering and algorithm parameters are dynamically computed during
evolution [Soh and Kirley, 2006].

In addition to clustering the solutions, the diversity preserving multi-objective rBOA
(dp-MrBOA) [Ahn and Ramakrishna, 2007] decomposes the problem variables by esti-
mating a GBN. It employs a diversity preserving selection method which uses adaptive
sharing and dynamic crowding methods. Regularity model-based multi-objective EDA
(RM-MEDA) [Zhang et al., 2008] estimates a piece-wise continuous manifold using the
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Table 8.1: Summary of the multi-objective EDAs with their ranking methods and prob-
abilistic models used to search in the space of candidate solution.
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local principal component analysis algorithm. Each mixture component is an affine plus
a Gaussian noise.

In restricted Boltzmann machine (RBM)-based EDA [Tang et al., 2010] each mix-
ture component is an RBM, a stochastic neural network with hidden neurons. Model
building growing neural gas (MB-GNG) algorithm [Mart́ı et al., 2011] uses a specific
single-layer neural network, called growing neural gas, to determine the location of mix-
ture components which are Gaussian distributions. The approach is further extended in
[Mart́ı et al., 2012] by using the adaptive resonance theory and employing a hypervolume
indicator-based selection method [Bader and Zitzler, 2011].

There are also some approaches which have combined the EDA search method with
other search heuristics. In multi-objective hybrid EDA (MOHEDA) [Li et al., 2004] an
EDA based on a mixture of univariate models is hybridized with a local search method
that is applied to the solutions generated from the probabilistic model of EDA. Tabu-
BOA [Katsumata and Terano, 2003] uses the Tabu lists maintained in Tabu search to
improve multi-objective BOA. Gao et al. [2010] proposed an algorithm which hybridizes
an EDA based on univariate distributions with a particle swarm optimization (PSO)
algorithm. Very recently, the RBM-based EDA has also been hybridized with PSO for
noisy multi-objective optimization [Shim et al., 2013].

While most of the multi-objective EDAs use selection methods based on Pareto dom-
inance, there are also some works which have studied EDAs in other multi-objective
optimization frameworks. Shim et al. [2012b] proposed a multi-objective optimization al-
gorithm with dynamic combination of operators in GAs, differential evolution and EDAs
during search. The proposed algorithm is tested when using both Pareto dominance-
based and decomposition-based selection [Zhang and Li, 2007] methods. They have also
used decomposition-based selection in an algorithm which hybridizes an EDA based on
univariate distributions with several local search methods [Shim et al., 2012a].

As mentioned before, although in EDAs probabilistic models are used to estimate the
values for problem variables and to generate new solutions based on these estimations,
probabilistic modeling has also been used for estimating the values of objective func-
tions. For example, Zhang et al. [2010] proposed a decomposition-based MOEA which
uses Gaussian processes to estimate surrogate models of the objectives in MOPs with
computationally expensive (cost or time) objective functions.

8.3 Conclusions

EAs are one of the promising methods for multi-objective optimization, i.e. when there is
more than one objective function in the problem. EMO algorithms often only modify the
solution ranking and selection mechanism of EAs to account for the existence of several
objectives in the problem. Pareto dominance relation is a popular method used in many
of these algorithms for solution ranking. As a class of EAs, several multi-objective EDAs
have also been proposed in the literature. In the next chapter, we will see that more
objectives in the problem can also affect how the new solutions are being generated.
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Chapter 9

Evolutionary Multi-Objective
Optimization with Joint
Probabilistic Modeling

9.1 Introduction

Although most of the study on multi-objective optimization has been focused on problems
with two or three objectives, very often real-world MOPs involve many criteria. Thus,
after the initial success of EMO algorithms in solving MOPs with few objectives, several
efforts have been made to study the performance of these algorithms on the so called
many-objective problems (when there is more than three objectives in the problem) [Deb
et al., 2002b; Ishibuchi et al., 2008]. One of the main lines of research in many-objective
optimization is the analysis of relationships between objectives in order to simplify the
MOP at hand. Different methods, like correlation and principal component analysis
[Deb and Saxena, 2005; Goel et al., 2007; López Jaimes et al., 2008; Craft and Bortfeld,
2008; Verel et al., 2011], extending the definition of conflicting objectives [Brockhoff and
Zitzler, 2009], and linear programming [Guillén-Gosálbez, 2011] have been proposed for
this purpose. These methods reduce optimization complexity by searching for a minimum
subset of objectives.

In this chapter, we introduce joint probabilistic modeling in the context of EDAs as
a new approach in this direction. The principal idea of this method is to incorporate the
objectives into model learning of EDAs when solving an MOP. In this way, the estimated
model cannot only capture the interactions between variables, as it is done in other
EDAs, but also obtain an approximation of the relationships between objectives and
variables. We use BNs for joint modeling which allow to capture more complex patterns
of interaction than just linear correlation. Moreover, since the estimated model is used
for sampling new candidate solutions, this type of relationships are implicitly considered
when exploring the search space, and as shown in this study they are useful for solving
MOPs. The approach presented in this chapter is published in [Karshenas et al., 2011b].
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9.2 Joint Probabilistic Modeling in Multi-Objective

EDAs

The common practice in EAs (including most of EDAs) is to only use the variable val-
ues for generating new solutions in the search space. The objective values are used for
ranking and selecting a subset of solutions, and apart from that, these algorithms ignore
the objective information when generating new solutions. Although this scheme of new
solution generation usually offers a relatively good exploration of the search space, the
objective information of the selected solutions can be exploited in the new solution gen-
eration step of EAs for further improvement, so that the new solutions have better or
comparable objective values than their parents.

In the case of EDAs, when objective information is incorporated into probabilistic
modeling, the estimated model not only encodes the characteristics of the variable values
of the selected solutions, but it also encodes preferences concerning objective values of
these solutions. This especially applies to MOPs, where, because of the existence of
several objectives, more information about the quality of the solutions is available. EDAs
try to represent the problem structure by probabilistically approximating the interactions
between variables and how their values influence the objective functions. Incorporating
the objective values of the solutions in the modeling step of these algorithms will allow
them to obtain a probabilistic approximation of the relationships between objectives as
well (e.g. based on the expected value of the objectives). Furthermore, the estimated
model structure helps to identify redundancy, conditional independence, or other types
of relationships between objectives.

We have chosen BNs for the purpose of joint modeling of objectives and variables in
this study. As it was discussed in Chapters 1 and 2, due to its inherent properties, this
probabilistic model has been employed in many EDAs for both single and multi-objective
optimization. When a joint probabilistic model of objectives and variables is learnt with
a BN, the conditional probabilities of the nodes corresponding to the variables can be
dependent on the objective nodes, according to the BN structure. Therefore, when new
solutions are being sampled from the estimated BN, the objective values can directly
affect the new values generated for the variables. Figure 9.1 shows an example of joint
modeling of objectives and variables encoded in a BN.

Apart from obtaining a decomposition of the problem through the factorization of

Figure 9.1: An example of a BN structure encoding a joint modeling of 4 objectives and
5 variables.
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joint probability distribution, joint modeling performs an implicit variable selection for
each of the objectives considering the MB of the objective nodes in BN structure. In
continuous domains, assuming a Gaussian distribution for the joint vector of variables
and objectives, (X,Q) = (X1, . . . , Xn, Q1, . . . , Qm), where Qj is a random variable taking
values from the range of the jth objective function, i.e. Qj = fj(X), a GBN is estimated
as the probabilistic model.

9.2.1 Discussion

By estimating a probability distribution from a set of selected solutions, EDAs try to
model the regions of the search space that are represented by these solutions. In doing
so, these algorithms assume that the selected solutions represent promising regions of
the search space, and that further exploration and exploitation of these regions (which
in EDAs are interchanged automatically based on the distribution of the solutions) will
guide the search toward optimal solutions. Using probabilistic models will allow EDAs to
both discover and take advantage of the useful regularities in the set of selected solutions
for better optimization, as it has been explained in Chapter 2.

In a typical EDA, all of the solutions used for estimating the probabilistic model are
equally weighted and are treated in the same way. In other words, the quality of solutions
are not taken into consideration in the probabilistic modeling of the search space. Instead,
it is the density of the selected solutions in the search space that drives model estimation
and therefore the algorithm will be completely blind to the quality of the new candidate
solutions sampled from the estimated model.

When the quality information of the solutions is integrated into model estimation, it
adds another extent to the probabilistic model concerning the regions of the objective
space that correspond to the objective values of the selected solutions. Since the solutions
are often selected for model learning according to their objective values, the estimated
model encodes best found regions of the objective space. Hence, the new candidate
solutions sampled from the joint probabilistic model are more likely to fall in these regions
of the objective space, essentially helping the algorithm to find better candidate solutions
in each generation. Moreover, isolated solutions with good objective values have a better
chance of reproduction when estimating a joint probabilistic model. This is because such
a model can encode the relationships between the promising regions in the objective and
search spaces, and thus sampling different regions of the search space will be influenced
(i.e. controlled) by their approximated qualities.

The employment of similar approaches in a few single-objective EDAs like EBCOA
Miquélez et al. [2004, 2006] and DEUM Shakya and McCall [2007] is already shown to
help achieving better optimization results. However, with the existence of more than
one objective in multi-objective optimization, the joint probabilistic model estimation
should account for several, possibly conflicting objective values of the solutions. Using
an expressive probabilistic model like BN allows to capture the relationships between
different objectives when modeling promising regions of the objective space, and therefore
the EDA based on such a model can adaptively combine the distinct quality information
available when sampling new candidate solutions from the estimated probabilistic model.
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Figure 9.2: An overview of the proposed algorithm

9.3 JGBN-EDA for Continuous Multi-Objective Op-

timization

Figure 9.2 shows the outline of the proposed algorithm based on joint modeling of ob-
jectives and variables, called JGBN-EDA. After selecting a subset of solutions in the
population, a dataset of joint variable-objective values is formed by appending the objec-
tive values of the selected solutions to their variable values. In each generation, a GBN
is estimated from this dataset, encoding both objectives and variables, and it is used
to sample new values for the variables when generating new solutions. The generated
solutions are then evaluated to obtain their true objective values, though approximated
objective values for the offspring solutions are also given by the estimated joint model.
The solution ranking and selection method as well as the estimation of joint probabilistic
model are explained in more detail in the following sections.

9.3.1 Solution Ranking and Selection

The extensively used non-dominated sorting algorithm [Deb et al., 2002a], based on
Pareto dominance relation and crowding distances in the objective space, is adopted
in JGBN-EDA for solution ranking. This algorithm first sorts the solutions into different
Pareto sets and then within each set the solutions are ordered according to their crowding
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distances, favoring solutions that are in less populated regions of the objective space to
promote diversity of the approximated Pareto front. The crowding distance measures
how close is (using Euclidean distance) each solution to its neighbors with regard to each
of the objectives.

After obtaining a total ordering between all solutions with the non-dominated sorting
algorithm, a subset of solutions is selected using truncation selection. For this purpose,
the Pareto fronts are added to the set of selected solutions one-by-one according to their
ranks and starting from the Pareto set with the best rank. When we reach a Pareto
set which cannot be added completely anymore, due to the size limit determined by
parameter τ ∈ (0, 1) of truncation selection, a subset of its solutions are selected according
to their crowding distances. Here, we use a slightly modified version of the original non-
dominated sorting algorithm for selecting this subset from the partially added Pareto set.
The solutions are selected one-by-one for addition according to their crowding distances
and after removing each individual, the crowding distance of the solutions remaining in
the Pareto set are recomputed [Zhang et al., 2008].

Another sorting algorithm used in the proposed JGBN-EDA is the weighted sum
approach. Given a weight vector w = (w1, . . . , wm) showing the importance of each
objective function, each solution xi is assigned a value computed as:

m∑
j=1

wj ḟj(xi), (9.1)

where ḟj denotes a normalized value of the jth objective function considering the objective
values in the population. The solutions are then ordered with respect to these weighted
sums and the subset with the smallest values (assuming minimization) is selected. Here,
we consider an uninformed version of this approach where all objectives are equally
weighted.

9.3.2 Joint Model Learning and Sampling

We use the algorithm described in Section 6.3 to learn a GBN from the joint dataset of
variable-objective values. In comparison to the case when only variable values are used
for model estimation, the dimensionality of this dataset has increased while the number
of samples is the same. As it was discussed in Chapter 4, this can affect the estimation
of MGD parameters needed to compute the parameters of the conditional probabilities
in GBN nodes. Therefore, regularization techniques are especially useful for the joint
modeling scenario.

In the joint modeling used in JGBN-EDA, all of the values in the given joint dataset
are standardized to have a zero mean and a variance of one, simplifying the GBN learning
process and reducing the number of parameters encoded in each node [Schmidt et al.,
2007]. The standardized joint dataset is then used for estimating the parameters of
an MGD. Specifically, we use the shrinkage estimation method [Schäfer and Strimmer,
2005b], with a diagonal target matrix and no shrinkage on the diagonal entries, to obtain
a regularized estimation of MGD’s covariance matrix. Based on these estimations, the
parameters of conditional probabilities in GBN nodes are computed.

The estimated GBN can be sampled like other BNs with PLS algorithm. However,
since the model also consists of objective nodes, we consider two different strategies for
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sampling. In the first approach, a set of expected or desired objective values are inserted
into the model as evidence, when generating new values for the variables. This kind
of information can be provided, for example, by a DM or a domain expert. Another
possibility, when such information is not available, is to use the objective values of the
selected solutions, favoring new solutions with objective values close to those of the
selected solutions.

In the second approach, objective nodes are treated the same as variable nodes and
new values are generated for both variables and objectives when sampling the estimated
model. In this way, the PLS algorithm can take into account the approximated values for
objectives, leading to a sampling which is more consistent with the probabilities encoded
in the estimated model. Our experimental results have shown better exploration of the
search space with this method, and therefore we use the second approach in JGBN-EDA.
It should be noted that it is also possible to use a hybrid approach based on a combination
of these two methods.

As it is common for the search in continuous spaces with EAs, some of the generated
values may not be in the acceptable domain of their corresponding variables. To repair the
invalid variable values (values not in the variable domain) of the new offspring solutions,
they are reset to a random value in the acceptable domain of the variable. More precisely,
to increase the possibility of appropriate value reseting, the invalid value is replaced with
a random value generated between the variable’s conditional mean (estimated with GBN)
and the violated (upper or lower) domain-bound.

Since the number of objectives in MOPs are often of the same order as the number of
variables (i.e. n ' m), according to the time complexity analysis provided in Section 5.3.2,
the computational time requirement for estimating a GBN of the joint variable-objective
vector is bounded by O(kN(2n)2+k(2n)4), which adds to the coefficient of the complexity
rather than its degree. In fact, in many MOPs the number of objectives is far smaller
than the number of variables, and thus the additional overhead for integrating objectives
does not considerably increase the computational time of model estimation or sampling.

9.4 Experiments

In this section the proposed algorithm is tested on a set of well-known benchmark MOPs
to study its behavior and compare its performance with other EMO algorithms. Espe-
cially, to test the influence of learning a joint model in our proposed algorithm when
including objectives, we compare it with a version that does not perform joint modeling
and only considers variable values for learning the probabilistic model. In fact, this ver-
sion of the algorithm is very similar to other BN-based EDAs found in the literature (e.g.
EGNA [Larrañaga et al., 2000a]). We refer to this version as GBN-EDA to differentiate
it from the algorithm based on joint modeling.

The proposed algorithm is also compared with NSGA-II [Deb et al., 2002a] which is
considered as a standard reference in many of the studies on EMO algorithms [Zitzler
et al., 2003; Coello Coello et al., 2007], and RM-MEDA [Zhang et al., 2008], a multi-
objective EDA shown to outperform several EMO algorithms on different benchmark
MOPs. NSGA-II is a multi-objective GA which uses simulated binary crossover [Deb and
Agrawal, 1995] and polynomial mutation [Deb and Goyal, 1996] as its genetic operators
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for search in continuous spaces, and non-dominated sorting algorithm for solution ranking
and selection. RM-MEDA assumes a certain type of smoothness for Pareto optimal set
and in each generation learns an m−1-dimensional piece-wise continuous manifold which
is then used to generate new samples. The solutions are ranked using the non-dominated
sorting algorithm.

All of the algorithms are implemented in Matlab R©. In each generation, all of the
algorithms select a subset of solution which are used for reproducing new offspring so-
lutions, either using genetic operators or with estimating and sampling a probabilistic
model. However, in contrast to the other algorithms which employ an elitist technique
to decide which solutions in the population should be replaced by the newly generated
offspring solutions, RM-MEDA just replaces the whole population with the offspring so-
lutions. JGBN-EDA and GBN-EDA were tested with both non-dominated sorting and
weighted sum approaches for solution ranking and selection. Since the results obtained
with the weighted sum approach were superior to those obtained with the non-dominated
sorting, which is also reported by others [Corne and Knowles, 2007; Garza-Fabre et al.,
2009], therefore, unless otherwise stated, the results presented here are those obtained
with weighted sum approach. Nevertheless, in the replacement step, the non-dominated
sorting algorithm is used for elitist selection.

9.4.1 WFG Test Problems

Huband et al. [2006] reviewed many of the benchmark MOPs proposed in the literature
like ZDT [Zitzler et al., 2000], DTLZ [Deb et al., 2002b] and OKA [Okabe et al., 2004a],
and based on the analysis of these problems, they proposed a new set of MOPs called the
walking fish group (WFG) problems. These MOPs have a diverse set of properties found
in real-world problems and, therefore, can be a great challenge for any multi-objective
optimization algorithm. Each objective function fj of an MOP in this benchmark is
defined as

min
z

fj(z) = D · zm + Sj · hj(z1, . . . , zm−1), (9.2)

where D and Sj are scaling factors and hj(·) is a shape function, meaning that it will
determine the shape of the Pareto optimal front of an MOP (e.g. concave, convex,
etc.) together with the shape functions in the definition of other objective functions
of that MOP. z = (z1, . . . , zm) is an m-dimensional vector of parameters obtained by
applying a number of transformation functions, like shifting, biasing or reduction, to the
n-dimensional input solution x ∈ D.

The vector of parameters is composed of two parts: the first m − 1 parameters,
z1, . . . , zm−1, are obtained from the first k variables of the input solution, called position
variables (they specify the location of the input solution mapping in the objective space).
The last parameter (zm) is obtained from the last l variables of the input solution, called
the distance variables (they determine the proximity of the input solution mapping in the
objective space to the Pareto optimal front). In all WFG problems we have n = k + l,
and to simplify the application of transformation functions on the input solution, k is
assumed to be a multiple of m− 1 and l should be an even number.

In all of the 9 MOPs of this benchmark, the number of both objectives and variables
can be scaled, with dissimilar domains for the variables and different Pareto optimal
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Table 9.1: Experimental settings for the WFG problems

No. Objectives 5 10 20

No. Variables 28 50 50

Population Size 600 1000 1500

Max. No. Evaluations 1.5× 105 3× 105 7.5× 105

No. Runs 25 25 10

trade-off magnitudes for the objectives. Except the first three MOPs, the rest of WFG
problems have a concave Pareto optimal front. WFG1 has a mixed convex-concave front,
WFG2 has a disconnected convex front, and WFG3 has a degenerated one-dimensional
linear front. For most of these MOPs, the optimal solution of objectives is shifted away
from zero to neutralize any bias of the optimization algorithms towards smaller values
of the variables. Moreover, in many of the WFG problems, the objective functions are
inseparable, requiring the optimization algorithm to consider the relationships between
variables. Other properties like multi-modality and deception are also present in the
objective functions of these MOPs.

9.4.2 Experimental Design

The quality of the Pareto fronts approximated by each algorithm is evaluated with the
inverted generational distance (IGD) [Coello Coello and Cortés, 2005] indicator. This in-
dicator accounts for both the diversity of the approximated front as well as its convergence
to the Pareto optimal front. Given a set of points F ∗, representing a well-distributed sam-
pling of the Pareto optimal front of an MOP, the IGD value for an approximated Pareto
front F is computed as:

IGDF ∗(F ) =

∑
s∈F ∗

min
∀s′∈F

d(s, s′)

|F ∗|
(9.3)

where d(·, ·) gives the Euclidean distance between two points. A smaller value for this
indicator means a better approximation. The statistical significance in the differences
between the results is checked with the Kruskal-Wallis test [Kruskal and Wallis, 1952].
Kruskal-Wallis test performs a non-parametric one-way analysis of variance (ANOVA)
to accept or reject the null hypothesis that independent samples of two or more groups
come from distributions with equal medians, and returns the p-value for that test. The
test significance level is set to 0.05 in our comparisons.

We have tested three different numbers of objectives with respectively different number
of variables for the WFG problems to keep the computational costs of the experiments
in an affordable level. The details of the experimental setup, which are equally set
for all of the tested EMO algorithms, are given in Table 9.1. To have an idea of the
Pareto fronts approximated by these algorithms, in Figure 9.3 we have shown the final
Pareto fronts obtained by the algorithms for some of the tested MOPs (WFG2, WFG4,
WFG6 and WFG7) with 3 objectives, 20 variables and a population size of 200. The
represented fronts for each algorithm are selected between 25 independent runs using the
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Figure 9.3: Typical Pareto fronts obtained by different algorithms for WFG problems
with 3 objectives.

coverage indicator. This indicator computes the percentage of solutions in a Pareto set
B dominated by the solutions in another Pareto set A

A coverage of B =

∣∣{x ∈ B | ∃y ∈ A,y ≺ x}∣∣
|B|

.

9.4.3 Results

Figure 9.4 shows the results obtained by each of the algorithms for WFG problems with 5
objectives. As it can be seen in the figure, the incorporation of objectives in the modeling
of JGBN-EDA enables this algorithm to obtain a (significantly) better performance on
most of the problems, according to the IGD indicator. A direct comparison of GBN-EDA
and JGBN-EDA shows the effectiveness of joint modeling where except for WFG5 and
WFG9 problems, the latter algorithm can obtain significantly better results on the tested
MOPs (p = 0.05).

WFG5 is composed of separable and deceptive functions while WFG9 consists of a
non-separable, biased, multi-modal and deceptive functions. According to the presented
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Figure 9.4: Comparison of the performance of different algorithms on WFG problems
with 5 objectives.

results, for deceptive functions the information provided by objectives does not have a
great impact on the joint probabilistic model estimated in JGBN-EDA for generating
better solutions. Also, the algorithm is not able to properly utilize the separability of
variables in WFG5 to obtain better fronts. However, the results obtained for WFG9 shows
that non-separability and multi-modality in the functions of this problem are completely
addressed with the probabilistic modeling used in JGBN-EDA and GBN-EDA, making
them better performers in comparison to the other two competitor algorithms for this
problem.

As the number of objectives grows to 10 and 20 (Figures 9.5 and 9.6), the performance
of the proposed algorithm, measured by IGD indicator, deteriorates in comparison to
other algorithms. The other two competitor algorithms also show a diverse behavior
on different number of objectives. While the fronts approximated by NSGA-II on 10-
objective MOPs are not comparable to those of other algorithms, this algorithm is able
to find significantly better results for most of the problems with 20 objectives. RM-MEDA
is showing an apposite behavior, obtaining better results on the 10-objective case. For
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Figure 9.5: Comparison of the performance of different algorithms on WFG problems
with 10 objectives.

these high number of objectives the performance of the proposed JGBN-EDA seems to
be less varying when compared with other algorithm on both 10- and 20-objective WFG
problems.

The recombination operators employed in NSGA-II allow obtaining better approxi-
mations for the mixed concave-convex front of WFG1 with some flat regions in the Pareto
set. The inclusion of objective values in the modeling of JGBN-EDA has a major influ-
ence in improving the performance on this MOP when compared to GBN-EDA. On the
other hand, the disconnected front of WFG2 causes a diverse performance of NSGA-II,
while the EDAs are almost performing similar when the number of objectives is 10 and
20. The significantly better performance of JGBN-EDA on WFG9 is also repeated for 10
and 20 objectives.

It seems that when the number of objectives increase to a high number (e.g. 20),
the probabilistic modeling in EDAs is overfitted for small populations and can not help
these algorithms to make progress in the search space. In fact for such a large number of
objectives small population sizes may not be sufficient to represent a good approximation
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Figure 9.6: Comparison of the performance of different algorithms on WFG problems
with 20 objectives.

of the Pareto front. This issue should also be considered for representing the Pareto
optimal front with a sample set which is used for computing the IGD quality indicator.
Although in this study we have used sample sets with several hundred thousands of
points for this purpose, some regions of the Pareto optimal front may still not be covered
properly.

9.5 Conclusions

A joint modeling of objectives and variables was proposed to be used for multi-objective
optimization in this chapter. The proposed EDA, called JGBN-EDA, learns a GBN to
encode the relationships between variables and objectives, from a joint variable-objective
dataset formed by appending the objective values to the variables values of the solutions.
The estimated probabilistic model encodes both variable and objective nodes and thus in
the sampling process new values for variables can be generated using the objective values
when such dependencies are encountered in the model.
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The performance of the algorithm was tested on a number of test MOPs having
different properties found in real-world problems. The results of comparing two versions
of the algorithm, one utilizing the objectives information and the other not, showed
that the incorporation of objectives in the modeling can help the algorithm to obtain
better Pareto fronts on some of the problems. The algorithm was also compared with
two other algorithms, NSGA-II as a standard EMO algorithm and RM-MEDA which
is a competitive multi-objective EDA, and the obtained results indicated the promising
performance of the proposed approach to probabilistic modeling in EDAs.

The algorithm was not able to detect the correct search bias for some MOPs with
deceptive objective functions using the proposed joint modeling. Moreover, for some
of the problems the algorithm was not able to obtain competitive fronts when there
are a high number of objectives in the MOP. The effect of proper population sizing on
the performance of the algorithm specially for many objectives problems should also be
studied in more detail. The information provided by dependencies between the objectives
can be further investigated to help revealing their relationships in problems with many
objectives. Nevertheless, the proposed algorithm can be seen as an alternative for using
probabilistic modeling in multi-objective optimization.
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Chapter 10

Multi-Dimensional Bayesian
Network Modeling for Evolutionary
Multi-Objective Optimization

10.1 Introduction

In the previous chapter, we studied joint probabilistic modeling of variables and objectives
for multi-objective optimization. This type of modeling offered a new way for analyzing
the relationships between variables and objectives, and was shown to be advantageous
for solution search compared with learning a model of only variables. In this chapter, we
extend this study using a specific probabilistic modeling employed in the area of multi-
dimensional classification. In this type of problems, each instance or data point is assigned
a vector of class-values, and the goal of model learning is to predict the class-value vectors
of new instances. On the other hand, in multi-objective EDAs, each solution is assigned
a vector of objective values, and the goal of model learning is to generate new solutions
with better objective values from the probabilistic model. Clearly, there are similarities
between the two problems which motivates the use of similar probabilistic modeling in
both.

We adapt multi-dimensional BN classifiers [de Waal and van der Gaag, 2007; Bielza
et al., 2011b] for joint modeling of variables and objectives. Using this type of proba-
bilistic model in joint modeling, three distinct types of relationships can be captured:
(i) the interactions between variables, as in other EDAs, (ii) the relationships between
variables and objectives, and (iii) the relationships between objectives. The clear dis-
tinction between these three types of relationships, of which the last two are captured
because of joint modeling, allows a better analysis and interpretation of the estimated
model structures, and since it is closer to the semantics of MOPs, it provides the DM
with an approximation of the MOP structure, i.e. the relationships among variables and
objectives of the MOP. Moreover, as it will be shown later, with this type of probabilis-
tic model, EDA is able to find better Pareto fronts for many of the tested MOPs. The
proposed method and related discussions are also appeared in [Karshenas et al., 2012b].

As reviewed in Chapter 2, BN classifiers have been previously used as probabilistic
models in EDAs for single-objective optimization in EBCOA [Miquélez et al., 2004, 2006].
However, there are several key differences between EBCOA and the algorithm presented
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Figure 10.1: An example of a multi-dimensional Bayesian network structure.

here. First, the presence of multiple objectives in an MOP increases the information
about the quality of solutions (possibly contradictory) that should be addressed during
modeling. Second, in continuous domains, instead of classifying the solutions into disjoint
classes which may blur the differences in the quality of the solutions, we directly use the
continuous objective values in joint model learning. Third, in contrast to a fixed depen-
dency between the objectives and variables, the algorithm presented here dynamically
learns the relationships between the objectives and variables. In this way, the model can
select a subset of variables that has more influence on each objective.

10.2 Multi-Dimensional Bayesian Network Classifiers

When the classification problem involves more than one class variable, each instance of
the dataset is assigned a vector of class-values c = (c1, . . . , cm). Then, to determine
the class-value vector of an unlabeled instance given its feature values x = (x1, . . . , xn),
a multi-dimensional BN (MBN) can be estimated from a training dataset and used to
compute the class-value vector with the highest posterior probability for this instance:

c∗ = arg max
c

P (c | x). (10.1)

Figure 10.1 shows an example of an MBN structure. In this type of model, the nodes
are organized in two separate layers: the top layer comprises class variables and the
bottom layer contains feature variables. The set of arcs in the structure is partitioned
into three subsets, resulting in the following subgraphs:

• the class subgraph, containing the class nodes and the interactions between them,

• the feature subgraph, comprising the feature variables and their relations, and

• the bridge subgraph, depicting the top-down relationships between class and feature
nodes.

Depending on the order of relationships and the structure learnt in the class and bridge
subgraphs, different types of MBN classifiers can be considered: without any edges like
NB, directed trees like TAN, polytrees or even completely unrestricted.

This probabilistic model can answer several types of queries: the vector of class-values
of a given data point, the most probable feature values for a given vector of class-values,
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and the most probable values for a subset of features or classes given the value of the
others. Considering the similarity between multi-dimensional classification and multi-
objective optimization, the respective questions will be: what are the estimated objective
values of a given solution, what is the most probable values for the variables of the
solution which results in a specific value-setting for the objectives, and, having found the
proper values of some objectives or variables, what will be the most probable values of
the others.

10.3 MBN-EDA: An EDA Based on MBN Estima-

tion

In this section we propose a multi-objective EDA which uses MBNs for joint modeling of
variables and objectives, called MBN-EDA. The variables are modeled as feature nodes
and objectives as continuous-valued class nodes (regression response nodes). The feature
subgraph of MBN encodes the relationships between variables like the models learnt by
other BN-based EDAs [Schwarz and Očenášek, 2001; Khan et al., 2002; Laumanns and
Očenášek, 2002; Katsumata and Terano, 2003; Pelikan et al., 2005; Ahn and Ramakrishna,
2007]. However, the bridge and class subgraphs, encode new types of relationships as
the result of joint modeling of variables and objectives. The bridge subgraph shows
the interactions between each objective and the variables (selects a subset of relevant
variables for each objective), and the class subgraph represents the relationships directly
between objectives. The joint probability distribution encoded in the probabilistic model
of MBN-EDA can be represented as

ρ (x1, . . . , xn, q1, . . . , qm) =
n∏
i=1

ρ(xi|pai) ·
m∏
j=1

ρ(qj|pa′j), (10.2)

where Pai ⊆
{
{X \Xi} ∪Q

}
and Pa′j ⊆ {Q \Qj} are the parents of each variable and

objective, respectively, according to the MBN structure, and pai and pa′j represent one
of their possible value-settings. q = (q1, . . . , qm) denotes a possible value-setting for the
objective variables Q = (Q1, . . . , Qm) corresponding to solution x = (x1, . . . , xn).

The general framework of MBN-EDA is the same as the one shown for joint model
learning in Figure 9.2 of the previous section. However, the solution ranking methods
and the probabilistic model used in this algorithm are different and are discussed in the
following sections.

10.3.1 Solution Ranking and Selection

In contrast to single objective optimization, where the objective values can be used di-
rectly to rank solutions, the existence of multiple objectives in MOPs necessitates the
application of an intermediate function of the form g : F ⊆ Rm 7→ F′ ⊆ R, so that its
output can be used to rank the solutions. In the previous chapter, the commonly used
non-dominated sorting algorithm was employed to sort the solutions for selection. How-
ever, it has been shown that the effectiveness of this ranking method decreases as the
dimensions of the objective space increase [Hughes, 2005; Ishibuchi et al., 2008; Aguirre
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and Tanaka, 2010]. Finding efficient ranking methods for many-objective optimization
is the topic of ongoing research, and several methods have been proposed so far in the
literature. In this study, we adopt some of the methods proposed for this purpose, which
were shown to result in good performance for evolutionary many-objective optimization
[Corne and Knowles, 2007; Garza-Fabre et al., 2009, 2010a,b].

Let x and y, where x,y ∈ D, be two solutions of a population of solutions D to a
given MOP. Then, beside the weighted sum approach defined in Section 9.3.1, denoted
as gWS, the following three ranking methods are employed in MBN-EDA:

• Distance to the best objective values f ∗ = (f ∗1 , . . . , f
∗
m) for each solution, using

some distance measure d(·, ·) in the objective space (e.g. Euclidean distance):

gDB(x) = d
(
f ∗, ḟ(x)

)
. (10.3)

When the best objective values are not known beforehand (which is usually the
case), the best objective values achieved so far (considering each objective sepa-
rately) in the current population can be used, i.e. the best value f ∗j for the jth
objective function is

f ∗j = min
x∈D

ḟj(x).

• Global detriment or the total gain lost by each solution against other solutions of
the population:

gGD(x) =
∑

∀y∈D,y 6=x

gain(y,x), (10.4)

where the function gain(·, ·) computes the gain of a solution over another in the
objective space (assuming minimization):

gain(x,y) =
m∑
j=1

max{0, ḟj(y)− ḟj(x)}. (10.5)

• Profit of the gain obtained from each solution against other solutions of the popu-
lation:

gPG(x) = max
y∈D,y 6=x

gain(x,y)− max
y∈D,y 6=x

gain(y,x). (10.6)

When any of the above gXX functions is applied to the solutions in a population D, a
single value is assigned to each of the solutions served for their sorting. Given a sorted
list of solutions, any selection mechanism can be used for selecting a subset. Similar to
the previous chapter, a truncation selection mechanism is used in MBN-EDA.

10.3.2 MBN Learning and Sampling

Here, we explain probabilistic modeling in MBN-EDA for continuous multi-objective
optimization, assuming a Gaussian distribution for the joint vector of variables and ob-
jectives. In continuous domains, MBN is implemented with a GBN. Instead of learning
the structure of each of the MBN subgraphs separately, we use a learning procedure very
similar to the one explained in Section 9.3.2 of the previous chapter. Since the structure
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of the bridge subgraph is constrained to only include top-down interactions between vari-
able and objective nodes, the greedy search is performed in a restricted DAG space, and
the corresponding sub-matrix of the covariance matrix is explicitly set to zero. The BIC
score of an MBN structure based on log-likelihood and computed from a joint dataset of

variable-objective values
{(
x1,f(x1)

)
, . . . ,

(
xN ,f(xN)

)}
is

N∑
k=1

( n∑
i=1

log
(
p(xk<Xi> | xk<Pai>)

)
+

m∑
j=1

log
(
p(fj(xk) | xk<Pa′j>)

))
− 1

2
log (N)

( n∑
i=1

|Pai|+
m∑
j=1

|Pa′j|+ 2(n+m)
)
, (10.7)

where xk<Pai> and xk<Pa′j> are the value-settings for the parents of respectively the
ith variable and jth objective nodes, according to the MBN structure, in the kth joint
variable-objective individual of the dataset. |Pai| ≤ n + m − 1 and |Pa′j| ≤ m − 1
show the number of parents for the ith variable and jth objective, according to the MBN
structure.

As before, the PLS algorithm is used to sample the estimated MBN for generating
new solutions. Due to the restrictions imposed on the bridge subgraph in the learning
process, all objective nodes appear before variable nodes in the topological ordering ob-
tained for an MBN. This decreases the number of inconsistent values generated for the
variables when a set of objective values are inserted as evidence during model sampling
[Koller and Friedman, 2009]. The second approach to joint model sampling, explained
in Section 9.3.2, is employed in MBN-EDA to take into account the approximated char-
acteristics of the objective values (collected from the selected solutions) encoded in the
model.

10.4 Experiments on WFG Test Problems

Following the experimental setup of the previous chapter, in this section we examine the
performance of MBN-EDA and its joint modeling for continuous multi-objective opti-
mization of WFG problems. Figure 10.2 shows the final Pareto fronts approximated by
NSGA-II, RM-MEDA and MBN-EDA for some of the WFG problems (WFG2, WFG3,
WFG4, WFG6, WFG7) with 3 objectives, 20 variables and a population size of 200. These
fronts are selected, according to the coverage indicator, between 25 independent runs of
each algorithm when using non-dominated sorting for solution ranking and selection.

To compare the joint probabilistic modeling of variables and objectives performed
in MBN-EDA with the one done in JGBN-EDA of the previous chapter, we have com-
pared their optimization performance on WFG problems with an increasing number of
objectives. On some of these problems, the quality of the final Pareto fronts obtained
by the two algorithms, evaluated with IGD indicator, are very similar. However, for
some of the WFG problems, there are considerable differences in the results obtained by
these algorithms. For example, Figures 10.3 and 10.4 show the IGD indicator values of
the final Pareto fronts obtained by these two algorithms, when using the non-dominated
sorting method for solution ranking and selection, in 25 independent runs for respectively
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Figure 10.2: The Pareto fronts obtained by different algorithm for WFG problems with
3 objectives.
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Figure 10.3: IGD values of the approximated Pareto fronts for WFG3 problem with
different number of objectives.

WFG3 and WFG6 problems with different number of objectives. The figures also include
NSGA-II and RM-MEDA for comparison. It can be seen that the fronts approximated by
MBN-EDA for WFG3 are significantly better, whereas JGBN-EDA is able to find con-
siderably better fronts for WFG6 with respect to the IGD indicator. This also suggests
that certain types of structure restrictions in joint probabilistic modeling can improve
solution search for problems with specific properties (e.g. degeneration in WFG3).

Implementation Details and Experimental Design

In the following experiments, the performance of NSGA-II, RM-MEDA and MBN-EDA
are compared on WFG problems. The number of objectives considered in the experi-
ments are 3, 5, 7, 10, 15 and 20, whereas the number of variables is set to 16 (with some
exceptions). In this way, we will be able to investigate the performance of the algorithms
against an increasing number of objectives while the size of solution space is unchanged.
The four ranking methods described in Section 10.3.1 are implemented within an indi-
vidual selector engine which is plugged into each of these algorithms. Therefore, since
NSGA-II will not use the non-dominated sorting algorithm for solution ranking anymore
(which is the cause for its name), we will simply call it multi-objective EA (MOEA)
henceforth.
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Figure 10.4: IGD values of the approximated Pareto fronts for WFG6 problem with
different number of objectives.

Each algorithm with each ranking method is separately applied to each WFG problem
with different numbers of objectives. Therefore, there will be 3×4×9×6 possible combi-
nations for the experiments. All of the algorithms stop after reaching a maximum number
of generations, which is set to 300. The population size is equal for all algorithms and
is gradually incremented as the number of objectives increases according to Table 10.1.
In each generation, 50% of the solutions in the population are selected for reproduction
(i.e. τ = 0.5).

The additive epsilon indicator [Zitzler et al., 2003, 2008] is used to measure the quality
of the results obtained by each of the algorithms because of its tractable computational
complexity for many-objective problems. This indicator is based on the notion of epsilon
efficiency [Helbig and Pateva, 1994], and the corresponding relation of epsilon dominance

Table 10.1: The population size used for different number of objectives and variables.

No. Objectives 3 5 7 10 15 20

No. Variables 16 16 16 15 16 21

Population Size 50 100 150 200 250 300
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that is defined as

∀x,y ∈ D, x �ε+ y ⇐⇒ ∀fi ∈ F fi(x) ≤ ε+ fi(y). (10.8)

The additive epsilon indicator between two Pareto set approximations A and B is defined
as the smallest epsilon value that allows all the solutions in B to be ‘ε+’-dominated by
at least one solution in A:

Iε+(A,B) = max
ε∈R+
{A �ε+ B}, (10.9)

where
A �ε+ B ⇐⇒ ∀y ∈ B, ∃x ∈ A | x �ε+ y.

According to this definition, the additive epsilon indicator for a Pareto set approxi-
mation A is obtained using a reference set R

Iε+(A) = Iε+(A,R). (10.10)

This definition implies that smaller values of the epsilon indicator are better. A good
choice for the reference set R is an approximation of the Pareto optimal set. However, the
size of a good approximation of the Pareto optimal set should increase exponentially with
the number of objectives in the MOP to offer a good coverage of the Pareto optimal front.
Therefore, this choice of reference set is impractical for many-objective problems. The
reference set considered here is composed of the endpoint solutions, obtained by setting
one of the objectives to its minimum value and the others to their maximum values, plus
the solution representing an approximate compromise between the values of all objectives
(e.g., the mean value in the objectives range). The size of this reference set grows only
linearly with the number of objectives, and the inclusion of endpoints favors those Pareto
set approximations that result in a more scattered Pareto front.

Results

Figures 10.5–10.7 show the epsilon indicator value obtained for the Pareto sets approx-
imated by each of the algorithms when using different ranking methods, averaged over
20 independent runs. The statistical analysis of the results on each of the MOPs with
different numbers of objectives is shown in Table 10.2. The non-parametric Friedman
test is used to check for the statistical differences of the algorithms performance [Derrac
et al., 2011]. When the null hypothesis that all the algorithms have an equal average rank
is rejected for a specific problem configuration with a p-value less than 0.05, the entry
related to the algorithm with the best Friedman rank is shown in bold. The numbers in
parentheses show the results of pairwise comparisons using Bergmann-Hommel’s post-hoc
test with a significance level of α = 0.05. The first number shows how many algorithms
are significantly worse than the algorithm listed in this column, and the second number
shows how many algorithms are significantly better.

The objectives in WFG1 are unimodal and biased for specific regions of their input.
For this problem, MBN-EDA is able to obtain significantly better Pareto set approxima-
tions than the other two algorithms. The performance of the algorithm is very similar
when using the different ranking methods tested in these experiments (Figure 10.5, left
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Figure 10.5: The average epsilon indicator values for WFG1 (left column), WFG2 (middle
column) and WFG3 (right column) problems.
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Figure 10.6: The average epsilon indicator values for WFG4 (left column), WFG5 (middle
column) and WFG6 (right column) problems.
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Figure 10.7: The average epsilon indicator values for WFG7 (left column), WFG8 (middle
column) and WFG9 (right column) problems.
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column). Even though there are more interdependencies between the variables in WFG2,
MBN-EDA is able to obtain significantly better results for this problem, evidencing the
advantage of its probabilistic model for guiding the solution space search. The difference
in the optimal front of the MOP problems does not significantly affect MBN-EDA’s op-
timization ability as observed for WFG3, which is very similar to WFG2 except for the
shape of the Pareto optimal front. Moreover, approximating the degenerated front in
this problem requires good search process exploitation, which, according to the results
for this problem, MBN-EDA is better able to do than the other two algorithms.

For WFG4 (Figure 10.6, left column), where all of the objectives are multi-modal,
the optimization results obtained by MBN-EDA with different ranking methods are sig-
nificantly better in most of objective space dimensions. For some of the ranking meth-
ods, MOEA and MBN-EDA performances are comparable as the number of objectives
increases, suggesting the usefulness of genetic operators if there are a large number of op-
tima in a problem. When objective function multi-modality is combined with deception,
as in WFG5, MBN-EDA performance significantly deteriorates. In fact this algorithm
has the worst optimization performance compared with the other two algorithms for
this problem, where it obtains significantly worse Pareto set approximations with all the
tested ranking methods, and specially for larger objective space dimensions. A possible
explanation for this behavior is that the relationships between deceptive objectives do
not provide sufficient information to help the algorithm generate good trade-off solutions
in the search space.

The interdependencies between variables in WFG6 are more complex than in the
WFG2 and WFG3 problems. Therefore, we find that the choice of the ranking method
used in solution selection, which provides the training data for model estimation, will
play a major role. In this MOP, the results obtained by MBN-EDA with the gPG and
gGD ranking methods are significantly better than for the other algorithms, whereas the
results are comparable or significantly worse with the other two ranking methods when
the number of objectives is increased. This also shows that the gain function defined in
Equation (10.5) can be a good measure of solutions superiority in this type of MOP.

In WFG7 and WFG8, the optimum value of each variable is biased, based on the values
of other variables. All of the algorithms find it very difficult to deal with this property
of the problem. Again, we see (Figure 10.7, left and middle columns) that the choice of
ranking method has a significant influence on algorithm performance. With some of the
ranking methods (e.g., gPG and gGD), MBN-EDA is able to obtain significantly better
approximations of the Pareto optimal set for these two problems according to the quality
indicator values. The last problem (WFG9) combines many of the properties found in the
previous WFG problems. Specifically, apart from variable optimal values being biased,
many of the objectives are deceptive as in WFG5. As described previously for WFG5,
this prevents MBN-EDA from being able to perform considerably better than the other
two algorithms, despite the additional information it collects from data. Nevertheless, the
performance of MBN-EDA for this problem is comparable to the other two algorithms,
and even, with some ranking methods (gWS and gDB), it is significantly better.

In general, the results suggest that there are several factors affecting the optimization
performance of the tested algorithms on the selected set of MOPs. According to the
employed quality indicator, MBN-EDA is able to obtain better approximations of the
Pareto set than the other two algorithms for many of the tested MOPs featuring different
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properties and on different objective space dimensions. MBN-EDA finds some specific
MOP properties, like deception in the variable values, difficult to deal with.

For some of the tested MOPs, the ranking method plays a crucial role in algorithm
performance and some algorithms tend to be more compatible with specific ranking meth-
ods. For example, MBN-EDA performed better than the other algorithms for most MOPs
when using g<PG> as the ranking method. Since the solution selection mechanism is sim-
ilar in all algorithms (as they use similar ranking methods), a significant difference in
the algorithms performance can be attributed to their solution reproduction mechanism.
Therefore, the better optimization results for MBN-EDA may be related to its model
estimation and sampling, as it concerns both objectives and variables. Moreover, al-
though the choice of probabilistic model in an EDA is important, it should be noted that
the difference between MBN-EDA and RM-MEDA performance is not only due to the
difference in their probabilistic models. We showed (in the previous chapter) influence
of incorporating objectives into the probabilistic model when comparing GBN-EDA and
JGBN-EDA, where the latter obtained significantly better results.

In some of the problem instances (e.g., WFG6 with gPG), with the increase in the ob-
jective space dimension, the algorithms seem to obtain better Pareto set approximations,
resulting in lower quality indicator values. Note, however, that like the algorithms, the
computation of quality indicator values is also affected by the increase in the objective
space dimension. In larger objective spaces, the Pareto set approximations obtained by
the algorithms will become sparser, as they are using small populations. Also since a
small reference set is used to evaluate the algorithms, the differences in the performance
of an algorithm in different objective space dimensions will not be clear. However, since
an equal reference set is used for each specific objective space dimension, the indica-
tor values can be used to compare the performance of different algorithms in the same
dimension.

10.5 Experiments on CEC09 Test Problems

In this section we compare the performance of MBN-EDA on the 13 unconstrained prob-
lems of the CEC09 benchmark [Zhang et al., 2009b] with two other state-of-the-art EMO
algorithms. The first 7 problems of this benchmark are bi-objective, the next three
are three-objective and the last three contain five objectives. Two of the five-objective
problems are modified versions of DTLZ2 and DTLZ3 problems [Deb et al., 2002b], and
the other five-objective problem is the previously studied WFG1. In all of the CEC09
benchmark problems, solutions are considered to be of size n = 30 (Table 10.3).

Implementation Details and Experimental Design

The EMO algorithms used for comparison in this section are the decomposition-based
multi-objective EA (MOEA/D) [Zhang and Li, 2007] and a hypervolume indicator-based
EMO algorithm [Bader and Zitzler, 2011] which we call MOEA-HypE in this paper. In
MOEA/D the MOP at hand is decomposed into several single-objective problems using a
number of weight vectors and a decomposition method. Here, the Tchebycheff method is
used for MOP decomposition in MOEA/D which has been reported to give better results.
The choice of weight vectors which should be given in advance to the algorithm is very
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Table 10.2: The results of statistical difference tests for different WFG problems with
different number of objectives and four different ranking methods. The bold entries show
the algorithm obtaining the best ranking according to the statistical test. The numbers
in the parentheses shows the number of algorithms that are significantly worse and better
than each algorithm, respectively, considering a 0.05 significance level (refer to the text
for more discussion of the statistical test).
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Table 10.3: Characteristics of the unconstrained MOPs used in CEC09 benchmark.

Name No. Objectives No. Variables F ∗ Size

UF1 2 30 1000

UF2 2 30 1000

UF3 2 30 1000

UF4 2 30 1000

UF5 2 30 21

UF6 2 30 1000

UF7 2 30 1000

UF8 3 30 10000

UF9 3 30 10000

UF10 3 30 10000

DTLZ2 5 30 5000

DTLZ3 5 30 5000

WFG1 5 30 5000

important and can influence its performance. For two- and three-objective MOPs, we
have used the weight vector generation method proposed in the original paper by setting
the number of different weight levels to respectively H = 99 and H = 19, resulting in
population sizes of N = 100 and N = 210, respectively. For five-objective MOPs, the
method proposed in [Zhang et al., 2009a] is used to generate a well distributed set of
weight vectors for a population size of N = 300 and a random pool of 15000 weight
vectors. The rest of algorithm parameters are set to their default values according to the
original paper.

MOEA-HypE belongs to the group of indicator-based EMO algorithms [Zitzler and
Künzli, 2004]. These algorithms use the quality indicators values, usually used to evaluate
the final Pareto set approximations, to rank and select solutions in the course of evolution.
One of the quality indicators used for this purpose is the hypervolume indicator. Given
a Pareto set approximation A, its hypervolume indicator value with respect to a set R of
reference points in the objective space, denoted as Ih(A,R), is given as

Ih(A,R) =
⋃
x∈A

H(f(x), R), (10.11)

where H(a, B) indicates the (hyper-)volume between point a and the points of set B
in the objective space. A higher value for this indicator implies a better Pareto set
approximation. Computing the hypervolume indicator is very time consuming and its
computational complexity is exponential in the number of objectives.

To simplify this computation, in MOEA-HypE a set of points are randomly sampled
in the objective space and is used to obtain an estimation of the hypervolume dominated
by each solution. These estimated hypervolume values are then used to rank the solutions
and select a subset as parents with a tournament selection strategy (with a tournament
size of 5) for offspring generation. In the replacement step, population and offspring
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solutions are aggregated and sorted into a number of Pareto sets, using the non-dominated
sorting algorithm. However, instead of computing the crowding distances of solutions
within each Pareto set, the estimated hypervolume values of the solutions are used to
select the elite solutions in each set for forming the population of the next generation. In
this study we use a sample of 10000 points for hypervolume estimation as it is suggested
in the original paper of this algorithm. The rest of algorithm parameters are set to their
default values.

Both of these algorithms use the same genetic operators as the ones used in NSGA-
II (simulated binary crossover and polynomial mutation) for generating new solutions.
However, MOEA-HypE generates N/2 new offspring solutions in each generation, whereas
MOEA/D generates N new offspring solutions by evolving all of the solutions in the pop-
ulation. This means that during optimization, MOEA/D processes twice the number
of solutions that is searched by MOEA-HypE. Therefore, to have a fair comparison be-
tween the algorithms, we impose a similar maximum number of fitness evaluations for
both of the algorithms by setting the population size of MOEA-HypE to twice the size
of population in MOEA/D.

MBN-EDA is tested with three different ranking methods in these experiments. From
the ranking methods introduced in Section 10.3.1, we have selected gDB and gGD. In
order to extend the diversity of solutions when using gDB, a tournament selection strategy
similar to that used by MOEA-HypE is adopted for this ranking method. In addition
to these two ranking methods, MBN-EDA is also tested when using HypE method for
ranking and selecting the solutions, in order to compare joint modeling in MBN-EDA with
genetic operators in the other two EMO algorithms. Other parameters of MBN-EDA,
like population size, are set similar to those in MOEA-HypE.

The quality indicator suggested in CEC09 benchmark for comparing the approximated
fronts is IGD indicator. The size of the sampling set provided for the Pareto optimal front
of each of the MOPs in CEC09 benchmark is shown in Table 10.3. In addition to this
quality indicator, we have also evaluated the approximated Pareto sets with epsilon and
hypervolume indicators. The sampling of the Pareto optimal front is also used as the
reference set when computing the epsilon indicator. For the hypervolume indicator, a
point in the objective space having the worse values for all of the objective functions,
usually referred to as the nadir point, is used as the reference. This point is equally set
for all of the algorithms to 10000 in all of the objective dimensions and for all of the
problems.

Results

Figures 10.8–10.11 show the values of the quality indicators for the final Pareto sets
approximated by each of the algorithms on each of the problems, in 20 independent runs.
The maximum number of generations is equally set for all of the algorithms to 300.

The results show that the algorithms have different behaviors on each of the tested
MOPs. In general it seems that the problems in CEC09 benchmark are better optimized
when using the decomposition method in MOEA/D for guiding the search. With this
method, each of the subproblems will guide the search into a different subspace of the
objective space, depending on the weight vector which is used for decomposition. There-
fore the algorithm is able to search different regions of the objective space even until the
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Figure 10.8: The IGD, epsilon and hypervolume indicators values for UF1–UF4 problems
of the CEC09 benchmark. Each row corresponds to one of the problems with a top-down
order.
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Figure 10.9: The IGD, epsilon and hypervolume indicators values for UF5–UF8 problems
of the CEC09 benchmark. Each row corresponds to one of the problems with a top-down
order.
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Figure 10.10: The IGD, epsilon and hypervolume indicators values for UF9, UF10,
DTLZ2 and DTLZ3 problems of the CEC09 benchmark. Each row corresponds to one of
the problems with a top-down order.
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Figure 10.11: The IGD, epsilon and hypervolume indicators values for WFG1 problem
of the CEC09 benchmark.

final stages of the evolution.

However, for some of the MOPs in this benchmark, like UF1, UF3, UF6 and UF7,
where the optimal Pareto set and its corresponding optimal Pareto front have almost
similar geometry, the other dominance-based algorithms are able to obtain better approx-
imations of the Pareto optimal front. Especially on problems UF1 and UF7, MOEA/D is
outperformed by the HypE method for solution ranking, whether using genetic operators
or joint model estimation for generating new solutions. An explanation for this behavior
is that using decomposition on some of the MOPs causes the algorithm to miss certain
information about the promising areas of the search space, thus reducing the effectiveness
of this method.

It can be observed that the overall performance of MBN-EDA with HypE selection
method is superior to the performance observed with the other two ranking methods,
according to the values of quality indicators. This suggests that the hypervolume indica-
tor estimation provides a better solution ranking than gDB and gGD methods. A closer
look at the quality of the approximated fronts along different generations of the evolution
has also revealed that HypE is less affected by the specific geometry of the search space.
Again, there are some problem instances like UF5, UF6 and UF10 for which gDB pro-
vides a better solution ranking than HypE, resulting in better Pareto set approximations
according to the indicator values.

The comparison between MOEA-HypE and MBN-EDA-HypE indicates that for some
of the tested MOPs like UF1, UF8, DTLZ2 and WFG1, which cover MOPs with different
number of objectives, the Pareto sets approximated by MBN-EDA-HypE are better ac-
cording to the indicator values. Since both of these algorithms are using similar selection
methods, this improvement in the results can be directly attributed to the better solution
search in MBN-EDA with its joint modeling of variables and objectives. Our investiga-
tion of the populations evolved in MOEA-HypE and MBN-EDA-HypE suggests that joint
modeling in MBN-EDA allows the algorithm to rapidly improve its approximated front
in early generations of the search, whereas with the genetic operators in MOEA-HypE
usually the improvement of the approximated front is slower. However, the diversity of
the population in MBN-EDA may not be preserved very well during evolution and the
algorithm can enter a stagnation state. On the other hand, with genetic operators in
MOEA-HypE more diverse populations are generated during search and except for some
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of the MOPs, the algorithm can constantly improve its approximated front.
A point that should be noted here is that when HypE selection method is used, the

algorithms are directly optimizing the hypervolume indicator. Thus, using the same in-
dicator to evaluate their achieved results may not properly reflect their performances,
especially because the hypervolume indicator may overrate certain regions of the ap-
proximated fronts [Zitzler and Thiele, 1999]. For the algorithms with HypE selection
method, the results provided by IGD and epsilon indicators are a better reference of
their performance.

10.6 Problem Structure Estimation

One of the advantages of EDAs is that apart from finding solutions to the optimiza-
tion problem, they estimate a probabilistic model which captures certain regularities of
the problem search space and are common among the solutions. This kind of meta in-
formation is especially useful when the intrinsic properties of the problem at hand are
unknown in advance. Especially, in multi-objective optimization, the estimated model
encodes common properties of the approximated Pareto set which, in decision making,
can be used together or even instead of the non-dominated solutions, e.g. when the size
of the approximated Pareto set is very large.

Recently, several works have studied the use of data mining techniques to obtain
new knowledge from the approximated Pareto sets in EMO algorithms after optimization
[Bandaru and Deb, 2011; Deb et al., 2012]. However, multi-objective EDAs already obtain
this kind of information during optimization, depending on the probabilistic model they
use. Specifically, the type of joint modeling of both variables and objectives used in
MBN-EDA offers a systematic way for estimating the structure of an MOP.

A major concern of our study in this chapter is to analyze the MOP structures esti-
mated by MBN-EDA in the course of evolution. These structures are important not only
because they can improve optimization by providing information about different types
of (in)dependencies existing in the problem, but also because they can give DMs more
control over the selection of the desired information from the Pareto set approximations
[Ulrich et al., 2008], and better insight into how different variables influence the objec-
tives or the way objectives interact [Chan and Chung, 2004]. To examine MBN-EDA’s
ability to retrieve the MOP structure, we have analyzed the structures estimated for
WFG1 problem with five objectives and 16 variables in a number of different case stud-
ies. To include the factor of different training data used for estimating MOP structure in
the analysis, MBN-EDA is tested with two of the ranking methods described in Section
10.3.1 in this study, namely gPG and gDB.

Selection of Relevant Variables

In the first case study, nine irrelevant variables are added to the problem and uniformly
distributed among other variables. These variables do not affect the outcome of objective
functions of the MOP. Figure 10.12 shows the absolute weight of the links encoded in
MBN’s bridge substructure between objectives and variables along the evolution path of
MBN-EDA. The weights are averaged over 20 independent runs. We can see that MBN-
EDA is able to clearly distinguish between relevant and irrelevant variables in the studied
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Figure 10.12: The average weight of the links from objectives to variables in the 5-
objective WFG1 problem which includes irrelevant variables.

MOP. The low weight of the links between objectives and irrelevant variables in the
estimated MBNs is either because the objectives and these variables have been encoded as
conditionally independent given other variables and objectives, or any existing link has a
very small weight, allowing the algorithm to bypass the noise introduced by these variables
to the problem. Although the models are estimated from different initial populations in
the each of the runs, the structural information encoded between objectives and variables
is very similar. It is also shown that the populations selected according to the gPG ranking
method help to better distinguish between relevant and irrelevant variables especially in
the final generations where the algorithm focuses on specific regions of the search space.

Identifying Redundant Objectives

The second case study analyzes the structures estimated for an eight-objective WFG1
problem with three pairs of similar objectives. Figure 10.13 compares the absolute weight
of the arcs between similar objectives with those between dissimilar objective pairs, en-
coded in the class substructure of MBN in different generations of MBN-EDA. The results
are averaged over 20 independent runs. The relatively high weights between similar ob-
jectives show that MBN-EDA is correctly encoding a strong dependency between these
objectives compared with the other relationships in the class subgraph. Note that a closer
inspection of the models estimated in different runs with different initial populations has
revealed that such a dependency between similar objectives is encoded in the models
estimated in all of the runs. We can also see that the information about the similarity of
objectives in the MBN’s class subgraph is better captured from the populations selected
according to the gDB ranking method.

Estimated Structures

Based on the observations from the above two case studies, the third case study di-
rectly inspects the structures estimated by MBN-EDA for the WFG1 problem. In the
5-objective WFG1 problem considered in this section, the number of position variables is
set to k = 4 and the number of distance variables is set to l = 12 (see Section 9.4.1). A
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Figure 10.13: The average weight of the links between objectives in the 8-objective WFG1
problem with three pairs of similar objectives.

simplified definition of the five objective functions in this problem can be given as follows
[Huband et al., 2006]:

f1(x) = a+ 2 · h1

(
g2(x1), g2(x2), g2(x3), g2(x4)

)
f2(x) = a+ 4 · h2

(
g2(x1), g2(x2), g2(x3), g2(x4)

)
f3(x) = a+ 6 · h3

(
g2(x1), g2(x2), g2(x3)

)
(10.12)

f4(x) = a+ 8 · h4

(
g2(x1), g2(x2)

)
f5(x) = a+ 10 · h5

(
g2(x1)

)
,

where a = g1(x5, . . . , x16), and g1(·) and g2(·) represent a composition of transformation
functions on the input variables.

Figure 10.14 shows part of the structures learnt for this problem, consisting of the
significant arcs and their corresponding nodes with an average absolute weight value
greater than a threshold set to w ≥ 0.1 (constituting about 7% of the most significant
arcs). While there are many links capturing the obscure relationships between variables
(not depicted here), it is evident that MBN-EDA attaches more importance to the links
between objectives in the class subgraph, and between the objectives and the first four
variables in the bridge subgraph. Moreover, these dependencies conform to the function
definitions given in Equation (10.12). For example, the link between objective nodes Q2

and Q4, which is captured using both of the tested ranking methods, is supported by
the fact that h2(·) is actually a multiplication of h4(·) and two other factors obtained
from variables X3 and X4. Another example is the relationship between objective node
Q1 and the nodes corresponding to the first four variables, either directly or through the
relationships with other objectives, since all of these variables influence the value of the
first objective function.

An important point to note here is the significance of the information provided by the
dependencies between objectives, and between objectives and variables in multi-objective
optimization from MBN-EDA point of view. There are some studies in the literature
that analyze how the dependencies between variables are represented in probabilistic
models [Santana et al., 2009a]. But, to the best of our knowledge, the importance of
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(a) Distance to best ordering (b) Profit of gain ordering

Figure 10.14: Part of the structure learnt for the 5-objective WFG1 problem showing the
most significant edges and their corresponding nodes.

the interactions involving objectives have not been considered so far in other EDAs used
for multi-objective optimization. Such dependencies allow the proposed MBN-EDA to
approximate how the variables can affect objective values, which is used to generate new
solutions with better objective values.

10.7 Conclusions

The similarity between multi-dimensional classification and multi-objective optimization
motivates the use of MBNs in the context of EDAs to solve MOPs. A new modeling
approach in multi-objective EDAs was proposed that uses MBN estimation to learn a
joint model of objectives and variables while at the same time distinguishes their role
in the model. The estimated joint model encodes three types of relationships between
variables and objectives in three different substructures.

The proposed joint modeling was coupled with different ranking methods introduced
in the literature for many-objective optimization and tested on two sets of benchmark
problems with different number of objectives. The exhaustive experiments comparing
MBN-EDA with several state-of-the-art EMO algorithms show promising performance
when using the proposed joint modeling for guiding the search in the space of candidate
solutions. According to the epsilon quality indicator and compared with a standard EMO
algorithm and a competitive EDA, MBN-EDA was able to obtain significantly better
approximations of the Pareto set for many of the WFG problems, with a significance
level of α = 0.05. We found that the choice of ranking methods has a major influence
on the performance of the algorithms for some of the MOPs, as they determine the
population used for model estimation and offspring generation. The results also show that
the proposed MBN-EDA was unable to satisfactorily deal with some MOP properties,
like deception in the objective values. The results of the second set of experiments on the
CEC09 unconstrained problems show that on some of the MOPs in this benchmark, the
joint modeling in MBN-EDA allows to find considerably better fronts according to three
different quality indicators.
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The proposed joint modeling approach also obtains the MOP structure which can be
used for decision making. An analysis of the structures estimated by MBN-EDA along the
evolution path showed that the proposed algorithm is able to distinguish between relevant
and irrelevant variables, performing a type of variable selection for the objectives encoded
in the model. It can also capture stronger dependencies between similar objectives which
helps to identify redundant objective functions. The analysis of the specific structures
estimated for the 5-objective WFG1 problem shows that MBN-EDA is able to obtain a
very good approximation of this MOP structure. We saw that the information provided by
the relationships between variables and objectives and the inter-objectives dependencies,
the two types of interactions completely overlooked by other EDAs, can be very important
for multi-objective optimization.
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Chapter 11

Interval-Based Ranking in Noisy
Evolutionary Multi-Objective
Optimization

11.1 Introduction

A feature of many real-world problems is the existence of noise, which can appear as
variable or environmental change, or/and as uncertainty in the objective values. When
EMO algorithms based on Pareto dominance relation are used for solving these problems,
the noise in objective values can mislead the algorithm by selecting inferior solutions that
are considered good because of noise, and discarding good solutions that are necessary
for directing the search to promising areas.

One of the ways to deal with noisy objectives is to assume each objective returns
an interval of values for a solution. This interval can be obtained by considering the
range of error or amount of noise in the system, or from a set of values obtained from
multiple reevaluations of a solution in different conditions. Considering an interval of
values instead of a single value allows the EMO algorithm to take into account the extent
of noise in the objectives when selecting solutions for recombination.

In this chapter we present a new solution ranking, called α-degree Pareto dominance,
for EMO algorithms applied to noisy problems when objective functions return intervals.
This new relation for ranking the solutions allows the intervals to overlap each other,
and determines the dominance among solutions based on the extent to which their corre-
sponding intervals are better than other solutions. The method can also be extended to
the case where only some of the objective functions of the MOP at hand are noisy. This
solution ranking method is then integrated into MBN-EDA, proposed in Chapter 10, for
multi-objective optimization of noisy MOPs by adapting the joint variable-objective mod-
eling method of the algorithm. The contents of this chapter are taken from [Karshenas
et al., 2013a].
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11.2 A Survey of Evolutionary Multi-Objective Op-

timization with Noise

The topic of EMO under uncertainty and noise has recently gained a lot of attention, and
many studies and methods are reported in the literature. In general, as explained by Jin
and Branke [2005], three different types of noise handling can be identified in EAs. First,
the population-based search in these algorithms, by itself, implicitly deals with certain
levels of noise in objective values. The average quality of a population or subgroups of
the population, presenting certain subspaces, is less susceptible to noise. Therefore, the
larger the population is, the better the algorithm can overcome the noise in the quality of
solutions for finding the optimal solutions. However, the existence of several objectives
in a multi-objective scenario reduces the effectiveness of EAs in noise handling [Tan and
Goh, 2008]. Second approach is to explicitly reevaluate each solution of the population
several times to obtain a better estimation of its objective values. Although this approach
greatly increases the computational cost of optimization, for some of the problems where
the objective values are obtained as the result of simulations, it is inevitable. A third
approach is to consider the noise in objective values in the selection step of EAs. This is
usually done by modifying the solution ranking method, assuming a level of uncertainty
in the objective values.

As explained before, noise can exist in the values of the input variables, the outputs
of the objective functions or even both. There are some works on EMO algorithms
considering the former type of noise, i.e. noise in the input values, which is sometimes
referred to as robust optimization and its aim is to find solutions with the highest stability
in their objective values. Soares et al. [2009] optimized the worst noisy objective values of
the solutions (in a min-max formulation) using interval analysis. To decrease the amount
of uncertainty in the intervals they propose to recursively divide the intervals into halves,
resulting in a grid which is placed on the objective space and is used to compute the worst
objective values of the solutions. The grid also serves as a niching method, penalizing
the solutions that are very close in the objective space. The noise is introduced in the
input variables using an uncertainty vector which is incorporated in the definition of the
objective functions. Goh et al. [2010] offered a classification of the noisy MOPs depending
on the effect of noise on the Pareto front, Pareto set and landscape of the problem. Based
on this classification, they proposed some guidelines for designing challenging MOPs for
robust optimization, and introduced a Gaussian landscape generator using a number of
basis functions for this purpose.

Most of the algorithms proposed for EMO in noisy environments consider the second
type of noise, i.e. noise in the objective values, since this type of noise is harder to deal
with. In this type of MOPs it is usually assumed that the objective values are distorted
by an additive noise value. Almost all EMO algorithms reviewed in this section consider
a Gaussian noise model for the objective values of the tested MOPs, unless otherwise
mentioned.

One of the earliest and well-known approaches to deal with noisy objectives when
comparing two solutions in multi-objective optimization is to use probabilistic dominance,
considering the probability that one solution dominates another [Teich, 2001; Hughes,
2001]. This approach has been successfully used for optimization in some of the real
world problems like designing the shape of acoustic noise attenuation barriers with several
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receiver points [Greiner et al., 2009]. Since this method is considered as a main reference
in many later works on noisy objectives, we explain here it in more detail.

Definition 11.1. (Dominance Probability) [Teich, 2001; Hughes, 2001] Let
U = f(x) and V = f(y) be two vectors of random variables representing the objective
values returned for two solutions x and y of a noisy MOP in decision space D. Then the
probability that x dominates y is given by:

P (x ≺ y) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

ρU (t)
(
1−ΨV (t)

)
dt, (11.1)

where ρU (·) denotes the joint probability distribution for the output of objective functions
given solution x, and ΨV (·) is the cumulative probability distribution for the output of
objective functions given solution y.

Based on the probability of dominance, ranking strategies like the mean dominance
probability [Teich, 2001] is used to order the solutions with noisy objective values. Hughes
[2001] also tested this approach when the noise is introduced to the input values, showing
the ability of this method for handling noise in both input variables and output ob-
jective functions. Bui et al. [2005a] adopted probabilistic dominance in NSGA-II [Deb
et al., 2002a] and compared it with a version of this algorithm which is based only on
reevaluation of objectives. They also proposed a fitness inheritance method to reduce
the complexity of reevaluating the objectives. In a separate work [Bui et al., 2005b] they
performed a comparative study of the noise handling capability of the original versions
of NSGA-II and SPEA2 [Zitzler et al., 2001] in the presence of different noise levels,
using several performance measures. Fieldsend and Everson [2005] proposed a Bayesian
method for obtaining an estimation of the Gaussian noise variance when computing the
probability of dominance between two solutions. They considered different scenarios like
unknown, constant and variable noise for the objective values.

Many of the EMO algorithms proposed for noise handling try to extend the existing
solution ranking and selection methods by considering noise in the values of the objectives.
Büche et al. [2002] proposed a noise-tolerant EA using the Pareto strengths-based solution
ranking method [Zitzler and Thiele, 1999] assigning a lifetime (number of generations)
to the solutions in the archive depending on their strengths. This lifetime is used to
determine which solutions are to be reevaluated or to be used for updating the archive in
order to limit the influence of noisy objective values and outliers. They claim that elitism
does not necessarily result in faster convergence when noise is present in multi-objective
optimization. The proposed algorithm is applied to find an optimal flow of fuel in the
burner of a gas turbines.

Babbar et al. [2003] modified NSGA-II to include neighbors of the non-dominated
solutions in the first Pareto front. Neighboring solutions are determined using the mean
and variance of the objective values for each solution, estimated from the reevaluation of
the solutions. Solutions that are reevaluated less than a predetermined number of times
during the evolution are considered as outliers and removed from the final Pareto set.
Goh and Tan [2007] proposed three techniques for noise handling in an EMO algorithm
which uses a two-part, discrete-continuous, representation for the solutions. The first
technique consists of incorporating the direction of population movement along evolution
into the generation of new solutions. The second technique is stretching or shrinking
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the search domain of each variable depending on the behavior of the algorithm in the
current phase of evolution. The third technique is to assume objective values are given
as fuzzy numbers and then use two newly proposed dominance relations, called necessity
and necessity-possibility, to update the archive of non-dominated solutions maintained
by the algorithm.

Eskandari and Geiger [2009] considered the expected values of the objective functions
and proposed the stochastic dominance relation for ranking the solutions. In the selection
process, the solutions are divided into two sets depending on whether they are stochas-
tically dominated. The set of stochastically dominated solutions are further ordered by
considering the expected strength of each solution depending on both how many solutions
it dominates and by how many solutions it is dominated. To detect the algorithm conver-
gence in noisy environments they proposed to monitor the rate of hypervolume indicator
growth. Bui et al. [2009] proposed the use of adaptive non-overlapping hyper-spheres
which are locally moved in the search space to reduce the effect of noise. The motivation
is that the average objective values of the solutions in a neighborhood of the search space
provide a better approximation of the direction of movement during evolution. A PSO
inspired algorithm is used to update the center and radius of the hyper-spheres in the
search space. The algorithm also deploys an archive of solutions and its corresponding
hyper-sphere to represent the global behavior of the population.

Syberfeldt et al. [2010] proposed a method to increase the efficiency of solution reevalu-
ations. When comparing two solutions in the non-dominated sorting algorithm [Deb et al.,
2002a], if the confidence in the differences between their objective values are less than a
specific level, then one of them is reevaluated more to increase the level of confidence.
Different Pareto sets are assigned different values of minimum confidence level, and since
during evolution the rank of solutions in the population changes, implicit dynamism is
introduced during evolution as each solution is reevaluated. The proposed method is also
applied to two real-world problem related to optimization in engine manufacturing lines.
Instead of discarding old evaluations of a solution in a noisy problem, Park and Ryu
[2011] proposed an accumulating approach which combines old evaluations with the new
reevaluation of a solution to improve the expected value estimation of objective functions.

Another approach taken by some of the proposed methods is to use DM provided
information for EMO in the presence of noise. Mehnen et al. [2007] used desirability
functions to include both the preferences of DM and to reduce the effect of noise. Instead
of performing the search in the objective space, they optimize the expected value of
the desirability functions computed from noisy objectives. The final Pareto front is
obtained by either applying the inverse desirability functions on the approximated front
or computing the objective values of the final Pareto set. The method is used to find
the working parameters of an industrial cutting tool. Woźniak [2007] proposed to use
a number of reference points provided by DM, each accompanied with a weight vector
showing the importance of the objectives, to select fitter solutions in the search process.
To maintain the population diversity only one of the solutions in each neighborhood,
defined by a predefined neighborhood radius, is selected. The method then is applied for
the design of a motor speed controller.

In addition to the noise in objective values, Kaji et al. [2009] studied the effect of noise
in constraint functions of a constrained MOP, trying to reduce the number of infeasible
solutions selected in the Pareto set. For this purpose they form a history of solutions
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Table 11.1: Summary of the EMO methods for noisy environments.

Method Noise Type Place of Noise

[Teich, 2001] Probabilistic Dominance Uniform Output

[Hughes, 2001] Probabilistic Dominance Gaussian Input, Output

[Büche et al., 2002] Lifetime-Based Archiving Gaussian Output

[Babbar et al., 2003] Objective Space Neighborhood Gaussian Output

[Bui et al., 2005a] Fitness Inheritance in Reevaluations Gaussian Output

[Fieldsend and
Everson, 2005]

Noise Variance Estimation Gaussian Output

[Basseur and Zitzler,
2006]

Indicator Value Estimation Uniform Input, Output

[Goh and Tan, 2007]
Necessity and Necessity-Possibility
Dominance

Gaussian Output

[Mehnen et al., 2007] Desirability Functions Optimization Gaussian Output

[Woźniak, 2007] Weighted Reference Points Gaussian Output

[Boonma and Suzuki,
2009]

Confidence-Based Solution
Comparison

Gaussian,
Uniform,
Poisson

Output

[Bui et al., 2009] Search Space Neighborhood Gaussian Output

[Eskandari and Geiger,
2009]

Stochastic Dominance Gaussian Output

[Kaji et al., 2009]
Value Estimation with Locally
Weighted Ridge Regression

Gaussian
Output,
Constraints

[Soares et al., 2009] Worst-Case Analysis Gaussian Output

[Syberfeldt et al., 2010] Confidence-Based Reevaluations Gaussian Output

[Park and Ryu, 2011] Reevaluation Accumulation Gaussian Output

and estimate the value of objective and constraint functions by a locally weighted ridge
regression of second order. The weights are defined using a Gaussian kernel. A safety
margin is also introduced to the constraint functions and dynamically adjusted depending
on the variance of the estimated constraint values.

Basseur and Zitzler [2006] proposed an indicator-based EMO algorithm for noisy en-
vironments, considering the presence of noise in both the objective functions and the
input variables. They proposed methods to estimate the expected value of the epsilon
indicator for ranking the solutions. A uniform noise is assumed for both inputs and out-
puts. Boonma and Suzuki [2009] considered different types of distributions like Gaussian,
uniform and Poisson for the noise model. Assuming that the quality of each solution is
represented with several reevaluations of its objectives, they used a support vector ma-
chine to determine the confidence level in these objective values. The coverage metric is
used to determine the dominance between two solutions after their values are classified as
statistically reliable. The confidence level for accepting the objective values of the solu-
tions is dynamically adjusted during evolution according to the disorder among objective
values, which is computed with an entropy-based function.

Table 11.1 summarizes the reviewed algorithms.
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11.3 α-Degree Pareto Dominance

Most of the methods reviewed in the previous section for handling the noise when select-
ing a subset of solutions, only consider singular objective values. Although these singular
values maybe obtained as the result of averaging over several reevaluations, they still do
not directly take into account the extent of the noise in the values. We also saw that
some of the proposed methods optimize the expected values of the objectives and consider
the variance of the objective values, implicitly assuming a type of confidence interval for
the objective values. A closely related approach is the possibilistic dominance method
[Goh and Tan, 2007], where objective values are considered to be fuzzy numbers. In this
section we propose a method for directly comparing any kind of intervals, not necessar-
ily confidence intervals, which also takes into account interval widths (representing the
amount of noise). Moreover, the proposed method can deal with MOPs consisting of
both singular and interval objectives.

One way to deal with the noise in an MOP when the objective values are represented
with intervals is to extend the Pareto dominance definition (Definition 8.1). In the fol-
lowing definitions we assume that the set of objectives F is partitioned into two disjoint
subsets of objectives with singular values FS, and noisy objectives with interval values
FI , such that FS ∪ FI = F and FS ∩ FI = ∅.

Definition 11.2. (Extended Pareto Dominance) Let
⌊
fj(x)

⌋
and

⌈
fj(x)

⌉
respec-

tively represent the lower and upper bounds of the interval value returned for solution x ∈
D, by the noisy objective function fj ∈ FI , i.e. Uj lies in the interval

[⌊
fj(x)

⌋
,
⌈
fj(x)

⌉]
.

Then, solution x is said to strictly dominate solution y, denoted as x ≺e y, if and only
if:

1. ∀fj ∈ FS fj(x) ≤ fj(y), and

2. ∀fj ∈ FI
⌈
fj(x)

⌉
≤
⌊
fj(y)

⌋
, and

3.
(
∃fk ∈ FS fk(x) < fk(y) or ∃fk ∈ FI

⌈
fk(x)

⌉
<
⌊
fk(y)

⌋)
.

This definition treats interval values similar to the way it considers singular values
and only allows a solution to dominate other solutions if its corresponding interval values,
returned by noisy objective functions, are strictly better than those of other solutions. In
real-world noisy MOPs, such a requirement is hardly satisfied. A further extension is to
relax this strict requirement and allow the intervals to have some degree of overlapping.

Definition 11.3. (α-Degree Pareto Dominance) Assume the same notations as those
of Definition 11.2. Then, solution x is said to dominate another solution y with a degree
α ∈ (0, 1], denoted as x ≺α y, if and only if:

1. ∀fj ∈ FS fj(x) ≤ fj(y), and

2. ∀fj ∈ FI degj(x,y) ≥ α, and

3.
(
∃fk ∈ FS fk(x) < fk(y) ∨ ∃fk ∈ FI degk(x,y) > α

)
,
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Figure 11.1: Examples of interval values and the resulting degrees of dominance.

where degj(·, ·) gives the degree that a solution dominates another with respect to the noisy
objective function fj ∈ FI

degj(x,y) = min
{

1,max{0,
⌊
fj(y)

⌋
−
⌊
fj(x)

⌋⌈
fj(x)

⌉
−
⌊
fj(x)

⌋}}. (11.2)

Intuitively, degj(x,y) computes the percentage of the interval obtained for solution x
that is not overlapped by the interval obtained for solution y in objective fj ∈ FI . Thus,
only the segment in the interval obtained for solution x that is better than the best point
in the interval obtained for solution y (i.e. its lower bound, when minimizing objectives)
is taken into account. If α = 1, then Definition 11.3 is reduced to Definition 11.2.
Definition 11.3 allows a solution to dominate other solutions when its corresponding
interval values are partially better than those of other solutions.

11.3.1 Discussion

Figure 11.1 shows some examples of possible placements of two intervals and the corre-
sponding values of the degj(·, ·) function. With higher values of α, a solution can only
dominate other solutions if a major part of its corresponding interval values are better
than the best points of the interval values corresponding to other solutions. Thus, higher
values of α place a stricter condition for accepting a solution as non-dominated.

Proposition 11.1. α-degree Pareto dominance defines a partial relation, i.e. with ir-
reflexivity, antisymmetry and transitivy properties, on the space of candidate solutions.
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Proof. Since no x ∈ D exists that satisfies x ≺α x for any α ∈ (0, 1], the relation is
irreflexive. To see the antisymmetry of the relation, assume x ≺α y. If ∃fj ∈ FS such
that fj(x) < fj(y) then y ⊀α x. If ∃fj ∈ FI such that degj(x,y) > α, then by definition
of degj(·, ·) in Equation (11.2) if degj(x,y) > 0 then degj(y,x) = 0 and therefore y ⊀α x
for any α ∈ (0, 1].

For transitivity, assume that x ≺α y and y ≺α z. Then we have ∀fj ∈ FS, fj(x) ≤
fj(y) and fj(y) ≤ fj(z). Therefore, fj(x) ≤ fj(z), ∀fj ∈ FS. Similarly, we have
degj(x, z) ≥ α, ∀fj ∈ FI , because if ∀fj ∈ FI such that

⌊
fj(x)

⌋
<
⌊
fj(y)

⌋
and

⌊
fj(y)

⌋
<⌊

fj(z)
⌋
, then we have

⌊
fj(x)

⌋
<
⌊
fj(z)

⌋
, ∀fj ∈ FI . Now, given either ∃fj ∈ FS such

that fj(x) < fj(y) or ∃fj ∈ FI such that degj(x,y) > α (similarly ∃fj ∈ FS such that
fj(y) < fj(z) or ∃fj ∈ FI such that degj(y, z) > α) we can respectively conclude either
∃fj ∈ FS such that fj(x) < fj(z) or ∃fj ∈ FI such that degj(x, z) > α, which completes
the proof of proposition. �

The partial relation defined by α-degree Pareto dominance allows to readily adopt the
terms of α-degree Pareto optimal solution, α-degree Pareto optimal set, α-degree Pareto
optimal front and α-degree Pareto non-dominated set for noisy MOPs, in the same way
they are defined using the conventional Pareto dominance relation. The α-degree Pareto
dominance relation also has interesting properties when different confidence levels are
considered for the objective values. To see this, lets assume that the values returned by
noisy objective functions for solution x are confidence intervals given in the form of(

Ê
(
fj(x)

)
− εγ

(
fj(x)

)
, Ê
(
fj(x)

)
+ εγ

(
fj(x)

))
,

where Ê
(
fj(x)

)
represents an estimation of the expected value of the jth objective func-

tion for solution x and

εγ
(
fj(x)

)
= z 1−γ

2
σ̂
(
fj(x)

)
is the half-width [Eskandari and Geiger, 2009] of the confidence interval computed ac-
cording to a specific confidence level γ. Here, z(1−γ)/2 denotes the value for which
Φ(Z > z(1−γ)/2) = 1−γ

2
, where Φ(Z) is the cumulative standard Gaussian (or t-student)

distribution. σ̂
(
fj(x)

)
is the estimation for the standard deviation of mean objective

value. With confidence intervals, the definition of degj(x,y) for a noisy objective fj ∈ FI
can be rewritten as

degj(x,y) = min
{

1,max{0,

(
Ê
(
fj(y)

)
− Ê

(
fj(x)

))
−
(
εγ
(
fj(y)

)
− εγ

(
fj(x)

))
2εγ
(
fj(x)

) }
}
.

(11.3)
According to this definition, the degree that a solution dominates another solution

with respect to a noisy objective fj ∈ FI is determined by the differences in both expected
values and half-widths. The following propositions show how the change in the confidence
level γ or dominance degree α affects the α-degree Pareto dominance relation.

Proposition 11.2. Any reduction in the confidence level of the interval values given by
noisy objective functions in FI does not affect x ≺α y, if for every objective function
fj ∈ FI we have Ê

(
fj(x)

)
< Ê

(
fj(y)

)
.
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Proof. We only consider noisy objectives in FI here because the change in confidence level
does not affect singular values. Let x ≺γα y denote that solution x dominates solution y
with a degree α, when the confidence level in the interval value of all noisy objectives in
FI is at least γ.

Assuming x ≺γ1
α y implies that

∀fj ∈ FI ,

(
Ê
(
fj(y)

)
− Ê

(
fj(x)

))
−
(
εγ1

(
fj(y)

)
− εγ1

(
fj(x)

))
2εγ1

(
fj(x)

) ≥ α

⇒
Ê
(
fj(y)

)
− Ê

(
fj(x)

)
2z 1−γ1

2
σ̂
(
fj(x)

) −
σ̂
(
fj(y)

)
− σ̂

(
fj(x)

)
2σ̂
(
fj(x)

) ≥ α.

Changing the confidence level does not influence the second quotient above. The numera-
tor of the first quotient is positive because of the assumption of the proposition and, since
z 1−γ1

2
> z 1−γ2

2
, ∀γ2 < γ1, this quotient will become larger if confidence level decreases to

γ2. Therefore, for all fj ∈ FI(
Ê
(
fj(y)

)
− Ê

(
fj(x)

))
−
(
εγ2

(
fj(y)

)
− εγ2

(
fj(x)

))
2εγ2

(
fj(x)

) >(
Ê
(
fj(y)

)
− Ê

(
fj(x)

))
−
(
εγ1

(
fj(y)

)
− εγ1

(
fj(x)

))
2εγ1

(
fj(x)

) ≥ α,

which means x ≺γ2
α y. �

Now, let PSγα denote the α-degree Pareto optimal set imposed by α-degree Pareto
dominance relation ≺γα, when the confidence level in the interval values returned by the
noisy objectives is at least γ.

Corollary 11.1. If γ2 < γ1, then PSγ2
α ⊂ PSγ1

α .

Proof. Assume that there exists a solution y such that y ∈ PSγ2
α and y /∈ PSγ1

α . This
means that there exists a solution x ∈ PSγ1

α such that x ≺γ1
α y. By Proposition 11.2

we know that this implies x ≺γ2
α y. But the last relation means that y /∈ PSγ2

α which
contradicts the hypothesis. �

Proposition 11.3. The α-degree Pareto dominance relation between solutions is pre-
served when the dominance degree α is decreased.

Proof. It is trivial since if α2 < α1 then degj(x,y) ≥ α1 implies that degj(x,y) > α2, for
any two solutions x, y and every objective function fj ∈ FI . �

Corollary 11.2. If α2 < α1, then PSγα2
⊂ PSγα1

.

Proof. The same as the proof for Corollary 11.1. �
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11.4 Noisy Multi-Objective Optimization with MBN-

EDA

We want to study the behavior of MBN-EDA in multi-objective optimization with the
presence of noise in objective values. In this section, we describe how α-degree Pareto
dominance is used for ranking the solutions, and how noisy objective values can affect
joint probabilistic modeling in MBN-EDA.

11.4.1 α-Degree Non-Dominated Sorting

We use α-degree Pareto dominance relation to develop a version of the well-known non-
dominated sorting algorithm [Deb et al., 2002a] that can be applied for solution ranking
in noisy environments, when the objectives are given as intervals. The main steps of this
ranking method are shown in Algorithm 11.1.

Inputs:
A set of solutions P
A dominance degree α

1 r ← 0
2 while there are more solutions in P do
3 r ← r + 1
4 Sr ← α-degree Pareto non-dominated solutions of P
5 P ← P \ Sr

6 end while
7 for all i ∈ {1, . . . , r} do
8 Di ← Crowding distances of solutions in Si

9 Si ← Reorder the solutions in Si in decreasing value of Di

10 end for
Output: {S1, . . . , Sr}

Algorithm 11.1: The α-Degree Non-Dominated Sorting Algorithm.

The algorithm first orders the solutions into a number of α-degree Pareto non-dominated
sets, by comparing the solutions of the population with the α-degree Pareto dominance
relation. Then, within each α-degree non-dominated set, the solutions are ordered ac-
cording to their crowding distances in the objective space, which reflects how scattered
is each solution in the objective space with respect to the other solutions in the same α-
degree non-dominated set. In practice, when this ranking method is used with techniques
like truncation selection, the crowding distance is computed only for the solutions of the
α-degree non-dominated set which cannot be added completely to the set of selected
solutions.

To compute the crowding distances, the solutions are ordered with respect to each
of the objectives individually, and the crowding distance of the solutions with minimum
and maximum value for each objective is set to a large number, indicating that these
solutions are well scattered with respect to that objective. The crowding distance of
other in-between solutions is computed by summing up the normalized distances of each
solution to its preceding and succeeding solutions in each objective with respect to the
ordering. To order the solutions in each objective dimension, the quick sort algorithm
is adapted to work with interval values, comparing two solutions by checking whether
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degj(·, ·) > 0. The value of degj(·, ·) function is also used as a normalized estimation of
the distances between interval values of the solutions in each objective.

11.4.2 Joint Model Learning

The presence of noise in objective values, represented with intervals, means that in the
joint vector (X1, . . . , Xn, Q1, . . . , Qm), a subset of objective variables QI , where I is the
set of objective function indices in FI , take on interval values. Thus, not all of the values in
the joint variable-objective dataset provided for probabilistic modeling are scalar values.

There are some studies in the area of imprecise probabilities and credal sets for esti-
mating a probability distribution for a vector of random variables, when some of these
variables take non-scalar values (e.g. set of values or intervals). When BNs are used
to encode this kind of probability distributions they are called credal networks [Corani
et al., 2010]. Because of the inherent complexity of this type of models, the methods
proposed for their learning and inference are usually very time consuming.

To be able to iteratively perform the joint modeling of variables and objectives in each
generation of MBN-EDA, we have used a simple approach for learning a probabilistic
model in the presence of noisy objectives with interval values. Before learning the joint
model, all of the interval values are replaced by representative scalar values. For example,
when the values returned by noisy objective functions are considered to be confidence
intervals, a good representative value for each interval is its estimated expected value,
Ê(Qj). Once the dataset is scalarized, the methods described in the previous chapters
for estimating and sampling the joint model can be applied. This scalarization is also
justified when taking into account the fact that in joint modeling, objective values are
only used to obtain an approximation of the influence of objectives on each other and on
the variables.

11.5 Experiments

The optimization performance of MBN-EDA in noisy multi-objective optimization is
tested on a set of noisy MOPs to examine its behavior and ability in handling the noise
in objective values. Five of the previously used WFG problems, namely WFG1, WFG2,
WFG3, WFG7 and WFG9, with three objectives and 10 variables are selected for the
experiments in this section. Noise is introduced to the output of all three objective
functions in each MOP, resulting in a confidence interval for each solution in the search
space. Further details of the noise model and experimental design are explained in the
following sections.

11.5.1 Noise Model

In Section 11.2, we saw that many of the works in the literature simulate the noise in
objective functions of an MOP with an additive zero-mean Gaussian distribution:

fj(xi) +N (0, σ2
n), (11.4)

where fj(xi) is the true value of the jth objective function for solution xi, and σn controls
the level of noise introduced to the objective functions of MOP, which often varies in the
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range [0.01, 1]. Arnold and Beyer [2006] have also studied several other noise models and
their influence on the performance of EAs.

As explained earlier, the noise model in Equation (11.4), which is used in many of the
previous works, results in singular values for the objective functions. To obtain interval
values for noisy objectives, as it is assumed in this paper, we can draw several random
values ξk from the noise model and use these values to compute a confidence interval,
based on a specific confidence level γ, for each objective function fj and each solution xi:

(
fj(xi) + ξ̄ ± z 1−γ

2

s(ξ)√
K

)
, (11.5)

where K is the number of random values drawn from the noise model, and ξ̄ and s(ξ)
are respectively their mean and standard deviation. However, in practice, using such a
method to generate interval values for the noisy objective functions imposes a significant
computational overhead to the solution evaluation phase, especially for larger values of
K. Moreover, this method can reduce the stochasticity of the interval values generated
for the objective functions, as for example with a Gaussian noise model when K increases,
the mean and standard deviation of the sampled random values tend to the corresponding
parameters of the noise model.

To have a somewhat similar randomness in the generated interval values as in the
singular values obtained from Equation (11.4), we draw two random values ξm and ξs
from a Gaussian noise model to compute a confidence interval for each objective function
fj and each solution xi: (

fj(xi) + ξm ± z 1−γ
2
ξs
)
. (11.6)

These two random values can be generated from two different Gaussian distributions.
However, as it is explained in [Eskandari and Geiger, 2009], it is more reasonable that
the level of noise in ξm and ξs increase and decrease correspondingly. In this study we
use similar Gaussian distributions for sampling these two values.

11.5.2 Experimental Design

In the experiments performed in this section, we study and compare two solution rank-
ing methods when the noisy objective values are given as intervals. The first method
is the proposed α-degree non-dominated sorting algorithm (Algorithm 11.1), hereafter
referred to as degree ranking (DR), and tested with three different dominance degrees:
α ∈ {0.1, 0.5, 0.9}. As the second method, we adopt probabilistic ranking (PR) [Hughes,
2001], based on dominance probability (Definition 11.1), which is often used as a ref-
erence solution ranking method in the studies on multi-objective optimization in noisy
environments, and ranks each solution xi as follows:

rankPR(xi) =
N∑
k=1

P (xk ≺ xi) +
1

2

N∑
k=1

P (xk ≡ xi)−
1

2
, (11.7)

where

P (x ≡ y) = 1− P (x ≺ y)− P (x � y)
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represents the probability that neither x nor y dominate each other, and N is the popu-
lation size. The last term in Equation (11.7) is subtracted so that

N∑
k=1

rankPR(xk) =
N(N − 1)

2
.

This ranking method defines a total ordering between the solutions of population, allowing
to sort the solutions based on the ranks assigned by rankPR(·).

To simplify dominance probability computation in multi-objective case, which in-
volves multivariate integration, the objective functions are assumed to be statistically
independent [Teich, 2001; Hughes, 2001], and therefore the dominance probability in
Equation (11.1) is approximated as:

P (x ≺ y) =
m∏
j=1

P (Uj < Vj), (11.8)

where Uj = fj(x) and Vj = fj(y) are the random variables representing the jth objec-
tive values returned for two solutions x and y. Moreover, when noise is modeled as a
Gaussian distribution, Hughes [2001] proposed an approximation of the univariate inte-
gration required in the computation of P (Uj < Vj) to further reduce the computational
complexity of the overall solution ranking:

P (Uj < Vj) =
1

2
− 1

2
erf

(
Uj − Vj

σV
√

2 + 2(σU
σV

)2

)
≈ 1

2
− 1

2
tanh

(
Uj − Vj

0.8σV
√

2 + 2(σU
σV

)2

)
, (11.9)

where σU and σV are the standard deviations of the random variables Uj = fj(x) and Vj =
fj(y), respectively. When objective values are given as confidence intervals, the estimated
expected values and half-widths are used as approximations for Uj and Vj and their
standard deviations in the computation of dominance probability with Equation (11.9).

These ranking methods are used in MBN-EDA to rank and select a subset of solutions
for offspring generation with probabilistic modeling. A deterministic binary tournament
selection with replacement strategy is employed to select 50% of the population solutions.
For better comparison, we have also included a standard EMO algorithm based on NSGA-
II [Deb et al., 2002a] in the experimentation. We refer to this algorithm simply as EA
in contrast to MBN-EDA which will be indicated as EDA in the experimental results.
Both of the algorithms use an elitist replacement strategy, a population of 50 solutions
and stop after 300 generations. The initial population is generated randomly in both
algorithms by uniform sampling from the variables domain.

For each of the five MOPs tested in our experiments, we have studied three different
levels of noise and confidence: σn ∈ {0.01, 0.1, 1} and γ ∈ {0.90, 0.95, 0.99}. Therefore,
all together, there are 5 × 3 × 3 × 2 × 4 = 360 different possible combinations for the
experiments. For each combination, 10 independent runs are performed. To evaluate
the results of experiments, we have used the hypervolume [Zitzler and Thiele, 1999] and
inverted generational distance (IGD) [Coello Coello and Cortés, 2005] quality indicators.
For hypervolume indicator, a value of 100 is used for all objectives in the nadir point.
For IGD computation, a sampling of 10, 000 points is used for representing the Pareto
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EA−PR EA−DR(0.1) EA−DR(0.5) EA−DR(0.9) EDA−PR EDA−DR(0.1) EDA−DR(0.5) EDA−DR(0.9)

Figure 11.2: Average Hypervolume of the Pareto fronts obtained for WFG1 problem with
increasing noise (rows from top to bottom) and confidence levels (columns from left to
right). This indicator should be maximized.

optimal front of the MOPs. In the evaluation process, the Pareto set approximated by
each algorithm is used to obtain a noiseless Pareto front which is then used to compute
these indicators. Therefore the noisy Pareto fronts approximated by the algorithms might
be (and usually are) better than the noiseless Pareto fronts, especially for higher levels
of noise.

11.5.3 Results

Figures 11.2–11.11 show the average hypervolume and IGD indicator values for the Pareto
solutions obtained along the evolution path of different combinations of the two algorith-
mic frameworks and the studied ranking methods, for the tested MOPs. The figures
are organized so that rows from top to bottom and columns from left to right respec-
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Figure 11.3: Average IGD of the Pareto fronts obtained for WFG1 problem with increas-
ing noise (rows from top to bottom) and confidence levels (columns from left to right).
This indicator should be minimized.

tively show increasing levels of noise and confidence in the interval values of the objective
functions.

With the increase in the noise level, the change in the position of intervals with
respect to the original noiseless values of the objective function will be higher, and also
the length of the intervals increases. Besides, increasing the confidence level results in
wider intervals. Therefore, in each of the figures as we move from top to bottom and
from left to right, the value of objective functions are more distorted. Because of this,
we focus the analysis of the results on the common patterns for the average behavior of
the algorithms on different instances (with different levels of noise and confidence) of the
tested problems.

In the objective functions of WFG1 problem, the input variables are greatly biased,
making an even exploration of the search space very difficult, especially in the presence
of noise. According to the employed quality indicators, the solution ranking provided by
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Figure 11.4: Average Hypervolume of the Pareto fronts obtained for WFG2 problem with
increasing noise (rows from top to bottom) and confidence levels (columns from left to
right). This indicator should be maximized.

DR method (with different degrees of dominance) allows to obtain better approximations
of Pareto set on most of the problem instances. As the noise level increases, the quality
of the Pareto sets obtained using each of the two ranking methods become closer. The
increase in the noise level also blurs the differences in the performance of the algorithms
using different degrees of dominance for DR method. Moreover, the increase in the
confidence level has less influence on DR method when using a high dominance degree
like 0.9.

A closer inspection of the Pareto sets obtained for WFG1 problem shows that the
algorithms are not able to obtain a well covering approximation of the Pareto optimal
front. Actually, our analysis of the Pareto fronts approximated by EA shows (the results
are not included here for brevity) that their spread constantly shrinks along the evolution
path for smaller noise levels, as a result of the high bias in the objectives. However,
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Figure 11.5: Average IGD of the Pareto fronts obtained for WFG2 problem with increas-
ing noise (rows from top to bottom) and confidence levels (columns from left to right).
This indicator should be minimized.

the joint modeling adopted in EDA allows a better exploration of this problem’s search
space, at least for lower noise levels, which is also reflected by the values obtained for
hypervolume and IGD indicators.

The results obtained for WFG2 problem (Figures 11.4 and 11.5) also show that the
Pareto sets approximated with DR method are superior to those obtained using proba-
bilistic ranking method. When a higher degree of dominance is used for the DR method,
the performance of the algorithms with respect to the different quality indicators are
more sensitive to the increase in the length of the intervals, i.e. when increasing the level
of noise or confidence. In the last objective of this problem, the variables are considered
to be correlated and therefore, employing model learning to find out this relationships
helps EDA to obtain better Pareto set approximations under different levels of noise and
confidence.
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Figure 11.6: Average Hypervolume of the Pareto fronts obtained for WFG3 problem with
increasing noise (rows from top to bottom) and confidence levels (columns from left to
right). This indicator should be maximized.

Very similar results to those of the previous problem are obtained for WFG3 problem.
The difference in the average performance of the algorithms using PR and DR methods
are clearer on this problem, and it can be seen that the solution ranking provided by
PR method completely misguides the algorithms during evolution for approaching the
Pareto optimal set according to the quality indicators, even with small levels of noise and
confidence. The DR method using smaller dominance degrees results in relatively better
algorithm performance on different levels of noise and confidence with respect to different
quality indicators.

The values of different indicators obtained for the Pareto sets approximated by EA
and EDA are not consistent for this problem. According to hypervolume indicator, EA
obtains relatively better results on WFG3 problem, whereas with respect to IGD indi-
cator the results obtained by EDA outperform those of EA especially with larger noise
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Figure 11.7: Average IGD of the Pareto fronts obtained for WFG3 problem with increas-
ing noise (rows from top to bottom) and confidence levels (columns from left to right).
This indicator should be minimized.

levels. WFG3 problem has a degenerated Pareto optimal front, and therefore a correct
optimization strategy would focus the search more around the lower-dimensional optimal
front during evolution. However, the hypervolume value of such a Pareto front will be
lower than a worse approximation which is more spread in the objective space. The IGD
indicator on the other hand, computes the distance between points on the Pareto optimal
front and the approximated front, thus penalizing the more spread front in this case.

The objective functions of WFG7 problem are separable and unimodal, with bias in
the optimum values for some of the variables. The results obtained with DR method on
this problem outperform those of PR method with a relatively great margin, although
the increase in the noise level reduces the effectiveness of this ranking method, especially
when using it with EDA. Again, the Pareto fronts approximated with lower dominance
degrees for DR method are better. However, it can be seen that when the confidence
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Figure 11.8: Average Hypervolume of the Pareto fronts obtained for WFG7 problem with
increasing noise (rows from top to bottom) and confidence levels (columns from left to
right). This indicator should be maximized.

level increases the performance of the algorithms using a high level of dominance degree
is less affected. In general, the search with EA results in relatively better Pareto front
approximations comparing with the fronts obtained by EDA-based search according to the
quality indicators values. Moreover, with the increase in the level of noise or confidence,
which makes the problem harder, the results obtained by the two algorithmic frameworks
become comparable.

The objective functions of WFG9 problem in contrast to those of the previous problem
are non-separable and multi-modal, with multi-modality being deceptive towards local
optima for some of the objectives. As a result introducing noise to the objectives of
this problem will make it very difficult to solve. The indicator values computed for the
approximated Pareto fronts show that the proposed DR method outperforms solution
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Figure 11.9: Average IGD of the Pareto fronts obtained for WFG7 problem with increas-
ing noise (rows from top to bottom) and confidence levels (columns from left to right).
This indicator should be minimized.

ranking based on dominance probability, though with the increase in the noise level the
difference in the results obtained by the two methods gradually diminishes.

According to the results (Figures 11.10 and 11.11), lower dominance degrees like
α = 0.1 and α = 0.5 allow a better ranking of solutions in DR method. Moreover, on
the contrary to the previous problem, when the confidence level is increased DR method
with higher dominance degree (α = 0.9) is also greatly affected. Comparing the EDA
and EA based search, it is observed that the Pareto fronts approximated by EDA are
comparable or better to those obtained by EA, depending on the quality indicator. This
better performance can be explained by the ability of the proposed EDA to capture
the relationships between variables of the problem, which is necessary for finding the
solutions.
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Figure 11.10: Average Hypervolume of the Pareto fronts obtained for WFG9 problem
with increasing noise (rows from top to bottom) and confidence levels (columns from left
to right). This indicator should be maximized.

11.5.4 Discussion

The values of the quality indicators for the Pareto sets obtained along the evolution path,
show how the population of the different algorithm versions evolve. In general, based on
the change in the values of these indicators during evolution, we can see that the solution
ranking provided by DR method guides the optimization in the correct direction through
the search space of the tested MOPs, with some exceptions like WFG1 and WFG3 with
high level of noise. On the contrary, when PR method is used for ranking the solutions,
the algorithm is misguided in the search space of many of the tested problems (e.g. see
Figures 11.8 and 11.9).

When using DR method, the Pareto fronts approximated with smaller to medium
values of dominance degree α are better on most of the tested problems with different
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Figure 11.11: Average IGD of the Pareto fronts obtained for WFG9 problem with in-
creasing noise (rows from top to bottom) and confidence levels (columns from left to
right). This indicator should be minimized.

levels of noise and confidence. On the one hand, smaller values of α allow higher degrees of
overlapping between intervals, meaning that the solutions can dominate each other easier.
With small values of α, according to Corollary 11.2 the ratio of dominated solutions
increases and therefore more solutions become comparable, resulting in a finer ordering of
the solutions by the employed α-degree non-dominated sorting algorithm. This increase in
the number of comparable solutions seems to compensate for the lack of strict decisions on
the quality of the solutions. On the other hand, strict decisions about solution dominance
allow only very good solutions to enter the α-degree non-dominated set, while causing
many solutions to become incomparable. Based on the experimental results, with a
combination of the previous two effects which is achieved when using medium values of
dominance degree (e.g. α = 0.5), better Pareto set can be approximated on many of the
tested MOPs and for different levels of noise and confidence.

163



Similarly, as the confidence level of the intervals (i.e. the values of the objective
functions) decreases, more and more solutions become dominated (Corollary 11.1), and
thus the solutions will be ordered in a larger number of α-degree non-dominated sets
during the first step of Algorithm 11.1, essentially leading to better solution ranking.
Therefore, when DR method is used in the optimization the Pareto sets approximated
for lower confidence levels are usually better, according to the quality indicator values.
Taking more strict decisions by using high dominance degrees (e.g. α = 0.9) when the
confidence level increases, reduces the number of α-degree non-dominated sets found in
the first step of Algorithm 11.1, and thus the ordering of the solutions will depend more on
their crowding distance computed in the second step of α-degree non-dominated sorting
algorithm. For some of the tested problems (e.g. WFG1 and WFG7), such an ordering
with high α values seems to be less affected as the confidence level increases.

11.6 Conclusions

In real-world multi-objective optimization, the value of objective functions may involve
noise and thus do not correctly represent the quality of solutions. Population-based
EAs, which are one of the most successful methods in solving MOPs, have inherent
abilities to deal with small levels of noise in objective values. However, with larger noise
levels, especially when there are several conflicting objectives to be optimized, specific
considerations are needed to perform successful optimization.

We considered noisy objective values given as intervals and proposed α-degree Pareto
dominance to deal with this type of values for the objective functions. This relation
allowed to determine the dominance between solutions even when there is a specific degree
of overlapping between some of the interval values, which is controlled by parameter α.
The similarity between this dominance relation and the conventional Pareto dominance
allowed related terminology, like Pareto optimal set, to be easily defined. Assuming
confidence intervals with a specific confidence level as the values of the noisy objective
functions, we studied some of the properties of α-degree Pareto dominance. It was shown
that the α-degree dominance relations defined between solutions are unaffected when the
confidence level γ or dominance degree α are reduced, and that such a reduction decreases
the size of Pareto optimal set.

Based on this relation, α-degree Pareto non-dominated sorting algorithm, an adapta-
tion of the well-known non-dominated sorting algorithm in noisy domains with interval
values, was proposed and integrated into MBN-EDA to find the solutions of noisy MOPs.
The algorithm was tested on a set of MOPs where noisy objective values are given as
intervals, and its solution ranking and search space exploration were respectively com-
pared with a reference ranking method based on dominance probability and standard EA
operators for continuous optimization.

The analysis of the approximated Pareto sets with two different quality indicators
based on the corresponding noiseless Pareto fronts showed that the proposed solution
ranking method based on α-degree Pareto dominance relation allows the algorithms to
achieve considerably better results comparing with the well-known probabilistic ranking
method on the tested problems and for increasing levels of noise and confidence. We
discussed how the change in the dominance degree and confidence level changes compa-
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rability of the solutions using α-degree Pareto dominance relation. Moreover, depending
on the specific properties of the MOPs, the quality indicator values showed that the joint
probabilistic modeling of variables and objectives allowed MBN-EDA to find Pareto set
approximations for some of the tested noisy problems that are superior to those approx-
imated by the standard multi-objective EA in different levels of noise.

165



166



Chapter 12

An Interval-Based Multi-Objective
Approach to Feature Subset
Selection Using Joint Probabilistic
Modeling

12.1 Introduction

In its simplest form, a (supervised) classification task in data mining is to use a set of
labeled data points to induce a classifier model, which can then be used to predict the
label of new data points. The input data points are characterized by a number of feature
values and a label, which identifies the class-value of each point. By features, we refer to
the attributes or columns of a dataset and we use class to refer to the column containing
the label or class-value of the data points. The classifier induced from the input data is
used to find the class-value of an unlabeled data point, given its feature values.

A well-known problem related to classification is to find the subset of features that
should be used for determining the class-values [Liu and Motoda, 1998], often referred to
as feature subset selection (FSS). Selecting an appropriate subset of features can reduce
the overall computational complexity and improve the classification accuracy. Therefore,
usually an additional step is carried out before/whilst learning the classifier model from
a training dataset to search for an appropriate subset of features, especially in high-
dimensional problems with a large number of features. Moreover, the space of all possible
feature subsets is huge, making it impossible to use exhaustive search methods to find
the optimal feature subset(s) according to some optimization criteria. Therefore, a very
good candidate for searching this space is to use stochastic heuristics. Especially, EAs
have been used for FSS, as we saw in Section 3.6 for the case of Bayesian classifiers. One
of the approaches to FSS which has gained a lot of attention in the past few years is
multi-objective optimization. An important motivation for this approach is the intrinsic
conflict between problem goals (e.g. maximize accuracy and minimize model complexity)
which cannot be easily aggregated to a single objective.

Usually, the objectives considered for FSS cannot be computed directly from each
subset of features. Instead, the objectives are estimated using a set of data points
with/without a simulation process. Therefore, there is an inherent uncertainty in the
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objective values obtained for feature subsets, which varies depending on the method and
data points used for estimation. The optimization algorithm employed for FSS should
take into account the noise in objective values during search. The noise handling tech-
niques explained in Chapter 11 are especially useful for this purpose.

In this chapter, we adapt MBN-EDA for solving the FSS problem formulated as an
MOP with six objective functions. These functions, whose values describe the perfor-
mance of a classifier, are the area under the ROC curve, sensitivity, specificity, precision,
F1 measure and Brier score. Following the discussion in the previous chapter, we consider
interval values for each of these objectives to deal with the noise in their values. These
intervals are obtained from estimating the objectives in different conditions (e.g. with
different sets of data points). We propose a solution ranking method based on α-degree
Pareto dominance relation to select a subset of solutions in each generation.

Since the feature subsets are encoded as binary strings, the joint probabilistic model
in MBN-EDA should be estimated in a mixed discrete-continuous domain. We propose
a two-step approach for joint modeling of variables and objectives in MBN-EDA. In the
first step, `1-regularization is used to identify the set of more relevant variables to each
objective. In the second step, an MBN is estimated as the joint model of variables
and objectives, starting from the initial structure approximated in the first step. This
method simplifies the estimation of joint model by removing irrelevant variables. More-
over, thanks to the interactions encoded in the joint model, we can study the relationships
between the objectives considered for this problem, something which is less studied so
far in FSS.

12.2 EMO Algorithms in FSS

FSS can be formally expressed as selecting the best subset of features for a learner model,
given the set of all candidate features [Inza et al., 2000]. Therefore, the objective of FSS
is to reduce the number of features used to characterize the dataset while improving the
performance of the learner model on that dataset. According to Blum and Langley [1997],
an FSS method should address the following issues:

1. Initial point: the starting point(s) of the search process. It can be an empty subset
(i.e. no features selected), a full subset or a randomly generated subset.

2. Search strategy: the algorithm used to explore the space of possible feature subsets.
This space is exponential in the number of features (2n–where n is the number of
features), and thus FSS is considered to be a difficult combinatorial problem with
an intractable computational complexity [Davies and Russell, 1994; Liu and Yu,
2005].

3. Feature subset evaluation: measuring the quality of different feature subsets, so that
high quality subsets can be preferred over others. Generally, two major approaches
to feature subset evaluation exist. The wrapper approach uses the performance of
a learner model, trained with the features in a subset, as the evaluation criteria of
that subset. In the filter approach, instead of the learner model performance, data-
driven measures (e.g. correlation, mutual information, etc.) are used to evaluate
the subset of features.
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4. Search stopping criteria: determine how the search method will be terminated.
For example insignificant change in the quality of feature subsets, or reaching a
maximum number of feature subset evaluations.

Apart from the above mentioned filter and wrapper approaches, there is another less
frequently approach called embedded FSS, where feature selection takes place during
the training of the learner model. `1-regularized model learning is an example of these
methods.

A search algorithm for FSS deals with three different spaces. First, the space of all
possible feature subsets which defines the search space. This is the space that the search
algorithm explores. Second, the samples in the dataset represent points in the data space.
For each solution in the search space, a different projection of the data space, obtained
according to the features included in that solution, is used to evaluate the solution (e.g.
by training and testing a learner model). Third, the result of evaluating each solution is
a point in the objective space. Viewed in this way, feature subset evaluation is a function
that maps each solution in the search space through data space to a point in the objective
space.

Both wrapper and filter approaches have been used for evaluating feature subsets
when using EMO algorithms for FSS. To evaluate a solution (i.e. feature subset) within a
wrapper approach, first a learner model is trained using a training dataset and only taking
the features included in that solution. Then this model is tested on a separate validation
or test dataset to assess its performance. To increase the accuracy of the assessment,
usually this process is repeated several times. Techniques like bootstrapping, k-fold
cross-validation or leave-one-out (a special version of the latter) are used for partitioning
the dataset and repeated evaluation of a learner model.

This way of evaluating solutions has a high computational complexity. However, from
the perspective of learner model performance, the solutions found with this approach
are often superior to those found with filter-based methods. Therefore, most of the
EMO algorithms for FSS are based on a wrapper approach, which uses the k-fold cross-
validation of a usually simple learner model with short training time. Some of the methods
have also used distributed evaluation to speed up solution evaluation [Oliveira et al., 2006],
or approximation techniques to prevent retraining the classifier for each single solution
[Emmanouilidis et al., 2001; Oliveira et al., 2002].

Techniques like bootstrapping and k-fold cross-validation can obtain a good estima-
tion of the quality of each solution. However, more accurate estimation of quality can be
obtained by testing the final solutions found by the search algorithm on an independent
dataset which is not used during the search algorithm. Moreover, to have a statistical es-
timation of a search algorithm performance in FSS, that algorithm should be run several
times. Thus, to combine these two requirements for quality and performance assessment,
several bi-partitions of the given dataset are considered. For each bi-partition, two indi-
vidual runs of the search algorithm are performed. In the first run, one of the partitions is
used to evaluate the solutions during the search process (e.g. by a k-fold cross-validation
method) and after the search, the other partition is used to test the final solutions. In
the second run the role of the partitions is exchanged.

In the following two sections we briefly review some of the works in the literature that
use EMO algorithms for FSS. These works are summarized in Table 12.1. The intuitive
method of representing a feature subset, adopted by all of the algorithms reviewed here,
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is to use a binary encoding, i.e. a bit string of length equal to the number of features,
where a zero value means the exclusion of the corresponding feature from the subset and
a value of one means its inclusion. Thus, there is a one to one correspondence between
the features of the dataset and the variables in the solutions to the FSS problem.

12.2.1 FSS in Classification

Emmanouilidis et al. [2000] proposed a commonality-based crossover in the context of
niched Pareto GA (NPGA) [Horn et al., 1994], where common alleles of the parent so-
lutions are directly copied to the offspring solutions, and the other genes are inherited
based on a probability computed from the number of common genes. They used the clas-
sification accuracy of artificial neural networks (ANN) together with the size of feature
subset as the objectives of optimization. They also applied their method to the rotat-
ing machinery fault diagnosis problem with respectively two (approximated root mean
squared error of ANN and feature subset size) [Emmanouilidis et al., 2001] and three
objectives (sensitivity and specificity of a nearest neighbor (NN) classifier and the size of
feature subset) [Emmanouilidis, 2001].

Oliveira et al. [2002] used the first version of non-dominated sorting GA (NSGA)
[Srinivas and Deb, 1994], which is based on fitness sharing, to select a good subset of
features for handwritten digit recognition problem. The classification accuracy of an
ANN classifier and the size of feature subsets were used as optimization objectives. They
also used EMO algorithms to search for the best ensemble of the classifiers found in the
Pareto set after FSS search [Oliveira et al., 2006].

Some other works have used NSGA-II to search for good feature subsets in FSS
problems. Shi et al. [2004] tried to find the best feature subsets for an ensemble of support
vector machines (SVMs) in the protein fold recognition problem. Three objectives were
used for optimization: 1) cross-validation classification accuracy, 2) test classification
accuracy, and 3) feature subset size. Hamdani et al. [2007] studied the performance
of NSGA-II for FSS on several datasets of varying sizes. They used the classification
accuracy of an NN classifier and feature subset size as optimization objectives. Ekbal
et al. [2010] searched for relevant features of the named entity recognition problem in
the field of natural language processing with a wrapper method which uses maximum
entropy-based classifiers. Recall and precision of the classifiers were used as objectives
during the search process, and F-measure was used to select one of the feature subsets
from the final Pareto set. Instead of considering all feature subset sizes together, Huang
et al. [2010] performed separate optimizations for each of the feature subset sizes in the
problem of predicting customer churn in telecommunications. Classification accuracy,
true positive rate and true negative rate of a decision tree (DT) classifier were used as
objectives in each of the optimization runs.

In a different context, Rodŕıguez and Lozano [2008] used NSGA-II to perform a multi-
objective search for the best structure of an MBN, which involves selecting the subset of
features relevant to each class variable. They used the classification accuracy of each of the
classes as the optimization objectives. Radtke et al. [2009] proposed a three phase multi-
objective optimization scheme for: 1) feature extraction, 2) single classifier or ensemble
components selection, and 3) FSS to improve the performance of the selected classifier or
ensemble. They compared the performance of NSGA-II and a multi-objective memetic
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Table 12.1: Summary of the methods for FSS using EMO algorithms.
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algorithm on the handwritten digit recognition problem, with respect to classification
accuracy and feature subset size as objectives.

Zhu et al. [2009] used a hybrid wrapper-filter approach by combining wrapper-based
NSGA-II and filter-based local search in a memetic algorithm. The accuracies of each
of the class-values in a one-versus-all classification scheme, obtained from DT classifiers,
were used as optimization objectives in NSGA-II, whereas the criterion for local search
was based on the feature-class relevance. Spolaôr et al. [2011] proposed several filter-
based bi-objective optimizations using NSGA-II for FSS, each time pairing interclass
distance measure with one of the following criteria: ratio of inconsistent pairs of samples
in the dataset, feature-class correlation, Laplacian score of the samples in the dataset,
and features entropy.

Very recently, Vatolkin et al. [2012] employed a hypervolume indicator-based EMO
algorithm to search for good feature subsets in the high-dimensional problem of musical
instruments recognition in a polyphonic audio mixture. They used the relative feature
subset size and mean squared error of classification as optimization objectives. DTs,
random forests, NBs and SVMs were used as alternative classifiers to compute the second
objective.

12.2.2 FSS in Clustering

In the context of unsupervised learning or clustering, the solution encoding may be ex-
tended to also include the number of clusters. Thus, the algorithm will be simultaneously
searching the space of possible feature subsets and the space of possible numbers of clus-
ter. The learner model in this context is a clustering algorithm which assigns the samples
in the dataset to a number of clusters. The objectives here are usually based on increasing
the closeness of the samples in the same cluster (cluster compactness), while increasing
the separation between different clusters.

Kim et al. [2002] proposed an evolutionary local search algorithm (ELSA) to select
the proper subset of features for clustering. They proposed four objectives when using
the K-means algorithm and three objectives when using the EM algorithm for clustering.
Morita et al. [2003] used NSGA with two objectives for FSS when clustering handwritten
month names with the K-means algorithm. Handl and Knowles [2006] proposed a general
framework for bi-objective FSS in clustering problems which encompasses both filter and
wrapper approaches. Their framework is based on the second version of Pareto envelope-
based selection algorithm (PESA-II) [Corne et al., 2001] and uses the K-means algorithm
for clustering when the objectives are evaluated with the wrapper approach.

Instead of representing the feature subsets with bit strings, Zhang et al. [2006] encode
feature saliencies in real-valued strings and select only those features with a saliency
value above a given threshold. They employed an immunology-based EA to solve a
three-objective optimization problem by using a fuzzy c-means algorithm for clustering.
Zaharie et al. [2007] used NSGA-II, with four different objectives in a filter approach, to
find the best ranking of the features, a problem closely related to FSS.
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Figure 12.1: The overview of the proposed EDA for FSS in classification.

12.3 Multi-Objective FSS with Joint Modeling of Vari-

ables and Objectives

In the following sections we explain the essential steps of the algorithm proposed for FSS.
The algorithm, which is an adaptation of MBN-EDA for FSS, employs a solution ranking
method based on α-degree Pareto dominance for dealing with the noise in the objective
values when selecting a subset of solutions. A special method is proposed for learning a
joint probabilistic model of variables and objectives for this problem. Figure 12.1 shows
the overall outline of the proposed algorithm.

12.3.1 Solution Ranking

In the last chapter, we saw that one of the ways to increase the confidence in the objec-
tive values returned for a noisy MOP is the reevaluation of objective functions on each
solution. However, in some of the MOPs, solution evaluation inherently involves multi-
ple reevaluations. In the case of FSS problem, when the feature subsets are evaluated
using k-fold cross-validation or bootstrapping, a set of values are obtained for each of the
objectives. These values are then averaged to obtain a more accurate estimation of the
quality of each feature subset.

Instead of estimating singular values as the value of each objective using these reeval-
uations, an alternative approach, which has been less studied so far, is to use all of the
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reevaluation values, representing the quality of each solution under different conditions,
and assume that each objective function returns interval values. We saw that in this way
the algorithm can take into account the noise in objective values when selecting a subset
of solutions.

Having interval values for the objectives, the PR method based on probabilistic dom-
inance can be used for ordering the solutions, as was explained in the last chapter. How-
ever, the computational complexity of calculating the probabilities when using this rank-
ing method is one of its major drawbacks. Here, we propose a method for ordering
the solutions based on α-degree Pareto dominance, called degree ranking (DR). In this
method, first the solutions in the population are sorted into a number of α-degree Pareto
sets, and then the rank of each solution xi within the population is computed as

rankDR(xi) = θND · ri +
1

N

N∑
k=1

m∑
j=1

degj(xk,xi) + θB ·
m∑
j=1

I
(⌊
fj(xi)

⌋
, f ∗j
)
, (12.1)

where ri is the rank of the α-degree Pareto set containing solution xi (starting from 1
for the best Pareto set). I(a, b) is an indicator function returning one if a is equal to b
and zero otherwise, and f ∗j is the best value reached so far in the jth objective. Here, we

are assuming a minimization problem and therefore
⌊
fj(xi)

⌋
shows the best point of the

interval value obtained for fj(xi). θND and θB are the scaling coefficients determining
the importance of respectively α-degree Pareto ranks and best-found boundary values in
ranking the solutions.

The ranking method in Equation (12.1) combines the measures of solution conver-
gence and dispersion with α-degree Pareto ranks. This measures are very similar to the
gain-based and distance to best-based ranking methods [Garza-Fabre et al., 2009, 2010a]
that where individually used for multi-objective optimization in Chapter 10. The second
and third terms of Equation (12.1) can be computed while sorting the solutions into
α-degree Pareto non-dominated sets (which has a complexity of order O(N2m)). Thus,
their computation does not impose additional computational overhead like when com-
puting crowding distances in the adapted non-dominated sorting algorithm used in the
previous chapter. Since solution ranking is one of the most time consuming steps in EMO
algorithms, this reduction in computational time is highly favorable.

12.3.2 Joint Model Learning

As it was explained in Section 12.2, FSS is a combinatorial problem with a discrete
search domain where candidate solutions are represented with bit strings. However,
the objectives considered for this problem are usually continuous-valued functions or, as
assumed in Section 12.3.1, functions with interval values. Although, as it was reviewed
in Chapter 1, there are some approaches for learning probabilistic models in domains
with mixed continuous-discrete variables, but their application to the joint modeling of
variables and objectives in our algorithm will be computationally very demanding, and
thus can not scale well due to its complexity. The method we propose here for learning
a joint model of variables and objectives consists of two major steps. Figure 12.1 shows
the outline of this approach.
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Inputs:
Selected solutions DX
Their objective values DF

� First part

1 DÊF ← Estimate expected values of objectives from DF
2 for all fj ∈ F do

3 MR[X, fj ]← Estimate an RRM from
(
DX ,DÊfj

)
4 end for
5 XS ← Combine variables selected in MR[X, fj ],∀fj ∈ F
6 X̄S ←X \XS

7 SI [XS ,F ]← Initialize to empty structure
8 for all fj ∈ F do
9 MR[XS , fj ]← Remove variables in X̄S from MR[X, fj ]

10 SI [XS ,F ]← SI [XS ,F ]+ Structure of MR[XS , fj ]
11 end for

� Second part

12 DDF ← Discretize objective values in DÊF
13 M1[XS ,F ]← Estimate an MBN from

(
DXS

,DDF
)

starting from the structure SI [XS ,F ]
14 for all Xi ∈ X̄S do
15 M2[Xi]← Estimate univariate probability distribution from DXi
16 end for

Output:
(
M1[XS ,F ], {M2[Xi] | Xi ∈ X̄S}

)
Algorithm 12.1: Outline of the joint model estimation method.

Variable Selection with Regularized Regression

In the first part of the joint modeling algorithm, we adopt a method similar to the first
approach of regularized model learning in Section 5.2, based on regularized regression,
for finding the most related subset of variables to each objective. Formally, let the set{(
x1,f(x1)

)
, . . . ,

(
xN ,f(xN)

)}
denote a joint dataset of variable-objective values, with

objective values given as confidence intervals. Then, we learn an `1 regularized regression
model (RRM) (Section 4.2) for each objective fj given the variables:

arg min
βj

( N∑
i=1

(
Ê
(
fj(xi)

)
−
(
βj<0> +

n∑
k=1

βj<k>xi<k>
))2

+ λ
n∑
k=1

|βj<k>|
)
. (12.2)

In this equation, the estimated expected values of each objective are used to estimate
the RRM parameters, which as explained in Section 11.4.2 can be a good representative
of the corresponding interval values. The n + 1-dimensional vector βj is the parameter
estimated for the RRM of the jth objective. AIC [Akaike, 1974] is used as the scoring
metric to select between different parameter vectors for each RRM. Because of the variable
selection property of `1 regularization, each of the estimated RRMs shows the subset of
variables which is more relevant to the corresponding objective. Bearing in mind that in
joint modeling of variables and objective with MBN, the bridge subgraph also encodes
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a kind of variable selection for each objective, the estimated RRMs can be used as an
approximation of the initial structure of this subgraph.

At the end of this part of joint modeling, the subset of variables selected for each of the
objectives in the RRMs are combined to obtain a common subset of most relevant features
to all objectives. In Section 4.3 we saw that strategies like the union or the intersection of
the variable subsets can be used for combining these subsets [Meinshausen and Bühlmann,
2006]. Here, we adopt an intermediate approach by selecting those variables that have
appeared in at least half of the RRMs. As a result, the set of variables are divided into
two groups: those selected in the combined model, XS, and the rest, X̄S = X \XS.

MBN Estimation

In the second part, an MBN is estimated, modeling the objectives and variables in XS.
For this purpose, using an equal frequency discretization method, the objective values
are discretized into three nominal values: good, average and bad. Before starting the
greedy local search for estimating MBN, its structure, or more specifically its bridge
subgraph, is initialized with the structure of the combined model obtained in the first part.
Our experiments have shown that this initialization can highly reduce the search effort
needed to find a good MBN structure with greedy local search, as they are usually good
approximations of the interactions encoded in the bridge subgraph. Since the variables
and objectives are discrete, the parameters encoded in all MBN nodes are conditional
probability tables which are used to evaluate different MBN structures with the BIC
scoring metric, as formulated in Equation (1.8).

The variables in X̄S, which are considered less important to the objectives, can be
ignored in the modeling process, only copying their values when generating new solutions.
However, to allow the possibility of future participation of these variables in joint modeling
(in the next generations), we estimate a univariate marginal probability distribution for
each variable in X̄S (similar to UMDA [Mühlenbein and Paaß, 1996]) to explore the
subspace of these variables with a low-complexity modeling.

At the end, the adaptation of joint probability distribution of variables and objec-
tives, presented in Equation (10.2), which is now encoded in both MBN and individual
univariate probability distributions, is given by

P
(
x1, . . . , xn, q1, . . . , qm

)
=

∏
Xi∈XS

P (xi|pai) ·
∏

Xk∈X̄S

P (xk) ·
m∏
j=1

P (qj|pa′j). (12.3)

All of the notations in this equation have the same meaning as in Equation (10.2). For
example, q = (q1, . . . , qm) denotes a possible discrete value-setting for the objective vari-
ables Q = (Q1, . . . , Qm).

The probability distribution of Equation (12.3) is used in the sampling step of MBN-
EDA to generate new candidate solutions. For the variables included in the MBN (XS),
the second sampling approach described in Section 9.3.2 is used to generate new values
according to the objective values encoded in the joint model. For the rest of the vari-
ables (X̄S), new values are sampled from their estimated univariate marginal probability
distributions.
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12.4 Problem Formulation

This section describes how FSS is formulated as an MOP to be solved by the proposed
adaptation of MBN-EDA. We use a wrapper approach to evaluate feature subsets with
two different Bayesian classifiers, namely the NB and TAN classifiers. It should be noted
that these two classifiers define two different optimization problems on each dataset since
the best feature subset obtained for one type of classifier might not necessarily be the
best feature subset for another type of classifier.

The NB classifier training consists only of finding the prior probability of class-values
and the conditional probabilities of each feature values. Despite its simple structure,
NB classifier is shown to have very good classification performance in many real-world
problems. The TAN classifier training algorithm involves finding the maximum weighted
spanning tree over the features, based on their conditional mutual information given the
class. It is proven that this algorithm learns the maximum log-likelihood TAN classifier
for a given dataset [Friedman et al., 1997].

These two classifiers choose the class-value with the highest posterior probability as
the predicted label of a given value-setting x of features. In a binary classification problem
(i.e. when there are only two different class-values) the predicted class-values for a set
of data points can be compared against their true class-values to assess the accuracy of
the classification. Assuming that the class-values assigned to the data points are either
positive or negative, the number of correct (true) and wrong (false) classifications are
usually organized as follows in a data structure called confusion matrix:

True Label

Positive Negative

P
re

d
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te
d

L
ab

el

P
o
si

ti
ve True False

Positive Positive

(TP) (FP)

N
eg

at
iv

e False True

Negative Negative

(FN) (TN)

In this matrix, TP and TN show the number of correct classifications in each of the classes,
whereas FP and FN show the number of data points which where wrongly classified.

We use six different performance measures, based on the classification accuracy given
in the confusion matrix and the encoded class-value probabilities, to evaluate the clas-
sifiers on a test set. These measures are: sensitivity, specificity, precision, area under
receiver operating characteristics curve (AUC), F1 and Brier score, and are computed as
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follows:

fAUC =
G1 + 1

2
,

fsens =
TP

TP + FN
,

fspec =
TN

TN + FP
,

fprec =
TP

TP + FP
,

fF1 =
2TP

2TP + FN + FP
,

fBrier =
1

N

N∑
i=1

C∑
k=1

(
P (ck | xi)− δ(ck,xi)

)2
, (12.4)

where G1 is the Gini coefficient estimated by approximating the area under the Lorenz
curve [Gastwirth, 1972]. N is the total number of samples, i.e. N = TP+TN+FP+FN .
C is the number of possible class-values: {c1, . . . , cC}, and function δ(ck,xi) returns one
if the true class-value of instance xi is ck and zero otherwise. These measures define
the objective functions of optimization. The first five objectives should be maximized
and have a range of values in [0, 1], whereas the last objective should be minimized and
represents the calibration error in classification.

Following the common practice in FSS literature, we use binary encoding to represent
feature subsets with bit strings of length equal to the number all features. Each feature
subset is evaluated using k-fold cross-validation of a classifier on a given dataset, projected
over the features in the subset. Thus, we will obtain k values for each of the classifier
performance measures (objectives). These values are then used to compute a confidence
interval with a confidence level γ ∈ [0, 1] for each of the performance measures.

12.5 Experiments

We have used three datasets with an increasing number of features to study the perfor-
mance of our proposal for FSS. These datasets, which are all retrieved from UCI online
machine learning repository1, are Wisconsin diagnostic breast cancer (WDBC), ozone
level detection (Ozone) and Hill-Valley, with details presented in Table 12.2. To handle
the missing values in the Ozone dataset, we discard samples with missing class-value, or
if half of the features are missing. Otherwise, the missing values are replaced with the
mean value of that feature.

The Pareto optimal set of a FSS problem is not known beforehand. Therefore,
the three quality indicators of hypervolume, maximum spread [Zitzler et al., 2000] and
Schott’s spacing [Schott, 1995] are used to respectively examine the convergence, diver-
sity and distribution of the final Pareto fronts approximated by the algorithm. These
indicators are computed using the expected values of the objectives. As it was defined

1http://archive.ics.uci.edu/ml/datasets.html
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Table 12.2: Datasets considered for the experiments

Name # samples # features # class-values Missing values

WDBC 569 30 2 No

Ozone 2536 72 2 Yes

Hill-Valley 2424 100 2 No

in Equation (10.11), hypervolume indicator computes the total hyper-volume of the ob-
jective space that is dominated by the solutions in the approximated Pareto front, and
larger values of this indicator show better approximations.

Maximum spread indicator gives an estimation of the Pareto front diversity by taking
into account the minimum and maximum values achieved for each objective. Given a
Pareto set approximation A, this indicator is computed as

MS(A) =

√√√√ m∑
j=1

max
x,y∈A

d
(
fj(x), fj(y)

)
. (12.5)

Larger values of this indicator show a more diverse front and are desired. Schott’s spacing
indicator is a measure of how evenly the approximated Pareto front is distributed. It is
defined as the standard deviation of distances between each solution and its nearest
neighbor in the objective space. Specifically, given a Pareto set approximation A, the
distance contribution of a solution y ∈ A to the value of this indicator is computed as

min
x∈A,x6=y

d
(
f(x),f(y)

)
,

where d(·, ·) can be any distance function like city-block or Euclidean distance. Lower
values of Schott’s spacing indicator are favored.

12.5.1 Experimental Design

To evaluate the performance of the proposed algorithm, 5 random bi-partitions of each
dataset are generated (elsewhere this method is called 5 × 2 cross-validation), resulting
in 10 independent runs. For each run, the number of cross-validation folds is set to
k = 5 and a confidence level of γ = 0.95 is used to compute the intervals for the perfor-
mance measures (objectives). The evaluation of the final Pareto set of each run on the
independent test set is used to compute the final Pareto front approximated in that run.

The initial population of MBN-EDA is generated randomly with a uniform distribu-
tion. The full set of features and the empty subset are also added to the initial population
to provide both of the possible values for all of the variables in the initial population.
The population size is set to N = 2, 000 to provide adequate statistics for the estima-
tions of MBN parameters. Such a population size is also suggested in other works using
BN-based EDAs for FSS [Inza et al., 2000]. When estimating the MBN structure, the
maximum number of parents for each node is set to max{m, dlog3(τN)e}, allowing the
possibility for the variable nodes to have all objectives as their parents, while preventing
very complex structures. In our experiments, the MBN learning algorithm virtually never
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needed to surpass this maximum (in less than 0.15% of model estimations an operation
was canceled because of reaching this maximum), which shows its negligible influence on
MBN estimation. To compensate for the large population size requirement of MBN-EDA,
we set the maximum number of generations to 50.

12.5.2 MBN-EDA with Different Solution Ranking Methods

In the first set of experiments, the feature subsets found by MBN-EDA when using PR and
DR methods for solution ranking are compared and analyzed. PR is computed based on
the simplifying assumption of Equation (11.8) and the approximation of Equation (11.9).
Similar to the previous chapter, three different degrees of dominance are studied for the α-
degree Pareto dominance relation in DR method, i.e. α ∈ {0.1, 0.5, 0.9}. When choosing
the values of the scaling coefficients in Equation (12.1), two points should be taken into
consideration: 1) solutions in lower-ranked Pareto sets should generally receive better
ranks than the solutions in higher-ranked Pareto sets, and 2) solutions with objective
values close to the best-value found for any of the objectives should be preferred to
advocate Pareto fronts with larger diversity. After testing different combinations of values
for these coefficients, they are set to θND = 2 and θB = −2 in the following experiments.

Figures 12.2–12.4 show the values of the quality indicators for the final Pareto sets
obtained with these ranking methods, on the three datasets considered in this study.
For the WDBC dataset (Figure 12.2), the PR method has a slightly better average per-
formance with respect to all three indicators and for both classifiers. Comparing the
results obtained with different α values in the DR method we see that, according to the
hypervolume indicator, with higher α values better Pareto sets are approximated. As it
was explained in the previous section, higher α values place stricter requirements for a
solution to dominate the others, resulting in fewer non-dominated solutions but with a
higher degree of reliability. Thus, in the presence of noise in the objective values, higher
α values allow better convergence of the approximated Pareto fronts.

For Ozone and Hill-Valley datasets which have large search spaces and thus the level
of noise in the objective values can increase, the Pareto fronts approximated with the DR
method are better spread than the ones obtained with the PR method, resulting in higher
hypervolume values especially for the NB classifier. It can be seen in Figure 12.4 that
lower diversity of the fronts obtained for Hill-Valley dataset by the PR method causes small
spacing between the solutions in these fronts. This means that with the PR method the
search is focused on a smaller region of the space. In general, smaller spacing is favorable
in the comparison of two non-dominated fronts if they have similar diversity.

Figure 12.5 shows the time required by each of the ranking methods to order the
solutions for the replacement step of MBN-EDA, on a machine with 2.66 GHz Intel Core-
i5 processor and 6 GB of memory. The times are averaged over the generations of each
run and over the three datasets. It can be seen that DR method based on α-degree Pareto
dominance requires significantly less time (less than half) than the PR method based on
probabilistic dominance, even when using the approximation in Equation (11.9) for its
computation. This time is not directly dependent on the specific dataset or classifier used
for evaluation. Rather, the choice of dataset and classifier influences the objective values
of the solutions, creating different instances of the population to be ranked.

Although NB and TAN classifiers define two different optimization problems for each
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Figure 12.2: Hypervolume, maximum spread and spacing of the final Pareto sets obtained
for NB and TAN classifiers on WDBC dataset using PR and DR ranking methods in
MBN-EDA.

dataset, the quality indicators show that the feature subsets found for NB classifier give
a better overall classification performance. It seems that with TAN classifier the level
of noise in objective values is higher. A closer look at the feature subsets in the final
Pareto sets also show that fewer features are selected for the NB classifier (Figure 12.6).
Moreover, for this classifier usually a similar number of features are selected in the final
Pareto sets found by MBN-EDA with both PR and DR methods (the latter with different
α values). For the TAN classifier, on the other hand, the feature subsets in the final Pareto
set are larger and the results with different ranking methods, especially for the Hill-Valley
dataset, are not similar.

The range of objective values in the aggregation of the final Pareto fronts found in all of
the runs, when using different ranking methods are given in Table 12.3. These aggregated
Pareto fronts are obtained by taking the non-dominated solutions of the union of the
Pareto sets found in 10 different runs. For the WDBC dataset, the range of objective values
are small and very close to their optimal values (considering each objective individually).
The sensitivity and F1 measure of the solutions in the final Pareto sets seem to be slightly
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Figure 12.3: Hypervolume, maximum spread and spacing of the final Pareto sets obtained
for NB and TAN classifiers on Ozone dataset using PR and DR ranking methods in MBN-
EDA.

worse than other performance measures.

As the noise in objective values increases for the Ozone and Hill-Valley datasets, making
these problems more difficult, the range of objective values of the Pareto fronts also
increases and gets farther from the optimal values. First, for the Ozone dataset, the
highly unbalanced number of samples (less than 3% of the samples are positive) affect
the sensitivity, precision and F1 measure functions which are based on the number of
TP classifications. This influence can be specially observed when using TAN classifier
to evaluate solutions, where despite very small sensitivity, they have small Brier scores,
explaining the good results of hypervolume indicator for this combination of dataset and
classifier.

Second, the sensitivity and specificity of the solutions found for the Hill-Valley dataset,
cover a large range of possible values of these objectives, whereas their AUC and Brier
score indicate poor performances. This shows that for larger search spaces, sensitivity and
specificity functions take priority over the other objectives in the optimization process.
Thus, considering several performance measures for evaluating the feature subsets allows

182



350 400 450 500 550 600 650 700 750 800

NB−PR

NB−DR(0.1)

NB−DR(0.5)

NB−DR(0.9)

TAN−PR

TAN−DR(0.1)

TAN−DR(0.5)

TAN−DR(0.9)

Hypervolume
10

−0.4
10

−0.2
10

0
10

0.2

NB−PR

NB−DR(0.1)

NB−DR(0.5)

NB−DR(0.9)

TAN−PR

TAN−DR(0.1)

TAN−DR(0.5)

TAN−DR(0.9)

Max Spread

10
−2

10
−1

NB−PR

NB−DR(0.1)

NB−DR(0.5)

NB−DR(0.9)

TAN−PR

TAN−DR(0.1)

TAN−DR(0.5)

TAN−DR(0.9)

Spacing

Figure 12.4: Hypervolume, maximum spread and spacing of the final Pareto sets obtained
for NB and TAN classifiers on Hill-Valley dataset using PR and DR ranking methods in
MBN-EDA.
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Figure 12.5: Average solution ranking time in each generation of MBN-EDA with PR
and DR ranking methods.
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Table 12.3: The range of objective values of the solutions in the aggregated Pareto set,
obtained from the union of the final Pareto sets of 10 independent MBN-EDA runs, for
the three considered datasets.

WDBC fAUC fsens fspec fprec fF1 fBrier

NB-PR
Min. 0.974 0.897 0.958 0.917 0.912 0.038

Max. 0.998 0.970 0.994 0.990 0.961 0.111

NB-DR(0.1)
Min. 0.978 0.864 0.948 0.920 0.903 0.068

Max. 0.991 0.937 0.989 0.980 0.944 0.097

NB-DR(0.5)
Min. 0.980 0.911 0.968 0.936 0.923 0.054

Max. 0.987 0.955 0.984 0.967 0.954 0.084

NB-DR(0.9)
Min. 0.979 0.920 0.957 0.924 0.925 0.059

Max. 0.991 0.941 0.989 0.982 0.954 0.090

TAN-PR
Min. 0.958 0.838 0.912 0.851 0.856 0.077

Max. 0.994 0.958 0.978 0.957 0.940 0.166

TAN-DR(0.1)
Min. 0.966 0.875 0.918 0.856 0.863 0.085

Max. 0.988 0.944 0.961 0.935 0.936 0.154

TAN-DR(0.5)
Min. 0.969 0.874 0.903 0.848 0.861 0.081

Max. 0.988 0.937 0.972 0.952 0.940 0.179

TAN-DR(0.9)
Min. 0.976 0.880 0.924 0.891 0.896 0.030

Max. 0.996 0.979 0.990 0.981 0.979 0.132

Ozone fAUC fsens fspec fprec fF1 fBrier

NB-PR
Min. 0.763 0.000 0.807 0.000 0.000 0.054

Max. 0.902 0.696 1.000 0.700 0.350 0.341

NB-DR(0.1)
Min. 0.720 0.000 0.818 0.000 0.000 0.048

Max. 0.919 0.783 1.000 0.433 0.360 0.309

NB-DR(0.5)
Min. 0.793 0.000 0.798 0.000 0.000 0.052

Max. 0.916 0.674 1.000 0.527 0.314 0.364

NB-DR(0.9)
Min. 0.777 0.000 0.824 0.000 0.000 0.054

Max. 0.922 0.748 1.000 0.662 0.423 0.309

TAN-PR
Min. 0.686 0.000 0.992 0.000 0.000 0.051

Max. 0.861 0.092 1.000 0.467 0.124 0.073

TAN-DR(0.1)
Min. 0.721 0.000 0.990 0.000 0.000 0.052

Max. 0.845 0.164 1.000 0.467 0.208 0.076

TAN-DR(0.5)
Min. 0.757 0.000 0.989 0.000 0.000 0.054

Max. 0.842 0.130 1.000 0.600 0.157 0.070

TAN-DR(0.9)
Min. 0.690 0.000 0.991 0.000 0.000 0.052

Max. 0.874 0.096 1.000 0.467 0.140 0.077

Hill-Valley fAUC fsens fspec fprec fF1 fBrier

NB-PR
Min. 0.465 0.073 0.228 0.317 0.118 0.526

Max. 0.546 0.741 0.903 0.591 0.548 0.904

NB-DR(0.1)
Min. 0.461 0.000 0.057 0.000 0.000 0.500

Max. 0.543 0.924 1.000 0.594 0.641 0.933

NB-DR(0.5)
Min. 0.449 0.000 0.082 0.000 0.000 0.500

Max. 0.541 0.899 1.000 0.585 0.621 0.932

NB-DR(0.9)
Min. 0.438 0.000 0.000 0.000 0.000 0.500

Max. 0.546 1.000 1.000 0.578 0.675 0.945

TAN-PR
Min. 0.488 0.343 0.346 0.457 0.387 0.513

Max. 0.591 0.723 0.665 0.598 0.617 0.605

TAN-DR(0.1)
Min. 0.444 0.000 0.000 0.000 0.000 0.501

Max. 0.581 1.000 1.000 0.573 0.690 0.682

TAN-DR(0.5)
Min. 0.480 0.000 0.000 0.000 0.000 0.500

Max. 0.582 1.000 1.000 0.579 0.685 0.690

TAN-DR(0.9)
Min. 0.462 0.000 0.000 0.000 0.000 0.499

Max. 0.575 1.000 1.000 0.576 0.685 0.697
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Figure 12.6: The rate of selecting each feature in the solutions of the final Pareto sets
approximated for NB and TAN classifiers on the three considered datasets using different
ranking methods in MBN-EDA. The rates are averaged over 10 independent runs.

us to inspect the final solutions from different points of view, which would not be possible
when using only one or two objectives.

12.5.3 Comparison with GA

To evaluate the proposed joint model estimation in MBN-EDA, we compare it with a
standard multi-objective GA (MGA), similar to the EMO algorithms reviewed in Section
12.2, and study their optimization performance for FSS. Since the recombination oper-
ators used in MGA do not require a large population as in the probabilistic modeling
of MBN-EDA, we have set the population size of MGA to N = 300 and allowed the
algorithm to evolve for more generations by setting the maximum number of generations
to 350. Thus, while MGA and MBN-EDA are using two different strategies for evolution,
both of them have access to similar resources when considering the maximum number of
function evaluations. MGA considered in the experiments employs a two-point crossover
and bit-flip mutation with probabilities Pcross = 0.8 and Pmut = 1/n, respectively. The
rest of parameters like the selection ratio are set similar to MBN-EDA as described in
the previous section.

Figures 12.7–12.9 compare the final Pareto sets approximated by MGA and MBN-
EDA on each of the three datasets when using the NB classifier, with respect to different
quality indicators. Very similar results are also obtained for the TAN classifier. The
figures show that the Pareto sets found by MBN-EDA are better than or comparable to
those obtained by MGA on all datasets according to all quality indicators. Especially, for
the WDBC and Ozone datasets, the hypervolume of the Pareto fronts approximated by
MBN-EDA is considerably better. This indicates that, although MBN-EDA evolves in
fewer generations, it is able to perform a more effective search using its joint probabilistic
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Figure 12.7: Hypervolume, maximum spread and spacing of the final Pareto sets approx-
imated for WDBC dataset with NB classifier, using MGA and MBN-EDA (denoted as
MBN).

modeling.

Furthermore, these figures show that the Pareto sets found by MGA using the DR
method have better hypervolume values than those found using the PR method, when
considering the overall behavior on all datasets. This suggests that, in spite of the method
used to explore the search space, the solution ranking provided by DR method can often
help to converge to better Pareto fronts in the noisy FSS problem.

12.5.4 Analysis of Joint Probabilistic Modeling

In this section, the two constituent parts of the joint probabilistic modeling in MBN-EDA
are studied during evolution. We are especially interested in the information encoded in
the model about the intrinsic properties of each of the FSS problems. For this purpose,
we consider the models estimated using the DR method with a dominance degree of
α = 0.9. First, the set of variables selected in the first part of joint model estimation
using RRMs are examined. Figure 12.10 shows the selected variables during different
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Figure 12.8: Hypervolume, maximum spread and spacing of the final Pareto sets approx-
imated for Ozone dataset with NB classifier, using MGA and MBN-EDA (denoted as
MBN).

generations of evolution, for the tested datasets and classifiers. It can be seen that
for NB classifier, initially most of the variables are selected in the individuals and during
evolution, gradually the set of the chosen variables becomes smaller (except for Hill-Valley
dataset which does not exactly follow this pattern). On the contrary, for TAN classifier
the variable selection frequency usually increases over time.

Here, the selection frequency of variables determines their relevance to the compu-
tation of objective values. Unlike the feature selection frequency obtained from the so-
lutions, this relevance is not affected only by a certain value (e.g. a zero value) of the
variables. In other words, both inclusion and exclusion of a specific feature influence the
approximation of its relevance to the objectives.

Another part of the study considers the MBN structures estimated in the second part
of joint modeling algorithm. As it is expected and explained in Section 10.6, considerably
more arcs are added to the class and bridge subgraphs of MBN (i.e. between objectives
and between variables and objectives) than to the feature subgraph, indicating the im-
portance of these relations. Here, we depict only the class subgraphs of the estimated
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Figure 12.9: Hypervolume, maximum spread and spacing of the final Pareto sets approx-
imated for Hill-Valley dataset with NB classifier, using MGA and MBN-EDA (denoted as
MBN).

MBNs to preserve the space. Figure 12.11 shows the overall frequency of arcs in the class
subgraph of the estimated MBN structures in all generations of MBN-EDA and in 10
independent runs, for the tested datasets and classifiers.

It can be seen that certain patterns of interaction between objectives have a higher
frequency of occurrence in FSS on the tested datasets. These include the dependencies
between sensitivity, specificity and precision, between AUC and Brier score, and between
sensitivity and F1 function. Some of these relationships can be easily approved by looking
at the definitions of objective functions in Equation (12.4). For example, F1 measure is
the harmonic mean of sensitivity and precision, and thus any information on the value of
one of these objectives can be used to approximate the value of the other.

An interesting observation is the role of classifiers in detecting the interactions between
objectives. It seems that the proposed joint model estimation is able to identify these
kind of relationships better when the TAN classifier is used for solution evaluation. One
explanation for this behavior is that for the TAN classifier the sets of variables selected in
the first part of model learning using RRMs are smaller, especially at the early generations
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Figure 12.10: The average frequency of selecting variables using RRMs in the first part of
joint model estimation, along different generations of MBN-EDA and in 10 independent
runs.

of the evolution, where the algorithm is detecting the direction of movement in the search
space. This allows to filter out variables that would introduce noise to the MBN induction
process, which in turn helps to detect the relationships between objectives.

For some of the problem instances under study, the probability of recovering the
relationships between objectives in the joint probabilistic model is very low. This situation
can be observed for Ozone dataset with TAN classifier (bottom-middle of Figure 12.11)
and Hill-Valley dataset with NB classifier (top-right of Figure 12.11). These cases show
two possible situations where objective relationships are not considered to be important
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Figure 12.11: The average frequency of arcs in the class subgraph of the MBNs estimated
in all generations of MBN-EDA and in 10 independent runs.

for optimization by MBN-EDA. In the latter case, most of the variables are selected
for inclusion in MBN estimation by the first part of joint modeling algorithm, in all
generations (see Figure 12.10). As it was already explained, this directly affects the
detection of relationships in the class subgraph. In the former case, although a relatively
smaller number of variables are selected for inclusion in MBN, the high level inconsistency
of the objective values due to noise (especially with the unbalanced dataset) makes it hard
for the MBN induction algorithm to detect any interactions.

12.6 Conclusions

An adaptation of MBN-EDA for FSS problem based on joint modeling of variables and
objectives, when the noise in objective values is represented as intervals was proposed in
this chapter. The algorithm was applied for FSS in classification, although the method
can be easily adapted for FSS in clustering. To deal with the inherent noise in the
estimation of objective values, the proposed algorithm employs a ranking method that is
able to order the solutions in the population when objective values are given as intervals.
Based on this ordering, a subset of promising solutions were selected for model estimation.

A two-step learning method was proposed for estimating a joint probabilistic model of
variables and objectives from the selected solutions. In the first step, the variable selection
property of `1-regularization technique was employed to select a subset of variables with
higher relevance to the objectives. This helped to simplify MBN estimation by reducing
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the space of possible structures and provided an initial approximation of the bridge
subgraph structure of MBN. In the second step, an MBN was estimated encoding the
objectives and the set of selected variables.

We defined a six objective optimization problem and used the proposed algorithm to
select feature subsets for two Bayesian classifiers, NB and TAN, in three different datasets
having an increasing number of features. The experimental results showed that, although
requiring considerably less time, the Pareto sets approximated with the proposed DR
method were comparable or better than the Pareto sets found using the well-known PR
method. Moreover, the comparison of results with those of a standard multi-objective
GA showed that the proposed algorithm is able to obtain better Pareto sets in terms of
both convergence and diversity.

The estimated joint probabilistic models were also used to analyze the interactions
between objectives and variables. We saw different variable selection behaviors with each
of the classifiers which resulted in detecting different patterns of objective interactions. It
was observed that, though the level of noise in the objective values is higher when using
TAN classifier for solution evaluation, the variable selection method deployed in the first
part of the model estimation can identify these relationships.
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Chapter 13

Conclusions and Future Lines of
Research

In this section, we first review the work presented throughout this thesis, and then list
the main results of our study. At the end, we also give some lines of future research
regarding the presented work. The main contributions of the thesis are summarized in
Table 13.1.

13.1 Thesis Overview

The inherent properties of EDAs and the way they solve optimization problems make
them very interesting, and though they are a relatively new class of EAs, many works
have studied these algorithms from both theoretical and application-based points of view,
and they are still topic of active research. Probabilistic modeling, which is the essential
part of EDAs, is one of the topics that requires further and a more thorough investiga-
tion. In this thesis, we proposed and studied the use of regularization techniques in the
model estimation of EDAs as a promising method for both continuous and multi-objective
optimization.

Two main approaches for regularized model learning in EDAs was presented in Chap-
ter 5. In the first approach, an estimation of the model structure is obtained by explicitly
using regularization to capture the dependencies between variables, and then the model
parameters are estimated separately. In the second approach, regularization techniques
are applied to obtain an estimation of the probabilistic model, which is an MGD. The
proposed methods were analyzed considering different aspects when used for estimating
models from the populations generated by sampling a number of Gaussian models with
an increasing level of interactions between the variables. The resulting RegEDA was
then applied to continuous function optimization with a high-dimensional setting for its
population size in Chapter 6, and the achieved results were analyzed by comparing them
with those of several other well-known Gaussian-based EDAs.

We then used `1-regularized modeling for obtaining a decomposition of problem vari-
ables in Chapter 7, and to learn a marginally factorized probability distribution encoded
in a GMRF model. The proposed algorithm first identifies the (in)dependencies between
variables and then uses their interaction strengths to divide the variables into a number
of disjoint groups with the AP clustering algorithm which can automatically identify the
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Table 13.1: A summary of the contributions and algorithms proposed in the thesis and
their domains of application.

Single-Objective
Multi-Objective

Noiseless Noisy
Continuous Discrete

Algorithm RegEDA GMRF-EDA JGBN-EDA MBN-EDA

Probabilistic
Model

MGD/GMRF
Marginally
Factorized

GMRF
BN MBN

Proposal
Regularized

Model
Learning

Regularized
Decomposition

Learning

Joint Variable-Objective Modeling
α-Degree Pareto

Dominance Based
Ranking

Regularized
Structure
Learning

• • •

Regularized
Parameter
Learning

• • • •

Chapter 5, 6 7 9 10 11 12

Publication
[Karshenas

et al., 2013b]
[Karshenas

et al., 2012a]
[Karshenas

et al., 2011b]
[Karshenas

et al., 2012b]
[Karshenas

et al., 2013a]

number of clusters. The behavior of GMRF-EDA was then tested on a continuous addi-
tively decomposable function and two instances of the off-lattice protein folding model.

In Chapter 9, joint variable-objective probabilistic modeling was proposed as a novel
approach for multi-objective optimization with EDAs. We presented methods for learning
and sampling the joint probabilistic model, which was encoded in a BN. Specifically, in
continuous domains we used a regularized estimation of GBN to address the increased
dimensionality due to the inclusion of objectives in the joint probabilistic model. The
proposed JGBN-EDA was then compared against a similar GBN-based EDA, which does
not consider objectives in its probabilistic model, on a set of benchmark MOPs to study
the effect of incorporating the objective values in probabilistic modeling of multi-objective
EDAs.

This study was further extended in Chapter 10 by using MBNs for encoding three
types of interactions in the joint probabilistic models and specific solution ranking meth-
ods proposed in the literature for many-objective optimization. The performance of the
resulting algorithm, which is called MBN-EDA, was tested in an extensive experimental
study on two sets of benchmark MOPs with different number of objectives, and com-
pared with several other state-of-the-art algorithms. Moreover, we took a closer look at
the joint probabilistic models estimated in MBN-EDA and analyzed the ability of this
algorithm to approximate the MOP structure.

In Chapter 11, the α-degree Pareto dominance relation was defined to deal with
the noise in the objective values of MOPs, given as intervals. We studied some of the
properties of this dominance relation when noisy objective values are given as confidence
intervals, and used it to develop a modified version of the non-dominated sorting algorithm
for ranking the solutions in the presence of noise in the objective values. This ranking
method was compared to probabilistic ranking, a widely used noise handling method
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in EMO algorithm which can also be applied to objective values given as intervals, to
optimize a set of noisy MOPs with three different levels of Gaussian noise using MBN-
EDA.

Finally in Chapter 12, we proposed a version of MBN-EDA for multi-objective FSS
in classification, when several measures of classification performance are considered as
objectives. The different quality values obtained in the cross-validation evaluation of the
feature subsets were used to compute confidence intervals as the objective values, and a
degree ranking method based on the α-degree Pareto dominance was proposed to order the
solutions. To learn a joint variable-objective probabilistic model, a two-step estimation
approach was proposed. In the first step, `1-regularization is used to identify the variables
related to each objective, and a subset of variables which have more interactions with
the objective are selected. In the second step, a joint model of objectives and selected
variables is estimated in an MBN, and marginal univariate probability distributions are
estimated for the rest of variables. The resulting algorithm was then tested on a number of
datasets with increasing number of features, when using two different Bayesian classifier,
and its constituent parts for solution ranking and reproduction were compared with other
commonly used methods. The estimated model structures during evolution on each tested
dataset-classifier combination were also analyzed.

The discussions in the thesis covered a broad range of topics in a variety of domains
and applications. Therefore, to introduce the context of study, the main concepts and the
proposed methods and approaches were reviewed in each case. This reviews include: two
main types of PGMs, probabilistic modeling in EAs, BN learning and inference related
optimization problems solved with EAs, regularization techniques for estimating differ-
ent types of models, multi-objective EDAs and their ranking methods and probabilistic
models, methods for noisy optimization with EMO algorithms, and the methods used for
multi-objective FSS in classification and clustering with EMO algorithms.

13.2 Main Results

Although we have given some conclusions at the end of each chapter, summarizing the
contributions and achievements, there are a number of conclusions that can be pointed
out as the main results of the research conducted in this thesis. Following the organization
of the thesis, these findings can be divided into two parts. Regarding continuous function
optimization with EDAs, the main results are:

• The analysis of the proposed methods for regularized model estimation with high-
dimensional settings for the population showed the usefulness of each technique
for continuous optimization of a different type of problem with EDAs. Some of
the methods are able to detect many interactions in a short time, whereas others
require more time to obtain sparser model estimations. It was shown that the level
of sparsity of the interactions between problem variables can decrease the quality
of the models obtained with regularized estimation.

• We tested RegEDA with different methods for regularized model estimation on
continuous problems with an increasing number of variables in a high-dimensional
setting, simulated with a population size that is logarithmic in the number of vari-
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ables. The optimization results showed that because of the robust model estima-
tion based on regularization, RegEDA is less affected by the curse of dimensionality
phenomenon in comparison to several other Gaussian-based EDAs, and is able to
achieve significantly better results on larger dimensions of many of the tested con-
tinuous functions.

• The variable selection property of `1-regularization can be a promising approach
for linkage learning in EDAs. The method we proposed based on this type of
regularization for estimating a marginally factorized probability distribution, often
known as MPM in EDA literature, was shown to be more effective than estimating
non-marginal factorized models or models with complete variable independence
assumption, in the optimization of continuous additively decomposable problems.

The above results also apply to EDAs used for multi-objective optimization. Yet,
there are a number of interesting findings in our study of multi-objective optimization
with EDAs:

• Incorporating information about objectives into model estimation and sampling of
EDAs proved to be useful for a more effective multi-objective optimization, and
allowed achieving significantly better results on several MOPs in comparison to
other EMO algorithms that ignore this kind of information when generating new
solutions. The proposed joint variable-objective probabilistic modeling approach
provides a systematic way for modeling the relationships between objectives which
is often needed for many-objective optimization. We showed that with this type
of model estimation, the resulting EDA is also able to implicitly obtain a good
approximation of the MOP structure in a probabilistic framework, which can be an
interesting alternative to a set of solutions for DMs.

• The study of the estimated probabilistic models showed that the two new types
of interactions captured as a result of joint variable-objective modeling, which are
the objective-variable and objective-objective relationships, are considerably more
important for multi-objective optimization than the variable-variable relationships
usually modeled in other EDAs.

• It was shown that α-degree Pareto dominance proposed for solution ordering in
noisy multi-objective optimization, when objective values are given as intervals, de-
fines a partial relation between the solutions in the search space. Moreover, when
noisy objective values are represented as confidence intervals, it was demonstrated
that any reduction in the minimum acceptable dominance degree or confidence
level does not affect the α-degree Pareto dominance relation between the solutions.
We showed that the Pareto set approximations obtained using two solution rank-
ing methods based on this dominance relation are better or comparable to those
obtained by a standard solution ranking method while having a considerably less
computational complexity.

• Relatively good feature subsets can be found in a small number of generations
when using multi-objective EDAs for FSS in classification problems. This approach
to FSS is more effective for datasets with small-medium dimensionality, due to
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the large populations required for datasets with a large number of features. The
regularization-based joint probabilistic modeling in this problem allows to obtain
an estimation of how different measures of classification performance are related.

13.3 Future Lines of Research

There are a number of possibilities for continuing the research carried out in this thesis.
In this section we give some hints for further extension of our study of EDAs in continuous
and multi-objective optimization.

Continuous optimization has specific properties that makes it very different from
discrete optimization of combinatorial problems. For example, a single variable may have
a global optimal value with a small basin of attraction and many deceptive local optima.
One of the approaches used to improve continuous optimization is the incorporation of
gradient information in the search. This allows the optimization algorithm to adapt to
the landscape of the problem at hand and increase or decrease its pace. CMA-ES is one
of the successful continuous EDAs that has employed this approach. However, as it was
shown in Chapter 6, this adaption considerably affects the performance of this algorithm
on problems with large dimensionality. On the other hand, regularized model estimation
offers a method for learning models with better generalization ability. An interesting line
of future research is to combine these two approaches of model estimation for continuous
optimization with EDAs. A starting point for this study is to decompose the problem and
use an adapted model learning in the subspaces while controlling the overall fitting of the
models with regularized estimation. The variable selection property of `1-regularization
can be especially useful for this purpose. Such an approach is specifically applicable to
high-dimensional problems where decomposition becomes necessary for the feasibility and
efficiency of the optimization with EDAs.

Another future work of regularized model estimation in EDAs is to explicitly consider
nonlinear interactions between variables when learning their relationships. A preliminary
study of this type of regularized model estimation for learning discrete MNs was presented
in [Santana et al., 2011]. The emergence of new techniques in the statistics community
for efficient regularized learning of GGMs considering higher order relationships between
variables can be useful in this respect. A closely related topic for further research is to
use non-Gaussian assumptions for the variables when obtaining regularized estimations
of their relationships.

With the proposed approach for multi-objective optimization based on joint variable-
objective modeling, the estimated models encode probabilistic estimations for the values
of both variables and objectives. We used these probabilistic estimations to generate
new values for the variables. A future line of research is to analyze the optimization
performance when the encoded probabilistic estimations are also used to approximate
the objective values of the newly generated solutions. Such an approach can be taken,
for example, when optimizing MOPs with expensive (e.g. computationally or economi-
cally) objective functions [Zhang et al., 2010]. A related future study is to exploit the
relationships encoded as a result of objective modeling to reduce the cost of solution
evaluation in multi-objective optimization. For example in multi-objective FSS, a combi-
nation of filter-based and wrapper-based objectives can be considered. Then, depending

199



on the objective relationships encoded in the joint probabilistic model, the value of the
wrapper-based objectives for the new solutions can be approximated using the estimated
model and only the considerably cheaper filter-based objectives need to be evaluated in
each generation.

The application of the methods proposed in the thesis to real-world problems is also
a potential future work. There are several problems like gene expression analysis in ge-
nomics [Bielza et al., 2008] and optimal ordering of tables in text organization [Bengoetxea
et al., 2011] which are characterized by high-dimensionality, involving optimization over
a large number of variables. Regularization-based EDAs are promising methods for this
type of problems. In multi-objective optimization, an interesting research is to evaluate
the MOP structures estimated with joint probabilistic modeling for real-world problems
against DM’s knowledge of the problem. Moreover, preference information of DMs can
be incorporated into joint probabilistic modeling to improve optimization performance of
the algorithm [di Pierro et al., 2007; Hirsch et al., 2011]. It can be used as conditional
independence relations between objectives and variables, or inserted as preferable values
for the objectives.

200



Appendix A

List of Abbreviations

AIC Akaike’s Information Criterion
ANN Artificial Neural Network
ANOVA Analysis Of Variance
AP Affinity Propagation
AUC Area Under ROC Curve
BAV Best Achieved Value
BDe Bayesian Dirichlet equivalence
BIC Bayesian Information Criterion
BN Bayesian Network
CGN Conditional Gaussian Bayesian Network
DAG Directed Acyclic Graph
DAGS DAG Search
DBN Dynamic Bayesian Network
DM Decision Maker
DR Degree Ranking
DT Decision Tree
EA Evolutionary Algorithm
EDA Estimation of Distribution Algorithm
EM Expectation Maximization
EMO Evolutionary Multi-objective Optimization
EP Evolutionary Programming
ES Evolutionary Strategy
FSS Feature Subset Selection
GA Genetic Algorithm
GBN Gaussian Bayesian Network
GGM Gaussian Graphical Model
GMRF Gaussian Markov Random Field
GP Genetic Programming
IGD Inverted Generational Distance
kDB k-Dependence Bayesian Classifier
MAP Maximum A Posteriori
MCMC Markov Chain Monte Carlo
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MB Markov Blanket
MBN Multi-dimensional Bayesian Network
MDL Minimum Description Length
MGD Multivariate Gaussian Distribution
ML Maximum Likelihood
MN Markov Network
MOP Multi-objective Optimization Problem
MPE Most Probable Explanation
MPM Marginal Product Model
MTE Mixture of Truncated Exponentials
NB Näıve Bayes Classifier
NLL Negative Log-Likelihood
NN Nearest Neighbor
PDAG Partial Directed Acyclic Graph
PGM Probabilistic Graphical Model
PLS Probabilistic Logic Sampling
PR Probabilistic Ranking
PSO Particle Swarm Optimization
RRM Regularized Regression Model
SNB Semi-Näıve Bayes Classifier
SVM Support Vector Machine
TAN Tree Augmented Näıve Bayes Classifier
TSP Traveling Salesman Problem
WFG Walking Fish Group
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J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3–18, 2011.

F. di Pierro, S.-T. Khu, and D. Savic. An investigation on preference order ranking
scheme for multiobjective evolutionary optimization. IEEE Transactions on Evolu-
tionary Computation, 11(1):17–45, 2007.

K. A. Dill. Theory for the folding and stability of globular proteins. Biochemistry, 24(6):
1501–1509, 1985.

N. Ding, S. Zhou, and Z. Sun. Histogram-based estimation of distribution algorithm:
A competent method for continuous optimization. Journal of Computer Science and
Technology, 23(1):35–43, 2008.

L. Dong, H. Zhang, X. Ren, and Y. li Li. Classifier learning algorithm based on genetic
algorithms. International Journal of Innovative Computing, Information and Control,
6(4):1973–1981, 2010a.

W. Dong and X. Yao. Unified eigen analysis on multivariate Gaussian based estimation
of distribution algorithms. Information Sciences, 178(15):3000–3023, 2008.

W. Dong, T. Chen, P. Tino, and X. Yao. Scaling up estimation of distribution algorithms
for continuous optimization. CoRR, 2011.

X. Dong, D. Ouyang, Y. Ye, S. Feng, and H. Yu. A stable stochastic optimization
algorithm for triangulation of Bayesian networks. In Third International Conference
on Knowledge Discovery and Data Mining (WKDD ’10), pages 466–469, 2010b.

M. Dud́ık, S. J. Phillips, and R. E. Schapire. Maximum entropy density estimation with
generalized regularization and an application to species distribution modeling. Journal
of Machine Learning Research, 8:1217–1260, 2007.

C. Echegoyen, A. Mendiburu, R. Santana, and J. Lozano. Analyzing the probability of
the optimum in EDAs based on Bayesian networks. In IEEE Congress on Evolutionary
Computation (CEC ’09), pages 1652–1659, 2009.

B. Efron. Maximum likelihood and decision theory. Annals of Statistics, 10(2):340–356,
1982.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals
of Statistics, 32(2):407–451, 2004.

A. Ekbal, S. Saha, and C. S. Garbe. Feature selection using multiobjective optimization
for named entity recognition. In 20th International Conference on Pattern Recognition
(ICPR ’10), pages 1937–1940. IEEE Computer Society, 2010.

C. Emmanouilidis. Evolutionary multi-objective feature selection and ROC analysis with
application to industrial machinery fault diagnosis. In Evolutionary Methods for Design
Optimization and Control with Applications to Industrial Problems, EUROGEN 2001,

211



pages 319–324. International Center for Numerical Methods in Engineering (CIMNE),
2001.

C. Emmanouilidis, A. Hunter, and J. MacIntyre. A multiobjective evolutionary setting
for feature selection and a commonality-based crossover operator. In IEEE Congress
on Evolutionary Computation (CEC’00), volume 1, pages 309–316, 2000.

C. Emmanouilidis, A. Hunter, J. MacIntyre, and C. Cox. A multi-objective genetic
algorithm approach to feature selection in neural and fuzzy modeling. Journal of
Evolutionary Optimization, 3(1):1–26, 2001.

H. Eskandari and C. Geiger. Evolutionary multiobjective optimization in noisy problem
environments. Journal of Heuristics, 15(6):559–595, 2009.
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I. Inza, P. Larrañaga, and B. Sierra. Feature subset selection by Bayesian networks: A
comparison with genetic and sequential algorithms. International Journal of Approxi-
mate Reasoning, 27(2):143–164, 2001a.
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M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian optimization al-
gorithm. In Conference on Genetic and Evolutionary Computation (GECCO ’99),
volume 1, pages 525–532. Morgan Kaufmann Publishers, 1999.
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B. Sierra and P. Larrañaga. Predicting survival in malignant skin melanoma using
Bayesian networks automatically induced by genetic algorithms: An empirical compar-
ison between different approaches. Artificial Intelligence in Medicine, 14(1-2):215–230,
1998.
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P. Woźniak. Preferences in evolutionary multi-objective optimisation with noisy fitness
functions: Hardware in the loop study. In International Multiconference on Computer
Science and Information Technology, pages 337–346, 2007.

J. Xiao, Y. Yan, and J. Zhang. HPBILc: A histogram-based EDA for continuous opti-
mization. Applied Mathematics and Computation, 215(3):973–982, 2009.

K. Yanai and H. Iba. Estimation of distribution programming based on Bayesian network.
In IEEE Congress on Evolutionary Computation (CEC ’03), volume 3, pages 1618–
1625, 2003.

J. Yang, H. Xu, Y. Cai, and P. Jia. Effective structure learning for EDA via L1-regularized
Bayesian networks. In 12th Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO ’10), pages 327–334. ACM, 2010.

P. Yates and M. Reimers. RCMAT: A regularized covariance matrix approach to testing
gene sets. BMC Bioinformatics, 10(1):300, 2009.

R. Yehezkel and B. Lerner. Bayesian network structure learning by recursive autonomy
identification. Journal of Machine Learning Research, 10:1527–1570, 2009.

B. Yuan and M. Gallagher. On the importance of diversity maintenance in estimation
of distribution algorithms. In Sixth Annual Conference on Genetic and Evolutionary
Computation (GECCO ’05), pages 719–726. ACM, 2005.

B. Yuan and M. Gallagher. Convergence analysis of UMDAC with finite populations: A
case study on flat landscapes. In 11th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’09), pages 477–482. ACM, 2009.

M. Yuan. Efficient computation of `1 regularized estimates in Gaussian graphical models.
Journal of Computational and Graphical Statistics, 17(4):809–826, 2008.

236



M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–
67, 2006.

M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

D. Zaharie, D. Lungeanu, and S. Holban. Feature ranking based on weights estimated by
multiobjective optimization. In IADIS European Conference on Data Mining, pages
124–128, 2007.

Q. Zhang. On stability of fixed points of limit models of univariate marginal distribution
algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary
Computation, 8(1):80–93, 2004.

Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based on de-
composition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

Q. Zhang and H. Mühlenbein. On the convergence of a class of estimation of distribution
algorithms. IEEE Transactions on Evolutionary Computation, 8(2):127–136, 2004.

Q. Zhang, A. Zhou, and Y. Jin. RM-MEDA: A regularity model based multiobjective
estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation,
12(1):41–63, 2008.

Q. Zhang, W. Liu, and H. Li. The performance of a new version of MOEA/D on CEC09
unconstrained MOP test instances. In IEEE Congress on Evolutionary Computation
(CEC’09), pages 203–208, 2009a.

Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari. Multiobjective
optimization test instances for the CEC 2009 special session and competition. Tech-
nical Report CES-487, The Shool of Computer Science and Electronic Engineering,
University of Essex, UK, 2009b.

Q. Zhang, W. Liu, E. Tsang, and B. Virginas. Expensive multiobjective optimization by
MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary Compu-
tation, 14(3):456–474, 2010.

X. Zhang, B. Lu, S. Gou, and L. Jiao. Immune multiobjective optimization algorithm for
unsupervised feature selection. In Applications of Evolutionary Computing (EvoWork-
shops 2006), volume 3907 of Lecture Notes in Computer Science, pages 484–494.
Springer, 2006.

Y. Zhang and X. Li. Estimation of distribution algorithm for permutation flow shops with
total flowtime minimization. Computers & Industrial Engineering, 60(4):706–718, 2011.

X. Zhong and W. Li. A decision-tree-based multi-objective estimation of distribution
algorithm. In International Conference on Computational Intelligence and Security
(CIS’07), pages 114–118. IEEE Computer Society, 2007.

237



Z. Zhu, Y.-S. Ong, and M. Dash. Markov blanket-embedded genetic algorithm for gene
selection. Pattern Recognition, 40(11):3236–3248, 2007.

Z. Zhu, Y.-S. Ong, and J.-L. Kuo. Feature selection using single/multi-objective memetic
frameworks. In Multi-Objective Memetic Algorithms, volume 171 of Studies in Com-
putational Intelligence, pages 111–131. Springer, 2009.

E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In Parallel
Problem Solving from Nature (PPSN VIII), volume 3242 of Lecture Notes in Computer
Science, pages 832–842. Springer, 2004.

E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary Compu-
tation, 3(4):257–271, 1999.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evolu-
tionary algorithm for multiobjective optimization. In Evolutionary Methods for Design
Optimization and Control with Applications to Industrial Problems (EUROGEN ’01),
pages 95–100. International Center for Numerical Methods in Engineering, 2001.

E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca. Performance as-
sessment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation, 7(2):117–132, 2003.

E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of Pareto set approximations.
In Multiobjective Optimization, volume 5252 of Lecture Notes in Computer Science,
pages 373–404. Springer, 2008.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society, Series B (Methodological), 67(2):301–320, 2005.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15(2):265–286, 2006.

238


	Preface
	I Introduction
	Probabilistic Graphical Models
	Introduction
	Probability-Related Notations
	Bayesian Networks
	Bayesian Network Parameterization
	Inference in Bayesian Networks
	Learning Bayesian Networks
	Bayesian Networks in Machine Learning

	Markov Networks
	Multivariate Gaussian Distribution
	Gaussian Markov Random Fields
	Learning and Sampling Gaussian Markov Networks

	Conclusions

	Evolutionary Optimization with Probabilistic Modeling
	Introduction
	Evolutionary Algorithms
	Genetic Algorithms
	Evolutionary Strategy
	Genetic Programming
	Complementary Methods

	Estimation of Distribution Algorithms
	Discrete EDAs
	Continuous EDAs
	Discrete-Continuous EDAs
	Discussion
	Model-Based Genetic Programming

	Conclusions

	Evolutionary Algorithms in Bayesian Network Inference and Learning
	Introduction
	Triangulation of the Moral Graph
	Total and Partial Abductive Inference
	Structure Search
	DAG Space
	Equivalence Class Space
	Ordering Space

	Learning Dynamic Bayesian Networks
	Learning Bayesian Network Classifiers
	Conclusions


	II Regularization-Based Continuous Optimization
	Introduction to Regularization
	Introduction
	Regularized Regression Models
	Regularized Graphical Models
	Conclusions

	Regularized Model Learning in EDAs
	Introduction
	Approaches to Regularized Model Learning
	Analyzing Regularized Model Learning Methods
	True Structure Recovery
	Time Complexity
	Likelihood Function
	Regularization Parameter in Graphical LASSO Method

	Conclusions

	Regularization-Based EDA in Continuous Optimization
	Introduction
	RegEDA: Regularization-based EDA
	Experiments
	Optimization Functions
	Experimental Design
	Results
	Discussion

	Conclusions

	Regularization in Factorized Gaussian Markov Random Field-Based EDA
	Introduction
	GMRF-Based EDA with Marginal Factorization
	A Hybrid Approach to Learn GMRF
	Sampling Undirected Graphical Models for Continuous Problems

	Related Work
	Experiments
	Benchmark Functions
	Results
	Influence of the Regularization Parameter

	Conclusions


	III Multi-objective Optimization
	Evolutionary Multi-Objective Optimization with Probabilistic Modeling
	Introduction
	EDAs in Multi-Objective Optimization
	A Survey of Multi-Objective EDAs

	Conclusions

	Evolutionary Multi-Objective Optimization with Joint Probabilistic Modeling
	Introduction
	Joint Probabilistic Modeling in Multi-Objective EDAs
	Discussion

	JGBN-EDA for Continuous Multi-Objective Optimization
	Solution Ranking and Selection
	Joint Model Learning and Sampling

	Experiments
	WFG Test Problems
	Experimental Design
	Results

	Conclusions

	Multi-Dimensional Bayesian Network Modeling for Evolutionary Multi-Objective Optimization
	Introduction
	Multi-Dimensional Bayesian Network Classifiers
	MBN-EDA: An EDA Based on MBN Estimation
	Solution Ranking and Selection
	MBN Learning and Sampling

	Experiments on WFG Test Problems
	Experiments on CEC09 Test Problems
	Problem Structure Estimation
	Conclusions

	Interval-Based Ranking in Noisy Evolutionary Multi-Objective Optimization
	Introduction
	A Survey of Evolutionary Multi-Objective Optimization with Noise
	-Degree Pareto Dominance
	Discussion

	Noisy Multi-Objective Optimization with MBN-EDA
	-Degree Non-Dominated Sorting
	Joint Model Learning

	Experiments
	Noise Model
	Experimental Design
	Results
	Discussion

	Conclusions

	An Interval-Based Multi-Objective Approach to Feature Subset Selection Using Joint Probabilistic Modeling
	Introduction
	EMO Algorithms in FSS
	FSS in Classification
	FSS in Clustering

	Multi-Objective FSS with Joint Modeling of Variables and Objectives
	Solution Ranking
	Joint Model Learning

	Problem Formulation
	Experiments
	Experimental Design
	MBN-EDA with Different Solution Ranking Methods
	Comparison with GA
	Analysis of Joint Probabilistic Modeling

	Conclusions


	IV Conclusions
	Conclusions and Future Lines of Research
	Thesis Overview
	Main Results
	Future Lines of Research

	List of Abbreviations
	Bibliography


