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Abstract. A systematic classification of neuron types is a critical topic
of debate in neuroscience. In this study, we propose a semi-supervised
projected clustering algorithm based on finite mixture models and the
expectation-maximization (EM) algorithm, that is useful for classifying
neuron types. Specifically, we analyzed cortical GABAergic interneurons
from different animals and cortical layers. The new algorithm, called
SeSProC, is a probabilistic approach for classifying known classes and
for discovering possible new groups of interneurons. Basic morphological
features containing information about axonal and dendritic arborization
sizes and orientations are used to characterize the interneurons. SeSProC
also identifies the relevance of each feature and group separately. This
article aims to present the methodological approach, reporting results
for known classes and possible new groups of interneurons.

Keywords: Clustering, semi-supervised, finite mixture model, EM,
projected, cortical interneurons.

1 Introduction

Neuroscience is perhaps the field of science with most interdisciplinary research
approaches due to the complexity of the nervous system. In recent years, math-
ematical and statistical methods, and machine learning techniques have been
proved to be excellent tools for analyzing different aspects of the anatomical and
functional organization of the brain. A problem, which remains unsolved since
the early days of the study of brain structure, is the classification of neurons.
Although efforts [1] have been made in order to produce an accepted classifi-
cation and terminology, experts still have differences of opinion. Solving this
problem is a key milestone, not only for organizing the vast amount of data
that neuroscience produces, which is fundamental for a better understanding of
the structure and functions of cortical circuits, but also for helping researchers
communicate with each other.
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Researchers have already attempted to quantitatively classify cortical neu-
rons using machine learning techniques. Although some adopted a supervised
approach to perform this task [2, 3], most reported research was based on clus-
tering to discern between types of neuronal data. For example, hierarchical clus-
tering has been widely used to discover groups1 of pyramidal cells m[4, 5] and
interneurons [6, 7, 8], the main two accepted morphological types of neurons
[9]. Recently, a novel, web-based interactive experiment enabled 48 worldwide
experts in neuroscience to classify interneurons by visual inspection according to
pre-determined criteria [10]. Thanks to this new approach, researchers were able
to investigate the suitability of several anatomical terms and neuron names and
concluded that supervised classification models could automatically categorize
some types of interneurons in conformity with expert assignments. However, al-
though there has for the first time been some advance in neuron naming, charac-
terization, and classification based on community consensus, the global problem
remains unsolved since experts did not reach agreement on the classification of
most terms, as discussed in [10].

Thus, in this study, we propose a novel semi-supervised projected clustering
method that relies on model-based clustering [11] to classify interneurons. Our
classification takes basic morphological features and retrieves the known infor-
mation, in the shape of data labels, from expert opinions given in [10]. Our
method is able to discover possible new groups of interneurons on which the sci-
entific community largely agrees and also identifies the relevance of each feature
and group separately. Therefore, our method differs from previous approaches to
this task as regards both the classification approach and how feature relevance is
identified. For further details about semi-supervised learning, see [12, 13]. Differ-
ent approaches related to the localized manner for identifying interesting subsets
of features are reviewed in [14, 15]. More specifically, model-based clustering with
embedded search of feature-relevance factors was introduced in [16] and applied
to magnetic resonance spectra within a medical context in [17]. Here we present
some significant results about classes of interneurons on which agreement was
high in [10], and the discovery of possible new groups.

2 Materials and Methods

2.1 Data

We selected 241 three-dimensional (3D) reconstructions of interneurons from
several areas and layers of the cerebral cortex of different experimental animals
(mouse, rat, and monkey) and humans, from [10]. All these reconstructions were
extracted from NeuroMorpho.Org [18]. From this database, we selected labeled
data depending on the number of equal votes (threshold) assigned by experts
in [10]. Specifically, we selected three thresholds -18, 22, and 26- used to build

1 Throughout the text, group is used for clustering approaches, whereas class refers
to a label in a supervised approach.
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three databases: th18, th22, and th26. A higher threshold is assumed to mean
that confidence in the labeled cells is greater.

The labeled neurons belong to four different classes: Common basket (CB),
Horse-tail (HT), Large basket (LB), and Martinotti (MT). Agreement on
Chandelier cells was also high, although not enough 3D reconstructed cells
were available for inclusion in the analysis. Thus, there are 118 labeled cells in
th18, distributed as 49 CB, 9 HT, 27 LB, and 33 MT; 83 labeled cells in th22, dis-
tributed as 24 CB, 5 HT, 29 LB, and 25 MT; and finally, 47 labeled cells in th26,
distributed as 9 CB, 4 HT, 12 LB, and 22 MT.

We described each neuron using nine basic morphological features related to
axonal and dendritic arborizations. These features were measured using Neu-
rolucida Explorer. The specific features are: X1 = axonal arbors (Aa) at (0, π]
(over the soma), X2 = Aa at (π, 2π] (under the soma), X3 = dendritic arbors
(Da) at (0, π], X4 = Da at (π, 2π], X5 = Aa < 300μm from the soma, X6 = Aa
[300μm, 600μm] from the soma, X7 = Aa > 300μm from the soma, X8 = Da
≤ 180μm from the soma, and X9 = Da > 180μm from the soma. The aim was
to simulate expert interpretation at an early stage of a visual examination, i.e.
the orientation and the size of each neuron.

2.2 Method

We have created a method called semi-supervised projected model-based clus-
tering (SeSProC) [19]. SeSProC is based on Gaussian finite mixture models;
however, its input data are both labeled and unlabeled instances. It is able to
classify the unlabeled instances into either known or newly discovered groups.
Besides, each feature is weighted to indicate its relevance for each group.

Let the observable data X = {x1, . . . ,xN} be a set of instances, with xi ∈
�F , ∀i ∈ {1, . . . , N}. In a typical clustering problem, data are assumed to be
generated from a probabilistic model given by a finite mixture of distributions
with K components, and the clustering solution is gathered in the mixture using
a latent variable Z. The basic density function for an instance xi is

p(xi | Θ) =

K∑
m=1

πmp(xi | θm),

where πm is known as the mixing proportion and θm is the parameter set of each
component. The full parameter set of the mixture isΘ = {θ1, . . . , θK , π1, . . . , πK}.
This set would be easy to find using the maximum likelihood method, if the
complete-data, i.e. X and Z, were known. However, Z is unknown and must be
estimated together with the parameter set. We use the expectation-maximization
(EM) [20] algorithm to calculate the expectation of the log-likelihood function
with respect to the posterior distribution of the latent variable.

As SeSProC is a projected algorithm, the density function changes because
the relevance of each feature for each component is also estimated to find the
interesting subspaces. This information is gathered in a new latent variable V .
Defining ρmj = p(vmj = 1), i.e. the probability that feature j is relevant to
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component m, and assuming that features are conditionally independent given
the component label, the new density function is

p(xi | Θ) =

K∑
m=1

πm

F∏
j=1

(
ρmjp(xij | θmj) + (1 − ρmj)p(xij | λmj)

)
,

where θmj and λmj indicate the parameters for the density function if feature
j is relevant and irrelevant, respectively, to component m. As before, if Z and
V were known, the new complete-data log-likelihood function, with zim indi-
cating instance i’s membership of component m, and vmj indicating feature j’s
relevance to component m, would be

logL(Θ | X ,Z,V) =
N∑
i=1

K∑
m=1

(
zim log πm

+

F∑
j=1

(zim [vmj(log ρmj + log p(xij | θmj))

+ (1− vmj)(log(1− ρmj) + log p(xij | λmj))])
)
.

As SeSProC is a semi-supervised clustering algorithm and its input contains
some labeled data, Z is partially known. However, the unknown part of Z and
V is estimated at iteration t, after the parameters from the previous iteration
t − 1 have been fixed, by calculating the expectation of the complete-data log
likelihood function using the EM algorithm, as

EZ,V|X ,Θt−1[logL(Θt−1 | X ,Z,V)]

=
N∑
i=1

K∑
m=1

γ(zim) log πm

+

N∑
i=1

K∑
m=1

F∑
j=1

γ(uimj)(log ρmj + log p(xij | θmj))

+

N∑
i=1

K∑
m=1

F∑
j=1

γ(wimj)(log(1− ρmj) + log p(xij | λmj)),

where γ() is the expectation of each specific variable, with γ(uimj) = γ(zim)
γ(vmj) and γ(wimj) = γ(zim)(1 − γ(vmj)).

Number of Clusters Estimation. SeSProc also estimates the final number of
clusters using a greedy forward search. The Schwartz criterion [21], also known
as Bayesian information criterion (BIC), is used to compare models with dif-
ferent numbers of components. In the first step of the search (s = 0), a model
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with C components (M0) is built, C being the known labels. Then M1 is built
with C + 1 components at s = 1 and compared with M0 using the BIC. The
process continues, adding a component at each new step, until the convergence
criterion is reached, i.e. Ms is better than Ms+1, returning Ms. Note that la-
beled instances can only belong to the C known components, whereas unlabeled
instances can be members of any component C + s at step s. A key aspect of
this process is related to initialization. Labeled instances are used to initialize
the known components, but the added components also have to be initialized.
We assume that the instances that fit the components at step s of the process
worst are candidates for membership of the new component added at s+1, and
are then used to initialize this component.

2.3 Empirical Setup

The process for obtaining input data with labeled and unlabeled instances for
each class and data set was as follows: all labels of one of the known four classes
were hidden to SeSProC, whereas the labels of the other three classes were
unchanged. This process was designed to discriminate between unlabeled and
labeled instances, since they belong to different classes of interneurons. Besides,
more than one group could be found for the unlabeled instances, leading to the
discovery of new groups that were unknown to the algorithm input2.

Results were then evaluated in two respects. First, they were analyzed in
terms of correctly and misclassified instances (see Section 3.1). We considered
that a cell was misclassified (mc) if that cell was grouped into one of the known
classes according to the labeled data. On the contrary, an instance was correctly
classified (cc) if it was grouped into a completely new group, regardless of the
number of new groups that were identified. We then defined accuracy as cc

mc+cc ,
ranging from 0 to 1. Accuracy was 1 when all unlabeled instances were grouped
into new groups. We then evaluated the identified groups in terms of the newly
discovered knowledge (see Section 3.2). We checked the results against a visual
examination and expert opinion.

3 Results and Discussion

3.1 Discriminating Classes

Results for the discrimination of classes of interneurons on which the scientific
community largely agrees are shown in Fig. 1. The evolution of the results de-
pended on the threshold, and we find that, generally, SeSProC performance
improved with a higher threshold. A higher threshold means that more experts
agreed with the labels, and neurons were easier to classify.

2 We base our model on the cluster assumption [12], which states that instances that
belong to the same cluster are likely to be of the same class, whereas a class may be
represented by several clusters.
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Fig. 1. Accuracy values depending on the class and the selected threshold

Results for discriminating CB cells from other classes were very accurate. For
example, the 49 CB cells of th18 were correctly discriminated from the other
classes. All cells were again discriminated with th26, and only two (out of 24)
cells were misclassified and grouped into the LB group with th22.

HT cells were the most distinct class of interneurons reported in this research.
This was demonstrated by the good discrimination rate of HT cells from other
classes, since only one out of nine neurons was misclassified with th18. There
were no misclassified cells with th22 and th26.

Discrimination of LB cells was worse than for CB and HT cells. All misclassified
LB cells were confused with the CB class. This was anticipated because the shapes
of some of these cells are very similar. However, many other LB cells have very
different shapes, and this was identified by assigning these cells to new groups.

The discrimination of MT cells from other classes was the least accurate accord-
ing to our data. With th18, 18 out of 33 MT cells were confused with other classes,
even with the HT class. The th18 group was conformed by a heterogeneous group
of cells, which likely resemble other morphologies, but that still were considered
as MT cells by the experts. However, only 6 out of 22 MT cells were misclassified
with th26. These results revealed that the th26 group was likely composed of
cells that are morphologically distinct, i.e. those considered as representative MT
cells. The discrimination rate for this class improved more than any other in the
study.

Although the overall results showed an acceptable discrimination rate between
the four classes of interneurons, there were some misclassified instances that
were grouped into the wrong clusters. As the results of [10] show, the agreement
among expert neuroscientists was rather limited. Therefore, it is far from easy
to automatically discriminate cells perfectly. Regarding this point, Fig 2 shows
four cells, two labeled, with at least 18 votes in [10], as CB (neurons A and
C) and two as LB (neurons B and D). The discrimination between neurons A
and B is visually very clear. However, differences between neurons C and D
are less clear. The variability of shapes, sizes, and orientations when dealing
with different populations of neurons is very high, which makes then hard to
discriminate automatically based on morphological features.

To illustrate the problems related to the automatic discrimination of these
classes, we performed experiments using a supervised classification approach to
classify the instances. We used the näıve Bayes (NB) algorithm [22]. Although
these results are out of the scope of this paper, the estimated mean accuracy
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Fig. 2. Neurons A and C were labeled as CB and neurons B and D as LB by at least 18
experts in [10]. However, A and B are easier to discriminate than C and D. Note the
different scales for each cell. Each square or rectangle in all figures represents 100µm.

values (using 10-fold cross-validation) ranged from 0.68 to 0.76 depending on the
threshold and whether a feature subset selection process was performed before
building the model. Although the approaches are not comparable, these values
were lower than for our approach using SeSProC for averaged class results.

3.2 Discovering New Groups

Here we present some results illustrating the discovery of possible new groups of
interneurons. Regarding CB cells, three groups were identified with th18. One of
these groups contained 41 CB cells (see cell A in Fig. 3). The second group had
three cells. The main features of these cells were that their axonal arborizations
were not as dense and they had one or two descending long axonal colaterals
(see cell B in Fig. 3). Finally, there were five CB cells in a third group that had
very dense axonal arborizations (see cell C in Fig. 3).

Fig. 3. Representative CB cells from each group identified by SeSProc with th18

Note that the population of cells changed when a different threshold was used.
The eight CB cells that were grouped into B and C (see Fig. 3) with th18 did not
receive enough votes for inclusion in th22 or th26. Therefore, these groups could
not be identified. However, SeSProC did identify two new groups with th26, with
five and four cells, which did not appear previously. The main difference between
these groups was the size of the axonal arborizations of the neurons.

Fig. 4 shows an example of the relevance of each feature j and group m (value
of ρmj , see Section 2.2) for CB groups with th26 depending on the hidden class.
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It is shown that feature relevance of the CB groups when hiding HT, LB, and MT

was very similar, where features X2 and X8 were considered highly relevant.
When CB labels were hidden in the input, SeSProC identified two previously
commented groups. Features X2, X3, X5, and X6 were highly relevant for the
first group, whereas features X8 and X9 were more relevant for the second group.

MT

LB

HT

CB(B)

CB(A)

0 0.2 0.4 0.6 0.8

Fig. 4. Heatmap indicating the relevance of each feature (X1-X9) for each group (A
and B) of CB cells when CB labels were hidden, and also for each group of CB cells when
HT, LB, and MT labels were hidden (results for th26 )

Regarding HT cells, only one group was identified for this type of cells regard-
less of the threshold. It shows the descending tight axonal arborizations that
characterize this cell type.

SeSProC identified four, five, and three new groups of LB cells with th18, th22,
and th26, respectively, revealing some interesting features after visual inspection.
For example, regarding th18, one group contained LB cells with horizontally
distributed axonal ramifications (see cell A in Fig. 5). Another group contained
LB cells with a dense axonal arborization near the soma and a few descending
long axonal colaterals (see cell B in Fig. 5). Finally, another two groups contained
cells with sparse axonal arborizations distributed in several directions (see cells
C and D in Fig. 5).

SeSProC only identified one group of MT cells with th18 and th22. Two groups
were identified with th26. The first group was mainly characterized by features

Fig. 5. Representative LB cells from each group identified by SeSProc with th18
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describing the total cell size (X5 to X9), whereas features related to orienta-
tion (X1 to X4) were more relevant for the second group. Further analyses are
necessary in order to obtain a more accurate classification for MT cells.

In summary, the fact that new groups were identified demonstrates that there
is a lack in the homogeneity of the types that are defined to date. Thus, the
present kind of analysis would help to advance in the understanding of the
classification and characterization of neurons.

4 Conclusions

The classification of neurons is considered as one of the most challenging prob-
lems related to the study of neuronal circuits because data are scarce, experts
disagree, and cells are morphologically, molecularly, and physiologically variable.
We present a novel semi-supervised approach for classifying morphological neu-
ron data, leading to the discovery of possible groups of neurons, which takes
advantage of previous knowledge in the shape of data labels, and also identifies
the relevance of each feature for each group.

We obtained a preliminary distinction among different classes of interneurons
according to simple morphological features characterizing the size and the ori-
entation of axonal and dendritic arbors of cells. We tackled this problem from
a simple perspective regarding the morphological features since experts classify
cells by visual examination. Although SeSProC outperformed a supervised clas-
sification approach, the most interesting output of our approach is related to the
identification of new groups. Although preliminary results look interesting, espe-
cially for CB and LB cells, further analyses using different morphological features
and labels are necessary to confirm these results.

SeSProC is open to further improvements, like the inclusion of uncertainty into
labels. Instead of considering different thresholds to retrieve expert knowledge,
it would be interesting to include information gathered from many experts in
the shape of labels with some probability. Regarding the data, although it is
generally thought that the same morphological types of neurons are found in
all species, we cannot discard the possibility of inter-species variability, and
further analyses are necessary in order to find representative types of neurons of
particular species.
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