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Influence diagrams are powerful tools for representing and solving complex inference and decision-
making problems under uncertainty. They are directed acyclic graphs with nodes and arcs that have
a precise meaning. The algorithm for evaluating an influence diagram deletes nodes from the graph
in a particular order given by the position of each node and its arcs with respect to the value node.
In many cases, however, there is more than one possible node deletion sequence. They all lead to the
optimal solution of the problem, but may involve different computational efforts, which is a primary
issue when facing real-size models. Finding the optimal deletion sequence is a NP-hard problem.
The proposals given in the literature have proven to require complex transformations of the influence
diagram. In this paper, we present a genetic algorithm-based approach, which merely has to be added
to the influence diagram evaluation algorithm we use, and whose codification is straightforward. The
experiments, varying parameters like crossover and mutation operators, population sizes and mutation
rates, are analysed statistically, showing favourable results over existing heuristics.
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problems, node deletion sequence, statistical analysis

1. Introduction

An influence diagram (Howard and Matheson 1984) is a directed
acyclic graph that is very commonly used in decision-making
and inference problems. It has three types of nodes: (1) de-
cision nodes (rectangular) representing decisions to be made;
(2) chance nodes (circular) representing uncertainties modelled
by probability distributions; and (3) a value node (diamond-
shaped) with no successors, representing the (expected) utilities
that model decision-maker’s preferences. The arcs have differ-
ent meanings depending upon which node they are directed to:
the arcs to chance nodes or the value node indicate probabilistic
dependence and functional dependence, respectively, while the
arcs pointing at a decision node indicate the information known
at the time of making that decision. The former are called con-
ditional arcs and are what we are interested in here. The latter
are only informational.

The basic operations of the Shachter’s evaluation algorithm
(Shachter 1986) are chance node removal (by computing the
expected utility) and decision node removal (by maximizing the

expected utility), carried out provided that the chance/decision
nodes are predecessors of the value node. A chance node can
be removed if its only successor is the value node. As a conse-
quence, the latter inherits all the removed node predecessors. To
eliminate a decision node that precedes the value node, it is as-
sumed that there are no barren (or sink) nodes and that all other
conditional predecessors of the value node are informational pre-
decessors of the decision node. The value node inherits no new
conditional predecessors. When it is possible to remove neither
a chance nor a decision node, the algorithm finds an arc between
two chance nodes that can be reverted –via Bayes’ formula–,
each node inheriting the predecessors of the other one. This
transformation will make it possible to finally find (perhaps after
various arc reversals) a chance node to remove. All these opera-
tions are combined sequentially to give the standard algorithm.

Let G = (N , A) denote the influence diagram with nodes N
and arcs A. Let D and C be the sets in N of decision and chance
nodes, respectively, and v be the value node. Given a node i ,
the sets C(i), I (i), S(i) denote its conditional predecessors, its
informational predecessors and its direct successors,
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respectively. With this notation, the pseudo-code for Shachter’s
algorithm is as follows:

1. Check for regular influence diagram and add
‘‘no forgetting’’ arcs

2. Eliminate all barren nodes
3. While C(v) �= ∅ do

If ∃ i ∈ C ∩ C(v) : S(i) = {v}, then remove chance
node i
Else if ∃ i ∈ D ∩ C(v) : C(v)\{i} ⊂ I (i)

remove decision node i
eliminate new barren nodes

Else find i ∈ C ∩ C(v) : D ∩ S(i) = ∅
While C ∩ S(i) �= ∅ do
find j ∈ C ∩ S(i) : there is no other
directed (i, j)-path

reverse arc (i, j)
remove chance node i

This procedure sequentially removes nodes from the diagram
until only the value node remains. The order of these nodes, from
the first to the last node removed by the algorithm, is called a
node deletion sequence (Shenoy 1992). This sequence is not
completely determined. There is no problem when choosing be-
tween two decision nodes or between a decision and a chance
node for removal, because there is only one way to do it. This is
because of the way the algorithm operates. First, it will never be
possible to have two candidates decision nodes to be removed
because of the regularity of the influence diagram. Second, a de-
cision node and a chance node will never tie for removal because
this is guaranteed by the definition of the influence diagram and
the conditions required for removal. So, with decision node d
and chance node x , where both d, x ∈ C(v), we have three pos-
sibilities: (1) there is no arc between d and x ; (2) there exists arc
(d, x); and (3) there exists arc (x, d). In cases (1) and (2), x is
removed before d, while in (3) d is removed before x .

The problem is when the influence diagram has two or more
chance nodes ready to be removed. This stems from the informa-
tion constraints (represented by the informational arcs) that may
only be specified up to a partial order, i.e., the transitive closure
of the precedence binary relation induced by the informational
arcs is a partial order on the set of all decision and chance nodes
(see e.g. Nielsen and Jensen 1999). From a semantic viewpoint,
it means that the decision-maker may not impose constraints re-
garding which of two or more chance nodes must precede the
others in the decision-making process. For example, after de-
ciding the admission of a patient into a hospital, there will be
no constraints concerning which of the uncertainties cost of stay
and risks of being admitted (infections, contagions, . . .) is the
first to occur. Another problematic case is when two or more arcs
are candidates for reversal, which may yield even more different
node deletion sequences.

All the sequences chosen to evaluate the diagram lead to
the optimal solution of the problem, but may involve different
computational efforts. The inheritance of predecessors in

Shachter’s algorithm may dramatically increase the size of some
tables: the v table (in which the expected utilities are recorded)
when a chance node is removed, and the two conditional
probability tables involved in reversing an arc.

Computational effort is a critical issue in real problems. In
Bielza et al. (2000), an influence diagram that models neonatal
jaundice management to be used in a large hospital in Madrid
consisted of 62 nodes and 169 arcs. During the problem-solving
process, it required a maximum storage capacity (for the op-
eration that brings about the highest increase) of 3.03 × 1013

memory positions to record all probabilities and expected util-
ities. This size exceeds the capacity of any personal computer,
which renders such an appealing tool like influence diagrams
almost useless in complex problems, revealing the huge gap be-
tween the theoretical and practical developments of techniques
of this kind (Henrion 1989).

Finding an optimal deletion sequence (which minimises the
maximum storage capacity) is an optimisation problem that has
been shown to be NP-hard (Arnborg, Corneil and Proskurowski
1987). So, this is a difficulty inherent to influence diagrams, re-
gardless of the algorithm employed for their evaluation. When
the problem has a separable utility function, i.e., the joint utility
function decomposes into several functions defined on smaller
domains, the algorithm (Tatman and Shachter 1990) uses local
computations at chance node removals, alleviating the compu-
tational burden somewhat. Otherwise, we can resort to heuris-
tics for finding good deletion sequences. Kong (1986), Ezawa
(1986), Mellouli (1987) and Zhang (1993) provide general
heuristics, some of them briefly explained below.

Ezawa (1986) tackles the problem by transforming it into
a problem of finding the maximum flow over a network con-
structed from the original influence diagram, relying on a prece-
dence tree among the nodes. The process is too complicated,
detached from the influence diagram framework, and intractable
for complex influence diagrams. Kong (1986) proposes the
heuristic called one-step-look-ahead: the next of the qualifying
variables to be deleted is the one that leads to computations over
the smallest domain. However, it is easy to check that choosing
the node at random is very likely to lead to a better solution than
yielded using Kong’s heuristic, as usually found in randomised
algorithms.

In addition to Shachter’s algorithm, other algorithms may be
used to solve influence diagrams. Rather than on arc-reversals,
these algorithms are based on node-deletion strategies or on
clique-trees approaches (see e.g. Cooper 1988, Shenoy 1992,
Jensen, Jensen and Dittmer 1994, Shachter and Ndilikilikesha
1993, Zhang 1998, Madsen and Jensen 1999). The equivalence
of all the algorithms is established in Shachter, Andersen and Poh
1990; Shachter, Andersen and Szolovits 1994. These other meth-
ods artificially convert the influence diagram into a Bayesian
network and use Bayesian network propagation. The efficiency
achieved in propagation algorithms comes from the factorization
of the potentials used to quantify uncertainty (and preferences
for decision problems). This factorization becomes explicit with
cluster trees, on which computations are carried out. The key
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point in the construction of the cluster tree is the triangulation
of the (moral) undirected graph expressing the independencies
of the problem.

It turns out that determining node deletion sequences
amounts to finding elimination orders in triangulating those
undirected graphs. Therefore, we could use different heuristics
proposed for the triangulation problem, see e.g. Kjaerulff
(1992), Larrañaga et al. (1997), Cano and Moral (1994),
Shoikhet and Geiger (1997) and Amir (2001). Actually, unlike
Bayesian networks, we cannot choose any elimination order
for the triangulation; we must use strong elimination orders,
imposed by the information constraints (see e.g. Jensen 2001),
whenever they comply with valid orders according to Shachter’s
algorithm. At this stage, it appears that adaptations of these
previous heuristics would work well.

However, our viewpoint will be as follows. First, Bayesian
network-based algorithms only need to eliminate nodes in one
direction (sometimes called COLLECTEVIDENCE), to compute
the optimal strategy and the maximum expected utility of the
problem. Yet, Shachter’s algorithm also computes the posterior
distributions of all variables (just before removing each chance
node). This information is really valuable during the model con-
struction and validation. Influence diagrams, usually embed-
ded in Decision Support Systems, provide decision makers with
these distributions, which are used, for example, to obtain di-
agnoses or result explanations in the medical field. This is not
directly supplied by Bayesian networks algorithms.

This difference is outlined in Shachter and Ndilikilikesha
(1993), when they explain the operations required to solve po-
tential influence diagrams. The arc reversal operation is replaced
by potential reversal. The product of the two potentials created
is now maintained without normalizing divisions. Thus, only
one of the resulting tables after an arc reversal is needed and
less numbers are stored. But this is done at the expense of not
computing posterior distributions. This situation in stronger for
the other algorithms, that keep potentials as local as possible,
demanding even more computations to obtain posterior distri-
butions. In contrast, Shachter’s algorithm considers the effect of
the arc reversal operations required for it. Therefore, we select
Shachter’s algorithm to tackle this problem. There are two se-
quences to determine here: one for node deletion and another
one for arc reversals (only when required), making the problem
harder than merely searching for a certain elimination order in
triangulating undirected graphs.

Another reason for driving this way our research is the
users involved in decision making. A lot of decision makers
or decision analysts have a decision theory education, often
not necessarily trained in Bayesian networks. Skilled tasks like
triangulation, propagation, conversion into a Bayesian network,
etc. might overwhelm people used to manage classic tools in
Decision Analysis, like decision trees and influence diagrams,
see e.g. Clemen (1996) and Kirkwood (1997).

The keystone of this paper comes from a comment pointed out
by Shachter (1986) in one of the pioneering papers on influence
diagrams:

An important improvement in the algorithm would
be determining the optimal choice when breaking
“ties” [. . .] This choice affects the time and memory
requirements for future iterations. In general, even
an expensive procedure to determine the optimal
sequence of node reductions may be worthwhile.

The paper is organised as follows. Section 2 thoroughly ex-
plains the problem of node deletion sequences. Section 3 dis-
cusses our first attempts at dealing with this problem. Section 4
introduces the genetic algorithm we have developed. It requires
only the qualitative evaluation of the influence diagram and has
a natural and straightforward codification. In Section 5, experi-
ments varying parameters like crossover and mutation operators,
population sizes and mutation rates are carried out and analysed
statistically. The results are a substantial improvement on those
obtained with other heuristics. Finally, Section 6 states some
conclusions and lines of future research.

2. Node deletion sequences and
computational effort

Let us introduce a notation for our main concern, that is, the
computational effort of solving an influence diagram.

Let Si be the size of the table associated with node i , i.e., the
total number of entries it requires. Si will vary according to the
type of node:

Si =




|i | ×
∏

j∈C(i)

| j | if i ∈ C

∏
j∈C(i)

| j | if i = v
(1)

where |i | denotes the domain cardinal of node (or variable) i ,
i.e. the number of possible values of i . These values will be
outcomes for chance nodes and (expected) utilities for the value
node.

The sum of the sizes of all the tables in the diagram is the total
storage capacity TS (or memory requirements) of the diagram:
TS = ∑

i∈C Si + Sv . Note that the tables for decision nodes
always retain the same elements throughout the whole process
of influence diagram evaluation, namely, their alternatives. For
this reason, we will not include the sizes of decision node tables
in TS.

As explained above, there are two situations that lead to dif-
ferent node deletion sequences.

2.1. Chance nodes tying for removal

The first case arises when the influence diagram has two or more
chance nodes ready to be removed.

Example 1. Figure 1 illustrates this idea. All the variables are
assumed to be binary except B, which has four possible out-
comes and A1 with five states. The number below each node i
is Si . The isolated number inside a triangle is TS.
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Fig. 1. Two candidates chance nodes, A and B, for removal

Only chance nodes A or B can be removed in the first step.
Whichever you choose, v will inherit its predecessors. The
computational effort will differ depending on the domain of
these predecessors A1, B1, D and the subsequent stages of
the algorithm, although the optimal solution will always be
reached.

Figure 2 shows the three different possibilities for solving
the influence diagram in Fig. 1. It shows how the diagram, the
table sizes and the total storage capacity change as the diagram
is evaluated. Let us suppose we choose to start by removing
node A. The node deletion sequence is 〈AB B1 A1 DT C〉 and the
maximum storage capacity is 185 (see ID2 in Fig. 2). Note the
fluctuation of storage capacities TS: 77, 185, 97, 47, 10, 6, 4, 1.

For this example, there are two more node deletion sequences:
〈B B1 AA1 DT C〉 and 〈B AB1 A1 DT C〉 (see Fig. 2). For sequence
〈B B1 AA1 DT C〉, the maximum storage capacity is 77. For the
other sequence 〈B AB1 A1 DT C〉, the maximum storage capacity
is 97. Therefore, the second sequence is the optimal sequence
for this problem. Note that the maximum storage capacity for
sequences 1 and 3 is reached when removing A. For the second
sequence, it is reached in the initial diagram (where no diagram
reduction has been performed yet), but the second highest value
is when removing A as well.

Luckily, Kong’s heuristic finds the same sequence. For in-
stance, in Fig. 1, we should pick B over A, because its deletion
involves computations over {C, T, A, B, B1}, whereas removal
of A involves computations over {C, T, A, B, D, A1}.

Note that we are following Shachter’s algorithm. Otherwise,
we might have even more deletion sequences. For example, in
ID4 in Fig. 2, Shachter’s algorithm only permits removal of B1,
though A1 could be removed after arc (A1, B1) reversal.

In general, we can infer when the inheritance of predecessors
exponentially increases the size of the v table after a chance node
removal. A chance node removal bears on the value node table
and on its own table (which vanishes). The following proposition
states the results.

Proposition 1. Let ID1 be an influence diagram with an asso-
ciated S1

v and TS1. Denote C1(v) as the conditional predecessors
of v in this diagram. Let i be a chance node with S1

i , C1(i). Let
ID2 be the influence diagram obtained from ID1 after i removal,
with sizes S2

v and TS2 (S2
i = 0). Since the conditional predeces-

sors of the value node in ID2 become

C2(v) ← C1(v) ∪ C1(i)\{i}

then the following recursive formulas hold

S2
v = S1

v

|i |
∏

j∈C1(i)\C1(v)

| j |

T S2 = T S1 − S1
i + S2

v − S1
v

Hence,

(a) S2
v ≥ S1

v iff
∏

j∈C1(i)\C1(v) | j | ≥ |i |.
(b) TS2 ≥ T S1 iff S2

v − S1
v ≥ S1

i .

If C1(i) ⊂ C1(v) (⇒ C1(i)\C1(v) = ∅), then∏
j∈C1(i)\C1(v) | j | is obviously considered 1.

Proof: It is straightforward from (1). �

Sv increases when the domain cardinal of the removed node
is less than the domain cardinal of the product space of the
predecessors inherited by v. See e.g. the step from ID3 to ID5 in
Fig. 2, which is the worst case sincev inherits all the predecessors
of the removed node (since C1(i) ∩ C1(v) = ∅).

As far as TS is concerned, its growth from one diagram to the
next depends not only on the value node inheritances but also on
the table size of the removed node. In other words, TS increases
when this table size is less than the difference between the v table
size after and before the chance node removal. For example, node
B and the 8 elements of its table are to be removed from ID2
in Fig. 2 with 185 memory positions required. v, with a table of
size 160, inherits node B1 (see ID4 in Fig. 2). The new storage
requirements can be computed as 185 − 8 + 160( 2

4 − 1) = 97.

2.2. Arcs tying for reversal

The second case that introduces variability in the transforma-
tions to the influence diagram arises when two or more arcs are
candidates for reversal. These arcs may or may not have the same
origin.

Example 2. Figure 3 illustrates this idea. All the variables are
assumed to be binary except A which has three possible out-
comes.

Neither A nor B can be removed until v is their only successor.
Therefore, the only possibility is to reverse arc (A, B) or (B, C)
with mutual inheritance of predecessors. The arc chosen may
have an influence on the size of the probability distributions
stored at the chance nodes involved and, consequently, on the
computational burden.

Figure 4 shows the four different possibilities for solving the
influence diagram in Fig. 3. Note that although an arc reversal
only immediately affects the sizes of the conditional probability
tables of both nodes defining the arc, it later has a bearing on
the inheritances that v will receive. In the example, influence
diagram ID2 requires 12 entries in the v table, and it only requires
8 entries later at ID4. The reversal of arc (A, B) causes A to
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Fig. 2. All the possible ways of evaluating the influence diagram in Fig. 1
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Fig. 3. Two candidates arcs, (A, B) and (B, C), for reversal

inherit R as a new predecessor, which is inherited by v after A
removal. However, diagram ID3 also requires 12 entries in the v

table, but it requires 24 entries later at ID5, because the reversal
of arc (B, C) implies that B inherits C as a new predecessor, and
then v inherits C (B new predecessor) and R (B old predecessor)
as new predecessors after B removal.

Table 1 shows all the sequences and their maximum storage
capacities. (i, j) denotes the reversal of this arc. The required
reversals are inserted in the sequence. The first two sequences
〈AR B DC〉, 〈AB RDC〉 are optimal.

Note that the four transformation orders have the same length
or number of required transformations (8), 3 arc reversals at the
same position, and lead to different node deletion sequences.
Nevertheless, this is not always true.

Example 3. Figure 5 shows another influence diagram.

Among the different transformation orders, we find

(A, C)(A, B)A(B, E)B(C, E)CDE

and

(A, B)(A, C)A(B, C)(B, E)B(C, E)CDE

which are of different length, because they have a different
number of reversals, and both lead to the same node deletion
sequence 〈ABC DE〉. The second order requires one more re-
versal because two arcs must be reversed –(B, C), (B, E)– after
A removal and before B removal. The former is created as a
consequence of (A, C) reversal. However, after (A, B) rever-
sal, the first order creates arc (C, B) instead, i.e. the opposite
arc, which does not need be reversed in this first transformation
order.

In general, the following proposition infers when an arc
reversal increases size TS.

Table 1. Results for the influence diagram of Fig. 3

Transformation order Max stor capac

(A, B)A(R, B)R(B, C)B DC 34
(A, B)A(B, C)B(R, C)RDC 34
(B, C)B(A, C)A(R, C)RDC 53
(B, C)B(R, C)R(A, C)ADC 53

Proposition 2. Let ID1 be an influence diagram with an
associated TS1. Denote C1(i) and C1( j) as the conditional
predecessors of chance nodes i and j, respectively, in ID1, with
S1

i , S1
j . Let ID2 be the influence diagram obtained from ID1 af-

ter (i, j) reversal, with TS2. Since there is mutual inheritance
of predecessors in ID2, then the following recursive formulas
hold

S2
i = S1

i | j |
∏

k∈C1( j)\C1(i)

|k|

S2
j = S1

j

|i |
∏

k∈C1(i)\C1( j)

|k|

T S2 = T S1 + S2
i + S2

j − S1
i − S1

j

Hence,

(a) S2
i ≥ S1

i .
(b) S2

j ≥ S1
j iff

∏
k∈C1(i)\C1( j) |k| ≥ |i |.

(c) TS2 ≥ T S1 iff S2
i + S2

j ≥ S1
i + S1

j .

Once again,
∏

k∈∅ |k| = 1 by definition.

Proof: Straightforward from (1). �

When reversing arc (i, j), the size of the i table always in-
creases. The size of the conditional probability table stored at j
depends on the i domain cardinal (that Sj loses) compared to the
domain cardinal of the product space of its inherited nodes (that
Sj gains). It is similar to Proposition 1(a), node v there playing
the role of j here. Moreover, in order to have an increase in TS,
the global behavior of Si + Sj has to be checked (new global
size greater than old).

Figure 4 is a possible illustration of Proposition 2. After (B, C)
reversal (see ID3), SC increases since 3 · 2 > 2 (S1

C = 4, S2
C =

S1
C

4
2 3 · 2 = 12). Therefore, TS obviously increases. However,

after (A, B) reversal (see ID2), SB decreases since 1 < 3 (S1
B =

12, S2
B = S1

C
1
3 = 4). Thus, we have to check condition (c):

12 + 4 > 3 + 12 to see that TS increases. Finally, note that
the removal of a decision node D never increases TS: TS2 =
T S1 + S1

v ( 1
|D| − 1) ≤ T S1.

In summary, each transformation to an influence diagram has
a bearing on many steps ahead. We have derived the change in
its storage requirements one-step-ahead. This depends on many
factors such as the number of inherited nodes and their cardi-
nals, the size of the deleted tables, the domain cardinal of the
node at the origin of the reversed arc, etc. Yet this greedy (my-
opic) knowledge of the change does not allow us to find the best
node deletion sequence (otherwise, Kong’s heuristic would be
the ideal strategy), although it will be used to compute recur-
sively the cost of each transformation and to get a starting point
for our initial proposals, see Section 3.
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Fig. 4. All the possible ways of evaluating the influence diagram in Fig. 3
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Fig. 5. Illustrating the same sequences but different transformation
orders

3. Our initial proposals

Our initial idea is to develop a qualitative implementation of the
standard algorithm, in which the basic operations of node re-
movals and arc reversals are carried out structurally rather than
numerically (much in the way of figures of Section 2). By means
of this tool we can find out the structure of the influence diagram
at any time, thereby giving memory requirements for probabil-
ities and expected utilities. It is easy to add Kong’s heuristic
to this algorithm, although we should remember its unreliable
results, see an example in Gómez (2002).

We improve this approach by developing a new tool that
tries to construct a tree with all the possible influence diagrams
reached by the different combinations of transformations. The
original influence diagram is located at the root of the tree. Given
an influence diagram, qualitative evaluation allows us to find out
which the next possible influence diagrams are, i.e. the diagrams
obtained by one transformation to a copy of the diagram. Each
one is located at each branch that sprouts from the previous
diagram. Figures 2 and 4 are examples of this tree.

In order to rule out a combinatorial explosion of the search
tree, not all the possible diagrams are inserted into the tree. Equal
diagrams are not allowed. Thus, if several paths through the tree
lead to identical influence diagrams, the method chooses the
lowest cost path (i.e., the least computational effort) and prunes
the other paths. Note that the tree has only one possibility when
removing a decision node, i.e., one branch from each branch of
the last level.

However, although it is a structural approach, the construction
of the tree is obviously intractable for large influence diagrams.
For the case of Fig. 4, the search is exhaustive since the diagram
is small.

We proceed as follows to get a smaller tree:

1. Initial bound using Kong. Qualitatively solve the influence
diagram using Kong’s heuristic and get a bound of the max-
imum TS achieved.

2. Improve that bound. Qualitatively solve the influence dia-
gram many times, deciding the deletion sequence at random,
and get another bound of the maximum TS achieved. This is
usually better (lower) than the above and is, therefore, more
restrictive. Hence, a greater number of possible deletion se-
quences will be able to be discarded during the search stage
(step 3 below).

3. Search. Search the parts of the tree that lead to sizes below that
bound, i.e., any branch yielding a problem size greater than
the established bound is discarded. Therefore, the associated
influence diagram is not considered and all the subsequent
influence diagrams obtained later from it are pruned. This is
much in the typical branch-and-bound spirit of Operations
Research.

4. Steps 2 and 3 can be iterated several times in order to refine
the bound.

Even in this case, there are too many possible deletion se-
quences in complex influence diagrams, and we can expect
to have to eventually prune the tree further (randomly for
example).

The complexity of arc reversals is somehow alleviated by
considering only a small percentage of possible reversals, then
deciding the arc at random several times, and saving the best
orders until that fixed percentage is reached.

Although it is only a semi-exhaustive search, this method we
have implemented improves the solution obtained by means of
Kong’s heuristic and merely calls for the qualitative evaluation
of the influence diagram.

4. A genetic algorithm

In this section, we introduce a genetic algorithm, a kind of prob-
abilistic search algorithm that mimics biological evolution pro-
cesses (Holland 1975) and that has been used recently in many
NP-hard optimization problems. As we mentioned in Section 1,
these algorithms have been applied to the triangulation problem
in Bayesian networks. In contrast to that framework, we find con-
straints on the possible elimination orders for the triangulation,
making harder the movement through the problem search space.
Moreover, arc reversals are indeed needed by decision makers,
who wish to have posterior probabilities for the variables. To the
best of our knowledge, it does not exist yet a genetic algorithm
adapted to Shachter’s algorithm, fulfilling these requirements.

Although there is no guarantee that a genetic algorithm can
find the optimal solution of the problem, there is empirical evi-
dence that acceptable solutions are found in a reasonable time,
as compared to other combinatorial optimization algorithms
(Mitchell 1998).

In genetic algorithms, the individuals represent the search
space points of the problem, and each one is characterized by
genetic material. The target is to find the individual with the
best material from the search space, measured by an objective
or evaluation function or fitness. The part of the search space
to be examined —population— changes at each iteration: each
generation retains the best individuals to produce children, while
the worst individuals tend to vanish.

In our case, the individuals are different ways of solving the
influence diagram, that is, node deletion sequences. Thus, an
individual is given by a set of parameters (genes), each rep-
resenting a node removal. The objective function is the maxi-
mum TS of the tables needed to store probabilities and expected
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utilities. The following subsections focus on each step of the
above scheme.

4.1. Codification of individuals

The codification of individuals is a crucial issue. It must rep-
resent all the individuals of the search space and accommodate
the distinguishing features of the problem under consideration.
Genes represent only node removals but they internally store
information about the required arc reversals. Arc reversals per-
formed to remove a node induce a different influence diagram
structure and this is captured with the objective function.

Thus, the algorithm will manage transformation orders. The
sequence of genes 〈ARB DC〉 (see Table 1) contains information
about arc reversal for nodes A, R and B and it would correspond
to order (A, B)A(R, B)R(B, C)B DC . The objective of arc re-
versals is to prepare a chance node removal. So, when gene A
is generated first, it also contains information about the arc re-
versal(s) required to be removed. All the arcs coming from A
(other than to v) must be reversed, in this case, only arc (A, B).

At each iteration, we will not generate repeated individuals
(see below), and therefore, no distinction will be made between
two transformation orders that lead to the same sequence. Only
one of them will be generated with its fitness computed from
the respective transformation order. This loss of individuals –at
each iteration— is the price we have to pay for having an easy
codification of individuals.

After this discussion, let us introduce some more notation.
Given an influence diagram with n (decision and chance) nodes
to be removed, the individual will consist of n genes. Let S be
the set of possible node deletion sequences s = 〈t1, t2, . . . , tn〉,
where ti is the i-th removed node in the sequence. Then, TS i is
the total storage capacity of the influence diagram that results
when node ti is removed, maybe, after some arc reversal(s) when
ti is a chance node. We define the fitness of an individual s as
f (s) = max1≤i≤n T Si . The genetic algorithm searches for the
individual s ∈ S with minimum f (s).

Often node removals cannot be performed in any order, be-
cause there are constraints between them. Some nodes cannot
be removed until others have been removed previously (see
Section 1). These constraints or dependencies are very impor-
tant, since they influence the set of operations to be performed
on the individuals. For this reason, we take the following steps to
determine the relationships between the different node removal
operations:

1. Once the algorithm has generated a population (see
Section 4.2), it observes which nodes (genes) appear at po-
sition i (i = 1, . . . , n) in every individual’s genetic material.

2. A list of length n is then formed, indicating all the nodes that
appear at position i of every individual in the population in
its position i . Let Ni be the set of those nodes.

3. The nodes are grouped according to this list: if two or more
positions of the list, e.g., i, j , are such that Ni ∩ N j �= ∅,
then Ni ∪ N j form a group. Actually, what we have just

done is to form groups of nodes with internal dependen-
cies with respect to their removal; nodes that lead to par-
tial deletion orders. If a removal is always carried out at the
same position, it will lead to a singleton (as e.g. for decision
nodes removals). The groups represent stages in the solu-
tion of the influence diagram, which are related to the or-
der imposed by the decision nodes. Therefore, the nodes of
one group have to be removed before those of the following
group.

4. The last step is to determine the rules that govern each group,
i.e. rules of precedence in the group node removal process.
They are stored in a square matrix, whose dimension is equal
to the number of nodes in the group and where the elements
ai j = 1 if node j can only be removed once node i has been
deleted, with i, j nodes in the group. Otherwise, ai j = 0.

This process creates and controls a search space, with the
special individuals of our problem. Genetic operators will later
produce more individuals, also controlled by these rules and
groups to guarantee valid deletion sequences. Groups and rules
information will be used in the processes of genetic material
exchange among individuals, see Section 4.3. This information
will be constantly updated, whenever necessary, as long as new
individuals join the population.

Example 4. To illustrate groups and rules, let us take the influ-
ence diagram of Fig. 6.

Suppose that after an initial population has been generated,
its individuals are

〈X ZY AC B D〉,〈ABC X ZY D〉,〈X AC Z BY D〉,〈ABC XY Z D〉.
Then, the list is

N1 = {X, A};
N2 = {Z , B, A};
N3 = {Y, C};
N4 = {A, X, Z};
N5 = {C, Y, Z , B};
N6 = {B, Y, Z};
N7 = {D}

Fig. 6. Illustrating groups and rules.
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There are two groups:
⋃6

i=1 Ni = {A, B, C, X, Y, Z} is the first
group and {D} is the second group. Decision nodes will always
form unitary groups. The rules for the first group will be given
by the matrix

A

B

C

X

Y

Z




A B C X Y Z

0 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0




In this case, we have 80 possible node deletion sequences.
Note that since all the individuals are obviously valid deletion
sequences, the first step has output the rules that force Y and Z
to be deleted after X and that force B and C to be deleted after
A. At this step, there are no more rules.

As the population starts to evolve producing new individuals,
the crossover and mutation operators will be closed operations,
i.e., groups of the offspring will respect the rules. Therefore, the
ones will never disappear from the rule matrices. Conversely,
some zeroes may become ones during the evolution process, as
long as we approach certain (good) populations with more con-
straints among the relative positions of their genes, namely, as
long as the algorithm converges to a certain deletion sequence.
Eventually, new groups may be formed. For example, if the above
population produced the offspring 〈X Z ACY B D〉, and the ex-
tended population was reduced by dropping its first individual,
then the updated matrix would have a 1 at positions (1, 5) and
(3, 5), because Y is always deleted after A and after C . No new
groups are formed in this case. For this reason, the way we choose
the initial population and how we make it evolve is essential to
ensure that we are not trapped too early in a population that has
a constraint imposed by chance rather than by an improvement
in the search for the optimum.

4.2. Initial population

Our initial population will be a set of influence diagram deletion
sequences, for which the next node to be removed, if there is
more than one qualifying candidate, is selected at random. It is
well-known that a non-random initial population may increase
the speed of convergence of the genetic algorithm, at the expense,
however, of being trapped in local optima.

As regards the cardinal of this population, it should be taken
into account that: (1) too many individuals may slow down the
search process enormously, because the selection, crossover and
mutation operators and the computation of the objective function
would be hard to manage; (2) too few individuals do not ade-
quately cover the search space and may yield incomplete group
information. Based on empirical evidence, Alander (1992) sug-
gests a cardinal between l and 2l, where l is the number of genes

of an individual. In our case, l = n and we introduce this choice
as parameter λ of our algorithm.

4.3. Crossover and mutation operators

4.3.1. Selection of parents

Once the initial population has been chosen and its quality de-
termined via the objective function, parents are selected from it
in every iteration to produce children that will be added to the
population. We propose the selection of λ/2 individuals to pro-
duce children, i.e., we have λ/4 pairs for crossover. While fewer
than λ/2 individuals are selected, individual k is selected accord-
ing to a probability pk . Since a probability proportional to the
objective function has shown to lead to premature convergence
(local optima), we choose a probability based on a non-linear
ranking: all the individuals are sorted from best (ranking 1) to
worst (ranking λ) according to their fitness, and an individual
with ranking k is selected with probability pk proportional to
q(1 − q)k−1 where q ∈ (0, 1) is a fixed parameter (Mitchell
1998). Hence, this selection process provides the best individ-
uals (i.e., those with smaller f ) with a greater probability of
passing on their genes to future generations. The smaller f is,
the greater the probability of the individual being selected as a
parent and transmitting its genes, avoiding, however, that indi-
viduals with very good fitness dominate the population and the
selection mechanism (super-individuals).

Note that once the ranking is known, the probabilities are
always the same and do not change from generation to genera-
tion (static method), unlike the probabilities proportional to the
fitness (dynamic method).

4.3.2. Crossover

The parents selected previously are coupled at random. Each
couple will be forced, in principle, to produce two children. An
exception is the VR operator, for which parents are not joined
in couples (see below).

Crossover should increase the quality of the population, at
least on average. We have implemented a number of crossover
operators. The first one, designed for our problem, will be called
the group exchange operator (GE). Each offspring inherits com-
plete groups of genes from its parents. Which parent is selected
for each group is decided at random, although it might be done
taking into account the objective function: the progenitor with
a smaller f would have a greater probability of transmitting its
group of genes. The inheritance of complete groups of genes
assures that the newly created individuals represent valid eval-
uations of the influence diagram. However, offspring might be
equal to their parents or equal to each other, in which case we
reject the descendant and try again, because repeated individuals
are not allowed in the same generation. This is unlikely to occur
when we have enough groups.

Other crossover operators come from the well-known travel-
ling salesman problem (TSP). Although also an ordering prob-
lem, the TSP is rather different than ours: TSP is usually assumed
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to be symmetric (e.g., sequence 〈ABC〉 represents the same in-
dividual as 〈C B A〉) and only the relative order matters (e.g.,
sequence 〈ABC〉 represents the same individual as 〈BC A〉).
Furthermore, in our problem, not all the permutations are le-
gal individuals and this is why we defined the groups and rules
above.

Therefore, we have chosen the operators that can be used here,
having in many cases to adapt them to our specific problem. The
operators are: partially-mapped crossover operator (PMX), cycle
crossover operator (CX), order crossover operator (OX1), order-
based crossover operator (OX2), alternating-position crossover
operator (AP), and voting recombination operator (VR), see their
description in Appendix A.

Two main adaptations are carried out: (1) some operators have
to be applied at a group level due to the impossibility of mixing
genes of different groups; (2) some operators have been changed
a little in order to avoid too much computational cost when
rejecting either invalid or repeated individuals.

The following operators are applied at a group level: GE, OX1,
VR. To obtain more population diversity, the operator is applied
over several groups. The remaining operators, PMX, CX, OX2
and AP, can be applied directly to the whole individual without
taking into account the groups, because, due to their nature,
genes belonging to one group in the parents will never appear
in a different group in the offspring.

The following operators have been slightly modified: CX,
OX2, VR. As far as CX is concerned, when a cycle from one
of the parents (say parent 1) has finished, and we find that
the first element we can take from the other parent (say par-
ent 2) is equal in both parents (same gene at the same posi-
tion), the newly initiated cycle ends and we have to go back
to parent 1. Since it may produce offspring identical to one
of its parents (here to parent 1), we modify the original CX
operator by forcing it to continue taking genes from parent 2
in this situation. For instance, if parent 1 is 〈HC F E DG B A〉
and parent 2 is 〈AC EG H F DB〉, since gene C is the begin-
ning of the second cycle and occupies the same position in
both parents, then an offspring created with the modification
is 〈HC EG DF B A〉. Otherwise, this offspring would be iden-
tical to parent 1. Also, we observe that, unlike other crossover
operators, the same couple of parents always produce the same
couple of offspring, and if some offspring does not meet the
rules of some group(s), it is rejected and not included in the next
generation.

As far as OX2 is concerned, the number of random positions
in a parent string is fixed and equal to (the closest integer to)
40% of the number of genes in the individuals to avoid offspring
identical to their parents. However, we allow different positions
to be used to create both offspring rather than the usual same
positions. This will be a resort when the same positions lead to
offspring that do not meet the rules of the group. As an extreme
case, after trying all the possible combinations of the number of
positions chosen, no two valid offspring may be created from a
couple. In this case, only the successful offspring are included
in the next generation.

As far as VR is concerned, we maintain neither a fixed number
of parents p nor a fixed threshold t . Our proposal consists of
dynamically updating p and t through the generations to improve
its results: lower p and t in the initial generations, where it is not
very demanding to inherit genes, since initial populations that
are far from convergence have hardly many genes in common;
greater p, and t closer to p afterwards, as long as the population
is more uniform.

Apart from CX and OX2, the problem of rejecting invalid
individuals also occurs with the PMX, OX1 and VR operators,
although it is rather unlikely with VR. For PMX, we alleviate
the problem somewhat by allowing the two cut points that define
the substring or mapping section in the parents to be varied. For
OX1, we allow the length and position of the selected string
segments to be varied.

4.3.3. Mutation

Offspring are added to the population and there is a probabil-
ity close to zero of them mutating, i.e., changing their genetic
material somewhat. With mutation, new states are explored and
local optima are avoided. In our implementation, we introduce
a new parameter ρ that will be the probability of mutation.

We have implemented a number of mutation operators. We
have borrowed operators from the TSP again (see e.g., Larrañaga
et al. 1999): displacement mutation operator (DM), exchange
mutation operator (EM), insertion mutation operator (ISM),
simple-inversion mutation operator (SIM), inversion mutation
operator (IVM), and scramble mutation operator (SM), see their
description in Appendix A.

Once again, our specific problem demands all the operators
to be applied at a group level, because, otherwise, genes might
escape from the group they belong to. The resulting mutated
group is guaranteed to meet the rules. For example, with the EM
operator, it is necessary to check whether the selected exchange
between two genes i, j is allowable. This is done by checking
whether the element ai j of the associated matrix of this group is
equal to 0. Otherwise, two new random selections i ′, j ′ will be
drawn until two unconstrained positions are found. If a group
cannot mutate into a valid group under any circumstances (this
has happened with the DM, SIM and IVM operators), mutation
is not carried out and the group remains unchanged.

The EM and ISM operators require mutation of genes belong-
ing to groups of length greater than 1. However, the DM, IVM,
SIM and SM operators require groups of length greater than 2
to obtain reasonable mutations.

4.4. Reduction of the population

After crossover, the population has more individuals and some
of them are removed in order to reduce the population to its
original size λ. Since sometimes less than λ/2 new offspring are
created, we always remove as many individuals as new offspring
have been created.

Now we want the best individuals to be left in the population.
The best individual found is always kept and introduced in the



192 Gómez and Bielza

next generation, which is a somewhat elitist strategy (queen bee).
The remaining individuals are discarded according to a probabil-
ity based on a non-linear ranking, where this time the individuals
are sorted from worst to best depending on their fitness. There-
fore, individuals with a greater f will have a greater probability
of being removed from the population. This idea of generation
replacement is related to the Modified Genetic Algorithm intro-
duced by Michalewicz (1992).

4.5. Stopping rule

We have defined above the fitness f of each individual. We
introduce here another measure that complements f . Note in
Example 2, that the first and second sequences are optimal and
f (〈AR B DC〉) = f (〈AB RDC〉) = 34 (see Table 1). However,
the mean storage capacity required during influence diagram
evaluation by following the first sequence is 14.38 (= 115/8),
which is lower than 18.12, the mean size required by the second
sequence.

The mean size or mean storage capacity records the average
requirements a computer will need when evaluating the influence
diagram. Hence, we are interested not only in the worst moment
during the evaluation of the influence diagram (given by f ) but
also in an average behaviour throughout the process. This is
rather informative and descriptive in relation to a node deletion
sequence. Therefore, faced with two sequences with the same f
value, we will prefer the sequence with the lowest mean storage
requirements.

There are a number of stopping rules for genetic algorithms.
We use the following scheme to decide when the algorithm can-
not find a better solution: stop the algorithm if (a) after a fixed
number of iterations I , there is no improvement; or (b) the pop-
ulation has converged at level β.

For (a), we consider that there is an improvement in a new
iteration (i.e., a new generation) if there is some new individual
such that: (1) its f is better than that of the best individual of
the previous generation; or (2) if f ’s are equal, its associated
mean storage capacity is less than that of the best individual
of the previous generation. With this convergence criterion, the
termination of the algorithm is guaranteed.

For (b), following De Jong (1975), a population converges at
level β if at least β% of the genes have converged. A gene has
converged at level α if it has the same value in at least α% of the
individuals in the population. This criterion takes into account
the uniformity of the population.

5. Experiments

In this section, we carry out experiments to find the optimal
node deletion sequence of a real-size influence diagram related
to neonatal jaundice management. It will be called Jaundice,
see Bielza et al. (2000) for an extended version of this dia-
gram. The Jaundice graph has 46 nodes plus the value node
(2 decision nodes), 97 arcs and 10,936 initial memory posi-

tions. See Appendix B for its description. We also look for
the best parametrisation of the genetic algorithm, i.e. the tun-
ing of the strategic parameters, to the node deletion sequence
problem.

5.1. Genetic algorithm set-up

The number of genes is n = 40 (6 nodes were found to be
barren nodes), 7 groups are always formed with respective sizes:
8, 12, 1, 1, 2, 1, 15 genes. The following parameters are fixed as:
q = 1/40 (for the selection of parents); crossover and mutation
operators that work at a group level are applied to (the closest
integer to) 40% of the groups; α = β = 95; I = 400 iterations
(waiting for an improvement). Dynamic updating of p and t in
the VR operator is as follows: t = 3, p = 6, for less than 400
generations; t = 4, p = 7, for between 400 and 800 generations;
t = 5, p = 7, for more than 800 generations.

For each experiment, 20 executions of the algorithm are car-
ried out with the same genetic operators, probability of mutation
ρ, and population size λ. The best evaluation found at each ex-
ecution is recorded. Thus, we have f1, . . . , f20 for each experi-
ment. The results shown in the following section consist of the
best fi , their average and standard deviation, the average per-
centage of converged bits and the average number of iterations
performed before convergence.

5.2. Results

The first batch of experiments comprises all the possible combi-
nations of genetic operators (42 = 7 × 6), with a fixed popula-
tion size and mutation rate: λ = 30, ρ = 0.01 (see Table 2). This
is 840 (42 × 20) experiments altogether. The figures correspond
to the results explained above. Each one is computed from 20
executions of the algorithm.

Firstly, we analyse the best f -value found. It is 179,186,784
and it was only achieved 3 times out of the 840 executions run.
Only crossover operators GE (twice) and AP found it. Only
mutation operators IVM (twice) and ISM found it. A very close
value (179,186,816) was found by pairs OX1-DM, OX1-ISM
and GE-DM. Conversely, the worst f -value, yielded as the best
one by 30 executions, was greater than 716,746,751.

Secondly, we observe the remaining values at the 20 execu-
tions, summarised as the second and third values of each combi-
nation of operators in the table. It allows us to statistically analyse
the differences between these combinations. The Kruskal-Wallis
test gave a highly significant p-value for the differences among
means of all the crossover operators (p = 0.0004). For muta-
tion operators, p is 0.029. For a thorough study, we also per-
form an analysis of multiple comparisons of the operator effects
(function multicomp of S-Plus, Venables and Ripley 1994) to
see where any differences exist and how large the differences
are. It computes simultaneous 95% confidence intervals for all
pairwise differences between f means, based on the operator
types (the so-called MCA comparisons, Hsu 1996). Figure 7
shows it for crossover operators. The labeling states that Sidak’s
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Table 2. Results for the Jaundice graph. First batch

GE OX1 OX2 AP PMX CX VR

DM 179,186,816 179,186,816 179,190,240 179,190,240 179,191,984 179,193,216 179,191,968
220,010,770 186,164,595 188,155,685 251,867,379 213,043,132 206,076,227 224,989,033
124,500,930 31,165,243 40,069,863 130,841,273 122,579,939 65,648,376 72,538,455

24.5 42.75 50.375 40.875 56.5 37.375 53.75
647 625 591 644 565 785 1,037

EM 179,191,776 179,191,088 179,189,088 179,189,856 179,190,240 179,190,240 179,190,816
197,116,040 228,970,343 206,073,694 268,790,363 294,672,984 216,030,194 277,751,298

55,155,784 127,812,486 120,199,965 169,494,165 191,577,696 65,964,610 142,619,991
35.25 48.875 47.5 34.5 59.875 37.25 62.875

962 661 684 691 568 809 1,290
ISM 179,186,784 179,186,816 179,191,392 179,190,624 179,190,816 179,190,816 179,190,432

197,114,859 179,195,772 179,196,078 277,750,248 215,034,949 224,990,282 213,041,627
55,156,105 2,584 1,916 169,245,119 124,691,129 112,091,030 122,576,010

22.5 35.625 43 26.375 54.125 31.5 54.5
647 670 592 768 569 726 1,354

SIM 179,190,240 179,190,240 179,190,240 179,190,240 179,190,240 179,190,240 179,191,392
267,796,192 211,052,084 188,155,632 272,773,616 224,989,234 264,808,434 240,918,021
156,302,408 107,975,093 40,069,875 144,889,418 72,539,486 134,121,766 116,079,492

41.75 53.75 55.375 40 57.375 47.375 67.5
563 621 597 522 545 572 1,083

IVM 179,186,784 179,190,816 179,193,696 179,186,784 179,192,544 179,191,280 179,193,696
255,847,845 186,164,279 179,196,663 244,898,490 246,892,046 275,759,565 287,704,853
133,522,276 31,162,802 770 130,814,889 121,091,254 168,479,063 164,873,574

44 57.75 60.125 45.625 69.875 51.375 62.75
616 632 601 541 601 631 761

SM 179,189,856 179,190,240 179,189,856 179,190,240 179,191,968 179,190,240 179,190,240
417,122,766 195,125,038 179,196,307 281,730,541 281,732,429 255,850,094 293,678,942
206,656,468 49,450,943 1,850 175,988,849 195,639,128 158,530,897 184,625,643

42.625 57.5 60.125 36.125 63 44.875 59.625
542 695 634 600 562 653 908

method has been chosen by S-plus for critical point computation.
Intervals that do not intersect the vertical line identify statis-
tically significant comparisons of pairs of means declared as
different.

Fig. 7. Multiple comparisons for crossover operators

The analysis of mutation operators revealed no statistically
significant differences among them, except for pairs DM-SM
and ISM-SM both to the left of the vertical line.

The best crossover operators are OX1 and OX2 (without sig-
nificant differences between them). The worst is AP. VR and GE
are also bad but not as poor. We could say that the best mutation
operators are ISM and DM, and the worst is SM, although the
differences among them are not very significant.

It seems that the minimum f -value is rather hidden, judging
by the times it was found in the first experiments. Thus, the
second batch of experiments increases ρ up to 0.2, to introduce
diversity (see Table 3).

Now the (same) best f -value 179,186,784 was achieved 6
times, and the best value was greater than 716,746,751 fewer
times (26 rather than 30). Moreover, all crossover operators but
OX1 and CX found 179,186,784 as the best value. All mutation
operators but ISM found the same value.

The statistical analysis showed highly significant differences
between crossovers with the same ranking of operators, although
the worst is VR rather than AP. The only pairs of mutation opera-
tors with statistically significant differences were ISM-SIM and
ISM-SM, both to the left of the vertical line. The best mutation
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Table 3. Results for the Jaundice graph. Second batch

GE OX1 OX2 AP PMX CX VR

DM 179,186,784 179,192,544 179,193,104 179,191,776 179,190,624 179,191,136 179,190,240
197,115,804 179,196,475 179,196,706 251,868,430 197,115,883 235,940,893 273,767,354

55,155,864 1,296 848 130,841,952 55,155,389 80,235,524 134,083,303
22.125 28 35.25 39.75 38.25 34.375 38.5

795 825 747 605 619 686 1,053
EM 179,196,288 179,196,896 179,186,784 179,193,120 179,193,696 179,189,088 179,190,560

277,751,333 188,156,734 179,196,106 246,891,688 197,116,264 259,828,426 226,980,483
196,936,857 41,110,558 2,536 132,289,820 55,155,198 169,245,789 125,987,623

23 36.75 37.125 29 43.875 28.125 43
967 932 693 794 780 521 1,490

ISM 179,189,856 179,191,392 179,190,240 179,192,928 179,190,816 179,190,240 179,192,832
179,195,834 179,196,621 188,155,894 188,156,527 197,115,474 206,075,619 257,841,986

2,234 1,231 40,069,813 40,069,664 55,154,007 65,648,638 168,259,491
15.75 27.5 31.125 26.375 31.625 24.25 31.875

955 834 677 858 643 723 1,364
SIM 179,191,968 179,190,240 179,190,240 179,186,784 179,196,896 179,190,816 179,186,784

206,074,587 206,074,798 188,154,923 218,020,803 233,948,006 291,686,390 310,601,750
120,203,009 120,204,405 40,067,308 69,717,615 115,346,759 169,894,952 168,259,491

35.375 44.25 41.75 34.625 49.125 41.5 49.75
630 703 610 560 653 616 1,068

IVM 179,186,784 179,190,624 179,190,240 179,190,240 179,190,240 179,191,968 179,186,816
248,880,898 179,196,090 179,195,673 222,002,611 230,962,537 257,840,840 230,962,622

87,980,500 1,846 2,226 126,462,361 129,580,130 168,257,759 129,579,674
40.625 45.75 45 48.875 54.75 44.625 54.625

719 734 626 610 542 671 1,128
SM 179,189,088 179,190,240 179,190,624 179,191,968 179,186,784 179,190,240 179,190,816

291,688,061 188,155,120 179,196,071 232,954,368 222,001,408 241,913,920 290,690,693
186,803,451 40,067,676 1,882 131,292,245 126,464,551 133,526,119 143,191,788

38.125 45.375 44.5 40.125 48.125 44.75 52.125
636 663 579 605 487 659 1,012

operator is ISM (followed by DM) and the worst is SIM or
SM.

Figure 8 plots the (typical) pattern found with respect to the
evolution of the population for an execution of the algorithm.
For operators VR and SM, ρ = 0.2, λ = 30, the population is

Fig. 8. Evolution of the population. Parameters VR, SM, ρ = 0.2,
λ = 30

represented via the average of the f -values of all its individuals
(Y axis) against the number of generations (X axis).

The following experiments vary the population size and the
mutation probability to derive their influence. We consider
λ = 30, 50, 70 and ρ = 0.01, 0.1, 0.2 for pairs of fixed genetic
operators. Table 4 shows the results for two pairs: the first pair
is a good pair as deduced above (therefore, with better results),
while the other pair was randomly chosen.

The results improve as long as the population size grows and
the differences are statistically significant, especially between
pairs (30,50) and (30,70). For λ = 30, the average f -value was
225,486,970; for λ = 50, it was 190,312,013, and for λ = 70,
it was 187,158,842.

The results also improve for greater mutation probabilities
(see also Tables 2 and 3): for ρ = 0.01, the average f -value was
231,332,940; for ρ = 0.1, it was 205,853,280; and for ρ = 0.2,
it was 218,118,269. The differences were statistically significant
(p-value=0.0012). Note that the actual probability of mutation
is lower than ρ for some mutation operators (especially DM and
IVM) because of the rejected trials.

As far as the convergence of the algorithm is concerned,
VR leads to the slowest algorithms with statistically significant
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Table 4. Results for the Jaundice graph. Third batch

OX2-ISM VR-EM

ρ = 0.01 ρ = 0.1 ρ = 0.20 ρ = 0.01 ρ = 0.1 ρ = 0.20

λ = 30 179,192,816 179,190,816 179,186,784 179,190,240 179,191,952 179,191,984
241,913,880 188,156,358 179,195,834 248,880,666 278,746,572 216,028,511
167,239,946 40,069,704 2,752 133,713,655 186,435,652 65,960,918

38.875 35.125 27.5 54.625 50.125 43.875
614 660 716 1,256 1,218 1,420

λ = 50 179,192,256 179,189,856 179,186,784 179,186,784 179,186,784 179,191,088
179,196,346 179,195,647 179,195,854 224,987,213 186,164,083 193,132,938

1,288 2,407 2,717 112,088,563 31,165,364 42,897,093
43.875 29.25 24.5 62.125 45.75 42.75

529 503 582 1,129 1,235 1,376
λ = 70 179,190,240 179,189,856 179,186,784 179,190,240 179,189,088 179,186,784

179,195,845 179,194,306 179,194,978 200,100,226 206,072,913 179,194,781
2,077 2,881 3,120 51,058,156 120,200,149 3,197

58.375 35.125 26.625 53.375 54.5 46.625
484 463 494 964 1,122 1,159

differences with respect to the other crossover operators. We
could say that the fastest convergence is achieved with PMX, al-
beit without significant differences and premature convergence.
Mutation operators led to not quite conclusive significant differ-
ences among the average number of iterations to convergence
(p-value = 0.0251). The effect of the probability of mutation
on the iterations is not statistically significant either. However,
as the population size grows, the algorithm reaches its conver-
gence in fewer iterations. The rationale for this may be that since
the search space is broader at each iteration, a good individual
is reached earlier. Finally, there does not seem to be any rela-
tionship between the solution found by the algorithm and the
average number of iterations to convergence.

All the executions stopped after the fixed number of iterations
without any improvement. Moreover, the average percentage of
converged bits does not influence the minimum found (this may
be due to the existence of various remote optima). Two conclu-
sions were drawn from these percentages. First, as the probabil-
ity of mutation increases, this average percentage decreases. It is
reasonable since mutation includes diversity in the population,
and it will be harder to reach uniformity in the genes. Second,
with statistically significant differences, the lowest (highest) per-
centages of converged genes correspond to crossover operator
GE (PMX, VR) and mutation operator ISM (IVM).

Having run our algorithm so many times with different con-
trol parameters, we are pretty sure that the minimum found
(179,186,784) is the global minimum or close to it. Even so,
we ran the algorithm with a large population size of 200 indi-
viduals, with the same best minimum.

5.3. Results versus other techniques

With our genetic algorithm, the memory requirements of the
Jaundice diagram has improved three orders of magnitude with

respect to the worst case and one order with respect to Kong’s
heuristic. With the semi-exhaustive method explained in Section
3, we obtained (sometimes) similar results to those of the genetic
algorithm, but at the expense of a running time of 4 days. If
we solved the influence diagram breaking node deletion ties at
random, we would have to solve the diagram a huge number of
times without any guarantee that a result similar to that of the
genetic algorithm would be achieved.

Moreover, as suggested in the literature, we implemented a
local search algorithm to “climb the hills” found by the genetic
algorithm and improve the results. Thus, when the genetic al-
gorithm has terminated, we explore all the individuals formed
from the best individual by exchanging two genes, whenever it
leads to a feasible individual. However, this attempt at refinement
has not improved our results. We also tested niching methods
(Mahfoud 1995) to maintain a population of diverse individu-
als and to avoid uniformity, although they have not provided
satisfactory results (due to the peculiarities of the problem).

We carried out more experiments to find optimal node dele-
tion sequences in different influence diagrams. Table 5 shows
their main features and the results obtained using Kong’s heuris-
tic, the semi-exhaustive search being run for a long time, and the
genetic algorithm with the pair of operators GE and EM (ran-
domly chosen). As before, 20 executions were carried out for
each genetic algorithm, and the best results are shown.

Note that the genetic algorithm always gives the best results
and the memory requirements reduction is sometimes sizeable.
The semi-exhaustive search turns into a pure random search in
large size problems, because of the excessive pruning required.

6. Final remarks

Solving a decision problem is NP-hard (Cooper 1990), and
graphical methods developed in the last decade (see e.g., Bielza
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Table 5. Results for different diagrams and methods

D1 D2 D3 D4

Chance nodes 29 38 45 67
Decision nodes 2 2 5 5
Arcs 72 97 123 184
Initial memory 7,972 11,150 13,917 19,279

positions
Genetic algorithm 7.16 ∗ 108 5.37 ∗ 108 1.28 ∗ 1011 1.02 ∗ 1018

Semi-exhaustive 9.27 ∗ 108 9.97 ∗ 108 6.72 ∗ 1012 7.78 ∗ 1019

search
Kong’s heuristic 5.80 ∗ 1010 2.15 ∗ 109 2.64 ∗ 1013 1.51 ∗ 1021

and Shenoy 1999) try to address complexity by implementing
algorithms that take advantage of local computations. Further-
more, some steps of these algorithms lead to more than one
possible node deletion sequence, which influences the computa-
tional burden, and the choice of the best one is another NP-hard
problem.

We have designed a genetic algorithm aimed at alleviating
the latter problem. It uses only a qualitative evaluation of the
influence diagram and is easy to implement. The selection of
adequate individual codification and adequate parameter com-
binations increases the chance of finding a near-optimal solution
in a reasonable number of iterations. Our experiments confirmed
this and identified the importance of choosing a good crossover
operator rather than a mutation operator, and the relevant effect
of the population size and the probability of mutation on the
results.

The computational saving is sizeable (depending on the influ-
ence diagram characteristics) as compared to other heuristics.
Though our parameter study has taken a long time, it does not
slow down the usual Decision Support System activity since the
study is performed as a preliminary step. The algorithm output
will be the input, i.e. the node deletion sequence with optimal
storage capacity, to guide the standard evaluation of influence
diagrams. Nevertheless, memory requirements of large dia-
grams may still exceed the capacity of any PC. Fortunately, the
influence diagram can be evaluated by combining this genetic
algorithm with other techniques (see Bielza et al. 2000).

Likewise, the problem of node deletion sequences is present
in other graphical models used in Decision Analysis. For ex-
ample, valuation networks (Shenoy 1992) have more flexible
information constraints and provide more possible deletion se-
quences, making the problem even worse. Our proposal could
also be applied to these other models.

Other lines of future research are directed towards experi-
menting on an adaptive genetic algorithm (maybe with a variable
period of update, Chew, Ong and Lim 2002); on a dynamic vari-
ation of some parameters of the algorithm, like ρ (see Fogarty
1989); or on the genetic operators, to change the way parents
are selected or the population is reduced; and to propose other
crossover and mutation operators. Other modern optimisation
techniques, like simulated annealing, might be devised.

Appendix A: Genetic operators

The partially-mapped crossover operator (PMX) builds an off-
spring by choosing a substring from one parent and copying the
order and position of as many genes as possible from the other
parent. If a gene is already present in the offspring, it is replaced
according to the mappings created between the genes from that
substring and the analogous one in the other parent, both defined
by choosing two random cut points on the parent strings. For ex-
ample, for parents p1 = 〈ABC DE F〉, p2 = 〈E D AB FC〉, an
offspring is o1 = 〈E BC DF A〉 if the substring consists of the
third and fourth genes. The mappings are C ↔ A, D ↔ B. We
first copy the substring and o1 = 〈− − C D − −〉. Then, its first
gene would be an E , and the second gene should be a D. But o1

already has that gene and the second mapping leads to allocate a
B as the second gene. Finally, F is copied into the fifth position,
and A is the last gene due to the first mapping. By exchanging
the parent roles, a second offspring can be built. In the example,
it would be o2 = 〈C D AB E F〉.

The cycle crossover operator (CX) builds offspring trying to
take each gene and its position from one of their parents. For
p1 and p2 above, we start taking genes from p1 and we have
o1 = 〈A − − − −−〉. Now we look for A in p2 and it is found
in the third position. The third gene from p1 is C and then
we have o1 = 〈A − C − −−〉. This, in turn, implies o1 =
〈A − C − E F〉. The following movement would lead to select
an A again, completing a cycle. Thus, the remaining genes are
taken from p2 in the same way, to give o1 = 〈ADC B E F〉.
Similarly, o2 = 〈E B ADFC〉.

The order crossover operator (OX1) copies a substring from
one parent, as PMX. Then, it tries to preserve the relative order
of genes from the other parent. For p1 and p2 above and the same
substring than in PMX, we start from o1 = 〈−−C D−−〉. Now,
starting from the second cut point (between the fourth and the
fifth gene), genes from p2 are copied in the same order, whenever
they are not already present. After reaching the last gene, we
continue from the first position. Thus, the sequence to copy
from p2 is F E AB, obtaining o1 = 〈ABC DF E〉. Similarly,
o2 = 〈C D AB E F〉.

The order-based crossover operator (OX2) selects at random
several positions in a parent, say in p2. Next, genes in the se-
lected positions are deleted from p1. Finally, o1 is p1 but its
deleted genes are filled in from p2, following the p2 order. Thus,
in our example, suppose the first, second and fourth positions
are selected. The corresponding genes in p2 are E, D and B,
in this order. These genes are located at the second, fourth and
fifth positions in p1. Hence, o1 = 〈A − C − −F〉. Finally,
substring E DB completes the offspring: o1 = 〈AEC DB F〉.
Similarly and using the same selected positions, o2 =
〈ADB E FC〉.

The alternating-position crossover operator (AP) simply
builds an offspring by alternately selecting a gene from each
parent, whenever it is not already present in the offspring. In the
example, o1 = 〈AE B DC F〉 and o2 = 〈E ADBC F〉.
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The voting recombination crossover operator (VR) is a
p−sexual crossover operator (p ≥ 2), such that a gene is copied
into the offspring whenever it occupies the same position in at
least t (t ≤ p) parents. t is the threshold. The remaining posi-
tions of the offspring are filled randomly with the genes not yet
allocated. In our example, also with p3 = 〈AE B DC F〉, p =
3, t = 2, the offspring might be o1 = 〈E AC B DF〉.

The displacement mutation operator (DM) selects a substring
at random, removes it from the parent and inserts it in a random
place. For example, if substring BC D is chosen in p1 above,
and the random place is after gene E , then o = 〈AE BC DF〉.
The insertion mutation operator (ISM) is like DM but with a
substring of length 1. Thus, if gene B is randomly chosen in
p1, and the operator randomly inserts it after gene E , then o =
〈AC DE B F〉.

The exchange mutation operator (EM) exchanges two ran-
domly selected genes. If these are the second and fourth genes
in our example, it results in o = 〈ADC B E F〉. The simple-
inversion mutation operator (SIM) reverses the substring be-
tween two randomly selected cut points. For example, if the cut
points are selected between gene 2 and 3 and between gene 5
and 6, the result is o = 〈AB E DC F〉.

The inversion mutation operator (IVM) is like DM but the
substring is inserted after being reversed. The same example
used to illustrate DM would result in o = 〈AE DC B F〉. The
scramble mutation operator (SM) selects a substring at random
and scrambles the genes in it. Thus, if substring BC D is chosen
in p1 above, a possible result would be o = 〈AC B DE F〉.

Appendix B: The Jaundice graph

We describe here the Jaundice influence diagram with notation:
Ci is a chance node, Di is a decision node, v is the value node,
N # {C(N )} denotes node N with domain cardinal # and prede-
cessors C(N ).

D1 5 {C19, C3, C7, C21, C29, C37, C22, C39, C43, C44, C26, C40,

C41, C42, C1, C33, C9, C6, C36, C18, C34};
D2 3 {C20, C4, C8, D1}; C1 2 ∅ ; C2 2 ∅; C3 2 {C7, C19};

C4 2 {C8, C20}; C5 5 ∅; C6 3 ∅;
C7 3 {C30, C31, C2, C38, C16, C17, C27, C28, C35};

C8 3 {C30, C31, C2, C38, C16, C17, C27, C28, C35};
C9 3 ∅; C10 6 {C11, C12}; C11 6 {C3, C32, C19};

C12 6 {C3, C32, C19}; C13 5 {C14, C15};
C14 5 {D1, C3, C19}; C15 5 {D2, C4, C20}; C16 2 ∅; C17 2 ∅;

C18 3 ∅; C19 2 ∅; C20 2 ∅; C21 3 ∅;
C22 2 ∅; C23 2 {C24}; C24 2 ∅; C25 4 ∅; C26 4 ∅; C27 2 ∅;

C28 2 ∅; C29 4 {C37, C3}; C30 2 ∅;
C31 2 ∅; C32 3 {C30, C31, C2, C38, C16, C17, C27, C28, C35};

C33 2 ∅; C34 2 {C18}; C35 2 ∅; C36 4 ∅;
C37 4 ∅; C38 2 ∅; C39 3 {C2}; C40 2 {C30}; C41 2 {C42, C31};

C42 2 {C31}; C43 2 {C2}; C44 3 {C2};
v {C5, C6, C9, C10, C13, C36};
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