
DEPARTAMENTO DE INTELIGENCIA ARTIFICIAL
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Abstract

Machine learning, as one of the fundamental tools of artificial intelligence, has acquired
growing importance in the last decades. The increasing availability of large amounts of
data and more computational processing power available at a low price have contributed
to the spread of machine learning methods in almost all branches of technology. While a
great part of the current research focuses on the creation of new algorithms and methods
to tackle different problems, it is widely recognized that formal analysis and theoretical
results are necessary to really understand the algorithms employed, their limitations and
their capabilities. The work developed in the present thesis is focused on this last aspect
of the research in machine learning.

We study Bayesian network classifiers and in general generative classifiers based on
probabilistic graphical models. Probabilistic graphical models are widely studied in the
statistic literature and in this thesis we analyze them in the context of one of the most
basic problem in machine learning, binary classification. Our main result is a description
of the implications, for the induced decision functions, of the conditional independence
statements holding in the probability model. We will state results both for a wide class
of Bayesian network classifiers and for undirected Markov network classifiers.

In particular, we describe the classes of discrimination functions associated with
some of the most used Bayesian network classifiers over categorical predictors variables.
We obtain polynomials interpolating the induced discrimination functions, and thus
representing the corresponding decision functions. Thanks to this characterization we
are able to bound the number of decisions representable by Bayesian network classifiers
with given structures.

We extend the binary classification results to chain multi-label classifiers, analyz-
ing their expressive power when Bayesian network are used as base models. Finally,
we describe an algebraic and geometric approach to study discrimination functions of
generative classifiers under general Markov properties. The given approach extends the
results for Bayesian network classifiers and introduces an elegant framework, based on
finite differences, to study discrimination functions of generative classifiers.
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Resumen

En las ultimas décadas, el aprendizaje automático ha adquirido importancia como una
de las herramientas fundamentales en inteligencia artificial. El incremento en la disponi-
bilidad de datos y capacidad computacional disponible a bajo coste han contribuido
a extender los métodos de aprendizaje automático en casi todas las ramas de la tec-
noloǵıa. Mientras que gran parte de la investigación se centra en el desarrollo de nuevos
algoritmos y métodos para tratar diferentes problemas, es ampliamente reconocido que
el análisis formal y los resultados teóricos son necesarios para entender los algoritmos
empleado, sus limitaciones y sus capacidades. El trabajo desarrollado en esta tesis se
centra en éste ultimo aspecto de la investigación en aprendizaje automático.

Estudiamos los clasificadores con redes Bayesianas y en general clasificadores gen-
erativos basados en modelos gráficos probabilisticos. Los modelos gráficos probabilisti-
cos han sido y siguen siendo ampliamente estudiados en estad́ıstica y en esta tesis los
analizamos en el contexto de uno de los problemas más representativos en aprendizaje
automático, la clasificación binaria. Nuestro resultado principal es la descripción, tanto
para redes Bayesianas como para modelos de Markov no dirigidos, de las implicaciones
de las independencias condicionadas en las funciones de decisión asociadas.

En particular, describimos las familias de funciones discriminantes asociadas con las
familias de clasificadores con redes Bayesianas más utilizados. Construimos polinomios
que interpolan las funciones discriminantes inducidas, describiendo aśı las funciones de
decisión. Gracias a la representación polinomial de las funciones discriminantes somos
capaces de acotar el número de decisiones representables por clasificadores con redes
Bayesianas.

Extendemos estos resultados a clasificadores en cadena para problemas multi eti-
queta, analizando su capacidad expresiva asumiendo que los modelos están basados en
redes Bayesianas. Por último, describimos un método algebraico y geométrico para estu-
diar funciones discriminantes de clasificadores generativos bajo propiedades de Markov
generales. El método empleado extiende los resultados obtenido en el caso de las redes
Bayesianas y describe un marco formal, basado en diferencias finitas, para estudiar las
funciones discriminantes de clasificadores generativos.
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Chapter 1

Introduction

The most important and representative problem in machine learning is binary supervised
classification, that is, the problem of building a model (classifier) from training data
able to successively recognize a simple binary class. Notorious examples of this problem
include, but are not limited to spam filtering [Sahami et al., 1998], medical testing for
a given disease [Morales et al., 2013] and failure detection in industrial processes [Jung
et al., 2018, Varghese et al., 2015].

Bayesian network (BN) classifiers [Bielza and Larrañaga, 2014] are probably the most
popular example of generative classifiers and they have been employed successfully in
various applications. Bayesian network classifiers present many advantages, as the ability
of providing estimation for the posterior class probabilities, the interpretability of the
model and the inherent insights into the handled problem that a black-box algorithm is
unable to provide. Moreover Bayesian Network can be built easily using a combination
of data-driven knowledge and experts’ opinions.

Bayesian network classifiers are based on a graphical modeling of the underlying
probability distribution [Lauritzen, 1996, Pearl, 1988]. They range from the simplest
naive Bayes [Minsky, 1961] classifier, where the predictor variables are assumed to be
conditionally independent given the class variable, to the unrestricted Bayesian classifier,
where a general form of Bayesian network [Pearl, 1988] is permitted.

While the sound probabilistic setting of graphical models gives solid theoretical foun-
dations to the use of Bayesian network classifiers, these methods, as every generative
classifier, carry some degree of confusion on which are the induced decision functions.
However, the so-called discriminative classifiers, usually entail naturally a description of
the decision function employed (e.g., a linear function for logistic regression).

The first rigorous result about the induced decision functions of BN classifiers was
given by Minsky [1961], showing that the decision boundary in naive Bayes classifiers
with binary predictors is linear (a hyperplane in the Boolean hypercube). Since then
some other results were provided but there is not in the literature a general study of dis-
crimination functions induced by generative classifiers under conditional independences.
This thesis intends to provide such a framework.

In this thesis we study generative classifiers for binary class and categorical predic-
tor variables. We focus on the expressive power and theoretical properties, firstly, of
Bayesian network classifiers and lastly of general generative classifiers under Markov
properties. In the next section we state the assumptions, hypotheses and objectives of
the present thesis. Then we shortly describe the structure of the manuscript.

1



CHAPTER 1

1.1 Hypotheses and Objectives

We describe here the assumptions, hypotheses and objectives of the present thesis.

Assumptions

• We will only consider binary classification problems, and as an extension, multi-
label problems (seen as multi binary-class problems).

• The predictor variables will be always categorical. Some ideas will be also extended
to continuos variables, in this case assumed to be Gaussians.

• We will always assume a probabilistic setting. That is, the class variable and
the predictors are considered to be random variables, and we assume that a joint
probability distribution exists.

Hypotheses

• It is possible to formally describe the family of decision functions representable
by Bayesian network classifiers and in general generative classifiers with Markov
assumptions.

• Describing generative classifiers and their properties allow to understand some
well-known intuitions in the machine learning community and suggest some ideas
for developing new models.

Based on the above hypotheses we formulate the following main objectives of the
thesis:

Objectives

• Extend the known results about the expressive power of Bayesian network classi-
fiers to general graphical structures and categorical predictor variables with more
than two values.

• Describe a framework to study the expressive power of generative classifiers.

• Apply the results to multi-label methods, such as binary relevance and chain clas-
sifiers.

• Formalize the implications of general Markov assumptions on the induced decision
functions for generative classifiers.

• Understand the implications on the generative vs. discriminative classifiers and
suggest ideas about new methods for generative classifiers.

1.2 Document Organization

The present dissertation is divided into six chapters. The first one is the present intro-
duction.

2



CHAPTER 1

Background (Chapter 2) contains the main mathematical definitions as well as some
well-known results in the literature. It presents a simple introduction to graphs (Sec.
2.1), with useful notations to develop the theory of graphical models (Sec. 2.2). Then,
binary classification is presented (Sec. 2.3), with a focus on generative models and in
particular Bayesian network classifiers (Sec. 2.3.4).

The following three chapters contain the original research developed during the the-
sis. For each chapter an individual introduction is given and conclusive sections summa-
rize the results. Chapter 3 contains the main results for decision functions of Bayesian
network classifiers. Chapter 4 deals with extensions to multi-label problems, in par-
ticular chain classifiers with Bayesian networks. Chapter 5 formulates some results for
generative classifiers under the undirected Markov property.

Finally, Conclusions (Chapter 6) summarizes the contributions of this dissertation
and suggests some ideas for future research. Moreover the published contributions de-
rived from this work are listed in connection with the corresponding chapters.
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Chapter 2

Background

In this chapter we state some basic definitions and some background results about prob-
abilistic graphical models. We also define formally binary classification problems and
what we intend with generative classifiers. Moreover we give a brief introduction to
Bayesian network classifiers and we review the previous approaches to the study of their
expressive power.

2.1 Notations and Basics

We use bold letters, x,X or k, to represent elements of a product space, and letters with
a subscript to represent the respective components. For example x2 indicates the second
component of x.

We denote random variables with capital letters as X,Y, Z,X1, X2, Xi, Xn. With
bold capital letters we denote vectors of such random variables, and with subscripts we
indicate the components of the vector as follow:

X = (X1, X2, . . . , Xn).

With x, x1, x2 we denote the values of the corresponding random variables X,X1, X2.
Similarly, x will denote the value of the random vector X. We denote with Xi the finite
sample space of Xi and with the bold symbol X the sample space of the random vector
X = (X1, . . . , Xn), that is

X = ×ni=1Xi.
If not stated otherwise we will assume the random variable Xi to take value in a cate-
gorical sample space, that is a discrete and finite space. Some example of such sample
space are the logical values {true, false}, a set of colors {blue, red , yellow, green}, the
bloody type of a person {A,B,AB,O}, the political party a voter can choose, the type
of movie {horror, comedy, drama, . . .} or simply the first k integer [k] = {1, . . . , k}. In
general we will denote the values of Xi as Xi = {ξ1

i , . . . , ξ
mi
i }. Obviously, we can always

consider Xi embedded in R.
We will use letters P,Q to denote probability distributions of random variables or ran-

dom vectors. Since we will consider mainly categorical random variables, the probability
distributions are obviously specified by their values over the atoms {P(X = x)}x∈X .

We write P > 0 to denote that the probability P does not assign zero probability to
any value, that is,

P(X = x) > 0 for all x ∈ X .

5
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Moreover for every n ∈ N we denote with [n] the set of the first n positive integers,
[n] = {1, . . . , n}, and for every A ⊆ [n] we denote with XA the random vector with
components (Xi)i∈A. Similarly, xA = (xi)i∈A and XA is the sample space of XA,
XA = ×i∈AXi. Analogously, we define the complementary X−A = (Xi)i∈[n]\A, x−A and
X−A = ×i/∈AXi.

Given a dataset of observations, D = {xj}j∈[N ], we define the marginal counts

ND(XA = xA) as the number of observations out of N such that xjA = xA.

2.1.1 Conditional Independence

If X,Y, Z are random variables with probability distribution P. We say that X is
conditionally independent of Y given Z if for any measurable set A in the sample space
of X, there exists one version of the conditional probability P(X ∈ A|Y,Z) that is not
a function of Y . If X,Y, Z are discrete random variables the conditional independence
is equivalent to

P(X = x, Y = y|Z = Z) = P(X = x|Z = z) P(Y = y|Z = z).

When X is conditionally independent of Y given Z we write

X |= Y |Z.

Obviously if Z is trivial the conditional independence reduces to the usual independence
between random variables.

Similarly we can define conditional independence between random vectors (given
random vectors).

2.1.2 Graphs

A graph G is a pair (V,E), where V is the set of vertices or nodes and E the set of edges.
We will always consider simple graphs, that is, with no multiple edges and no loops.
The set of edges is a subset of the Cartesian product V × V . For a, b ∈ V , if both edges
(a, b) and (b, a) are present in E we will call the edge undirected, otherwise it will be
called directed. A graph with just undirected edges is called an undirected graph while,
obviously a directed graph is a graph where all the edges are directed. A directed edge
it is also called an arc. We will consider just directed or undirected graphs, the context
will make it clear the type of graph considered if it is not stated directly.

Given a graph G = (V,E) and a subset of the vertex set A ⊂ V , the induced subgraph
GA is defined as the graph with vertex set A and edges {(a, b) s.t. (a, b) ∈ E and a, b ∈
A}.

Two nodes in a graph are called adjacent or directly connected if there is an edge
between them. A node a is said to be a parent of a node b in a directed graph if the
arc (a, b) is present. Conversely b is said to be a child of a. With pa(a) we denote the
subset of parents of a.

∂A denotes the boundary of a subset of nodes A ⊂ V . It consists of the others nodes
of the graph G that are adjacent to a vertex in A. If A = a we will simply write ∂a.

We say that two nodes a, b are connected if there exists a sequence of nodes {ai}ki=0

such that a0 = a, ak = b and (ai, ai+1) or (ai+1, ai) belongs to E. Such a sequence is
called a path between a and b.

6
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X Y

Z

(a)

X Y

Z

(b)

Figure 2.1: Graphical representation of (a) a V -structure and (b) an example which is
not a V -structure

Node a is said to lead to b if there exists a directed path that goes from a to b, that
is, there exists a sequence of nodes {ai}ki=0 such that a0 = a, ak = b and (ai, ai+1) ∈ E.
The ancestors of a, denoted an(a), are the nodes that lead to a (but a does not lead to
them). The descendants of a, de(a), is the set of nodes b such that a leads to b (but b
does not lead to a) and the non-descendants of a, is the set nd(a) = V \ (de(a) ∪ {a}).
For A ⊆ V we denote with an(A) = ∪a∈Aan(a) \ A, de(A) = ∪a∈Ade(a) \ A and
nd(A) = V \ (de(A) ∪A).

The graph G is called complete if all the nodes are mutually adjacent. If GA is
complete we say that A ⊂ V is a complete subset of nodes, or equivalently that A
induces a complete subgraph. If a complete subset of nodes A ⊂ V is maximal with
respect to inclusion (there is no B ⊇ A such that B is a complete subset of nodes) A is
called a clique. With K(G) we indicate the set of the cliques of G.

A V -structure (or immorality) appears when two parent nodes share the same child,
but are not directly connected (Figure 2.1a). If G is a directed acyclic graph we denote
with Gm the moral graph of G, that is, the undirected graph formed from G by marrying
(connecting) parents and deleting directions.

If the graph G = (V,E) is undirected and A,B,D are three mutually disjoint subsets
of V , we say that D separates A and B in G if every path from A and B pass through
D.

We will always deal with graphs such that the nodes are indexed by a set of random
variables, so we will use the same symbols (e.g., X1, X2, Xi, C) to denote the random
variables and the nodes of the graph. In this case, we will write Xpa(i) for pa(Xi), Xan(i)

for an(Xi) and so on.

2.2 Probabilistic Graphical Models

Probabilistic graphical models over discrete random variables are well-studied parametric
models. In general they consist of a graph G where each vertex is associated with a
random variable and a joint probability distribution which satisfies some conditional
independence statements that can be read from the graph.

Depending on the type of graph we can have different graphical models. The two
main and most studied types are Markov network (for undirected graphs) and Bayesian
networks (BNs), when the graph is directed and acyclic.

In this section we consider a vector of categorical random variables X = (X1, . . . , Xn)
taking values in X = ×iXi with joint probability distribution P and a graph G with the

7
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n vertices indexed as the random variables X1, . . . , Xn. The results we provide in this
section are all well-known results in statistics and an extensive treatment can be found
in Lauritzen [1996]. In particular we restrict ourselves to discrete sample spaces. In
general the results in this section are valid for every sample space given the existence
of a density function for the probability P with respect to a product measure over the
sample space (e.g. Gaussian distributions).

2.2.1 Markov Models

Assume the graph G to be undirected. We define the following undirected Markov
properties:

(P) pairwise Markov property: if for any pair of non-adjacent vertices Xi and Xj

we have that

Xi |= Xj |X−{i,j}

(L) local Markov property: if for any vertex Xi

Xi |= X−D|∂Xi where D = Xi ∪ ∂Xi

(G) global Markov property: if for any A,B,D disjoint subsets of [n] such that XD

separates XA and XB in G,

XA |= XB|XD

Under positivity of the joint probability it is possible to prove that all the three
Markov properties are equivalent. Moreover the following well-known result holds [Ham-
mersley and Clifford, 1971, Lauritzen, 1996, Gandolfi and Lenarda, 2017].

Theorem 2.1 (Hammersley-Clifford). If the joint probability P is strictly positive then
P satisfies the pairwise Markov property with respect to G if and only if it factorizes
according to G, that is,

log P(X = x) =
∑
A⊆[n]

φA(xA) s.t. φA ≡ 0 if GA is not complete.

The functions φA are called interactions. If the cardinality of A is equal to m we say
that φA is an interaction of order m− 1.

The proof of Theorem 2.1 (see Lauritzen [1996]) is based on the following combina-
torial result.

Lemma 2.1 (Möbius inversion). Let ψ and φ be functions defined on the set of all subsets
of a finite set Γ taking values in an Abelian group. Then the following two statements
are equivalent:

(i) For all A ⊆ Γ, ψ(A) =
∑

B⊆A φ(B).

(ii) For all A ⊆ Γ, φ(A) =
∑

B⊆A(−1)|A\B|ψ(B).

8
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The joint probability P is said to be Markov with respect to G if it is strictly positive
and satisfies the pairwise Markov property (P) (or (L) or (G) equivalently). We indicate
with M(G) the class of all probability distributions Markov with respect to G.

The closure of M(G) under point-wise convergence is the space of extended Markov
probabilities M(G). We have that also probabilities in M(G) satisfy (P), (L) and (G),
as conditional independence is preserved by point-wise limits [Lauritzen, 1996].

It is important to notice that probabilities in M(G) are identified by the clique
marginals. Formally we have the following result:

Lemma 2.2. Let P,Q ∈M(G) if for all A ∈ K(G)

P(XA = xA) = Q(XA = xA), ∀xA ∈ XA,

then P = Q.

Maximum-Likelihood Estimation

Although the maximum-likelihood estimator for extended Markov models exists and
is unique it cannot be solved generally in closed form [Lauritzen, 1996] and iterative
methods have to be used. The most common method is the iterative proportional fit-
ting algorithm (IPF) that consists of iteratively adjusting the marginal of the cliques
[Fienberg, 1970]. In particular, for A ∈ K(G), we define:

TA P(X = x) = P(X = x)
ND(XA = xA)/|D|

P(XA = xA)
.

Let A1, . . . , Ak be an ordering of the cliques of G. We define the j-th step of the
iterative proportional scaling algorithm as

Pj = TA1TA2 · · ·TAk
Pj−1 .

We thus have that for every starting probability P0 ∈ M(G), Pj converges to the
maximum-likelihood estimation in M(G).

2.2.2 Bayesian Networks

We assume now that the graph G is a directed acyclic graph. In this case we will say
that a probability P recursively factorizes with respect to G if

P(X = x) =
∏
i∈[n]

P(Xi = xi|Xpa(i) = xpa(i)).

If we consider the moral graph Gm we have:

Lemma 2.3. If P recursively factorizes with respect to G, an acyclic directed graph, then
it factorizes according to the (undirected) moral graph Gm. Thus, it obeys the global, local
and pairwise Markov properties relative to Gm.

For directed acyclic graphs we can define the following directed Markov properties:

(DL) directed local Markov property: when each variable is conditionally indepen-
dent of its non-descendants, given its parents:

Xi |= Xnd(i)|Xpa(i)

9
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(DG) directed global Markov property: if

XA |= XB|XD,

whenever A and B are separated by D in
(
Gan(A∪B∪D)

)m
.

We have the following result equivalent to the Hammersley-Clifford theorem (Theo-
rem 2.1),

Theorem 2.2. Let G be a directed acyclic graph, and P a probability distribution on the
sample space X . The following statements are equivalent:

(i) P factorizes recursively with respect to G.

(ii) P obeys the directed global Markov property for G.

(iii) P obeys the directed local Markov property for G.

Observe that, in contrast to the undirected case, the assumption of positiveness is
not needed.

When P satisfies one of the conditions of Theorem 2.2 we say that P is a directed
Markov distribution with respect to G or that P satisfies the directed Markov property
with respect to G. For every undirected acyclic graph G and P a directed Markov
distribution (with respect to G), the pair (G,P) is called a Bayesian network (BN) and
G is called its structure.

We will denote BN (G) the set of directed Markov distributions with respect to G.

Maximum-Likelihood Estimation

Estimation of parameters, that is the conditional probability tables of Bayesian networks,
is easily done with empirical frequencies. That is,

P̂ =
∏
i∈[n]

P̂(Xi|Xpa(i)),

where

P̂(Xi = xi|Xpa(i) = xpa(i)) =
ND(Xi = xi,Xpa(i) = xpa(i))

ND(Xpa(i) = xpa(i))
.

Alternatively, to avoid zeros counts, we can use Laplace smoothing of the parameters,

P̂(Xi = xi|Xpa(i) = xpa(i)) =
ND(Xi = xi,Xpa(i) = xpa(i)) + α

ND(Xpa(i) = xpa(i)) + α|Xi|
.

2.3 Classification

In this section we introduce binary classification problems, we will define what we intend
with classifiers, probabilistic classifiers, generative classifiers and related concepts.

10
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2.3.1 The Binary Classification Problem

The classification problem can be stated simply as the task of learning, from a training
dataset, a model that is able to classify or discriminate between the two classes.

We will always assume that the class, C, takes values in {−1,+1}. The choice of
the these values is totally arbitrary and this particular choice will become clear in the
following.

Following the literature on theory of pattern recognition [Devroye et al., 1996] we
define a classifier or decision function simply as a function φ : X → {−1,+1}. We will
call C the set of all classifiers over predictor variables taking values in X . Observe now
that by our definition a classifier needs always to choose between one of the two classes.

We stress here that with the word classifier we indicate the function that is able to
classify instances of the predictors and not (as in some literature) the algorithm that
produces such a function (that is, the learning algorithm).

2.3.2 Probabilistic Classifiers

A probabilistic classifier can be defined as a conditional probability distribution over C
given X. That is,

P(C|X = x) ∈ (0, 1) and
∑
c

P(C = c|X = x) = 1, ∀x ∈ X .

We can define the induced classifier with the most probable a posteriori class as
follows.

Definition 2.1. Given P(C|X), a probabilistic classifier over X , the induced classifier
or the associate decision function is defined as

φP(x) = arg max
c∈{−1,+1}

P(C = c|X = x).

That is, the most probable a posteriori class.

Predicting classes with the most probable a posteriori class is usually called the Bayes
classifier in the literature [Duda et al., 2000, Devroye et al., 1996]. The Bayes classifier
is defined as the classifier that attains the minimum error probability, where the error
probability of a classifier is defined as the probability of the set of points where the
classifiers does not agree with the true class.

Definition 2.2. Given a classifier φ ∈ C and Q the joint (usually unknown) probability
over X and C, the error probability of φ is

ErrQ(φ) = Q (φ(X) 6= C) .

Thus, we have that P(C|X) = Q(C|X) is the Bayes classifier, that is, ErrQ(φP) is
the minimum among the error probabilities of all classifiers.

Since the class variable is binary, and we assumed that P(C = c|X = x) > 0,
we can completely describe a probabilistic classifier by what we will call the induced
discrimination function:

11
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Definition 2.3. Given a probabilistic classifier P(C|X), we define the induced discrim-
ination function as,

fP(x) = log

(
P(C = +1|X = x)

P(C = −1|X = x)

)
= log

(
P(C = +1|X = x)

1− P(C = +1|X = x)

)
.

It is obvious to observe that the induced classifier is exactly the sign of the induced
discrimination function:

φP = sign(fP),

where sign(f) is the point-wise sign of the function f .

sign(f)(x) =

{
+1 if f(x) ≥ 0
−1 if f(x) < 0

We can invert Definition 2.3 and obtain that

P(C = +1|X = x) =
efP(x)

1 + efP(x)
,

P(C = −1|X = x) =
1

1 + efP(x)
.

Thus specifying fP is equivalent to specify the conditional distribution P(C|X). Ob-
serve that the equivalent representation of probabilistic classifiers with discrimination
functions is valid only for binary classification problems.

With F we denote the set of discrimination functions, that is, the set of all real
functions over X ,

F = {f : X → R}.

When φ = sign(f) we say that f sign-represent φ and if F ′ ⊂ F we denote with
sign(F ′) the image with respect to the sign operator,

sign(F ′) = {φ ∈ C s.t. φ = sign(f) for f ∈ F ′},

that is, the set of classifiers that are sign-represented by discrimination functions in F ′.

2.3.3 Generative Classifiers

A generative classifier is a model able not only to predict the class values given an
instance of predictor variables, but also to generate samples of the predictor variables
given a value for the class variable.

Formally, it consists of a joint probability distribution over the predictor and class
variables, P(X, C). We assume moreover that the probability distribution is strictly
positive.

With P we indicate the set of generative classifiers over X ,

P = {P(X, C) > 0 s.t. P is a probability distribution}

Since we can compute P(C|X) from the joint distribution, it is obvious that every
generative classifier induces a probabilistic classifier via,

P(C|X) =
P(C,X)

P(X)
.

12
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P

P

F

Ψ(P) = fP

Ψ−1(f) f

Ψ

Figure 2.2: The mapping between probabilistic classifiers P and discrimination function
F

Moreover, we can compute the induced discrimination function of P directly from
the joint distribution:

fP(x) = log

(
P(C = +1|X = x)

P(C = −1|X = x)

)
= log

(
P(C = +1,X = x)

P(C = −1,X = x)

)
.

Let Ψ be the mapping from P to F that assigns the induced discrimination function
to every generative classifier P, that is

Ψ : P → F
P 7→ Ψ(P) = fP

For f ∈ F the level set (fiber) Ψ−1(f) is the set of generative classifiers that induce f ,
that is, the set of strictly positive probability distributions P such that fP = f (Figure
2.2).

Generative vs Discriminative Classifiers

Usually in the literature generative classifiers are seen in opposition to discriminative
ones. This opposition derives from the learning procedure involved. Generative classifiers
are estimated finding the joint probability that is closest (usually using the Kullback-
Leibler divergence, that is maximizing the likelihood) to the empirical measure of a
given sample. Discriminative classifiers algorithms on the contrary try to maximize the
conditional-likelihood or equivalently to minimize the error probability (Definition 2.2).

Since the log-likelihood is the sum of the conditional-log-likelihood plus the marginal-
log-likelihood it is obvious that maximizing the likelihood is not the best approach to
build classifiers if the only goal is to obtain good predictive models for the class variable.

Generative classifiers on the contrary, obtaining a model of the joint probability, are
able to deal with missing data easily (through marginalization). Moreover they model
the predictors relationships, giving insights in the model behavior.

13
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Ng and Jordan [2001] studied the simplest pair of generative-discriminative equivalent
models, namely naive Bayes and logistic regression. They proved that even if logistic
regression obtains lower errors asymptotically than naive Bayes, the latter attains faster
its limit error and thus they stated that naive Bayes could have an advantage with small
sample sizes.

Lasserre et al. [2007] tried to theoretically join the two approaches. They stated that
the discriminative approach can be seen as standard maximum-likelihood approach for
a different model class, and thus restated the generative-discriminative dichotomy as a
different model choice.

2.3.4 Bayesian Network Classifiers

In this section we give a brief account of different models of Bayesian network classifiers.
Since we are interested in model descriptions and in the induced decision functions we
will not focus on parameter estimation methods and structure search. An extensive
survey can be found in Bielza and Larrañaga [2014].

Bayesian network classifiers [Friedman et al., 1997] are probably the most used class
of generative classifiers. They consist in modeling, with a Bayesian network, the joint
probability distributions P of the predictors and class variables.

Naive Bayes

The naive Bayes [Minsky, 1961] classifier is one of the most used generative classifiers,
despite being one of the oldest and surely the simplest model. It relies on the strong
independence assumption of the predictor variables being mutually conditionally inde-
pendent given the class variable C. That is,

Xi |= Xj |C, ∀i 6= j.

This fact translates (Theorem 2.2) into the following recursive factorization of prob-
ability P,

P(C = c,X = x) = P(C = c)

n∏
i=1

P(Xi = xi|C = c).

The graph structure of the naive Bayes is thus given by the every predictor having
as parent just the class variable (see Example 2.1).

The factorization permits to estimate probabilities over a large number of predictors
with few parameters, making the naive Bayes model competitive with respect to other
more complex classifiers especially when the sample size is small.

Example 2.1. Consider a naive Bayes classifier (structure in Figure 2.3), that is, the
simplest BAN, over predictor variables X1 ∈ {0, 1, 2}, X2 ∈ {0, 1}. In this case the joint
probability over (C,X1, X2) is factorized as

P(C = c,X1 = x1, X2 = x2) = P(C = c) P(X1 = x1|C = c) P(X2 = x2|C = c).

We consider a uniform prior probability over the class: P(C = +1) = 0.5, P(C = −1) =
0.5, and conditional probabilities tables given in Table 2.1.
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C

X1 X2

Figure 2.3: Naive Bayes classifier structure in Example 2.1

Table 2.1: Conditional probability tables for X1 and X2 in Example 2.1

P(X1|C) X1

0 1 2

C
−1 0.3 0.3 0.4
+1 0.1 0.7 0.2

P(X2|C) X2

0 1

C
−1 0.5 0.5
+1 0.1 0.9

The induced decision function φP(x1, x2), can be computed easily and it is exactly:

φP(x1, x2) =

{
−1 if (x1, x2) ∈ {(0, 0), (0, 1), (2, 0), (2, 1)}
+1 if (x1, x2) ∈ {(1, 0), (1, 1)}

Augmented Naive Bayes

Starting from the naive Bayes structure, it is then possible to gradually increase the
complexity of the graph, and hence the complexity of the obtained factorization.

For every augmented naive Bayes classifier we will call the predictor subgraph the
subgraph induced by the predictor variables.

Tree augmented naive Bayes Tree Augmented Naive Bayes (TAN) classifier allows
a tree structure among the predictors variables [Friedman et al., 1997]. The original
algorithm [Chow and Liu, 1968] builds the maximum weighted spanning tree using the
conditional mutual information of pairs of predictors as weight.

k-dependence Bayesian classifiers The k-dependence Bayesian model [Sahami,
1996] is an augmented naive Bayes classifier where every predictor is allowed to have a
maximum of k parents apart from the class variable.

Bayesian-network augmented naive Bayes The so-called BAN classifier [Fried-
man et al., 1997, Cheng and Greiner, 1999, 2001] permits a whatsoever Bayesian net-
work as the predictor subgraph. Those are the most general form of Augmented Bayesian
network classifiers.
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Unrestricted Bayesian Network Classifiers

It is also possible to consider a general BN as a classifier (sometimes called in the
literature unrestricted BN classifiers), that is without imposing the class variable as
parent of all the predictors (see Figure 2.4). But such unrestricted model, although
it could be useful for general probability modeling, it is less suitable for classification
purposes. Indeed, having predictor variables as parents of the class variable (X1, X2 in
Figure 2.4) would imply that the contributions of all the parents of the class will not
factorize (P = P(X1) P(X2) P(C|X1, X2) · · · in the example in Figure 2.4). On the other
hand, a predictor variable that is not adjacent to the class variable (X5 or X6 in the
example in Figure 2.4) can be present in two positions:

• As a children of another predictor as X5 in Figure 2.4. In this case the class variable
is independent of X5 given the value of X4 (such structures could be useful with
missing data).

• As a parent of another predictor as X6 in Figure 2.4. In this case if X3 is observed
we have that X6 and C are not independent.

X1 X2

C

X3 X4

X5

X6

Figure 2.4: Unrestricted BN classifier

The Expressive Power of Bayesian Network Classifiers

The first rigorous result in understanding the limits and capability of Bayesian net-
work classifiers was reported by Minsky [1961], showing that the decision boundary in
naive Bayes classifiers with binary predictors is a hyperplane. Since then several other
researchers have addressed the problem.

Peot [1996] reviewed Minsky’s results about binary predictors and presented some
extensions. He mainly discussed the case of naive Bayes with k-valued predictors and
predictors dependencies. He also reported an upper bound on the number of linearly
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separable dichotomies of the vertices of an n-dimensional cube, consequently bounding
the number of decision functions that are representable by naive Bayes classifiers with
binary predictors. This is the first example showing that describing the discrimination
functions of generative classifiers is useful to obtain informations on their capabilities.

Domingos and Pazzani [1997] studied the optimality of naive Bayes at length and
pointed out that, even if the independence assumption among predictors is violated,
naive Bayes could achieve optimality under 0-1 loss. Moreover, Domingos and Pazzani
[1997] proved a negative result showing that the naive Bayes fails to learn some linearly
separable functions when its parameters are estimated with maximum-likelihood, even
from a complete and noise-free dataset.

Jaeger [2003] showed that for binary predictors, classifier expressivity is character-
ized by separability with polynomials of different degrees. Moreover he disagreed with
the negative results of Domingos and Pazzani [1997], at least in the interpretation of ex-
pressive power, arguing that the inability of the naive Bayes to recognize some linearly
separable concepts is a consequence of the training method and not of the model itself,
which he showed it is able to generate all possible linear discrimination functions. He
than stated that in Domingos and Pazzani [1997] the naive Bayes is not able to learn
m-of-n concepts as a consequence of the particular data set used, namely complete and
noise-free.

Ling and Zhang [2002] reported negative results for the expressive power of Bayesian
networks; they proved that a Bayesian network where each node has at most k parents
cannot represent any function containing (k + 1)-xors. The results of Ling and Zhang
[2002] have the advantages of not being restricted to binary variables and being valid
for general BNs. Ling and Zhang [2002] also reported some open question, in particular
they conjectured that every function of order m, that is, it does not contains (m+1)-xor,
can be represented by a BN where every node has at most m parents.

Nakamura et al. [2005] studied the inner product space for Bayesian network clas-
sifiers with binary predictors, that is, the smallest Euclidean space that represents the
induced class of classifiers. They obtained upper and lower bounds on the dimension of
the inner product space and they linked the dimension of the inner product space with
the Vapnik-Chervonekis (VC) dimension [Vapnik and Chervonenkis, 1971]. Yang and
Wu [2012] studied the case of Bayesian networks with k-valued nodes. They computed
the VC dimension for fully connected Bayesian networks and for Bayesian networks
without V -structures. In both cases they showed that the VC dimension is equal to the
dimension of the inner product space.
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Decision Boundary for Bayesian
Network Classifiers

3.1 Introduction

In this chapter we try to generalize the expressivity results [Minsky, 1961, Peot, 1996,
Jaeger, 2003] within a unified framework.

In particular we extend and particularized the results of Jaeger [2003]: we show
how to build polynomial discrimination functions for any Bayesian augmented naive
Bayes classifier with categorical predictors. In absence of V -structures in the predictor
subgraph, we prove that the obtained families of polynomials representing the induced
decision functions form linear spaces that are representations of the inner product spaces.

We are able to compute the dimensions of those linear spaces and thus of the inner
product space extending the results of Nakamura et al. [2005] and Yang and Wu [2012].

Finally, we use the obtained results to bound the number of decision functions rep-
resentable by BAN classifiers with a given structure.

Chapter Outline

In Section 3.2 we define a polynomial representation of the Iverson bracket [Iverson,
1962] over a finite number of categorical variables and derive the representation of dis-
crete probability functions and of conditional probability tables. We then investigate
polynomial representations of discrimination functions induced by Bayesian network
classifiers. We look at Bayesian network classifiers in ascending order of complexity:
naive Bayes classifiers in Section 3.2.2, tree augmented naive Bayes classifiers in Sec-
tion 3.2.3, Bayesian network-augmented naive Bayes classifiers in Section 3.2.4 and fully
connected Bayesian network classifiers in Section 3.2.5. In Section 3.3 we analyse the
expressive power of BAN classifiers. Finally we present the conclusions in Section 3.4.

3.2 Polynomial Threshold Functions for Bayesian Network
Classifiers

We develop a method to compute polynomials that represent discrimination functions
of Bayesian network classifiers, also called polynomial threshold functions. This method
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is an extension of the well-known results on the decision boundary of naive Bayes clas-
sifiers [Minsky, 1961, Peot, 1996]. The method is based on the polynomial interpolation
of discrete probability functions or equivalently their logarithms. Pistone et al. [2001]
gave a more formal and general description of this subject, also addressing applications
to Bayesian networks. We will develop this method directly using Lagrange basis poly-
nomials.

3.2.1 Lagrange Interpolation of Discrete Probability

The proofs of the results on the decision boundary in naive Bayes classifiers are based on
a representation of the categorical distribution over two values {0, 1} in an exponential
form, P(X = x) = px(1 − p)1−x, with x ∈ {0, 1} and p ∈ (0, 1). We aim to repro-
duce the same representation for a categorical variable X ∈ X = {ξ1, ξ2, . . . , ξm} ⊂ R,
where the values of variable X are indicated as ξj with j as upper index. We consider
{p(1), . . . , p(m)} such that

∑m
j=1 p(j) = 1 and, using the Iverson bracket [Iverson, 1962],

we write

P(X = x) =

m∏
j=1

p(j)[x=ξj ]. (3.1)

If X ∈ {0, 1} we could represent [x = 0] as 1 − x and [x = 1] as x. If we consider
a categorical variable, X ∈ X = {ξ1, ξ2, . . . , ξm} ⊂ R, we need to find m polynomials{
`Xj

}m
j=1

such that

`Xj (ξj) = 1,

and
`Xj (ξk) = 0 for every k 6= j.

We easily see that such polynomials exist and have the following form:

`Xj (x) =
∏
k 6=j

(x− ξk)
(ξj − ξk)

. (3.2)

The polynomials defined in Equation (3.2) are the Lagrange basis polynomials [Abramowitz
and Stegun, 1964, Jeffreys and Jeffreys, 1999] over the points in X . These polynomials
are m linearly independent polynomials of degree m−1, and so they form a basis of poly-
nomials in one variable whose degree is at most m− 1. We summarize some properties
of these polynomials in the following lemma.

Lemma 3.1. Let Xi = {ξ1
i , ξ

2
i , . . . , ξ

mi
i } ⊂ R, for i ∈ [n]. For every i define the Lagrange

basis,
{
`Xi
j (xi)

}
, over Xi as in Equation (3.2). Then we have

1. For every i ∈ [n],
{
`Xi
j (xi)

}mi

j=1
form a basis of the space of polynomials in xi of

degree |Xi| − 1.

2.
∑mi1

ji1=1

∑mi2
ji2=1 · · ·

∑mil
jil=1

∏
s∈I `

Xs
js

(xs) =
∏
i∈I
∑mi

ji=1 `
Xi
ji

(xi) = 1, for every x ∈ RI

and for all I = {i1, . . . , il} ⊆ [n].

3.
∏
i∈I `

Xi
ji

(xi) = [xi = ξjii ∀i ∈ I], for every I ⊆ [n], for all {ji}i∈I such that
1 ≤ ji ≤ mi, and for every x ∈ ×i∈IXi.
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4.
∑mi1

ji1=1

∑mi2
ji2=1 · · ·

∑mip

jip=1

∏
s∈I `

Xs
js

(xs) =
∏
i∈I\J `

Xi
ji

(xi), for every x ∈ RI and for

all J = {ii, . . . , ip} ⊂ I ⊆ [n].

Proof. The proof of the above lemma is trivial, and we just outline some points. Point 1
follows from the linear independences of the Lagrange basis polynomials. To prove point

2, we have merely to observe that, since
{
`Xi
j

}mi

j=1
is a basis, we have that the polynomial

constant 1 admits a unique representation in the considered basis, in particular 1 =∑mi
j=1 `

Xi
j (xi). Point 3 follows trivially by substitution. To prove point 4 we apply point

2 as follows,

mi1∑
ji1=1

mi2∑
ji2=1

· · ·
mip∑
jip=1

∏
s∈I

`Xs
js

(xs) =

 mi1∑
ji1=1

mi2∑
ji2=1

· · ·
mip∑
jip=1

∏
s∈J

`Xs
js

(xs)


︸ ︷︷ ︸

= 1

∏
i∈I\J

`Xi
ji

(xi) =
∏
i∈I\J

`Xi
ji

(xi).

If we are given a categorical random variable X over X = {ξ1, . . . , ξm} whose proba-
bility mass function is P , we are able to rewrite Equation (3.1) using the Lagrange basis,
as

P(X = x) =
m∏
j=1

p(j)[x=ξj ] =
m∏
j=1

p(j)`
X
j (x), (3.3)

where p(j) = P(X = ξj) are the values of the probability mass function over X . Equation
(3.3) is a consequence of the identity [x = ξj ] = `Xj (x) which derives from point 3 of
Lemma 3.1 considering |I| = 1. More generally, we consider a set of random variables
{X1, X2, . . . , Xn} such that, for every i ∈ [n], the variable Xi ∈ Xi = {ξ1

i , ξ
2
i , . . . , ξ

mi
i }.

If we are given a conditional probability table that represents the probability function
P(X1 = x1|X2 = x2, . . . , Xn = xn), we can use the Iverson bracket over n variables
x1, . . . , xn to describe the conditional distribution of X1 given X2, . . . , Xn,

P (X1 = x1|X2 = x2, . . . , Xn = xn) =
∏

(j1,...,jn)

p(j1|j2, . . . , jn)[xi=ξ
ji
i ∀i=1,...,n],

where p(j1|j2, . . . , jn) = P(X1 = ξj11 |X2 = ξj22 , . . . , Xn = ξjnn ) are the values of the
conditional probability table. Now using point 3 of Lemma 3.1 with I = [n], we get

P (X1 = x1|X2 = x2, . . . , Xn = xn) =
∏

(j1,...,jn)

p(j1|j2, . . . , jn)
∏m

i=1 `
Xi
ji

(xi). (3.4)

3.2.2 Naive Bayes

We consider a naive Bayes classifier (NB) (Figure 3.1) where the predictor variables
Xi ∈ Xi are conditionally independent given the class variable C. The joint probability
distribution factorizes as follows:

P(C = c,X1 = x1, X2 = x2, . . . , Xn = xn) = P(C = c)

n∏
i=1

P(Xi = xi|C = c). (3.5)
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C

X3X2X1 X4 X5

Figure 3.1: Naive Bayes classifier structure with five predictor variables
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(a) X,Y ∈ {0, 1, . . . , 5}
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(b) X,Y ∈ {0, 1, . . . , 6}

Figure 3.2: Decision boundary for two example, (a) and (b), of naive Bayes classifiers
with two categorical variables X, Y . Boundaries are computed as location of zeroes of
polynomials built as in Theorem 3.1

If the predictor variables are binary, Minsky [1961] proved that the decision bound-
aries are hyperplanes. For categorical predictors, the scenario is much more complicated
as shown in Figure 3.2.

Theorem 3.1. A discrimination function f ∈ F for a binary classification problem
over n categorical variables Xi ∈ Xi = {ξ1

i , . . . , ξ
mi
i }, with |Xi| = mi, is equal over X to

a polynomial of the form
∑n

i=1

(∑mi
j=1 αi(j)`

Xi
j (xi)

)
if and only if there exists a naive

Bayes classifier, with probability tables without zeros entries, that induces f , where `Xi
j

are the Lagrange basis over Xi.

Proof. We consider a naive Bayes classifier as in Figure 3.1. For every i ∈ [n] the variable
Xi takes values over Xi = {ξ1

i , . . . , ξ
mi
i }, a subset of R of cardinality mi. Thanks to

Equation (3.3), we can express, for every value c of the class, the conditional probability
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P(Xi|C) as

P(Xi = xi|C = c) =

mi∏
j=1

pi(j|c)`
Xi
j (xi),

where pi(j|c) = P(Xi = ξji |C = c). If we define ai(j|c) = log(pi(j|c)), and assuming that
pi(j|c) > 0, we have that

P(Xi = xi|C = c) = exp

 mi∑
j=1

ai(j|c)`Xi
j (xi)

 . (3.6)

Using this representation we easily find the induced discrimination function for the
NB with arbitrary discrete predictor variables. Setting a = log(P(C = +1)) and b =
log(P(C = −1)), we have that

fP(x) = log (P(X1 = x1, . . . , Xn = xn, C = +1))− (P(X1 = x1, . . . , Xn = xn, C = −1)) .

Using Equations (3.5) and (3.6) we have that

fP(x) =

a+
n∑
i=1

 mi∑
j=1

ai(j|+ 1)`Xi
j (xi)

−
b+

n∑
i=1

 mi∑
j=1

ai(j| − 1)`Xi
j (xi)

 ,

so the discrimination function for a naive Bayes classifier is

fNB(x) = a− b+
n∑
i=1

 mi∑
j=1

α′i(j)`
Xi
j (xi)

 , (3.7)

where α′i(j) = ai(j|+1)−ai(j|−1) = log

(
P(Xi=ξ

j
i |C=+1)

P(Xi=ξ
j
i |C=−1)

)
. We see from Equation (3.7)

that the decision function is sign-represented by a polynomial that admits the represen-

tation
∑n

i=1

(∑mi
j=1 αi(j)`

Xi
j (xi)

)
. In fact we have that the a− b = log

(
P(C=+1)
P(C=−1)

)
term

could be included in the summation using Lemma 3.1, for example with the following
choice of coefficient,

αi(j) = log

(
P(Xi = ξji |C = +1)

P(Xi = ξji |C = −1)

)
+ ki log

(
P(C = +1)

P(C = −1)

)
, (3.8)

where
∑n

i=1 ki = 1. We have proved the if part of the theorem.

To prove the only if we have just to observe that choosing the conditional proba-
bilities for the predictor variables given the class, P(Xi = ξji |C = c), the probability
mass for the class P(C = +1) = 1 − P(C = −1), and the values of {ki}ni=1 we are able
to adjust the coefficients αi(j) in (3.8) to any possible values in R. For example the

23



CHAPTER 3

following choices are sufficient

P(Xi = ξji |C = −1) =
1

mi
∀i ∈ [n] and j = 1, . . . ,mi,

P(Xi = ξji |C = +1) =
eαi(j)∑mi
j=1 e

αi(j)
∀i ∈ [n] and j = 1, . . . ,mi,

ki =
log
(

1
mi

∑mi
j=1 e

αi(j)
)

∑n
i=1 log

(
1
mi

∑mi
j=1 e

αi(j)
) ∀i ∈ [n],

log

(
P(C = +1)

P(C = −1)

)
=

n∑
i=1

log

 1

mi

mi∑
j=1

eαi(j)

 .

As a result of Theorem 3.1 we have that a naive Bayes classifier could represent every
decision function which is sign-representable by a polynomial of the family

FNB =

r(x) =
n∑
i=1

 mi∑
j=1

αi(j)`
Xi
j (xi)

 , αi(j) ∈ R

 .

Only if we fix the prior probability over the class C there are restrictions on the
coefficients αi(j).

Corollary 3.1. Let f ∈ F be a discrimination function for a binary classification prob-
lem with n categorical predictor variables Xi ∈ Xi = {ξ1

i , . . . , ξ
mi
i } ⊂ R. The following

sentences are equivalent:

i) f is equal over X to a polynomial of the form
∑n

i=1

(∑mi
j=1 αi(j)`

Xi
j (xi)

)
with αi(j)

such that for every i = 1, . . . , n, there exists ji,1 and ji,2 such that αi(ji,1) < 0 and
αi(ji,2) > 0 or alternatively eαi(j) = 1 for every j = 1, . . . ,mi.

ii) There exists a naive Bayes classifier, with probability tables without zeros entries
and with uniform prior probability over the class C, that induces f .

Proof. The corollary follows from (3.8) in proof of Theorem 3.1, it is easy to show that
the two conditions are equivalent.

As we can see, the coefficients αi(j) are related to the probability model underlying
the problem, and are usually estimated from the training set but they do not generally
assure the minimization of classification errors. An interesting model to deal with this
problem is the weighted naive Bayes classifier [Webb and Pazzani, 1998, Hall, 2007].
Weights are introduced in the probability factorization,

P(C = c|X = x) ∝ wc P(C = c)

n∏
i=1

[P(Xi = xi|C = c)]wi ,
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X1 C = −1 C = +1
0 0.3 0.3
1 0.1 0.2
2 0.4 0.1
3 0.1 0.2
4 0.1 0.2

X2 C = −1 C = +1

0 0.2 0.4

1 0.1 0.2

2 0.7 0.4

Table 3.1: Conditional probability tables in Example 3.1

α1(0) = log 0.3
0.3 = 0 α2(0) = log 0.4

0.2 = log 2

α1(1) = log 0.2
0.1 = log 2 α2(1) = log 0.2

0.1 = log 2

α1(2) = log 0.1
0.4 = − log 4 α2(2) = log 0.4

0.7 = − log 7
4

α1(3) = log 0.2
0.1 = log 2

α1(4) = log 0.2
0.1 = log 2

Table 3.2: Coefficient computations of the polynomial in Equation (3.9)

and thus the decision function has the same form as in Equation (3.7), but with modified
coefficients

αi(j) = wi log
P(Xi = j|C = +1)

P(Xi = j|C = −1)
.

Note that introducing the weights in the model does not change the form of the polyno-
mial sign-representing the decision functions, so it does not improve the expressive power
of the model. Even so, using the weighted model it is possible to search for polynomials
that minimize the misclassification and improve accuracy [Zaidi et al., 2013].

Example 3.1. We consider a naive Bayes classifier with two predictor variables X1 ∈
X1 = {0, 1, 2, 3, 4} and X2 ∈ X2 = {0, 1, 2}. We have a uniform prior probability over
the class C, that is, P(C = −1) = P(C = +1) = 0.5, and we consider the con-
ditional probability tables for X1 and X2 given in Table 3.1. We can directly build
the polynomial threshold functions r(x1, x2) that sign-represent the decision function

induced by this classifier. The related coefficients are α1(j) = log P(X1=j|C=+1)
P(X1=j|C=−1) and

α2(j) = log P(X2=j|C=+1)
P(X2=j|C=−1) , and the polynomial r(x1, x2) is

r(x1, x2) =

4∑
j=0

α1(j)`X1
j (x1) +

2∑
j=0

α2(j)`X2
j (x2). (3.9)

The computations of the coefficients are shown in Table 3.2. We have that the polynomial
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Figure 3.3: Decision boundary for the naive Bayes structure of Example 3.1

threshold function in Equation (3.9), expressed with the Lagrange basis, is

r(x1, x2) =
x1(x1 − 2)(x1 − 3)(x1 − 4)

−6
log 2− x1(x1 − 1)(x1 − 3)(x1 − 4)

4
log 4

+
x1(x1 − 1)(x1 − 2)(x1 − 4)

−6
log 2 +

x1(x1 − 1)(x1 − 2)(x1 − 3)

24
log 2

+
(x2 − 1)(x2 − 2)

2
log 2 +

x2(x2 − 2)

−1
log 2− x2(x2 − 1)

2
log

7

4
.

We observe that the above polynomial satisfies the condition of Corollary 3.1, as it should
because the prior probability over C is uniform. Figure 3.3 shows the decision boundary
induced by r(x1, x2).

3.2.3 Tree Augmented Naive Bayes

We now consider a tree augmented naive Bayes (TAN) classifier [Friedman et al., 1997]
as shown in Figure 3.4. In this model, a predictor variable Xi ∈ Xi = {ξ1

i , . . . , ξ
mi
i } is

allowed to have at most two parents, the class C and an other variable, Xpa(i) ∈ Xpa(i).
The joint probability distribution of (C,X1, X2, . . . , Xn) over {−1,+1} × X1 × · · · × Xn
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C

X3X2X1 X4 X5

Figure 3.4: Tree augmented naive Bayes classifier structure with five predictor variables

can be factorized according to the Bayesian network theory as

P (C = c)

n∏
i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
. (3.10)

We can write down a similar representation to the NB case. For each i = 1, . . . , n, we
apply Equation (3.4) and obtain

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
=

mi∏
j=1

mpa(i)∏
k=1

pi(j|c, k)

(
`
Xpa(i)
k (xpa(i))`

Xi
j (xi)

)
. (3.11)

We can now prove, combining Equations (3.10) and (3.11), a result similar to the NB
case.

Lemma 3.2. If fTAN is the discrimination function induced by a TAN for a binary
classification problem with n categorical predictor variables {Xi ∈ Xi}ni=1 and with prob-
ability tables without zeros entries, then there exists a polynomial, of the form

n∑
i=1

mi∑
j=1

`Xi
j (xi)

mpa(i)∑
k=1

βi(j|k)`
Xpa(i)

k (xpa(i)),

that interpolates fTAN over X , where we consider
∑mpa(i)

k=1 βi(j|k)`
Xpa(i)

k (xpa(i)) = βi(j)
when Xpa(i) = ∅, that is, when class C is the only parent of a node (the root node of the
tree).

Proof. The proof is a straightforward computation of the logarithm of Equation (3.10)

using Equation (3.11) and the definition βi(j|k) = log
(
pi(j|+1,k)
pi(j|−1,k)

)
. The term corre-

sponding to the probability over the class log
(

P(C=+1)
P(C=−1)

)
could be made vanishing into

the coefficients of the root node Xt of the tree, using point 2 of Lemma 3.1 with I = {t},
with the following choice of coefficients

βt(j) = log

(
pi(j|+ 1)

pi(j| − 1)

)
+ log

(
P(C = +1)

P(C = −1)

)
.
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C

Xsp

X2X1 X3 X4

Figure 3.5: SPODE Bayes classifier structure with five predictor variables

A particular case of TAN is the SuperParent-One-Dependence Estimator (SPODE)
[Keogh and Pazzani, 2002], where all the predictors depend on the same predictor (su-
perparent) (Figure 3.5). The joint distribution factorizes as follows:

P (C = c) P (Xsp = xsp|C = c)
∏
i 6=sp

P (Xi = xi|C = c,Xsp = xsp) ,

where Xsp stands for the superparent node. In this case, the representation of Lemma
3.2 reduces to

fSPODE(x) = sign

∑
i 6=sp

mi∑
j=1

`Xi
j (xi)

msp∑
k=1

βi(j|k)`
Xsp

k (xsp)

 , (3.12)

where fSPODE is the induced discrimination function. If we fix the superparent node, we
have a stronger characterization of the induced discrimination functions, the analogue
of Theorem 3.1.

Theorem 3.2. A discrimination function for a binary classification problem over cate-
gorical predictor variables is interpolated by a polynomial of the form

∑
i 6=sp

mi∑
j=1

`Xi
j (xi)

msp∑
k=1

βi(j|k)`
Xsp

k (xsp),

if and only if it is induced by a SPODE classifier with Xsp as the superparent node and
with probability tables without zeros entries.

Proof. The if part of the theorem is precisely Equation (3.12). To prove the only if part
we repeat a similar argument as in Theorem 3.1. We observe (Lemma 3.1, point 4, with
J = {i} and I = {i, sp}) that for every i 6= sp,

`
Xsp

k (xsp) =

mi∑
j=1

`Xi
j (xi)`

Xsp

k (xsp),

and so the coefficient βi(j|k) could be seen as

βi(j|k) = log

(
P(Xi = j|Xsp = k,C = +1)

P(Xi = j|Xsp = k,C = −1)

)
+ αi(k),
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where
∑

i 6=sp αi(k) = log
(

P(Xsp=ξksp|C=+1

P(Xsp=ξksp|C=−1

)
+ α and α = log

(
P(C=+1)
P(C=−1)

)
. Then adjusting

αi(k) and α properly we can find a SPODE model, that is, probability distributions over
the predictors and the class that induces

f =
∑
i 6=sp

mi∑
j=1

`Xi
j (xi)

msp∑
k=1

βi(j|k)`
Xsp

k (xsp),

for every βi(j|k) ∈ R.

Remark 3.1. We observe that, as for Theorem 3.1, the proof of Theorem 3.2 adds free
parameters to the model. For every variable we modify the related coefficients and then
we adjust the modifications with the parent coefficients. As in the proof of Theorem 3.1
we are able to use the added parameters to define proper probability distributions, that is
to make the defined probability add up to one.

Remark 3.2. Results similar to Theorem 3.2 could be proved whenever the structure
of the predictor subgraph of a TAN classifier is fixed. We expound no further theorems
about TAN classifiers, as, in the next section, we will prove a more general result, of
which NB and TAN are special cases.

Example 3.2. We look at the SPODE model (see Figure 3.6 for structure) with the
superparent node Xsp. We consider X1 ∈ {0, 1, 2}, X2 ∈ {0, 1, 2, 3} and Xsp ∈ {0, 1} with
conditional probability tables as shown in Table 3.3. The polynomial threshold function
r(xsp, x1, x2) can be computed directly as specified in Lemma 3.2:

r(xsp, x1, x2) = (1− xsp) log

(
0.4

0.8

)
+ xsp log

(
0.6

0.2

)
+ (1− xsp)

(
(1− x1)(2− x1)

2
log

(
0.2

0.1

)
+ x1(2− x1) log

(
0.7

0.1

)
+
x1(x1 − 1)

2
log

(
0.1

0.8

))
+ xsp

(
(1− x1)(2− x1)

2
log

(
0.7

0.3

)
+ x1(2− x1) log

(
0.1

0.2

)
+
x1(x1 − 1)

2
log

(
0.2

0.5

))
+ (1− xsp)

(
x2(2− x2)(3− x2)

2
log

(
0.3

0.2

)
+
x2(x2 − 1)(x2 − 2)

6
log

(
0.1

0.2

))
+ xsp

(
(1− x2)(2− x2)(3− x2)

6
log

(
0.2

0.5

)
+
x2(x2 − 1)(3− x2)

2
log

(
0.5

0.2

))
.

We observe that some elements of the Lagrange bases do not appear in r(xsp, x1, x2)
because the corresponding coefficients are zero, since the conditional probabilities given
C are equal.

3.2.4 Bayesian Network-Augmented Naive Bayes

If the predictor subgraph can be a generic Bayesian network, we have a Bayesian network-
augmented naive Bayes (BAN) classifier. In this case the joint probability distribution
is factorized as follows:

P (C = c)

n∏
i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
, (3.13)

29



CHAPTER 3

C

Xsp

X1 X2

Figure 3.6: SPODE classifier structure, Example 3.2

Xsp C = −1 C = +1
0 0.8 0.4
1 0.2 0.6

X1 C = −1 C = +1
Xsp = 0 Xsp = 1 Xsp = 0 Xsp = 1

0 0.1 0.3 0.2 0.7

1 0.1 0.2 0.7 0.1

2 0.8 0.5 0.1 0.2

X2 C = −1 C = +1
Xsp = 0 Xsp = 1 Xsp = 0 Xsp = 1

0 0.5 0.5 0.5 0.2

1 0.2 0.2 0.3 0.2

2 0.1 0.2 0.1 0.5

3 0.2 0.1 0.1 0.1

Table 3.3: Conditional probability tables in Example 3.2
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where Xpa(i) denotes the vector of the parent variables of Xi that are not C. From now
on for BAN classifiers we will write pa(i) for the set of indexes defining Xi’s parents
that are not C and Mi = ×s∈pa(i){1, . . . ,ms} for the set of possible configurations of the
parents of Xi. Applying the same arguments as in previous sections we can prove the
lemma below.

Lemma 3.3. If fBAN is the discrimination function induced by a BAN classifier for a
binary classification problem with n categorical predictors variables {Xi ∈ Xi ⊂ R, |Xi| =
mi}ni=1 and with probability tables without zeros entries, then there exists a polynomial
of the form

n∑
i=1

mi∑
j=1

`Xi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(xs),

which interpolates fBAN , where we write
∑

k∈Mi
βi(j|k)

∏
s∈pa(i) `

Xs
ks

(xs) = βi(j) when a
variable does not have parents that are not C, that is, pa(i) = ∅.

Proof. Given a BAN model over predictors Xi ∈ Xi = {ξ1
i , . . . , ξ

mi
i }, we define

βi(j|k) = log

P
(
Xi = ξji |C = +1, Xs = ξkss , ∀s ∈ pa(i)

)
P
(
Xi = ξji |C = −1, Xs = ξkss , ∀s ∈ pa(i)

)
 .

Using Equation (3.4) and taking the logarithm of Equation (3.13) we obtain the poly-
nomial representation. The additional constant term due to the prior probability over

the class, log
(

P(C=+1)
P(C=−1)

)
, could be embedded into the βi(j|k) coefficients using point 2

of Lemma 3.1 as in the proofs of Theorem 3.1 and Lemma 3.2.

Generally speaking, it is not always possible to prove results similar to Theorem
3.1 or Theorem 3.2 for BAN classifiers, when discrimination functions are completely
characterized by sets of polynomials. Like Yang and Wu [2012], we find that problems
arise in the presence of V -structures (Figure 2.1a) in the predictor subgraph.

In absence of V -structures we can prove the following result, which extends the
previous ones.

Theorem 3.3. Let G be a directed acyclic graph with node Xi for i = 1, . . . , n, and let
f ∈ F be a discrimination function for a binary classification problem over predictor
variables Xi ∈ Xi = {ξ1

i , . . . , ξ
mi
i }. Suppose that G does not contain V -structures, then

we have that f is interpolated by the following polynomial

r(x) =

n∑
i=1

mi∑
j=1

`Xi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(xs),

if and only if f is induced by a BAN classifier whose predictor subgraph is G and with
probability tables without zeros entries.

Proof. We merely have to prove the only if because the if implication is precisely Lemma
3.3. Given a polynomial of the form

r(x) =

n∑
i=1

∑
j∈Xi

`Xi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(xs),
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we have to find a BAN classifier inducing r(x), whose predictor subgraph is G. We just
have to define the conditional probability distribution of every variable given its parents,
since the structure of the BAN is already fixed by G. For every i = 1, . . . , n, we observe
that the subgraph of the parents of Xi is a fully connected Bayesian network, otherwise
we will have a V -structure on G. For every i, we can rewrite using point 4 of Lemma
3.1 the i-th addend on the summation,∑
j∈Xi

`Xi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(xs) +
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Xs
ks

(xs)−
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Xs
ks

(xs)

=
∑
j∈Xi

`Xi
j (xi)

∑
k∈Mi

(βi(j|k) + αi(k))
∏

s∈pa(i)

`Xs
ks

(xs)−
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Xs
ks

(xs).

Using the free parameters αi(k), it is possible to find for every k, pi(j|k,+1) and
pi(j|k,−1) ∈ (0, 1) such that

mi∑
j=1

pi(j|k,+1) =

mi∑
j=1

pi(j|k,−1) = 1

βi(j|k) + αi(k) = log
pi(j|k,+1)

pi(j|k,−1)
.

To avoid changing the polynomial r(x), we have to subtract∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Xs
ks

(xs)

from another addend on the summation. Because the parents of Xi are fully connected,
we have that among the other addends of r(x), apart from the i-th, there is one product
that contains

∏
s∈pa(i) `

Xs
ks

(xs) and so we just subtract αi(k) from the related coefficient.
Iterating the above procedure for all the nodes of the graph G, we are able to build
a probability distribution over X1, X2, . . . , Xn, C that satisfies the Bayesian network
structure given by G. More precisely, setting

P
(
Xi = ξji |C = c,Xs = ξkss , ∀s ∈ pa(i)

)
= pi(j|k, c),

we obtain the target BAN model.

We observe that the meaning of the representation in Theorem 3.3 is intuitive. If,
as usual, we denote by pa(i) the function, dependent on G, that maps each variable Xi

to the set of its parents, we have that a new instance x = (ξj11 , . . . , ξ
jn
1 ) of the predictors

will be classified as C = +1 if and only if

r(x) =

n∑
i=1

mi∑
j=1

`Xi
j (ξjii )

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(ξjss )

=

n∑
i=1

`Xi
ji

(ξjii )βi(ji|{js}s∈pa(i))
∏

s∈pa(i)

`Xs
js

(ξjss )=
n∑
i=1

βi(ji|{js}s∈pa(i)) ≥ 0.

In other words, every variable Xi, together with its parents pa(i), expresses a degree
(positive or negative) βi(ji|{js}s∈pa(i)) on x, based only on the values of the i-th variable,
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C

X1

X2 X3

X4 X5

Figure 3.7: FBN classifier structure with five predictor variables

ξkii and its parent values, {ξkss ∀s ∈ pa(i)}. The degrees are summed, and a decision is
taken based on the result. The degree expressed by each coalition child-parents in the
Bayesian network classifier is the logarithm of the ratio between the two probabilities
obtained conditioned on the values of the class C,

βi(ji|{js}s∈pa(i)) = log
P(Xi = ξjii |Xs(i) = ξjss , ∀s ∈ pa(i), C = +1)

P(Xi = ξjii |Xs(i) = ξjss , ∀s ∈ pa(i), C = −1)
.

3.2.5 Full Bayesian Networks

When the predictor subgraph is a fully connected Bayesian network (Figure 3.7), that
is, a directed acyclic graph with the maximum number of arcs, we have a fully con-
nected Bayesian network classifier (FBN). A FBN can represent any joint probability
distribution over (C,X1, . . . , Xn) and so it is a classifier able to induce any discrimina-
tion function over X = ×ni=1Xi whatsoever. We have that the product of the Lagrange
bases,

∏n
i=1 `

Xi
ki

(xi), interpolates the Iverson bracket over all the predictors, that is,

n∏
i=1

`Xi
ki

(xi) = [xi = ξkii , ∀i = 1, . . . , n].

And so the following lemma holds.

Lemma 3.4. If µ is a probabilistic classifier for a binary class problem with n categorical
predictor variables X1, . . . , Xn such that Xi ∈ Xi = {ξ1

i , . . . , ξ
mi
i } ⊂ R, |Xi| = mi, then
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the associated discrimination function, fµ, is interpolated by a polynomial of the form

∑
k∈M

γk

n∏
i=1

`Xi
ki

(xi),

where M = ×ni=1{1, . . . ,mi}.

We observe that the coefficients γk in Lemma 3.4 are the values of the polynomial
at point (ξk11 , ξk22 , . . . , ξknn ), and so fµ(ξk11 , ξk22 , . . . , ξknn ) = sign(γk). Roughly speaking,

a new instance (ξk11 , ξk22 , . . . , ξknn ) will be classified as C = +1 if and only if γk > 0.
Moreover we have that the following set{∑

k∈M
γk

n∏
i=1

`Xi
ki

(xi) s.t. γk ∈ R

}

is a the smallest class of polynomials, which could interpolate every discrimination func-
tion (thus it represents every probabilistic classifier), and it is a space of dimension
M = |M| =

∏n
i=1mi. From now on we will write

δk(x) =

n∏
i=1

`Xi
ki

(xi), (3.14)

for the k-th element of the canonical basis of F . We call {δk}k∈X the canonical basis
because the sign of the coefficients with respect to this basis is the value of the sign-
represented decision function. Lemma 3.4 states that sign(F) = {−1, 1}X .

3.3 Expressive Power of Bayesian Network Classifiers

So far, we have seen how to build polynomial that interpolate discrimination functions
induced by Bayesian network classifiers. We use now the resulting representation to
bound the number of decision functions representable by Bayesian network classifiers. As
observed, Lemma 3.4 states that sign(F) = {−1, 1}X . We now study NB, SPODE and
BAN through the families of discrimination functions representable with the associated
polynomials. Moreover, we embed those families in F with the canonical bases. For
predictor variables Xi ∈ Xi = {ξ1

i , . . . , ξ
mi
i }, i = 1, . . . , n, for every sp ∈ {1, . . . , n} and

a directed acyclic graph G without V -structures we define

FNB =

r(x) =

n∑
i=1

 mi∑
j=1

αi(j)`
Xi
j (xi)

 s.t. αi(j) ∈ R

 , (3.15)

Fsp =

r(x) =
∑
i 6=sp

mi∑
j=1

msp∑
k=1

βi(j|k)`
Xsp

k (xsp)`
Xi
j (xi) s.t. βi(j|k) ∈ R

 , (3.16)

FG =

r(x) =
n∑
i=1

mi∑
j=1

`Xi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(xs) s.t. βi(j|k) ∈ R

 , (3.17)

where pa(i) is a function that maps every i into the set of parents of Xi in the directed
acyclic graph G, and Mi = ×s∈pa(i){1, . . . ,ms}. The families FNB, Fsp and FG are the
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sets of polynomials sign-representing the decision functions induced by naive Bayes clas-
sifier, SPODE classifier and BAN classifier, respectively. Hence sign(FNB), sign(Fsp)
and sign(FG) are the sets of decision functions induced by naive Bayes, SPODE and
BAN classifiers, respectively. Obviously, we have that

FNB ⊂ FG ⊂ F ,

and

sign(FNB) ⊂ sign(FG) ⊂ sign(F) = {−1,+1}X .

We can prove that the above sets are indeed subspaces of F and we can compute their
dimensions.

Lemma 3.5. FNB is a subspace of FFBN of dimension
∑n

i=1mi − n+ 1.

Proof. Obviously FNB =
{
p(x) =

∑n
i=1

(∑mi
j=1 αi(j)`

Xi
j (xi)

)
, αi(j) ∈ R

}
is a subspace

of F . The union of the Lagrange bases over different variables is not a basis, because
for each i = 1, . . . , n we have that

1 =

mi∑
j=1

`Xi
j (xi) for every xi ∈ R.

So for every i, we can define

Bi =


mi⋃
j=2

{lXi
j (xi)}

 ∪ {e0},

where e0 is the polynomial constant 1, and we find that Bi is a basis of polynomials in
xi of degree |Xi| − 1 = mi − 1, equivalent to the Lagrange basis over Xi. Then, we have
that

B =

n⋃
i=1

Bi =

n⋃
i=1

mi⋃
j=2

{
lXi
j (xi)

}
∪ {e0}

generates the subspace FNB. We prove that B is in fact a basis of FNB. We have to
prove that the elements of B are linearly independent. We consider

p(x1, x2, . . . , xn) =
n∑
i=1

mi∑
j=2

αi(j)`
Xi
j (xi) + α0e0 = 0, ∀(x1, x2, . . . , xn) ∈ Rn.

If, as usual, Xi = {ξ1
i , . . . , ξ

mi
i }, let us consider p(x1, . . . , xn) evaluated in (ξ1

1 , ξ
1
2 , . . . , ξ

1
n),

0 = p(ξ1
1 , ξ

1
2 , . . . , ξ

1
n) =

n∑
i=1

mi∑
j=2

αi(j)`
Xi
j (ξ1

i ) + α0e0 = α0,

since `Xi
j (ξ1

i ) = 0 for every j 6= 1. And so α0 = 0. We now evaluate p(·) over

(ξj1, ξ
1
2 , . . . , ξ

1
n) and we have that, for every j = 2, . . . ,mi,

0 = p(ξj1, ξ
1
2 , . . . , ξ

1
n) = α1(j),
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since `X1
j (ξj1) = 1 for every j = 2, . . . ,m1. We repeat the above argument for every

variable xi, i = 1, . . . , n and we obtain αi(j) = 0 for every i = 1, . . . , n and every
j = 2, . . . ,mi. We have proved that the elements of B generate FNB and are linearly
independent, so they form a basis of FNB. Consequently we obtain

dim(FNB) = |B| =
n∑
i=1

mi − n+ 1.

Analogously we can prove, in the general case, the following lemma,

Lemma 3.6. For every Bayesian network classifier without V -structures in the predictor
subgraph G, the set FG is a subspace of F of dimension

n∑
i=1

(mi − 1)
∏

s∈pa(i)

ms

+ 1.

And, in the particular case of SPODE, we have,

Lemma 3.7. For every sp = 1, . . . , n, the set Fsp is a subspace of F of dimension

msp

1− n+
∑
i 6=sp

mi

 .

We now consider the space F with respect to the canonical basis given by Equation
(3.14). With respect to this coordinate system we have that each orthant represents a
decision function. We know that the number of orthants of an M -dimensional space is
2M , the number of decision functions over a set of cardinality M . Since we now have a
bijection between orthants in F and decision functions over X , in order to compute how
many decision functions are representable by a class of Bayesian network classifier (NB,
SPODE or BAN) we merely have to count the number of orthants in F intersected by
the corresponding subspaces (FNB, Fsp, FG).

Theorem 3.4 (Flatto, 1970). A d-dimensional subspace in an M -dimensional space
intersects at most C(M,d) = 2

∑d−1
k=0

(
M−1
k

)
orthants with equality if and only if it is in

general position.

Definition 3.1. A d-dimensional subspace V of RM is in general position if the M sub-
spaces V ∩Hi, where Hi = {x ∈ Rn s.t. xi = 0} are hyperplanes of V in general position,
that is, all the intersections of d of such hyperplanes are the zero vector. Precisely, for
all J ⊂ {1, . . . ,M} such that |J | = d we have that

⋂
j∈J (V ∩Hj) = 0.

Applying Theorem 3.4 to our case, we find that the space PFBN is minimal in the
following sense.

Corollary 3.2. If V is a d-dimensional subspace of F , then |sign(V )| ≤ C(M,d), where
M = dim(F) and equality holds if and only if V is in general position with respect to
the canonical basis of F .
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As a first result of Corollary 3.2 we have that the space F is the smallest vectorial
space of polynomials in x1, . . . , xn that sign-represents every decision function over X ,
that is, there is not a space V of polynomials in x1, . . . , xn with degrees in each variable xi
that are less or equal thanmi−1 such that sign(V ) = {−1,+1}X and dim(V ) < dim(F).
This justifies the choice of F as the space to study the polynomial families defined in
Equations (3.15), (3.16) and (3.17). Next, we can use Corollary 3.2 combined with
Lemma 3.6 to upper bound the number of decision functions that are sign-representable
by BAN classifiers with a fixed predictor subgraph G not containing V -structures.

Corollary 3.3. Consider a BAN classifier over predictor variables Xi ∈ Xi, |Xi| = mi

for every i = 1, . . . , n. Moreover suppose that the predictor subgraph G does not contain
V -structures. Then we have

2d ≤ |sign(FG)| ≤ C(M,d) = 2

d−1∑
k=0

(
M − 1

k

)
,

where d =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i)ms

)
+ 1 and M =

∏n
i=1mi.

Peot [1996] observed that naive Bayes could only represent a fraction of dichotomies
(binary decision) on binary predictors, and that this fraction goes to zero as the number
of predictors increase, we extend this observation to BAN classifier without V -structures
as follows.

Corollary 3.4. We consider, for every n ∈ N, classification problems with predictors
Xi ∈ Xi ⊂ R, |Xi| = mi for i = 1, . . . , n. For every n, let Gn be a directed acyclic
graph over the predictor variables, not containing V -structures. Suppose moreover that
if pan(i) are the functions that map every Xi into the set of parents in the graph Gn,

|pan(i)| ≤ K ∀n ∈ N and i ∈ {1, . . . , n},

then we have that

lim
n→∞

∣∣sign (PBANGn
)∣∣∣∣{−1,+1}X (n)
∣∣ = lim

n→∞

∣∣sign (PBANGn
)∣∣

2|X (n)| = 0,

where X (n) = ×ni=1Xi. In other words, the fraction of decision functions representable
by BAN classifiers, with a fixed maximum number of parents for each variable, becomes
vanishingly small by increasing the number of predictors.

Proof. For every n ∈ N, we apply Corollary 3.3 and we obtain

|sign (FGn)| ≤ C (M(n), d(n)) = 2

d(n)−1∑
k=0

(
M(n)− 1

k

)
,

where d(n) =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i)ms

)
+ 1 and M(n) = |X (n)| =

∏n
i=1mi. We

observe now that, as n→∞,
d(n)

M(n)
→ 0

and thus,
C(M(n), d(n))

2M(n)
→ 0,

which proves the statement.

37



CHAPTER 3

2 4 6 8 10 12 141e
−

05
1e

+
63

1e
+

13
1

Naive Bayes

n

(a)

2 4 6 8 10 12 141e
−

05
1e

+
63

1e
+

13
1

3−dependencies BAN

n

(b)

Figure 3.8: Total number of decision functions over n binary predictors (solid gray)
and the bounding C(M,d) of Corollary 3.3 (dashed black) for NB classifiers (a) and for
3-dependence BAN classifiers (b)

3.4 Conclusions

In this chapter we have shown how to build polynomial threshold functions related to
Bayesian network classifiers. Our results reveal connections between the algebraic struc-
ture of the decision functions induced by BN classifiers and the topology of the structure
of the predictor subgraph. In absence of V -structures in the predictor subgraph we have
also proved that the specific polynomial representation fully characterized the type of
Bayesian network classifier. By representing classifiers by polynomial threshold func-
tions, we can obtain bounds on the number of decision functions which can be induced
by Bayesian network classifiers with a given structure. The bounding does not hold in
presence of V -structures in the predictor subgraph. Strong characterizations of induced
decision functions cannot be proven due to the conditional independence of V -structure.
The polynomial representation of the discrimination functions of BAN classifiers implies
the results of Roos et al. [2005] that connect Bayesian network classifiers and generalized
logistic regression models. Moreover we observe that the obtained polynomial represen-
tation permits to easily prove the results of Ling and Zhang [2002] for BAN classifiers
without V -structures.

The bounds points to the fact, already conjectured by Peot [1996] for naive Bayes,
that if we fix the maximum number of parents in a Bayesian network classifier, the
type of classifier considered is not scalable, in other words, more complex classifiers are
expected to perform better when dealing with a large number of predictor variables.

Moreover, the resulting bounds for the number of decision functions representable are
strictly upper bounds since the subspaces generated by the different Bayesian networks
considered are not in general position. What happens in the case of subspaces not in
general position? Clearly we have to define some other property to characterize the
position of a subspace with respect to orthants in some given basis and try to count
the number of such intersected orthants. With similar geometric results we will be able
to precisely count the number of decision functions representable by a given Bayesian
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network classifier, and we will be able to compute the gain in expressibility from simple
to more complicated Bayesian network classifiers.
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Chapter 4

Decision Functions for Chain
Classifiers Based on Bayesian
Networks for Multi-Label
Classification

4.1 Introduction

We consider a multi-label classification problem [Zhang and Zhou, 2014, Tsoumakas
and Katakis, 2007] over categorical predictors, that is, mapping every instance x =
(x1, . . . , xn) to a subset of h labels:

X = X1 × · · · ×X n → Y⊆Y = {y1, . . . , yh},

where Xi ⊂ R, |Xi| = mi < ∞. As usually the problem could be transformed into
a multi-dimensional binary classification problem, that is, finding an h-valued decision
function φ that maps every instance of n predictor variables x to a vector of h binary
values c = (c1, . . . , ch) ∈ {−1,+1}h:

φ : X = X1 × · · · × Xn → {−1,+1}h

(x1, . . . , xn) 7→ (c1, . . . , ch),

where ci = +1 (−1) means that the i-th label is present (absent) in the predicted
label subset Y . We consider the predictor variables X1, . . . , Xn and the binary classes
Ci ∈ {−1,+1} as categorical random variables. Real examples include classification
of texts into different categories [Gonçalves and Quaresma, 2003], diagnosis of multiple
diseases from common symptoms and identification of multiple biological gene functions
[Blockeel et al., 2006, Zhang and Zhou, 2007].

The easiest way to approach a multi-label classification problem is to divide it into a
set of single-label classification problems (equivalent to binary classification problems).
Each binary problem is then solved independently and thus h binary classifiers, one for
each class variable Ci, are built. Each binary classifier is learned from predictor variables
and Ci data only. At the end the results are combined to form multi-label prediction.
Known as binary relevance, this method is easily implementable, has low computational
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complexity and is fully parallelizable. Therefore it is scalable to a large number of
classes. However, it completely ignores dependencies among labels and generally does
not represent the most likely set of labels.

Chain classifiers [Read et al., 2009, Dembczynski et al., 2010] relax the independence
assumption by iteratively adding class dependencies in the binary relevance scheme. The
k-th classifier in the chain predicts class Ck from X1, . . . , Xn, C1, . . . , Ck−1. Sucar et al.
[2014] employed naive Bayes within chain classifiers.

In this chapter, we study differences in the expressive power of these two methods
when Bayesian network (BN) classifiers [Bielza and Larrañaga, 2014] are used. In partic-
ular, we extend the results of Chapter 3 to multi-label classifiers. Moreover, we suggest
some theoretical reasons why the simple binary relevance method can perform poorly
when relationships among labels exist, and we prove that chain classifiers provide more
expressive models.

4.1.1 Chapter Outline

We describe the binary relevance method and compute its expressive power in Section
4.2. We analyze chain classifiers in Section 4.3. In Section 4.4 we compare the two
methods, proving that actually chain classifiers are more expressive than binary relevance
and in Section 4.6 we present our conclusions and some ideas for future research.

4.2 BAN Binary Relevance Classifiers

We consider the binary relevance method built upon BAN classifiers as base models,
that is, for every class variable Ci we learn a BAN classifier with predictor subgraph Gi.
Thus we actually transform our multi-label problem into a number of single binary-class
problems. The results of last chapter are then straightforwardly applied.

From Lemma 3.3 it follows that if φ = (φ1(x), φ2(x), . . . , φh(x)) is the h-valued
decision function induced by the h BAN classifiers, then there exist

p1(x) ∈ PG1 , . . . , ph(x) ∈ PGh ,

such that φk(x) = sign(pk(x)) for every k ∈ {1, . . . , h}. We have then that the multi-
valued decision function has a polynomial representation as,

φ(x) =
(
sign(p1(x)), . . . , sign(ph(x))

)
.

When we also assume that the predictor subgraphs G1, . . . ,Gh contain no V -structures,
we have that, for every single binary-class problem, Theorem 3.3 applies. Thus, in
Lemma 4.1, we bound the number of multi-valued decision functions representable by
the BAN binary relevance method, when the predictor subgraphs {Gk}hk=1 do not contain
V-structures.

Lemma 4.1. Consider h BAN classifiers to predict h binary classes. Suppose that the
predictor subgraphs are G1, . . . ,Gh respectively and they contain no V-structures. We
have that N (G1, . . . ,Gh), the number of h-valued decision functions representable by the
BAN binary relevance method, satisfies

N (G1, . . . ,Gh) ≤
h∏
k=1

C(M,dk),
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C1

X1 X2

C2

X1 X2

Figure 4.1: Two NB classifiers in Example 4.1

Table 4.1: Conditional probability tables in Example 4.1 for the NB of C1

P(X1|C1) X1

0 1

C1
−1 0.25 0.75
+1 0.5 0.5

P(X2|C1) X2

2 3 4

C1
−1 0.1 0.7 0.2
+1 0.3 0.5 0.2

where C(M,d) = 2
∑d−1

k=0

(
M−1
k

)
, dk =

∑n
i=1

(
(mi − 1)

∏
s∈pak(i)ms

)
+ 1, pak(i) is the

set of Xi parents in Gk and M =
∏n
i=1mi.

Proof. The proof is a straightforward application of Corollary 3.3.

Remark 4.1. We consider now, for visualization purposes, a simpler version of the
above models. In particular when the predictors subgraphs are all the same, that is,
Gj = G. The total number of h-valued decision functions over n categorical predictors
is 2h

∏
mi = 2hM . Then the fraction of h-valued decision functions representable by the

BAN binary relevance method is bounded by

N (G1, . . . ,Gh)

2hM
≤
(
C(M,d)

2M

)h
.

Thus, we have that if we fix the structure of the predictor subgraph, and it does not con-
tain V-structures, the number of representable multi-valued decision functions becomes
vanishingly small as the number of predictors increase. Moreover, using the binary rel-
evance method, the speed at which the ratio between representable multi-valued decision
functions and the total number of multi-valued decision functions drops to zero, is expo-
nential in h, the number of classes.

Example 4.1. We consider two binary classes C1, C2 and two predictor variables X1 ∈
{0, 1} and X2 ∈ {2, 3, 4}. Using the binary relevance method we build two independent
NB classifiers, see Figure 4.1. Next, we list the conditional probability tables for both
classifiers (Tables 4.1 and 4.2). Moreover, we consider uniform prior probabilities for
both classes C1 and C2.

From the representation of Theorem 3.3 we have that there exist two polynomials

43



CHAPTER 4

Table 4.2: Conditional probability tables in Example 4.1 for the NB of C2

P(X1|C2) X1

0 1

C2
−1 0.4 0.6
+1 0.7 0.3

P(X2|C2) X2

2 3 4

C2
−1 0.6 0.2 0.2
+1 0.1 0.1 0.8

p1, p2 that sign-represent the decision functions induced by the two NB classifiers

p1(x1, x2) = log

(
0.5

0.25

)
x1 − 1

−1
+ log

(
0.5

0.75

)
x1

1

+ log

(
0.3

0.1

)
(x2 − 3)(x2 − 4)

2
+ log

(
0.5

0.7

)
(x2 − 2)(x2 − 4)

−1

+ log

(
0.2

0.2

)
(x2 − 2)(x2 − 3)

2

and

p2(x1, x2) = log

(
0.7

0.4

)
x1 − 1

−1
+ log

(
0.3

0.6

)
x1

1

+ log

(
0.1

0.6

)
(x2 − 3)(x2 − 4)

2
+ log

(
0.1

0.2

)
(x2 − 2)(x2 − 4)

−1

+ log

(
0.8

0.2

)
(x2 − 2)(x2 − 3)

2
.

We have that

φ(x) =

(
sign

(
p1(x)

)
, sign

(
p2(x)

))
is the bi-valued decision function that predicts C1, C2 from X1, X2. Figure 4.2 shows the
decision boundaries of the two classifiers (black for C1 and gray for C2). We observe that
the predictor space X = {0, 1} × {2, 3, 4} is partitioned into four subsets corresponding
to the four different predictions of the two binary classes. The value of the respective
predicted class changes when one of the decision boundaries is crossed.

4.3 BAN Chain Classifiers

The easiest way to relax the strong independence assumption of the binary relevance
method is to gradually add the predicted classes to the predictors. Specifically, suppose
that we have to predict h binary classes C1, . . . , Ch from n predictor variablesX1, . . . , Xn.
We consider h BAN classifiers such that the k-th BAN classifier predicts Ck from the
variables

X1, . . . , Xn, C1, . . . , Ck−1.

In the predicting phase we will then use the predictor values and the previous predicted
classes values ĉ1, . . . , ĉk−1 to predict class Ck. From Lemma 3.3 we have that there exist
h polynomials p1, . . . , ph

pk(x, ĉ1, . . . , ĉk−1) : Rn+k−1 → R
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Figure 4.2: Decision boundaries for the two NB classifiers in Example 4.1, black for C1

and gray for C2. The value of the predicted classes is reported

pk ∈ FGk ,

such that, if φ = (φ1, . . . , φh) is the multi-valued decision function associated with a
chain classifier we have that,

φk(x) = sign(pk(x, φ1(x), . . . , φk−1(x))) (4.1)

where Gk is the predictor subgraph related to the k-th BAN classifier over X1, . . . , Xn

and C1, . . . , Ck−1.

From now on we will focus on a particular and simpler form of BAN chain classifier,
where the previous predicted classes are present in a naive way in the predictor subgraph.
That is, C1, . . . , Ck−1 are not connected among them neither with other predictors in
the subgraph Gk. We refer to this kind of chain classifier as naive BAN chain classifier,
see an example in Figure 4.3. As we will see those naive models have a more simpler
representation of multi-valued decision functions and permit a deeper analysis. We
observe that more complex chain models could be addressed in a similar way, using the
interpolating polynomials to represent the decision functions of the already predicted
classes. In more complex models, however, the analysis of the decision function is more
difficult and not all the following results can be extended directly.

For a naive BAN chain classifier for C1, . . . , Ch, over X1, . . . , Xn we denote by Hk
the subgraph of the k-th BAN restricted to the original predictors X1, . . . , Xn.

Since classes Cj are binary, expanding Equation (4.1) we obtain the following sign-
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C1

X1 X2

X3

C2

X1

X2

X3

C1

C2 C3

X1

X2

X3

C1

Figure 4.3: Example of naive BAN chain classifier with three classes and three predictor
variables

representation of the k-th decision function in a naive BAN chain classifier:

φk(x) = sign(pk(x, φ1(x), . . . , φk−1(x))

= sign

 n∑
i=1

mi∑
j=1

`Xi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(xs)

+
k−1∑
j=1

[
βj(−1)`

{−1,+1}
−1 (ĉj) + βj(+1)`

{−1,+1}
+1 (ĉj)

]
= sign

q̂k(x) +
k−1∑
j=1

[
βj(−1)`

{−1,+1}
−1 (ĉj) + βj(+1)`

{−1,+1}
+1 (ĉj)

] ,

where q̂k ∈ PHk
, ĉj = φj(x) is the predicted value of the previous classifier expressed by

the interpolating polynomial as a function of x, `
{−1,+1}
−1 (c) = c−1

−2 and `
{−1,+1}
+1 (c) = c+1

2

are the Lagrange basis polynomials over {−1,+1} and βj(c) = log
(

P(Cj=c|Ck=+1)
P(Cj=c|Ck=−1)

)
.

Rearranging the terms in the sum we obtain that the following function sign-represents
φk,

qk(x) = q̂k(x) +
k−1∑
j=1

(ajφj(x) + bj) , (4.2)

where fj are the decision functions of the previous predicted class in the chain, q̂k is the
polynomial related to the subgraph Hk as in Theorem 3.3 and

aj =
1

2
log

(
P(Cj = +1|Ck = +1) P(Cj = −1|Ck = −1)

P(Cj = +1|Ck = −1) P(Cj = −1|Ck = +1)

)
(4.3)

bj =
1

2
log

(
P(Cj = +1|Ck = +1) P(Cj = −1|Ck = +1)

P(Cj = +1|Ck = −1) P(Cj = −1|Ck = −1)

)
(4.4)

Observe that we can omit constants bj in Equation (4.2) if analysing the expressive
power. In fact constants could be included in the polynomial q̂k using elementary prop-
erties of Lagrange basis polynomials, see Chapter 3. The following lemma describes the
set of decision functions induced by the k-th step of the naive BAN chain classifier.
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Lemma 4.2. Consider a multi-label classification problem over predictors X1, . . . , Xn

and a naive BAN chain classifier with predictor subgraphs H1, . . . ,Hh for classes or-
dered as C1, . . ., Ch. Assume that the predictor subgraphs do not contain V -structures.
For every k ∈ {2, . . . , h} we have that, if φ1, . . . , φk−1 are the decision functions for
C1, . . . , Ck−1 respectively, then the following set of polynomials sign-represent every de-
cision function for class Ck,

FHk
+ < φ1, . . . , φk−1 >,

where < . . . > denotes the span of the included vectors and the sum is intended as the
sum of two vectorial spaces, that is, the vectorial space which includes all the possible
sum of elements of the two spaces, FHk

and < φ1, . . . , φk−1 >.

Proof. The proof of the result is just an application of Theorem 3.3 and Equation (4.2).

We have furthermore, that the set sign (FHk
+ < φ1, . . . , φk−1 >) is equal to the set

of decision functions representable by the k-th BAN classifier of the naive BAN chain
classifier if the graphs Hk do not contain V -structures. Intuitively, from an expressive-
power point of view, we have the addition of the previous predicted classes in the k-th
step of a naive BAN chain classifier being the equivalent to the enrichment of the space
of functions FHk

, related to the original predictors, by a subspace generated by the
previously induced decision functions. To analyze if and how the enlarged space is indeed
a bigger space, in other words, that it has a higher dimension, we have to understand
when a decision function φ ∈ C does not belong to a space of the type FG for some graph
G. Thus, in this case, adding < φ > to FG will actually increase the dimension.

First of all we define the set of relevant variables for a given decision function.

Definition 4.1. Given a decision function

φ(x1, . . . , xn) : X = X1 × · · · × Xn → R

we say that a variable Xi is irrelevant for φ if

φ(x1, . . . , xn) = g(x−i) = ψ(x1, . . . , xi−1, xi+1, . . . , xn), ∀(x1, . . . , xn) ∈ X .

A variable is said to be relevant for φ if it is not irrelevant, and we indicate with V(φ)
the set of relevant variables for φ.

As we will see relevant variables are important in order to determine if a given decision
function belongs or not to some space FG . In real applications the task of finding relevant
variables of a decision function is computationally expensive and moreover in reality we
usually know just an estimation of a decision function or its value on a set of random
points. The presented analysis is thus intended as a theoretical analysis.

Example 4.2. We show some examples of decision functions and their respective set of
relevant variables.

1. If φ1 is a decision function over {0, 1, 2} × {−3,−2}, such that

φ1(x1, x2) =

{
−1 if (x1, x2) = (0,−3) or (0,−2)

+1 otherwise.

Then obviously φ1(x1, x2) = g(x1), where g(x1) = −1 if x1 = 0 and +1 otherwise.
Thus X2 is irrelevant for φ1 and V(φ1) = {X1}.
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2. If φ2 is the xor-function over {0, 1} × {0, 1}, defined as follows

φ2(x1, x2) =

{
−1 if (x1, x2) = (0, 0) or (1, 1)

+1 if (x1, x2) = (0, 1) or (1, 0).

Then V(φ2) = {X1, X2} and φ2 does not have irrelevant variables.

3. If φ3 is the function over {0, 1} × {0, 1} such that,

f3(x1, x2) =

{
−1 if (x1, x2) = (0, 0)

+1 otherwise.

Then also in this case V(φ3) = {X1, X2}.

We can now state the following result about the set of relevant variables of decision
functions.

Lemma 4.3. Consider a graph G without V -structures and the space of functions FG
defined in Equation (3.17). For every decision function φ we have that,

φ ∈ FG ⇔ V(φ) are completely connected in G.

Proof. If the relevant variables for φ are completely connected in the graph G, then we
have that the polynomials in FG could interpolate over X any function of variables in
V(φ) only. In particular, there exists a polynomial p(x) ∈ φG such that φ(x) = p(x),
∀x ∈ X and thus φ ∈ FG .

To prove the other implication we observe that if two variables Xi and Xj are not
directly connected in the graph G, each polynomial p(x) ∈ FG could be split into the
sum of two polynomials,

p(x) = p1(x−{i,j}, xi) + p2(x−{i,j}, xj). (4.5)

To prove the above equality we just observe that each polynomial p in FG has the
following expression

p(x) =

n∑
i=1

mi∑
j=1

`Xi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Xs
ks

(xs).

Thus two variables appear in the same product of different Lagrange polynomial bases if
and only if they are directly connected, that is, if and only if one variable belongs to the
parents of the other. It is clear now that the sum in Equation (4.5) is therefore valid.

So we have only to prove that a decision function φ ∈ C with two relevant variables
X1 ∈ X1, X2 ∈ X2 could not be equal, over X1 × X2, to the sum of two functions p1(x1)
and p2(x2). Since X1 and X2 are relevant variables, there exist s, s′ ∈ X1 and t, t′ ∈ X2

such that,
φ(s, t) = −φ(s, t′) and φ(s, t) = −φ(s′, t)

Suppose φ(x1, x2) = p1(x1) + p2(x2), then we have,

φ(s′, t′) =p1(s′) + p2(t′)

=p1(s′) + p2(t) + p1(s) + p2(t′)− p1(s)− p2(t)

=φ(s′, t) + φ(s, t′)− φ(s, t) = −3φ(s, t).

And we get |φ(s′, t′)| 6= 1 which is absurd given that φ is a decision function (|φ(x)| =
1).
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We return to points 2 and 3 of Example 4.2. In both cases functions φ2 and φ3 do
not have irrelevant variables. Thus from Lemma 4.3 we have that φ2, φ3 /∈ FNB. But
φ2 /∈ sign(FNB) (see the results of Ling and Zhang [2002]) while φ3 ∈ sign(FNB) (see
proof of Theorem 4.1).

Thanks to Lemma 4.3, we have the following result.

Lemma 4.4. Consider a multi-label classification problem over categorical predictors
X1, . . . , Xn, for binary classes ordered as C1, . . . , Ch. Given a sequence of predictor
subgraphs H1, . . . ,Hh without V -structures, let us consider φ = (φ1, . . . , φh) the h-valued
decision functions of the corresponding naive BAN chain classifier. Then, for every
1 ≤ k ≤ h, we have that

|sign (PHk
+ < φ1, . . . , φk−1 >)| ≤ C(M,dk + s) ≤ C(M,dk + k − 1),

where M = |X | =
∏n
i=1mi, dk = dim(PHk

), and s is equal to the number of functions
among φ1, . . . , φk−1 such that their relevant variables are not completely connected in
Hk.

Proof. Suppose, φi1 , . . . , φis are the decision functions among φ1, . . . , φk−1 such that
their relevant variables are not completely connected in Hk. From Lemma 4.3 we have
that,

φi1 , . . . , φis /∈ PHk
,

and that
φi ∈ PHk

for every i ∈ {1, . . . , k − 1} \ {i1, . . . , is},

Thus we have
PHk

+ < φ1, . . . , φk−1 >= PHk
+ < φi1 , . . . , φis >,

and so
dim (PHk

+ < φ1, . . . , φk−1 >) ≤ dk + s ≤ dk + k − 1.

Analogously to Corollary 3.3 we have the corresponding bounding.

Remark 4.2. We observe that changing the order of classes in which the chain classifier
is built implies a change in the expressive power of the resulting multi-label classifier.
If the chain classifier is built with the class ordering C1, . . . , Ch, we have that the k-th
classifier for Ck is more expressive than all the previous classifiers in the chain. In fact,
from Equation (4.2), we have that if φ is a decision function representable by the j-th
step of the chain classifier, then φ is representable by every successive steps of the chain
classifier.

Example 4.3. We use a NB chain classifier over the prediction problems of Example
4.1. The NB classifier for predicting class C1 is the same as in Example 4.1 (see Figure
4.1 left and Table 4.1). The predictors of the NB classifier for predicting C2 now include
C1. We consider the same conditional probability tables as in Example 4.1 (Tables 4.1
and 4.2). Moreover we have to specify the conditional probabilities of C1 given C2 in the
NB that predicts C2. We set

P(C1 = +1|C2 = +1) = 0.3 and P(C1 = −1|C2 = +1) = 0.7,

P(C1 = +1|C2 = −1) = 0.9 and P(C1 = −1|C2 = −1) = 0.1.
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And, thus, coefficients a1 and b1 as defined in Equations (4.3) and (4.4) are given by

a1 =
1

2
log

(
0.3× 0.1

0.9× 0.7

)
and b1 =

1

2
log

(
0.3× 0.7

0.9× 0.1

)
.

We have that the decision function to predict C2 is sign-represented by

q2(x1, x2) = p2(x1, x2) + a1φ1(x1, x2) + b1

where φ1(x1, x2) = sign(p1(x1, x2)) and p2 are defined in Example 4.1. The decision
boundaries of the two classes are shown in Figure 4.4. We observe that the two bound-
aries are no longer independent; the decision boundary for the second class C2 (dashed
gray line) depends on the decision boundary of the first class C1.

x1

x 2

0 1

2
3

4

●

●

●

●

●

●

(+1,−1)

(+1,−1)

(+1,+1)

(+1,−1)

(−1,+1)

(−1,+1)

Figure 4.4: Decision boundaries for the chain NB classifier in Example 4.3. The value
of the predicted classes is reported

4.3.1 Extensions to Classifier Trellises

Classifier trellises (CT) are a novel paradigm to multi-label classification problems, re-
cently introduced by Read et al. [2015]. Basically CT works as chain classifiers, but
instead of adding as predictors all the previous predicted classes, just some of them are
considered in the new step of the classifier, thus reducing the complexity of the algo-
rithm. We just observe here that our results about naive BAN chain classifiers could
easily be extended to CT (when BAN classifiers are used as base models), especially
when, as in naive BAN chain classifiers, the classes already predicted are added in a
naive way.
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4.4 Binary Relevance vs. Chain Classifiers

In this section, we compare the expressive power of binary relevance and chain classifiers
when BAN classifiers are used as based models. We recall that a full Bayesian network
is a Bayesian network where all pairs of nodes are linked.

Thanks to Lemma 4.3, we can prove the following result.

Theorem 4.1. Consider a multi-label classification problem over categorical predictors
X1 ∈ X1, . . . , Xn ∈ Xn, for binary classes ordered as C1, . . . , Ch. Given a sequence
of predictor subgraphs H1, . . . ,Hh without V -structures and such that they are not full
Bayesian networks, consider Chchain to be the set of h-valued decision functions induced
by the naive BAN chain classifier and Chbr the set of h-valued decision functions induced
by the corresponding binary relevance method. We have that,

|Chchain| > |Chbr|.

In other words, naive BAN chain classifiers are more expressive than the corresponding
BAN binary relevance method.

Proof. From the results of the previous sections we have that,

Chbr = {(φ1, . . . , φh) s.t. φk = sign(pk), pk ∈ FHk
}

Chchain =

(φ1, . . . , φh) s.t. φk = sign

pk +

k−1∑
j=1

ajφj

 , pk ∈ PHk
, a1, . . . , ak−1 ∈ R


Among the decision functions for the first class C1 we can always choose for every

k = (k1, . . . , kn) ∈M = {1, . . . ,m1} × · · · × {1, . . . ,mn}, φk(x) such that

φk(x) =

{
+1 if x = (ξk11 , . . . , ξknn )

−1 if x ∈ X \ {(ξk11 , . . . , ξknn )}

To prove the above fact is sufficient to observe that for every k ∈ M, φk belongs to
sign(FNB) ⊆ sign(FH1). In fact we have that φk = sign(p(x)) where

FNB 3 p(x) =

n∑
i=1

`Xi
ki

(xi)−
n∑
i=1

∑
j 6=ki

n`Xi
j (xi),

as it is possible to check it by substitution.
Since X (φk) = {X1, . . . , Xn} and Hk is not complete, we have, from Lemma 4.3,

that φk /∈ FHk
. Thus the space FHk

+ < φk > has one dimension more than FHk
, and

so sign(FHk
+ < φk >) contains at least two more decision functions than sign(FHk

).
So we have that there exist some h-valued decision functions that belong to Chchain but
not to Chbr.

We can also have a roughly estimation of the gain in expressibility from BAN binary
relevance to naive BAN chain classifier.

Lemma 4.5. If Chchain and Chbr are defined as in Theorem 4.1 we have that

|Chchain \ Chbr| > |X |
(

3h−1−1
)
.
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Proof. As in the proof of Theorem 4.1 we can choose, among the decision functions for
the first class C1,

φk(x) =

{
+1 if x = (ξk11 , . . . , ξknn )

−1 if x ∈ X \ {(ξk11 , . . . , ξknn )}

Thus we have |X | possibilities to choose the decision function for C1. For every φk we
have two more decision functions representable for every other classes C2, . . . , Ck, thus
counting all the combinations we get

|Chchain \ Chbr| > |X |
h−1∑
k=1

(
(h− 1)

k

)
2k = |X |

(
3h−1−1

)

As we see from the proof, the estimation given by Lemma 4.5 is far from being sharp.
However, it helps us to understand that chain classifiers are not just more expressive than
binary relevance; the difference goes to +∞ as the number of labels h grows.

4.5 Chain Regressors

Multi-output regression can be seen as the continuous alternative case to multi-label
classification. The task is to predict the value of multiple continuous variables Y1, . . . , Yh
from a set of continuous predictors X1, . . . , Xn. A review of methods can be found in
Borchani et al. [2015].

Similarly to multi-label problems, two of the simplest algorithm are binary relevance
(usually called single target, ST, in the multi-output regression context) and chain regres-
sion (CR). In particular chain regression, a problem transformation method, is directly
inspired by the multi-label chain classifiers. Once an ordering of the output variables is
chosen, they are predicted with single regression methods as in the ST method but in
every step the k-th variable is estimated using the original predictors plus the previously
predicted k − 1 output variables. Obviously CR and ST methods can be used with
whatever regression method as a base model.

Intuitively CR methods should exploit the possible relationship among output vari-
ables to deliver a better estimation, but actually in some cases building a chain regression
is completely equivalent to the corresponding single target method.

This can be seen easily if linear regression is used as base model. The chain linear
regression model consist in estimating Yk with a linear regression over X1, . . . , Xn and
Y1, . . . , Yk−1. Thus the estimator Ŷk can be written iteratively as

Ŷk =

n∑
i=1

βk,iXi +

k−1∑
j=1

βk,n+j Ŷj + γk ∀k ∈ [h] (4.6)

Obviously, since the system described by Equation (4.6) is triangular it is possible to
express Ŷ rc

k with respect to the Xi only:

Ŷk =

n∑
i=1

β′k,iXi + γ′k,
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which is obviously a linear regression. Thus the use of a chain linear regression does not
expand the expressive power of the model as in the multi-label case. In the multi-label
setting a non-linear function (sign) is applied to the discrimination function.

Moreover we have that if ordinary least squares (OLS) or ridge regression [Hoerl
and Kennard, 1970] is used to estimate the coefficients of the linear regressions, CR and
ST methods yield exactly the same estimations of the coefficients as proved in the next
lemma.

Lemma 4.6. Chain linear regression is equivalent to single target linear regression if
ordinary least squares or ridge estimators are used.

Proof. Let A be the N × n matrix of input observation and B the N × h matrix of
output observations, and assume AtA is invertible, otherwise OLS estimation cannot
apply. Moreover we will denote with βk ∈ Rn+k−1 the vectors of coefficients in the chain
linear regression in Equation 4.6. Suppose the ordering of the chain is exactly Y1, . . . , Yh.
Then the coefficients of the first target are estimated as the OLS ones,

Rm 3 β1 =
(
AtA

)−1
AtB1,

where B1 is the first column of B, corresponding to the observations of Y1. In the second
training step of the chain, we compute the OLS estimation of the coefficients β2 of the
regression of Y2 over X1, . . . , Xn, Y1. Thus:

Rn+1 3 β2 =

(
AtA AtB1

Bt
1A Bt

1B1

)−1(
At

Bt
1

)
B2.

Using the formula for computing the inverse of a block-defined matrix we obtain that(
AtA AtB1

Bt
1A Bt

1B1

)−1

=

(
(AtA)−1 + β1CD −β1C

−CD C

)
,

where

β1 =(AtA)−1AtB1 ∈ Rn×1,

C =
(
Bt

1B1 −Bt
1A(AtA)−1AtB1

)−1 ∈ R1×1,

D =βt1 = Bt
1A(AtA)−1 ∈ R1×n.

And we assume that
(
Bt

1B1 −Bt
1A(AtA)−1AtB1

)
is invertible, that is, different from

0.
So we have that, splitting the vector of coefficients between the original predictors

and the coefficient for Y1, we obtain,

β2 =

(
β2,1,...,n

β2,n+1

)
=

(
(AtA)−1AtB2 + β1CDA

tB2 − β1CB
t
1B2

−CDAtB2 +CBt
1B2

)
.

And thus, the model of the first two step of the chain is,

ŷ1 = βt1

 x1
...
xn

 and ŷ2 = βt2


x1
...
xn
ŷ1

 .
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Substituting now ŷ1 into the equation for ŷ2 we obtain that

ŷ2 = βt2,1,...,n

 x1
...
xm

+ β2,n+1β
t
1

 x1
...
xn

 =
(
βt2,1,...,n + β2,n+1β

t
1

) x1
...
xn

 .

It is easy to see now by substitution that(
βt2,1,...,n + β2,n+1β

t
1

)
= (AtA)−1AtB2. (4.7)

The right-hand side of Equation (4.7) are the OLS estimations of the regression coef-
ficients of Y2 over X1, . . . , Xn. Hence the second step of the chain is equivalent to the
OLS estimation of a ST model. Iterating the argument we obtain that every step of the
chain is equivalent to the ST model. To prove the same statement for ridge regression
estimation is sufficient to repeat the same argument used in the present proof using the
ridge estimations of the parameters (AAt+λI)−1AtB1 [Hoerl and Kennard, 1970].

4.6 Conclusions

In this chapter we have extended the results of Chapter 3 on the decision boundaries and
expressive power of one-label BN classifiers to two types of BN multi-label classifiers:
BAN classifiers built with binary relevance method and BAN chain classifiers. We have
given theoretical grounds for why the binary relevance method provides models with
poor expressive power and why this gets worst for larger number of classes. In both
models, we have expressed the multi-label decision boundaries in polynomial forms and
we have also proved that chain classifiers provide more expressive models than the binary
relevance method when the same type of BAN classifier is used as base classifier.

Extending our results to general multi-dimensional BN classifiers [van der Gaag and
de Waal, 2006, de Waal and van der Gaag, 2007, Bielza et al., 2011, Read et al., 2014],
that permit BN structures within classes and predictors, is however, a much more com-
plicated task. In multi-dimensional BN classifiers, the multi-valued decision functions
have to be found by a global maximum search over the possible classes values. This fact
does not permit the employment of the same arguments used in this work. It would be
interesting to extend the geometric study of BAN classifiers, such as the study of the
space of polynomials associated with every particular BAN. A deeper comprehension
of the structure of FG could help to precisely compute or estimate the effective gain
in expressive power of chain classifiers with respect to binary relevance when the same
BAN classifiers are used as base model.
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Markov Property in Generative
Classifiers

5.1 Introduction

Generative classifiers (see Section 2.3.3) are a wide class of machine learning models
that consist of estimating the joint probability distributions over the predictor and class
variables. From the estimated distribution a decision can be made over the class vari-
able given the values of the predictors. It is well known that algebraic and geometric
methods can be valuable tools in dealing with discrete probabilities as graphical models
[Garcia et al., 2005, Settimi and Smith, 1998], contingency tables and exponential mod-
els [Diaconis and Sturmfels, 1995, Fienberg and Gilbert, 1970]. In this chapter we try
to develop an algebraic and geometric point of view on generative binary classifiers over
categorical predictors.

5.1.1 Chapter Outline

In Section 5.2 we introduce a discrete difference operator and we show its connection
to conditional independence statement in generative classifiers. In Section 5.3 we study
generative classifiers with undirected Markov property. We connect our findings with
equalities of odds-ratios for multi-dimensional contingency tables in Section 5.4. In Sec-
tion 5.5 we study maximum-likelihood estimation for parameters of generative classifiers,
its limitations and an idea for combining the generative and discriminative approaches.
Finally in Section 5.6 we resume the conclusion of the chapter.

5.2 Difference Operator and Conditional Independence

In this section we show that every conditional independence statement over the variables
(X1, . . . , Xn, C) is equivalent to a set of linear equations for the induced discrimination
function, we then generalize the statement to undirected Markov networks. The result
can be synthetically expressed using the difference operator centered in x0 ∈ X and
acting on any function f : X −→ R.

Definition 5.1. Let f ∈ F and A ⊆ [n], the A-difference of first order (centered in
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x0 ∈ X ) is defined as,

∆x0

A f(x) = f(x)− f(x−A,x
0
A).

Difference operators of order greater than one can be defined iteratively. In particu-
lar, for A,B ⊂ [n] we are interested in the second order difference

∆x0

A ∆x0

B f =∆x0

A (f(x)− f(x−B,x
0
B))

=f(x) + f(x−(A∪B),x
0
A∪B)− f(x−A,x

0
A)− f(x−B,x

0
B).

Lemma 5.1 connects the difference operators centered in different x0,x1 ∈ X .

Lemma 5.1. For every f ∈ F , A,B ⊆ [n] and x0,x1 ∈ X .

(i) ∆x1

A f(x)−∆x0

A f(x) = ∆x1

A f(x−A,x
0
A)

(ii) ∆x0

A f(x) = 0 for all x ∈ X if and only if ∆x1

A f(x) = 0 for all x ∈ X

(iii) ∆x0

A ∆x0

B f(x) = 0 for all x ∈ X if and only if ∆x1

A ∆x1

B f(x) = 0 for all x ∈ X .

Proof. For proving (i) we use Definition 5.1

∆x1

A f(x)−∆x0

A f(x) =f(x)− f(x−A,x
1
A)− f(x) + f(x−A,x

0
A)

=f(x−A,x
0
A)− f(x−A,x

1
A) = ∆x1

A f(x−A,x
0
A).

Points (ii) and (iii) follow now directly from (i), we show this fact for point (ii). Assume
that ∆x1

A f(x) = 0 for all x ∈ X . From (i) we have that,

∆x0

A f(x) = ∆x1

A f(x)−∆x1

A f(x−A,x
0
A).

Thus obviously ∆x0

A f(x) = 0 for all x ∈ X . Inverting now the roles of x0 and x1 in (i)
we obtain the desired equivalence.

Because of Lemma 5.1 we can assume x0 fixed and write ∆A for ∆x0

A . Furthermore,
if f(x) = 0 for all x ∈ X , we write f ≡ 0. The following lemma, whose proof follows
directly from Definition 5.1, collects the basic properties of ∆A.

Lemma 5.2. Let f, g ∈ F and A,B ⊆ [n].

(i) ∆Af ≡ 0 if and only if there exist a function h of the x−A variables such that
f = h(x−A),

(ii) f(x) = h(x−A) + ∆Af(x),

(iii) ∆A(αf + βg) = α∆Af + β∆Ag for all α, β ∈ R.

And for the second order differences we can prove the following properties.

Lemma 5.3. Let f ∈ F and A,B ⊆ [n].

(i) ∆A∆Bf = ∆Af + ∆Bf −∆A∪Bf .

(ii) ∆A∆Af = ∆Af .
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(iii) ∆A∆Bf ≡ 0 if and only if there exist a function h of the x−A variables and a
function g of the x−B variables such that f(x) = h(x−A) + g(x−B).

Proof. Points (i) and (ii) follow directly by Definition 5.1. To prove point (iii) we just
observe that from point (i) of Lemma 5.2 we have that

∆A∆Bf ≡ 0 if and only if ∆Bf = h(x−A),

and thus by point (ii) of Lemma 5.2, f(x) = g(x−B) + h(x−A).

The following observation gives an insight on why second order difference operators
are meaningful to analyze conditional independence models.

Observation 5.1. Consider P ∈ P such that XA |= XB|(X−A∪B, C) then we observe
that the toric equation of the independence model (Proposition 3.1.4. in Drton et al.
[2009]):

P(xA,xB,xD, c) P(x′A,x
′
B,xD, c) = P(xA,x

′
B,xD, c) P(x′A,xB,xD, c),

for all c ∈ {−1,+1}, xD ∈ XD, xB,x
′
B ∈ XB, xA,x

′
A ∈ XA, is equivalently written

using the difference operator as

∆A∆B (log(P(X = x, C = c))) = 0, ∀c ∈ {−1,+1} and x ∈ X .

We can now prove that a conditional independence statement among the predictor
variables is equivalent to the related second order difference of the discrimination function
being equal to zero.

Lemma 5.4. Let X = (X1, . . . , Xn) be a predictor vector of discrete random variables
and C a binary class variable. Let A,B,D a partition of [n] and f ∈ F . The following
statements are equivalent:

(i) There exists a generative classifier P ∈ Ψ−1(f) such that XA |= XB|(XD, C) holds.

(ii) ∆A∆Bf ≡ 0.

Proof. (i)⇒ (ii): Let P ∈ Ψ−1(f) be a probability distribution such that XA |= XB|(XD, C).
Thus f(x) = fP(x) and by Observation 5.1,

∆A∆B (log(P(X = x, C = c))) = 0, ∀x ∈ X and c ∈ {−1,+1}.

From the linearity of ∆A (Lemma 5.2, (iii)) we have that fP = log(P(x,+1))−log(P(x,−1))
(ii) ⇒ (i):
We need to define P such that ∆A∆B log(P(X, C)) ≡ 0 and that f = fP. Given

ψ(x) : X 7→ R such that ∆A∆Bψ ≡ 0 (e.g., ψ ≡ 0), define

log(P(X = x, C = −1)) = ψ(x) + k,

log(P(X = x, C = +1)) = ψ(x) + k + f(x),

where k is an appropriate normalization constant, that is,∑
x∈X

exp(ψ(x))
(

1 + ef(x)
)

= exp(−k).

P defined above obviously satisfies ∆A∆B log(P(X, C)) ≡ 0, moreover

fP(x) = ψ(x) + k + f(x)− ψ(x)− k = f(x), ∀x ∈ X .
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C

X1

X3

X2X4

Figure 5.1: Markov classifier that is not equivalent to a BAN classifier

5.3 Markov network Classifiers

We consider now generative classifiers such that the underlying probability satisfies undi-
rected Markov properties with respect to a given graph. In particular consider an undi-
rected graph G over nodes indexed as variables X1, . . . , Xn, a G-Markov classifier is
defined as a generative classifier P ∈ P such that both P(X|C = +1) and P(X|C = −1)
satisfy the pairwise Markov property with respect to G. Note that since generative clas-
sifiers are strictly positive probabilities, pairwise, local and global Markov properties are
equivalent and Theorem 2.1 holds. Alternatively, we can define a G-Markov classifier as
a generative classifier P that satisfies pairwise (or equivalently global or local) Markov
property with respect to an extended undirected graph; the extended graph is defined
adding the node C to the graph G and connecting C to all predictor variables (See
example in Figure 5.1).

For G-Markov classifiers we can prove the following result.

Theorem 5.1. The following statements are equivalent for every function f : X → R
and every undirect graph G over X1, . . . , Xn.

(i) There exist a G-Markov classifier P ∈ Ψ−1(f).

(ii) ∆A∆Bf ≡ 0 for every A,B such that XA and XB are separated by the rest of
variables in G.

(iii) f(x) =
∑

A⊆{1,...,n} ψA(xA), such that ψA ≡ 0 if XA are not fully connected in G.

Proof. (i) ⇒ (ii): It is straightforward from Lemma 5.4.
(ii) ⇒ (iii): As in the proof of Theorem 2.1 [Lauritzen, 1996], we consider

VA(xA) = f(x)−∆Af(x) = f(x−A,x
0
A),

and
ψA(xA) =

∑
B⊆A

(−1)|A\B|VB(xB).
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Thus from Möebius inversion lemma (Lemma 2.1) we have that

f(x) = V[n](x) =
∑
A⊆[n]

ψA(xA).

We just have to show that ψA ≡ 0 if XA are not completely connected in G. Let A ⊂ [n]
such that XA are not completely connected, then there exist a, b ∈ A such that Xa and
Xb are not adjacent, thus we can write, for D = A \ {a, b},

ψA(x) =
∑
B⊆D

(−1)|D\B|
(
VB(xB)− VB∪a(xB , xa)− VB∪b(xB , xb) + VB∪{a,b}(xB , xa, xb)

)
=
∑
B⊆D

(−1)|D\B|∆a∆b(f −∆Bf) = 0.

Where the last equality is due to the linearity of the difference operator and the fact
that ∆a∆bf = 0 by point (ii) since a and b are not adjacent.

(iii) ⇒ (i): We define a probability distribution P of the following form:

log (P(X = x, C = c)) = K +
∑
A⊆[n]

φA(xA, c), (5.1)

where φA ≡ 0 when XA are not completely connected in G. Using Theorem 2.1 we have
that the conditional probabilities P(X|C = ±1) are pairwise Markov with respect to G.
We choose now {φA}A⊆[n] as

φA(xA, c) =

{
gA(xA) if c = −1

ψA(xA) + gA(xA) if c = +1
(5.2)

where the gA(xA)’s are arbitrary functions such that gA(xA) ≡ 0 when XA are not
completely connected and K is the appropriate normalization factor. We obtain that
the induced discrimination function fP ≡ f . Indeed

fP =
∑
A⊆[n]

(φA(xA,+1)− φA(xA,−1)) =
∑
A⊆[n]

ψA(xA).

When a function f ∈ F satisfies point (ii) for a given graph G we will concisely write
∆2
Gf ≡ 0. Moreover we can observe that the factorization in point (iii) can be concisely

written using the set of cliques K(G) of the graph G,

f(x) =
∑

A∈K(G)

ψA(xA).

We show now that we can easily prove the following results equivalent to the result
of Ling and Zhang [2002].

Corollary 5.1. If f ∈ F is such that ∆2
Gf ≡ 0 and sign(f) contains a xor among

variables XA, then XA induce a complete subgraph in G.
Or equivalently if XA is not completely connected in G, it does not exist a G-Markov

classifier that can represent a xor among XA.

59



CHAPTER 5

Proof. Let Xi and Xj non adjacent in G thus we have that ∆i∆jf ≡ 0, and thus

f(x) + f(x−{i,j}, x
0
i , x

0
j ) = f(x−i, x

0
i ) + f(x−j , x

0
j ).

From the previous equation we see that it is impossible that

sign(f(x)) = sign(f(x−{i,j}, x
0
i , x

0
j )) = −sign(f(x−i, x

0
i )) = −sign(f(x−j , x

0
j )),

Since it is valid for every x,x0 ∈ X we have that no xor among Xi, Xj can be induced
by f .

We can also prove a “relaxed” versions of the results in Theorem 5.1.

Corollary 5.2. Given an undirected graph G we have that if |∆2
Gf | ≤ ε

f(x) = f(x) + r(x),

where ∆2
Gf ≡ 0 and |r(x)| ≤ Kε, with K a constant that depends only on the graph G.

Vice versa if f = f + r with |r| ≤ ε and ∆2
G ≡ 0 then |∆2

Gf | ≤ 4ε.

Proof. The proposition follows from the triangle inequality, the Möebius inversion for-
mula as in the proof of Theorem 5.1 and from the linearity of ∆A.

5.3.1 Extended Markov Classifiers

In the same way extended Markov distributions are defined as limits of Markov distri-
butions it is possible to define extended Markov classifiers.

Definition 5.2. P is an extended G-Markov classifier if there exist a sequence, Pn of
G-Markov classifiers that converges to P. That is,

P(X = x, C = c) = lim
n→∞

Pn(X = x, C = c) ∀x ∈ X , c ∈ {−1,+1}.

We denote with P(G) the set of extended G-Markov classifiers. Observe that, in
general, for an extended Markov classifier the induced discrimination function is not
defined, simply because P does not have to be strictly positive. Nonetheless, the most-
probable class and thus the induced decision function can be defined as

φP(x) = arg max
c∈{−1,+1}

P(X = x, C = c).

If the graph G is the complete graph then we write simply P for the set of extended
generative classifiers.

In the next example we show how extended generative classifiers are connected with
noise-free (or deterministic) classification problems.

Example 5.1. Consider f ∈ F such that ∆2
Gf ≡ 0 for a given graph G. And P a joint

probability over X and C such that

P(C = c,X = x) =

{
1 if cf(x) > 0
0 if cf(x) < 0
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P represents a deterministic classification problem where X has a distribution given
by P(X) and C is deterministically expressed by sign(f).

P is obviously an extended generative classifier. In fact we have that

Pn(X = x, C = c) = P(X = x)
exp(ncf(x)/2)

exp(−nf(x)/2) + exp(nf(x)/2)

Converges to P as n→∞.

For a subset of P(G) we can also extend the definition of induced discrimination
function.

Definition 5.3. We say that P is a marginally extended G-Markov classifier if there
exists Pn ∈ PG ∩Ψ−1(f) such that

P(X = x, C = c) = lim
n→∞

Pn(X = x, C = c) ∀x ∈ X , c ∈ {−1,+1}.

We then denote with fP = f the induced discrimination function as for generative clas-
sifiers.

With PG(f) we denote the marginally extended Markov classifier with discrimination
function f .

Observe that the induced discrimination function fP for marginally extended Markov
models is well-defined over the x ∈ X such that P(x) > 0.

5.3.2 Gaussian Predictors

In this section we show it is possible to prove a similar result to Theorem 5.1 for Gaussian
predictor variables, namely that every discrimination functions in a given class can
be induced by Markov classifiers with a given graph. We consider now the binary
classification problem over continuous predictors, we assume moreover that the random
vector of predictors X follows a normal distribution conditioned to the value of the class
variable C. Namely we have that

X|(C = c) ∼ N (µc,Σc).

Define P to be the probability distribution over X and C obtained by the previous
equation and by the class prior P(C = +1) = 1 − (C = −1) = p+. We call the
probabilistic classifier obtained in this way a Gaussian classifier.

Given an undirected graph G with nodes indexed as the predictor variablesX1, . . . , Xn

we say that a Gaussian classifier is Markov with respect to G if both the distributions
P(X|C = ±1) are Markov with respect to G, that is both the concentration matrix
(Σ+1)−1 and (Σ−1)−1 are Markov with respect to G.

Definition 5.4. A simmetric matrix A ∈ Rn×n is said to be Markov with respect to an
undirect graph G if and only if Ai,j = Aj,i = 0 for every (i, j) such that the i-th node is
not adjacent to the j-th node.

The Gaussian classifier is well studied[Duda et al., 2000] and the corresponding dis-
crimination function is

fP(x) = −1

2
xtAx + αtx + γ, (5.3)
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where A =
(
Σ−1

+1 − Σ−1
−1

)
, αt = µt+1Σ−1

+1−µt−1Σ−1
−1 and γ = log

(
p+

1−p+

)
− 1

2 log
(
|Σ+1|
|Σ−1|

)
−

1
2

(
µt+1Σ−1

+1µ+1 − µt−1Σ−1
−1µ−1

)
. The discriminant function is linear if the covariance ma-

trices are equal give the values of the class variable, otherwise the discriminant function
is quadratic in the predictor variables. In the case of markov Gaussian model Lemma
5.5 holds, similarly to the discrete case.

Lemma 5.5. The following are equivalent for every undirect graph G and every function
f

(i) f(x) = −1
2xtAx + αtx + γ with A simmetric and Markov with respect to G,

(ii) f is induced by a Gaussian classifier Markov with respect to G.

Proof. (i) ⇒ (ii): To prove the implication lets define a Gaussian classifier which is
Markov with respect to G and that induces f . A Gaussian classifier is defined by the
following parameters

• p+ = P(C = +1),

• Σ+1 and Σ−1, the covariance matrices,

• µ+1 and µ−1 the mean vectors.

We start by defining the covariance matrices as follow

Σ+1 = (A+ λS)−1,

Σ−1 = (λS)−1.

where S ∈ Rn×n is any positive definite symmetric matrix Markov with respect to G and
λ is an appropriate positive number. With this choice we have that:

(Σ+1)−1 − (Σ−1)−1 = A.

We just have to show that we can choose λ such that (A+ λS) is positive definite (it is
obviously symmetric and Markov with respect to G). We have that:

det

(
S +

1

λ
A

)
= det(S) +

1

λ
det(S) tr(S−1A) +O

(
1

λ2

)
Thus there exist λ0 such that det

(
S + 1

λA
)
> 0 if λ > λ0. If s∗ is the smallest eigenvalue

of S we have that xtSx ≥ s∗x
tx for every x. Choose now λ > ||A||2

s∗
we have that for

every non-zero vector x,

xt(λS +A)x = λxtSx + xtAx > xtx (||A||2 − ||A||2) = 0.

Finally we have that λS +A is positive definite if we choose λ > max
{
λ0, ||A||2s∗

}
.

We can now easily pick p+ and the mean vectors to adjust the remaining two terms
of f (α and γ). In particular for α, it is sufficient to choose µ− equal to the zero vector
and µ+ = (Σ+1)α.

(ii) ⇒ (i) is obvious from Equation 5.3.
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5.4 Constant Interactions Models

In this section we study the set of generative classifiers such that their discrimination
function factorizes as in Theorem 5.1 for a given undirected graph. In particular if G is
an undirected graph we are here interested in the following set,

Ψ−1({f s.t ∆2
Gf ≡ 0}) = {P ∈ P s.t. ∆2

GfP ≡ 0} = {P ∈ P s.t. fP(x) =
∑

A∈K(G)

fA(xA)}.

We prove that ∆A∆BfP ≡ 0 can be stated as an equivalence among odds ratios of the
contingency tables for the conditional probabilities given the class values. We will first
show it in the simplest model with two binary predictors as it is linked with the well
studied geometry of 2× 2 contingency tables [Fienberg and Gilbert, 1970]. Then we will
extend it to the general case.

2× 2 Predictors

Consider the space of generative classifiers over two binary predictor variables with
X1, X2 ∈ {0, 1}. The only not naive factorization of the discrimination function, is in
this case, the one induced by the graph with no arcs among predictors. We are thus
interested in

{P(X1, X2, C) ∈ P s.t. ∆1∆2fP ≡ 0} .

Since the predictor variables are binary, ∆1∆2fP ≡ 0 reduces to only one equation,

fP(0, 0) + fP(1, 1) = fP(0, 1) + fP(1, 0).

By the definition of discrimination function (Definition 2.3) and the strict positivity of
generative classifier probabilities, the above identity is equivalent to,

P(0, 0|C = +1) P(1, 1|C = +1)

P(0, 1|C = +1) P(1, 0|C = +1)
=

P(0, 0|C = −1) P(1, 1|C = −1)

P(0, 1|C = −1) P(1, 0|C = −1)
. (5.4)

The left and right hand side of Equation (5.4) are the odds ratios [Fienberg, 1968,
Carlini and Rapallo, 2005] of respectively P(X1, X2|C = +1) and P(X1, X2|C = −1).
We have thus that P ∈ Ψ−1 ({f s.t. ∆1∆2f ≡ 0}) if and only if P(X1, X2|C = +1) and
P(X1, X2|C = −1) have the same odds ratio.

Let us fix a positive real number α > 0 and define the space of probability distribu-
tions over X1, X2 with fixed odds ratios equals to α as,

M(α) =

{
Q(X1, X2) s.t.

Q(0, 0)Q(1, 1)

Q(0, 1)Q(1, 0)
= α

}
.

Obviously the setM(α) is not empty for every α ∈ R. Moreover the setM(1) is the
manifold of independent probabilities.

General Predictors

To extend the previous observation to general Markov classifiers, we need to define odds
ratios for general models of more than two and not only binary, random variables. The
following definition is a simple extension to multivariate tables of the odds ratios for
r × c contingency tables in Fienberg [1968].
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Definition 5.5. Let A,B be two disjoint subsets of [n], we define the (A,B) odds ratios
of a probability Q over X as

αA,B[Q](xA,x
′
A; xB,x

′
B; xD) =

Q(xA,xB,xD) Q(x′A,x
′
B,xD)

Q(xA,x′B,xD) Q(x′A,xB,xD)

where D = [n] \ (A ∪B).

The set of all the, |X ||XA||XB|, odds ratios in Definition 5.5 forms the complete set
of (A,B) odds ratios.

The (A.B) odds ratios satisfy the following properties for every probability Q, every
disjoint sets A,B and every xA,x

′
A,x

′′
A ∈ XA, xB,x

′
B,x

′′
B ∈ XB, xD ∈ XD.

αA,B[Q](xA,xA; xB,x
′
B; xD) = αA,B[Q](xA,x

′
A; xB,xB; xD) = 1

αA,B[Q](xA,x
′
A; xB,x

′
B; xD) =

(
αA,B[Q](x′A,xA; xB,x

′
B; xD)

)−1

αA,B[Q](xA,x
′
A; xB,x

′
B; xD) =

(
αA,B[Q](xA,x

′
A; x′B,xB; xD)

)−1

αA,B[Q](xA,x
′
A; xB,x

′
B; xD)αA,B[Q](x′′A,xA; xB,x

′
B; xD) = αA,B[Q](x′′A,x

′
A; xB,x

′
B; xD)

αA,B[Q](xA,x
′
A; xB,x

′
B; xD)αA,B[Q](xA,x

′
A; x′′B,xB; xD) = αA,B[Q](xA,x

′
A; x′′B,x

′
B; xD)

From the above equations we can see that the complete set of (A,B) odds ratios is
not composed by independent values. It is known [Fienberg, 1968] that we can choose
among the |X ||XA||XB| odds ratios a subset of (|XA|−1)(|XB|−1)|XD| elements that
completely describe the complete set of odds ratios. One way to choose such a restricted
subset is given by the spanning cells odds ratios [Fienberg, 1968] centered in a given
point (x0

A ∈ XA,x
0
B ∈ XB).

Definition 5.6. The (A,B) spanning cells odds ratios centered in (x0
A ∈ XA,x

0
B ∈ XB)

are

α
x0
A,x

0
B

A,B [Q](x) = αA,B[Q](x0
A,xA; x0

B,xB; xD)

The (A,B) spanning cell odds ratios satisfy the following constrains:

α
x0
A,x

0
B

A,B [Q](x) = 1 if xA = x0
A or xB = x0

B. (5.5)

The spanning cell odds ratios thus consist of (|XA| − 1)(|XB| − 1)|XD| independent
positive numbers.

We will call a function α : X 7→ R>0 that satisfies Equation (5.5) an (A,B) spanning
cell odds ratio function (centered in (x0

A,x
0
B)). We can thus define, for every (A,B)

spanning cell odds ratio function α the set of constant (A,B) interactions as

MA,B(α) =
{

Q p.d.f. over X s.t. α
x0
A,x

0
B

A,B [Q] ≡ α
}
.

The following representation holds for the set M(α).

Lemma 5.6. For every α an (A,B) spanning cell odds ratios function centered in x0
A,x

0
B

we have that

MA,B(α) '
SA,B(α)

∼
.
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Where SA,B(α) is the linear space of the solutions of the following linear system over
{lxA,xB ,xD}x∈X

lxA,xB ,xD + lx0
A,x

0
B ,xD

− lx0
A,xB ,xD

− lxA,x
0
B ,xD

= log(α(x)) ∀x ∈ X . (5.6)

And ∼ is the equivalence relationship defined by

{lxA,xB ,xD}x∈X ∼ {l
′
xA,xB ,xD

}x∈X ⇔ lxA,xB ,xD − l
′
xA,xB ,xD

= k ∀x ∈ X

Proof. Consider Q a p.d.f. over X and define lxA,xB ,xD = log(Q(x)), we thus have that
{lxA,xB ,xD}x∈X satisfy the linear system in Eq. (5.6) if and only if Q ∈MA,B(α).

Eq. (5.6) can be solved for lx and thus the space of solutions SA,B is not empty and
has dimension equal to (|XA|+ |XB| − 1)|XD|.

We observe that every constant lxA,xB ,xD = k ∈ R is a solution of the homogeneous
system associate with Eq. (5.6) thus we have that for every lxA,xB ,xD ∈ SA,B we can
associate the following p.d.f.

Q(x) =
exp(lxA,xB ,xD)∑
x exp(lxA,xB ,xD)

= exp

(
lxA,xB ,xD − log

(∑
x

exp(lxA,xB ,xD)

))
.

Where l∗x = lxA,xB ,xD − log (
∑

x exp(lxA,xB ,xD)) belong to SA,B being the sum of a
solution of the linear system and a solution of the associate homogeneous system. Using

l∗x as the representative of the ∼-equivalence class of lx it is clear thatMA,B(α) ' SA,B(α)
∼

through the component-wise exponential map.

As in the 2× 2 case, we have that the manifold of independence models is obtained
setting α as the (A,B) spanning cell odds ratio function constant 1. Thus MA,B(1) =
{Q(XA,XB) s.t. XA |= XB}. Moreover the follow characterization holds.

Proposition 5.1. For every two disjoint A,B ⊂ [n] we have that ∆A∆BfP ≡ 0 if and
only if αA,B[P(x|C = +1)] ≡ αA,B[P(x|C = −1)].

Thus we have that for an undirected graph G the set of discrimination function rep-
resentable by G-Markov classifiers, that is {f s.t. ∆2

G ≡ 0}, is identical to the set of dis-
crimination functions representable by all generative classifiers such that αA,B[P(X|C =
+1)] = αA,B[P(X|C = −1)] for every A,B separated by the rest of variables in G.
Observe that this last set of generative classifiers includes the G-Markov classifiers but
many more.

5.5 Parameters Estimation

In this section we study estimation methods for generative classifiers, that is, methods
to fit the probability distributions. The method generally used to fit the parameters of
a generative classifier is the maximum-likelihood estimation. It is well-known that, if
the model is misspecified, the maximum-likelihood estimation is not consistent [Devroye
et al., 1996], that is is not able to learn a model that induces the Bayes classifier even
with an infinite amount of data. As we show in the next section even if the real and
unknown decision function belongs to the set of decision functions that are representable
by G-Markov classifiers, if the probability does not satisfies the pairwise Markov property
with respect to G than the maximum-likelihood estimation is not optimal. To show this
fact is sufficient to study the naive Bayes model.

65



CHAPTER 5

5.5.1 Non Optimality

Domingos and Pazzani [1997] observe that the naive Bayes classifier is not optimal under
0-1 loss if the conditional probabilities P(Xi|C) are estimated from data with maximum-
likelihood (empirical frequencies), even if the real decision function f is linear (that is
∆i∆jf ≡ 0 in our framework).

The example cited by Domingos and Pazzani [1997] are the so-called m-of-n concepts.
An m-of-n concept is a classification problem, where the C = +1 if at least m of the
n binary predictors (Xi ∈ {0, 1}) are 1 and C = −1 otherwise. Observe that a m-of-n
concept can be represented by the following discrimination function:

fm,n(x) =

n∑
i=1

xi −m.

Domingos and Pazzani [1997] test the naive Bayes classifier for m-of-n concepts learned
from the complete, noise-free dataset and observed that the maximum-likelihood es-
timation of the parameters yields, in some cases, to non-optimal classifiers under 0-1
loss.

In general consider the true probability to be P such that ∆2
GfP ≡ 0 for a given

graph G. We know from Theorem 5.1 that there exist a G-classifier P̂ such that fP̂ = fP,
but the maximum-likelihood estimation (even asymptotically) is not able to learn it and
more importantly is not even able to learn a sign-equivalent function.

We tested this statement numerically in the simplest case of the naive Bayes model
over two binary predictors. In particular, for a given value α > 0 we randomly gen-
erate two conditional probabilities P(X1, X2|C = ±1) ∈ M(α) and we thus define
P(X1, X2, C) = 1

2 P(X1, X2|C). We then compute P̂ = P(C) P(X1|C) P(X2|C) the or-
acle naive Bayes estimation and we test if sign(fP̂) = sign(fP). For α = 1, the true
probability satisfies indeed the naive Bayes assumption and thus sign(fP̂) makes no er-
rors, but as α get increasingly far from one the NB estimation incurs more frequently in
errors.

Modified Naive Bayes

Domingos and Pazzani [1997] reported that a simple modification of the naive Bayes al-
lows to perfectly represent all of m-of-n concepts (from empirical evaluation for n < 18).
The modification consists of adding a constant to the learned discrimination function
fPnb . The value of the constant is chosen to maximize the accuracy over the training
data. We call such learning algorithm wNB (it is equivalent to the so-called weighted
naive Bayes, see Chapter 3 for the explanation of such equivalence).

Using the odds-ratio parametrization we performed extensively evaluation of wNB
for the case of two binary predictor variables in the oracle setting as specified above. As
stated before, we observe that the NB model incurs in more errors when the odds ratio
is far from 1, while the wNB corrected algorithm is always able to perfectly learn fP.

Observe that the setting of Domingos and Pazzani [1997] is different from ours, their
true probability is not a member of P since it is zeros if C 6= fm,n(X), it is an example
of what we called a deterministic classification problem in Example 5.1.

We also tested extensively the wNB model with deterministic datasets obtained
from linear discrimination function of the form f =

∑n
i=1 βixi + γ and with P(X) =
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∏n
i=1 P(Xi), |Xi| = m, we observe that if βi = β for all i ∈ [n] then the wNB model is

always able to perfectly learn f . For general linear functions of Xi this is not the case
thus showing that wNB is still limited in the type of discrimination functions learnable.

The weighted strategy has been employed successfully in the literature, both with
naive Bayes models and with more complex structures. Recently Zaidi et al. [2017] stud-
ied a general framework that adds exponential weights to the recursive BN factorization.
They showed that such over parametrized models can be initialized with parameters
learned with maximum-likelihood and then refined with discriminative learning, that is
maximizing the conditional likelihood.

5.5.2 Fixed Discrimination Maximum-Likelihood Estimator

Fix an undirected graph G and a discrimination function f ∈ F such that ∆2
Gf ≡ 0.

From Theorem 5.1, we have that there exists a classifier in P(G) that induces f (that is
Ψ(P) = fP = f). Actually, from the proof of Theorem 5.1, it follows that there exists a
whole family of G-Markov classifiers that induce f .

We are interested now in obtaining the generative classifier that maximizes the like-
lihood among such family. Similarly to the maximum-likelihood estimation in Markov
models, we need to complete the set with the limiting distributions. Thus we look at
the set PG(f) (see Sec. 5.3.1), such that

arg max
P∈PG(f)

L(P;D) = arg max
P∈PG(f)

∏
(x,c)∈D

P(X = x, C = c)

We show how the iterative proportional fitting (IPF) algorithm [Fienberg, 1970, Lau-
ritzen, 1996] can be used to solve the problem.

Let K(G) the set of cliques of the graph G, and P ∈ PG ∩Ψ−1(f). For A ∈ K(G) we
define the marginal fitting operator:

TA P(X = x, C = c) = P(X = x, C = c)
ND(xA)/|D|
P(XA = xA)

Observe that,

fTA P = log

(
TA P(X = x, C = +1)

TA P(X = x, C = −1)

)
= log

(
P(X = x, C = +1)

P(X = x, C = −1)

)
= fP.

Thus TA P ∈ PG ∩Ψ−1(f).

Given an ordering of the cliquesKG the IPF algorithm iteratively adjusts the marginal
of the cliques until convergence (see Section 2.2.1).

We just have to assure to initialize the IPF algorithm with a probability in P(G) ∩
Ψ−1(f), for example,

P0(X = x, C = c) ∝ exp
( c

2
f(x)

)
.

It is obvious that the resulting maximum-likelihood estimation will yield an element
of PG(f).
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Combining Discriminative and Generative Approaches

It is obvious now how to combine the discriminative and generative approaches. Suppose
we have a dataset D and a discriminative algorithms, that is an estimated function
f̂D ∈ F . Suppose that for a given graph G we know that ∆2

G f̂D ≡ 0. We can find, using

the IPF algorithm, the maximum likelihood G-Markov classifier that induces f̂D.
Observe that for various classical discriminative algorithms it is possible to know a

priori the graph G such that ∆2
G f̂D ≡ 0. That is because a decomposition of f̂D is known

as
f̂D(x) =

∑
A

gA(xA).

Examples include logistic regression and in general log-linear models, support vector
machines [Cortes and Vapnik, 1995] and boolean classifiers (e.g using monomials basis)
[O’Donnell, 2014].

5.6 Conclusions

In this chapter we analyze the impact of conditional independence statements and in
general of the undirected Markov property over the induced discrimination function of a
generative classifier. For this, we define a categorical differential operator (∆A) and we
show that conditional independence statements are described by second-order differences
being zero (∆A∆Bf ≡ 0) for the induced discrimination function. We then connect such
second order differences with multi-dimensional odds ratios and we study some ideas
that such a formalization can suggest for learning algorithms. We think that the given
descriptions of conditional independence statements for discrimination functions could
be useful to study generative classifiers over categorical predictors and to help design
new type of learning procedures.
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Conclusions

6.1 Summary of Contributions

The contributions of this thesis have been described in Chapters 3, 4 and 5. Chapter
3 includes our main results about the description of the discrimination functions in-
duced by BAN classifiers. In particular for every BAN structure we are able to find
a family of polynomials that interpolate the induced discrimination functions and thus
sign-represent the associated decision functions. When the BAN structures do not con-
tain V -structures we are also able to prove that every polynomial in that family can
be induced by a BAN classifier with a given structure. Thanks to this polynomial de-
scription we are able to bound the number of decision functions representable by a given
BAN structure, thus extending previous results in the literature.

Chapter 4 extends the study of decision functions induced by BAN classifiers to the
multi-label case. In particular we study two simple but common methods, namely binary
relevance and chain classifiers when BAN classifiers are used as base models. We are
able to extend the bounding of the number of decision functions representable for these
two multi-label methods. Moreover we prove that the chain method greatly expands the
number of decision functions representable with respect to the binary relevance method.

In Chapter 5 we study generative classifiers under conditional independence assump-
tions and in general undirected Markov property. We connect undirected Markov prop-
erties with a set of linear relationships for the induced discrimination functions. Such
linear relationships are formally described using a categorical difference operator. We
show how this novel formalization for discrimination functions is useful to better under-
stand generative classifiers and their induced decisions. Moreover we obtain some ideas
for an alternative estimation of generative models and for combining discriminative and
generative approaches.

6.2 List of Publications

The publications and submissions derived from the research reported in the present
dissertation are listed below.

JCR articles
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• G. Varando, C. Bielza, P. Larrañaga. Decision boundary for Bayesian network
classifiers. Journal of Machine Learning Research, vol. 16, pp. 2725-2749, 2015.

• H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, A survey on multi-output
regression. WIREs Data Mining and Knowledge Discovery, vol. 5, pp. 216–233,
2015.

• G. Varando, C. Bielza, P. Larrañaga. Decision functions for chain classifiers based
on Bayesian networks for multi-label classification. International Journal of Ap-
proximate Reasoning, vol. 68, pp. 164-178, 2016.

Submission

• G. Varando, E. Riccomagno, C. Bielza, P. Larrañaga. Markov property in gener-
ative classifiers, to be submitted 2018.

In proceedings

• G. Varando, C. Bielza, P. Larrañaga. Expressive power of binary relevance and
chain classifiers based on Bayesian networks for multi-label classification. Lecture
Notes in Artificial Intelligence, 8754, Springer, pp. 519-534, 2014.

Chapter 3 is directly derived with few changes from Varando et al. [2015]. Chapter
4 includes mainly the content of Varando et al. [2016] and Varando et al. [2014] plus
an additional section containing a result published in Borchani et al. [2015]. Chapter 5
contains the work that is currently under preparation as Varando et al. 2018.

6.3 Future Work

In the conclusion sections at the end of every chapter we have already suggested some
possible lines for future research. We now state more general questions and future
research lines.

Learning algorithms We think that the results in the present dissertation give a solid
framework for the study of generative classifiers over categorical predictors. We would
now use the developed tools and the learned knowledge to design new types of learning
algorithms for generative classifiers. In Chapter 5 we suggested a couple of possible
approaches, but further analysis and empirical experimentation are needed. In particular
we would like to investigate two different aspects of the learning procedure, namely fitting
of parameter and structure search (or model selection). As far as parameter fitting is
concerned, we want to further examine and implement methods that combine generative
and discriminative approaches and test them over examples with missing data.

As far as model selection is concerned, it would be interesting to further study how
to select the best BN structure (or undirected graph in Markov models) to address a
classification problem. In particular it would be interesting to implement structural risk
minimization model selection, especially in combination with a discriminative-generative
approach, for classifiers based on graphical models.
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Figure 6.1: A hierarchical naive Bayes structure with five predictors and two hidden
variables.

C

H
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Figure 6.2: Simplest hierarchical naive Bayes over two predictors.

Hidden variables Hidden variables, that is, variables that are not observed not even
in the training set, could be a valuable tool to expand the capabilities of BN classifiers
and graphical model classifiers in general. In the literature the most studied model is
the so-called hierarchical naive Bayes classifier [Han et al., 2005, Langseth and Nielsen,
2006, Flores et al., 2009, Njah et al., 2016], where the hidden variables are usually placed
between the class variable and the predictors (see Figure 6.1). Langseth and Nielsen
[2006] showed an example of a decision function over three binary predictors which is
not representable by a naive Bayes but it is when a latent variable is added. It is easier
to see, in general, that if we consider a single hidden variable between the predictors and
the class as in Figure 6.2 and we do not place a bound on the number of values variable
H can assume, it is obvious that the model can always represent whatsoever classifier
(just by representing with the hidden variable H the product space of the predictors).

The first step would be to extend the results of Theorem 3.1 and in general Theorems
3.3 and 5.1 to generative models with hidden variables.

From an intuitive point of view, placing hidden variables is somehow the equivalent
of the hidden layer in artificial neural networks (observe that the naive Bayes model is
equivalent to the simple perceptron[Rosenblatt, 1957]). Also for this reason exploring
the meaning of hidden variables for BN classifiers would be extremely interesting.
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discriminative Bayesian network classifiers and logistic regression. Machine Learning,
59(3):267–296, 2005.

Frank Rosenblatt. The Perceptron, a perceiving and recognizing automaton. Cornell
Aeronautical Laboratory, 1957.



Mehran Sahami. Learning limited dependence Bayesian classifiers. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, KDD’96,
pages 335–338. AAAI Press, 1996.

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A Bayesian ap-
proach to filtering junk e-mail. In Learning for Text Categorization: Papers from the
1998 Workshop, volume 62, pages 98–105, 1998.

Raffaella Settimi and Jim Q. Smith. On the geometry of Bayesian graphical models
with hidden variables. In Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, UAI’98, pages 472–479. Morgan Kaufmann Publishers Inc.,
1998.

L. Enrique Sucar, Concha Bielza, Eduardo F. Morales, Pablo Hernandez-Leal, Julio H.
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