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In decision-making problems under uncertainty, a decision table consists of a set of attributes
indicating what is the optimal decision (response) within the different scenarios defined by the
attributes. We recently introduced a method to give explanations of these responses. In this
paper, the method is extended. To do this, it is combined with a query system to answer expert
questions about the preferred action for a given instantiation of decision table attributes. The
main difficulty is to accurately answer queries associated with incomplete instantiations.
Incomplete instantiations are the result of the evaluation of a partial model outputting decision
tables that only include a subset of the whole problem, leading to uncertain responses. Our
proposal establishes an automatic and interactive dialogue between the decision-support
system and the expert to elicit information from the expert to reduce uncertainty. Typically, the
process involves learning a Bayesian network structure from a relevant part of the decision
table and computing some interesting conditional probabilities that are revised accordingly.
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1. Introduction

1.1. Decision tables, explanations and queries

Under uncertainty, a modern and useful decision-theoretic model is the influence diagram [17]. It consists of an acyclic directed
graph with associated probabilities and utilities, respectively modeling the uncertainties and preferences tied in with the stated
problem. Nowadays this probabilistic graphical model is frequently adopted as a basis for constructing decision-support systems
(DSSs). The results of evaluating an influence diagram are decision tables containing the optimal decision alternatives, policies or
responses. Thus, for every decision, there is an associated decision table with the best alternative, i.e. the alternative with the
maximum expected utility for every combination of relevant variables (usually called attributes within this context) that are
observable before the decision is made. The evaluation algorithm determines which of the observable variables are relevant. These
variables are outcomes of random variables and/or other past decisions.

A decision table may have millions of rows and typically more than twenty columns leading to enormous data sets for storage
and analysis. Expert DSS users demand such an analysis on mainly two grounds. First, DSS decision tables provide the best
decision-making recommendations. However, experts may find such recommendations hard to accept if they come without any
explanation whatsoever of why the proposed decisions are optimal. Unexplained responses are not good enough for expert users
since DSSs operate on a model that is an approximation of the real world. The importance of explanations has been reported in the
literature, see e.g. [9,12,13]. Thus, for example, in health-care problems, usually involving difficult trade-offs between the
treatment benefits and risks, practitioners may use decision tables to determine the best patient treatment recommendations. For
this purpose, they need to understand the underlying reasons or implicit rules.

In medical DSSs, clinical practice guidelines assemble the relevant knowledge gathered through literature review, meta-
analysis, expert consensus, etc., and operationalize this information as informal, text documents. This makes the gathered
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information difficult to interpret automatically and the decision-making process hard to guide. Shiffman and Greenes [19] propose
translating guideline knowledge into decision table-based rule sets. Shiffman [18] proposes augmenting decision tables by layers,
storing collateral information in slots at various levels beneath the logic layer of the conventional decision table. Information
relates to table cells, rows and columns. It may include how tests are performed, the benefits/risks of the recommended strategies,
costs, literature citations, etc., to help understand the domain. All these decision tables are different than ours. Our knowledge base
is the model (influence diagram) and its evaluation, stored in the decision tables. The model (graph with probabilistic
dependencies and probability and utility information) is built from clinical practice guidelines, data and expert input. Also, there is
no uncertainty in clinical guidelines. Influence diagrams are based on subjective probabilities and utilities, and support learning
and reasoning with uncertainty and preferences.

In [6] we introduced KBM2L lists to find explanations. The main idea stems from how computers manage multidimensional
matrices: computermemory stores andmanages thesematrices as linear arrays, and each position is a function of the order chosen
for the matrix dimensions. KBM2L lists are new list-based structures that optimize this order by putting equal responses in
consecutive positions, yielding the target explanations and simultaneously achieving compact storage. These lists implicitly
include the probability and utility models, they are simple, and have no added complex layers.

Not only do expert users employ decision tables as a knowledge base (KB) for explanations; they also query the DSS about
which is the best recommendation for a given set of attributes in different ways. This is the second reason for decision table
analysis. In a typical session, experts interact with DSSs to:

(A) formulate a query in the KB domain;
(B) translate the query into the KB formalism;
(C) implement the response retrieval;
(D) build the response efficiently;
(E) communicate the response(s) and/or suggest improvements, and wait for user feedback.

For (A) and (B), we distinguish between two groups of queries (closed/open) depending on whether or not the whole set of
attributes is instantiated. A closed query is a specific and well-defined query entered by users that know all the attribute
information. An open query is less specific, as it includes attribute values that are undefined either because they are hard or
expensive to obtain or they are unreliable. Martinez et al. [15] give a similar classification for GIS (geographical information
systems), although they focus on data efficient updating and access from a physical point of view (merely as a database), rather
than from a logical point of view (as a KB).

(C) to (E) may be troublesome, especially for open queries, due to imprecise response retrieval failing to satisfy users.
Additionally, the DSS may not include the whole decision table, because an exhaustive evaluation of the decision-making problem
can be too costly. In this case there will be no response at all. Worse still, both situations could apply at the same time, demanding a
methodology to undertake tasks (C)–(E) dealing with ambiguity and ignorance about the response.

1.2. Example: Optimal treatment of gastric non-Hodgkin lymphoma

Let us illustrate these ideas with the following clinical problem. It is a real health-care decision-making problem regarding the
optimal treatment of non-Hodgkin lymphoma of the stomach.

Primary gastric non-Hodgkin lymphoma, gastric NHL for short, is a relatively rare disorder, accounting for about 5% of gastric
tumors. This disorder is caused by a chronic infection by the Helicobacter pylori bacterium [5]. Treatment consists of a combination
of antibiotics, chemotherapy, radiotherapy and surgery.
Fig. 1. Influence diagram for the treatment of gastric NHL.
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A number of influence diagrams have been constructed and validated [14]. Thesemodels are only meant to be used for patients
with histologically confirmed gastric NHL. We have taken the most complex version with three decision nodes. This influence
diagram is shown in Fig. 1, and is briefly discussed in the following. The first of the decision nodes, HELICOBACTER-TREATMENT (HT),
corresponds to the decision to prescribe antibiotics against H. pylori. The second decision concerns carrying out SURGERY (S). The
possibilities are either curative surgery, involving the complete removal of the stomach and locoregional tumor mass; palliative
surgery, i.e. partial removal of the stomach and tumor; or no surgery. The last decision, CT-RT-SCHEDULE (CTRTS), is concerned with the
selection of chemotherapy (Chemo), radiotherapy (Radio), chemotherapy followed by radiotherapy (Ch.Next.Rad), or none.

The influence diagram model consists of 17 chance nodes (ellipses), one value node (diamond), three decision nodes
(rectangles) and 42 arcs. Nodes to the left of the decision nodes (see Fig. 1) concern pretreatment information. Nodes to the right
of the decision nodes are posttreatment nodes. Variables with their associated domains are listed in Table 1. See [14] for further
details on themodel. Bielza et al. [1] detail the use of KBM2L lists to gain a better understanding of the treatment basis of the gastric
NHL model.

The gastric NHL influence diagram evaluation outputs three decision tables, one for each decision variable, each containing the
optimal treatment for each combination of attributes in the tables.

Let us take the first decision table concerning the HT decision. It contains four attributes (CS, BD, HC, and HP), and the expected
utility of each treatment alternative HT=No/Yes. To illustrate likely user queries, suppose a user queries the DSS about patients
with the following configurations:
Table 1
Gastric

Variab

HELICO

SURGER

CT-RT-S

GENERA

CLINICA

BULKY-

HISTOL

HELICO

CLINICA

AGE

ERADIC

BM.DEP

PERFOR

HEMOR

THERAP

POST.CT

POST.SU

IMMED

EARLY.

5.YEAR
Q0: HC = Low:Grade; HP = Present; CS = I and BD = Yes

OQ 1: HP = Absent; CS = I and BD = Yes

OQ 2: CS = II2:
We will look at all the discussed queries in this paper. In the first case, Q 0, the query is closed since the four attributes are
instantiated. The question is about a patient that has a good histological classification (HC=Low.Grade), a favorable prognosis
(CS=I), the H. pylori bacterium (HP=Present), and a big tumor (BD=Yes). Unless this query corresponds precisely to an unsolved
part of the problem, the response should be easy to retrieve.

In the second case, OQ 1, the query is open because the doctor has not yet performed a biopsy to ascertain the HISTOLOGICAL-

CLASSIFICATION (HC). This could perhaps be due to the high cost of the biopsy.
In the third case, OQ 2, the query is evenmore open, specifying only a medium clinical stage (CS=II2) for the patient. However,

the usermay be interested in finding outwhich treatment patients like these should receive. Responses are not expected to be easy
to retrieve now. There are many possible alternatives, where users will find it unsatisfactory if different and perhaps unknown
responses are retrieved. Therefore, strategies should be developed to assure user satisfaction. One possibility is table reordering to
provide more precise answers. Another is sophisticated prediction procedures to infer the unknown responses from (somehow)
close known responses or by having the user intervene at some steps to reduce response uncertainty.
NHL variables with their possible values.

le Possible values

BACTER-TREATMENT (HT) No, Yes
Y (S) None, Curative, Palliative
CHEDULE (CTRTS) None, Radio, Chemo, Ch.Next.Rad
L-HEALTH-STATUS (GHS) Poor, Average, Good
L-STAGE (CS) I, II1, II2, III, IV
DISEASE (BD) Yes, No
OGICAL-CLASSIFICATION (HC) Low.Grade, High.Grade
BACTER-PYLORI (HP) Absent, Present
L-PRESENTATION (CP) None, Hemorrhage, Perforation, Obstruction

v10.19, v20.29, v30.39, v40.44, v45.49, v50.54
v55.59, v60.64, v65.69, v70.79, v80.89, GE90

ATION No, Yes
RESSION (BONE MARROW) No, Yes
ATION No, Yes
RHAGE No, Yes
Y.ADJUSTMENT No, Yes
-RT.SURVIVAL No, Yes
RGICAL.SURVIVAL No, Yes
IATE.SURVIVAL No, Yes
RESULT CR (complete remission), PR (partial remission), NC (no change), PD (progressive disease)
.RESULT ALIVE, DEAD
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1.3. Outline

In this paper, we propose a query system based on the KBM2L framework to deal with these complex situations. Unlike
database management systems that operate with facts, DSSs must provide explanations besides efficiently retrieving the query
response information [10]. Thus, our KBM2L framework provides not only an efficient and satisfactory query response retrieval but
also an informed response explanation. It is not our aim to develop clinical practice guidelines, but to provide a DSS with a user
interface capable of performing complex queries involving more than just accessing a clinical protocol database or document.

The paper is organised as follows. Section 2 outlines the technique of KBM2L lists. Section 3 describes the query complexity and
shows how to deal with a closed query. Section 4 tackles less specific and more complex open queries. The proposal combines
decision tables that have been compacted using KBM2L lists with learning, information access and information retrieval processes.
We give several examples applied to the non-Hodgkin lymphoma problem. Section 5 contains the conclusions and suggests
further research.

2. KBM2L lists

2.1. Basics

A decision table output by evaluating an influence diagram is a set of attributes that determines the optimal policy. Besides all
the attribute configurations, a decision table includes the response or optimal alternative associated with each configuration. A
base is defined as a vector with elements equal to the attributes in a specific order. Given a base, an index is a vector whose
elements are the attribute values, interpreted as the coordinates with respect to that base. With a fixed order of attributes with
discrete domains, a decision table can be viewed as a multidimensional matrix.

We can map this multidimensional matrix to a linear array or list like sequential memory allocation in computers [11]. Given a
cell of the table of n+1 attributes with index c = c0; c1;…; cnð Þ, we define the access function f :Rn+1→R, such that
f c0; c1;…; cnð Þ = c0 ∏
n

i=1
Di + c1 ∏

n

i=2
Di + ⋯ + cn = q; ð1Þ

q is the c-offset with respect to the first element of the table in a given base, and Di denotes the cardinality of the ith
where
attribute domain for i=0,1,…,n. The access function f can also be written more compactly as
f c0; c1;…; cnð Þ = ∑
n

i=0
ciwi; ð2Þ

wi = ∏
n

j= i + 1
Dj = wi + 1Di + 1 is called the weight of the ith attribute, i=0,1,…,n and wn=1. The vector of weights is
where

w = w0;w1; :::wnð Þ. Thus, index notation and offset notation are equivalent, and are related to each other by function f, defined by
Eq. (1) or (2). Without loss of generality, suppose the possible outcomes of ci are 0,1,2,…Di−1 and, hence, the possible values for q
are 0,1,2,...,w0D0−1.

With a view to shortening the list output by the decision table, we find that some sets of consecutive cells often lead to the same
optimal alternative or response. The number of such consecutive cells represents the knowledge granularity of optimal decisions.
As a result, a new compact list can be constructed. This list will only store one index (or offset) per set of equal alternatives.Wewill
choose the last index (offset), as the representative of this set. This last index (offset), together with the shared optimal alternative
that represents a set of cases, is called an item. The resulting list of items is called a KBM2L list. KBM2L stands for a “Knowledge Base
Matrix to List” representation [6].

An item is denoted by 〈index,alternative| or, equivalently, 〈offset,alternative|, where ‘ ’ reflects that the item offsets increase
monotonously, and ‘|’ reflects granularity.

2.2. Response explanations

Consider a set of indices representing an item. Since the indices are ordered, this set will range from an index Iinf to Isup,
corresponding to the endpoints (minimum and maximum) of the item. This set of indices has a fixed part, representing the index
components common to all the item cases (with the same values), and a variable part, where the values of the attributes
corresponding to the indices are not shared. Both parts can be derived from the indices Iinf and Isup, e.g., the fixed part is obtained
by taking the logical AND Iinf∧ Isup.

These concepts pave the way for automatically generating explanations for decisions. The fact that the attribute values in the
fixed part of items are equal somehow explains why the optimal alternative is also the same across items. Hence, the set of
attributes of the fixed part can be interpreted as explaining why the alternative is optimal. The attributes in the variable part of an
item are irrelevant for decision making.
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2.3. Implementation and optimization

In [6] we implemented the process of building a KBM2L list from a decision table. In actual fact, different bases may contain the
same table knowledge but the list of items may vary from one base to another. Good KBM2L lists search for bases with few items,
grouping identical responses as far as possible into consecutive offsets. A base thatminimises the number of itemswill bring up the
granular knowledge, and incidentally have minimum memory requirements. Searching for solutions in the possible attribute
permutation space with or without (even more complex) a fixed domain order is known to be an NP-hard combinatorial
optimization problem [7]. We have implemented a genetic and a variable neighborhood algorithm to guide this search. An
example with the NHL problem is given in the next section.

Sometimes the decision table is too large to be fully evaluated. In this case, a not necessarily exhaustive set of subproblems is
solved instead. Each subproblem is the result of instantiating some random variables. This implies that there will be unknown
optimal alternatives for some attribute combinations, i.e. for combinations associated with unsolved subproblems. This is not a
problem for the KBM2L construction process which also operates with unknown responses. First, it evaluates all the subproblems
sequentially or concurrently. Then, the resulting partial decision tables are sequentially added to the KBM2L list by means of a
learning mechanism that optimizes the list before processing the next partial table. Each stage of this additive process improves
the item synthesis and facilitates future additions [6].

Example. KBM2L optimization.

Let us briefly explain the KBM2L list optimization process for the gastric NHL problem. Let us use the first decision table
concerning the HT decision (Helicobacter treatment) with 40 cases resulting from the influence diagram evaluation. This table has
four attributes (CS, BD, HC, and HP) determining the expected utility of each alternative HT=No/Yes, see Table 2 (left-hand side). Each
row represents a case from the combinatorial space induced by the Cartesian product of the attribute domains. For each attribute
configuration, we get the optimal alternative of the HT decision, i.e. the alternative with the maximum expected utility. For
example, 407.89 (in the last row) is the expected utility of alternative No for the HT decision when CS is IV, BD is No, HC is High.Grade
and HP is Present. Since the expected utility is 397.89 for the alternative Yes, No is the optimal decision alternative in this case.

The first step to synthesize knowledge from this decision table is to build a KBM2L list.We use the attributes in the same order, i.e.
base [CS, BD, HC, HP], see Table 2 (right-hand side). The KBM2L list has 17 items. Each item represents its last case and the optimal
alternative (0=No, 1=Yes). Remember that we transform the table by grouping together equal adjacent responses as items.

Next,we undertake a two-stepKBM2L optimization. First,we optimize the attribute permutation space,which yields a newbase
[HP, HC, CS, BD] and five items, see Table 3 (top). Second, we optimize a larger space, where both the attributes and their domains are
permutable. This means, for example, that during table row ordering, an attribute A with a binary domain {0,1} can induce rows
with A ordered as either [0,1] (denoted A[0, 1]) or [1,0] (denoted A[1, 0]). Note that we must declare the relative permutation on
attribute domains as the subindex of the corresponding attribute. In our example, the domain permutation is allowed to have only
two items, which is really optimal. Then the optimal base is B⁎=[HC[0,1], HP[1,0], CS[4,1,2,0,3], BD[0,1]], see Table 3 (bottom).

The initial base assumes the natural ordering of both attributes and domains. Therefore, the three encoded bases are:
# Items
 Base
17
 [CS[0,1,2,3,4], BD[0,1], HC[0,1], HP[0,1]]

5
 [HP[0,1], HC[0,1], CS[0,1,2,3,4], BD[0,1]]

2
 B⁎=[HC[0,1], HP[1,0], CS[4,1,2,0,3], BD[0,1]]
Finally, let us look at the explanation of the optimal policies for the HT decision. Alternative HT=No (first item) has no
explanation, whereas the explanation for alternative HT=Yes (second item) is as follows. The DSS recommends the prescription of
antibiotics as the Helicobacter treatment if HISTOLOGICAL-CLASSIFICATION (HC) is Low.Grade, HELICOBACTER-PYLORI (HP) is Present and CLINICAL-

STAGE (CS) is not III. This corresponds to the fixed part of the set of indices in the second item.
The expert may or may not agree with the DSS, but the KBM2L provides some reasons for this recommendation. Also, note that

the KBM2L refines the knowledge because an irrelevant attribute has been identified (BULKY-DISEASE (BD)), and an attribute domain
has been constrained (CLINICAL-STAGE (CS) is not III, i.e. it is I, II1, II2, or IV).

This example illustrates how the decision table and even the initial KBM2L list are not efficient enough to show the structure of
knowledge represented by the DSS after evaluating the influence diagram. However, the optimal list sorts the attributes and
domains in order to state their relevance providing explanations. □
3. Queries and KBM2L lists

3.1. Complexity of queries

Queries are stated as attribute instantiations. Therefore, they are related to the KBM2L index and employ multidimensional
point access methods [21]. The DSS is expected to return a response stating the optimal policy using a small subset of the KB.
However, an added difficulty is that the optimal policy may be unknown.



Table 2
Optimal decision table transformed into a KBM2L list for the Helicobacter treatment (HT) decision variable. Attribute labels: for CS: 0=I, 1=II1, 2=II2, 3=III,
4=IV; for BD: 0=Yes, 1=No; for HC: 0=Low.Grade, 1=High.Grade; for HP: 0=Absent, 1=Present; for HT: 0=No, 1=Yes.

Case Attributes Exp.Utility for
HT=No and Yes

OptDec
for HT

Item Base HT

CS BD HC HP (CS BD HC HP)

1 0 0 0 0 819.49N809.49 No 1 0 0 0 0 0
2 0 0 0 1 789.02b809.49 Yes 2 0 0 0 1 1
3 0 0 1 0 573.96N563.96 No – – – – – –

4 0 0 1 1 573.96N563.96 No – – – – – –

5 0 1 0 0 887.71N877.71 No 3 0 1 0 0 0
6 0 1 0 1 866.88b877.71 Yes 4 0 1 0 1 1
7 0 1 1 0 729.80N719.80 No – – – – – –

8 0 1 1 1 729.80N719.80 No – – – – – –

9 1 0 0 0 714.05N704.05 No 5 1 0 0 0 0
10 1 0 0 1 685.66b704.05 Yes 6 1 0 0 1 1
11 1 0 1 0 505.82N495.82 No – – – – – –

12 1 0 1 1 505.82N495.82 No – – – – – –

13 1 1 0 0 836.01N826.01 No 7 1 1 0 0 0
14 1 1 0 1 797.42b826.01 Yes 8 1 1 0 1 1
15 1 1 1 0 616.04N606.04 No – – – – – –

16 1 1 1 1 616.04N606.04 No – – – – – –

17 2 0 0 0 419.72N409.72 No 9 2 0 0 0 0
18 2 0 0 1 395.05b409.72 Yes 10 2 0 0 1 1
19 2 0 1 0 323.26N313.26 No – – – – – –

20 2 0 1 1 323.26N313.26 No – – – – – –

21 2 1 0 0 551.89N541.89 No 11 2 1 0 0 0
22 2 1 0 1 537.61b541.89 Yes 12 2 1 0 1 1
23 2 1 1 0 460.88b450.88 No – – – – – –

24 2 1 1 1 460.88N450.88 No – – – – – –

25 3 0 0 0 257.90N247.90 No – – – – – –

26 3 0 0 1 252.82N247.90 No – – – – – –

27 3 0 1 0 248.20N238.20 No – – – – – –

28 3 0 1 1 248.19N238.20 No – – – – – –

29 3 1 0 0 324.55N314.55 No – – – – – –

30 3 1 0 1 343.46N314.55 No – – – – – –

31 3 1 1 0 378.92N368.92 No – – – – – –

32 3 1 1 1 378.92N368.92 No – – – – – –

33 4 0 0 0 307.88N297.88 No 13 4 0 0 0 0
34 4 0 0 1 269.28b297.88 Yes 14 4 0 0 1 1
35 4 0 1 0 265.14N255.13 No – – – – – –

36 4 0 1 1 265.13N255.13 No – – – – – –

37 4 1 0 0 408.35N398.35 No 15 4 1 0 0 0
38 4 1 0 1 376.15b398.35 Yes 16 4 1 0 1 1
39 4 1 1 0 407.89N397.89 No – – – – – –

40 4 1 1 1 407.89N397.89 No 17 4 1 1 1 0
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Let us explain this point in further detail. As mentioned earlier, the exhaustive evaluation of the decision-making problemmay
be too costly in terms of time and memory requirements. The future decision-making policy domain grows exponentially with
time and very quickly becomes intractable. We cannot compute the first decisions because we do not have tractable
Table 3
Two-step KBM2L optimization: i) in the attribute permutation space and, ii), in the attribute and domain permutation space. Attribute labels: for CS: 0=I, 1=II1,
2=II2, 3=III, 4=IV; for BD: 0=Yes, 1=No; for HC: 0=Low.Grade, 1=High.Grade; for HP: 0=Absent, 1=Present; for HT: 0=No, 1=Yes.

First step Item Size Base HT

(HP HC CS BD)

1 20 0 0 4 1 0
2 6 0 1 2 1 1
3 2 0 1 3 1 0
4 2 0 1 4 1 1
5 10 1 1 4 1 0

Second step Item Size Base B⁎ HT

(HC[0,1] HP[1,0] CS[4,1,2,0,3] BD[0,1])

1 8 0 0 3 1 0
2 32 1 1 4 1 1
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representations of policies for future decisions. This is called the curse of time horizon [20]. In a complex DSS for neonatal jaundice
management with five decision nodes, the size of the decision table associated with the last decision was 119.4 MB [8]. Some
possible ways of getting tractable policy domain sizes are to try to identify variables that are irrelevant for future decisions or to
consider variables as irrelevant by assuming that their states will not be remembered.

Another alternative is to resort to solving a set of subproblems instead of the global problem, where each subproblem is the
result of instantiating some random variables. In the context of influence diagrams, Cortazar et al. [4] explain how to do this. This
subproblem set may not be exhaustive, implying unknown optimal policies for some attribute combinations, i.e. policies
associated with unsolved subproblems. This is common in large decision-making problems. The process of evaluating the large
diagram is therefore divided by instantiating some attributes and solving the reduced influence diagrams. At the end, the partial
results are collected and composed incrementally in a KBM2L structure.

In Section 2.3 we already mentioned that the KBM2L construction process also operates with unknown policies and
subproblems. Therefore, we distinguish not only between closed and open queries, but also between known and unknown or
uncertain responses. The different scenarios are analysed in the following sections. They apply to tasks (C)–(E) mentioned in the
Introduction.

3.2. Closed queries

As far as closed queries are concerned, since the whole set of attributes is instantiated, the DSS only needs to look for the
corresponding KBM2L list element and retrieve the optimal policy, which is presented to the user as the response. Themechanism
is formalized as follows.

Let A0,...,An be the attributes and Ω0,...,Ωn their respective domains. ΩR denotes the response domain. Let Q denote a closed
query, i.e.Q = a0; :::; anð Þ; ai∈Ω i; i = 0; :::;n. Suppose the optimal KBM2L list has been achievedwith respect to base B=[A0,...,An],
and w is its respective weight vector. If this list has h items, then the list is 〈q0, r0|〈q1, r1|⋯ 〈qh−1, rh−1|, where 0≤qi≤w0D0−1,
qibqi+1∀ i (offsets), ri∈ΩR, ri≠ri+1∀ i (policies). The response retrieval procedure (task (C) above) consists of projecting Q into
the offset space {0,1,...,w0D0−1} and deriving the optimal alternative from the KBM2L list. Namely, if 〈 ⋅, ⋅〉 denotes the scalar
product, we compute 〈Q ;w〉 = f Qð Þ = q, and whenever q∈(qi−1,qi], then the response is ri. This response is efficiently retrieved
with O(nlog(h)) complexity using a binary search procedure on the KBM2L.

If ri is unknown, then an efficient solution is to call the influence diagram evaluation and solve the respective subproblem that
makes ri known. Finally, response ri displayed by the DSS to the expert may be further completed by asking for an explanation.

Example. Closed query.

To illustrate the formulation of a closed query and the explanation of the respective response, suppose the expert queries the
DSS about a patient with the following configuration:
Q0:HC = Low:Grade; HP = Present; CS = I and BD = Yes:
The KBM2L list using the optimal base B⁎ is given by
〈 HC = 0; HP = 0; CS = 3; BD = 1Þ;1 j〈 HC = 1; HP = 1;CS = 4; BD = 1Þ;0 j ;ðð

sed in index notation or 〈(7,1)| 〈(39,0)| expressed in offset notation. Then, Q 0 = 0;0;1;0ð Þ and w0 = 10;5;2;1ð Þ, and the
expres
response is derived from 〈Q 0;w0〉 = 〈 0;0;1;0ð Þ; 10;5;2;1ð Þ〉 = 2. Finally, offset 2 belongs to the first item, between offsets 0 and
7, and then the DSS suggests HT=Yes. The explanation is obviously the one given earlier: because HISTOLOGICAL-CLASSIFICATION (HC) is
Low.Grade, HELICOBACTER-PYLORI (HP) is Present and CLINICAL-STAGE (CS) is not III, the DSS recommends the prescription of antibiotics as
the Helicobacter treatment. □

Therefore, we have explained how to perform tasks (C)–(E) mentioned in the Introduction, where there is no need for
improvements or feedback in (E).

4. Open queries

Wehave seen that the expert is an agent that queries the DSS about the optimal policy for the decision-making problem. Expert
and DSS enter into a dialogue consisting of queries, responses and explanations. For closed queries, the expert receives definite and
accurate responses. Responses to open queries are not so straightforward due to expert imprecision. Not all attributes are
instantiated. Possible reasons are the unreliability of some attribute values, missing knowledge, high retrieval cost or simply an
interest in making a complex query concerning the whole range of some attributes. In medical settings, for example, physicians
often have access to administrative data, like sex, age, etc., but may have no access to (or no confidence in) attributes like the first
treatment received or some test results. Also, they may be interested in asking for all possible patient weight intervals. Thus, an
open query would be OQ = ⁎; a1; ⁎; :::; anð Þ, where ⁎ denotes non-instantiated attribute values.

In principle, the DSS looks up the respective KBM2L list elements and retrieves the optimal policy (or policies) to be presented
to the user as the response. Suppose that the optimal KBM2L list has been achieved with respect to base B=[A0,...,An], and the
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query is open with respect to attributes i and j, i.e. the query is OQ = a0; a1; :::; ⁎i; :::; ⁎j; :::; an
� �

. Actually, OQ is a set of closed
queries Q i, namely,
Table 4
Set of c

Close

Q 1

Q 2
OQ = f a0; a1; :::; x; :::; y; :::; anð Þ : x∈Ωi; y∈Ωjg = ∪
Di�Dj

i=1
Q i:
Then the response retrieval procedure would consist of applying the technique described earlier to each Q i, computing
〈Q i;w〉 = f Q ið Þ = pi, using Eq. (2), to give an offset set P={p1,p2,...,pDi×Dj} with the respective responses S={s1,s2,...,sDi×Dj}.

Example. Open query.

Suppose again that we have the HT decision table and base B⁎ as in the previous example. Let us take the following open query
OQ 1 = ⁎;Absent; I;Yesð Þ, i.e. the expert is interested in finding out the optimal decision when
OQ 1: HP = Absent; BD = Yes and CS = I:
This patient has a favorable prognosis: CLINICAL-STAGE (CS)=I; does not have the H. pylori bacterium: HELICOBACTER-PYLORI (HP)=
Absent; but does have a big tumor: BULKY-DISEASE (BD)=Yes. This is an open query because the doctor has not yet performed a biopsy
to confirm the HISTOLOGICAL-CLASSIFICATION (HC). Note that, according to its weight in the optimal base B⁎, the unknown attribute HC is
the most relevant. This open query is equivalent to the set of closed queries Q 1;Q 2, see Table 4.

Herew is (20,10,2,1). Both closedqueries are cases from the second item(see Table 3) located atoffsets 10 (forQ 1) and30 (forQ 2),
and the response is unambiguously S={HT=No}. □

To implement a general procedure we will not enumerate all closed queries. An efficient mechanism for performing open
queries will be based on the concept of operative bases and the structure of the KBM2L list, see the following discussion.

There are four possible situations depending on the type of elements in S:

(i) all si are equal and known;
(ii) all si are unknown;
(iii) there are at least two different values among si and they are known;
(iv) there are at least two different values among si but some si are unknown.

Each situation is analysed in the following.

4.1. The KBM2L knows the response. Operative bases

Situation (i) implies an accurate response (si), and the DSS requires no further interaction with the expert. All open attributes
are irrelevant. To be helpful for the expert the other situations involve several possible responses and/or uncertain responses
requiring refinement. It is here where tasks (D) and (E) listed in the Introduction play an important role.

The information for the expert comprises two sets P and S, jointly involving simple KB records. They have been extracted from
the optimal base. Note that this base is the best base for the whole KB, both minimising storage requirements and maximising
knowledge explanation performance. But this base may not be so useful with respect to the part of the KB concerning the open
query.

Attribute weight changes depending on its position within a base, and the further to the right the position, the smaller the
weight is. We propose moving open query attributes towards positions further to the right. The query is unchanged, but its
attribute order implies the use of another base, where open attributes are moved towards the positions with the smallest weights.
Semantically speaking, this shift also agrees with the idea of consigning open attributes to less important positions as the query
appears to indicate, since the expert has not assigned a value to and does not show any significant interest in these attributes. The
new base will be called operative base. This base yields an operative KBM2L list to implement the open query. There are several
possible operative bases, all of which are valid. After testing a number of these bases in linear time, we can choose the one
requiring the least computational effort for the change of base or knowledge transposition.

A base change may be interpreted as a change in the query and response points of view. For the DSS, the optimal base
represents a good organisation of the whole KB content. For experts, the operative base provides an organised view of the
responses to their open query, as consecutive records. This base will be optimal for explaining the responses. This illustrates how a
losed queries for the open query OQ 1: HP=Absent, BD=Yes and CS=I.

d queries Offset comput.

HELICOBACTER-PYLORI (HP)=Absent, BULKY-DISEASE (BD)=Yes, CLINICAL-STAGE (CS)=I
and HISTOLOGICAL-CLASSIFICATION (HC)=Low.Grade

〈(0,1,0,0), (20,10,2,1)〉=10=p1

HELICOBACTER-PYLORI (HP)=Absent, BULKY-DISEASE (BD)=Yes, CLINICAL-STAGE (CS)=I
and HISTOLOGICAL-CLASSIFICATION (HC)=High.Grade

〈(1,1,0,0), (20,10,2,1)〉=30=p2
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querymay be difficult in one base and easier in another base. It bears a resemblance to human domains, where a query is simple for
an expert but hard for non-experts. Experts have a good problem description: a good conceptual model, few relevant facts, and a
good information organisation meaning that they can analyse and explain facts. Indeed, this is why they are experts.

Now, working on the operative base, the new offset set P′ will include consecutive pis and we can introduce some distance-
based rules in the offset space to make more accurate recommendations to the expert.

Example. Open query (continued).

Nowwe try to illustrate the use of the operative base. The optimal base in the previous example, where we performed the open
query OQ 1, was
Table 5
KBM2L

Item

1
2

B⁎ = HC 0;1½ �;HP 1;0½ �;CS 4;1;2;0;3½ �;BD 0;1½ ��:
h

This simple query has one non-instantiated attribute, i.e. HC. To obtain the query response, we need tomove this attribute to the
right-most position in the base (low weight). One (operative) base meeting that condition is
B1
op = HP 1;0½ �;CS 4;1;2;0;3½ �;BD 0;1½ �;HC 0;1½ ��;

h

he same ordering of domains as B⁎. Tables 5 and 6 show respectively the KBM2L list expressed in optimal and operative
with t
bases. The list in the operative base is 16 items long. This list manages to show all the target cases in a sequence such that the offset
ranges consecutively from 36 to 37. The response is always HT=No. The open attribute HC is irrelevant in the context of that query.
Remember from the previous example that when using the optimal base B⁎, the offsets of the target cases were not consecutive.
They were 10 and 30 (see Table 4). □

4.2. The KBM2L does not know the response at all. Predicting the response in a neighborhood

Situation (ii) may seem surprising since the DSS is being queried about something that is unknown. This is because the
associated subproblems have not been evaluated. Nevertheless, we will try to provide a solution. Specifically, situation (ii) may be
solved by predicting that the response is associatedwith the nearest offset to P′ based on the Euclidean distance in the offset space,
i.e. in {0,1,...,w0D0−1}, as follows. Let pl,pu be respectively the minimum and maximum offsets included in P′. Suppose ql is the
maximum offset with known policy (say r) that precedes pl in the operative KBM2L list. Likewise, qu is the minimum offset with
known policy (say s) that follows pu in the operative KBM2L list. All records that match (p′,s), with p′∈P′,s∈S, belong to the
same item in the operative KBM2L list, whereas offsets ql and qu are located in adjoining items. Then, we compute d1=|pl−ql| and
d2=|pu−qu|. If d1bd2, then the response is r; otherwise the response is s.

This result is only the first step in the inference process run on the KBM2L list and is therefore an approximation. The inference
process run on an incomplete KBM2L list would be performed taking into account a set of bases from a small neighborhood of the
operative base to confirm the result. Therefore, a second step conducts the above distance analysis using some bases close to the
operative base.

Example. Open query and unknown response.

To illustrate this scenario, suppose that we have run a partial evaluation of the decision model. For this reason, we do not know
the optimal decision for all cases such that HP=Absent and BD=Yes in the HT table. The open query is OQ 1, as in the previous
examples
HP = Absent; BD = Yes and CS = I:
Due to the unknown responses (denoted as −1), the KBM2L list is now different. Table 7 shows this list when using the same
operative base Bop

1 as in the last example (Table 6). The open query matches item 25. We have pl=36, pu=37, ql=35, r=No,
qu=38 and s=No. Therefore, we have d1=|pl−ql|=1 and d2=|pu−qu|=1, and the response is HT=No.

In a further step, we conduct the same distance analysis using some bases close to the operative base in the sense defined in [6].
Suppose we take the base Bop2 =[CS[4,1,2,0,3], HP[1,0], BD[0,1], HC[0,1]]. Note that only the heaviest two attributes CS and HP are swapped in this
list using the optimal base B⁎.

Description in optimal base B⁎ Offset

HP HC CS BD HT

〈 (Present, Low.Grade, I, No), Yes | 7
〈 (Absent, High.Grade, III, No), No | 39



Table 6
KBM2L list using an operative base Bop

1 .

Item Description in operative base Bop
1 Offset

HP CS BD HC HT

1 〈 (Present, IV, Yes, Low.Grade), Yes | 0
2 〈 (Present, IV, Yes, High.Grade), No | 1
3 〈 (Present, IV, No, Low.Grade), Yes | 2
4 〈 (Present, IV, No, High.Grade), No | 3
5 〈 (Present, II1, Yes, Low.Grade), Yes | 4
6 〈 (Present, II1, Yes, High.Grade), No | 5
7 〈 (Present, II1, No, Low.Grade), Yes | 6
8 〈 (Present, II1, No, High.Grade), No | 7
9 〈 (Present, II2, Yes, Low.Grade), Yes | 8
10 〈 (Present, II2, Yes, High.Grade), No | 9
11 〈 (Present, II2, No, Low.Grade), Yes | 10
12 〈 (Present, II2, No, High.Grade), No | 11
13 〈 (Present, I, Yes, Low.Grade), Yes | 12
14 〈 (Present, I, Yes, High.Grade), No | 13
15 〈 (Present, I, No, Low.Grade), Yes | 14
16 〈 (Absent, III, No, High.Grade), No | 39
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new base. The open query determines pl=28 and pu=29 in item 22, see Table 8. Now ql=27, r=No, qu=30 and s=No.
Therefore, we have d1=d2=1, equal by chance to Bop

1 , and the response is HT=No.
We could check other bases, like
Table 7
KBM2L

Item

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
CS 1;4;2;0;3½ �; HP 1;0½ �; BD 0;1½ �; HC 0;1½ �
h i

; CS 2;1;4;0;3½ �; HP 1;0½ �; BD 0;1½ �; HC 0;1½ �
h i

;

CS 0;1;2;4;3½ �; HP 1;0½ �; BD 0;1½ �; HC 0;1½ �
h i

; CS 3;1;2;0;4½ �; HP 1;0½ �; BD 0;1½ �; HC 0;1½ �
h i

;

CS 3;0;2;1;4½ �; HP 1;0½ �; BD 0;1½ �; HC 0;1½ �
h i

; HP 0;1½ �; CS 4;1;2;0;3½ �; BD 0;1½ �; HC 0;1½ �
h i

;

HP 0;1½ �; CS 3;0;2;1;4½ �; BD 0;1½ �; HC 0;1½ �
h i

;…
This process can confirm the response value. For instance, we can check an open query on N bases close to the operative base. If
Nk bases suggest that the response is sk, then the DSS gives us a probability Nk/N for sk, and we can either choose the mode of the
distribution of the different responses or solve the ambiguity as in situation (iii) using Algorithm A1, see Section 4.3. □
list using operative base Bop
1 . No cases such that HP=Absent and BD=Yes have been evaluated (unknown responses, denoted as −1).

Description in operative base Bop
1 Offset

HP CS BD HC HT

〈 (Present, IV, Yes, Low.Grade), Yes | 0
〈 (Present, IV, Yes, High.Grade), No | 1
〈 (Present, IV, No, Low.Grade), Yes | 2
〈 (Present, IV, No, High.Grade), No | 3
〈 (Present, II1, Yes, Low.Grade), Yes | 4
〈 (Present, II1, Yes, High.Grade), No | 5
〈 (Present, II1, No, Low.Grade), Yes | 6
〈 (Present, II1, No, High.Grade), No | 7
〈 (Present, II2, Yes, Low.Grade), Yes | 8
〈 (Present, II2, Yes, High.Grade), No | 9
〈 (Present, II2, No, Low.Grade), Yes | 10
〈 (Present, II2, No, High.Grade), No | 11
〈 (Present, I, Yes, Low.Grade), Yes | 12
〈 (Present, I, Yes, High.Grade), No | 13
〈 (Present, I, No, Low.Grade), Yes | 14
〈 (Present, III, No, High.Grade), No | 19
〈 (Absent, IV, Yes, High.Grade), −1 | 21
〈 (Absent, IV, No, High.Grade), No | 23
〈 (Absent, II1, Yes, High.Grade), −1 | 25
〈 (Absent, II1, No, High.Grade), No | 27
〈 (Absent, II2, Yes, High.Grade), −1 | 29
〈 (Absent, II2, No, High.Grade), No | 31
〈 (Absent, I, Yes, High.Grade), −1 | 33
〈 (Absent, I, No, High.Grade), No | 35
〈 (Absent, I, Yes, High.Grade), −1 | 37
〈 (Absent, III, No, High.Grade), No | 39



Table 8
KBM2L list using operative base Bop

2 . No cases such that HP=Absent and BD=Yes have been evaluated (unknown responses, denoted as −1).

Item Description in operative base Bop
2 Offset

CS HP BD HC HT

1:20 …

21 〈 (I, Present, No, High.Grade), No | 27
22 〈 (I, Absent, Yes, High.Grade), −1 | 29
23 〈 (III, Present, No, High.Grade), No | 35
24:25 …

177J.A. Fernández del Pozo, C. Bielza / Data & Knowledge Engineering 70 (2011) 167–181
Finally, the first and last items of the list are two special cases in inference terms. In those cases, not all of the offsets ql or qu are
defined. Then the best strategy is to evaluate the model because the list does not contain enough information to support queries.
4.3. The KBM2L knows the response, but the response is ambiguous. A dialogue between DSS and expert

Situation (iii) presents different policy values in S. We may give an immediate answer to the expert based on statistics over the
policy value distribution (median, mode, etc.). However, more intelligent responses will be preferred. As a first proposal, say
AlgorithmA1, the DSS asks the expert to instantiate the open attribute further to the left with respect to the optimal base. It will be
the most efficient attribute for reducing response uncertainty. That is, it will have the greatest weight of all the open attributes,
meaning that it is more likely to belong to the fixed part of the item indices, which is what explains a fixed policy. Thus, the further
to the left the attribute is, the more likely the query is to lead to fewer different responses. If necessary, the DSS would prompt for
the open attribute second furthest to the left and so on. This is a sound approach for problems with many attributes but with few
open attributes.

Example. Open query and different responses (I).

The KBM2L list containing 5 items in the base [HP[0,1], HC[0,1], CS[0,1,2,3,4], BD[0,1]] (see Table 3) illustrates Algorithm A1 (Section 4.3).
The dialogue is driven by the following steps, where the above base is used to provide answers. Table 9 summarizes the dialogue.□

Formany open attributes, say more than 10, we have enough information to make automatic inferences via a learning process.
Thus, we propose focusing once again on the operative KBM2L, since it is easier to retrieve responses and learn the probabilistic
relationships among the attributes and the policy from the records of interest. The structure to be learned is a Bayesian network
(BN) (see e.g. [16]), as it has a clear semantics for performing many inference tasks. Then, the resulting structure will provide a
basis for starting a DSS/expert dialogue to lend insight into the problem and refine the query in the light of new evidence until the
response satisfies the expert.

For the sake of simplicity, let X⊂Rn1 ;Y⊂Rn2 ;n1 + n2 = n denote, respectively, instantiated and non-instantiated attributes of
the open query. Our Algorithm A2 includes the following steps.

Algorithm A2.

S0. Initialize X0 = X;Y0 = Y.
S1. DSS extracts data (records) matching X0 from the operative KBM2L.
S2. DSS learns a BN from data (structure and conditional probabilities).
S3. DSS computes P R = r jX0

� �
;∀r∈ΩR on the BN. From this probability distribution, the expert fixes a decision criterion,

usually the mode, to choose among rs. Let m0 be this value. This is evidence to be propagated through the network.
S4. DSS computes P Yj = yt jR = m0;X0

� �
;∀j = 1; :::;n2;∀yt∈ΩYj on the BN. From these probability distributions, the expert

fixes a decision criterion, usually the distribution of minimum variance, to choose among Yjs. Let Ỹ0 be the resulting vector
of Yjs, with coordinates given by expert instantiations, like, e.g., the Yj mode.

S5. Extend vector X0 as X1 = X0∪ Ỹ0. Set Y1 = Y0 /Ỹ0.
Table 9
Dialogue driven by Algorithm A1 (Section 4.3). Query OQ 2 is open, specifying only a medium clinical stage (CS=II2) for the patient.

Expert DSS

1 States a query OQ 2 about HT (No/Yes?) when CLINICAL-STAGE (CS)=II2 Answers with the (ambiguous) response {No,Yes}
2 Wants a more definite response Suggests to know the two most important attributes according

to the optimal base B⁎, i.e. HP and HC

3 Specifies her most preferred, attribute, HP, and formulates a second
query that extends OQ 2 with HP=Present

Answers {No,Yes} again, and the dialogue continues

4 States a third query, which extends OQ 2 with HC=High.Grade Answers {No} and the dialogue finishes
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Steps S3 and S4 are repeated until the expert is satisfied or Yj has few components, and AlgorithmA1 (Section 4.3) is called to
continue. If the algorithm stops atXj, thenmj is the response returned. Experts can always revise decisions made at S3 and S4 of the
last iteration whenever they do not agree with the current outputs. The DSS will be on the lookout for and warn experts about
probabilities conditioned to impossible events (registered in the DSS).

Expert decision criteria at Steps S3 and S4might be different. They are expert choices. Using the criteria suggested earlier: (a) at
Step S3, we choose the most likely response given the instantiated attribute set for the query; and (b) at Step S4, we choose the
attribute(s) in which we have more confidence or the attribute(s) fluctuating less than a fixed threshold. Then, they are
instantiated in the query as their mode, giving rise to a new, more accurate, query. Later steps allow continuous probability
updating.

A BN is learned at Step S2 via a structure learning algorithm [2], where the standard is the K2 algorithm [3]. K2 is a greedy
parent search algorithm using a Bayesian score to rank different structures. Thus, nodes are assumed to be ordered and K2 returns
the most probable parents for each node given the data. The algorithm works on quite reasonable data sizes, as in the context we
propose. In fact, we have even tried with 20 open attributes involving one million cases.

DSS explanations are mediated by the BN and its probabilities, firstly giving information about the response and, secondly,
about the likelihood of each open attribute, given the expert's chosen response. This support for both responses and queries allow
experts to re-state and improve their query until it is better defined, leading to more accurate answers. This is task (E) mentioned
in the Introduction.

Example. Open query and different responses (II).

For this scenario we use a more complex decision table than in the previous examples because AlgorithmA1 (Section 4.3) will
be good enough to support the open query on a small table, like the HT table. So, we use the S table about the decision on surgery in
the NHL problem (i.e. the second decision to be made). The open query is OQ 1 again:
Fig. 2. B
CS=I. T
HP = Absent; BD = Yes and CS = I:
The S table consists of seven attributes: the HT table attributes that we used before, plus decision HT and the random variables
GHS and CP. Therefore, the non-instantiated attributes in this open query are GHS, HT, HC, and CP. The initial base is Bini=[GHS[0,1,2], HT[0,1],
CS[0,1,2,3,4], BD[0,1], HC[0,1], HP[0,1], CP[0,1,2,3]], and the KBM2L list returns 385 items with 960 cases and 2 alternatives, S=None and
S=Curative. The optimal base is Bfin=[GHS[0,1,2], CP[0,1,2,3], CS[0,1,2,3,4], BD[0,1], HC[0,1], HP[0,1], HT[0,1]], and the KBM2L shows 27 items.

All the responses to the query are known but they are different, and this does not satisfy the expert. Therefore, AlgorithmA2 is
applied. We choose any operative base, i.e. a base having the non-instantiated attributes moved to the right.

First, a BN model is learnt from the data involved in the query, i.e. 97 cases (Steps S1 and S2). We have used the GeNIe free
software, available at http://genie.sis.pitt.edu/. Themodel is shown in Fig. 2, showing the dependencies among variables. Note that
five variables (CS, BD, HP, HC, and HT) are not connected to the S (Surgery) variable. Thus, these variables are irrelevant to the query.
At this point, X0=(HP, BD, CS), instantiated as the query indicates, and P s jX0

� �
is the probability shown in Fig. 2 after propagating

the evidence given by X0. This probability distribution is 0.5827 and 0.4173 for the values S=None and S=Curative, respectively.
We are already at Step S3, and S=None is the mode of the previous distribution, which is chosen as m0.
ayesian network for the S (Surgery) decision for the treatment of gastric NHL. Posterior distributions of each node given OQ 1, i.e. HP=Absent, BD=Yes and
his corresponds with Steps S1, S2 and S3 of Algorithm A2.

http://genie.sis.pitt.edu/


Fig. 3. Bayesian networks for the S (Surgery) decision for the treatment of gastric NHL. Left: Step S4 of AlgorithmA2, with posterior distributions of CP and GHS after
adding S=None as evidence. Right: Step S5 extends the evidence with CP=Hemorrhage and a new cycle starts. Step S3 computes posterior distributions of S and
GHS given this new evidence.
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At Step S4we propagate this new value as evidence, computing the probability of each attribute givenm0 and X0. The result is
shown in Fig. 3 (left-hand side). The probability distributions are updated from (1/3, 1/3, 1/3) for GHS and (1/4, 1/4, 1/4, 1/4) for CP

to (0.2870, 0.2856, 0.4274) for GHS and (0.1440, 0.2857, 0.2848, 0.2855) for CP. The expert chooses variable CP with variance 0.0049,
smaller than the variance of GHS which is 0.0066. Its mode is CP=Hemorrhage.

At Step S5, vectorX0 is extendedwith a new dimension given by the CP attribute. At this point,X1=(HP, BD, CS, CP), instantiated as
mentioned earlier, and a new cycle starts. P s jX1

� �
is the probability shown in Fig. 3 (right-hand side) after propagating the

evidence given by X1. This probability distribution is 0.6648 and 0.3352 for the values S=None and S=Curative, respectively.
S=None is the mode of the previous distribution, which is chosen as m1.

We propagate this new value as evidence, computing the probability of GHS givenm1 and X1. The result is shown in Fig. 4 (left-
hand side). The probability distribution is updated as (0.0012, 0.4994, 0.4994) for the values GHS=Poor, GHS=Average and
GHS=Good, respectively.
Fig. 4. Bayesian networks for the S (Surgery) decision for the treatment of gastric NHL. Left: Step S4 of AlgorithmA2, after adding S=None as evidence. Right: Step
S5 extends the evidence with GHS=Poor, and the posterior distribution of S given this evidence is shown.

image of Fig.�4
image of Fig.�3
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Vector X1 is extended with a new dimension given by the GHS attribute, where the result is X2 = HP;BD;CS;CP;GHSÞð . The
dialogue continues asking the expert whether she believes that the patient has GHS=Poor. In this case, the network suggests a
curative surgery (with probability 0.9976), see Fig. 4 (right-hand side). If, instead, the expert had chosen the mode of GHS, i.e.
GHS=Average and GHS=Good, then the network would suggest that surgery should not be performed (not shown).

In short, when HP=Absent, BD=Yes and CS=I, the DSS suggests that surgery should not be performed unless GHS=Poor,
where curative surgery would be mandatory. This is what we learn from this dialog. □

4.4. The KBM2L faces uncertain and ambiguous responses

Situation (iv) also presents different response values in S, some of whichmay, however, be unknown. Unknown policies are the
result of having a system that can legitimately be termed knowledge based [10] due to its significant size and is impossible to solve
completely. Experts play an important role in deciding which part of the problem should be solved, stating where their interest
lies.

Situation (iv) can be solved by reducing it to situations (ii) and (iii). We split the problem into these two parts and apply the
procedures mentioned earlier. The outcome could possibly be situation (iii) again, if the response to situation (ii) is different from
the response to situation (iii). Thus, the procedures to solve situation (iii) would be reiterated, i.e. AlgorithmsA1 (Section 4.3) and
A2, would be applied.

5. Conclusions and further research

A decision model builds on guidelines, probabilities, utilities, probabilistic relationships, among other sources of information.
Decision tables are the result of evaluating a decision model, taking into account that information. Their extraordinarily large size
motivated us to analyse them. The aimwas to save memory space and, more interestingly, retrieve knowledge (to understand DSS
suggestions). In our previous paper wemanaged to achieve both aims. Moreover, by analysing the items—groups of cases from the
decision tables with the same optimal alternative, we could get an explanation of that optimal alternative, the similarity among
several alternatives, attribute relevance… Therefore, KBM2L lists managed to solve space savings, optimization and explanations
of decision tables.

In this paper, the KBM2L framework is extended to deal with queries, one of the most important DSS facilities. The user enters
any query into the DSS, assuming that the model (influence diagram) has been validated. This is more than a simple database
query, which matches a single rule. Nowadays, influence diagrams do not have any such facility, and users have to deal with huge
decision tables from which it is almost impossible to extract useful/concise information.

Open queries and situations with imprecise/uncertain responses are specially difficult. These are the cases that we solve in this
paper. The focus is on guiding the user toward what variable to query to get a more accurate and convincing response. The optimal
and operative bases allow the records involved in a query to be organised from different perspectives. General queries leading to
imprecise responses are addressed via an attributes–policy relationship learning process, where interaction with experts is
required to arrive at a satisfactory response.

Our approach provides the KB definite exploitation for the DSS. As opposed to only listing the influence diagram outputs, we
report on improvements in space savings, knowledge extraction as rules, explanations of optimal policies and satisfactory answers
to complex queries.

Despite the power of our iterative scheme of progressive knowledge elicitation, a possible field of future research would focus
on enabling queries with constrained rather than non-instantiated attributes, covering initial beliefs about the attributes. Also,
more effort could be employed in determining good operative bases if there is more than one. Two criteria could be: minimum
computational effort to output the new KBM2L and minimum item fragmentation. Finally, rather than directly allowing the
expert to choose a decision criterion in Algorithm A2, we could first implement a search within the tree of possible sessions, i.e.
possible r−y−r−y⋯ (response r and instantiated attributes y) sequences. This would filter out possibilities that will not satisfy
expert expectations, facilitating choices.
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