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ABSTRACT

The aim of this paper is a new approach to structure and implement con-
ditional probability tables. These tables represent the uncertainty on proba-
bilistic graphical models, like Bayesian Networks and Influence Diagrams. We
rewrite the tables as multidimensional matrices and these matrices as lists of
generalised propositions from the original tables. This procedure allows us
to obtain a framework to store and manage any kind of table with discrete
explanatory attributes and a response variable. It is proposed to exploit the
granularity on data and mine knowledge in high dimensional tables. Also, we
deal with other related issues in probabilistic graphical models like probabilis-
tic model assignment (elicitation and validation) and graphical representation
of high dimensional data sets.

Keywords conditional probability tables, data structures, information stor-
age and retrieval, reasoning under uncertainty, knowledge representation mod-
els
AMS Classification: (68P05), (68P20), (68T37), (68T30).

1 Introduction

Bayesian Networks (BN) and Influence Diagrams (ID) are useful tools to repre-
sent and evaluate decision-making problems under uncertainty and make inferences.
A BN is a Directed Acyclic Graph (DAG) whose nodes are the concepts of the
problem and its directed edges represent conditional probabilistic influence, quan-
tified by means of conditional probability tables (CPT) among nodes. Probability
propagation allows us to make inferences about some nodes given some evidence
[Pearl, J., (1988)]. An ID is a DAG, with CPT’s, like BN, and Utility Tables as
main data structures. Its evaluation allows us to achieve optimal decision policies
for every scenario represented on the model [Shachter, R.D., (1986)].
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Dealing with these models on Artificial Intelligence and Decision Analysis implies
management of very large tables of decision, probability and utility. In this paper we
focus our attention on CPT’s. Both formalisations need elicit [Jensen, F.V., (2001)]
and/or learn [Buntine, W., (1996)] CPT’s for knowledge representation, inference
processing and decision-making. Also, their storage and management in an efficient
way are required. Note the CPT (exponential) complexity according to the attribute
set size in any context or parent set.
This complexity may be reduced efficiently by exploiting independence among vari-
ables, as BN’s and ID’s representations and inference algorithms do. However,
when a CPT shows certain regularities not captured within BN or ID structures,
the CPT complexity may be reduced further more. These regularities are inde-
pendencies held only in certain contexts, the so-called context-specific independence
[Boutilier, C. et al., (1996)]. Most literature has dealt with it by proposing exten-
sions to the usual structures that capture these independencies and support effi-
cient algorithms. See, e.g. [Heckerman, D., (1990)]; [Boutilier, C. et al., (1996)];
[Cano, A. et al., (2000)] within the BN framework, and [Smith, J. E. et al., (1993)];
[Shenoy, P.P., (2000)] within the ID framework. In general, most suggestions are
based on tree-structured CPT’s.
In [Fdez del Pozo, J.A. et al., (2001)] we introduced the KBM2L framework to store
and manage any kind of table with discrete explanatory attributes and a response
variable. The table is structured as a special list, see Section 2. Now, in this work,
that framework accommodates CPT’s showing different viewpoints depending on
whether probability parameters play the role of a response variable or an explanatory
attribute, see Section 3 and some illustrative examples in Section 4.
Our aim is to help decision analysts and experts to develop complex PGM’s. Com-
pact representations of a distribution while simultaneously discovering relevant vari-
ables within a context, allow to support probability elicitation, and to validate dis-
tributions, both during and after the model construction, as part of the sensitivity
analysis and diagnosis tasks.

2 Overview of KBM2L

In [Fdez del Pozo, J.A. et al., (2001)], we introduced KBM2L structures to store
and manage general tables as multidimensional matrices (MM). It stands for a
Knowledge Base MM transformed into a List. Every multidimensional table has
an attribute set, that we call schema and a defined order for the elements of the
schema, that we call base. The table content is called response or data. Then, these
are arranged on a list like a computer allocates the data on its memory. Equal
consecutive entries are joined later forming each element of the list called item. The
KBM2L framework makes a list of items that represents the knowledge from multi-
dimensional data tables. The data sequence, in memory, depends on the base. Some
of these bases are optimal in the sense that the coalescence of cases is maximum
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and the list has minimum length.
Given a fixed base with a fixed domain order, the tables may be considered as MM’s.
The content of the table stored in the cell with coordinates −→c = (c0, c1, ..., cn) will be
assigned to the position MM [c0, c1, ..., cn]. The MM values will be stored successively
in a computer, where only the memory address of the first one is known.
Thus, the values may be ordered by means of the application f : Rn+1 → R

f(c0, c1, ..., cn) =
n∑

j=0

(cj ∗
n∏

i=j+1

Di) = q (1)

which provides offset q of a value with respect to the first element of the table. For

the i-th attribute (i = 0, 1, ..., n), Di is the cardinal of its domain and
n∏

i=j+1

Dj is

called its weight wi.
−→w is the vector of weights (w0, w1, ...wn) with wn = 1. The

weights are the coefficients that multiply the coordinates in (1). Therefore, we can
use this relationship to access the values.
While in [Fdez del Pozo, J.A. et al., (2001)], we focused our attention on the tables
of optimal decisions, i.e. the ID evaluation outputs, in this paper our tables of
interest will be CPT’s. For every CPT, we have a set of involved attributes and a
sequence of cases induced by the base.
This framework of CPT’s fits very well the KBM2L structures, where the content
tries to represent all combinatorial configurations and the coordinates or indices
represent the conditional context or scenario. High dimensional and huge CPT’s
show regularities and sparse parameters values (perhaps a lot of zeros).
The basic element of the list is the item. An item is made up of adjacent cells
for which the table stores the same information. The items represent grains of
knowledge or sets of cases with the same data. If the content of the table presents
some level of granularity, we can store only one value for each group of cases. If we
use another order for the attributes, we have the same knowledge but we change the
granularity and, hence, the memory requirements to store the final list of items. An
important objective is to get a base that minimises the number of items, bringing
up the grains of knowledge.
Note that the indices and the offsets play the same role in the information arrange-
ment process. The notation 〈offsets or indices, data| we will use later, reflects two
ideas. Firstly, the offsets in (1) or indices of the items are strictly increasing and,
secondly, it summarises a set of adjacent cells with the same data and different to the
data of the next item. We define a constant that represents unknown data, unKB.
Through the examples, we will use label −1 instead of unKB. Index components are
denoted by 0, 1, . . . as computer memory coordinates. Data are denoted by 0, 1, . . .
as enumerated domain values but the order usually is not relevant. The initial list
has always only one item representing the absence of knowledge: 〈MaxOffset,unKB|
or 〈MaxIndex,unKB|. It is incrementally completed with new cases by employing a
set of item management rules introduced in [Fdez del Pozo, J.A. et al., (2002)].
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We extend this notation to CPT’s to emphasize which is the conditional attribute
from the original table and which are the probability parameters. For the condi-
tional attribute we use brackets (x), and for probability parameters as explanatory
variables, square brackets [p].

Spectrum charts: allow us to show the unidimensional memory layout and the
coalescence of cases, see Figure 1 below. The spectrum is not a histogram; it is an
image of the relative position and size of the information according to the KBM2L
list. It can represent cases (or items) depending on the relative size of items on any
base. It is a visualisation tool for (high) multidimensional data. Every color block
represents one item. The base change transposes the blocks and joins all adjacent
blocks with the same color, the response. We can see graphically the sensitivity of
the data faced with the context and explore patterns on data. We denote the base
as a CPT attribute permutation, using natural numbers {0,1,2,. . . } as the attribute
names. The base defines the attribute order that determines the case allocation in
memory (case sequence in physical memory) and the coalescence of cases.

3 CPT’s using KBM2L

In this paper, a CPT is a set of propositional clauses that measure the uncertainty
of a random variable X in a context Ȳ = ȳ of a decision model. The usual notation
is P (X = x|Ȳ = ȳ) = p, where X is a discrete variable, Ȳ is a vector of discrete
variables and p ∈ [0.0, 1.0] is a real number that represents the probability of X = x
given Ȳ = ȳ, one context or state of the model.
Note that the CPT content, i.e. the probability values, is a real data type and, as
we said above, KBM2L is useful for discrete attributes and response, with a few
domain values. Therefore, in the following subsections, we propose two possible
ways of representing this kind of tables using a KBM2L storage of: probability p
and a logical value ({true, false}) regarding the conditional probability declaration.
When implementing the later, we consider a discretisation of the probability real
value to avoid infinite weights wi and to make easier the item coalescence. The
probability discretisation is fixed by the expert as a resolution parameter useful for
the elicitation process, and it is refined later via sensitivity analysis.
Despite our representations manage with any attribute cardinality, it is convenient
to use only binary attributes. That is carried out as in other frameworks (e.g logistic
regression) by increasing the number of variables, but also by introducing consistency
constraints on the KBM2L to control which are the allowed new configurations that
reflect the old ones.
For example, suppose an attribute A with domain {0, 1, 2}. We can break it down
into binary attributes in different ways. One way is: A0 with domain {0, 1∨ 2} and
A1 with domain {1, 0 ∨ 2}. But we need to introduce some consistency constraints:
if e.g. A0 = 0 and A1 = 1, then the list must store impossible (syntatic constraint),
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labelled as coKB. Another possibility is to define A0 with domain {0, 0̄}, A1 with
domain {1, 1̄}, and A2 with domain {2, 2̄}. To break down attributes amounts to
increasing the representation dimension, see Table 1.

Table 1: Correct binary codifications of A

A0 A1 A A0 A1 A2 A
0 1 coKB 0 1 2 coKB
0 0 ∨ 2 0 0 1 2̄ coKB
1 ∨ 2 1 1 0 1̄ 2 coKB
1 ∨ 2 0 ∨ 2 2 0 1̄ 2̄ 0

0̄ 1 2 coKB
0̄ 1 2̄ 1
0̄ 1̄ 2 2
0̄ 1̄ 2̄ coKB

Some attribute binary representation like A0 with domain {0∨1, 0 ∨ 1} and A1 with
domain {2, 2̄} is incomplete, and some like A0 with domain {0 ∨ 1, 1 ∨ 2} and A1

with domain {0 ∨ 2, 1 ∨ 2} is indefinite. These schemas do not have the original
semantics. It is not possible to retrieve the original schema as a part of the new
schema, see Table 2.

Table 2: Wrong binary codifications of A

A0 A1 A A0 A1 A
0 ∨ 1 2 coKB 0 ∨ 1 0 ∨ 2 0
0 ∨ 1 2̄ 0 ∨ 1 0 ∨ 1 1 ∨ 2 1
0 ∨ 1 2 2 1 ∨ 2 0 ∨ 2 2
0 ∨ 1 2̄ coKB 1 ∨ 2 1 ∨ 2 1 ∨ 2

With coKB, we try not only representing syntactic constraints but also impossible
domain configurations, see Section 4. Note that a base change on a binary artificial
schema is equivalent to a permutation of the original attribute domain values. Thus,
we can achieve more coalescence on the list at the expense of more complexity on
the schema.

3.1 Probability p as Response

The most natural way of managing a CPT is to build an index with both the con-
ditioning attributes Ȳ and the conditional attribute X, and to build a (continuous)
response with p, the probability parameter. We define a formal item as 〈(x)ȳ, p|,
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see Section 2. With binary domains {0, 1} the empty list is 〈(1)1̄, unKB|. (0)0̄ is
MinIndex and (1)1̄ is MaxIndex. Label unKB means no knowledge about p in the
item list.
All index dimensions have finite domains. But it is difficult to coalesce the contin-
uous response p on the KBM2L. One possibility is to discretise the p values. Thus,
if X is the absence or presence of a pathology, a p-discretisation as null / low /
medium / high / maximum probability of suffering that pathology would allow to
compact the CPT and derive diagnoses. This is typically suggested by a human
expert according to the coarseness level desired. In this case, we trade accuracy to
allow more compact representation and easier knowledge elicitation. Another possi-
bility is to discretise the p values in a dynamic way, i.e. different discretisations for
certain values of ȳ. [Cano, A. et al., (2000)] propose the average of similar proposi-
tions. Yet, we fix a maximum KBM2L size and try to smooth the spectrum on the
optimal base.

3.2 Logical Value as Response

This other KBM2L definition has a discrete response. The response is coded as
three possible values {−1, 0, 1}. −1 has the usual meaning of unKB, 0 is false and 1
is true. This option has the following item formalisation: 〈[p](x)ȳ,{false,true}|. The
empty list is 〈[1.0](1)1̄, unKB|.
Now we need a discretisation of the probability parameters to compute the offset of
the items. For the definition of the previous and posterior index of a given index we
need a certain level of discretisation K: 10, 100, 1000,. . . values for p to denote the
“next” value of a continuous parameter p. I.e., [bp ∗Kc− 1](1)1̄ is considered as the
previous index of [bp ∗Kc](0)0̄. If we fix the probability resolution for discretisation
on 100, the empty list will be 〈[100](1)1̄,unKB|.
We claim that this is the most suitable KBM2L representation for CPT’s when
there is imprecision on the p values, see Section 4. On the other hand, the first
definition in Section 3.1 is rather intuitive for precise p values although it may yield
low coalescence of cases unless a coarse discretisation is made.

3.3 Item Interpretation

Let fixed be the subset of attributes whose values are constant for all the cases of
an item, [Fdez del Pozo, J.A. et al., (2001)]. Suppose the whole KBM2L with any
unKB items.

Probability p as Response Let 〈ȳ1(x)ȳ2, p| be a generic item. Suppose X is
binary, If x ∈ fixed then exist two items 〈ȳ1(0)ȳ2, p|, 〈ȳ1(1)ȳ2, 1 − p| or 〈ȳ1(1)ȳ2, p|,
〈ȳ1(0)ȳ2, 1 − p|. If x /∈ fixed then p = 0.5. The attribute subset not contained in
fixed on one item represents all scenarios where the measure of uncertainty is p.
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Here KBM2L items are 〈(x)ȳ, p| representing the quantitative dependency among
attributes on an explicit way.
This representation avoids the common expression for two different situations: uni-
form distribution (p is equal ∀x for some contexts ȳ) and lack of knowledge. Uni-
formity is dealt with ((0)ȳ, 0.5) and ((1)ȳ, 0.5), if x is a binary variable. On the
other hand, the lack of knowledge is ((0)ȳ, unKB) and ((1)ȳ, unKB). In general,
the complementary of ((0)ȳ, p) is ((1)ȳ, 1− p).

Logical Value as Response Let 〈ȳ1(x)ȳ2[p]ȳ3,true| or 〈ȳ1[p]ȳ2(x)ȳ3,true| be generic
items. If p ∈ fixed then this item has similar interpretation as above. If p /∈ fixed
the item represents a probability interval. When the response is false, it represents
semantic constraints, while coKB represents syntactic constraints, see Tables 1 and
2.
This item represents the logical probabilistic knowledge: 〈[p](x)y,{false, true}| =
〈[p](x)y, {0, 1}|. The response is domain-independent, in the sense that it is always
a logical value ∈ {false, true}.
Other situations are represented as follows. Complementaries are ((0)ȳ[p], 1) and
((1)ȳ[1.0−p], 1), uniformity is ((0)ȳ[0.5], 1) and ((1)ȳ[0.5], 1) and ignorance or unKB
is ((x)ȳ[p], unKB).

3.4 Applications

Support for CPT Elicitation: the list and its spectrum are useful and com-
plementary methods to support probability assignment of precise parameters and
decide the probability parameter imprecision, like probability intervals. Experts
can declare general rules and constraints regarding the CPT and analyse the list on
different bases.
Next, we show some examples of how different expert statements can be encoded. We
specify the base with {x, y} as a subscript. For instance, the expert can say when
Yj is 0, X is 1 with probability 0.95 which is written as ((1), . . . , 0j, . . . , 0.95) (a
generic precise case). On the base {X, Yj, . . .}, it induces: . . . ,〈(0)1j, 1, 1, . . . , 1, ∗|,
〈(1)0j, 1, 1, . . . , 1.95|,... Also, X may be 0 or 1 but 2 is not possible if Yj is 1 is
((2), . . . , 1j, . . . ,coKB) (a constrained case). And also, the expert can say I think
the probability of this type of situations, xȳ, involves a probability close to 0.25,
but I do not know exactly (an imprecise case). Following the first alternative, Sec-
tion 3.1, it amounts to having several cases, e.g., ((x)ȳ, 0.24){x,y}, ((x)ȳ, 0.25){x,y},
((x)ȳ, 0.26){x,y}, and the complementary cases. But this defines a multivalued re-
sponse (0.24 ∨ 0.25 ∨ 026) or an interval for imprecise probabilities ([0.24, 0.26]).
We think that this representation is not suitable because it produces an irregu-
lar discretisation (non-homogeneous width intervals) and a wrong response domain
(non-exclusive response values). On the other hand, following the second alternative,
Section 3.2, we build an item like . . . , 〈(x)ȳ[0.23], false|{x,y,p}, 〈(x)ȳ[0.26], true|{x,y,p},
〈(x)ȳ[0.27], false|{x,y,p}, . . . Then, we would insert it into the corresponding list, that
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in general is expressed in a different base and we would search for the optimal list,
with minimum storage space.
We encode the rules and constraints, represent the spectrum and browse the items,
its bounds, fixed (relevant) parts,. . . [Fdez del Pozo, J.A. et al., (2001)]. The list
helps to gather all expert knowledge in a consistent way and gives us clues about
which information is needed for building the CTP. The optimal list allows us to
synthesize the information to a small set of relevant and short queries for the expert
to improve the CPT model. The analyst can formulate questions to the expert
about regions with lack of knowledge of the KBM2L representation space and check
for inconsistencies.

Support for CPT Validation: the list summarises a large parameter set. We
propose this structure for validation by the expert or by means of a data sample
over the list. Two kinds of strategies are proposed: first, we try to study large items
and the attribute role (fixed or variable part) [Fdez del Pozo, J.A. et al., (2001)],
and second, we try to analyse tiny items with similar indices but different response.
Large items involve a few fixed attributes and therefore, the questions formulated to
the expert may be simple. Tiny items involve many fixed attributes and therefore, by
comparing two of them with only slight differences in their fixed part, the questions
formulated would be easily derived from these differences.
The validation process is similar to the elicitation process but we suppose that the
CPT is given and we try to extract the general rules for the experts from the optimal
list. They accept or not the results. The Elicitation and Validation are reciprocal
procedures in the construction of a knowledge-based system.

Support for CPT Knowledge Mining: on large CPT’s, KBM2L is useful to
discover general patterns, the main components of the probabilistic relationships.
We can try to explore several rules or descriptions about the problem and show the
agreement with the CPT that was built using data or model evaluation. The ID
evaluation produces very large CPT’s, posterior distributions, that can be analysed
with this tool for explanations and sensitivity analysis. On high dimensions we could
see the performance of this technique although here it will not be shown.
Finally, we think that KBM2L’s are not useful for inference and probability propa-
gation, but we have not studied this issue in depth yet.

4 Examples

We show here KBM2L examples of the two proposed CPT representations, see Table
3 for a summary.
Suppose the following simple CPT for X given Y : P (x0|y0) = a, P (x1|y0) = 1.0−a,
P (x0|y1) = b, P (x1|y1) = 1.0 − b, with variables or attributes: X : {x0, x1}; Y :

8



Table 3: Summary of CPT representations using KBM2L structures with binary
domains and a 100-discretisation

response → p
item list empty list
〈(x)ȳ, p| 〈(1)1̄,unKB|
response → {false,true}
item list empty list

〈[p](x)ȳ, {0, 1}| 〈[100](1)1̄,unKB|

{y0, y1}. We use the ordinal domain values {0, 1} instead of {x0, x1} and {y0, y1}
(x0 = 0, x1 = 1, y0 = 0 and y1 = 1).
For exposition clarity, it holds: 0 < a < b < 0.5, but any a, b ∈ [0.0, 1.0] are possible.

4.1 Discretisation and Imprecision

The discretisation of probabilities with 100 values implies codifications for a, b, 1.0−
a, 1.0 − b as follows: A = ba ∗ 100c, B = bb ∗ 100c, B̄ = b(1.0 − b) ∗ 100c, Ā =
b(1.0− a) ∗ 100c.
We take into account two possibilities:

1. The parameters are precise, a = 0.15 and b = 0.45. Then, A = 15, B = 45,
B̄ = 55, Ā = 85.

2. The parameters are unknown, but we know the value bounds and then a ∈
[0.12, 0.16] and b ∈ [0.40, 0.45]. Thus, A = {12, ..., 16} and B = {40, ..., 45}.

4.2 Probability p as Response

The discretised KBM2L is (〈(0)0, A| 〈(0)1, B| 〈(1)0, Ā| 〈(1)1, B̄|){x,y}, i.e.

(〈(0)0, 15| 〈(0)1, 45| 〈(1)0, 85| 〈(1)1, 55|){x,y}.

All item size are equal to 1 and the base is the very best.

4.3 Logical Value as Response

Remember the notation and let us denote the item size, number of cases, as an expo-
nent: 〈[probability](conditional attribute)context attributes, logical value|item size.
The simple KBM2L for X is:

(〈[14](1)1, 0|60 〈[15](0)0, 1|1 〈[45](0)0, 0|120 〈[45](0)1, 1|1
〈[55](1)0, 0|41 〈[55](1)1, 1|1 〈[85](0)1, 0|118 〈[85](1)0, 1|1

〈[100](1)1, 0|61){p,x,y},
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i.e. the precise case.
The complex and imprecise KBM2L is:

(〈[11](1)1, 0|48 〈[12](0)0, 1|1 〈[12](1)1, 0|3 〈[13](0)0, 1|1
〈[13](1)1, 0|3 〈[14](0)0, 1|1 〈[14](1)1, 0|3 〈[15](0)0, 1|1
〈[15](1)1, 0|3 〈[16](0)0, 1|1 〈[40](0)0, 0|96 〈[40](0)1, 1|1
〈[41](0)0, 0|3 〈[41](0)1, 1|1 〈[42](0)0, 0|3 〈[42](0)1, 1|1
〈[43](0)0, 0|3 〈[43](0)1, 1|1 〈[44](0)0, 0|3 〈[44](0)1, 1|1
〈[45](0)0, 0|3 〈[45](0)1, 1|1 〈[55](1)0, 0|41 〈[55](1)1, 1|1
〈[56](1)0, 0|3 〈[56](1)1, 1|1 〈[57](1)0, 0|3 〈[57](1)1, 1|1
〈[58](1)0, 0|3 〈[58](1)1, 1|1 〈[59](1)0, 0|3 〈[59](1)1, 1|1
〈[60](1)0, 0|3 〈[60](1)1, 1|1 〈[84](0)1, 0|94 〈[84](1)0, 1|1
〈[85](0)1, 0|3 〈[86](0)1, 1|1 〈[86](1)1, 0|3 〈[87](0)1, 1|1
〈[87](1)1, 0|3 〈[88](1)0, 1|1 〈[100](1)1, 0|49){p,x,y}.

The base change {p, x, y} → {y, x, p} for this list produces an improvement of 43 →
15 items:

(〈0(0)[11], 0|12 〈0(0)[16], 1|5 〈0(0)[85], 0|69 〈0(0)[88], 1|3
〈0(1)[83], 0|96 〈0(1)[88], 1|5 〈1(0)[39], 0|52 〈1(0)[45], 1|6
〈1(0)[85], 0|40 〈1(0)[88], 1|3 〈1(1)[54], 0|67 〈1(1)[60], 1|6
〈1(1)[84], 0|24 〈1(1)[85], 1|1 〈1(1)[100], 0|15){y,x,p}.

Figure 1 shows the spectrum chart of both lists.

Initial Base: {p, x, y}, 43 items

Optimal Base: {y, x, p}, 15 items

Figure 1: KBM2L spectrums

Because |A| = 5 and |B| = 6, this structure represents 5 ∗ 6 = 30 CPT’s like that
with a = 0.14, b = 0.40, or that with a = 0.13, b = 0.44. We store implicitly
0.83 < P (x1|y0) ≤ 0.88 in 〈0(1)[88], 1| and P (x0|y0) ≥ 0.11 in 〈0(0)[11], 0|. We can
increase the resolution easily because p has a weight equal to 1; the KBM2L length
does not change.

A Real Example. Finally, we show a high dimensional example adapted from
[Bielza, C. et al., (2001)] for this last representation. In this model we need to elicit
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many big CPT’s about the neonatal jaundice, a common clinical problem. Our ex-
ample is a CPT for hemoglobin concentration (X=CHgb: low(0)/normal(1)/high(2))
for a patient, conditioned to several (8) pathologies (Pth absent(0)/present(1)) and
the critical patient age (Age No(0)/Yes(1)). Therefore, let Ȳ be a context vector
with 9 binary components. Let us take a 100-discretisation resolution for p. The
empty list is 〈[100](1)1̄, unKB| with 155, 136 cases. The CPT has 3 ∗ 29 = 1, 536
parameters, but only 1024 parameters are free. In [Bielza, C. et al., (2001)] the elic-
itation problem was partly solved by means of a noisy OR-gate [Pearl, J., (1988)]
and all probability parameters were precise. But often it is difficult the noisy OR-
gate hypotheses to be held (independence between causes, some variables are not
strictly causes, the domains are not binary,. . . ) and we try to elicit the general
CPT: P (CHgb|Age, P th1, . . . , P th8).
Suppose the information is null (empty list) or some prior knowledge like:

P (0|000000000) = 0.0, P (1|000000000) = 1.0,
P (0|111111111) = 1.0, P (1|111111111) = 0.0.

The initial list is shown in Table 4, and one fragment of the optimal list in Table 5.

Table 4: KBM2L example, high dimensional CPT, initial list

Item p X Ȳ {0, 1}
0 〈[0] (0) 000000000, 1|1
1 〈[0] (1) 111111110, −1|1,022

2 〈[0] (2) 000000000, 1|2
3 〈[0] (2) 111111110, −1|510

4 〈[0] (2) 111111111, 1|1
5 〈[100] (0) 111111110, −1|152,575

6 〈[100] (1) 000000000, 1|2
7 〈[100] (2) 111111111, −1|1,023

With the initial list shown above, the analyst asks the expert (or makes queries to the
data base) the proposition set with probability equal to 1.0, 0.90, . . . , 0.0. The expert
declares which are the contexts with p = 100, 90, . . . , 10, 0. This process can be
repeated several times over the whole list or over the unKB items, restricted contexts.
The main idea is to fill the list with knowledge. Also, the expert may declare domain
rules, constraints or modulating attributes. For example, the following rules:

1. when three or more pathologies are present, CHgb is pathologically low with
probability 1.0,

2. no more than four pathologies are present on one patient, and Pth1 and Pth8
never are jointly present,. . .

11



3. when one pathology is present, Age increments the probability of low about
10%,

The KBM2L must be consistent [Fdez del Pozo, J.A. et al., (2002)], while the infor-
mation (parameters, rules or constraints) is introduced into the structure, see Figure
2. Here the spectrums do not show the whole list because there are very large un-
known items. The building and optimisation process may be run in parallel. The
final result is the optimised CPT, see Figure 2. Such system helps the analyst to
formulate questions to the expert. Both of them have a chart of the CPT that shows
the relationship among the attributes.

5 Conclusion

Central issues concerning this paper are:

Knowledge Representation. In short, we have tried to develop an extended
representation of KBM2L focused on CPT’s. This structure can represent the prob-
abilistic relationships on PGM’s and it is difficult to build it when it has a high
dimension. Two equivalent approaches have been proposed –probability and logical
values– playing the role of the content of the table. We have described the syntax
and semantics, computational storage and operations of coalascence on big CPT’s.
Also, we have used the KBM2L to support imprecise elicitation of probabilities with
intervals.

Applications. Some applications have been provided to support the Elicitation of
Probabilities, Knowledge Validation and Knowledge Mining. The three applications
are close from the point of view outlined in this paper.
We have proposed an Elicitation Protocol, see the final example for big CPT’s. The
proposal takes into account Domain Constraints and Expert Rules. It allows to
mix Expert Knowledge and Data Bases. It makes Maintenance of Consistency (if ȳ
is not possible within X|ȳ, then 〈[pj](xi)ȳ,coKB| ∀i, j). Actually, we are perform-
ing Sensitivity Analysis of attributes on optimal bases, according to the attribute
weights (these reveal the attribute importance on the CPT).

Open Issues. Some suggestions for future work are:

1. Improvement of elicitation and validation tasks. Now we are working even
on other KBM2L representation, with the table indexed by the probability
parameter and the context. Thus, the response is the conditional attribute.

2. Development of algorithms for probability inference on BN’s and evaluation
on ID’s, that exploit the optimal storage.
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Building process
Items view

Initial; 4 known items

Rule 1; 159 known items

Building process
Cases view

Rule 3; 229 known cases

Rule 2; 373 known cases

Rule 2 (bis); 683 known cases

Optimisation process
Initial Base: {0,1,2,3,4,5,6,7,8,9,10}, 1109 items

Optimal Base: {0,10,1,3,4,5,6,7,8,9,2}, 511 items

Figure 2: High dimensional CPT

3. Generalisation of the structure to multidimensional offsets and spectrum charts.
The application f : Rn+1 → Rk uses several indices and offsets. This multidi-
mensional KBM2L implies a complex definition of items as a generalisation of
(1), the previous definition of adjacent cases.

Acknowledgments. Research supported by Ministry of Science and Technology,
Project DPI2001-3731.
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Table 5: KBM2L example, high dimensional CPT, optimal list

Item p Y10 X {Y3, Y4, Y5, Y6, {0, 1}
Y7, Y8, Y9, Y2}

0 〈[0] 0 (0) 00000001, 1|2
1 〈[0] 0 (1) 11000001, −1|448

2 〈[0] 0 (1) 11000101, 1|4
3 〈[0] 0 (1) 11000111, −1|2
4 〈[0] 0 (1) 11001001, 1|2
5 〈[0] 0 (1) 11001111, −1|6
6 〈[0] 0 (1) 11010001, 1|2
7 〈[0] 0 (1) 11011111, −1|14

8 〈[0] 0 (1) 11100101, 1|6
9 〈[0] 0 (1) 11100111, −1|2

10 〈[0] 0 (1) 11101001, 1|2
11 〈[0] 0 (1) 11101111, −1|6

. . . . . . . . . . . . . . . . . .
184 〈[0] 1 (2) 11111010, 0|3
185 〈[0] 1 (2) 11111101, −1|3
186 〈[0] 1 (2) 11111111, 0|2
187 〈[1] 0 (1) 10000000, −1|385

188 〈[1] 0 (1) 10000001, 1|1
189 〈[1] 0 (1) 11100000, −1|63

190 〈[1] 0 (1) 11100001, 1|1
191 〈[3] 0 (1) 01000000, −1|2943

192 〈[3] 0 (1) 01000001, 1|1
193 〈[3] 0 (1) 01100000, −1|31

194 〈[3] 0 (1) 01100001, 1|1
. . . . . . . . . . . . . . . . . .
253 〈[30] 1 (1) 00000001, −1|763

254 〈[30] 1 (1) 00000010, 1|1
255 〈[50] 0 (0) 11110001, −1|29935

256 〈[50] 0 (0) 11110011, 0|2
257 〈[50] 0 (0) 11110101, −1|2
258 〈[50] 0 (0) 11110111, 0|2
259 〈[50] 0 (0) 11111011, −1|4
. . . . . . . . . . . . . . . . . .
506 〈[100] 1 (0) 11110111, −1|4
507 〈[100] 1 (0) 11111001, 0|2
508 〈[100] 1 (0) 11111101, −1|4
509 〈[100] 1 (0) 11111111, 0|2
510 〈[100] 1 (2) 11111111, −1|512
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