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Abstract

In artificial intelligence, the discipline of machine learning has emerged as the flagship of the field of
study. The era of big data, where increasingly large amounts of data are available to the public, requires of
tools that summarize and manipulate it correctly. For this reason, substantial effort is invested nowadays
in the development of new methods for learning and detecting patterns in the data. In this environment,
techniques such as Bayesian networks and random forests enjoy success at a practical level. However,
theoretical developments for the field in general and for many methods in particular are less abundant
than desired, and the general consensus is still that we do not understand many aspects of why the best
performing algorithms work. In this dissertation, we explore both the theoretical and practical branches
of machine learning with a multi-focused approach that spans across various technologies.

In the purely theoretical side, we cover contributions to two branches: pure statistics and the theory
of random forests.

In the first case we develop the univariate and bivariate truncated von Mises probability distributions
for circular statistics. These distributions can be understood as a generalization of the well-known von
Mises distribution that implies the addition of two or four new truncation parameters in the univariate
and, bivariate cases, respectively. The contributions include the definition, properties of the distribution
and maximum likelihood estimators for the univariate and bivariate cases. Additionally, the analysis of
the bivariate case shows how the conditional distribution is a truncated von Mises distribution, whereas
the marginal is a generalization of the non-truncated marginal distribution. We also show its performance
modeling data of leaf inclination angles.

In the second case we tackle the problem of random forests for regression expressed as weighted
sums of datapoints. We study the theoretical behavior of k-potential nearest neighbors under bagging
and obtain an upper bound on the weights of a datapoint for random forests with any type of splitting
criterion, provided that we use unpruned trees that stop growing only when there are & or less datapoints
at their leaves. Moreover, we use the previous bound together with the new concept of b-terms (i.e.,
bootstrap terms), to derive the explicit expression of weights for datapoints in a random k-potential
nearest neighbors selection setting, a datapoint selection strategy that we also introduce, and build a
framework to derive other bagged estimators using a similar procedure. Finally, we derive from our
framework the explicit expression of weights of a regression estimate equivalent to a random forest
regression estimate with random splitting criterion and demonstrate its equivalence both theoretically
and practically.

For the practical branch of this dissertation, we have two remaining works: A statistical analysis that
uses the previously defined truncated von Mises distribution and a multidimensional Bayesian network
classifier. In both cases, we study neuronal data in an effort to gain insights of neuroscientific value.

For the first work, we analyze branching angles of the basal dendrites of pyramidal neurons of layers
III and V of the human temporal cortex. For this, we use the truncated von Mises distribution, showing
that is able to describe more accurately the dendritic branching angles than previous proposals. Then,
we perform comparative studies using this and other statistical methods to determine similarities and/or
differences between branches and branching angles that belong to different cortical layers and regions,
among other comparisons.

Finally, a class-bridge decomposable multidimensional Gaussian network is presented as an inter-
pretable and high-performing model, to account for the morphological differences that exist between



different neurons when varying the species, gender, brain region, cell types and developmental stage of
the animal of origin, and to tackle the problem of inference complexity in multidimensional classifiers.
This work includes a structural learning algorithm that, for continuous nodes and discrete features, makes
use of the CB-decomposability property to alleviate the inference complexity and uses it to learn topo-
logically unrestricted complex network structures that take into account relationships between classes.
The model is trained with data from NeuroMorpho (v5.7) and it is then used for accurate prediction
of all classes simultaneously for new examples and, given its interpretability, to extract knowledge at a

neuroscience level.



Resumen

En inteligencia artificial, la disciplina del aprendizaje automadtico se ha instaurado como el buque in-
signia del campo de estudio. La era del Big data, en la que volimenes cada vez mayores de datos son
accesibles por el publico general, requiere de herramientas que sean capaces de concisarlos y manipu-
larlos correctamente. Por este motivo, en la actuallidad se estdn invirtiendo notables esfuerzos para el
desarrollo de nuevos métodos para el aprendizaje y deteccion de patrones en los datos. En este entorno,
técnicas como las redes bayesianas y los bosques aleatorios atesoran éxito a nivel de aplicacion. Sin
embargo, desarrollos tedricos para el campo en general y para muchos métodos en particular son menos
abundantes, y el consenso general es que alin no entendemos muchos aspectos de porqué funcionan
los mejores algoritmos. En esta disertacion, exploramos tanto la vertiente tedrica como la practica del
aprendizaje automatico con un enfoque multienfatico que cubre varias tecnologias.

Para la vertiente mds tedrica, nuestras contribuciones abarcan dos ramas: Estadistica pura y teoria de
bosques aleatorios.

En el primer caso desarrollamos la distribucién de probabilidad circular von Mises truncada univari-
ante y bivariante. Estas distribuciones pueden ser entendidas como una generalizacién de la conocida
distribucion von Mises, que implica la adiccién de dos o cuatro nuevos pardmetros en el caso de la
univariante o bivariante, respectivamente. Las contribuciones incluyen la definicion, propiedades de la
distribucién y estimadores de maxima verosimilitud para los casos univariante y bivariante. Adicional-
mente, el analisis del caso bivariante muestra como la distribucion condicionada es una distribucién von
Mises truncada, mientras que la marginal es una generalizacion de la marginal no truncada. También
mostramos su rendimiento a la hora de modelar datos sobre los dngulos de inclinacién de las hojas.

En el segundo caso abordamos el problema de bosques aleatorios para regresion expresados como
sumas de puntos. Estudiamos el comportamiento tedrico de los k-vecinos potenciales més cercanos bajo
agregacion de muestras bootstrap (bagging) y obtenemos una cota superior en los pesos de un punto
para bosques aleatorios equipados con cualquier tipo de regla de corte (splitting criterion), si utilizamos
arboles sin poda que dejan de crecer cuando hay £ o menos puntos en sus hojas. Ademads, utilizamos la
cota anterior junto con el nuevo concepto de b-terms (o términos de bootstrap) para derivar expresiones
explicitas para los pesos de puntos del selector aleatorio de k-vecinos potenciales mas cercanos, una es-
trategia de seleccién de puntos que también introducimos, y para construir un marco de trabajo que nos
permite derivar otros estimadores que utilizan agregacién de muestras bootstrap mediante un proced-
imiento similar. Finalmente, derivamos la expresion explicita de los pesos de un estimador de regresion
equivalente a un estimador bosque aleatorio para regresion equipado con una regla de corte aleatoria y
demostramos su equivalencia tanto a nivel teérico como préactico.

Para la vertiente mas practica de esta disertacion, desarrollamos dos trabajos: Un andlisis estadistico
que emplea la distribuciéon von Mises truncada anteriormente definida y un clasificador multidimen-
sional con redes bayesianas. En ambos casos, estudiamos datos neuronales en un esfuerzo por adquirir
conocimiento de valor neurocientifico.

Para el primer trabajo, analizamos dngulos de bifurcacién de dendritas basales de neuronas pirami-
dales de las capas Il y V del cortex temporal humano. Para ello, utilizamos la distribucién von Mises
truncada, mostrando que es capaz de describir con mayor precision los dngulos de bifurcacién dendrit-
ica que anteriores propuestas. A continuacién, realizamos estudios comparativos utilizando éste y otros
métodos estadisticos para determinar similitudes y/o diferencias entre ramas y dngulos de bifurcacion



que pertenecen a diferences capas corticales y regiones, entre otras comparativas.

Finalmente, presentamos un classificador gaussiano multidimensional clase-puente descomponible
(class-bridge decomposable multidimensional Gaussian network classifier) como un modelo de alto
rendimiento e interpretable, para procesar las diferencias morfoldgicas que existen entre diferentes neu-
ronas cuando variamos la especie, el género, la regién del cerebro, el tipo de célula y el estado de
desarrollo del animal de origen, asi como para tratar de avanzar en la resolucién del problema de la
complejidad de inferencia en clasificadores multidimensionales. Ademds, este trabajo incluye un al-
goritmo de aprendizaje de estructura que hace uso de la propiedad clase-puente descomponible para
aliviar la complejidad de inferencia, que usamos para aprender estructuras de redes complejas no lim-
itadas topoldgicamente que tienen en cuenta relaciones entre diferentes clases. El modelo es entre-
nado con datos de NeuroMorpho (v5.7) y después es utilizado para realizar predicciones precisas de
todas las clases simultineamente para nuevas muestras y, dada su interpretabilidad, para la extraccién de
conocimiento en neurociencia.
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Chapter

Introduction

In this dissertation we present works in multiple fields of machine learning. Our works travel from pure
statistics to machine learning theory, with stops in algorithmic developments and statistical analysis.
The chosen approach emphasizes the importance of multiple perspectives when analyzing statistical
phenomena.

Directional statistics ( [ 1) (also called circular statistics) is the field of study in statistics
that concerns itself with observations of angular nature, or more generally, that include a periodicity
property. For example, time and angular measurements (such as the first rain of the year, or the direction
of the wind) require a different theory than classical statistics if we are to work with them in a similar
manner to linear data. In neuroscience, circular measures arise when considering the branching angles of
dendritic trees in neurons. In [ ], the von Mises distribution (vM), a circular probability
distribution, was used to model this phenomenon. In this dissertation we study the field of directional
statistics and improve upon the proposal of the von Mises distribution by developing the truncated von
Mises distribution (TvM), a more general alternative to the former that adds two parameters for limiting
the support of the distribution. We then use this distribution in the field of neuroscience to model dendritic
branching angles in humans.

Bayesian networks (BN) ( [ ]) are a probabilistic knowledge representation framework that
allows us to capture the conditional independence relationships that exist between variables of a domain,
and build models that can perform multiples forms of reasoning on queries over those variables. Their
strengths with respect to other proposals in machine learning are interpretability, the ability to sample
from the learned distribution (generative model), handle hidden variables and perform well in tasks such
as classification of newly found examples. Of the multiple approaches to build Bayesian network clas-
sifiers, the multidimensional approach to classification ( [ ]) has been considerably less
studied than the single variable case ( [ ]). The main caveat of multidimensional classifica-
tion with Bayesian networks is the inference complexity, that scales exponentially with the complexity of
the network’s topology and the number of variables. For this reason, topological restrictions in structure
are common ( [ ). In this work we contribute to alleviate the complexity of building
topologically unrestricted multidimensional Bayesian network classifiers (MBCs), with the introduction
of a learning algorithm that, for continuous feature nodes and discrete classes, increasingly progresses
from a collection of simple structures to the fully connected non-restricted case.

Finally, random forests (RF) ( [ ]) are generally considered one of the best performing
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techniques available in machine learning today. In the standard case, they are an ensemble of decision
trees used for classification and/or regression problems. Each tree is trained with different versions of the
data and on different subsets of the features, to produce multiple individual predictions that are finally
combined to output a prediction. RFs display excellent accuracy and are relatively fast to train and use
for an ensemble. They also enjoy a history of successful practical applications ( [ 1,

[ 1). However, theoretical efforts to fully characterize RFs have so far not uncovered
a deep understanding of the model, and works often settle to analyze simplified versions of the original
algorithm ( [ D. In [ ], a very important connection was unveiled
between RFs and weighted k-potential nearest neighbors (k-PNN), a special type of nearest neighbors.
But bootstrapping was not considered there. In this dissertation we present a step forward in the under-
standing of RFs by providing for the first time to the best of our knowledge, explicit calculations of the
weighting schemes that a complete RF (bootstrapping included) is equivalent to. Moreover, we develop
a framework for the calculation of these weights for the class of regression estimates that implement
point selection strategies (such as selecting the k£ nearest neighbors associated values for predictions)
that operate strictly within the k-PNNs of the prediction target.

1.1 Hypotheses and objectives

1.1.1 Hypotheses

We have the following hypotheses for this dissertation:

1. A truncated directional probability distribution can be used to model angular phenomena that occur
in a restricted sector of the circle.

2. Neuron’s branching patterns in humans can be properly modeled using a directional probability
distribution that it is not forced to assume symmetry and full support on the circle.

3. Multidimensional Gaussian network classifiers can benefit from the CB-decomposable property
and Gaussian nodes to produce highly complex and interpretable multidimensional classifiers.

4. A general random forest algorithm for regression can be expressed as a weighted sum of datapoints.

1.1.2 Objectives
The previous hypotheses are addressed with the following set of objectives:

1. To develop the truncated von Mises distribution, an extension to the von Mises distribution that
incorporates the ability to restrict the support of the distribution and to produce non-symmetrical
densities.

2. To apply the developed truncated von Mises distribution to real dendritic branching angles data
from humans and achieve a superior modeling performance to that of the unrestricted von Mises
distribution.

3. To build a multidimensional Gaussian network classifier with a structural learning algorithm that
makes use of the CB-decomposable property that achieves the desired level of network complexity
and interpretability with respect to the state of the art.
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4. To develop the theory and methodology required to express a general random forest for regression
as a weighted sum of datapoints. Then, provide a practical demonstration of this equivalence by
building an estimator as a weighted sum of datapoints that behaves similarly to a random forest.

1.2 Document organization

This work is subdivided in five parts and nine chapters, following this summary:

Chapter 1

The reader can find here the objectives and hypotheses that produced the research leading to this disser-
tation. Followingly, the content of subsequent chapters is described.

Background

In this part we cover the relevant concepts and developments in literature that support this work. We trace
back our knowledge dependencies to some levels prior to the production of our developments. There-
fore, we cover from the basic description of some techniques to their state-of-the-art form in nowadays

literature. It includes Chapters 2-4.

Chapter 2

We cover in a summarized way the field of directional statistics from its basic conception to a more in-
formed position. We start with some essential statistics that are reformulated to fit the circular paradigm,
then we introduce the von Mises distribution, give an interpretation of its parameters and discuss its

properties, maximum likelihood estimation, characteristic function and moments.

Chapter 3

Here we introduce probabilistic graphical models. We introduce Bayesian networks from their histori-
cal development to more modern works. We formally define the model and discuss various aspects of
defining, building and using the model. Namely, we describe the parameters and structure as the two
elements that complete the definition of a Bayesian network and outline its importance and its precise
role within the model. We then discuss inference as a query answering paradigm with multiple interpre-
tations and objectives. Followingly, we detail the process of learning a Bayesian network and discuss
some consolidated approaches in literature to attain this goal, as well as provide with references to im-
portant contributions. Finally, we assess the particular case of Bayesian networks for classification and
detail both the unidimensional and multidimensional classification approaches and the relevant works

that develop them.

Chapter 4

We introduce the reader to the ensemble approach for classification. We first discuss the idea of com-
bining weak classifiers to produce a stronger one and review the literature that shows its growth from a
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question to a subfield of study. We detail bagging as a technique of interest for the combination of clas-
sifiers and then explain two specific classifiers that are of interest for this dissertation: nearest neighbor
classifiers and decision trees. We then cover the ensemble of decision trees, random forests, from their
definition to their very important impact in literature.

Contributions

This part covers the contributions of this thesis, developed along Chapters 5-8.

Chapter 5

Here we present and develop the truncated von Mises distribution in the univariate and bivariate cases.
This development consists of a series of results from definition to properties, maximum likelihood es-
timation and moments. For the bivariate case, we also discuss the conditional truncated von Mises
distribution and the marginal truncated von Mises distribution. Finally, we present a real data study for

leaf inclination angles using our proposed circular distribution.

Chapter 6

In this chapter we perform comparative studies of dendritic branching angles of pyramidal cells in the
human cerebral cortex. We first discuss the methods that we employ, which can be separated into two
categories: statistical tests and probability distributions. In the latter case, we use the truncated von
Mises distribution introduced in Chapter 5. Our results follow with a set of comparative studies that
examine the data from different perspectives. These perspectives are obtained by separating the data in
comparative groups according to different criteria. Finally, we present our conclusions and discuss our
findings.

Chapter 7

In here we develop the structural learning algorithm for the CB-decomposable multidimensional Gaus-
sian classifiers. We first introduce the formalism and the key property this algorithm exploits: the CB-
decomposability. We then present our structural learning algorithm in three steps of incremental network
complexity. We then apply our procedure to train and test a model that captures the morphological

differences between neurons and draw our conclusions.

Chapter 8

This chapter contains the theoretical developments that solve the problem of expressing a random forest
model as a weighted sum of datapoints. We first familiarize the reader with the problematic and pending
problems and the concept of k-potential nearest neighbors. Then our analysis shows the effect of bag-
ging on a regression estimate equipped with a 1-PNN distance metric and discusses its differences and
similarities with the 1-NN regression estimate. We continue with the main analysis of this work where
we show how to obtain explicit expressions for the weights of the class of regression estimates that use
for prediction a selection of datapoints strictly within the k-PNN set of the target. We also provide two
particular cases of explicit weight calculation; the first is a regression estimate directly defined over the
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k-PNN set, and the second is a regression estimate equivalent to a RF equipped with random splitting
criterion. For this latter regression estimate, we produce practical results comparing it with a classically
implemented version of the RF equipped with random splitting criterion, showing that the predictions of
both are virtually identical.

Conclusions

In this last part, we summarize our work and present our conclusions. It comprises Chapter 9.

Chapter 9

We summarize the contributions contained in this dissertation and show the list of derived publications.

Finally, we discuss future work and open lines of research that emerged from our research efforts.

Appendices
Appendix

It contains proofs of our results. Specifically, in Chapter 5 we have Lemma 5.2.1 for the analytical
expression of the normalization constant in the truncated von Mises distribution, and Theorems 5.3.1 and
5.3.2 to account for the behavior of the truncated conditional and marginal distributions, respectively. In
Chapter 8, we have Lemma 8.3.1 to account for the behavior of £-PNN under bootstrapping, Theorem
8.3.1 and Lemma 8.4.1 to establish the concept of bootstrap weights, Lemma 8.4.2 to calculate the
numerical value of a b-term, Theorem 8.4.2 to calculate the explicit expression of the weights of the
random k-PNN selection regression estimate, and Theorem 8.4.3 to write the random k-PNN selection

regression estimate using the explicit expression of the weights obtained in Theorem 8.4.2.
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Chapter

Directional statistics

2.1 Introduction

Directional statistics is a particular case of the statistical theory and methodology where the format of
the observations meets the particular requirement of having a vectorial representation of fixed length
(one by convention). It was first developed as such by Kanti V. Mardia ( [ ] to
properly handle circular and/or spherical observations, whose properties are not correctly addressed by
conventional statistics. Kanti V. Mardia and Peter E. Jupp can be considered the essential authors and
the main specialists in the field gathering a number of additional contributions such as

[2000].

All possible vectors of a fixed length in an n-dimensional space conform an n-dimensional sphere
of that fixed radius. Distributions can be drawn out of the different configurations at which we can find
the observations to be given as well as apply many other statistics to describe them. Directional statistics
is also referred to as circular statistics as the unidimensional case conforms a circular space and then
a circular observation can be regarded as a point in the perimeter of the circle. Circular distributions
arising in this reformulation of classical statistics can easily appear as proper distribution models for a
variety of phenomena in the application domain. Most classical examples include measurements of wind
directions from a stationary point, time measurements where we are interested in the positions of the
clock’s hands rather than the absolute time, compass measurements, angles that javelin throwers produce
respect to the ground line, and many others.

Circular statistics can be considered a transformation from classical statistics where the observations
on the perimeter of a circle contrast with the infinite line of the classical approach. We will define
the points in the perimeter of a circle of radius 1 (and refer to them from now on simply as points in
the circle, unless stated otherwise) as the O set, which we can express in a Cartesian coordinate bi-
dimensional space as O = {(z,y) € R? such that 22 + 4> = 1} and use the classical R real set for the
line.

When analyzing the points in the circle, a fundamental difference between both spaces (R and Q) is
clear under observation: The circle space has a close perimeter, as it could be viewed as a line whose two
extrema are connected, or differently said, the circle comprises a closed shape inside its perimeter. This
fundamental difference allows the representation of periodic functions in a natural way and also implies
the insufficiency of the classical statistics to compute correctly circular data and/or to summarize and

11
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describe the observations properly.

2.1.1 Coordinate systems and the limitations of classical statistics

Points in the circle need to be represented and referred properly in Q. If we were to address the problem
with unidimensional Cartesian coordinates, and attempt to address the fundamental difference by

Ty =x mod 2,

(where z,, denotes a wrapped variable), restricting our values to 27 with the modulus periodicity, we
may find that the linear statistics used to summarize and describe our data fail to calculate the expected
solution. As an example, problems may arise when trying to obtain a point that is at distance d from
another. In the circle, the shortest path between two points is defined through the circumference with no

distinction between the point we consider the reference and any other. Thus, if we compute the distance
(27)8
9

between %’T and (in radians), our linear statistics distance expression would calculate:

_(2m)7
=5

‘(%)8 _(2m)
9 9

yielding an incorrect solution since we were expecting to obtain % (see Figure 2.1).

(2m)8

w

Figure 2.1: In radians, the incorrect distance of @ that the classical mean computed (red) compared to the correct solution
of C22 (blue).

This problem appears under the special consideration that the 0 value has, as it is considered to be
“the beginning” of a circle. This example not only suggests that the distance notion has to be rewritten
but also shows how classical Cartesian coordinates are not directly compatible with the notion of circle.

Further extending the drawbacks of the classical approach, another example arises when e.g., com-
puting the sample mean of a set of observations. Let us consider a set of three observations 6, = 30°, 65 =
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0°,03 = 330° € O (in degrees) and use the classical sample mean /i

SHE
M=

S
1]
—_

== 6.

w = 120° (see Figure 2.2). The result given by the classical mean again does

Here we obtain
not acknowledge the closed nature of the circle. In the circle 0° = 0° + 360°k, k € Z, so it is possible to
say with care (specifying the k periodic values in both expressions) that 0° > 330° or otherwise exposed,
330° has a difference of 30° + 360°k with respect to 0° that is not acknowledged by the classical mean,

thus yielding an incorrect result (it treats the circle as if it was cut at 0°).

120¢

30°

00

330°

Figure 2.2: The incorrectly calculated mean of 0°,30° and 330° using standard statistics (red) compared to the correct
solution (blue).

We need therefore a coordinate system that will naturally address the properties of O over which we
can define the statistics to properly describe and summarize our data.

The solution was found to be to consider the points in the circle as vectors of modulus one in R? and
refer to them by the angle they create with respect to a preferred angle and orientation, that is, using polar
coordinates. Unless otherwise stated, points on circular statistics and on the O set are to be regarded as
angular values.

Equipped with those considerations we can finally redefine the Cartesian coordinates to its circular
analogue by means of:

x = (sin6, cosf),

where 0 is the angle created with respect to the initial direction and a reference angle that needs to be
specified. Note that despite the representation uses a 2-dimensional coordinate system, the interdepen-
dence of the coordinates created by the use of only one argument () prevents it to cover every point in
the plane, and by means of the angular trigonometrical representation the set of covered points results to
be only the allowed O perimeter set. We can see this by increasing the § value and observing how the
specified points under the coordinate system are “drawing” @ and only Q. Also, it needs to be noted how
periodicity is now naturally handled (as expected by definition) and how now V61,0 € O, 61 + 05 € O,
that is, we have a closed operation with respect to the O set as well as all the well known properties that
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operations between angles satisfy in Q.

More formally, if we consider the new coordinate system as an embedding function C' we have that
C : R - O, that is, C “shrinks” the R line (as we are referring to one dimensional quantities) into the
subset of the points that belong to the circle in O € R?.

Another proposal is to regard the points in the circle’s perimeter as complex numbers of the form:
9

z =€ = cosf + isin 6 (see Figure 2.3). Both notations are commonly used.

Figure 2.3: Both circular Cartesian and complex number coordinates approaches to reference the angle 0 = %ﬂ' in the circle
once initial direction (counterclockwise) and reference angle (0 degrees) have been chosen.

Solving the problem of the coordinates is not enough as the distance example brought to observation.
New statistics need to be defined in order to effectively study data on the circle.

The redefinition of the mean goes through the definition of two statistics. Let © = {61,05,---,6,,} be
a set of angular observations (note that if we were given the unitarian vectors as observations, the angles
with respect to our reference system would be calculated to use them as the data). We define the mean
components of the circular Cartesian coordinates as:

o 12 o 12
S = - Zsin&i, C= - Zcos@i
Then the mean angle is calculated as:

if C>0

Qllwl

arctan

|
Il

2.1)

arctan%+7r if C<0

This expression will give the same mean as the classical linear sample mean as long as the observa-
tions are in [0°, 180°] (with a counterclockwise direction and a reference point of 0°) where acknowl-
edging or not if the line is closed on itself is simplified under appearances.

It can be noted that if we represent the point (S, C') in the plane it may not be in the circle as it could
happen that it produces a non-unitarian vector. The length of this vector is called the mean resultant

length. It can be calculated as

R=\V5+C" 2.2)
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or
I _
R==> cos(6; - 0), (2.3)
n

and additionally related to C and S by

C = Rcos# 2.4)
S =Rsinf (2.5)
where 6 is the mean angle (see Figure 2.4).
78°

Figure 2.4: For angles 0°,30°,55°,78°,145° and 330°, the correctly calculated mean and the mean resultant length. The
calculated values were: 0 = 54°26'49.2” and R = 0.5828.

The R value has a meaning in the description of the set of observations as it results to be a measure of
the concentration as opposed to the concept of variance in classical statistics. If we were in the position to
place some observations on the circle and compute its mean resultant length, to maximize its expression
we must place all of them at the same point. We can get more detailed insights about R by means of the

following results:

Lemma2.1.1. Re[0,1].

Lemma 2.1.2. If © can be expressed as © = {01,...,0,,01 +7,...,0, +7} then R =0.
Lemma?2.13. R=1 only when 61 =0y =03 =---=0,,_1 = 0, € © (all angles are equal).

Proofs of these results can be found in [ ]. With this information, we define
another statistic that was conceptually introduced before: the distance between two angles ¢ and 6 as

d(¢,0) =1-cos(¢-0).

So we are now in conditions to interpret R as the mean of the “1-distance to the mean” that each of
our observations present. Thus, R only contains and uses the information of computing the average of the
distances to the mean, which can be considered the nature of its concentration diagnosing capabilities.
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Formally,
1 & - = 1Z -
—>d(6;,0) =d = —Z —cos(0; —0)). (2.6)
=1 ni
Then, by using Equation (2.3),
- 12 1& 1& —
d = =>1- —ZCOS(G—H)——Zl—R.
N1 My=1 L
We obtain
1& 1& — —
—>1-—>d(6;,0) = R
- Z; - 2; (6:,0)
1& —
—>(1- d(6;,0)) = R
n;3

as stated above.
It is now straightforward to introduce as a generalization of the mean restriction imposed in Equation
(2.6), the statistic for computing the dispersion of a set of angles © about a given angle 6 as:

D(®,6) - % iu —cos(6; - 0)).

This distance notion takes into consideration the periodicity of the circle, but its results are not
expressing perimeter distances. Accounting the perimeter scaling, another notion of distance was found
in this work to be:

da(6071,02) = arccos(cos(01 — 62)),
which can be considered the circular analogue to that on the line
d(x1,x2) = |71 — 22|.
Lastly, it has been proposed as the circular analogue to the linear variance the statistic
V=1-Re[0,1]

although other proposals also exist.

2.2 The von Mises distribution

In this Section we will give a complete addressing of the von Mises distribution as its definition and
properties intersect highly those of the truncated von Mises distribution of Chapter 5. Similarly to the
line, probability distributions followed by a random circular variable (random variable that produces
angular values or unitarian vectors) can also be subject to study and definition. Distributions on the
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circle are angular [-periodic distributions (where [ € R and 3n € N such that nl = 2m), that is, periodic
distributions whose period is multiple of 27. They can be obtained mainly by two related procedures:
natively defining them on @ or wrapping them from distributions on the line.

A wrapped on the circle random variable is obtained from a random variable on the line by introduc-
ing the fundamental difference between both sets on its definition. In this case a random circular variable
Xy 1s defined with respect to the line random variable X as:

Xw =X mod 27.
Using the complex numbers notation, it is defined as:
Xu = X,

and the density function of the probability distribution associated to that variable can also be written in
terms of the line density function as:

fw(0) = Z f(0+27k).
k=—00
The most significant example is the wrapped normal distribution:

o 7(97p,+27'rk)2

1
fwn(O;p,0) = —= 207 (2.7)

e
oV 2T 10

Native circular distributions are directly defined in the @ domain, although one can establish a map-
ping between both line and circle’s perimeter and therefore find or hypothesize the existence of their
linear counterpart and vice-versa.

Let 6 be a continuous random variable that follows a circular density distribution, then f(6) satisfies:

1. ff“a f(0)d0 =1, where a € R

2. f(0+2r1k) = £(0), VkeZ

That is, the properties that mostly differentiate both scenarios (linear and circular) are the redefinition
of the integral coefficients to those of the circle (1.) and the periodicity of the density function (2.).

2.2.1 Definition
The von Mises probability distribution is natively defined as

e cos(0-pu)

fort (051, k) = rlo(r)

(2.8)

where

1. pe[i,i+2m],i € R, is the location parameter as it defines where the mode of the distribution is
going to be placed. In this case, the maximum value of the cos(.) function is reached at 6 = p, thus
relating o directly with the mode. The ¢ value in this context enables the selection of the interval
of length 27 where the distribution is going to be observed. Most common values in literature
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are i = 0 or 4 = —7 and in this work, unless otherwise stated, the considered interval is [0, 27).
Additionally, the p parameter is commonly called the mean parameter as in this case as well as
other well known cases such as the normal distribution, the mode and the mean have similar value
(these distributions are called “mean-centered distributions” as the density tends to concentrate

around it).

2. k € [0,00) is the scale or concentration parameter, as opposed to the o parameter on the nor-
mal distribution. It determines the concentration of the distribution around its highest value (in
this case the mean). The higher & is, the more concentrated around the mean the distribution be-
comes. In the special case where « = 0 the distribution reduces to the uniform circular distribution:

Forr (05 11,0) = u(0) = %

3. In(R) =Y 0 22,,"}?—:1,)2 is the first kind modified Bessel function of order 0.

Figure 2.5: Example of different von Mises density functions with varying i, x parameters.

By manipulating the 1, < parameters, the resulting von Mises function may differ in location and
concentration from other von Mises distributions (see Figure 2.5), as suggested by the parameters defi-
nition.

2.2.2 Properties

The von Mises distribution is composed by the periodic function

Fuons (03 11, 5) = €301 (2.9)
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which will be referred to as unnormalized von Mises distribution and its integral over any interval of
length 27 [4,7 + 27] is
i+2m 0
[ e eos(0=1) g = 2rly(k).
(2

Therefore, analyzing Equation (2.9) allows us to observe and report many of the properties of the dis-
tribution. f,, s can be subdivided into a continuous strictly increasing function el),a positive constant
 and a cos(.) € [-1,1] function.

With this we can conclude
quM(e; Hy K/) € [e_ﬁv eﬁ]

Realizing now that Iy(x) is a positive strictly increasing function for s > 0 allows us to say that

forr (05 ,6) >0 YO, 1, K

which implies that its distribution function Fy,pr(z) = [y fuar(0; 1, £)d0 for f,ar defined in [0, 27] and
z € [0,27] is a strictly increasing function in [0,27]. In general, Fyp(z) = [ funr (05 1, 5)d6 > 0
provided z € [i,7 + 27] (see Figure 2.6).

O d |
0 1 2 3 4 5 B
e [0,2m]

Figure 2.6: The von Mises distribution functions of the previously shown von Mises density functions.

The distribution is symmetrical with respect to the location parameter as:

Jore((p+0) = p) = forr ((p=0) — )
va(e) = va(_G)

This behavior is obtained from the known even property of the cos(.) function where cos(—z) = cos(x),
as it takes the independent variable () as input.
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An interesting result comprehending both wrapped normal distribution and von Mises distribution is
the increasing approximation capability as x grows that both share: the von Mises distribution tends to
converge to a corresponding wrapped normal distribution for large x. More formally, the obtained results
reported in [ ] were:

' 1
Jim fonr(6; 1 5) = fiwn (H;M, \/;)

where fy v was defined in Equation (2.7).

The existence of the progressive approximation to the previous equality as x grows is acknowledged
in the literature and allows the use of fyy instead of the von Mises distribution for different problems

where it could be applied.

2.2.3 Maximum likelihood estimation

Inside the statistical inference scenario, we are interested in approximating the underlying probability
distribution that a random variable follows by the information provided solely by the samples collected
from it. In this section, we will develop for contextual purposes the maximum likelihood estimator of

the von Mises distribution parameters. It can be found also in [ ].

Given the data © = {01, 0, ...0,, }, the log-likelihood function
n
1n£(#7/{;017927 s aen) = Zlnf(lua K 9@)
i=1

is, for the von Mises distribution,

InL(p,k;601,02,...,0,) = Y wcos(b; —p)—nln(2rly(k))
i=1

We seek to solve the system of log-likelihood equations created by:

Olnl _

ou =0
olnL _

Ok =0

These are two equations with two unknown variables. For the partial derivative with respect to u we
obtain:

OlnLl
o i

ksin(f; —p) =0
=1
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or

1 n
— > ksin(f; - p) =0
L)

7

We know by definition that x > 0. Thus, in the case of the existence of a solution, it is independent
of the x value. Therefore

l sin(ﬂi—u) = 0
L
L S (sin(6:) cos(u) ~ sin(u) cos(8)) =
n =1
sin( ) % iy cos(0;) 1
cos(ft) % i-1sin(0;)
S
t = =
an(p) =

1 = arctan (E)
s c

That is, the ;1 parameter reaches a critical point at the definition of the sample mean (Equation (2.1)).

Now we proceed with the partial derivative with respect to x as:

OlnL & Li(k)
= 0; — ) - =0
Ok Z;COS( i~ 1) n[g(n)
or
1 & I
— > cos(; —p) = 1(ﬁ),
=1 Io(r)
given the equation for the Bessel function derivative, stated as
oL, (x n
Oln(x) = —I(z)+ L (2). (2.10)
ox x

At this point we can observe that we are dealing with the definition of R in Equation (2.3) as we have

5 1i(k)
R= (2.11)
I(] ( Ii)
Equation (2.11) is commonly referred to in the literature (for example in [ ]) as

the maximum likelihood estimator of R.

If we now consider the system of log-likelihood equations
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f1 = arctan(S/C)

L(x)

LS7 cos(6; - 1) = 753

we can find the estimator

MLE(u) = fi = arctan(S/C),

as its expression is independent of all remaining parameters () in the system and depends solely on the
sample data.
The estimator of x, also independent, introduces the non trivial problem of obtaining the inverse

function of
Il (Ii)

Ip(k)’

However, in this case we can consider to calculate R by Equation (2.2) and (2.3) and approximate

A(k) =

numerically its value with A(k) by assessing it for different « values.

2.2.4 Characteristic function

The characteristic function of a random variable is widely used in literature as a tool to handle the
underlying probability distribution followed by that variable. Among its interesting properties we have
that a probability distribution is uniquely determined by its characteristic function, which can then be
used to refer uniquely to such distribution when performing studies over it and its existence for any
probability distribution.

The general expression of the characteristic function of a circular random variable X is defined as
the sequence of complex numbers given by the expression:

©x (1) =E["],

where t € Z follows the sequence t = —oco,...,—1,0,1,...0c0.

For the von Mises density function in [0, 27| we have:

D, (1) = E[eitx]

1 fZﬂ ez‘t:cen cos(x—u)dl,
27T[0(H) 0

1 27
= oo (n) ./0 (cos(tx) +isin(tz)) e 5@ M gy
Tilg(R
= ]’027r Cos(tx)encos(xf'u)dx ifo27r Sin(t:);‘)e”cos(w*u)dw
= f027r ercos(z—p1) f02w o cos(—11) gy

The second addend is 0, Vt € Z, when the distribution is symmetrical with respect to the mean. As it
is always the case and considering Equation (2.10), we can simplify the former expression by

itp It("i)

D, (t)=e To(r)
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where I;(x) is the modified Bessel function of the first kind and order ¢. Note that ®x , (-t) =
Doy, p (1)

2.2.5 Moments

The moments of a probability distribution are descriptors associated to power values of its population
and can be derived from the characteristic function associated to that distribution. More precisely, the
t-th trigonometric moment (with ¢ € Z) m; in the circle is calculated as the expectation

my=E [(eiX)t] = E[e"X].

It can be immediately noticed that the sequence of all possible moments for ¢ is equivalent to the
characteristic function of that random variable.

Unlike distributions in the line, an important result acknowledged in [ ] reveals
that any circular distribution is completely determined by its characteristic function, implying that any
circular distribution has well defined moments for every value of ¢. This result appears to arise from a
practical fundamental difference of the closed space of the circle with respect to the line and that is the
lack of the infinite extension in the domain of any distribution function, which frees us from needing it
in the circular expectation operators and calculation definitions.

We can derive the moments of the von Mises distribution about the a direction by:

_ B[eX-0)]

Mty

Without considering mg = 1, the first moment about the 0 direction for the von Mises distribution is

~ _[OZW cos(z) e 5@ dg:

Min =
v f0277 efcos(z—p) dp

Or equivalently:

Min = E[eiX]
E[cos X +isin X |
E[cos X ] +iE[sin X |

Now applying the population versions of Equation (2.4) and (2.5) we can follow with:

Rcos(p) +iRsin(pu)
= Re*
Il(H) i
—Ze
Io(r)

M1ym

which constitutes the final expression for the first moment. For the second moment we have
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f027r cos(2x) e os(==1) gy
f027r eficos(z—p) dq

I (k) 21

Io(k)

M2, m

where I5 (k) is the modified Bessel function of the first kind and order 2.

Since our distribution location is controlled by p parameter, for location independent descriptions it

is interesting to consider the moments about the real i direction as:

. fo% cos(z — 1) e g
Lom — [027r er cos(z—p) dx
which results in:
/ _ L ("Q)

My = I()(Fc)
And

;o f027r cos(2(x — ) e o= dy;

21;]% - f027'l' €Kcos(x_u)dx
which results in:
/ _ 12('%)
2uMm IQ(H) :

We can generalize the notion of moments about the 0 direction for the von Mises distribution as

my = H0C)

where |.| is the absolute value operator.

And for the moments about the ;o direction we have:

G
tom Io(/{)




Chapter

Probabilistic graphical models

3.1 Introduction

Part of the problem in artificial intelligence is focused around systems that can perform reasoning under
uncertainty. Probabilistic graphical models (PGMs) use a graphical representation of the domain of
knowledge in the form of a graph around a set of variables. Abscense/presence of arc may help to derive
conditional independencies. The idea for a graphical model can be traced back to various sources, but in
the fields more directly related to its current form, we see first conclusive evidence of its adoption in the

works of [ 1, [ ] and [ ] in the field of statistics and in
[ 1, [ ] and [ ] in the field of artificial intelligence.
Bayesian networks ( [ ]) consolidated the popularity and theoretical foundations of PGMs.

They were proposed as a general framework for probabilistic reasoning capable of overcoming the strong
limitations and assumptions of contemporary models. This was accompanied by early successful appli-
cations of the framework, for which we can highlight perhaps [ ] and

[ 1.

Bayesian networks support multiple classes of problems such as classification, regression, clustering,
variable selection and sampling and can perform inference and multi-type reasoning (i.e., diagnostic, pre-
dictive, abductive, causal and more) for different queries to the variables of the model. They can be used
as a probabilistic knowledge base where interepretability and readability of the model are possible, and
decisions made by the model can be explained in a comprehensive way. This distinguishes it from other
machine learning methods and makes it a preferred option in sensitive domains where the explanations
of answered questions are as important as the answer itself.

From the 90s to 00s, most notable works can be found in [ 1, [ 1,
[1997] and [1998]. From then on, in [2004], [2006],
[ 1, [ ] and [ ]. In later years, BNs have been used
successfully in the neuroscience domain in [ 1, [ 1,
[ ] and [ ]. See a review in [ ]. Additionally, steady

progress has been made in the multidimensional classification paradigm using Bayesian networks. The
reader is directed to [ ] for a complete survey.

25
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3.2 Bayesian networks

Formally, a Bayesian network is a pair B = (G, ©) over a set of random variables X’ = { X7, Xo,..., X}
where G = (Vy, Ay) is a directed acyclic graph, Vy is a collection of vertices, Ay € Vy x Vy is
a collection of arcs between vertices of Vy and ©, in the context of Bayesian networks, is a set of
conditional probability distributions paired with the structure G.

Vertices of the Bayesian network represent the random variables in X and the directed arcs represent
probabilistic dependence relationships between the variables. Probability distributions in © are defined
as 0y, |pa(z;) = P(wilpa(z;)), that is, conditional probability distributions of variable X; given a value
pa(z;) of the set of variables Pa(X;) € X. In here, Pa(X;) stands for the set of parent variables of X;
in G (that is, variables of the graph with connected arcs that end in X;) (Figure 3.1).

0.35 0.65

Figure 3.1: A Bayesian network with four nodes and the conditional probability tables associated with each node.

The joint probability distribution can be used to model different classes of problems. However, the
computation of joint probability distributions is considered intractable in the general case. With Bayesian



3.2. BAYESIAN NETWORKS 27

networks, it is possible to factorize a joint probability distribution as follows:

d
p(X1,...,Xaq) = [[ p(Xs[Pa(X;)) (3.1)
=1

Equation (3.1) can be seen as a substantial reduction in the size and complexity with respect to the
joint distribution case, where the need to store every possible d-tuple of values would pose a significantly
bigger problem even for a relatively small number of nodes. Bayesian networks reduce this complexity
by exploiting the conditional independence relationships between the variables in the domain.

3.2.1 Parameters

We have already seen that the vertices or nodes of a Bayesian network can be seen as variables that are
conditionally distributed on their parent variables. In order to calculate the value that corresponds to a
specific assignment of values, we must first make the distinction between discrete and continuous nodes.

3.2.1.1 Discrete nodes

Discrete nodes have an associated discrete probability distribution taking values in a finite numerable
domain. The output of these nodes are probabilities as opposed to densities in the continuous case.
Notice that a node X; encodes multiple probability distributions, one per each parent Pa(X;) distinct
configuration. In order to represent this information, a conditional probability table (CPT) is generally
used.

A CPT (Figure 3.1) can be regarded as a table that has for rows the distinct assignments of all parent
variables of X;, and as columns all values of X;. If we consider Val(X;) the set of values that the
variable X can take, then

>, plzipa(X;)) =1
z;eVal(X;)

is satisfied for each assignement pa(X;) for the parents of X;, Pa(X;). This is, for each valid joint
assignment of values for the conditional variables, a categorical probability distribution is defined that
assigns probability values to the different values the random variable X; takes.

Notice also that the CPT grows exponentially in size with each new parent addition, as all possi-
ble configurations of that new parent must then be taken into account. This shows that the number of
parameters needed for a discrete node in a Bayesian network can be calculated as the product

(Val(X3)[ = D) ([Val(Pa(Xy))]),

where we can define |V al(Pa(X;))| as the cardinality of the set containing the total number of joint
distinct value assignments of the parents of X;. The -1 in the expression comes from the fact that for a
categorical distribution on a random variable with v+, ..., v, values, after all probabilities but p(v;) are
specified, p(v;) can be trivially inferred as p(v;) = 1 - X ;.; p(v;).

Then, for a complete discrete Bayesian network, the total number of parameters can be calculated as:

d
;(IVal(Xz')l - D([Val(Pa(X;))]). (3.2)
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3.2.1.2 Continuous nodes

Continuous nodes have an associated continuous probability distribution, taking infinite values on a
continuous domain. The CPT representation does not adapt well to the change of variable nature. A
common workaround is discretization, aiming to produce usable CPTs by grouping ranges of values into
a finite size group of categories ( [ 1). However, discretization techniques incur in loss
of information, making it an undesirable option in certain classes of problems. Additionally, different
discretization strategies significantly affect the parameter values of the resultant Bayesian network.

Another most commonly used option is to introduce in our model the assumption that the distribu-
tions associated with the nodes belong to a certain parametric family of distributions. Of all available
parametric forms, by far the most commonly used is the Gaussian family. Bayesian networks composed
solely of linear Gaussian nodes are called Gaussian Bayessian networks (GBNs).

In the case of GBNS, a node X that is linear Gaussian with parents Pa(X;) = { Pa;1, Pa;o, ..., Paj },
! € N has an associated Gaussian probability distribution given by

F(XilPa(X;)) ~ N (Bo + B1Paj1 + -+ BiPay, a})

where [y, 31 ... [3; are the linear regression coefficients of X; over Pa(X;) and af is the variance of
X;. This shows that a GBN can be computed as a product of gaussian distributions. Indeed, the joint
probability density f(X1,..., X)) is factorized as:

d
f(Xl, . ,Xd) = 11 f(X,|Pa(XZ))

GBNGs satisfy certain properties that set them apart from discrete BNs. For example, it can be proven
that a GBN defines a multivariate Gaussian distribution and viceversa ( [ D.
This, parameter wise, implies that instead an exponential increase in the parameter count when we add
a new node (discrete joint probability distribution case), we have a quadratic increase for a multivariate
gaussian distribution (since AV (p; X) is defined by a vector of means p and a covariance matrix ). For
our chosen factorization, however, the parameter count of a GBN is given by:

d
24+ [Pa(X,)| (3.3)
=1

GBNs work better in practice when the underlying data distribution of the problem is not too far off
from the assumption of gaussianity. Otherwise, the model may suffer from poor quality fitting.

3.2.2 Inference with Bayesian networks

One of the most interesting properties of Bayesian networks is its ability to perform multiple forms of
probabilistic reasoning. Once our model is built, it can answer different types of queries regarding its
knowledge domain (that is, its variables).

Typically, we have information on a subset of the total variables of the network E C X (evidence

variables), and we formulate our query over another subset Q C {X \ E} (query variables). Then, a
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conditional probability query can be written as:

P(QIE = e) = ’% (3.4)

In order to calculate the probabilities of Equation (3.4), we can proceed by renormalizing the random
vector of marginal probabilities

p(qla 6), ce ap(q|Val(Q)|7 6)

so that Z‘Z‘:/f (Ql p(q;,e) = 1, which implies that, for each possible query answer, the joint distribution
must be calculated in order to sum out the remaining variables of the network (that is, those that are nor
evidence nor query). However, working with the joint distribution is intractable in the general case.

Unfortunately, exact inference in the general case is also intractable, with a A/P-hard result shown
first in [ ]. However, the complexity of inference is intimately tied to the structural properties
of the Bayesian network, and for specific cases, even for large networks, exact inference can be carried
out in polynomial time.

In standard literature, most prominent solutions to the computation of exact inference are the algo-
rithm of variable elimination ( [ 1, [ ] and [ D
and clique trees ( [ ]). Both are capable of taking advantage of the structural prop-
erties of the network to lower the complexity of inference in some scenarios.

The algorithm of clique trees has the advantages over variable elimination of answering multiple
queries using the same data structure and reusing the computations performed for previous queries. Ad-
ditionally, it allows for dynamical introduction or deletion of evidence prior to each query computation,
making it a recommended choice in the general case over the standard implementation of variable elim-
ination when multiple queries are intended. However, in clique trees we are forced to store intermediate
computations that in variable elimination can be discarded, resulting in an increase of memory space.
Additionally, since the structure is fixed it is possible to miss on some computational savings that occur
in some specific cases of evidence and query subsets. Particularly, networks displaying context-specific
independence ( [ 1) would often be computed suboptimally with respect to variable
elimination, since the precomputed structure would not be able to recognize this type of shortcut as
available for this type of query + evidence.

Overall, both algorithms can be considered versions of a broader class of algorithms that we may call
variable elimination algorithms.

Approximate inference approximates the queried probabilities while trying to avoid the explosion in
computational requirements. Generally, this approach can be subdivided in Monte Carlo algorithms for

inference, such as likelihood weighting ( [ ]) or Gibbs sampling ( [ 1), and search
based methods for high probability instantiations, as in [ 1, [ 1,

[ ] and [ ]. Unfortunately, approximate inference was also proven to be an NP-hard
problem in [ 1.

3.2.2.1 MAP queries

For the purposes of this dissertation, our interest will be placed on a subtype of queries known as Maxi-
mum a posteriory queries (MAP queries) rather than conditional probability queries. In MAP queries we
seek to answer the query with the most likely assignment of the query variables given the evidence. The
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natural product of this type of queries is a unique value assignment to each of the query variables.

More specifically, our interest lies on a simpler case of MAP that is regarded in some literature as
the MPE (Most Probable Explanation) problem. This occurs when Q u E = X, that is, all variables are
covered between query and evidence and thus there is no need for the marginalization computations. The
MPE problem is considered to be easier in the general case than the MAP problem. However, in both
cases we do not leave the exponential complexity category.

We can slightly modify the original formulation of the conditional probability query shown earlier to
answer a MPE query by computing

argmax(p(qi,e),...,p(qva Q) e))-
Val(Q)

That is, we select the value assignment that yields the highest probability rather than keeping the
marginal distribution of the query variables given the evidence.

Variable elimination can be adapted to compute MPE queries simply by swapping the summations
for maximization operators, clique trees max product algorithm can also be tweaked by computing max-
marginals instead of sum-marginals at each clique of the tree. Our interest in MPE lies within the use of
this type of query for classification in Bayesian network classifiers, as we will see in Section 3.2.4.

3.2.3 Learning Bayesian networks

Early efforts in constructing a Bayesian network model typically involved the presence of an expert,
whose primary task was to manually identify the most fitting structure and parameters for the network
of the domain variables X'. This approach is largely considered deprecated nowadays as even for net-
works of modest size, the building time would scale to hours and required the additional assistance of a
knowledge engineer. Another reason for its diminished use is the abundance of data, which allows for
automation of the learning procedures. In this setting, the data D, is regarded as a collection of samples
that belong to an unknown probability distribution D (and were sampled independently), and our task is
that of finding a model that best fits the observed cases of the unknown distribution D. It is also possible
to have different goals in mind when building a model, that is, we may be interested in focusing on the
performance of the model in a subset of X" variables. Depending on our goals when building the model,
we may be discussing density estimation, classification tasks or knowledge extraction as the main cate-
gories on which our priorities can be sorted. In all cases, the procedure amounts to the definition of a loss
function that we want to minimize, which allows us to compare different candidate models and select the
best ones.

For example, let ()1 € X be a single target variable to predict, the 0/1-loss function, commonly
referred to as the classification error, is used to direct our learning procedure towards unidimensional

classification. Using MPE queries, for evidence e, we can write a prediction as
cp(e) = argmaxD(gile),
a

where D is a probability distribution approximation of D, produced by a BN model trained with D,,.

Then the 0/1-loss function can be written as:

E eq)pUes(e)2ar] (3.5)
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which can be read as the probability over D that the network selects the wrong label. For Q =
{Q1,...,Qp} C X or multiple variables for prediction, the 0/1-loss function can still be used (some
times referred to as global accuracy), although it becomes an exponentially stricter criterion since the
number of possible value assignments to the query variables is now Hi?:l |Val(Q;)|. For this case, a less
strict and commonly used criterion is the Hamming loss, which computes the average amount of mistakes
per prediction. If we consider c5(e) = (c1,. .., cp) the MPE resultant assignment for the variables in Q,
then the Hamming loss is given by the expression:

1 b
E(&Q)Nﬁ |:E Z; ]l[cﬁtqz']] : 3.6)

However, regardless of the loss function to minimize, in order to obtain a complete model, both the

parameters and the structure of a Bayesian network must be estimated.

3.2.3.1 Estimating parameters

Parameter estimation is a relatively easy operation in Bayesian networks with a fixed structure, both in
complexity and conceptualization. Most typically two approaches are considered, maximum likelihood
estimation (MLE) and Bayesian estimation (BE). In both cases, well defined closed forms for discrete
and Gaussian Bayesian networks are available.

Maximum likelihood estimation of the parameters tries to find the most likely assignment for the
parameters given the structure of the Bayesian network and the data. For this, we make use of the
likelihood function. Formally, if we are given a dataset D,, = {x,...,X,} and a Bayesian network
B=(G,0) with X = {X1, Xo,..., X } the likelihood function is defined as:

n d
L{G.0)Dn) = [ T[] p(zijlpalz;)i, ), 3.7)
i=1 j=1
where for a given x; € D,, we have x; = (2;1,...,iq) and pa(x;); outputs the values in x; that the

parent’s variables of variable X; take for that instance.
Thus, we are looking for the values that maximize the likelihood function, that is, for a set of param-
eters estimates © we seek the assignment:

0 = argmax L((G, 0)|Dy).
0

Alternatively, it is commonly found in literature as:

0 = arg min - log(L({(G, 0)|Dy)) (3.3)
0

since it is an equivalent but easier to work with the form of Equation (3.7).

Bayesian estimation, on the other hand, tackles the problem by introducting prior distributions to the
parameters. For this problem, we have a prior distribution on the parameters fp(6) and we update our
beliefs with the new evidence that the dataset D,, provides. This corresponds to computing the posterior
distribution fp|p, (0/D,,) and finding the configuration of parameters that maximizes it. Formally, its

corresponding optimization function is given by:
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0 = arg max fpip, (0|Dn)-
0

Maximum likelihood estimation is the most commonly used method in literature for parameter esti-
mation. Its advantage over Bayesian estimation is its simplicity. In fact, maximum likelihood estimation
can be understood as a particular case of Bayesian estimation where no prior information is given. For
Bayesian estimation, we have the ability to operate in online settings, where we could transform previous
data into our prior knowledge and update our networks with new arriving examples. In the limit, both
cases are proven to converge to the “closest” approximation to the true underlying distribution D that the
chosen Bayesian network structure G is capable of producing.

3.2.3.2 Obtaining the structure

Algorithms for the estimation of the structure of a Bayesian network are and have been historically one
of the most active research topics in the field. The problem is by no means trivial: For a given set of d
nodes X, the number of possible graphs is given by Robinson’s recursive formula ( [ )]

r(0) =1,

i 1

) = Syt (D oitdD, g
() = ) ()2 e,

which shows a superexponential growth (according to 20(d2)) (see Figure 3.2). Additionally, relation-
ships between variables are encoded in a Bayesian network in an ambiguous way. That is, for a given
structure, others exist that encode the same set of conditional independence relationships between the
variables. The class of networks that encode a given set of conditional independence relationships is
called an I-equivalence class. If our goal is to recover a specific structure then our data can only take us
as far as the I-equivalence class.
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Figure 3.2: All possible Bayesian network structures for a three nodes network.

From the numerous proposals to reconstruct/find the optimal structure, two main categories stand

out: constraint-based and score + search.

Constraint- based structural learning
In this approach, our goal is to find the set of conditional independences that best approximates the
relationships between the variables in X. That is, queries for this type of problem are of the form:

(X L{X;, Xi}X0)

which can be read as “X; is independent of X; and X, given X;”. We use independence testing for dif-
ferent subgroupings of variables in X'. The specific way in which an independence test answers a query is
not required for the algorithms to work. In all cases, once the network dependencies have been identified,
the output is an undirected acyclic graph that best encodes the found and non-found dependencies, that
is, the I-equivalence class that the final Bayesian network must implement. For hereon, all that is left is
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for a second procedure to assign directions to the arcs so that the final result is a valid Bayesian network
that best approximates D. Computationally wise, in the general case there is an exponential growth with
respect to the number of variables that we must include in a query in order to detect all independencies of
the network. In practice, oftentimes a threshold parameter 74, that controls the indegree of the network,
(that is, the maximum number of parents any node can have) is used. For a fixed 7,4, however, computa-
tion can be carried out in polynomial time. Most prominent work in literature for this approach is the PC
algorithm ( [ D.

In this dissertation, however, we concern ourselves with the next approach.

Score + search structural learning

Here, we approach the problem in a different way: We are equipped with a score function that can
assess the “fitness” of a given network structure with respect to the data D,,, and our goal is to find
networks in the space of DAGs for variables in X’ that maximize our scoring function. Since the space of
DAGs is super-exponential on X', some algorithms attempt to reduce the search space by making use of
properties within the scoring functions (such as local decomposability, see below) as well as within the
network structure.

For the scoring function, we can find many proposals in literature: An intuitive choice is to use the
likelihood function. Indeed, we can regard the output of the likelihood function, that is, the probability
of the data given the model, as the score of a candidate network. This score, for a network B = (G, ©)
can be constructed as

log(L((G,0)|Dn))

where 6 are the maximum likelihood parameters of G as shown in Equation (3.8).

The likelihood score offers a very interesting property: The score of the likelihood function can be
traced back, in the computation of the likelihood function, to local computations on the variables and
their parent configurations. In the log-likelihood function, these are expressed as addends in the total
sum. Interestingly, this decomposability allows us to assess local changes to a network using a previous
one as a reference, as only a subset of the sums in the likelihood of the previous candidate would change.
A score that exhibits this property is called a decomposable score. In literature, most commonly used

scores for Bayesian networks belong to this category.

The likelihood score alone, however, is not considered to be a good score for candidate networks. The
problem arises from the following property: Let us consider two candidate structures G; = {Vy, AS)}
and Go = {V, Ag?)} with maximum likelihood parameters 9~1 and 52, respectively, for the variables X'.
Then, if Ag(l) C Ag?) we have that log(£((G1,601)|Dy)) < log(L({Gz2,02)|D,,)). That is, the likelihood
score shows a preference for complex networks over simpler ones, and if one candidate includes all the
arcs in the same way as another, and some additional ones, the score is guaranteed to be at least equal.
In practice, almost all search procedures using this score will converge to fully connected networks.
The only case where this does not hold is on the unlikely event that an exact conditional independence
between a subset of variables of X is detected in the data, without noise.

In order to correct the previous problem, the Bayesian information criterion (BIC) (
[ ]) includes a penalty term on both the sample size and the number of parameters in G. Its expression
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is given by:
log(n)
2

Dim[G] is the number of free parameters in the model (see Equation (3.2) for discrete networks and

BIC(G|D,) =1og(L({G,0)D,)) -

Dim[G].

Equation (3.3) for Gaussian networks). This penalty biases the score towards simpler structures. How-
ever, for large n, it can be proven that the optimal candidate structure G* maximizes the score, and that
all structures that do not belong to the I-equivalence class of G* score strictly lower than those that do.
For each pair of structures that belong to the same I-equivalence class, the scores in both the likelihood
and the BIC score are the same (this is referred to as the equivalence property). Similarly, this score is
proven to be decomposable.

The BIC score is widely used and some other popular scores can be understood as variations of BIC.
Most notably, Akaike information criterion (AIC) ( [ ]) is a well known variation of BIC
where instead of using %Dim[g] for the penalty term, we use 2Dim[G]. The AIC score has the
property over BIC to be an estimator of the Kullback-Leibler divergence between the true distribution
and our candidate model, however, unlike BIC, it does not converge in probability to the true model.
The minimum description length ( [ ] and [ ]) is defined as the opposite
of the BIC, sharing similar properties. Other notable mentions are the deviance information criterion
( [ 1) defined as a generalization of the AIC score for hierarchical modeling and
the Hannan-Quinn information criterion ( [ 1), which can also be viewed as a variation
to BIC and AIC scores with a different penalty term.

Once we are equipped with a scoring function, we need a procedure to navigate the space of DAGs,
finding and proposing candidate models. As we have examined before, brute force search of the DAG
space, or random generation of candidates, is not expected to yield good results even for a target network
with a relatively small number of variables. In the general case, the complexity of our algorithms never
goes below that of a NP-hard problem. For this reason, most search algorithms employed in structural
learning are heuristic algorithms. Here, we do not attempt to examine the complete search space, rather,
to build a “route” towards a local optimum in the score function with a polynomial number of candidate
model evaluations.

Most heuristic search algorithms define three search steps: arc addition, arc deletion and arc reversal.
With this, it is possible to navigate part of the search space considering neighboring structures that differ
from a given one in one of these operations, and rely on a decomposable score that allows for local
changes between different candidate models to easily assess the change that applying those operations
would produce (in fact, only one local score addend changes for addition or deletion and two for reversal).
This direction was fully developed in [ ] and [ ]. If the score satisfies
the equivalence property, searching in the space of undirected acyclic graphs is also possible.

In literature, structural search pioneering efforts can be traced to [ ] for learning
tree-restricted BN topologies. In [ ], a widely used and first structurally
unbounded algorithm is published. The K2 algorithm only required a node order for the variables to be
provided, but it is not robust as it achieves different networks for different orderings. Still, some works
on the optimal detection of orderings are [ ] and [ ] and
[ ] of recent date. The greedy equivalent search (GES) ( [ ]) algorithm searches in the
space of equivalence classes. It was shown that this algorithm correctly recovers the structure if the data
was sampled from a PGM (with or without directed arcs) when n — oo. Another widely used method is



36 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

the hill-climbing structural learning algorithm ( [ ]) which, adapting from the well
known hill-climbing optimization technique, performs a local greedy search in the space of DAGs.

3.2.4 Bayesian network classifiers

In a supervised classification setting, we use two differentiated sets of variables, the class variables
C C X and the feature variables Xy C X. We are given a dataset of annotated examples D,, =
{(x1,¢€1),...(Xn,Cn)} and our goal is to maximize the quality of new predictions for variables in C,
using the information provided by the feature variables X’;. In our case, Xy UC = X and D,, is a dataset
with no missing values.

A Bayesian network classifier, in our case, uses MPE queries to answer new predictions and treats the
information obtained from the feature variables as evidence for the query. Equations (3.5) and (3.6) illus-
trate typical target functions of our building algorithms. In general, a Bayesian network classifier (BNC)
offers interpretability and explainability over other models while maintaining a competent performance
in metrics like misclassification error.

3.2.4.1 Naive Bayes and extensions

The most popular Bayesian classifier is also the simplest. A naive Bayes classifier (NB) ( [ D
encodes the assumption that the features are conditionally independent given the class variable (a single
class variable). It has a fixed structure where arcs are set to go from the class variable to the feature
variables (see Figure 3.5).

Figure 3.3: A naive Bayes classifier structure.

The factorization of the joint probability distribution offered by a naive Bayes, for C = {C}} and
Xf = {Xl, e aXd—l} 1s:

d-1

p(C1, X1,..., Xq-1) =p(C1) [ [ p(Xi]Ch).
i1

This can be seen as an attractive decomposition in terms of simplicity. For inference purposes, the
particular case of naive Bayes using MPE rule is defined as:

¢* = argmax p(Cy = ¢1]x).
Cc1

This equation shows that for each MPE query, we must only examine as many cases as values in
Val(Cy) for a discrete network. In general, inference can be carried out in linear time for the naive

Bayes case.
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Since the structure is fixed, there is no need for a structural learning stage. Parameter estimation is
performed in two possible ways: as described for the general case, but applied to a simple structure, or
in a discriminative way, finding the parameters that yield the lowest missclassification rate. In general,
the naive Bayes model is considered to be a non-demanding computational method with surprisingly
good performance for its simplicity and strong assumptions. They have a history of success in the early
stages of artificial intelligence ( [ ] and [ 1), with the notable
case in [ ] where the model significantly outerperformed experts in diagnosing
acute abdominal pain. On the other hand, naive Bayes has shown to be incapable of capturing complex

patterns in the data. The XOR problem cannot be solved by a naive Bayes classifier (

[ ]) and the decision boundary of a naive Bayes classifier is a hyperplane in the binary case (
[ ]) (that is, when the class variable has two possible labels), and is a sum of polynomials in the
arbitrary case ( [ ] and [ ]). For this, nowadays, its use alone is often

discarded in favor or lower-bias models.

The naive Bayes classifier has spawned numerous research directions and numerous extensions to
the base model. Most known works include the tree augmented naive Bayes ( [ D
commonly known as TAN, that relaxes the constrains on the feature subgraph to allow for tree type
structures (Figure 3.4).

=

Figure 3.4: A tree-augmented naive Bayes classifier structure.

The k-dependence Bayesian classifier ( [ ]) imposes less restrictive constrains by only
allowing acyclic structures in the feature nodes within a bounded indegree i, = k, that is, the number of
parents for a feature node on the resultant network can be at most &k + 1 (the class adds one parent). The
Bayesian network augmented naive Bayes ( [ 1), commonly known as BAN, allows
an unrestricted graph in the feature variables. For other extensions of the naive Bayes classifier and more,

the reader is directed to [ ].

3.2.4.2 Multidimensional BN classifiers

In the general case, we are not bounded by a single class variable or a fixed structure. Depending on
the number of class variables, the problem can be considered as a unidimensional classification problem
(or simply a classification problem) when |C| = 1 or a multidimensional classification problem (

[ 1) if |C| = s, s > 1. The structure of a general classifier, however, is still bounded by some
strict restrictions. Namely, a class variable should not have feature variables as parents, and the classifier
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should not contain feature variables that, for structural reasons, cannot affect the classification outcome
in any possible case.
Therefore, in all cases our MPE queries are tasked with returning the label assignment c that maxi-

mizes the posterior probability

c*=(c,...,c;)=arg nax p(Cr=c1,...,Cs = cslx).
In multidimensional BN classifiers (MBCs) ( [ 1), then, we seek to

answer simultaneously a label assignment to multiple class variables. In here, class variables may have
other class variables as parents, but since inference complexity scales with structural complexity, many
works using restricted structures exist. In general multidimensional problems, the simplest case is to
consider an empty structure in the class subgraph although no dependence relationship between class
variables is modeled ( [ ] and [ ] for binary classes in a
multi-label fashion). An important subsequent work ( [ 1) used chain type structures to
build a multidimensional classifier. In this setting, after a class variable is selected as part of the chain,
it becomes part of the evidence, along with the features, to select a new member of the chain among
the remaining class variables. For BNs specific results, other popular topologically restricted model
proposals are tree-tree MBC ( [ 1) (MBC:s that follow a tree structure both
in class and feature subgraphs), polytree-polytree MBC ( [ 1) (MBC:s that
follow a polytree structure both in class and feature subgraphs), a special DAG-DAG MBC (

[ ]) (MBCs that follow a bounded indegree DAG structure both in class and feature

subgraphs) and general structures in [ ]. In Chapter 7 of this disseration, we focus on
the class bridge-decomposable proposal, first presented in [ ] and further developed in
[2010].

In order to learn the structure of an MBC, algorithms fall within three categories: Filter, wrapper
and hybrid ( [ 1). In all cases, we refer to greedy score+search algorithms. A filter
approach allows for a faster computational time by scoring the network independently of the classifica-
tion performance, looking for a good structure according to some other criteria. A wrapper approach is
computationally expensive, but yields better results for classification. Wrapper algorithms assess how
changes in arc inclusion, deletion or reversal affect the misclassification error of the resultant network,
requiring a MAP/MPE query at each step. Hybrid strategies use for some parts of the network a filter
score and for others a wrapper score, somewhat averaging the pros and cons of both approaches.

In a more general view, many strategies that involve the treatment of multiple class variables have
been proposed without the explicit dependence of a Bayesian network classifier, and have been adapted
to the particular case of the BN domain. A multi-label classification complete survey is provided in

[2014].
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Ensembles of classifiers and random
forests

4.1 Combining classifiers

The idea of combining classifiers in machine learning can be traced back to [ ] and

[ ] with the question “Can a set of weak learners create a single strong learner?”’. The
question was answered positively in [ ] with the creation of the first version of boosting.
Boosting ( [1990], [1995], [1997] and [2003]) is an en-
semble of learners that generally works by iteratively training a population of classifiers, each using a
dataset that emphasizes the mistakes made by the previous members of the population. Decisions are
made by combining the predictions of the learners, typically by majority voting in classification and

averaging in regression. Of all boosting algorithms ( [ 1), the most notorious is the AdaBoost
algorithm ( [ ] and [ 1), which improves on previous ver-
sions by adapting to the weak learners. In [ ], AdaBoost adjusts the distribution for

the next learner by minimizing

EE(h|f,Dy) = Ex.p, [e 7CMX)], 4.1

where EE(h|D,, f) is the Adaboost exponential loss function, f(x) is the true distribution (in practice,
our labeled examples) and h(x) is a weak learner from the set H = {hq,..., h;} and then combines the
t predictions of x by additive weighting

t
> w;ihi(x), 4.2)
i=1

where predictions by learners h; are weighted according to some weighting scheme wy, . . ., w;.

That is, after a base learner is trained and its error is measured, the probabilities of the samples that
comprise the next dataset for the next weak learner to learn are updated using Equation (4.1). When all
learners are trained, their predictions are combined using Equation (4.2). The weights paired to each
learner depend on the individual error of each learner. In [ ], this is calculated with
the following expression:

39
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1 ( 1-err; )
w; = = log )
2 err;

where err; is the error of base learner h; evaluated in its training dataset.

Adaboost in its most known form and many of its variants have been interpreted as procedures that
perform gradient descent over the hypotheses space using a convex cost function ( [ D.
Furthermore, adding random noise to classification has been shown to drastically decrease performance
in boosting algorithms that fit this description ( [ ]). However, non-convex opti-
mization algorithms for boosting have been proposed with successful response to this problem (

[2014]).

In general, boosting learners are viewed as high accuracy, overfitting resistant easy to implement

procedures for classification and/or regression. With the mentioned caveat of vulnerability to noisy data

in many of its variants.

4.1.1 Bagging

In the ensemble category of learners (also called metalearners), two clearly defined directions can be
identified. The first one corresponds to boosting and its variants and can be thought of as the “sequential”
approach to learners combination. The second one is bagging, and conversely, can be thought of as the
“parallel” approach to the combination of learners. In this dissertation we focus on this approach in
Chapter 8.

Bagging ( [ ]), originating from Bootstrap AGGregatING, is a method for combining
classifiers whose main steps are, as implied, bootstraping ( [ ]) and aggregation.
Given a dataset D,,, we seek to train ¢ learners, each on a bootstrapped version sampled from the original
data.

Formally, we have a population of learners H = {hi,...,h;} and B(D,,) = {Dj,...,D;n} the set
of all bootstrap variations of D,,. Our goal is to compute

h*(x,Dn) = Eg(p,)[h(x, B(Dn),Dn)]. 4.3)

This sampling is typically done with replacement, which allows for the inclusion of repeated exam-
ples. The differences in training data produce differences in the final models that comprise the population
of learners. Then, predictions from all models are combined typically by voting in classification and av-
eraging in regression. In practice and in the general case, Equation (4.3) is evaluated using Monte Carlo
simulation.

The theoretical understanding of why bagging works has produced significant literature. In
[ ] and [ ], it is shown that an ensemble strength can be characterized in terms of the
individual accuracy of its members and the overall diversity of the population. An extreme case of why
uncorrelated classifiers affects the outcome is the case where all members of the ensemble are copies
of a single learner. In this setting, its clear that no improvement can be achieved by using an ensemble
and the system degenerates to the task of training that single learner. On the other hand, if errors in the
learners are independent of each other and the probability of each learner to be correct is p > 1/2, then
for each learner predicting an instance incorrectly, a majority of others is expected to predict it correctly,
effectively lowering the probability of error of the ensemble beyond that of the base learners (Figure 4.1).
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A Voting | B Voting
Classifiers Result Classifiers Result

Figure 4.1: An intuitive view of why diversity and accuracy influence performance in an ensemble of classifiers. The colored
bars represent the correct (blue) to incorrect (red) classifications of a population of classifiers and their distribution in a dataset.
The colors of the “Voting result” bar are calculated by a majority vote. In case A, we show the less diverse error distribution
scenario, where all classifiers are identical and so is the result. In case B, we can see how we can take advantage of uncorrelated
errors to “compensate” for the mistakes of other classifiers, greatly reducing the error. Notice, however, that if the colors were
reversed (more specifically, if the correct labels were the minority) the ensemble would instead amplify the error in case B.

In [ ] a smooth estimator is decomposed into terms of linear and superlinear
orders (i.e., quadratic or cubic) and the effects of bagging analyzed. It was concluded that the linear
order term of the estimator is roughly unaffected, but variance is reduced for the terms of superlinear
orders. This is further detailed in [ ], which uses U-statistics to study the effects of
bagging on variance, square bias and mean squared error (MSE), arriving at broadly similar conclusions.
In [ ], bagging is characterized as a softhresholding function that is specially
effective in reducing the MSE on non-smooth, unstable predictors, such as decision trees, whose decision
boundary is comprised exclusively of hard cuts. Indeed, while practical success of bagging is a well
documented fact ( [ 1, [ 1, [ ], [ 1,

[ ] and [ 1), as we will see in Section 4.4, random forests is perhaps the
most successful use of bagging.

In this dissertation we concern ourselves with the effect of bagging, specially in the cases where the
weak learners are nearest neighbors (NN) and decision tree (DT) predictors.

4.2 Nearest neighbors

The nearest neighbors (NN) predictor ( [ ] and [ ]) is one of
the oldest machine learning methods used to predict new examples from data. It is still used today as
its simplicity, easy implementation and intuitive understanding make it an attractive proposal. A clear
advantage of NN over other methods, besides its simplicity, is that it does not require training time and
prediction is done in polynomial time. Additionally and perhaps due to its simplicity, it is considered a
well understood method. For these reasons, it has not been deprecated from machine learning literature
and continues to see practical use.

Formally, a k-NN predictor is a function h : X — ) that outputs a prediction over a domain ) using
a distance metric ||.||,, and the variables of X In all cases, NN predictor uses the y-associated values of
the k£ € N neighboring datapoints to the target xg to output a prediction, where “neighboring” is defined
with respect to ||.||,. The properties of ) determine the type of problem, that is either classification or

regression.
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Let (x7,v1), (x5,95), ..., (X}, y,) be an order for the data such that ||} — xo||, < ||z5 —Xolp < ... <
||z7, = %ol|p- Then, if we define yx,, = {y], ...,y } as the set that contains the y-associated values of the
k “closest ” datapoints, we can write a prediction for classification as:

* p—
Yy~ =argmax Z ]l[ygzy]
Yy yrILEyknn

This can be read as the selection of the most popular label among the £ selected instances.

For regression we have:

which is simply the average of the y-associated values of the k selected instances.

NN predictors work well when the target function does not deviate largely from the assumption that
datapoints close in distance have also close y-associated values. This can be intuitively seen for k£ = 1,
as the decision boundary of the NN algorithm is a Voronoi diagram (Figure 4.2).

Figure 4.2: Voronoi cells representing the decision boundary of a 1-NN classifier/regressor in a 2-dimensional feature space.
In this setting, if we were to select an arbitrary location of the diagram as the coordinates for a datapoint to be predicted, the
y-associated value of the datapoint included in the Voronoi cell would be used for the prediction.

The first theoretical results on the NN algorithm are presented in [ ], where it is
shown that the risk of a 1-NN predictor converges to double the Bayes optimal error under mild condi-
tions. In [ ] we can see a more detailed analysis and other results of interest. In

[ ], the bagged NN is explored together with a known variation of interest in this dis-
sertation, the k-potential nearest neighbors. For relatively recent convergence results, we have
[ ]. Finally, in even more recent studies, [ ] proposed a finite sample bound, with
similarities to Vapnik-Chervonenkis bounds (or VC bounds, a well-known measure of the expressive
power of a learning model)

In Chapter 8, we will examine the case of bagging the NN predictor.
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4.3 Decision trees

Formally, a decision tree is a function h : X — ) that outputs a prediction over a domain ) using
a splitting rule, a stopping criterion, a prunning criterion (in some cases) and the variables of X. A
decision tree is built using an associate tree structure that sorts new arriving examples based on the
splitting rule (also referred to as splitting criterion). At each bifurcation of the tree, a Boolean criterion
is applied to a direction of the feature space and datapoints are separated into different paths depending
on the outcome. The final result can be interpreted as a recursive application of “IF THEN ELSE” rules
that encode the pattern of our predictive model (Figure 4.3). At the leaves of the tree, a predictive value
is assigned to new arriving examples based on the type of problem. As in Section 4.2, the properties of
Y determine the type of problem: If ) is a discrete set of values we use decision trees for classification;
if it is continuous, for regression.

Figure 4.3: Example of a decision tree for classification for the well-known iris dataset ( [ ]). It displays the
classification of three different species of iris flowers based on various length measurements of each population. At each node,
we see the most popular label at that level, the proportion of each label in the data and the proportion of the data that reaches
the node.

4.3.1 Building decision trees

Decision trees can be built with the aid of human experts. However, for machine learning purposes, we
are interested in algorithms that can build decision trees automatically from data. Algorithms for this
endeavor must decide on the different aspects that compose a decision tree. The main design choices that
characterize the different existing proposals are: The type of value assignment to instances at the leaves,

the type of splitting criterion, the type of stopping criterion and the type of pruning criterion.
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The type of value assignment defines the way instances are labeled at the leaves. The available
choices are typically separated for classification and regression trees. A splitting rule typically consists
of the recursive application of a splitting criterion to subsequently smaller partitions of the dataset until
the terminal nodes (leaves) are reached, leaving a subset of instances that are used for the final value
assignment. The stopping criterion halts the depth exploration (branching) of the tree when a local
criterion on the resultant partitions of the split is satisfied. Finally, the pruning criterion seeks to reduce
the dimensions of the final tree by merging terminal nodes.

We review now the most relevant proposals in literature.

4.3.1.1 Value assignment to a prediction

For value assignments, we follow a similar approach as in the NN case.

Let us define U = {uy,us,...} as the set of leaves of a decision tree, u;(D,,) C D,, as the partition
of the dataset that only contains the datapoints in leaf w,;. Then, for a given leaf u; and a datapoint x( to
predict, the label assignment y* for classification can be written as:

y* = arg max Z Liyi=y]-
v (xi,yi)eu; (Dn)

This amounts to select the most popular label in u;(D,,). For regression, we have:

1

*

Yy Yi-

- ‘Uz (,Dn)‘ (xi,yi)€ui(Dr)

Thus, the most used value assignment is simply the average value of the y-associated values of the
datapoints in the leaves.

4.3.1.2 Types of splitting criteria

At any given node, we can define S = {s1,59,...} as the set of all candidate splittings, and for each
s; € S we have s;1 and s;2 as the two resultant subsets of the data after splitting it at s;. Then, all splitting
criteria can be regarded as scoring functions that assess the candidates in S. In order to select the next
cut point s*, our task is generally to identify the candidate with the minimum (or maximum) score. Most
notable splitting criteria are:

1. Misclassification error:

1

MCE(sp) = min >, Lpysy) +min > Lesy

Yo Mspr (x,y:)esp Yo Mspa (xi,y:)espe

where ng,, and n; , are the number of datapoints contained in partitions s,1 and s)2, respectively.
Our task is then to find s* such that

s* =argmin MCE(sp),
s5peS
This criterion simply measures the error in classification that we commit by choosing certain split.
It is considered a simple split and can be replaced by either the Gini impurity or the information
gain splitting criteria in most cases.
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2. Gini impurity: Let us define p(i,D,,), in this context, as the proportion of datapoints with y-
associated label ¢ in a dataset D,,. Then the Gini impurity ( [ 1) can be written
as:

! Ns L . Ns o L .
GI(sp) = (1 - ;p(i,sp)2) - ( np (1 - ;p(z,spl)Q) + (1 - Zp(z,spg)z)),

Sp Ns, i=1

where [ is the total number of labels of y in Dy, ns, = ns,, + sy and s* is obtained with

s* =argmin GI(sp).
s5peS

It can be interpreted as an impurity measure that measures the divergences of the label probability
distributions. It is minimized (with score 0) when the partition of the data to split contains only
members of one class.

3. Information gain: Used in the ID3 and C4.5 algorithms ( [ ]), it can be written as:

l
IG(Sp) = ;p(iv Sp) log, (p(i, Sp))

n

Ns 1 ¢ . . Sp2 ! . .
( S (i, 1) loga(p(i 5p0)) + 2 zp(z,sp2>1og2<p<z,sp2>)),

Nsp =1 sp i=1

and our target s* can be expressed as

s* =argmin IG(sp).
SPE

It seeks to separate the data based on the definition of entropy in information theory. While it stems
from a different field of study that the Gini index, some reports suggest that differences between
the Gini index and information gain are small ( [ ]) and can, in most cases,
be used interchangeably.

4. Sum of squared errors: For regression, the most commonly used splitting criterion is to minimize

the sum of squared errors ( [ D:
—\2 1 — 32 1 — 32
SSE(sp) = > wi-7,)7 - > Wi-Tn)+ > Wi-Tp)
Sp (%4,Yi)€8p Msp1 (x;,yi)espn Sp2 (Xi,Yi)€sp2

where y,,, 7,1 and ,,, are the means of the y-values in sy, sp1 and sp2, respectively. Thus we are
looking for s* such that
s* = argmin SSE(sp).
speS
It can be seen as a variance reduction technique, grouping datapoints by the similarity of their
y-associated values.

5. Random split: This splitting criterion simply picks a random possible split as s*.
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4.3.1.3 Types of stopping criteria and pruning

The stopping criterion is a condition that regulates the termination of the recursive exploration of splits.
A common instance of this is to define a fixed maximum depth for the tree to grow, always producing
trees of that depth or less. Another existing solution is to apply a pruning algorithm to a fully built tree
( [ ] and [ 1. Decision trees that suffer from excessive size run the risk
of overfitting, while on the contrary small trees may suffer from underfitting or high bias. Pruning large
decision trees can lead to some improvements in generalization error. This is typically done in a path
from the leaves to the root, but algorithms that travel the tree in the opposite direction also exist. After a
decision tree is built until it has few instances per leaf, the algorithm searches to remove leaves that do
not contribute positively to the performance of the model.

Finally, another alternative is to limit the number of instances that we allow at the leaves of a tree.
In [ ], CART trees use a parameter k£ € N to stop splitting when the leaves contain
k or fewer instances. Typically, £ = 1 is used for classification and k£ = 5 for regression. This stopping
criterion enjoys a very important theoretical property that will be discussed at length in Chapter 8. It is
our preferred choice for this dissertation.

4.3.2 Decision trees in literature

Literature on decision tree is extensive and reveals different stages of development for the model. Modern

decision trees are shown in [ ] and [ ]. Most prominent algorithms for
learning decision trees are the CART algorithm ( [ ]) and the ID3 and C4.5 algorithms
( [ ]). In the CART algorithm, trees are grown using the Gini splitting criterion and stopping

mechanism is equipped by a type of pruning known as cost-complexity pruning. It works for both
classification and regression, in which case the sum of squared errors splitting criterion is employed. ID3
grows trees aggressively until all instances in the leaf are of the same class (or there is no information
gain), using the information gain splitting criterion. C4.5 improves over the previous algorithm by using
gain ratio as splitting criteria ( [ 1), thresholding on the number of instances for stopping
criteria and including error-based pruning. For other decision tree building algorithms the reader is
directed to [ ]. All algorithms reviewed here and most algorithms in literature greedily
search for the optimal split, while exhaustive search for the optimal tree has been proven to be an N P-
hard problem even in restricted settings ( [ 1, [ ] and

[1991]).

4.4 Random forests

Random forests (RFs) ( [ ]) are an ensemble of randomized classification or regression trees.
Each tree is randomized by the use of bootstrapping in the training set and by a mechanism known as
random subspace selection (RSS). RSS introduces variability between decision trees by sampling, at
each node in the building process of the tree, p out of d features (with p < d) that are then used to search
for the optimal splitting point. A conventional value for a RF is p = \/d in classification, and p/3 for
regression. Predictions are then combined by voting in classification or averaging in regression.
Formally, we can model the randomization of each tree using a random variable ®. Then a RF is a
predictor formed by a set of trees 7 = {h(x,¢1,Dy),...,h(X,0¢,Dy)},t € N, and we can express a
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prediction from the RF estimate as:

frr(x,Dy) = Eg[h(x,?,D,,)]. 4.4)

In here, ® contains all sources of randomness in the construction of each tree, namely, bootstrapping
of the data, the splits to perform and the random subspace method choices. We then calculate our
expectation with respect to the population of DT learners generated by ®.

In practice and up to this point, Equation (4.4) is evaluated using Monte Carlo simulation. That is,
algorithmically generating a number ¢ € N of trees and computing the prediction of each tree indepen-
dently of the others. We now depict a general algorithm (see Algorithm 4.1), compatible with many
versions of a RF using binary trees, for the prediction of a datapoint x( in more detail.

Algorithm 4.1 Calculate RF

Require: D,,, t, xo , Cs // The data, the total number of trees, the point to predict and the splitting
criterion, respectively.
1: Initialize P = @ // Where P is the the list of predictions made by the trees
2: fori=1totdo
3: Dy :=sample_with_replacement(n, Dy, ) // Bootstrap sampling

4: Ry :=push(D]) // A stack to keep track of the splitted subregions
5. Ry := @/l Alist with the final leaves of the tree
6:  while lis_empty(R;) do
7: R, = pop(Rys)
8: if stopping_criterion_fulfilled( R, ) // Here we can plug any of the different stopping criteria of
a decision tree then
9: Ry :=add(R,, Ry)
10: else
11: S := select_directions_to_split( R, ) // Here we implement random subspace method or other
schemes to select the directions to split
12: (Ra1, Ra2) == Split(R,, S, Cs) // Here we find the best splitting point in R, according to the
subset of directions S and the splitting criterion CY, and cut the dataset into two parts.
13: R = push(R,1)
14: R = push(R,2)
15: end if

16:  end while

17:  w := Locate_leaf_for_prediction(xo, R¢) // After the tree is trained, we can assign a leaf to the
datapoint to predict

18:  p; :=predict(u) // In order to obtain a prediction, here we can plug any of the value assignment
options for a decision tree

19: P :=add(p;, P) // We store the predictions made by this tree

20: end for

21: Output: Combine_predictions(P) // We can combine the predictions here using any scheme suited

for RFs. Typically voting for classification and averaging for regression

RF is one of the most successful methods in machine learning ( [ 1). Many
versions of it exhibit state-of-the-art performance, can handle well large datasets even at low sample sizes,
can be used to estimate variable importance, have a relatively low number of parameters for an ensemble,
generally have high accuracy and run in polynomial times. There are numerous reports of success in
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practical applications, such as [ 1, [ 1, [ I,
[ ] and [ ]. The reader is directed to
[ ] and [ ] for two application-focused state-of-the-art reviews. The theoretical

aspects of RFs, however, still remain under active investigation, as it is considered a not-well-enough
understood model. In this dissertation we concern ourselves with the theoretical developments of RFs
and review some of them in detail in Chapter 8.

Since its inception, and specially given its success and popularity, many extensions of RFs are avail-
able. While one could argue that using any combination of all design choices detailed in Section 4.3
for the base trees would produce at least some different types of RFs, we focus on prominent results in
literature. In [ ], the extra-tree algorithm randomly samples a subset of all split points
that can be performed and a given node and then searches for the optimal split in the fashion of Breiman’s
CART trees. In the original work ( [ ]), a variant where the split can consist of linear combi-
nations of features is proposed. In [ ], a fast version of the algorithm, known as random
jungle, was implemented as a response to concerns in parameter tuning procedures, previously studied
in [ 1, [ ] and [ 1.

Motivated by the need to perform theoretical studies on the model, simplified versions of RFs have
been proposed in literature. Centered forest ( [ ]) is a type of RF that ignores bootstraping,
sets p = 1 for RSS and splits the data at the center of the range of the selected coordinate, with a stopping
criterion of k or less datapoints per leaf. They were studied in [ 1, [ ] and

[ ]. A similar approach, but swapping centered splits for empirical median splits, is discussed
in [ ]. In [ ], RF omits bootstrapping for analysis purposes. In

[ ] the PERT-perfect trees can also be thought of as a simplification, since they switch the
adaptive splitting criteria in the original CART trees for a purely random non-adaptive one. In
[ ], it is shown how a simplified version of a RF model can be viewed as a kernel estimate,
also exploring a connection between RFs and kernel estimation that was first mentioned in
[2000].

Finally, some extensions seek to augment the functionality of the base algorithm. In
[ ] trees are weighted according to their accuracy in prediction. In a related approach,

[ ] defined tree building process designed so that newly created trees perform better where the
previous ones were lacking. In [ 1, [ 1, [ ]
and [ ] RFs are equipped with online learning capabilities, that is, the ability to incorporate
newly generated instances of data to the existing training set to further improve prediction capabilities.
In [ 1, [ ] and [ ], the extension is to the domain of
survival analysis.

Overall, the literature surrounding RFs is quite extensive and many alternatives to the types of RFs
presented here can be found. For an interesting and more complete overview, [ ]
summarizes well the current situation.
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Chapter

Univariate and bivariate truncated von
Mises distributions

5.1 Introduction

The von Mises distribution has received undisputed attention in the field of directional statistics (

[ 1) and in other areas like supervised classification ( [ 1). Thanks
to desirable properties such as its symmetry, mathematical tractability and convergence to the wrapped
normal distribution ( [ 1) for high concentrations, it is a viable option for many
statistical analyses. However, angular phenomena may present constraints on the outcomes that are not
properly accounted for by the density function of the von Mises probability distribution. Thus, a trun-
cated distribution with the capabilities of the von Mises distribution is strongly suggested. Additionally,
there is hardly any literature in this direction, and to the best of our knowledge, only one paper,

[ ], proposes a definition of the truncated von Mises distribution.

In this chapter, we propose a new definition of a truncated probability distribution, whose parent
distribution is the von Mises distribution, for angular values. The univariate and bivariate cases of this
distribution are explicitly developed.

Section 5.2 introduces the definition for the univariate case and derives some properties of the dis-
tribution, calculates the maximum likelihood estimators of the parameters and studies the distribution
moments. Section 5.3 addresses the definition of the bivariate truncated von Mises, maximum likelihood
estimation of the parameters and the definition and study of the conditional and marginal truncated dis-
tributions. Section 5.4 shows a real data application where this distribution successfully models the data.
Finally, Section 5.5 discusses the summary and conclusions.

51
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5.2 Univariate truncated von Mises distribution

Definition 5.2.1. The truncated von Mises distribution is presented as a four-parameter generalization of
the non-truncated case for truncation parameters a, b as

et cos(0-p)

fab ercos(0-u) 49 lf 6 € Oa:b

ftvM(e; R, a, b) =
0 if 0 €Oy

where p € O is the location parameter, £ > 0 the concentration parameter, OQ is the circular set of
points (O : (x,y) such that 2 + y? = 1), O, ;, C O is obtained by selecting the points in the circular path
from a € O to b € O in the preferred direction (counterclockwise) and Oy, , is its counterpart w.r.t. Q.

Our proposed definition differs from [ ] in the circular definition of the trun-
cation parameters, not bounded to a linear definition involving the location parameter. The additional
developments covered in this article can also be considered a novelty.

To illustrate the differences with the non-truncated case for these parameters, Figure 5.1 represents
multiple examples of truncated von Mises distributions.

08r

04r

Figure 5.1: Several truncated von Mises distributions. Symmetrical function with maxima not at the extrema (thin continuous
line), strictly increasing function (dashed line), strictly decreasing function (thick continuous line), unique critical point that is
a minimum (dash-dot line) and two critical points, a maximum and a minimum (dotted line).

It is a well-known result ( [ ]) that 27wy (k) = fo27r efcos(0-1) 49 where
Iy(k) is the modified Bessel function of the first kind and order 0, that is,

oo me
folm) = 2 Gy

The above expression suffices for truncation parameters a, b such that O, ;, = O. However, it is necessary
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to calculate the general case for non-restricted truncation parameters. Taking w = [gj +modg — 1, we
have obtained:

Lemma 5.2.1. fab o301 = I(b; p, k) — I(a; p, k), where

n=0 i=0 §=0

& K" w , 2i ;
I(0;p,k) = Z ) (Sin(9 ) Z (COSn_QZ_l(G — 1) H(” _j)—(—l) )

R <<—1>"+1>n;“_o<n—j><1>J’(e—u>)
- .

1(0; u, k) is the distribution function of the positive support of the truncated von Mises density. (Note
then that while truncation parameters are circular quantities, the values for the integration coefficients
are linear)

Proof. See Appendix A. O

5.2.1 Maximum likelihood estimation

Provided we have a sample of observations 61,605, ...,6, from a truncated von Mises distribution (1),
we obtain:

n encos(ﬁi—u)
In L(p, k,a,b;01,02,...,0,) n| ———
z':zl .[ab eficos(0-11) 4@
> kcos(d; — p) —nln (/ efeost 7”)d9)
i=1 a

where In L(u, k,a,b; 61,02, ...,60,) is the log-likelihood function for the truncated von Mises distribu-
tion.

We now seek to solve the system of four log-likelihood equations created by the four parameters of
the distribution. For parameters p, x, we have

OlnL
n -0
op
OlnL
= 0_
Ok
As parameters a, b, define the region of the greater-than-zero density, we find that all 4, . . ., 6,, observa-

tions necessarily lie within the subset Q,, ;. This, together with the —n1n ( fab er COS(@’“)dH) sub term of
(3), allows us to isolate the estimators

0, ; = argmax(max({A(Og; g, ), - - ., A(Qp
’ a,b

n-17

0,), A(Qgr, 9)})),

)

where A(Qy, g,) is the angle between 6 and 6, and {6],...,6]} is the sample sorted in ascending
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order. Intuitively, the truncation parameters are separated by the largest angle and are contiguous in a
sorted finite circular sample.

From this result, we can say that the truncation parameters of the truncated von Mises distribution
have population-only dependent maximum likelihood estimators. For parameters y and x, interdepen-
dency is a consequence of the possibly non-symmetrical shape of the distribution. If we observe the
expressions

6ﬁcos(a—u) _ er@cos(b—u)
sin(6; — p) - ; =0
.[a eficos(6-1) 4@
fab cos(0 — p)ereos(0=1 qg ~

fab ercos(0-11) 4@

M:

1
n

I
—_

[

1 n
ﬁg cos(0; —

erveos(a—p) _ grcos(b=1) = () holds if a,b are symmetrical w.r.t. p, reducing the location parameter esti-
mator to that of the non-truncated case ( [ 1), the circular sample mean . As no
population-only dependent expressions of the parameters 1 and s were found, optimization techniques
to maximize the log-likelihood function for those parameters are needed.

5.2.2 Moments

The moments in circular statistics are particular values of the characteristic function. The r-th moment

about a direction d can be written as

_ E[eir(X—d)]'

mrtv]\/[ -
The first moment about the O direction for the truncated von Mises is calculated as

[Lcos(@)er = O0dg i [ sin(B)er =00
fab ercos(0-p) 40 fab ercos(0-p) 4P

Miynr =

and we can relate (5) to the first moment about the y direction, denoted as m'le as

ISR TN |
My =€5MY, - (5.1)

fab cos(z—p)er o3 (@=1) dp

CR——— = R, the mean resultant
[} ercos(@-)dg

. . _ / _
Notice that if cos(a — ) = cos(b — i), then My =

length of y and thus my,,,, = e R.

An alternative expression for my, ,, can be found by considering equations E[cos(z)] = R cos(u”)
and E[sin(z)] = R'sin(u'), where R" and " are the sample mean resultant length and sample mean,
respectively. We can then state

mi,,,, = E[cos(x)]+iE[sin(z)]=R cos(p')+iR sin(y') = R'e (5.2)

Thus, merging Equations (5.1) and (5.2), we obtain
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i(w'-p) pf _ 0
€ R =My

which can be seen as a valuable expression as it contains the sample mean (") and the location parameter
of the distribution ().

5.3 Bivariate truncated von Mises distribution

The non-truncated bivariate von Mises distribution was first proposed by [ ] and extended and
developed in [ ] and [ ]. It is a unimodal/bi-modal function on
the torus fp,07 : O x @ — R obtained by replacing the quadratic and linear terms of the normal bivariate
distribution with their circular analogues. This distribution is known as the “sin variant bivariate von
Mises distribution™ and is defined for dependent pairs of angular variables. It is expressed for variables

01 and 05, as
f(el, 92) = Ot cos(01-p1)+ka cos(O2—p2)+Asin(01-p1) Sin(@g—ug)7

where k1, k2 > 0, € R, u1, o € O and C is the normalization constant. We propose the density function

for the truncated case as a nine-parameter function with density defined as follows:

Definition 5.3.1. The density function for the truncated case is a nine-parameter function with density

Subvrs (01,02;W)
[ab11 fab22 Subvrs (01,02;W)dO2d01

fbtvM(017 92; W) — if (91 € @al,bl,eg € @a%bw

0 otherwise

where W = {\, u1, 2, K1, k2, a1, b1, as, ba} is the parameter vector and
Fubors (01, 00; W) = i1 cos(Or=p)+riz cos(2-pz)+Asin(01 - ) sin(02-42) g the unnormalized bivariate von
Mises distribution. Parameters p1, p2 and k1, ko are analogous to parameters p and x, respectively, in
the univariate truncated case. Truncation parameters a1, b1, as and by are similar to the univariate trun-
cation parameters. The )\ € R parameter accounts for the dependency between the variable components
p p p y p
Figure 5.2). If A = 0, then #; and 5 are independent and each is distributed as a univariate von Mises
g p

distribution. Also, if 87, 6> are independent, then A = 0.
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& € [0.:21] 8, € [0.21]

Figure 5.2: Example of the bi-dimensional von Mises distribution showing truncated bi-modality.

A desirable property of a joint distribution is having closed distributions under marginalization and
conditioning, i.e., the marginal and conditional distributions should also follow the univariate distri-
bution. Particularizing for the von Mises family, the bivariate von Mises distribution presents closed
distributions only under conditioning as shown by [ ]. We want to find out whether this also
holds for the truncated case.

5.3.1 Maximum likelihood estimation

The maximum likelihood estimator for the bivariate distribution takes data of the form {(61;,62;)} i =
1,...,n. The resulting log-likelihood function is

In L(W; (9117 921), ce ey (91n7 92n))

n el cos(f1,—p1)+ka cos(Ba;—p2)+Asin(O1;—p1) sin(Oa;—p2)
1

; n fabl [ab2 efi1 cos(01—p1)+ko cos(f2—p2)+Asin(01—p1) sin(62—u2)d92d91
1 Jaz

n

> (k1 cos(01; — pu1) + Ko cos(Ba; — po) + Asin(b; — pr) sin(Ba; — p2))

i=1

—nln (/bl /b2 efi1 cos(01-p1 )+ 52 Cos(92ﬂu2)+)\sin(91ﬂu1)Sin(92ﬂu2)d92d91) )
a1 Jao

Thus we have

0
8_ h’lL(W, (911, 921), ceey (91n, 927’1,)) = 0,
M1
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that is,
ba B
i in(0 ) Acos(d Jsin(0 ) n([(m fubori (a1, 62) fuva(b1792)d02) 0
R18Sm(by; — 1) = ACOS(Uy; — 1) SIN(02; — 42) — =Y,
b S o2 Fubort (61, 02)d02d6,

where fuponr(61,02) is the following unnormalized bivariate truncated von Mises function

fuva(gl 92) = M1 cos(01—p1)+ka cos(Ba—p2)+Asin(f1—p1) sin(f2—p2) )
Similarly, the partial derivate w.r.t. uo gives
b1
n (fal fubors (01, a2) = fubwnrr (61, bQ)d91)

> Kasin(fa; — po) — Acos(B2; — p2) sin(by; — 1) — o
- fabll ab22 fuva(Hly 92)d92d91

For 1 we have

B,
e In L(W; (011,621), ..., (01n,02,)) = 0,
K1
that is,
1o J2 [0 cos (01 = pa) Fubwrr (61, 02)dB2d6;
— > cos(bhi — ) - s =0. (5.3)
izl Jo! Jui Fuboni (01, 02)d02dbr

Similarly, the partial derivate w.r.t. ko gives

cos(0si — piz) - Sk f22 cos(6a = 12) Fubonr (01, 02)d02d6y o 5.4)
1 JE 2 Fuonr (01,02)d02d6;

At this point, we can see that both Equations (5.3) and (5.4), involving x1, ko parameters, respectively,

SHE
M=

)

preserve their analogy with the univariate case. Their second addend corresponds to the definition of the
estimators of E[cos(61 — p1)] and E[cos(02 — u2)], respectively.

For the parameter \ we obtain

0
a In L(W; (911, 921)7 ) (9171’ ‘9271)) = 0’
that is,
14 , Job [ sin(6y - ) sin(Ba — p12) fubort (01, 02)dB2d)y
— s1n(91i - /Ll) Sln(egi - ,U,Q) - b s = 07
n i Tt Jor Fubons (01, 02)d02d6,

which analogously corresponds to the estimator of E[sin(6; — 1) sin(f2 — p2)].
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As in the univariate case, the truncation parameters has the following isolated estimators

0,5, = arglgax(max({A(@ghﬁﬁ), - AOgy, 0 ), A(Qg; 01 )1))
a1,01

dody = argHblax(maX({A(@agl,e;Q), s A(Ogy or ), A(Ogy 0 )1))s
az,02

while as yielded by the above calculations, the expressions regarding the non-truncation parameters
exhibit interdependency.

5.3.2 Conditional truncated von Mises distribution

The density of the conditional truncated von Mises distribution is defined as:

Definition 5.3.2. The conditional truncated von Mises distribution has density

emzCos(@g—ug)-fz\sin(@l—ul)sin(02—p2) f(9 c @
fab22 ek cos(92—u2)+)\sin(91—u1)sin(92—u2)d92 1 2 az,bz+ (55)

Jetonr (021013 A, p, po, K2, a2,b2) =
0 otherwise

It is a six-parameter distribution where the parameters hold the same meaning as in the bivariate case,
with the simplification of parameters k1, a1, by for fe,nr(62]01) (Or K2, ag, by for fei,nr(61]602)). Worthy
of note, however, is that 1 € O, 5, in fepnr(62]61) since otherwise, by the definition of the conditional

distribution (fCtUM(92|01) = %), fetonr(02]61) is not defined.

Theorem 5.3.1. A conditional truncated von Mises distribution corresponds to the univariate truncated
von Mises distribution
Jeronr (02|01; A, pa, pa, k2, a2,b2) =

M) ’\//{% + (Asin(61 - p1))?, as, b2) ,

ftom («92; 2 + arctan (
K2

which completely specifies the behavior and properties of the conditional distribution and is analo-
gous to the non-truncated conditional case ( [ D.

Proof. See Appendix A. O

5.3.3 Marginal truncated von Mises distribution

We can define the density function of the marginal truncated von Mises distribution as:

Definition 5.3.3. The density function of the marginal truncated von Mises distribution can be written as

fbg efil cos(01—pu1)+kKo Cos(92—u2)+)\sin(91—u1)sin(92—u2)d92
a2

if 91 € @al,bl

fthM(al; W) _ jab11 fab; ekl cos(01—p1)+ro cos(Bg—po)+A sin(@l—ul)Sin(92—M2)d92d01 (56)

0 otherwise

It is a nine-parameter distribution that shares all the parameters with the bivariate truncated von Mises

distribution. In the original publication, [ ] studied the distribution and reported the “frontiers”
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of bi-modality (for x = 0) as
hi(K2) _ Kikz
Io(ke) A2

Il('@) > Kika
10(52) - )\2 ’

Additionally, the modes were calculated to be symmetrical w.r.t 1; and at the distance value 6] that

where the distribution is unimodal if

and bimodal with two equal maxima otherwise.

solves the equation (for p; = 0):

A(\/mg +A2sm2(9;))
cos(07) = 2
\//12 + AZsin?(0})

g1

where A(z) = g%;; In order to generalize this analysis to cover the truncated case in Equation (5.6), we
need to account for the contribution made by the parameters p2, as and by to the shape of the distribution.
Contrary to the non-truncated case, a truncated marginal distribution that exhibits two maxima may have
only one global maximum, and the distribution is not necessarily centered around the mean (Figure 5.3).
Therefore, our analysis determines the different parameter configurations that produce the whole range

of behaviors, focusing on bi-modality/unimodality.

8 < [0,21]

Figure 5.3: Several truncated marginal distributions showing unimodality (continuous line), two equal maxima (dashed line),
truncated unimodality (dash-dot line) and two distinct maxima (dotted line)

If, without loss of generality, we take 61/ = 61 — 11, we can postulate the following theorem:
Theorem 5.3.2. All different behaviors w.r.t. the unimodality/bi-modality of the marginal truncated von

Mises distribution can be accounted for as follows

1. fmtwar(617) is unimodal with mode (maximum) in p1, if and only if
T(/\,uz, K1,Kk2,02, bg) < 0and COS(b2 - /.,62) = COS(CLQ - ,ug).

2. fmtonr (617) is bi-modal with equal maxima, if and only if T'(\, pg, k1, k2, az, by) > 0 and cos(bg —
u2) = cos(az — p2). Also in this case, a minimum is found at 61 = 0.

3. fmtornr(017) presents two differentiated maxima if and only if one of the two following cases

applies:
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() cos(bz — p2) < cos(az — pa) and fi .2/ (0175 A, i1, pio, K1, K2, 12, a2, b2) has exactly two
zero points in 01/ € [-5, 0]

(b) cos(by — p2) > cos(ag — p2) and f . (0175 N, pi1, 2, K1, K2, pl2, az, by) has exactly two
zero points in 0y € [0, 7]

4. fmton(617) is unimodal with mode not at y if the parameters do not match any of the above
cases,

where T'(\, ui2, K1, k2, az, ba) is the test function and is defined as

ki | Jarsin? (0 = pp)em (0212 gy

A2 be ef2 cos(02 _'“2)d02

az

T()‘;,UQa R, KQaCLQ?bQ) = -

)

and f&mtv v (6173 A, 1, 2, K1, K2, p12, ag, by) is the unnormalized truncated marginal von Mises deriva-
tive function.

Proof. See Appendix A. O

5.4 Real data application

5.4.1 Leaf angle inclination

The data in [ ] was collected during a safari along the Kalahari Transect, south-
west Botswana in 2001. It contains measurements of leaf inclination angles of four different woody plant
species (Acacia erioloba, Grewia flava, Acacia leuderitzii and Acacia mellifera) across three different
regions (Mabuasehube, Tsabong and Tshane). The measurements were taken using a clinometer.

In order to formally test the goodness-of-fit of the estimated distributions, we transform the data by
[I(Qvuvn)_l(avuvn)]
fab ercos(0-u) 4o
01, ...,0,. If the data distribute according to the truncated von Mises distribution, then the above random

means of the random variable U = 27 mod 27 that is applied over the sorted sample
variable has a uniform distribution. As shown in [ ], the modified Rayleigh statistic
S*=(1- %)Qn}# + ”THI, where n is the sample size and R the mean resultant length, distributes as a
X3 distribution.

1. For the first study, the whole dataset containing a total of 741 samples was observed (Table 5.1,
Figure 5.8). A visual inspection of the plot clearly shows that the truncated von Mises distribution
performs better. Formally, for the truncated case we have S* = 2.8887, which corresponds to
p—value € (0.2,0.3). For the non-truncated case, S* = 25.5028, with is a clear rejection p—value
< 0.001. From these results we conclude that the truncated distribution is significantly better for
these data. Truncation parameters conform the circular interval @0%, which indicates no angle
greater than 90° was measured in this study.
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All leaf angle inclination data

2 3 4 5 g
8 [02n]

Figure 5.4: The study distribution and data representation of the entire dataset. The estimated truncated von Mises
distribution (lighter line) clearly has higher density values than its associated von Mises distribution (darker line). The
data are grouped by value intervals in order to observe its relative frequency (bars).

Table 5.1: Parameter values obtained after conducting the first study
7 K a b No. Samples
Alldata 1.0063 59602 0 1.5708 741

2. For the second study, we grouped the data by plant types without regards for region. This yielded
four different distributions. A visual inspection shows that the univariate distributions are clearly
better than the non-truncated von Mises distribution at describing the resulting data (Table 5.3,
Figure 5.9), except for the case of A. erioloba. The goodness-of-fit tests (Table 5.2) revealed
that the non-truncated distribution is rejected in all cases but in A.erioloba, whereas the truncated
distribution hypothesis was more strongly accepted than that of the non-truncated distribution in
all cases. Thus we can conclude that, for this study, the truncated distribution models the data
better.

Table 5.2: Modified Rayleigh statistic values for the second study

Truncated von Mises S* Non-truncated von Mises S™

A. Erioloba 3.014 3.5534
Grewia flava 0.0038 20.6273
A. Leuderitzii 2.6073 10.1990
A. Mellifera 1.3157 7.3046

Truncation parameters were consistently found to be in @0% except for A.erioloba, which also
presented a significantly higher concentration parameter than in any of the other estimations. The
irregularities in A.erioloba could partially be explained by the small sample size, which causes the
estimations to be less reliable. On the whole, the remaining studies show few variations in the

location-concentration parameters, which closely resemble the ones obtained in the first study.
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Acacia erioloba
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Acacia leuderitzii
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Figure 5.5: Studies of each type of plant.
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Table 5.3: Parameter values yielded after conducting the second study

W K a b No. Samples
A. Erioloba 0.8516 11.1894 0 1.5359 100
Grewia flava  1.1261 5.2668 0 1.5708 254
A. Leuderitzii  1.0706 55138 0 1.5708 184
A. Mellifera 09125 57396 0 1.5708 203

3. For the third study, fitted univariate truncated distributions for each plant in each region. Since

not all plants were measured in all regions, this procedure produced eight different univariate trun-

cated von Mises estimations. The distributions are generally observed to clearly differ from their

associated non-truncated von Mises distribution, except in the first of the eight plots (Table 5.5,

Figure 5.10). The goodness-of-fit tests (Table 5.4) are also consistent with previous studies. All

truncated von Mises hypotheses were accepted, while around half of the non-truncated distribu-

tions were rejected. Thus, there is a strong suggestion that the truncated von Mises distribution

properly models the underlying behavior that yielded the data.

Table 5.4: Parameter values yielded after conducting the third study
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Truncated von Mises S* Non-truncated von Mises S*

A. erioloba, Mabuasehube 3.014 3.5534
Grewia flava, Mabuasehube 1.1543 8.9599
A. leuderitzii, Tsabong 2.0981 7.3115
Grewia flava, Tsabong 0.2050 3.8702
A. mellifera, Tsabong 0.1199 42131
Grewia flava(2), Tsabong 0.1165 9.7290
A. leuderitzii, Tshane 0.7002 2.8717
A. mellifera, Tshane 1.0525 10.2656

For this study, each distribution was estimated from a relatively small sample size ranging from 50
to 104 samples, which may have caused estimations to be less precise than desired. The concen-
tration parameter shows the highest variability across the different cases (from 4.4078 to 11.1894
across the whole study or even from 4.8340 to 7.4245 in the case of A. leuderitzii). With more
data it might be possible to distinguish if the variations in the concentration parameter are clearly
influenced by the region of the plant species or the small sample size. Regarding the location pa-
rameter, there are few variations in the parameter value on the whole, A. mellifera being the species
that experienced the highest variations with respect to one of the measurements in the first study.

Truncation parameters remained consistently within the (O)O% interval.
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Figure 5.6: Studies of each type of plant in each region.
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Table 5.5: Parameter values yielded after conducting the third study

7 K a b No. Samples
A. erioloba, Mabuasehube  0.8516 11.1894 0 1.5359 100
Grewia flava, Mabuasehube 1.1882  5.8142 0.0873 1.5708 50
A. leuderitzii, Tsabong 09712 4.8340 0.0873 1.5708 100
Grewia flava, Tsabong 1.1082  6.0832 0 1.5708 100
A. mellifera, Tsabong 0.6844  4.5884 0 1.4835 100
Grewia flava (2), Tsabong 1.1091  4.4078 0 1.5708 104
A. leuderitzii, Tshane 1.1474  7.4245 0.1920 1.5708 84
A. mellifera, Tshane 1.0525 10.2656 0.4014 1.5708 103

5.5 Summary and conclusions

In this chapter we developed the theoretical framework of the univariate and bivariate truncated von
Mises distribution. To do this, we gave

1. The definition of a truncated von Mises distribution in the circle @. The circular distribution
is defined by means of the O subset, as the periodicity and properties of the circle have to be
naturally acknowledged for.

2. The successfully determined expressions of the maximum likelihood estimators. For both univari-
ate and bivariate cases, solely sample-dependent maximum likelihood estimators of the truncation
parameters were found, while the other parameters showed interdependency.

3. The resulting moments of the univariate case and existing interrelationships.

4. The bivariate case and studies of the shape and behavior of marginal and conditional distributions.
We determined that every conditional truncated von Mises distribution is a univariate truncated von
Mises distribution. For the case of the marginal distribution, we concluded that only for parameter
A = 0 does the distribution behave like a truncated univariate von Mises distribution. When \ # 0,
the resultant marginal distribution is potentially bi-maximal and not a von Mises distribution. The
modality behavior of this distribution has been accounted for in Theorem 3.2.

This work has been published as Fernandez-Gonzalez, P., C. Bielza, and P. Larrafaga, “Univariate
and bivariate truncated von Mises distributions”, Progress in Artificial Intelligence, pp. 1-10, 2017
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Chapter

Dendritic branching angles of pyramidal
neurons of the human cerebral cortex

6.1 Introduction

The design principles that govern the geometry of neurons are a major topic to those researchers inter-
ested in the generation of realistic mathematical models of neuronal morphologies. The study of pyra-
midal cells is of particular importance as they are the most abundant neurons in the cortex (estimated
to represent 70-80% of the total neuronal population), where they are the main source of excitatory
(glutamatergic) synapses. Furthermore, the dendritic spines of pyramidal cells constitute the main tar-
get of excitatory synapses in the cerebral cortex ( [ 1). Thus pyramidal cells
are considered the principal building blocks of the cerebral cortex and it is thought that unraveling the
morphology, connectivity and functional organization of this type of neurons is critical for better under-
standing cognitive functions.

There are considerable differences in the structure of pyramidal cells when considering the size and
complexity of their dendritic arborization -the complexity of a dendritic arbor is evaluated as the total
length of its dendritic branches along with the number and distribution of their branching points-, in
the density of dendritic spines on their dendritic branches and in the total number of dendritic spines.
These differences are found not only between cortical areas but also between different species and these
differences are thought to be critical for the functional specialization of the cortical areas (reviewed
in [2001], [2007], [2011], [2011], [2014] and

[ ]). In a previous study, we found that the dendritic branching angles of layer III
pyramidal neurons in several regions of the frontal, parietal, and occipital cortex of the adult mouse
follow similar principles despite the differences in the structure of these neurons in the different cortical
regions examined ( [ ]). We found that 90% of these angles fell within a range of 20 to 97
degrees. These are similar values to the results obtained for the dendritic branching angles of pyramidal
cells from layers II-VI of the juvenile rat somatosensory cortex (angles ranged from 10-104 degrees)
in [ ]. Since the dendritic spines length is relatively short (< 2um), it follows that
dendritic branching of pyramidal cells determine the connectivity of the pyramidal cell. Therefore, the
finding that branching angles are designed in accordance with the rules of mathematical functions and

that they show common design principles suggests certain predictability in the synaptic connections of

67
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pyramidal cells in all cortical areas of the mouse and rat. In this chapter, we are interested in extending
these studies to the human cerebral cortex to find out if the branching angles follow similar rules using
a novel branching angles dataset. In particular, our aim is to try to find a statistical distribution that
properly models branching angles in human pyramidal neurons and analyze possible differences and/or
similarities between branching angles in different cortical layers. More specifically, we examined layers
IIT and V of the temporal cortex in different antero-posterior regions. We proposed the truncated von
Mises distribution as the distribution to model the behavior of the dendritic branching angles. Previous
work ( [ 1) used a different although related distribution, the von Mises distribution (see
Section 2.2) as the preferred distribution to model branching angles in mice. However, the von Mises
distribution alone failed to acknowledge if all the angular measurements were contained within a reduced
circular interval (as it was noted in the previous study) and was forced to assume that the angles were
symmetrically distributed. The truncated von Mises distribution (that is a generalization of the von Mises
distribution, see Chapter 5) is able to approximate efficiently within a reduced interval non-symmetrical
data, thus appearing as a more accurate analysis tool for modeling the branching angles behavior.

The rest of the chapter is organized as follows. Section 6.2 details the different techniques chosen for
the development of this work. Section 6.3 contains the results of all the data analysis. More concretely,
in subsections 6.3.1 and 6.3.2 we perform goodness-of-fit tests according to groups obtained by different
criteria (i.e., branch order or branch order together with maximum branch order), with results that clearly
improve those of the von Mises distribution. Additionally, we perform hypothesis tests on different
statistics related to the parameters of the distribution (such as the mean and the concentration around the
mean), to further analyze the underlying patterns of the data.

In subsection 6.3.3 we group the data in pairs of angles of contiguous branch orders and use the
bivariate truncated von Mises distribution as analysis tool.

In subsections 6.3.4 and 6.3.5 we are interested in analyzing the differences between angular mea-
surements that belong to different layers as well as the differences between angular measurements that
belong to the same layer, but in a different region. We perform tests for a common distribution (i.e. tests
that try to diagnose if two datasets could have been drawn from the same probability distribution. We
will refer to them as similarity tests) between different subgroups of the data for this purpose.

In subsection 6.3.6, we analyze some results found in this study in a comparison with the data of
previous studies in mice ( [ 1) and rats ( [ ]). Our interest lies in finding
similarities/differences of branching angles data between species, and for this we perform tests for a
common distribution of the three datasets.

Finally, Section 6.4 contains the discussion of the findings and conclusions obtained throughout this
study.

6.2 Methods

6.2.1 Data acquisition and preparation

Tissue was obtained from the anterolateral temporal gyri (Brodmann’s areas 21 and 38; see [ D
of patients with pharmaco-resistant temporal lobe epilepsy (Department of Neurosurgery, ‘Hospital de
la Princesa’, Madrid, Spain). This brain tissue was removed as part of surgical treatment of five male
patients (28-48 years old, mean 36.6 years old) and had been used in previous studies (
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[ 1, [ ] and [ 1). The five patients used in this study had normal IQs and each
had a different history of medications and treatment -they were treated with a variety of anti-epileptic
drugs that affect GABAergic transmission and other neurotransmitter systems. Furthermore, the disease
severity was variable (with daily, weekly or twice monthly seizures) as was the disease duration (from
10 to 29 years). However, as described below, in all cases the neocortical tissue used in the present
study was histologically normal and without abnormal spiking activity. In each case, video-EEG record-
ing from bilateral foramen ovale electrodes was used to localize the epileptic focus in mesial temporal
structures. Subdural recordings with a 20-electrode-grid (lateral neocortex) and with a 4-electrode-strip
(uncus and parahippocampal) were used at the time of surgery to further identify epileptogenic regions.
After surgery, the lateral temporal neocortices of all patients and the mesial temporal structures from all
patients except one were available for standard neuropathological assessment. In the latter case, most
mesial structures were absorbed during surgical removal and, therefore, could not be examined. The
lateral neocortices were histologically normal in all cases. However, alterations were found in the hip-
pocampal formations of three out of the four patients that could be examined; these three patients showed
hippocampal sclerosis, whereas no apparent alterations were found in the hippocampal formation of the
remaining patient. Furthermore, only neocortical tissue that showed no abnormal spiking -as character-
ized by normal ECoG activity- was used in this study (see [ ]). Surgically resected tissue was
immediately immersed in cold 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 (PB). After 2-3
h, the tissue was cut into small blocks (0.5 x 8 x 8 mm) which were flattened (e.g., Welker and Woolsey
1974) and post-fixed in the same fixative for 24 h at 4°C. Horizontal sections (250 microns) were obtained
using a Vibratome. By relating these sections to coronal sections, we were able to identify, using cytoar-
chitectural differences, the section that contained each cortical layer, allowing the subsequent injection of
cells (e.g., [ ]). Sections were prelabeled with 4,6-diamidino-2-phenylindole (DAPI;
Sigma, St Louis, MO), and a continuous current was used to inject individual cells with Lucifer yellow
(8% in 0.1; Tris buffer, pH 7.4; LY) in cytoarchitectonically identified layers III and V of the anterolateral
temporal cortex (see results section for further details). Neurons were injected until the individual den-
drites of each cell could be traced to an abrupt end at their distal tips and the dendritic spines were readily
visible, indicating that the dendrites were completely filled. After injection of the neurons, the sections
were first processed with a rabbit antibody to Lucifer yellow produced at the Cajal Institute [1:400,000
in stock solution: 2% BSA (A3425; Sigma), 1% Triton X-100 (30632; BDH Chemicals), 5% sucrose
in phosphate buffer (PB)] and then with a biotinylated donkey anti-rabbit secondary antibody (1:200 in
stock solution, RPN1004; Amersham Pharmacia Biotech), followed by a biotin-horseradish peroxidase
complex (1:200 in PB, RPN1051; Amersham). 3,3’-Diaminobenzidine (D8001; Sigma Chemical Co.)
was used as the chromogen, allowing the visualization of the entire basal dendritic arbor of pyramidal
neurons. Finally, sections were mounted in 50% glycerol in PB. Possible changes in the size of the sec-
tions due to processing of the tissue was evaluated by measuring the cortical surface and thickness in
adjacent sections before and after intracellular injections and processing of the tissue, using Neurolucida
11.07 and Stereolnvestigator 11.02.1 from MicroBrightField (MBF, VT, USA). We found no shrinkage
in the surface area of the sections and a decrease in thickness of only approximately 7% was observed.
Therefore no correction factors were included. Neurons were reconstructed in three dimensions using
Neurolucida (MicroBrightField) as previously described in detail (for further methodological details, see

[2001] and [2006]).

We refer to branch order of a branching angle as the number of branchings (including itself) that exist
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between the branching angle and the root of the dendrite. As an example, a branching angle with branch
order 4 comes after 3 preceding branching angles from the root of the dendrite, which is the branch order
1. We refer to maximum branch order or tree order of a dendrite as the total amount of branch orders of
a dendrite, or the branching angle at the highest order that can be found in the dendrite.

The dataset included: 57, 37 and 87 cells from layer IIIAnt (1452 measurements), VPost (1328
measurements) and IIIPost (2430 measurements), respectively. More precisely, the dataset for layer
IITPost contained measurements of 7 branch orders (300, 477, 430, 198, 39, 5 and 3 from order 1-7,
respectively) extracted from a total of 57 neurons. The dataset for layer VPost contained measurements
of 8 branch orders (247, 381, 373, 226, 82, 14, 4 and 1 from order 1-8, respectively) extracted from a
total of 37 neurons. Finally, the data set for layer IIIAnt contained measurements of 7 branch orders
(470,732,714, 375, 114, 24 and 1 from order 1-7, respectively), extracted from a total of 87 neurons. In
this data, branch orders above five suffer from very low number of observations and thus we will restrict
our analysis to the first five branch orders. The 3D reconstructions of these cells will be available in
another publication (Benavides-Piccione, Kastanaukaite, Rojo and DeFelipe, in preparation).

6.2.2 Univariate truncated von Mises distribution

The statistical analysis of branching angles requires directional statistics, as conventional statistics do
not address well the circular properties. In this field, the von Mises distribution ( [ ]) is the
most known distribution and the analog of the Gaussian distribution in the line. This distribution has
properties such as symmetry and positive support on all the values in a circle ([0°,360°)) which are
necessary simplifications of the data in many case studies. As it is found that in neuroscience, such
simplifications may hinder the accuracy and reliability of the complex behaviors it studies, we propose
for the first time to use the univariate truncated von Mises distribution (see Section 5.2 of Chapter 5).

6.2.3 Bivariate truncated von Mises distribution

For the case of events that are defined by two angular measurements (61, 65). We propose, for analogous
reasons as the univariate case, the bivariate truncated von Mises distribution (see Section 5.3 of Chapter
5).

6.2.4 Statistical tests

Test of goodness-of-fit a univariate truncated von Mises distribution. We tested if the angular data,
under different groupings, can be properly modeled with a truncated von Mises distribution. As consid-
ered in [ ], we transformed the data 61, ..., 6, by means of the angular variable
Upori (0;) = 2mFynr(0;) where Fyp(.) is the probability distribution function of the truncated von
Mises distribution. Then, we tested circular uniformity (i.e., the circular distribution where every ob-
servation is equally likely to occur) using a modified Rayleigh statistic (
[ ]) that distributes according to a X% distributes under the null hypothesis to obtain the final p—value
for the fit. If the data distributes following a truncated von Mises distribution, the previous