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Abstract

In artificial intelligence, the discipline of machine learning has emerged as the flagship of the field of
study. The era of big data, where increasingly large amounts of data are available to the public, requires of
tools that summarize and manipulate it correctly. For this reason, substantial effort is invested nowadays
in the development of new methods for learning and detecting patterns in the data. In this environment,
techniques such as Bayesian networks and random forests enjoy success at a practical level. However,
theoretical developments for the field in general and for many methods in particular are less abundant
than desired, and the general consensus is still that we do not understand many aspects of why the best
performing algorithms work. In this dissertation, we explore both the theoretical and practical branches
of machine learning with a multi-focused approach that spans across various technologies.

In the purely theoretical side, we cover contributions to two branches: pure statistics and the theory
of random forests.

In the first case we develop the univariate and bivariate truncated von Mises probability distributions
for circular statistics. These distributions can be understood as a generalization of the well-known von
Mises distribution that implies the addition of two or four new truncation parameters in the univariate
and, bivariate cases, respectively. The contributions include the definition, properties of the distribution
and maximum likelihood estimators for the univariate and bivariate cases. Additionally, the analysis of
the bivariate case shows how the conditional distribution is a truncated von Mises distribution, whereas
the marginal is a generalization of the non-truncated marginal distribution. We also show its performance
modeling data of leaf inclination angles.

In the second case we tackle the problem of random forests for regression expressed as weighted
sums of datapoints. We study the theoretical behavior of k-potential nearest neighbors under bagging
and obtain an upper bound on the weights of a datapoint for random forests with any type of splitting
criterion, provided that we use unpruned trees that stop growing only when there are k or less datapoints
at their leaves. Moreover, we use the previous bound together with the new concept of b-terms (i.e.,
bootstrap terms), to derive the explicit expression of weights for datapoints in a random k-potential
nearest neighbors selection setting, a datapoint selection strategy that we also introduce, and build a
framework to derive other bagged estimators using a similar procedure. Finally, we derive from our
framework the explicit expression of weights of a regression estimate equivalent to a random forest
regression estimate with random splitting criterion and demonstrate its equivalence both theoretically
and practically.

For the practical branch of this dissertation, we have two remaining works: A statistical analysis that
uses the previously defined truncated von Mises distribution and a multidimensional Bayesian network
classifier. In both cases, we study neuronal data in an effort to gain insights of neuroscientific value.

For the first work, we analyze branching angles of the basal dendrites of pyramidal neurons of layers
III and V of the human temporal cortex. For this, we use the truncated von Mises distribution, showing
that is able to describe more accurately the dendritic branching angles than previous proposals. Then,
we perform comparative studies using this and other statistical methods to determine similarities and/or
differences between branches and branching angles that belong to different cortical layers and regions,
among other comparisons.

Finally, a class-bridge decomposable multidimensional Gaussian network is presented as an inter-
pretable and high-performing model, to account for the morphological differences that exist between



different neurons when varying the species, gender, brain region, cell types and developmental stage of
the animal of origin, and to tackle the problem of inference complexity in multidimensional classifiers.
This work includes a structural learning algorithm that, for continuous nodes and discrete features, makes
use of the CB-decomposability property to alleviate the inference complexity and uses it to learn topo-
logically unrestricted complex network structures that take into account relationships between classes.
The model is trained with data from NeuroMorpho (v5.7) and it is then used for accurate prediction
of all classes simultaneously for new examples and, given its interpretability, to extract knowledge at a
neuroscience level.



Resumen

En inteligencia artificial, la disciplina del aprendizaje automático se ha instaurado como el buque in-
signia del campo de estudio. La era del Big data, en la que volúmenes cada vez mayores de datos son
accesibles por el público general, requiere de herramientas que sean capaces de concisarlos y manipu-
larlos correctamente. Por este motivo, en la actuallidad se están invirtiendo notables esfuerzos para el
desarrollo de nuevos métodos para el aprendizaje y detección de patrones en los datos. En este entorno,
técnicas como las redes bayesianas y los bosques aleatorios atesoran éxito a nivel de aplicación. Sin
embargo, desarrollos teóricos para el campo en general y para muchos métodos en particular son menos
abundantes, y el consenso general es que aún no entendemos muchos aspectos de porqué funcionan
los mejores algoritmos. En esta disertación, exploramos tanto la vertiente teórica como la práctica del
aprendizaje automático con un enfoque multienfático que cubre varias tecnologı́as.

Para la vertiente más teórica, nuestras contribuciones abarcan dos ramas: Estadı́stica pura y teorı́a de
bosques aleatorios.

En el primer caso desarrollamos la distribución de probabilidad circular von Mises truncada univari-
ante y bivariante. Estas distribuciones pueden ser entendidas como una generalización de la conocida
distribucion von Mises, que implica la adicción de dos o cuatro nuevos parámetros en el caso de la
univariante o bivariante, respectivamente. Las contribuciones incluyen la definición, propiedades de la
distribución y estimadores de máxima verosimilitud para los casos univariante y bivariante. Adicional-
mente, el análisis del caso bivariante muestra cómo la distribución condicionada es una distribución von
Mises truncada, mientras que la marginal es una generalización de la marginal no truncada. También
mostramos su rendimiento a la hora de modelar datos sobre los ángulos de inclinación de las hojas.

En el segundo caso abordamos el problema de bosques aleatorios para regresión expresados como
sumas de puntos. Estudiamos el comportamiento teórico de los k-vecinos potenciales más cercanos bajo
agregación de muestras bootstrap (bagging) y obtenemos una cota superior en los pesos de un punto
para bosques aleatorios equipados con cualquier tipo de regla de corte (splitting criterion), si utilizamos
árboles sin poda que dejan de crecer cuando hay k o menos puntos en sus hojas. Además, utilizamos la
cota anterior junto con el nuevo concepto de b-terms (o términos de bootstrap) para derivar expresiones
explı́citas para los pesos de puntos del selector aleatorio de k-vecinos potenciales más cercanos, una es-
trategia de selección de puntos que también introducimos, y para construir un marco de trabajo que nos
permite derivar otros estimadores que utilizan agregación de muestras bootstrap mediante un proced-
imiento similar. Finalmente, derivamos la expresión explı́cita de los pesos de un estimador de regresión
equivalente a un estimador bosque aleatorio para regresión equipado con una regla de corte aleatoria y
demostramos su equivalencia tanto a nivel teórico como práctico.

Para la vertiente más práctica de esta disertación, desarrollamos dos trabajos: Un análisis estadı́stico
que emplea la distribución von Mises truncada anteriormente definida y un clasificador multidimen-
sional con redes bayesianas. En ambos casos, estudiamos datos neuronales en un esfuerzo por adquirir
conocimiento de valor neurocientı́fico.

Para el primer trabajo, analizamos ángulos de bifurcación de dendritas basales de neuronas pirami-
dales de las capas III y V del cortex temporal humano. Para ello, utilizamos la distribución von Mises
truncada, mostrando que es capaz de describir con mayor precisión los ángulos de bifurcación dendrit-
ica que anteriores propuestas. A continuación, realizamos estudios comparativos utilizando éste y otros
métodos estadı́sticos para determinar similitudes y/o diferencias entre ramas y ángulos de bifurcación



que pertenecen a diferences capas corticales y regiones, entre otras comparativas.
Finalmente, presentamos un classificador gaussiano multidimensional clase-puente descomponible

(class-bridge decomposable multidimensional Gaussian network classifier) como un modelo de alto
rendimiento e interpretable, para procesar las diferencias morfológicas que existen entre diferentes neu-
ronas cuando variamos la especie, el género, la región del cerebro, el tipo de célula y el estado de
desarrollo del animal de origen, ası́ como para tratar de avanzar en la resolución del problema de la
complejidad de inferencia en clasificadores multidimensionales. Además, este trabajo incluye un al-
goritmo de aprendizaje de estructura que hace uso de la propiedad clase-puente descomponible para
aliviar la complejidad de inferencia, que usamos para aprender estructuras de redes complejas no lim-
itadas topológicamente que tienen en cuenta relaciones entre diferentes clases. El modelo es entre-
nado con datos de NeuroMorpho (v5.7) y después es utilizado para realizar predicciones precisas de
todas las clases simultáneamente para nuevas muestras y, dada su interpretabilidad, para la extracción de
conocimiento en neurociencia.
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Chapter 1
Introduction

In this dissertation we present works in multiple fields of machine learning. Our works travel from pure
statistics to machine learning theory, with stops in algorithmic developments and statistical analysis.
The chosen approach emphasizes the importance of multiple perspectives when analyzing statistical
phenomena.

Directional statistics (Mardia [1975]) (also called circular statistics) is the field of study in statistics
that concerns itself with observations of angular nature, or more generally, that include a periodicity
property. For example, time and angular measurements (such as the first rain of the year, or the direction
of the wind) require a different theory than classical statistics if we are to work with them in a similar
manner to linear data. In neuroscience, circular measures arise when considering the branching angles of
dendritic trees in neurons. In Bielza et al. [2014], the von Mises distribution (vM), a circular probability
distribution, was used to model this phenomenon. In this dissertation we study the field of directional
statistics and improve upon the proposal of the von Mises distribution by developing the truncated von
Mises distribution (TvM), a more general alternative to the former that adds two parameters for limiting
the support of the distribution. We then use this distribution in the field of neuroscience to model dendritic
branching angles in humans.

Bayesian networks (BN) (Pearl [1988]) are a probabilistic knowledge representation framework that
allows us to capture the conditional independence relationships that exist between variables of a domain,
and build models that can perform multiples forms of reasoning on queries over those variables. Their
strengths with respect to other proposals in machine learning are interpretability, the ability to sample
from the learned distribution (generative model), handle hidden variables and perform well in tasks such
as classification of newly found examples. Of the multiple approaches to build Bayesian network clas-
sifiers, the multidimensional approach to classification (Bielza et al. [2011]) has been considerably less
studied than the single variable case (Minsky [1961]). The main caveat of multidimensional classifica-
tion with Bayesian networks is the inference complexity, that scales exponentially with the complexity of
the network’s topology and the number of variables. For this reason, topological restrictions in structure
are common (Bielza et al. [2011]). In this work we contribute to alleviate the complexity of building
topologically unrestricted multidimensional Bayesian network classifiers (MBCs), with the introduction
of a learning algorithm that, for continuous feature nodes and discrete classes, increasingly progresses
from a collection of simple structures to the fully connected non-restricted case.

Finally, random forests (RF) (Breiman [2001]) are generally considered one of the best performing

3



4 CHAPTER 1. INTRODUCTION

techniques available in machine learning today. In the standard case, they are an ensemble of decision
trees used for classification and/or regression problems. Each tree is trained with different versions of the
data and on different subsets of the features, to produce multiple individual predictions that are finally
combined to output a prediction. RFs display excellent accuracy and are relatively fast to train and use
for an ensemble. They also enjoy a history of successful practical applications (Criminisi et al. [2012],
Boulesteix et al. [2012]). However, theoretical efforts to fully characterize RFs have so far not uncovered
a deep understanding of the model, and works often settle to analyze simplified versions of the original
algorithm (Biau and Scornet [2016]). In Lin and Jeon [2006], a very important connection was unveiled
between RFs and weighted k-potential nearest neighbors (k-PNN), a special type of nearest neighbors.
But bootstrapping was not considered there. In this dissertation we present a step forward in the under-
standing of RFs by providing for the first time to the best of our knowledge, explicit calculations of the
weighting schemes that a complete RF (bootstrapping included) is equivalent to. Moreover, we develop
a framework for the calculation of these weights for the class of regression estimates that implement
point selection strategies (such as selecting the k nearest neighbors associated values for predictions)
that operate strictly within the k-PNNs of the prediction target.

1.1 Hypotheses and objectives

1.1.1 Hypotheses

We have the following hypotheses for this dissertation:

1. A truncated directional probability distribution can be used to model angular phenomena that occur
in a restricted sector of the circle.

2. Neuron’s branching patterns in humans can be properly modeled using a directional probability
distribution that it is not forced to assume symmetry and full support on the circle.

3. Multidimensional Gaussian network classifiers can benefit from the CB-decomposable property
and Gaussian nodes to produce highly complex and interpretable multidimensional classifiers.

4. A general random forest algorithm for regression can be expressed as a weighted sum of datapoints.

1.1.2 Objectives

The previous hypotheses are addressed with the following set of objectives:

1. To develop the truncated von Mises distribution, an extension to the von Mises distribution that
incorporates the ability to restrict the support of the distribution and to produce non-symmetrical
densities.

2. To apply the developed truncated von Mises distribution to real dendritic branching angles data
from humans and achieve a superior modeling performance to that of the unrestricted von Mises
distribution.

3. To build a multidimensional Gaussian network classifier with a structural learning algorithm that
makes use of the CB-decomposable property that achieves the desired level of network complexity
and interpretability with respect to the state of the art.
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4. To develop the theory and methodology required to express a general random forest for regression
as a weighted sum of datapoints. Then, provide a practical demonstration of this equivalence by
building an estimator as a weighted sum of datapoints that behaves similarly to a random forest.

1.2 Document organization

This work is subdivided in five parts and nine chapters, following this summary:

Chapter 1

The reader can find here the objectives and hypotheses that produced the research leading to this disser-
tation. Followingly, the content of subsequent chapters is described.

Background

In this part we cover the relevant concepts and developments in literature that support this work. We trace
back our knowledge dependencies to some levels prior to the production of our developments. There-
fore, we cover from the basic description of some techniques to their state-of-the-art form in nowadays
literature. It includes Chapters 2-4.

Chapter 2

We cover in a summarized way the field of directional statistics from its basic conception to a more in-
formed position. We start with some essential statistics that are reformulated to fit the circular paradigm,
then we introduce the von Mises distribution, give an interpretation of its parameters and discuss its
properties, maximum likelihood estimation, characteristic function and moments.

Chapter 3

Here we introduce probabilistic graphical models. We introduce Bayesian networks from their histori-
cal development to more modern works. We formally define the model and discuss various aspects of
defining, building and using the model. Namely, we describe the parameters and structure as the two
elements that complete the definition of a Bayesian network and outline its importance and its precise
role within the model. We then discuss inference as a query answering paradigm with multiple interpre-
tations and objectives. Followingly, we detail the process of learning a Bayesian network and discuss
some consolidated approaches in literature to attain this goal, as well as provide with references to im-
portant contributions. Finally, we assess the particular case of Bayesian networks for classification and
detail both the unidimensional and multidimensional classification approaches and the relevant works
that develop them.

Chapter 4

We introduce the reader to the ensemble approach for classification. We first discuss the idea of com-
bining weak classifiers to produce a stronger one and review the literature that shows its growth from a
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question to a subfield of study. We detail bagging as a technique of interest for the combination of clas-
sifiers and then explain two specific classifiers that are of interest for this dissertation: nearest neighbor
classifiers and decision trees. We then cover the ensemble of decision trees, random forests, from their
definition to their very important impact in literature.

Contributions

This part covers the contributions of this thesis, developed along Chapters 5-8.

Chapter 5

Here we present and develop the truncated von Mises distribution in the univariate and bivariate cases.
This development consists of a series of results from definition to properties, maximum likelihood es-
timation and moments. For the bivariate case, we also discuss the conditional truncated von Mises
distribution and the marginal truncated von Mises distribution. Finally, we present a real data study for
leaf inclination angles using our proposed circular distribution.

Chapter 6

In this chapter we perform comparative studies of dendritic branching angles of pyramidal cells in the
human cerebral cortex. We first discuss the methods that we employ, which can be separated into two
categories: statistical tests and probability distributions. In the latter case, we use the truncated von
Mises distribution introduced in Chapter 5. Our results follow with a set of comparative studies that
examine the data from different perspectives. These perspectives are obtained by separating the data in
comparative groups according to different criteria. Finally, we present our conclusions and discuss our
findings.

Chapter 7

In here we develop the structural learning algorithm for the CB-decomposable multidimensional Gaus-
sian classifiers. We first introduce the formalism and the key property this algorithm exploits: the CB-
decomposability. We then present our structural learning algorithm in three steps of incremental network
complexity. We then apply our procedure to train and test a model that captures the morphological
differences between neurons and draw our conclusions.

Chapter 8

This chapter contains the theoretical developments that solve the problem of expressing a random forest
model as a weighted sum of datapoints. We first familiarize the reader with the problematic and pending
problems and the concept of k-potential nearest neighbors. Then our analysis shows the effect of bag-
ging on a regression estimate equipped with a 1-PNN distance metric and discusses its differences and
similarities with the 1-NN regression estimate. We continue with the main analysis of this work where
we show how to obtain explicit expressions for the weights of the class of regression estimates that use
for prediction a selection of datapoints strictly within the k-PNN set of the target. We also provide two
particular cases of explicit weight calculation; the first is a regression estimate directly defined over the
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k-PNN set, and the second is a regression estimate equivalent to a RF equipped with random splitting
criterion. For this latter regression estimate, we produce practical results comparing it with a classically
implemented version of the RF equipped with random splitting criterion, showing that the predictions of
both are virtually identical.

Conclusions

In this last part, we summarize our work and present our conclusions. It comprises Chapter 9.

Chapter 9

We summarize the contributions contained in this dissertation and show the list of derived publications.
Finally, we discuss future work and open lines of research that emerged from our research efforts.

Appendices

Appendix

It contains proofs of our results. Specifically, in Chapter 5 we have Lemma 5.2.1 for the analytical
expression of the normalization constant in the truncated von Mises distribution, and Theorems 5.3.1 and
5.3.2 to account for the behavior of the truncated conditional and marginal distributions, respectively. In
Chapter 8, we have Lemma 8.3.1 to account for the behavior of k-PNN under bootstrapping, Theorem
8.3.1 and Lemma 8.4.1 to establish the concept of bootstrap weights, Lemma 8.4.2 to calculate the
numerical value of a b-term, Theorem 8.4.2 to calculate the explicit expression of the weights of the
random k-PNN selection regression estimate, and Theorem 8.4.3 to write the random k-PNN selection
regression estimate using the explicit expression of the weights obtained in Theorem 8.4.2.
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Chapter 2
Directional statistics

2.1 Introduction

Directional statistics is a particular case of the statistical theory and methodology where the format of
the observations meets the particular requirement of having a vectorial representation of fixed length
(one by convention). It was first developed as such by Kanti V. Mardia (Jupp and Mardia [1989]) to
properly handle circular and/or spherical observations, whose properties are not correctly addressed by
conventional statistics. Kanti V. Mardia and Peter E. Jupp can be considered the essential authors and
the main specialists in the field gathering a number of additional contributions such as Mardia and Jupp
[2000].

All possible vectors of a fixed length in an n-dimensional space conform an n-dimensional sphere
of that fixed radius. Distributions can be drawn out of the different configurations at which we can find
the observations to be given as well as apply many other statistics to describe them. Directional statistics
is also referred to as circular statistics as the unidimensional case conforms a circular space and then
a circular observation can be regarded as a point in the perimeter of the circle. Circular distributions
arising in this reformulation of classical statistics can easily appear as proper distribution models for a
variety of phenomena in the application domain. Most classical examples include measurements of wind
directions from a stationary point, time measurements where we are interested in the positions of the
clock’s hands rather than the absolute time, compass measurements, angles that javelin throwers produce
respect to the ground line, and many others.

Circular statistics can be considered a transformation from classical statistics where the observations
on the perimeter of a circle contrast with the infinite line of the classical approach. We will define
the points in the perimeter of a circle of radius 1 (and refer to them from now on simply as points in
the circle, unless stated otherwise) as the O set, which we can express in a Cartesian coordinate bi-
dimensional space as O = {(x, y) ∈ R2 such that x2 + y2 = 1} and use the classical R real set for the
line.

When analyzing the points in the circle, a fundamental difference between both spaces (R and O) is
clear under observation: The circle space has a close perimeter, as it could be viewed as a line whose two
extrema are connected, or differently said, the circle comprises a closed shape inside its perimeter. This
fundamental difference allows the representation of periodic functions in a natural way and also implies
the insufficiency of the classical statistics to compute correctly circular data and/or to summarize and

11
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describe the observations properly.

2.1.1 Coordinate systems and the limitations of classical statistics

Points in the circle need to be represented and referred properly in O. If we were to address the problem
with unidimensional Cartesian coordinates, and attempt to address the fundamental difference by

xw = x mod 2π,

(where xw denotes a wrapped variable), restricting our values to 2π with the modulus periodicity, we
may find that the linear statistics used to summarize and describe our data fail to calculate the expected
solution. As an example, problems may arise when trying to obtain a point that is at distance d from
another. In the circle, the shortest path between two points is defined through the circumference with no
distinction between the point we consider the reference and any other. Thus, if we compute the distance
between 2π

9 and (2π)8
9 (in radians), our linear statistics distance expression would calculate:

∣(2π)8
9

− (2π)
9

∣ = (2π)7
9

,

yielding an incorrect solution since we were expecting to obtain (2π)2
9 (see Figure 2.1).

Figure 2.1: In radians, the incorrect distance of (2π)7
9

that the classical mean computed (red) compared to the correct solution
of (2π)2

9
(blue).

This problem appears under the special consideration that the 0 value has, as it is considered to be
“the beginning” of a circle. This example not only suggests that the distance notion has to be rewritten
but also shows how classical Cartesian coordinates are not directly compatible with the notion of circle.

Further extending the drawbacks of the classical approach, another example arises when e.g., com-
puting the sample mean of a set of observations. Let us consider a set of three observations θ1 = 30○, θ2 =
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0○, θ3 = 330○ ∈ O (in degrees) and use the classical sample mean µ̂

µ̂ = 1

n

n

∑
i=1

θi.

Here we obtain (30○+0○+330○)
3 = 120○ (see Figure 2.2). The result given by the classical mean again does

not acknowledge the closed nature of the circle. In the circle 0○ = 0○ + 360○k, k ∈ Z, so it is possible to
say with care (specifying the k periodic values in both expressions) that 0○ ≥ 330○ or otherwise exposed,
330○ has a difference of 30○ + 360○k with respect to 0○ that is not acknowledged by the classical mean,
thus yielding an incorrect result (it treats the circle as if it was cut at 0○).

Figure 2.2: The incorrectly calculated mean of 0○,30○ and 330○ using standard statistics (red) compared to the correct
solution (blue).

We need therefore a coordinate system that will naturally address the properties of O over which we
can define the statistics to properly describe and summarize our data.

The solution was found to be to consider the points in the circle as vectors of modulus one in R2 and
refer to them by the angle they create with respect to a preferred angle and orientation, that is, using polar
coordinates. Unless otherwise stated, points on circular statistics and on the O set are to be regarded as
angular values.

Equipped with those considerations we can finally redefine the Cartesian coordinates to its circular
analogue by means of:

x = (sin θ, cos θ),

where θ is the angle created with respect to the initial direction and a reference angle that needs to be
specified. Note that despite the representation uses a 2-dimensional coordinate system, the interdepen-
dence of the coordinates created by the use of only one argument (θ) prevents it to cover every point in
the plane, and by means of the angular trigonometrical representation the set of covered points results to
be only the allowed O perimeter set. We can see this by increasing the θ value and observing how the
specified points under the coordinate system are “drawing” O and only O. Also, it needs to be noted how
periodicity is now naturally handled (as expected by definition) and how now ∀θ1, θ2 ∈ O, θ1 + θ2 ∈ O,
that is, we have a closed operation with respect to the O set as well as all the well known properties that
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operations between angles satisfy in O.
More formally, if we consider the new coordinate system as an embedding function C we have that

C ∶ R → O, that is, C “shrinks” the R line (as we are referring to one dimensional quantities) into the
subset of the points that belong to the circle in O ∈ R2.

Another proposal is to regard the points in the circle’s perimeter as complex numbers of the form:
z = eiθ = cos θ + i sin θ (see Figure 2.3). Both notations are commonly used.

Figure 2.3: Both circular Cartesian and complex number coordinates approaches to reference the angle θ = 3
4
π in the circle

once initial direction (counterclockwise) and reference angle (0 degrees) have been chosen.

Solving the problem of the coordinates is not enough as the distance example brought to observation.
New statistics need to be defined in order to effectively study data on the circle.

The redefinition of the mean goes through the definition of two statistics. Let Θ = {θ1, θ2,⋯, θn} be
a set of angular observations (note that if we were given the unitarian vectors as observations, the angles
with respect to our reference system would be calculated to use them as the data). We define the mean
components of the circular Cartesian coordinates as:

S = 1

n

n

∑
i=1

sin θi, C = 1

n

n

∑
i=1

cos θi

Then the mean angle is calculated as:

θ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arctan S
C

if C ≥ 0

arctan S
C
+ π if C < 0

(2.1)

This expression will give the same mean as the classical linear sample mean as long as the observa-
tions are in [0○,180○] (with a counterclockwise direction and a reference point of 0○) where acknowl-
edging or not if the line is closed on itself is simplified under appearances.

It can be noted that if we represent the point (S,C) in the plane it may not be in the circle as it could
happen that it produces a non-unitarian vector. The length of this vector is called the mean resultant
length. It can be calculated as

R =
√
S

2 +C2
(2.2)
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or

R = 1

n

n

∑
i=1

cos(θi − θ), (2.3)

and additionally related to C and S by

C = R cos θ (2.4)

S = R sin θ (2.5)

where θ is the mean angle (see Figure 2.4).

Figure 2.4: For angles 0○,30○,55○,78○,145○ and 330○, the correctly calculated mean and the mean resultant length. The
calculated values were: θ = 54○26′49.2′′ and R = 0.5828.

TheR value has a meaning in the description of the set of observations as it results to be a measure of
the concentration as opposed to the concept of variance in classical statistics. If we were in the position to
place some observations on the circle and compute its mean resultant length, to maximize its expression
we must place all of them at the same point. We can get more detailed insights about R by means of the
following results:

Lemma 2.1.1. R ∈ [0,1].

Lemma 2.1.2. If Θ can be expressed as Θ = {θ1, . . . , θn, θ1 + π, . . . , θn + π} then R = 0.

Lemma 2.1.3. R = 1 only when θ1 = θ2 = θ3 = ⋯ = θn−1 = θn ∈ Θ (all angles are equal).

Proofs of these results can be found in Mardia and Jupp [2000]. With this information, we define
another statistic that was conceptually introduced before: the distance between two angles φ and θ as

d(φ, θ) = 1 − cos(φ − θ).

So we are now in conditions to interpret R as the mean of the “1−distance to the mean” that each of
our observations present. Thus,R only contains and uses the information of computing the average of the
distances to the mean, which can be considered the nature of its concentration diagnosing capabilities.
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Formally,
1

n

n

∑
i=1

d(θi, θ) = d =
1

n

n

∑
i=1

(1 − cos(θi − θ)). (2.6)

Then, by using Equation (2.3),

d = 1

n

n

∑
i=1

1 − 1

n

n

∑
i=1

cos(θi − θ) =
1

n

n

∑
i=1

1 −R.

We obtain

1

n

n

∑
i=1

1 − 1

n

n

∑
i=1

d(θi, θ) = R

1

n

n

∑
i=1

(1 − d(θi, θ)) = R

as stated above.
It is now straightforward to introduce as a generalization of the mean restriction imposed in Equation

(2.6), the statistic for computing the dispersion of a set of angles Θ about a given angle θ as:

D(Θ, θ) = 1

n

n

∑
i=1

(1 − cos(θi − θ)).

This distance notion takes into consideration the periodicity of the circle, but its results are not
expressing perimeter distances. Accounting the perimeter scaling, another notion of distance was found
in this work to be:

d2(θ1, θ2) = arccos(cos(θ1 − θ2)),

which can be considered the circular analogue to that on the line

d(x1, x2) = ∣x1 − x2∣.

Lastly, it has been proposed as the circular analogue to the linear variance the statistic

V = 1 −R ∈ [0,1]

although other proposals also exist.

2.2 The von Mises distribution

In this Section we will give a complete addressing of the von Mises distribution as its definition and
properties intersect highly those of the truncated von Mises distribution of Chapter 5. Similarly to the
line, probability distributions followed by a random circular variable (random variable that produces
angular values or unitarian vectors) can also be subject to study and definition. Distributions on the
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circle are angular l-periodic distributions (where l ∈ R and ∃n ∈ N such that nl = 2π), that is, periodic
distributions whose period is multiple of 2π. They can be obtained mainly by two related procedures:
natively defining them on O or wrapping them from distributions on the line.

A wrapped on the circle random variable is obtained from a random variable on the line by introduc-
ing the fundamental difference between both sets on its definition. In this case a random circular variable
Xw is defined with respect to the line random variable X as:

Xw =X mod 2π.

Using the complex numbers notation, it is defined as:

Xw = eiX .

and the density function of the probability distribution associated to that variable can also be written in
terms of the line density function as:

fw(θ) =
∞
∑
k=−∞

f(θ + 2πk).

The most significant example is the wrapped normal distribution:

fWN(θ;µ,σ) = 1

σ
√

2π

∞
∑
k=−∞

e
−(θ−µ+2πk)2

2σ2 . (2.7)

Native circular distributions are directly defined in the O domain, although one can establish a map-
ping between both line and circle’s perimeter and therefore find or hypothesize the existence of their
linear counterpart and vice-versa.

Let θ be a continuous random variable that follows a circular density distribution, then f(θ) satisfies:

1. ∫
2π+a
a f(θ)dθ = 1, where a ∈ R

2. f(θ + 2πk) = f(θ), ∀k ∈ Z

That is, the properties that mostly differentiate both scenarios (linear and circular) are the redefinition
of the integral coefficients to those of the circle (1.) and the periodicity of the density function (2.).

2.2.1 Definition

The von Mises probability distribution is natively defined as

fvM(θ;µ,κ) = e
κ cos(θ−µ)

2πI0(κ)
(2.8)

where

1. µ ∈ [i, i + 2π], i ∈ R, is the location parameter as it defines where the mode of the distribution is
going to be placed. In this case, the maximum value of the cos(.) function is reached at θ = µ, thus
relating µ directly with the mode. The i value in this context enables the selection of the interval
of length 2π where the distribution is going to be observed. Most common values in literature
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are i = 0 or i = −π and in this work, unless otherwise stated, the considered interval is [0,2π).
Additionally, the µ parameter is commonly called the mean parameter as in this case as well as
other well known cases such as the normal distribution, the mode and the mean have similar value
(these distributions are called “mean-centered distributions” as the density tends to concentrate
around it).

2. κ ∈ [0,∞) is the scale or concentration parameter, as opposed to the σ parameter on the nor-
mal distribution. It determines the concentration of the distribution around its highest value (in
this case the mean). The higher κ is, the more concentrated around the mean the distribution be-
comes. In the special case where κ = 0 the distribution reduces to the uniform circular distribution:
fvM(θ;µ,0) = u(θ) = 1

2π .

3. I0(κ) = ∑∞
m=0

κ2m

22m(m!)2 is the first kind modified Bessel function of order 0.

Figure 2.5: Example of different von Mises density functions with varying µ,κ parameters.

By manipulating the µ,κ parameters, the resulting von Mises function may differ in location and
concentration from other von Mises distributions (see Figure 2.5), as suggested by the parameters defi-
nition.

2.2.2 Properties

The von Mises distribution is composed by the periodic function

fuvM(θ;µ,κ) = eκ cos(θ−µ), (2.9)
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which will be referred to as unnormalized von Mises distribution and its integral over any interval of
length 2π [i, i + 2π] is

∫
i+2π

i
eκ cos(θ−µ)dθ = 2πI0(κ).

Therefore, analyzing Equation (2.9) allows us to observe and report many of the properties of the dis-
tribution. fuvM can be subdivided into a continuous strictly increasing function e(.), a positive constant
κ and a cos(.) ∈ [−1,1] function.

With this we can conclude
fuvM(θ;µ,κ) ∈ [e−κ, eκ]

Realizing now that I0(κ) is a positive strictly increasing function for κ > 0 allows us to say that

fvM(θ;µ,κ) > 0 ∀θ, µ, κ

which implies that its distribution function FvM(x) = ∫
x

0 fvM(θ;µ,κ)dθ for fvM defined in [0,2π] and
x ∈ [0,2π] is a strictly increasing function in [0,2π]. In general, FvM(x) = ∫

x+i
i fvM(θ;µ,κ)dθ > 0

provided x ∈ [i, i + 2π] (see Figure 2.6).

Figure 2.6: The von Mises distribution functions of the previously shown von Mises density functions.

The distribution is symmetrical with respect to the location parameter as:

fvM((µ + θ) − µ) = fvM((µ − θ) − µ)

fvM(θ) = fvM(−θ)

This behavior is obtained from the known even property of the cos(.) function where cos(−x) = cos(x),
as it takes the independent variable (θ) as input.
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An interesting result comprehending both wrapped normal distribution and von Mises distribution is
the increasing approximation capability as κ grows that both share: the von Mises distribution tends to
converge to a corresponding wrapped normal distribution for large κ. More formally, the obtained results
reported in Mardia and Jupp [2000] were:

lim
κ→∞

fvM(θ;µ,κ) = fWN
⎛
⎝
θ;µ,

√
1

κ

⎞
⎠

where fWN was defined in Equation (2.7).

The existence of the progressive approximation to the previous equality as κ grows is acknowledged
in the literature and allows the use of fWN instead of the von Mises distribution for different problems
where it could be applied.

2.2.3 Maximum likelihood estimation

Inside the statistical inference scenario, we are interested in approximating the underlying probability
distribution that a random variable follows by the information provided solely by the samples collected
from it. In this section, we will develop for contextual purposes the maximum likelihood estimator of
the von Mises distribution parameters. It can be found also in Mardia and Jupp [2000].

Given the data Θ = {θ1, θ2, ...θn}, the log-likelihood function

lnL(µ,κ; θ1, θ2, . . . , θn) =
n

∑
i=1

ln f(µ,κ; θi)

is, for the von Mises distribution,

lnL(µ,κ; θ1, θ2, . . . , θn) =
n

∑
i=1

κ cos(θi − µ) − n ln(2πI0(κ))

We seek to solve the system of log-likelihood equations created by:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ lnL
∂µ = 0

∂ lnL
∂κ = 0

These are two equations with two unknown variables. For the partial derivative with respect to µ we
obtain:

∂ lnL
∂µ

=
n

∑
i=1

κ sin(θi − µ) = 0
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or

1

n

n

∑
i=1

κ sin(θi − µ) = 0

We know by definition that κ > 0. Thus, in the case of the existence of a solution, it is independent
of the κ value. Therefore

1

n

n

∑
i=1

sin(θi − µ) = 0

1

n

n

∑
i=1

(sin(θi) cos(µ) − sin(µ) cos(θi)) = 0

sin(µ)
cos(µ)

1
n ∑

n
i=1 cos(θi)

1
n ∑

n
i=1 sin(θi)

= 1

tan(µ) = S

C

µ̂ = arctan(S
C

)

That is, the µ parameter reaches a critical point at the definition of the sample mean (Equation (2.1)).

Now we proceed with the partial derivative with respect to κ as:

∂ lnL
∂κ

=
n

∑
i=1

cos(θi − µ) − n
I1(κ)
I0(κ)

= 0

or

1

n

n

∑
i=1

cos(θi − µ) =
I1(κ)
I0(κ)

,

given the equation for the Bessel function derivative, stated as

∂In(x)
∂x

= n

x
In(x) + In+1(x). (2.10)

At this point we can observe that we are dealing with the definition ofR in Equation (2.3) as we have

R̂ = I1(κ)
I0(κ)

(2.11)

Equation (2.11) is commonly referred to in the literature (for example in Mardia and Jupp [2000]) as
the maximum likelihood estimator of R.

If we now consider the system of log-likelihood equations
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ̂ = arctan(S/C)

1
n ∑

n
i=1 cos(θi − µ) = I1(κ)

I0(κ)

we can find the estimator

MLE(µ) = µ̂ = arctan(S/C),

as its expression is independent of all remaining parameters (κ) in the system and depends solely on the
sample data.

The estimator of κ, also independent, introduces the non trivial problem of obtaining the inverse
function of

A(κ) = I1(κ)
I0(κ)

.

However, in this case we can consider to calculate R by Equation (2.2) and (2.3) and approximate
numerically its value with A(κ) by assessing it for different κ values.

2.2.4 Characteristic function

The characteristic function of a random variable is widely used in literature as a tool to handle the
underlying probability distribution followed by that variable. Among its interesting properties we have
that a probability distribution is uniquely determined by its characteristic function, which can then be
used to refer uniquely to such distribution when performing studies over it and its existence for any
probability distribution.

The general expression of the characteristic function of a circular random variable X is defined as
the sequence of complex numbers given by the expression:

ΦX(t) = E[eitX],

where t ∈ Z follows the sequence t = −∞, . . . ,−1,0,1, . . .∞.
For the von Mises density function in [0,2π] we have:

ΦXvM (t) = E[eitX] = 1

2πI0(κ) ∫
2π

0
eitxeκ cos(x−µ)dx

= 1

2πI0(κ) ∫
2π

0
(cos(tx) + i sin(tx)) eκ cos(x−µ)dx

= ∫
2π

0 cos(tx)eκ cos(x−µ)dx

∫
2π

0 eκ cos(x−µ)dx
+
i ∫

2π
0 sin(tx)eκ cos(x−µ)dx

∫
2π

0 eκ cos(x−µ)dx

The second addend is 0, ∀t ∈ Z, when the distribution is symmetrical with respect to the mean. As it
is always the case and considering Equation (2.10), we can simplify the former expression by

ΦXvM (t) = eitµ It(κ)
I0(κ)
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where It(κ) is the modified Bessel function of the first kind and order t. Note that ΦXvM (−t) =
ΦXvM (t).

2.2.5 Moments

The moments of a probability distribution are descriptors associated to power values of its population
and can be derived from the characteristic function associated to that distribution. More precisely, the
t-th trigonometric moment (with t ∈ Z) mt in the circle is calculated as the expectation

mt = E [(eiX)t] = E[eitX].

It can be immediately noticed that the sequence of all possible moments for t is equivalent to the
characteristic function of that random variable.

Unlike distributions in the line, an important result acknowledged in Mardia and Jupp [2000] reveals
that any circular distribution is completely determined by its characteristic function, implying that any
circular distribution has well defined moments for every value of t. This result appears to arise from a
practical fundamental difference of the closed space of the circle with respect to the line and that is the
lack of the infinite extension in the domain of any distribution function, which frees us from needing it
in the circular expectation operators and calculation definitions.

We can derive the moments of the von Mises distribution about the a direction by:

mtvM = E[eit(X−a)]

Without considering m0 = 1, the first moment about the 0 direction for the von Mises distribution is

m1vM = ∫
2π

0 cos(x)eκ cos(x−µ)dx

∫
2π

0 eκ cos(x−µ)dx

Or equivalently:

m1vM = E[eiX]
= E[cosX + i sinX]
= E[cosX] + iE[sinX]

Now applying the population versions of Equation (2.4) and (2.5) we can follow with:

m1vM = R cos(µ) + iR sin(µ)
= Reiµ

= I1(κ)
I0(κ)

eiµ

which constitutes the final expression for the first moment. For the second moment we have
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m2vM = ∫
2π

0 cos(2x)eκ cos(x−µ)dx

∫
2π

0 eκ cos(x−µ)dx

= I2(κ)
I0(κ)

ei2µ

where I2(κ) is the modified Bessel function of the first kind and order 2.
Since our distribution location is controlled by µ parameter, for location independent descriptions it

is interesting to consider the moments about the real µ direction as:

m′
1vM

= ∫
2π

0 cos(x − µ)eκ cos(x−µ)dx

∫
2π

0 eκ cos(x−µ)dx

which results in:

m′
1vM

= I1(κ)
I0(κ)

And

m′
2vM

= ∫
2π

0 cos(2(x − µ))eκ cos(x−µ)dx

∫
2π

0 eκ cos(x−µ)dx

which results in:

m′
2vM

= I2(κ)
I0(κ)

.

We can generalize the notion of moments about the 0 direction for the von Mises distribution as

mtvM =
I∣t∣(κ)
I0(κ)

eitµ

where ∣.∣ is the absolute value operator.
And for the moments about the µ direction we have:

m′
tvM

=
I∣t∣(κ)
I0(κ)

.



Chapter 3
Probabilistic graphical models

3.1 Introduction

Part of the problem in artificial intelligence is focused around systems that can perform reasoning under
uncertainty. Probabilistic graphical models (PGMs) use a graphical representation of the domain of
knowledge in the form of a graph around a set of variables. Abscense/presence of arc may help to derive
conditional independencies. The idea for a graphical model can be traced back to various sources, but in
the fields more directly related to its current form, we see first conclusive evidence of its adoption in the
works of Vorob’ev [1962], Goodman [1970] and Haberman [1970] in the field of statistics and in Warner
et al. [1961], Gorry and Barnett [1968] and De Dombal et al. [1972] in the field of artificial intelligence.

Bayesian networks (Pearl [1988]) consolidated the popularity and theoretical foundations of PGMs.
They were proposed as a general framework for probabilistic reasoning capable of overcoming the strong
limitations and assumptions of contemporary models. This was accompanied by early successful appli-
cations of the framework, for which we can highlight perhaps Heckerman and Nathwani [1992a] and
Heckerman and Nathwani [1992b].

Bayesian networks support multiple classes of problems such as classification, regression, clustering,
variable selection and sampling and can perform inference and multi-type reasoning (i.e., diagnostic, pre-
dictive, abductive, causal and more) for different queries to the variables of the model. They can be used
as a probabilistic knowledge base where interepretability and readability of the model are possible, and
decisions made by the model can be explained in a comprehensive way. This distinguishes it from other
machine learning methods and makes it a preferred option in sensitive domains where the explanations
of answered questions are as important as the answer itself.

From the 90s to 00s, most notable works can be found in Lauritzen [1996], Jensen [1996], Castillo
et al. [1997] and Jordan [1998]. From then on, in Neapolitan et al. [2004], Cowell et al. [2006], Darwiche
[2009], Korb and Nicholson [2010] and Russell and Norvig [2016]. In later years, BNs have been used
successfully in the neuroscience domain in Lopez-Cruz et al. [2011], López-Cruz et al. [2014], Smith
et al. [2006] and Jung et al. [2010]. See a review in Bielza and Larrañaga [2014b]. Additionally, steady
progress has been made in the multidimensional classification paradigm using Bayesian networks. The
reader is directed to Bielza et al. [2011] for a complete survey.

25
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3.2 Bayesian networks

Formally, a Bayesian network is a pair B = (G,Θ) over a set of random variables X = {X1,X2, . . . ,Xd}
where G = (VX ,AX ) is a directed acyclic graph, VX is a collection of vertices, AX ⊆ VX × VX is
a collection of arcs between vertices of VX and Θ, in the context of Bayesian networks, is a set of
conditional probability distributions paired with the structure G.

Vertices of the Bayesian network represent the random variables in X and the directed arcs represent
probabilistic dependence relationships between the variables. Probability distributions in Θ are defined
as θxi∣pa(xi) = p(xi∣pa(xi)), that is, conditional probability distributions of variable Xi given a value
pa(xi) of the set of variables Pa(Xi) ∈ X . In here, Pa(Xi) stands for the set of parent variables of Xi

in G (that is, variables of the graph with connected arcs that end in Xi) (Figure 3.1).

Figure 3.1: A Bayesian network with four nodes and the conditional probability tables associated with each node.

The joint probability distribution can be used to model different classes of problems. However, the
computation of joint probability distributions is considered intractable in the general case. With Bayesian
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networks, it is possible to factorize a joint probability distribution as follows:

p(X1, . . . ,Xd) =
d

∏
i=1

p(Xi∣Pa(Xi)) (3.1)

Equation (3.1) can be seen as a substantial reduction in the size and complexity with respect to the
joint distribution case, where the need to store every possible d-tuple of values would pose a significantly
bigger problem even for a relatively small number of nodes. Bayesian networks reduce this complexity
by exploiting the conditional independence relationships between the variables in the domain.

3.2.1 Parameters

We have already seen that the vertices or nodes of a Bayesian network can be seen as variables that are
conditionally distributed on their parent variables. In order to calculate the value that corresponds to a
specific assignment of values, we must first make the distinction between discrete and continuous nodes.

3.2.1.1 Discrete nodes

Discrete nodes have an associated discrete probability distribution taking values in a finite numerable
domain. The output of these nodes are probabilities as opposed to densities in the continuous case.
Notice that a node Xi encodes multiple probability distributions, one per each parent Pa(Xi) distinct
configuration. In order to represent this information, a conditional probability table (CPT) is generally
used.

A CPT (Figure 3.1) can be regarded as a table that has for rows the distinct assignments of all parent
variables of Xi, and as columns all values of Xi. If we consider V al(Xi) the set of values that the
variable Xi can take, then

∑
xi∈V al(Xi)

p(xi∣pa(Xi)) = 1

is satisfied for each assignement pa(Xi) for the parents of Xi, Pa(Xi). This is, for each valid joint
assignment of values for the conditional variables, a categorical probability distribution is defined that
assigns probability values to the different values the random variable Xi takes.

Notice also that the CPT grows exponentially in size with each new parent addition, as all possi-
ble configurations of that new parent must then be taken into account. This shows that the number of
parameters needed for a discrete node in a Bayesian network can be calculated as the product

(∣V al(Xi)∣ − 1)(∣V al(Pa(Xi))∣),

where we can define ∣V al(Pa(Xi))∣ as the cardinality of the set containing the total number of joint
distinct value assignments of the parents of Xi. The -1 in the expression comes from the fact that for a
categorical distribution on a random variable with v1, . . . , vm values, after all probabilities but p(vi) are
specified, p(vi) can be trivially inferred as p(vi) = 1 −∑j≠i p(vj).

Then, for a complete discrete Bayesian network, the total number of parameters can be calculated as:

d

∑
i=1

(∣V al(Xi)∣ − 1)(∣V al(Pa(Xi))∣). (3.2)



28 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

3.2.1.2 Continuous nodes

Continuous nodes have an associated continuous probability distribution, taking infinite values on a
continuous domain. The CPT representation does not adapt well to the change of variable nature. A
common workaround is discretization, aiming to produce usable CPTs by grouping ranges of values into
a finite size group of categories (Garcia et al. [2013]). However, discretization techniques incur in loss
of information, making it an undesirable option in certain classes of problems. Additionally, different
discretization strategies significantly affect the parameter values of the resultant Bayesian network.

Another most commonly used option is to introduce in our model the assumption that the distribu-
tions associated with the nodes belong to a certain parametric family of distributions. Of all available
parametric forms, by far the most commonly used is the Gaussian family. Bayesian networks composed
solely of linear Gaussian nodes are called Gaussian Bayessian networks (GBNs).

In the case of GBNs, a nodeXi that is linear Gaussian with parents Pa(Xi) = {Pai1, Pai2, . . . , Pail},
l ∈ N has an associated Gaussian probability distribution given by

f(Xi∣Pa(Xi)) ∼ N (β0 + β1Pai1 +⋯ + βlPail, σ2
i )

where β0, β1 . . . βl are the linear regression coefficients of Xi over Pa(Xi) and σ2
i is the variance of

Xi. This shows that a GBN can be computed as a product of gaussian distributions. Indeed, the joint
probability density f(X1, . . . ,Xn) is factorized as:

f(X1, . . . ,Xd) =
d

∏
i=1

f(Xi∣Pa(Xi)).

GBNs satisfy certain properties that set them apart from discrete BNs. For example, it can be proven
that a GBN defines a multivariate Gaussian distribution and viceversa (Koller and Friedman [2009]).
This, parameter wise, implies that instead an exponential increase in the parameter count when we add
a new node (discrete joint probability distribution case), we have a quadratic increase for a multivariate
gaussian distribution (sinceN (µ;Σ) is defined by a vector of means µ and a covariance matrix Σ). For
our chosen factorization, however, the parameter count of a GBN is given by:

2d +
d

∑
i=1

∣Pa(Xi)∣ (3.3)

GBNs work better in practice when the underlying data distribution of the problem is not too far off
from the assumption of gaussianity. Otherwise, the model may suffer from poor quality fitting.

3.2.2 Inference with Bayesian networks

One of the most interesting properties of Bayesian networks is its ability to perform multiple forms of
probabilistic reasoning. Once our model is built, it can answer different types of queries regarding its
knowledge domain (that is, its variables).

Typically, we have information on a subset of the total variables of the network E ⊂ X (evidence
variables), and we formulate our query over another subset Q ⊂ {X / E} (query variables). Then, a



3.2. BAYESIAN NETWORKS 29

conditional probability query can be written as:

p(Q∣E = e) = p(Q,e)
p(e)

(3.4)

In order to calculate the probabilities of Equation (3.4), we can proceed by renormalizing the random
vector of marginal probabilities

p(q1, e), . . . , p(q∣V al(Q)∣, e)

so that ∑∣V al(Q)∣
i=1 p(qi, e) = 1, which implies that, for each possible query answer, the joint distribution

must be calculated in order to sum out the remaining variables of the network (that is, those that are nor
evidence nor query). However, working with the joint distribution is intractable in the general case.

Unfortunately, exact inference in the general case is also intractable, with a NP-hard result shown
first in Cooper [1990]. However, the complexity of inference is intimately tied to the structural properties
of the Bayesian network, and for specific cases, even for large networks, exact inference can be carried
out in polynomial time.

In standard literature, most prominent solutions to the computation of exact inference are the algo-
rithm of variable elimination (Zhang and Poole [1994], Huang and Darwiche [1996] and Dechter [1999])
and clique trees (Shafer and Shenoy [1990]). Both are capable of taking advantage of the structural prop-
erties of the network to lower the complexity of inference in some scenarios.

The algorithm of clique trees has the advantages over variable elimination of answering multiple
queries using the same data structure and reusing the computations performed for previous queries. Ad-
ditionally, it allows for dynamical introduction or deletion of evidence prior to each query computation,
making it a recommended choice in the general case over the standard implementation of variable elim-
ination when multiple queries are intended. However, in clique trees we are forced to store intermediate
computations that in variable elimination can be discarded, resulting in an increase of memory space.
Additionally, since the structure is fixed it is possible to miss on some computational savings that occur
in some specific cases of evidence and query subsets. Particularly, networks displaying context-specific
independence (Boutilier et al. [1996]) would often be computed suboptimally with respect to variable
elimination, since the precomputed structure would not be able to recognize this type of shortcut as
available for this type of query + evidence.

Overall, both algorithms can be considered versions of a broader class of algorithms that we may call
variable elimination algorithms.

Approximate inference approximates the queried probabilities while trying to avoid the explosion in
computational requirements. Generally, this approach can be subdivided in Monte Carlo algorithms for
inference, such as likelihood weighting (Henrion [1988]) or Gibbs sampling (Neal [1993]), and search
based methods for high probability instantiations, as in Cooper [1984], Peng and Reggia [1987], Henrion
[1990] and Henrion [1991]. Unfortunately, approximate inference was also proven to be an NP-hard
problem in Dagum and Luby [1993] .

3.2.2.1 MAP queries

For the purposes of this dissertation, our interest will be placed on a subtype of queries known as Maxi-
mum a posteriory queries (MAP queries) rather than conditional probability queries. In MAP queries we
seek to answer the query with the most likely assignment of the query variables given the evidence. The
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natural product of this type of queries is a unique value assignment to each of the query variables.
More specifically, our interest lies on a simpler case of MAP that is regarded in some literature as

the MPE (Most Probable Explanation) problem. This occurs when Q ∪E = X , that is, all variables are
covered between query and evidence and thus there is no need for the marginalization computations. The
MPE problem is considered to be easier in the general case than the MAP problem. However, in both
cases we do not leave the exponential complexity category.

We can slightly modify the original formulation of the conditional probability query shown earlier to
answer a MPE query by computing

arg max
V al(Q)

(p(q1,e), . . . , p(q∣V al(Q)∣,e)).

That is, we select the value assignment that yields the highest probability rather than keeping the
marginal distribution of the query variables given the evidence.

Variable elimination can be adapted to compute MPE queries simply by swapping the summations
for maximization operators, clique trees max product algorithm can also be tweaked by computing max-
marginals instead of sum-marginals at each clique of the tree. Our interest in MPE lies within the use of
this type of query for classification in Bayesian network classifiers, as we will see in Section 3.2.4.

3.2.3 Learning Bayesian networks

Early efforts in constructing a Bayesian network model typically involved the presence of an expert,
whose primary task was to manually identify the most fitting structure and parameters for the network
of the domain variables X . This approach is largely considered deprecated nowadays as even for net-
works of modest size, the building time would scale to hours and required the additional assistance of a
knowledge engineer. Another reason for its diminished use is the abundance of data, which allows for
automation of the learning procedures. In this setting, the data Dn is regarded as a collection of samples
that belong to an unknown probability distribution D (and were sampled independently), and our task is
that of finding a model that best fits the observed cases of the unknown distribution D. It is also possible
to have different goals in mind when building a model, that is, we may be interested in focusing on the
performance of the model in a subset of X variables. Depending on our goals when building the model,
we may be discussing density estimation, classification tasks or knowledge extraction as the main cate-
gories on which our priorities can be sorted. In all cases, the procedure amounts to the definition of a loss
function that we want to minimize, which allows us to compare different candidate models and select the
best ones.

For example, let Q1 ∈ X be a single target variable to predict, the 0/1-loss function, commonly
referred to as the classification error, is used to direct our learning procedure towards unidimensional
classification. Using MPE queries, for evidence e, we can write a prediction as

cD̃(e) = arg max
q1

D̃(q1∣e),

where D̃ is a probability distribution approximation of D, produced by a BN model trained with Dn.
Then the 0/1-loss function can be written as:

E(e,q1)∼D̃[1[c
D̃
(e)≠q1]] (3.5)
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which can be read as the probability over D that the network selects the wrong label. For Q =
{Q1, . . . ,Qb} ⊂ X or multiple variables for prediction, the 0/1-loss function can still be used (some
times referred to as global accuracy), although it becomes an exponentially stricter criterion since the
number of possible value assignments to the query variables is now∏b

i=1 ∣V al(Qi)∣. For this case, a less
strict and commonly used criterion is the Hamming loss, which computes the average amount of mistakes
per prediction. If we consider cD̃(e) = (c1, . . . , cb) the MPE resultant assignment for the variables in Q,
then the Hamming loss is given by the expression:

E(e,q)∼D̃ [1

b

b

∑
i=1

1[ci≠qi]] . (3.6)

However, regardless of the loss function to minimize, in order to obtain a complete model, both the
parameters and the structure of a Bayesian network must be estimated.

3.2.3.1 Estimating parameters

Parameter estimation is a relatively easy operation in Bayesian networks with a fixed structure, both in
complexity and conceptualization. Most typically two approaches are considered, maximum likelihood
estimation (MLE) and Bayesian estimation (BE). In both cases, well defined closed forms for discrete
and Gaussian Bayesian networks are available.

Maximum likelihood estimation of the parameters tries to find the most likely assignment for the
parameters given the structure of the Bayesian network and the data. For this, we make use of the
likelihood function. Formally, if we are given a dataset Dn = {x1, . . . ,xn} and a Bayesian network
B = (G,Θ) with X = {X1,X2, . . . ,Xd} the likelihood function is defined as:

L(⟨G, θ⟩∣Dn) =
n

∏
i=1

d

∏
j=1

p(xij ∣pa(xj)i,G), (3.7)

where for a given xi ∈ Dn we have xi = (xi1, . . . , xid) and pa(xj)i outputs the values in xi that the
parent’s variables of variable Xj take for that instance.

Thus, we are looking for the values that maximize the likelihood function, that is, for a set of param-
eters estimates Θ̃ we seek the assignment:

θ̃ = arg max
θ

L(⟨G, θ⟩∣Dn).

Alternatively, it is commonly found in literature as:

θ̃ = arg min
θ

− log(L(⟨G, θ⟩∣Dn)) (3.8)

since it is an equivalent but easier to work with the form of Equation (3.7).

Bayesian estimation, on the other hand, tackles the problem by introducting prior distributions to the
parameters. For this problem, we have a prior distribution on the parameters fP (θ) and we update our
beliefs with the new evidence that the dataset Dn provides. This corresponds to computing the posterior
distribution fP ∣Dn(θ∣Dn) and finding the configuration of parameters that maximizes it. Formally, its
corresponding optimization function is given by:
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θ̃ = arg max
θ

fP ∣Dn(θ∣Dn).

Maximum likelihood estimation is the most commonly used method in literature for parameter esti-
mation. Its advantage over Bayesian estimation is its simplicity. In fact, maximum likelihood estimation
can be understood as a particular case of Bayesian estimation where no prior information is given. For
Bayesian estimation, we have the ability to operate in online settings, where we could transform previous
data into our prior knowledge and update our networks with new arriving examples. In the limit, both
cases are proven to converge to the “closest” approximation to the true underlying distributionD that the
chosen Bayesian network structure G is capable of producing.

3.2.3.2 Obtaining the structure

Algorithms for the estimation of the structure of a Bayesian network are and have been historically one
of the most active research topics in the field. The problem is by no means trivial: For a given set of d
nodes X , the number of possible graphs is given by Robinson’s recursive formula (Robinson [1973])

r(0) = 1,

r(d) =
d

∑
i=1

(−1)i+1(d
i
)2i(d−1)r(d − i),

which shows a superexponential growth (according to 2O(d2)) (see Figure 3.2). Additionally, relation-
ships between variables are encoded in a Bayesian network in an ambiguous way. That is, for a given
structure, others exist that encode the same set of conditional independence relationships between the
variables. The class of networks that encode a given set of conditional independence relationships is
called an I-equivalence class. If our goal is to recover a specific structure then our data can only take us
as far as the I-equivalence class.
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Figure 3.2: All possible Bayesian network structures for a three nodes network.

From the numerous proposals to reconstruct/find the optimal structure, two main categories stand
out: constraint-based and score + search.

Constraint- based structural learning
In this approach, our goal is to find the set of conditional independences that best approximates the

relationships between the variables in X . That is, queries for this type of problem are of the form:

(Xi ⊥ {Xj ,Xk}∣Xl)

which can be read as “Xi is independent of Xj and Xk given Xl”. We use independence testing for dif-
ferent subgroupings of variables inX . The specific way in which an independence test answers a query is
not required for the algorithms to work. In all cases, once the network dependencies have been identified,
the output is an undirected acyclic graph that best encodes the found and non-found dependencies, that
is, the I-equivalence class that the final Bayesian network must implement. For hereon, all that is left is
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for a second procedure to assign directions to the arcs so that the final result is a valid Bayesian network
that best approximates D. Computationally wise, in the general case there is an exponential growth with
respect to the number of variables that we must include in a query in order to detect all independencies of
the network. In practice, oftentimes a threshold parameter ig, that controls the indegree of the network,
(that is, the maximum number of parents any node can have) is used. For a fixed ig, however, computa-
tion can be carried out in polynomial time. Most prominent work in literature for this approach is the PC
algorithm (Spirtes et al. [1993]).

In this dissertation, however, we concern ourselves with the next approach.

Score + search structural learning

Here, we approach the problem in a different way: We are equipped with a score function that can
assess the “fitness” of a given network structure with respect to the data Dn, and our goal is to find
networks in the space of DAGs for variables in X that maximize our scoring function. Since the space of
DAGs is super-exponential on X , some algorithms attempt to reduce the search space by making use of
properties within the scoring functions (such as local decomposability, see below) as well as within the
network structure.

For the scoring function, we can find many proposals in literature: An intuitive choice is to use the
likelihood function. Indeed, we can regard the output of the likelihood function, that is, the probability
of the data given the model, as the score of a candidate network. This score, for a network B = (G,Θ)
can be constructed as

log(L(⟨G, θ̃⟩∣Dn))

where θ̃ are the maximum likelihood parameters of G as shown in Equation (3.8).

The likelihood score offers a very interesting property: The score of the likelihood function can be
traced back, in the computation of the likelihood function, to local computations on the variables and
their parent configurations. In the log-likelihood function, these are expressed as addends in the total
sum. Interestingly, this decomposability allows us to assess local changes to a network using a previous
one as a reference, as only a subset of the sums in the likelihood of the previous candidate would change.
A score that exhibits this property is called a decomposable score. In literature, most commonly used
scores for Bayesian networks belong to this category.

The likelihood score alone, however, is not considered to be a good score for candidate networks. The
problem arises from the following property: Let us consider two candidate structures G1 = {VX ,A(1)

X }
and G2 = {VX ,A(2)

X } with maximum likelihood parameters θ̃1 and θ̃2, respectively, for the variables X .
Then, if A(1)

X ⊂ A
(2)
X we have that log(L(⟨G1, θ̃1⟩∣Dn)) ≤ log(L(⟨G2, θ̃2⟩∣Dn)). That is, the likelihood

score shows a preference for complex networks over simpler ones, and if one candidate includes all the
arcs in the same way as another, and some additional ones, the score is guaranteed to be at least equal.
In practice, almost all search procedures using this score will converge to fully connected networks.
The only case where this does not hold is on the unlikely event that an exact conditional independence
between a subset of variables of X is detected in the data, without noise.

In order to correct the previous problem, the Bayesian information criterion (BIC) (Schwarz et al.
[1978]) includes a penalty term on both the sample size and the number of parameters in G. Its expression



3.2. BAYESIAN NETWORKS 35

is given by:

BIC(G∣Dn) = log(L(⟨G, Θ̃⟩∣Dn)) −
log(n)

2
Dim[G].

Dim[G] is the number of free parameters in the model (see Equation (3.2) for discrete networks and
Equation (3.3) for Gaussian networks). This penalty biases the score towards simpler structures. How-
ever, for large n, it can be proven that the optimal candidate structure G∗ maximizes the score, and that
all structures that do not belong to the I-equivalence class of G∗ score strictly lower than those that do.
For each pair of structures that belong to the same I-equivalence class, the scores in both the likelihood
and the BIC score are the same (this is referred to as the equivalence property). Similarly, this score is
proven to be decomposable.

The BIC score is widely used and some other popular scores can be understood as variations of BIC.
Most notably, Akaike information criterion (AIC) (Akaike [1974]) is a well known variation of BIC
where instead of using log(n)

2 Dim[G] for the penalty term, we use 2Dim[G]. The AIC score has the
property over BIC to be an estimator of the Kullback-Leibler divergence between the true distribution
and our candidate model, however, unlike BIC, it does not converge in probability to the true model.
The minimum description length (Schwarz et al. [1978] and Rissanen [1987]) is defined as the opposite
of the BIC, sharing similar properties. Other notable mentions are the deviance information criterion
(Spiegelhalter et al. [2002]) defined as a generalization of the AIC score for hierarchical modeling and
the Hannan-Quinn information criterion (Sin and White [1996]), which can also be viewed as a variation
to BIC and AIC scores with a different penalty term.

Once we are equipped with a scoring function, we need a procedure to navigate the space of DAGs,
finding and proposing candidate models. As we have examined before, brute force search of the DAG
space, or random generation of candidates, is not expected to yield good results even for a target network
with a relatively small number of variables. In the general case, the complexity of our algorithms never
goes below that of a NP-hard problem. For this reason, most search algorithms employed in structural
learning are heuristic algorithms. Here, we do not attempt to examine the complete search space, rather,
to build a “route” towards a local optimum in the score function with a polynomial number of candidate
model evaluations.

Most heuristic search algorithms define three search steps: arc addition, arc deletion and arc reversal.
With this, it is possible to navigate part of the search space considering neighboring structures that differ
from a given one in one of these operations, and rely on a decomposable score that allows for local
changes between different candidate models to easily assess the change that applying those operations
would produce (in fact, only one local score addend changes for addition or deletion and two for reversal).
This direction was fully developed in Chickering et al. [1995] and Buntine [1991]. If the score satisfies
the equivalence property, searching in the space of undirected acyclic graphs is also possible.

In literature, structural search pioneering efforts can be traced to Chow and Liu [1968] for learning
tree-restricted BN topologies. In Cooper and Herskovits [1992], a widely used and first structurally
unbounded algorithm is published. The K2 algorithm only required a node order for the variables to be
provided, but it is not robust as it achieves different networks for different orderings. Still, some works
on the optimal detection of orderings are Larrañaga et al. [1996] and Tabar [2017] and Aghdam et al.
[2019] of recent date. The greedy equivalent search (GES) (Chickering [2002]) algorithm searches in the
space of equivalence classes. It was shown that this algorithm correctly recovers the structure if the data
was sampled from a PGM (with or without directed arcs) when n →∞. Another widely used method is
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the hill-climbing structural learning algorithm (Tsamardinos et al. [2006]) which, adapting from the well
known hill-climbing optimization technique, performs a local greedy search in the space of DAGs.

3.2.4 Bayesian network classifiers

In a supervised classification setting, we use two differentiated sets of variables, the class variables
C ⊂ X and the feature variables Xf ⊂ X . We are given a dataset of annotated examples Dn =
{(x1,c1), . . . (xn,cn)} and our goal is to maximize the quality of new predictions for variables in C,
using the information provided by the feature variables Xf . In our case, Xf ∪ C = X and Dn is a dataset
with no missing values.

A Bayesian network classifier, in our case, uses MPE queries to answer new predictions and treats the
information obtained from the feature variables as evidence for the query. Equations (3.5) and (3.6) illus-
trate typical target functions of our building algorithms. In general, a Bayesian network classifier (BNC)
offers interpretability and explainability over other models while maintaining a competent performance
in metrics like misclassification error.

3.2.4.1 Naive Bayes and extensions

The most popular Bayesian classifier is also the simplest. A naive Bayes classifier (NB) (Minsky [1961])
encodes the assumption that the features are conditionally independent given the class variable (a single
class variable). It has a fixed structure where arcs are set to go from the class variable to the feature
variables (see Figure 3.5).

Figure 3.3: A naive Bayes classifier structure.

The factorization of the joint probability distribution offered by a naive Bayes, for C = {C1} and
Xf = {X1, . . . ,Xd−1} is:

p(C1,X1, . . . ,Xd−1) = p(C1)
d−1

∏
i=1

p(Xi∣C1).

This can be seen as an attractive decomposition in terms of simplicity. For inference purposes, the
particular case of naive Bayes using MPE rule is defined as:

c∗ = arg max
c1

p(C1 = c1∣x).

This equation shows that for each MPE query, we must only examine as many cases as values in
V al(C1) for a discrete network. In general, inference can be carried out in linear time for the naive
Bayes case.
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Since the structure is fixed, there is no need for a structural learning stage. Parameter estimation is
performed in two possible ways: as described for the general case, but applied to a simple structure, or
in a discriminative way, finding the parameters that yield the lowest missclassification rate. In general,
the naive Bayes model is considered to be a non-demanding computational method with surprisingly
good performance for its simplicity and strong assumptions. They have a history of success in the early
stages of artificial intelligence (Gorry and Barnett [1968] and Warner et al. [1961]), with the notable
case in De Dombal et al. [1972] where the model significantly outerperformed experts in diagnosing
acute abdominal pain. On the other hand, naive Bayes has shown to be incapable of capturing complex
patterns in the data. The XOR problem cannot be solved by a naive Bayes classifier (Ling and Zhang
[2002]) and the decision boundary of a naive Bayes classifier is a hyperplane in the binary case (Minsky
[1961]) (that is, when the class variable has two possible labels), and is a sum of polynomials in the
arbitrary case (Duda et al. [2012] and Varando et al. [2015]). For this, nowadays, its use alone is often
discarded in favor or lower-bias models.

The naive Bayes classifier has spawned numerous research directions and numerous extensions to
the base model. Most known works include the tree augmented naive Bayes (Friedman et al. [1997])
commonly known as TAN, that relaxes the constrains on the feature subgraph to allow for tree type
structures (Figure 3.4).

Figure 3.4: A tree-augmented naive Bayes classifier structure.

The k-dependence Bayesian classifier (Sahami [1996]) imposes less restrictive constrains by only
allowing acyclic structures in the feature nodes within a bounded indegree ig = k, that is, the number of
parents for a feature node on the resultant network can be at most k + 1 (the class adds one parent). The
Bayesian network augmented naive Bayes (Friedman et al. [1997]), commonly known as BAN, allows
an unrestricted graph in the feature variables. For other extensions of the naive Bayes classifier and more,
the reader is directed to Bielza and Larrañaga [2014a].

3.2.4.2 Multidimensional BN classifiers

In the general case, we are not bounded by a single class variable or a fixed structure. Depending on
the number of class variables, the problem can be considered as a unidimensional classification problem
(or simply a classification problem) when ∣C∣ = 1 or a multidimensional classification problem (Bielza
et al. [2011]) if ∣C∣ = s, s > 1. The structure of a general classifier, however, is still bounded by some
strict restrictions. Namely, a class variable should not have feature variables as parents, and the classifier



38 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

should not contain feature variables that, for structural reasons, cannot affect the classification outcome
in any possible case.

Therefore, in all cases our MPE queries are tasked with returning the label assignment c that maxi-
mizes the posterior probability

c∗ = (c∗1 , . . . , c∗s) = arg max
c1,...,cs

p(C1 = c1, . . . ,Cs = cs∣x).

In multidimensional BN classifiers (MBCs) (Van Der Gaag and De Waal [2006]), then, we seek to
answer simultaneously a label assignment to multiple class variables. In here, class variables may have
other class variables as parents, but since inference complexity scales with structural complexity, many
works using restricted structures exist. In general multidimensional problems, the simplest case is to
consider an empty structure in the class subgraph although no dependence relationship between class
variables is modeled (Godbole and Sarawagi [2004] and Zhang and Zhou [2005] for binary classes in a
multi-label fashion). An important subsequent work (Read et al. [2009]) used chain type structures to
build a multidimensional classifier. In this setting, after a class variable is selected as part of the chain,
it becomes part of the evidence, along with the features, to select a new member of the chain among
the remaining class variables. For BNs specific results, other popular topologically restricted model
proposals are tree-tree MBC (Van Der Gaag and De Waal [2006]) (MBCs that follow a tree structure both
in class and feature subgraphs), polytree-polytree MBC (De Waal and Van Der Gaag [2007]) (MBCs that
follow a polytree structure both in class and feature subgraphs), a special DAG-DAG MBC (Rodrı́guez
and Lozano [2008]) (MBCs that follow a bounded indegree DAG structure both in class and feature
subgraphs) and general structures in Bielza et al. [2011]. In Chapter 7 of this disseration, we focus on
the class bridge-decomposable proposal, first presented in Bielza et al. [2011] and further developed in
Borchani et al. [2010].

In order to learn the structure of an MBC, algorithms fall within three categories: Filter, wrapper
and hybrid (Bielza et al. [2011]). In all cases, we refer to greedy score+search algorithms. A filter
approach allows for a faster computational time by scoring the network independently of the classifica-
tion performance, looking for a good structure according to some other criteria. A wrapper approach is
computationally expensive, but yields better results for classification. Wrapper algorithms assess how
changes in arc inclusion, deletion or reversal affect the misclassification error of the resultant network,
requiring a MAP/MPE query at each step. Hybrid strategies use for some parts of the network a filter
score and for others a wrapper score, somewhat averaging the pros and cons of both approaches.

In a more general view, many strategies that involve the treatment of multiple class variables have
been proposed without the explicit dependence of a Bayesian network classifier, and have been adapted
to the particular case of the BN domain. A multi-label classification complete survey is provided in
Gibaja and Ventura [2014].



Chapter 4
Ensembles of classifiers and random
forests

4.1 Combining classifiers

The idea of combining classifiers in machine learning can be traced back to Kearns [1988] and Kearns
and Valiant [1993] with the question “Can a set of weak learners create a single strong learner?”. The
question was answered positively in Schapire [1990] with the creation of the first version of boosting.
Boosting (Schapire [1990], Freund [1995], Freund and Schapire [1997] and Schapire [2003]) is an en-
semble of learners that generally works by iteratively training a population of classifiers, each using a
dataset that emphasizes the mistakes made by the previous members of the population. Decisions are
made by combining the predictions of the learners, typically by majority voting in classification and
averaging in regression. Of all boosting algorithms (Zhou [2012]), the most notorious is the AdaBoost
algorithm (Freund and Schapire [1997] and Friedman et al. [2000]), which improves on previous ver-
sions by adapting to the weak learners. In Friedman et al. [2000], AdaBoost adjusts the distribution for
the next learner by minimizing

EE(h∣f,Dn) = Ex∼Dn[e−f(x)h(x)], (4.1)

where EE(h∣Dn, f) is the Adaboost exponential loss function, f(x) is the true distribution (in practice,
our labeled examples) and h(x) is a weak learner from the set H = {h1, . . . , ht} and then combines the
t predictions of x by additive weighting

t

∑
i=1

wihi(x), (4.2)

where predictions by learners hi are weighted according to some weighting scheme w1, . . . ,wt.

That is, after a base learner is trained and its error is measured, the probabilities of the samples that
comprise the next dataset for the next weak learner to learn are updated using Equation (4.1). When all
learners are trained, their predictions are combined using Equation (4.2). The weights paired to each
learner depend on the individual error of each learner. In Friedman et al. [2000], this is calculated with
the following expression:

39
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wi =
1

2
log (1 − erri

erri
) ,

where erri is the error of base learner hi evaluated in its training dataset.
Adaboost in its most known form and many of its variants have been interpreted as procedures that

perform gradient descent over the hypotheses space using a convex cost function (Mason et al. [2000]).
Furthermore, adding random noise to classification has been shown to drastically decrease performance
in boosting algorithms that fit this description (Long and Servedio [2010]). However, non-convex opti-
mization algorithms for boosting have been proposed with successful response to this problem (Cheama-
nunkul et al. [2014]).

In general, boosting learners are viewed as high accuracy, overfitting resistant easy to implement
procedures for classification and/or regression. With the mentioned caveat of vulnerability to noisy data
in many of its variants.

4.1.1 Bagging

In the ensemble category of learners (also called metalearners), two clearly defined directions can be
identified. The first one corresponds to boosting and its variants and can be thought of as the “sequential”
approach to learners combination. The second one is bagging, and conversely, can be thought of as the
“parallel” approach to the combination of learners. In this dissertation we focus on this approach in
Chapter 8.

Bagging (Breiman [1996]), originating from Bootstrap AGGregatING, is a method for combining
classifiers whose main steps are, as implied, bootstraping (Efron and Tibshirani [1994]) and aggregation.
Given a datasetDn, we seek to train t learners, each on a bootstrapped version sampled from the original
data.

Formally, we have a population of learners H = {h1, . . . , ht} and B(Dn) = {D∗1 , . . . ,D∗nn} the set
of all bootstrap variations of Dn. Our goal is to compute

h∗(x,Dn) = EB(Dn)[h(x,B(Dn),Dn)]. (4.3)

This sampling is typically done with replacement, which allows for the inclusion of repeated exam-
ples. The differences in training data produce differences in the final models that comprise the population
of learners. Then, predictions from all models are combined typically by voting in classification and av-
eraging in regression. In practice and in the general case, Equation (4.3) is evaluated using Monte Carlo
simulation.

The theoretical understanding of why bagging works has produced significant literature. In Breiman
[1996] and Dietterich [2000], it is shown that an ensemble strength can be characterized in terms of the
individual accuracy of its members and the overall diversity of the population. An extreme case of why
uncorrelated classifiers affects the outcome is the case where all members of the ensemble are copies
of a single learner. In this setting, its clear that no improvement can be achieved by using an ensemble
and the system degenerates to the task of training that single learner. On the other hand, if errors in the
learners are independent of each other and the probability of each learner to be correct is p > 1/2, then
for each learner predicting an instance incorrectly, a majority of others is expected to predict it correctly,
effectively lowering the probability of error of the ensemble beyond that of the base learners (Figure 4.1).
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Figure 4.1: An intuitive view of why diversity and accuracy influence performance in an ensemble of classifiers. The colored
bars represent the correct (blue) to incorrect (red) classifications of a population of classifiers and their distribution in a dataset.
The colors of the “Voting result” bar are calculated by a majority vote. In case A, we show the less diverse error distribution
scenario, where all classifiers are identical and so is the result. In case B, we can see how we can take advantage of uncorrelated
errors to “compensate” for the mistakes of other classifiers, greatly reducing the error. Notice, however, that if the colors were
reversed (more specifically, if the correct labels were the minority) the ensemble would instead amplify the error in case B.

In Friedman and Hall [2007] a smooth estimator is decomposed into terms of linear and superlinear
orders (i.e., quadratic or cubic) and the effects of bagging analyzed. It was concluded that the linear
order term of the estimator is roughly unaffected, but variance is reduced for the terms of superlinear
orders. This is further detailed in Buja and Stuetzle [2000], which uses U -statistics to study the effects of
bagging on variance, square bias and mean squared error (MSE), arriving at broadly similar conclusions.
In Büchlmann and Yu [2002], bagging is characterized as a softhresholding function that is specially
effective in reducing the MSE on non-smooth, unstable predictors, such as decision trees, whose decision
boundary is comprised exclusively of hard cuts. Indeed, while practical success of bagging is a well
documented fact (Breiman [2001], Valentini et al. [2003], Chen and Yu [2007], Biau and Devroye [2010],
Zhang et al. [2010] and Syarif et al. [2012]), as we will see in Section 4.4, random forests is perhaps the
most successful use of bagging.

In this dissertation we concern ourselves with the effect of bagging, specially in the cases where the
weak learners are nearest neighbors (NN) and decision tree (DT) predictors.

4.2 Nearest neighbors

The nearest neighbors (NN) predictor (Fix and Hodges Jr [1951] and Fix and Hodges [1952]) is one of
the oldest machine learning methods used to predict new examples from data. It is still used today as
its simplicity, easy implementation and intuitive understanding make it an attractive proposal. A clear
advantage of NN over other methods, besides its simplicity, is that it does not require training time and
prediction is done in polynomial time. Additionally and perhaps due to its simplicity, it is considered a
well understood method. For these reasons, it has not been deprecated from machine learning literature
and continues to see practical use.

Formally, a k-NN predictor is a function h ∶ X → Y that outputs a prediction over a domain Y using
a distance metric ∣∣.∣∣p and the variables of X . In all cases, NN predictor uses the y-associated values of
the k ∈ N neighboring datapoints to the target x0 to output a prediction, where “neighboring” is defined
with respect to ∣∣.∣∣p. The properties of Y determine the type of problem, that is either classification or
regression.
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Let (x′1, y′1), (x′2, y′2), . . . , (x′n, y′n) be an order for the data such that ∣∣x′1−x0∣∣p < ∣∣x′2−x0∣∣p < . . . <
∣∣x′n −x0∣∣p. Then, if we define yknn = {y′1, . . . , y′k} as the set that contains the y-associated values of the
k “closest ” datapoints, we can write a prediction for classification as:

y∗ = arg max
y

∑
y′i∈yknn

1[y′i=y]

This can be read as the selection of the most popular label among the k selected instances.

For regression we have:

y∗ = 1

k
∑

y′i∈yknn
y′i

which is simply the average of the y-associated values of the k selected instances.

NN predictors work well when the target function does not deviate largely from the assumption that
datapoints close in distance have also close y-associated values. This can be intuitively seen for k = 1,
as the decision boundary of the NN algorithm is a Voronoi diagram (Figure 4.2).

Figure 4.2: Voronoi cells representing the decision boundary of a 1-NN classifier/regressor in a 2-dimensional feature space.
In this setting, if we were to select an arbitrary location of the diagram as the coordinates for a datapoint to be predicted, the
y-associated value of the datapoint included in the Voronoi cell would be used for the prediction.

The first theoretical results on the NN algorithm are presented in Cover et al. [1967], where it is
shown that the risk of a 1-NN predictor converges to double the Bayes optimal error under mild condi-
tions. In Devroye et al. [1996] we can see a more detailed analysis and other results of interest. In Biau
and Devroye [2010], the bagged NN is explored together with a known variation of interest in this dis-
sertation, the k-potential nearest neighbors. For relatively recent convergence results, we have Biau et al.
[2010]. Finally, in even more recent studies, Gottlieb et al. [2014] proposed a finite sample bound, with
similarities to Vapnik-Chervonenkis bounds (or VC bounds, a well-known measure of the expressive
power of a learning model)

In Chapter 8, we will examine the case of bagging the NN predictor.
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4.3 Decision trees

Formally, a decision tree is a function h ∶ X → Y that outputs a prediction over a domain Y using
a splitting rule, a stopping criterion, a prunning criterion (in some cases) and the variables of X . A
decision tree is built using an associate tree structure that sorts new arriving examples based on the
splitting rule (also referred to as splitting criterion). At each bifurcation of the tree, a Boolean criterion
is applied to a direction of the feature space and datapoints are separated into different paths depending
on the outcome. The final result can be interpreted as a recursive application of “IF THEN ELSE” rules
that encode the pattern of our predictive model (Figure 4.3). At the leaves of the tree, a predictive value
is assigned to new arriving examples based on the type of problem. As in Section 4.2, the properties of
Y determine the type of problem: If Y is a discrete set of values we use decision trees for classification;
if it is continuous, for regression.

Figure 4.3: Example of a decision tree for classification for the well-known iris dataset (Fisher [1936]). It displays the
classification of three different species of iris flowers based on various length measurements of each population. At each node,
we see the most popular label at that level, the proportion of each label in the data and the proportion of the data that reaches
the node.

4.3.1 Building decision trees

Decision trees can be built with the aid of human experts. However, for machine learning purposes, we
are interested in algorithms that can build decision trees automatically from data. Algorithms for this
endeavor must decide on the different aspects that compose a decision tree. The main design choices that
characterize the different existing proposals are: The type of value assignment to instances at the leaves,
the type of splitting criterion, the type of stopping criterion and the type of pruning criterion.
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The type of value assignment defines the way instances are labeled at the leaves. The available
choices are typically separated for classification and regression trees. A splitting rule typically consists
of the recursive application of a splitting criterion to subsequently smaller partitions of the dataset until
the terminal nodes (leaves) are reached, leaving a subset of instances that are used for the final value
assignment. The stopping criterion halts the depth exploration (branching) of the tree when a local
criterion on the resultant partitions of the split is satisfied. Finally, the pruning criterion seeks to reduce
the dimensions of the final tree by merging terminal nodes.

We review now the most relevant proposals in literature.

4.3.1.1 Value assignment to a prediction

For value assignments, we follow a similar approach as in the NN case.
Let us define U = {u1, u2, . . .} as the set of leaves of a decision tree, ui(Dn) ⊂ Dn as the partition

of the dataset that only contains the datapoints in leaf ui. Then, for a given leaf ui and a datapoint x0 to
predict, the label assignment y∗ for classification can be written as:

y∗ = arg max
y

∑
(xi,yi)∈ui(Dn)

1[yi=y].

This amounts to select the most popular label in ui(Dn). For regression, we have:

y∗ = 1

∣ui(Dn)∣
∑

(xi,yi)∈ui(Dn)
yi.

Thus, the most used value assignment is simply the average value of the y-associated values of the
datapoints in the leaves.

4.3.1.2 Types of splitting criteria

At any given node, we can define S = {s1, s2, . . .} as the set of all candidate splittings, and for each
si ∈ S we have si1 and si2 as the two resultant subsets of the data after splitting it at si. Then, all splitting
criteria can be regarded as scoring functions that assess the candidates in S. In order to select the next
cut point s∗, our task is generally to identify the candidate with the minimum (or maximum) score. Most
notable splitting criteria are:

1. Misclassification error:

MCE(sp) = min
y

1

nsp1
∑

(xi,yi)∈sp1
1[yi≠y] +min

y

1

nsp2
∑

(xi,yi)∈sp2
1[yi≠y],

where nsp1 and nsp2 are the number of datapoints contained in partitions sp1 and sp2, respectively.
Our task is then to find s∗ such that

s∗ = arg min
sp∈S

MCE(sp),

This criterion simply measures the error in classification that we commit by choosing certain split.
It is considered a simple split and can be replaced by either the Gini impurity or the information
gain splitting criteria in most cases.
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2. Gini impurity: Let us define p(i,Dn), in this context, as the proportion of datapoints with y-
associated label i in a dataset Dn. Then the Gini impurity (Breiman et al. [1984]) can be written
as:

GI(sp) = (1 −
l

∑
i=1

p(i, sp)2) − (
nsp1
nsp

(1 −
l

∑
i=1

p(i, sp1)2) +
nsp2
nsp

(1 −
l

∑
i=1

p(i, sp2)2)) ,

where l is the total number of labels of y in Dn, nsp = nsp1 + nsp2 and s∗ is obtained with

s∗ = arg min
sp∈S

GI(sp).

It can be interpreted as an impurity measure that measures the divergences of the label probability
distributions. It is minimized (with score 0) when the partition of the data to split contains only
members of one class.

3. Information gain: Used in the ID3 and C4.5 algorithms (Quinlan [1993]), it can be written as:

IG(sp) =
l

∑
i=1

p(i, sp) log2(p(i, sp))

−(
nsp1
nsp

l

∑
i=1

p(i, sp1) log2(p(i, sp1)) +
nsp2
nsp

l

∑
i=1

p(i, sp2) log2(p(i, sp2))) ,

and our target s∗ can be expressed as

s∗ = arg min
sp∈S

IG(sp).

It seeks to separate the data based on the definition of entropy in information theory. While it stems
from a different field of study that the Gini index, some reports suggest that differences between
the Gini index and information gain are small (Raileanu and Stoffel [2004]) and can, in most cases,
be used interchangeably.

4. Sum of squared errors: For regression, the most commonly used splitting criterion is to minimize
the sum of squared errors (Breiman et al. [1984]):

SSE(sp) =
1

nsp
∑

(xi,yi)∈sp
(yi − yp)2 −

⎛
⎝

1

nsp1
∑

(xi,yi)∈sp1
(yi − yp1)2 + 1

nsp2
∑

(xi,yi)∈sp2
(yi − yp2)2⎞

⎠

where yp, yp1 and yp2 are the means of the y-values in sp, sp1 and sp2, respectively. Thus we are
looking for s∗ such that

s∗ = arg min
sp∈S

SSE(sp).

It can be seen as a variance reduction technique, grouping datapoints by the similarity of their
y-associated values.

5. Random split: This splitting criterion simply picks a random possible split as s∗.
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4.3.1.3 Types of stopping criteria and pruning

The stopping criterion is a condition that regulates the termination of the recursive exploration of splits.
A common instance of this is to define a fixed maximum depth for the tree to grow, always producing
trees of that depth or less. Another existing solution is to apply a pruning algorithm to a fully built tree
(Breiman et al. [1984] and Quinlan [1993]). Decision trees that suffer from excessive size run the risk
of overfitting, while on the contrary small trees may suffer from underfitting or high bias. Pruning large
decision trees can lead to some improvements in generalization error. This is typically done in a path
from the leaves to the root, but algorithms that travel the tree in the opposite direction also exist. After a
decision tree is built until it has few instances per leaf, the algorithm searches to remove leaves that do
not contribute positively to the performance of the model.

Finally, another alternative is to limit the number of instances that we allow at the leaves of a tree.
In Breiman et al. [1984], CART trees use a parameter k ∈ N to stop splitting when the leaves contain
k or fewer instances. Typically, k = 1 is used for classification and k = 5 for regression. This stopping
criterion enjoys a very important theoretical property that will be discussed at length in Chapter 8. It is
our preferred choice for this dissertation.

4.3.2 Decision trees in literature

Literature on decision tree is extensive and reveals different stages of development for the model. Modern
decision trees are shown in Breiman et al. [1984] and Hastie et al. [2009]. Most prominent algorithms for
learning decision trees are the CART algorithm (Breiman et al. [1984]) and the ID3 and C4.5 algorithms
(Quinlan [1993]). In the CART algorithm, trees are grown using the Gini splitting criterion and stopping
mechanism is equipped by a type of pruning known as cost-complexity pruning. It works for both
classification and regression, in which case the sum of squared errors splitting criterion is employed. ID3
grows trees aggressively until all instances in the leaf are of the same class (or there is no information
gain), using the information gain splitting criterion. C4.5 improves over the previous algorithm by using
gain ratio as splitting criteria (Quinlan [1993]), thresholding on the number of instances for stopping
criteria and including error-based pruning. For other decision tree building algorithms the reader is
directed to Lim et al. [2000]. All algorithms reviewed here and most algorithms in literature greedily
search for the optimal split, while exhaustive search for the optimal tree has been proven to be an NP -
hard problem even in restricted settings (Hancock et al. [1996], Laurent and Rivest [1976] and Naumov
[1991]).

4.4 Random forests

Random forests (RFs) (Breiman [2001]) are an ensemble of randomized classification or regression trees.
Each tree is randomized by the use of bootstrapping in the training set and by a mechanism known as
random subspace selection (RSS). RSS introduces variability between decision trees by sampling, at
each node in the building process of the tree, p out of d features (with p ≤ d) that are then used to search
for the optimal splitting point. A conventional value for a RF is p =

√
d in classification, and p/3 for

regression. Predictions are then combined by voting in classification or averaging in regression.
Formally, we can model the randomization of each tree using a random variable Φ. Then a RF is a

predictor formed by a set of trees T = {h(x, φ1,Dn), . . . , h(x, φt,Dn)}, t ∈ N, and we can express a
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prediction from the RF estimate as:

fRF (x,Dn) = EΦ[h(x,Φ,Dn)]. (4.4)

In here, Φ contains all sources of randomness in the construction of each tree, namely, bootstrapping
of the data, the splits to perform and the random subspace method choices. We then calculate our
expectation with respect to the population of DT learners generated by Φ.

In practice and up to this point, Equation (4.4) is evaluated using Monte Carlo simulation. That is,
algorithmically generating a number t ∈ N of trees and computing the prediction of each tree indepen-
dently of the others. We now depict a general algorithm (see Algorithm 4.1), compatible with many
versions of a RF using binary trees, for the prediction of a datapoint x0 in more detail.

Algorithm 4.1 Calculate RF
Require: Dn, t, x0 , Cs // The data, the total number of trees, the point to predict and the splitting

criterion, respectively.
1: Initialize P = ∅ // Where P is the the list of predictions made by the trees
2: for i = 1 to t do
3: D∗i := sample with replacement(n,Dn) // Bootstrap sampling
4: Rs ∶= push(D∗i ) // A stack to keep track of the splitted subregions
5: Rf ∶= ∅ // A list with the final leaves of the tree
6: while !is empty(Rs) do
7: Ra ∶= pop(Rs)
8: if stopping criterion fulfilled(Ra) // Here we can plug any of the different stopping criteria of

a decision tree then
9: Rf ∶= add(Ra,Rf)

10: else
11: S ∶= select directions to split(Ra) // Here we implement random subspace method or other

schemes to select the directions to split
12: (Ra1,Ra2) ∶= Split(Ra,S,Cs) // Here we find the best splitting point in Ra according to the

subset of directions S and the splitting criterion Cs, and cut the dataset into two parts.
13: Rs ∶= push(Ra1)
14: Rs ∶= push(Ra2)
15: end if
16: end while
17: u ∶= Locate leaf for prediction(x0,Rf) // After the tree is trained, we can assign a leaf to the

datapoint to predict
18: pi ∶=predict(u) // In order to obtain a prediction, here we can plug any of the value assignment

options for a decision tree
19: P ∶= add(pi, P ) // We store the predictions made by this tree
20: end for
21: Output: Combine predictions(P ) // We can combine the predictions here using any scheme suited

for RFs. Typically voting for classification and averaging for regression

RF is one of the most successful methods in machine learning (Howard and Bowles [2012]). Many
versions of it exhibit state-of-the-art performance, can handle well large datasets even at low sample sizes,
can be used to estimate variable importance, have a relatively low number of parameters for an ensemble,
generally have high accuracy and run in polynomial times. There are numerous reports of success in
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practical applications, such as Svetnik et al. [2003], Prasad et al. [2006], Cutler et al. [2007], Dı́az-
Uriarte and Alvarez de Andrés [2006] and Shotton et al. [2011]. The reader is directed to Criminisi et al.
[2012] and Boulesteix et al. [2012] for two application-focused state-of-the-art reviews. The theoretical
aspects of RFs, however, still remain under active investigation, as it is considered a not-well-enough
understood model. In this dissertation we concern ourselves with the theoretical developments of RFs
and review some of them in detail in Chapter 8.

Since its inception, and specially given its success and popularity, many extensions of RFs are avail-
able. While one could argue that using any combination of all design choices detailed in Section 4.3
for the base trees would produce at least some different types of RFs, we focus on prominent results in
literature. In Geurts et al. [2006], the extra-tree algorithm randomly samples a subset of all split points
that can be performed and a given node and then searches for the optimal split in the fashion of Breiman’s
CART trees. In the original work (Breiman [2001]), a variant where the split can consist of linear combi-
nations of features is proposed. In Ziegler et al. [2010], a fast version of the algorithm, known as random
jungle, was implemented as a response to concerns in parameter tuning procedures, previously studied
in Dı́az-Uriarte and Alvarez de Andrés [2006], Bernard et al. [2008] and Genuer et al. [2010].

Motivated by the need to perform theoretical studies on the model, simplified versions of RFs have
been proposed in literature. Centered forest (Breiman [2004]) is a type of RF that ignores bootstraping,
sets p = 1 for RSS and splits the data at the center of the range of the selected coordinate, with a stopping
criterion of k or less datapoints per leaf. They were studied in Biau et al. [2008], Scornet [2016] and
Biau [2012]. A similar approach, but swapping centered splits for empirical median splits, is discussed
in Scornet [2016]. In Lin and Jeon [2006], RF omits bootstrapping for analysis purposes. In Cutler
and Zhao [2001] the PERT-perfect trees can also be thought of as a simplification, since they switch the
adaptive splitting criteria in the original CART trees for a purely random non-adaptive one. In Arlot and
Genuer [2014], it is shown how a simplified version of a RF model can be viewed as a kernel estimate,
also exploring a connection between RFs and kernel estimation that was first mentioned in Breiman
[2000].

Finally, some extensions seek to augment the functionality of the base algorithm. In Winham et al.
[2013] trees are weighted according to their accuracy in prediction. In a related approach, Bernard
et al. [2012] defined tree building process designed so that newly created trees perform better where the
previous ones were lacking. In Saffari et al. [2009], Denil et al. [2013], Lakshminarayanan et al. [2014]
and Yi et al. [2012] RFs are equipped with online learning capabilities, that is, the ability to incorporate
newly generated instances of data to the existing training set to further improve prediction capabilities.
In Ishwaran et al. [2008], Yang et al. [2010] and Ishwaran et al. [2011], the extension is to the domain of
survival analysis.

Overall, the literature surrounding RFs is quite extensive and many alternatives to the types of RFs
presented here can be found. For an interesting and more complete overview, Biau and Scornet [2016]
summarizes well the current situation.
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Chapter 5
Univariate and bivariate truncated von
Mises distributions

5.1 Introduction

The von Mises distribution has received undisputed attention in the field of directional statistics (Jupp
and Mardia [1989]) and in other areas like supervised classification (López-Cruz et al. [2015]). Thanks
to desirable properties such as its symmetry, mathematical tractability and convergence to the wrapped
normal distribution (Mardia and Jupp [2000]) for high concentrations, it is a viable option for many
statistical analyses. However, angular phenomena may present constraints on the outcomes that are not
properly accounted for by the density function of the von Mises probability distribution. Thus, a trun-
cated distribution with the capabilities of the von Mises distribution is strongly suggested. Additionally,
there is hardly any literature in this direction, and to the best of our knowledge, only one paper, Bistrian
and Iakob [2008], proposes a definition of the truncated von Mises distribution.

In this chapter, we propose a new definition of a truncated probability distribution, whose parent
distribution is the von Mises distribution, for angular values. The univariate and bivariate cases of this
distribution are explicitly developed.

Section 5.2 introduces the definition for the univariate case and derives some properties of the dis-
tribution, calculates the maximum likelihood estimators of the parameters and studies the distribution
moments. Section 5.3 addresses the definition of the bivariate truncated von Mises, maximum likelihood
estimation of the parameters and the definition and study of the conditional and marginal truncated dis-
tributions. Section 5.4 shows a real data application where this distribution successfully models the data.
Finally, Section 5.5 discusses the summary and conclusions.
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5.2 Univariate truncated von Mises distribution

Definition 5.2.1. The truncated von Mises distribution is presented as a four-parameter generalization of
the non-truncated case for truncation parameters a, b as

ftvM(θ;µ,κ, a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

eκ cos(θ−µ)

∫ ba eκ cos(θ−µ)dθ
if θ ∈ Oa,b

0 if θ ∈ Ob,a

where µ ∈ O is the location parameter, κ > 0 the concentration parameter, O is the circular set of
points (O ∶ (x, y) such that x2 + y2 = 1), Oa,b ⊂ O is obtained by selecting the points in the circular path
from a ∈ O to b ∈ O in the preferred direction (counterclockwise) and Ob,a is its counterpart w.r.t. O.

Our proposed definition differs from Bistrian and Iakob [2008] in the circular definition of the trun-
cation parameters, not bounded to a linear definition involving the location parameter. The additional
developments covered in this article can also be considered a novelty.

To illustrate the differences with the non-truncated case for these parameters, Figure 5.1 represents
multiple examples of truncated von Mises distributions.

Figure 5.1: Several truncated von Mises distributions. Symmetrical function with maxima not at the extrema (thin continuous
line), strictly increasing function (dashed line), strictly decreasing function (thick continuous line), unique critical point that is
a minimum (dash-dot line) and two critical points, a maximum and a minimum (dotted line).

It is a well-known result (Abramowitz and Stegun [1964]) that 2πI0(κ) = ∫
2π

0 eκ cos(θ−µ)dθ, where
I0(κ) is the modified Bessel function of the first kind and order 0, that is,

I0(κ) =
∞
∑
m=0

x2m

(m!)22m
.

The above expression suffices for truncation parameters a, b such that Oa,b = O. However, it is necessary
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to calculate the general case for non-restricted truncation parameters. Taking w = ⌊n2 ⌋ + modn2 − 1, we
have obtained:

Lemma 5.2.1. ∫
b
a e

κ cos(θ−µ)dθ = I(b;µ,κ) − I(a;µ,κ), where

I(θ;µ,κ) =
∞
∑
n=0

κn

n!

⎛
⎝

sin(θ − µ)
w

∑
i=0

⎛
⎝

cosn−2i−1(θ − µ)
2i

∏
j=0

(n − j)−(−1)j⎞
⎠

+
((−1)n + 1)∏w

j=0(n − j)−(−1)j(θ − µ)
2

⎞
⎠
.

I(θ;µ,κ) is the distribution function of the positive support of the truncated von Mises density. (Note
then that while truncation parameters are circular quantities, the values for the integration coefficients
are linear)

Proof. See Appendix A.

5.2.1 Maximum likelihood estimation

Provided we have a sample of observations θ1, θ2, . . . , θn from a truncated von Mises distribution (1),
we obtain:

lnL(µ,κ, a, b; θ1, θ2, . . . , θn) =
n

∑
i=1

ln
⎛
⎝

eκ cos(θi−µ)

∫
b
a e

κ cos(θ−µ)dθ

⎞
⎠

=
n

∑
i=1

κ cos(θi − µ) − n ln(∫
b

a
eκ cos(θ−µ)dθ)

where lnL(µ,κ, a, b; θ1, θ2, . . . , θn) is the log-likelihood function for the truncated von Mises distribu-
tion.

We now seek to solve the system of four log-likelihood equations created by the four parameters of
the distribution. For parameters µ,κ, we have

∂ lnL

∂µ
= 0

∂ lnL

∂κ
= 0.

As parameters a, b, define the region of the greater-than-zero density, we find that all θ1, . . . , θn observa-
tions necessarily lie within the subset Oa,b. This, together with the −n ln (∫

b
a e

κ cos(θ−µ)dθ) sub term of
(3), allows us to isolate the estimators

Oâ,b̂ = argmax
a,b

(max({A(Oθ′1,θ
′

2
), . . . ,A(Oθ′n−1,θ

′
n
),A(Oθ′n,θ

′

1
)})),

where A(Oθ1,θ2) is the angle between θ1 and θ2, and {θ′1, . . . , θ′n} is the sample sorted in ascending
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order. Intuitively, the truncation parameters are separated by the largest angle and are contiguous in a
sorted finite circular sample.

From this result, we can say that the truncation parameters of the truncated von Mises distribution
have population-only dependent maximum likelihood estimators. For parameters µ and κ, interdepen-
dency is a consequence of the possibly non-symmetrical shape of the distribution. If we observe the
expressions

1

n

n

∑
i=1

sin(θi − µ) −
eκ cos(a−µ) − eκ cos(b−µ)

∫
b
a e

κ cos(θ−µ)dθ
= 0

1

n

n

∑
i=1

cos(θi − µ) − ∫
b
a cos(θ − µ)eκ cos(θ−µ)dθ

∫
b
a e

κ cos(θ−µ)dθ
= 0,

eκ cos(a−µ) − eκ cos(b−µ) = 0 holds if a, b are symmetrical w.r.t. µ, reducing the location parameter esti-
mator to that of the non-truncated case (Mardia and Jupp [2000]), the circular sample mean µ̂. As no
population-only dependent expressions of the parameters µ and κ were found, optimization techniques
to maximize the log-likelihood function for those parameters are needed.

5.2.2 Moments

The moments in circular statistics are particular values of the characteristic function. The r-th moment
about a direction d can be written as

mrtvM = E[eir(X−d)].

The first moment about the 0 direction for the truncated von Mises is calculated as

m1tvM = ∫
b
a cos(θ)eκ cos(θ−µ)dθ

∫
b
a e

κ cos(θ−µ)dθ
+
i ∫

b
a sin(θ)eκ cos(θ−µ)dθ

∫
b
a e

κ cos(θ−µ)dθ
,

and we can relate (5) to the first moment about the µ direction, denoted as m′
1tvM

as

m1tvM = eiµm′
1tvM

. (5.1)

Notice that if cos(a − µ) = cos(b − µ), then m′
1tvM

= ∫ ba cos(x−µ)eκ cos(x−µ)dθ

∫ ba eκ cos(x−µ)dθ
= R, the mean resultant

length of µ and thus m1tvM = eiµR.

An alternative expression for m1tvM can be found by considering equations E[cos(x)] = R′ cos(µ′)
and E[sin(x)] = R′ sin(µ′), where R′ and µ′ are the sample mean resultant length and sample mean,
respectively. We can then state

m1tvM = E[cos(x)] + iE[sin(x)] = R′ cos(µ′) + iR′ sin(µ′) = R′eiµ
′

. (5.2)

Thus, merging Equations (5.1) and (5.2), we obtain
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ei(µ
′−µ)R′ =m′

1tvM
,

which can be seen as a valuable expression as it contains the sample mean (µ′) and the location parameter
of the distribution (µ).

5.3 Bivariate truncated von Mises distribution

The non-truncated bivariate von Mises distribution was first proposed by Singh [2002] and extended and
developed in Mardia et al. [2008] and Mardia and Voss [2014]. It is a unimodal/bi-modal function on
the torus fbtvM ∶ O×O→ R obtained by replacing the quadratic and linear terms of the normal bivariate
distribution with their circular analogues. This distribution is known as the “sin variant bivariate von
Mises distribution” and is defined for dependent pairs of angular variables. It is expressed for variables
θ1 and θ2, as

f(θ1, θ2) = Ceκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2),

where κ1, κ2 ≥ 0, λ ∈ R, µ1, µ2 ∈ O and C is the normalization constant. We propose the density function
for the truncated case as a nine-parameter function with density defined as follows:

Definition 5.3.1. The density function for the truncated case is a nine-parameter function with density

fbtvM(θ1, θ2;W ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fubvM (θ1,θ2;W )
∫ b1a1 ∫

b2
a2

fubvM (θ1,θ2;W )dθ2dθ1
if θ1 ∈ Oa1,b1 , θ2 ∈ Oa2,b2 ,

0 otherwise

whereW = {λ,µ1, µ2, κ1, κ2, a1, b1, a2, b2} is the parameter vector and
fubvM(θ1, θ2;W ) = eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2) is the unnormalized bivariate von
Mises distribution. Parameters µ1, µ2 and κ1, κ2 are analogous to parameters µ and κ, respectively, in
the univariate truncated case. Truncation parameters a1, b1, a2 and b2 are similar to the univariate trun-
cation parameters. The λ ∈ R parameter accounts for the dependency between the variable components
(Figure 5.2). If λ = 0, then θ1 and θ2 are independent and each is distributed as a univariate von Mises
distribution. Also, if θ1, θ2 are independent, then λ = 0.
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Figure 5.2: Example of the bi-dimensional von Mises distribution showing truncated bi-modality.

A desirable property of a joint distribution is having closed distributions under marginalization and
conditioning, i.e., the marginal and conditional distributions should also follow the univariate distri-
bution. Particularizing for the von Mises family, the bivariate von Mises distribution presents closed
distributions only under conditioning as shown by Singh [2002]. We want to find out whether this also
holds for the truncated case.

5.3.1 Maximum likelihood estimation

The maximum likelihood estimator for the bivariate distribution takes data of the form {(θ1i, θ2i)} i =
1, . . . , n. The resulting log-likelihood function is

lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n))

=
n

∑
i=1

ln
⎛
⎝

eκ1 cos(θ1i−µ1)+κ2 cos(θ2i−µ2)+λ sin(θ1i−µ1) sin(θ2i−µ2)

∫
b1
a1 ∫

b2
a2
eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2dθ1

⎞
⎠

=
n

∑
i=1

(κ1 cos(θ1i − µ1) + κ2 cos(θ2i − µ2) + λ sin(θ1i − µ1) sin(θ2i − µ2))

−n ln(∫
b1

a1
∫

b2

a2
eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2dθ1) .

Thus we have

∂

∂µ1
lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,
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that is,

n

∑
i=1

κ1 sin(θ1i − µ1) − λ cos(θ1i − µ1) sin(θ2i − µ2) −
n (∫

b2
a2
fubvM(a1, θ2) − fubvM(b1, θ2)dθ2)

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0,

where fubvM(θ1, θ2) is the following unnormalized bivariate truncated von Mises function

fubvM(θ1, θ2) = eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2).

Similarly, the partial derivate w.r.t. µ2 gives

n

∑
i=1

κ2 sin(θ2i − µ2) − λ cos(θ2i − µ2) sin(θ1i − µ1) −
n (∫

b1
a1
fubvM(θ1, a2) − fubvM(θ1, b2)dθ1)

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0.

For κ1 we have

∂

∂κ1
lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

1

n

n

∑
i=1

cos(θ1i − µ1) −
∫
b1
a1 ∫

b2
a2

cos(θ1 − µ1)fubvM(θ1, θ2)dθ2dθ1

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0. (5.3)

Similarly, the partial derivate w.r.t. κ2 gives

1

n

n

∑
i=1

cos(θ2i − µ2) −
∫
b1
a1 ∫

b2
a2

cos(θ2 − µ2)fubvM(θ1, θ2)dθ2dθ1

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0. (5.4)

At this point, we can see that both Equations (5.3) and (5.4), involving κ1, κ2 parameters, respectively,
preserve their analogy with the univariate case. Their second addend corresponds to the definition of the
estimators of E[cos(θ1 − µ1)] and E[cos(θ2 − µ2)], respectively.

For the parameter λ we obtain

∂

∂λ
lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

1

n

n

∑
i=1

sin(θ1i − µ1) sin(θ2i − µ2) −
∫
b1
a1 ∫

b2
a2

sin(θ1 − µ1) sin(θ2 − µ2)fubvM(θ1, θ2)dθ2dθ1

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0,

which analogously corresponds to the estimator of E[sin(θ1 − µ1) sin(θ2 − µ2)].
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As in the univariate case, the truncation parameters has the following isolated estimators

Oâ1,b̂1
= argmax

a1,b1

(max({A(Oθ′11,θ
′

12
), . . . ,A(Oθ′1n−1,θ

′

1n
),A(Oθ′1n,θ

′

11
)}))

Oâ2,b̂2
= argmax

a2,b2

(max({A(Oθ′21,θ
′

22
), . . . ,A(Oθ′2n−1,θ

′

2n
),A(Oθ′2n,θ

′

21
)})),

while as yielded by the above calculations, the expressions regarding the non-truncation parameters
exhibit interdependency.

5.3.2 Conditional truncated von Mises distribution

The density of the conditional truncated von Mises distribution is defined as:

Definition 5.3.2. The conditional truncated von Mises distribution has density

fctvM(θ2∣θ1;λ,µ1, µ2, κ2, a2, b2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eκ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)

∫ b2a2 e
κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2

if θ2 ∈ Oa2,b2 .

0 otherwise
(5.5)

It is a six-parameter distribution where the parameters hold the same meaning as in the bivariate case,
with the simplification of parameters κ1, a1, b1 for fctvM(θ2∣θ1) (or κ2, a2, b2 for fctvM(θ1∣θ2)). Worthy
of note, however, is that θ1 ∈ Oa1,b1 in fctvM(θ2∣θ1) since otherwise, by the definition of the conditional
distribution (fctvM(θ2∣θ1) = fbtvM (θ2,θ1)

ftvM (θ1) ), fctvM(θ2∣θ1) is not defined.

Theorem 5.3.1. A conditional truncated von Mises distribution corresponds to the univariate truncated
von Mises distribution

fctvM(θ2∣θ1;λ,µ1, µ2, κ2, a2, b2) =

ftvM (θ2;µ2 + arctan(λ sin(θ1 − µ1)
κ2

) ,
√
κ2

2 + (λ sin(θ1 − µ1))2, a2, b2) ,

which completely specifies the behavior and properties of the conditional distribution and is analo-
gous to the non-truncated conditional case (Singh [2002]).

Proof. See Appendix A.

5.3.3 Marginal truncated von Mises distribution

We can define the density function of the marginal truncated von Mises distribution as:

Definition 5.3.3. The density function of the marginal truncated von Mises distribution can be written as

fmtvM(θ1;W ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ b2a2 e
κ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2

∫ b1a1 ∫
b2
a2

eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2dθ1
if θ1 ∈ Oa1,b1

0 otherwise
(5.6)

It is a nine-parameter distribution that shares all the parameters with the bivariate truncated von Mises
distribution. In the original publication, Singh [2002] studied the distribution and reported the “frontiers”
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of bi-modality (for µ = 0) as
I1(κ2)
I0(κ2)

= κ1κ2

λ2

where the distribution is unimodal if I1(κ2)
I0(κ2) ≥ κ1κ2

λ2
, and bimodal with two equal maxima otherwise.

Additionally, the modes were calculated to be symmetrical w.r.t µ1 and at the distance value θ∗1 that
solves the equation (for µ1 = 0):

A(
√
κ2 + λ2 sin2(θ∗1))

√
κ2 + λ2 sin2(θ∗1)

cos(θ∗1) =
κ1

λ2
,

where A(x) = I1(x)
I0(x) . In order to generalize this analysis to cover the truncated case in Equation (5.6), we

need to account for the contribution made by the parameters µ2, a2 and b2 to the shape of the distribution.
Contrary to the non-truncated case, a truncated marginal distribution that exhibits two maxima may have
only one global maximum, and the distribution is not necessarily centered around the mean (Figure 5.3).
Therefore, our analysis determines the different parameter configurations that produce the whole range
of behaviors, focusing on bi-modality/unimodality.

Figure 5.3: Several truncated marginal distributions showing unimodality (continuous line), two equal maxima (dashed line),
truncated unimodality (dash-dot line) and two distinct maxima (dotted line)

If, without loss of generality, we take θ1′ = θ1 − µ1, we can postulate the following theorem:

Theorem 5.3.2. All different behaviors w.r.t. the unimodality/bi-modality of the marginal truncated von
Mises distribution can be accounted for as follows

1. fmtvM(θ1′) is unimodal with mode (maximum) in µ1, if and only if
T (λ,µ2, κ1, κ2, a2, b2) < 0 and cos(b2 − µ2) = cos(a2 − µ2).

2. fmtvM(θ1′) is bi-modal with equal maxima, if and only if T (λ,µ2, κ1, κ2, a2, b2) > 0 and cos(b2−
µ2) = cos(a2 − µ2). Also in this case, a minimum is found at θ1′ = 0.

3. fmtvM(θ1′) presents two differentiated maxima if and only if one of the two following cases
applies:
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(a) cos(b2 − µ2) < cos(a2 − µ2) and f ′umtvM(θ1′ ;λ,µ1, µ2, κ1, κ2, µ2, a2, b2) has exactly two
zero points in θ1′ ∈ [−π2 ,0]

(b) cos(b2 − µ2) > cos(a2 − µ2) and f ′umtvM(θ1′ ;λ,µ1, µ2, κ1, κ2, µ2, a2, b2) has exactly two
zero points in θ1′ ∈ [0, π2 ]

4. fmtvM(θ1′) is unimodal with mode not at µ1 if the parameters do not match any of the above
cases,

where T (λ,µ2, κ1, κ2, a2, b2) is the test function and is defined as

T (λ,µ2, κ1, κ2, a2, b2) = −
κ1

λ2
+ ∫

b2
a2

sin2(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2

∫
b2
a2
eκ2 cos(θ2−µ2)dθ2

,

and f ′umtvM(θ1′ ;λ,µ1, µ2, κ1, κ2, µ2, a2, b2) is the unnormalized truncated marginal von Mises deriva-
tive function.

Proof. See Appendix A.

5.4 Real data application

5.4.1 Leaf angle inclination

The data in Bowyer and Danson. [2005] was collected during a safari along the Kalahari Transect, south-
west Botswana in 2001. It contains measurements of leaf inclination angles of four different woody plant
species (Acacia erioloba, Grewia flava, Acacia leuderitzii and Acacia mellifera) across three different
regions (Mabuasehube, Tsabong and Tshane). The measurements were taken using a clinometer.

In order to formally test the goodness-of-fit of the estimated distributions, we transform the data by
means of the random variable U = 2π

[I(θ,µ,κ)−I(a,µ,κ)]
∫ ba eκ cos(θ−µ)dθ

mod 2π that is applied over the sorted sample

θ1, . . . , θn. If the data distribute according to the truncated von Mises distribution, then the above random
variable has a uniform distribution. As shown in Mardia and Jupp [2000], the modified Rayleigh statistic
S∗ = (1 − 1

2n)2nR
2 + nR4

2 , where n is the sample size and R the mean resultant length, distributes as a
χ2

2 distribution.

1. For the first study, the whole dataset containing a total of 741 samples was observed (Table 5.1,
Figure 5.8). A visual inspection of the plot clearly shows that the truncated von Mises distribution
performs better. Formally, for the truncated case we have S∗ = 2.8887, which corresponds to
p−value ∈ (0.2,0.3). For the non-truncated case, S∗ = 25.5028, with is a clear rejection p−value
< 0.001. From these results we conclude that the truncated distribution is significantly better for
these data. Truncation parameters conform the circular interval O0,π

2
, which indicates no angle

greater than 90○ was measured in this study.
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Figure 5.4: The study distribution and data representation of the entire dataset. The estimated truncated von Mises
distribution (lighter line) clearly has higher density values than its associated von Mises distribution (darker line). The
data are grouped by value intervals in order to observe its relative frequency (bars).

Table 5.1: Parameter values obtained after conducting the first study
µ κ a b No. Samples

All data 1.0063 5.9602 0 1.5708 741

2. For the second study, we grouped the data by plant types without regards for region. This yielded
four different distributions. A visual inspection shows that the univariate distributions are clearly
better than the non-truncated von Mises distribution at describing the resulting data (Table 5.3,
Figure 5.9), except for the case of A. erioloba. The goodness-of-fit tests (Table 5.2) revealed
that the non-truncated distribution is rejected in all cases but in A.erioloba, whereas the truncated
distribution hypothesis was more strongly accepted than that of the non-truncated distribution in
all cases. Thus we can conclude that, for this study, the truncated distribution models the data
better.

Table 5.2: Modified Rayleigh statistic values for the second study
Truncated von Mises S∗ Non-truncated von Mises S∗

A. Erioloba 3.014 3.5534
Grewia flava 0.0038 20.6273
A. Leuderitzii 2.6073 10.1990
A. Mellifera 1.3157 7.3046

Truncation parameters were consistently found to be in O0,π
2

except for A.erioloba, which also
presented a significantly higher concentration parameter than in any of the other estimations. The
irregularities in A.erioloba could partially be explained by the small sample size, which causes the
estimations to be less reliable. On the whole, the remaining studies show few variations in the
location-concentration parameters, which closely resemble the ones obtained in the first study.
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Figure 5.5: Studies of each type of plant.

Table 5.3: Parameter values yielded after conducting the second study
µ κ a b No. Samples

A. Erioloba 0.8516 11.1894 0 1.5359 100
Grewia flava 1.1261 5.2668 0 1.5708 254
A. Leuderitzii 1.0706 5.5138 0 1.5708 184
A. Mellifera 0.9125 5.7396 0 1.5708 203

3. For the third study, fitted univariate truncated distributions for each plant in each region. Since
not all plants were measured in all regions, this procedure produced eight different univariate trun-
cated von Mises estimations. The distributions are generally observed to clearly differ from their
associated non-truncated von Mises distribution, except in the first of the eight plots (Table 5.5,
Figure 5.10). The goodness-of-fit tests (Table 5.4) are also consistent with previous studies. All
truncated von Mises hypotheses were accepted, while around half of the non-truncated distribu-
tions were rejected. Thus, there is a strong suggestion that the truncated von Mises distribution
properly models the underlying behavior that yielded the data.

Table 5.4: Parameter values yielded after conducting the third study
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Truncated von Mises S∗ Non-truncated von Mises S∗

A. erioloba, Mabuasehube 3.014 3.5534
Grewia flava, Mabuasehube 1.1543 8.9599
A. leuderitzii, Tsabong 2.0981 7.3115
Grewia flava, Tsabong 0.2050 3.8702
A. mellifera, Tsabong 0.1199 4.2131
Grewia flava(2), Tsabong 0.1165 9.7290
A. leuderitzii, Tshane 0.7002 2.8717
A. mellifera, Tshane 1.0525 10.2656

For this study, each distribution was estimated from a relatively small sample size ranging from 50
to 104 samples, which may have caused estimations to be less precise than desired. The concen-
tration parameter shows the highest variability across the different cases (from 4.4078 to 11.1894
across the whole study or even from 4.8340 to 7.4245 in the case of A. leuderitzii). With more
data it might be possible to distinguish if the variations in the concentration parameter are clearly
influenced by the region of the plant species or the small sample size. Regarding the location pa-
rameter, there are few variations in the parameter value on the whole, A. mellifera being the species
that experienced the highest variations with respect to one of the measurements in the first study.
Truncation parameters remained consistently within the O0,π

2
interval.
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Figure 5.6: Studies of each type of plant in each region.
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Table 5.5: Parameter values yielded after conducting the third study

µ κ a b No. Samples
A. erioloba, Mabuasehube 0.8516 11.1894 0 1.5359 100
Grewia flava, Mabuasehube 1.1882 5.8142 0.0873 1.5708 50
A. leuderitzii, Tsabong 0.9712 4.8340 0.0873 1.5708 100
Grewia flava, Tsabong 1.1082 6.0832 0 1.5708 100
A. mellifera, Tsabong 0.6844 4.5884 0 1.4835 100
Grewia flava (2), Tsabong 1.1091 4.4078 0 1.5708 104
A. leuderitzii, Tshane 1.1474 7.4245 0.1920 1.5708 84
A. mellifera, Tshane 1.0525 10.2656 0.4014 1.5708 103

5.5 Summary and conclusions

In this chapter we developed the theoretical framework of the univariate and bivariate truncated von
Mises distribution. To do this, we gave

1. The definition of a truncated von Mises distribution in the circle O. The circular distribution
is defined by means of the O subset, as the periodicity and properties of the circle have to be
naturally acknowledged for.

2. The successfully determined expressions of the maximum likelihood estimators. For both univari-
ate and bivariate cases, solely sample-dependent maximum likelihood estimators of the truncation
parameters were found, while the other parameters showed interdependency.

3. The resulting moments of the univariate case and existing interrelationships.

4. The bivariate case and studies of the shape and behavior of marginal and conditional distributions.
We determined that every conditional truncated von Mises distribution is a univariate truncated von
Mises distribution. For the case of the marginal distribution, we concluded that only for parameter
λ = 0 does the distribution behave like a truncated univariate von Mises distribution. When λ ≠ 0,
the resultant marginal distribution is potentially bi-maximal and not a von Mises distribution. The
modality behavior of this distribution has been accounted for in Theorem 3.2.

This work has been published as Fernandez-Gonzalez, P., C. Bielza, and P. Larrañaga, “Univariate
and bivariate truncated von Mises distributions”, Progress in Artificial Intelligence, pp. 1-10, 2017
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Chapter 6
Dendritic branching angles of pyramidal
neurons of the human cerebral cortex

6.1 Introduction

The design principles that govern the geometry of neurons are a major topic to those researchers inter-
ested in the generation of realistic mathematical models of neuronal morphologies. The study of pyra-
midal cells is of particular importance as they are the most abundant neurons in the cortex (estimated
to represent 70-80% of the total neuronal population), where they are the main source of excitatory
(glutamatergic) synapses. Furthermore, the dendritic spines of pyramidal cells constitute the main tar-
get of excitatory synapses in the cerebral cortex (DeFelipe and Farinas [1992]). Thus pyramidal cells
are considered the principal building blocks of the cerebral cortex and it is thought that unraveling the
morphology, connectivity and functional organization of this type of neurons is critical for better under-
standing cognitive functions.

There are considerable differences in the structure of pyramidal cells when considering the size and
complexity of their dendritic arborization -the complexity of a dendritic arbor is evaluated as the total
length of its dendritic branches along with the number and distribution of their branching points-, in
the density of dendritic spines on their dendritic branches and in the total number of dendritic spines.
These differences are found not only between cortical areas but also between different species and these
differences are thought to be critical for the functional specialization of the cortical areas (reviewed
in Jacobs et al. [2001], Elston [2007], Elston et al. [2011], Defelipe [2011], Eyal et al. [2014] and
Mohan et al. [2015]). In a previous study, we found that the dendritic branching angles of layer III
pyramidal neurons in several regions of the frontal, parietal, and occipital cortex of the adult mouse
follow similar principles despite the differences in the structure of these neurons in the different cortical
regions examined (Bielza et al. [2014]). We found that 90% of these angles fell within a range of 20 to 97
degrees. These are similar values to the results obtained for the dendritic branching angles of pyramidal
cells from layers II-VI of the juvenile rat somatosensory cortex (angles ranged from 10-104 degrees)
in Leguey et al. [2016]. Since the dendritic spines length is relatively short (< 2µm), it follows that
dendritic branching of pyramidal cells determine the connectivity of the pyramidal cell. Therefore, the
finding that branching angles are designed in accordance with the rules of mathematical functions and
that they show common design principles suggests certain predictability in the synaptic connections of
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pyramidal cells in all cortical areas of the mouse and rat. In this chapter, we are interested in extending
these studies to the human cerebral cortex to find out if the branching angles follow similar rules using
a novel branching angles dataset. In particular, our aim is to try to find a statistical distribution that
properly models branching angles in human pyramidal neurons and analyze possible differences and/or
similarities between branching angles in different cortical layers. More specifically, we examined layers
III and V of the temporal cortex in different antero-posterior regions. We proposed the truncated von
Mises distribution as the distribution to model the behavior of the dendritic branching angles. Previous
work (Bielza et al. [2014]) used a different although related distribution, the von Mises distribution (see
Section 2.2) as the preferred distribution to model branching angles in mice. However, the von Mises
distribution alone failed to acknowledge if all the angular measurements were contained within a reduced
circular interval (as it was noted in the previous study) and was forced to assume that the angles were
symmetrically distributed. The truncated von Mises distribution (that is a generalization of the von Mises
distribution, see Chapter 5) is able to approximate efficiently within a reduced interval non-symmetrical
data, thus appearing as a more accurate analysis tool for modeling the branching angles behavior.

The rest of the chapter is organized as follows. Section 6.2 details the different techniques chosen for
the development of this work. Section 6.3 contains the results of all the data analysis. More concretely,
in subsections 6.3.1 and 6.3.2 we perform goodness-of-fit tests according to groups obtained by different
criteria (i.e., branch order or branch order together with maximum branch order), with results that clearly
improve those of the von Mises distribution. Additionally, we perform hypothesis tests on different
statistics related to the parameters of the distribution (such as the mean and the concentration around the
mean), to further analyze the underlying patterns of the data.

In subsection 6.3.3 we group the data in pairs of angles of contiguous branch orders and use the
bivariate truncated von Mises distribution as analysis tool.

In subsections 6.3.4 and 6.3.5 we are interested in analyzing the differences between angular mea-
surements that belong to different layers as well as the differences between angular measurements that
belong to the same layer, but in a different region. We perform tests for a common distribution (i.e. tests
that try to diagnose if two datasets could have been drawn from the same probability distribution. We
will refer to them as similarity tests) between different subgroups of the data for this purpose.

In subsection 6.3.6, we analyze some results found in this study in a comparison with the data of
previous studies in mice (Bielza et al. [2014]) and rats (Leguey et al. [2016]). Our interest lies in finding
similarities/differences of branching angles data between species, and for this we perform tests for a
common distribution of the three datasets.

Finally, Section 6.4 contains the discussion of the findings and conclusions obtained throughout this
study.

6.2 Methods

6.2.1 Data acquisition and preparation

Tissue was obtained from the anterolateral temporal gyri (Brodmann’s areas 21 and 38; see Garey [1994])
of patients with pharmaco-resistant temporal lobe epilepsy (Department of Neurosurgery, ‘Hospital de
la Princesa’, Madrid, Spain). This brain tissue was removed as part of surgical treatment of five male
patients (28-48 years old, mean 36.6 years old) and had been used in previous studies (Kastanauskaite
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[2009], Arion [2006] and Sola RG [2005]). The five patients used in this study had normal IQs and each
had a different history of medications and treatment -they were treated with a variety of anti-epileptic
drugs that affect GABAergic transmission and other neurotransmitter systems. Furthermore, the disease
severity was variable (with daily, weekly or twice monthly seizures) as was the disease duration (from
10 to 29 years). However, as described below, in all cases the neocortical tissue used in the present
study was histologically normal and without abnormal spiking activity. In each case, video-EEG record-
ing from bilateral foramen ovale electrodes was used to localize the epileptic focus in mesial temporal
structures. Subdural recordings with a 20-electrode-grid (lateral neocortex) and with a 4-electrode-strip
(uncus and parahippocampal) were used at the time of surgery to further identify epileptogenic regions.
After surgery, the lateral temporal neocortices of all patients and the mesial temporal structures from all
patients except one were available for standard neuropathological assessment. In the latter case, most
mesial structures were absorbed during surgical removal and, therefore, could not be examined. The
lateral neocortices were histologically normal in all cases. However, alterations were found in the hip-
pocampal formations of three out of the four patients that could be examined; these three patients showed
hippocampal sclerosis, whereas no apparent alterations were found in the hippocampal formation of the
remaining patient. Furthermore, only neocortical tissue that showed no abnormal spiking -as character-
ized by normal ECoG activity- was used in this study (see Arion [2006]). Surgically resected tissue was
immediately immersed in cold 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 (PB). After 2-3
h, the tissue was cut into small blocks (0.5 x 8 x 8 mm) which were flattened (e.g., Welker and Woolsey
1974) and post-fixed in the same fixative for 24 h at 4○C. Horizontal sections (250 microns) were obtained
using a Vibratome. By relating these sections to coronal sections, we were able to identify, using cytoar-
chitectural differences, the section that contained each cortical layer, allowing the subsequent injection of
cells (e.g., Elston and Rosa [1997]). Sections were prelabeled with 4,6-diamidino-2-phenylindole (DAPI;
Sigma, St Louis, MO), and a continuous current was used to inject individual cells with Lucifer yellow
(8% in 0.1; Tris buffer, pH 7.4; LY) in cytoarchitectonically identified layers III and V of the anterolateral
temporal cortex (see results section for further details). Neurons were injected until the individual den-
drites of each cell could be traced to an abrupt end at their distal tips and the dendritic spines were readily
visible, indicating that the dendrites were completely filled. After injection of the neurons, the sections
were first processed with a rabbit antibody to Lucifer yellow produced at the Cajal Institute [1:400,000
in stock solution: 2% BSA (A3425; Sigma), 1% Triton X-100 (30632; BDH Chemicals), 5% sucrose
in phosphate buffer (PB)] and then with a biotinylated donkey anti-rabbit secondary antibody (1:200 in
stock solution, RPN1004; Amersham Pharmacia Biotech), followed by a biotin-horseradish peroxidase
complex (1:200 in PB, RPN1051; Amersham). 3,3’-Diaminobenzidine (D8001; Sigma Chemical Co.)
was used as the chromogen, allowing the visualization of the entire basal dendritic arbor of pyramidal
neurons. Finally, sections were mounted in 50% glycerol in PB. Possible changes in the size of the sec-
tions due to processing of the tissue was evaluated by measuring the cortical surface and thickness in
adjacent sections before and after intracellular injections and processing of the tissue, using Neurolucida
11.07 and StereoInvestigator 11.02.1 from MicroBrightField (MBF, VT, USA). We found no shrinkage
in the surface area of the sections and a decrease in thickness of only approximately 7% was observed.
Therefore no correction factors were included. Neurons were reconstructed in three dimensions using
Neurolucida (MicroBrightField) as previously described in detail (for further methodological details, see
Elston et al. [2001] and Benavides-Piccione et al. [2006]).

We refer to branch order of a branching angle as the number of branchings (including itself) that exist
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between the branching angle and the root of the dendrite. As an example, a branching angle with branch
order 4 comes after 3 preceding branching angles from the root of the dendrite, which is the branch order
1. We refer to maximum branch order or tree order of a dendrite as the total amount of branch orders of
a dendrite, or the branching angle at the highest order that can be found in the dendrite.

The dataset included: 57, 37 and 87 cells from layer IIIAnt (1452 measurements), VPost (1328
measurements) and IIIPost (2430 measurements), respectively. More precisely, the dataset for layer
IIIPost contained measurements of 7 branch orders (300, 477, 430, 198, 39, 5 and 3 from order 1-7,
respectively) extracted from a total of 57 neurons. The dataset for layer VPost contained measurements
of 8 branch orders (247, 381, 373, 226, 82, 14, 4 and 1 from order 1-8, respectively) extracted from a
total of 37 neurons. Finally, the data set for layer IIIAnt contained measurements of 7 branch orders
(470, 732, 714, 375, 114, 24 and 1 from order 1-7, respectively), extracted from a total of 87 neurons. In
this data, branch orders above five suffer from very low number of observations and thus we will restrict
our analysis to the first five branch orders. The 3D reconstructions of these cells will be available in
another publication (Benavides-Piccione, Kastanaukaite, Rojo and DeFelipe, in preparation).

6.2.2 Univariate truncated von Mises distribution

The statistical analysis of branching angles requires directional statistics, as conventional statistics do
not address well the circular properties. In this field, the von Mises distribution (Mardia [1975]) is the
most known distribution and the analog of the Gaussian distribution in the line. This distribution has
properties such as symmetry and positive support on all the values in a circle ([0○,360○)) which are
necessary simplifications of the data in many case studies. As it is found that in neuroscience, such
simplifications may hinder the accuracy and reliability of the complex behaviors it studies, we propose
for the first time to use the univariate truncated von Mises distribution (see Section 5.2 of Chapter 5).

6.2.3 Bivariate truncated von Mises distribution

For the case of events that are defined by two angular measurements (θ1, θ2). We propose, for analogous
reasons as the univariate case, the bivariate truncated von Mises distribution (see Section 5.3 of Chapter
5).

6.2.4 Statistical tests

Test of goodness-of-fit a univariate truncated von Mises distribution. We tested if the angular data,
under different groupings, can be properly modeled with a truncated von Mises distribution. As consid-
ered in Mardia and Jupp [2000], we transformed the data θ1, . . . , θn by means of the angular variable
UtvM(θi) = 2πFtvM(θi) where FtvM(.) is the probability distribution function of the truncated von
Mises distribution. Then, we tested circular uniformity (i.e., the circular distribution where every ob-
servation is equally likely to occur) using a modified Rayleigh statistic (Cordeiro and De Paula Ferrari
[1991]) that distributes according to a χ2

2 distributes under the null hypothesis to obtain the final p−value
for the fit. If the data distributes following a truncated von Mises distribution, the previous transformation
generated a uniform distribution from the data.

Test of goodness-of-fit to a univariate von Mises distribution. A similar procedure is used for the von
Mises distribution. The difference between both cases is the probability distribution function that is used.
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In this case, FvM(θ) is the probability distribution function of the von Mises distribution, and therefore
the angular variable for this case is UvM(θi) = 2πFvM(θi).

Two sample tests for common distribution (similarity). We tested the hypothesis of similarity between
two datasets, i.e., if two datasets can be considered to be drawn from the same probability distribution.
We used the non-parametric Watson’s two sample U2 test (Watson [1962]), that does not assume any
underlying probability distribution. This test was used to perform the comparisons between layer IIIPost
and layer VPost, and layer IIIAnt and layer IIIPost. See Supplementary material, Tables 9, 10 at http:
//cig.fi.upm.es/thesis/phd/Supplementary_Material_thesis_Pablo_2019.pdf.

Tests for mean comparison. We use Watson’s large sample (where “large”stands for samples greater
or equal to 25) non-parametric test (Watson [1983]) to test the null hypothesis of the same mean direc-
tion. The test does not assume any underlying probability distribution. It was used with three different
subgroups of the data as we were interested in testing if the means of the data, grouped by branchings
or branchings together with maximum branch order, follow any noticeable tendency. It was additionally
used for comparisons between layers IIIPost and VPost and for the comparisons of branch order 1 mean
values. See Supplementary material, Tables 1, 2 and 4.

Tests for the concentration comparison. Wallraff’s test for common concentration (Wallraff [1979])
was useful for comparisons between layer IIIPost vs. layer VPost, and layer IIIAnt vs. layer IIIPost. It
is a non parametric test with no assumptions regarding data generating distributions. See Supplementary
material Table 4.

Tests of independence. We used two different tests to verify or reject the hypothesis of independence
(i.e., if positive or negative significant correlation between two random variables exists). First, we used
a randomized version of the Rothman’s test for independence (Rothman [1971]), a test that does not
assume any underlying probability distribution for the two tested datasets. See Supplementary material,
Table 8. Finally, we used a permutations tests over the λ parameter (that we previously estimated using
the maximum likelihood method from the datasets) which tested the null hypothesis of λ = 0

Test-based diagrams. We used two different forms of visualization for the comparison of test results.
The first type of diagram, the test-based diagram, was originally proposed in (Bielza et al. [2014]) and
consists of a space of nodes that are connected or not by edges depending on the non-rejection or rejection
result of the test, respectively. In this diagram, every node that appears is pairwise tested w.r.t. all the
other nodes. These diagrams are shown in Figures 2D and 3. The second type of diagram, the test-based
tree, is first proposed here as a form to easily visualize comparisons between two cortical brain layers
or two datasets whose data is organized in a tree-like structure that includes branch orders. It consists
of trees where the branch order in the graphic corresponds to the branch order of the conducted test. If
the space between the branches is subdivided and labeled with a number, the number that labels each
subdivided area indicates the maximum branch order of the data of the conducted test. Finally, the green
or red color of the area between the branches indicates the non-rejection or rejection of the hypothesis of
the conducted test, respectively. These diagrams are shown in Figures 6.4A, 6.4B, 6.5A and 6.5B.

6.3 Results

In the present work, a total of 181 3D reconstructed basal dendritic arbors of intra-cellularly injected
cells from the human temporal cortex were included in the branch angle analysis. The cells were located
in layers III and V of the temporal cortex (at a distance of 2-3 cm from the temporal pole), corresponding

http://cig.fi.upm.es/thesis/phd/Supplementary_Material_thesis_Pablo_2019.pdf
http://cig.fi.upm.es/thesis/phd/Supplementary_Material_thesis_Pablo_2019.pdf
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to Brodmann’s area 21 and in layer III of the temporal pole proper, corresponding to Brodmann’s area
38. For simplicity, we will refer to layer III anterior neurons to those located in the temporal pole as layer
IIIAnt neurons, while those located at 2-3 cm will be referred as layer IIIPost and layer VPost neurons,
respectively (Figure 6.1).

Figure 6.1: Schematic drawing examples of basal dendritic arbors of pyramidal neurons from layers III and V of the temporal
cortex at a distance of 2-3 cm from the temporal pole (IIIPost and VPost, respectively) and layer III of the temporal pole proper
(IIIAnt). Scale bar 100 µm.

We first analyzed the distribution of angles of each dendritic branch order (Figure 6.2A; see material
and methods for details). In general, the inspection of the rose diagrams showed that the underlying
distribution for the data should be unimodal with a slight deviation from symmetry with respect to the
mean (Figure 6.2B). Also, we noticed that all observations in the three datasets were contained within
a circular interval that goes from 0○20′58′′ to 170○16′59′′, which covers less than half of a circle. The
truncated von Mises distribution has two parameters (called a and b) that set the inferior and superior
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limits of the circular interval where observations can occur, leaving a potentially non symmetrical dis-
tribution inside. This capability makes it especially attractive for this case and it’s the justification of its
choosing, together with its capability to capture unimodality.
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Figure 6.2: A Color codes for the branch orders represented in a denritic tree. B Rose diagram (top) and truncated von
Mises distribution (bottom) plots of the combined data of layers IIIPost, VPost and IIIAnt. The bars in both plots represent
the frequency of the data. The red curve in the bottom plot is the estimated truncated von Mises density function. C Circular
boxplots of the first five branch orders. In the different subdivisions of the semi-circle we find the data summarized in different
ways. The colored curves cover the circular interval from the lower quartile (Q1) to the upper quartile (Q3). The longer black
thin curve covers all the values inside [Q1+ (V )∗CIQR,Q3− (V )∗CIQR], where CIQR = Q3−Q1 and V is 2.5 or 1.5
depending of the concentration of the data (2.5 for all our cases). The black dot represents the Fisher’s median statistic, and the
isolated colored dots indicate outliers. D Test-based diagrams illustrating the similarity comparisons of the data groups selected
in C. Each node represents a data group and two nodes are connected when the hypothesis of same probability distribution is
not rejected (conversely, not connected if rejected). See Section 6.2 section for more details.

6.3.1 Study of branching angles by branch order

We compared angles of different branch order in layers IIIPost, VPost and IIIAnt. We will use the
circular boxplots proposed in Abuzaid et al. [2012] and used in Bielza et al. [2014] as an efficient way to
visualize information about the observations.

As seen in Figure 6.2C, the median angular values tend to decrease as the order increases for the
three groups. This is also true for the mean angular values, decreasing as the branch order increases (see
Supplementary Table 1, rows 1-10). Thus, angles in higher branch orders are smaller than those of lower
branch orders. Also, it was noticed that angles of layer VPost are smaller in all branch orders than the
corresponding ones in layers IIIPost. See Supplementary Table 2, rows 1-5.

Regarding the concentration of the angles around the mean, angles in general showed a tendency,
when compared between layers, to be similar (Supplementary Table 3). The comparison between layer
IIIPost and layer IIIAnt deviated the most from these results, suggesting that the angles in layer IIIAnt
may be slightly lower concentrated (see Supplementary Table 3, rows 1-5). Intuitively, a lower con-
centration around the mean in layer IIIAnt branching angles implies that it is more likely to find an
observation far distant from the mean in layer IIIAnt than in layer IIIPost.

Regarding the boundaries of the branching angles, the minimum angles variation (i.e., the variation
of the lowest angles per bifurcations) seemed clearly lower, with a circular variance of 0.0014 radians for
layer IIIPost branch orders, 0.0043 radians for layer VPost and 0.0003 radians for layer IIIAnt, than the
maximum angles variation (the variation of the highest angles per bifurcations), with a circular variance
of 0.163 radians for layer IIIPost, 0.193 radians for layer VPost and 0.038 radians for Layer IIIAnt (see
Supplementary Tables 5-7 for the a and b truncation parameters that correspond with the minimum and
maximum angular values).

Test-based comparisons showed that each branch order resulted significantly different from all the
other branch orders except in the comparisons with the branch order 5 (Figure 6.2D), which could not
be rejected for branch orders 3 and 4 in Layer IIIPost, branch orders 3 and 4 in layer VPost and branch
order 4 in Layer IIIAnt. All other cases presented a complete absence of links between the nodes in
the test-based diagram (i.e., all tests results were rejections). Comparisons with branch order 5 may be
interpreted with caution due to the small number of observations available.

The goodness-of-fit tests for the truncated von Mises distribution and the von Mises distribution
revealed modest results, with the truncated von Mises scoring 3/5 non-rejections for Layer IIIPost, 3/5
non-rejections for layer VPost and 3/5 non-rejections for Layer IIIAnt (Table 6.1, rows 1-5). The von
Mises distribution scored 3/5 non-rejections for Layer IIIPost, 2/5 non-rejections for layer VPost and 1/5
non-rejections for Layer IIIAnt (Table 6.1, rows 1-5). These results show a slightly better performance
for the truncated von Mises distribution in this case (the estimated parameter values of the truncated von
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Mises distribution, obtained in the tests, can be found in the Supplementary Tables 5-7, rows 1-5).

Table 6.1: Goodness-of-fit values for the truncated von Mises distribution (TvM) and the von Mises distribution (vM) for the
three datasets and the two different studies. The numerical value in each cell represents the p−value of the goodness-of-fit test.
The notation OX is read as “branch order X”(for example, O3 is the branch order 3, this notation is used for the study in “Data
acquisition and preparation”) and the notation MaxXOY is read as “Maximum branch order X, branch order Y”(for example,
Max2O1 is the branch order 1 of dendrites with maximum branch order 2, this notation is used for the study in “Univariate
truncated con Mises distribution”). If a cell contains the symbol * it indicates that the test hypothesis was not rejected, whereas
if the * symbol is missing, the opposite occurred.

Layer IIIPost Layer VPost Layer IIIAnt
TvM vM TvM vM TvM vM

O1 ∗0.6268 ∗0.6465 ∗0.4353 0.0393 ∗0.9663 ∗0.6428

O2 ∗0.5562 ∗0.9626 0.0872 ∗0.1482 0.0458 <0.001

O3 0.0813 0.0137 0.0370 0.0038 ∗0.1124 <0.001

O4 0.0688 0.0061 ∗0.1849 <0.001 ∗0.2141 <0.001

O5 ∗0.8735 ∗0.8476 ∗0.5509 ∗0.1693 0.0220 <0.001

Max1O1 ∗0.3985 ∗(0.1,0.2) ∗0.7195 <0.001 ∗>0.95 (0.01,0.05)

Max2O1 ∗0.3985 0.0524 ∗0.8388 <0.001 ∗0.4316 0.0654

Max2O2 ∗0.5142 0.0575 ∗0.4207 0.0488 ∗0.2275 <0.001

Max3O1 ∗0.8434 ∗0.4830 ∗0.4697 ∗0.1870 ∗0.3770 ∗0.2551

Max3O2 ∗0.9504 ∗0.7647 ∗0.4966 0.0177 ∗0.653247 0.0172

Max3O3 ∗0.2021 ∗0.2718 ∗0.1983 0.0280 ∗0.2477 <0.001

Max4O1 ∗0.7246 ∗0.7626 ∗0.9129 ∗0.3953 ∗0.8469 ∗0.6671

Max4O2 ∗0.4771 ∗0.4926 ∗0.8063 ∗0.9781 ∗0.2547 0.0734

Max4O3 ∗0.6594 0.0079 ∗0.7752 0.0010 ∗0.2928 <0.001

Max4O4 ∗0.2578 0.0213 ∗0.2962 <0.001 ∗0.2030 <0.001

Max5O1 ∗0.7556 ∗0.1723 ∗0.9230 ∗0.8568 ∗0.9666 ∗0.5508

Max5O2 ∗0.7343 ∗0.3677 ∗0.6352 <0.001 ∗0.4883 0.0622

Max5O3 ∗0.5558 ∗0.1008 ∗0.8770 0.0027 ∗0.6385 <0.001

Max5O4 ∗0.1101 0.0294 ∗0.8498 ∗0.1210 ∗0.6153 0.0205

Max5O5 ∗0.9778 0.0043 ∗0.9602 ∗0.4863 0.0572 <0.001

6.3.2 Study of branching angles by branch order grouped according to their maximum
branch order

Then, we compared angles of different branch orders originating from dendritic trees of similar complex-
ity (i.e. different dendritic trees were grouped according to their maximum branch order). The analysis
showed that the previously observed tendencies for the median (Figure 6.3), the tests for the mean (see
Supplementary Table 1, rows 11- 30 and Table 2, rows 6-20) and the concentration around the mean (see
Supplementary Table 3, rows 6-20) hold also for this study.

It was found that mean values of the first branch order angles increase with respect to the maximum
branch order (Supplementary Table 4), this was discovered by comparing only the first branch order
of dendritic trees with different maximum tree orders. In the case of the boundaries of the branching
angles, it seems that the angles of the highest branch order cover a relatively small interval of angles in
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each maximum branch order subgroup, although it is not clear that the interval of angles decreases with
the branch order as the mean does. The observed variance on the maximum angles was higher than the
variance on the minimum angles in all cases also for this study (see Supplementary Tables 5-7, rows 6-20
for parameter values).

The similarities between branch orders resulted to be scarce, with the majority of the comparisons
producing test rejections (Figure 6.3). For this case, the layer with more non-rejected comparisons was
layer V and the lowest p−values (closer to similarity) were generally found between first and second
order branchings.

Figure 6.3: Circular boxplots and associated test-based diagrams coming from basal dendritic trees of pyramidal neurons
grouped according to their branch complexity.

When performing the goodness-of-fit tests, we obtained very good results for the truncated von Mises
distribution with 15/15 non-rejections for Layer IIIPost, 15/15 non-rejections for layer VPost and 14/15
non rejections for layer IIIAnt. The von Mises distribution scored 9/15 non-rejections for layer IIIPost,
7/15 non-rejections for layer VPost and 3/15 non-rejections for layer IIIAnt (Table 6.1, rows 5-19). This
shows that the truncated von Mises distribution clearly outperforms the von Mises distribution in all
cases (the estimated parameter values of the truncated von Mises distribution, obtained in the tests, can
be found in the Supplementary material, Tables 5-7, rows 6-20). These results strengthen our belief in
that grouping the data by maximum branch order and branch order is a more appropriate way to study
branching angles in dendrites. It could partially shed light on why the results of grouping the data merely
by branch orders are less informative.
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6.3.3 Comparison of pairs of angles of contiguous orders

The data was further compared in pairs of contiguous branching angles to explore the possibility that
angles of the first branching may somehow influence the angles of the second branch order, using a bi-
variate truncated von Mises distribution. We only used the data of layer IIIAnt since bivariate estimations
require higher sample size than the univariate case. We studied if there was a measurable dependency
between pairs of contiguous branch orders when fitting the distribution. We performed a Rothman’s
test for independence over the data of contiguous branch orders (see Supplementary Table 8). We also
performed a permutation test (results not included) for λ = 0 in our fitted models, where λ is the param-
eter in the bivariate truncated von Mises distribution that measures the level of dependency between the
two random variables (if its value is 0, both variables are considered independent). Tests results showed
independence in almost all cases.

6.3.4 Comparison between layer IIIPost neurons and layer VPost neurons

Next step was to compare angles per branch order between layer III and V. This comparison showed
statistical differences with only 1/5 tests not rejected, which is the corresponding to the branch order
five comparison between the two layers (Figure 6.4A, see Supplementary Table 9, rows 1-5). Then
we grouped the angles additionally by maximum branch order. In this case, we found a majority of
differences (test rejections) with only 5/15 tests not-rejected. More precisely, the tests that produced a
non-rejection result correspond to the first branching of dendrites of maximum branch order one, three,
and four, and the branch orders three and five of the dendrites of maximum branch order five (Figure
6.4B, see Supplementary Table 9, rows 6-20). We found that, in general, angles in the first order are the
most similar of all the orders compared in the same maximum branch order group and the overall most
similar (i.e., they obtained generally higher p−values in the tests). We concluded that layers IIIPost and
VPost can be considered statistically different.
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Figure 6.4: A Test-based tree illustrating pairwise comparisons between the branch orders in layers IIIPost and VPost. If
the arc that appears above the branch order color code is red, the test produced a rejection result. If the arc is green, the result
was non-rejection. B Comparisons of branch order angles grouped according to their maximum branch order. The numbers in
the arc above the branching color codes indicate the maximum tree order and each of the subdivisions of the arc corresponds
to a test. As an example, the first branch order in the graphic shows the information of five tests performed to the first branch
order of dendrites with maximum tree order one, two, three four and five.

6.3.5 Comparison between layer IIIPost neurons and layer IIIAnt neurons

Similarly, we compared angles per branch order between neurons from different antero-posterior regions
of the temporal cortex. We found that only 1/5 tests were not rejected (Figure 6.5A, see Supplementary
Table 10, rows 1-5), which is the corresponding to the branch order five comparison. When we also
grouped angles additionally by maximum branch order, and we found that non-rejections were a clear
majority with 12/15 tests passed. As in the previous study in Section 6.3.2, the angles in the first branch
order could be generally considered more similar (i.e. higher p−values), while the least similar angles
were located around the branch or-der two, with two tests rejected for maximum branch orders three and
four (Figure 6.5B, see Supplementary Table 10, rows 6-20). We conclude not enough statistical evidence
was gathered to consider layers IIIAnt and layer IIIPost to be significantly different from each other.

Figure 6.5: A Test-based tree illustrating pairwise comparisons between the branch orders in layers IIIAnt and IIIPost. If
the arc that appears above the branch order color code is red, the test produced a rejection result. If the arc is green, the result
was non-rejection. B Comparisons of branch order angles grouped according to their maximum branch order. The numbers in
the arc above the branching color codes indicate the maximum tree order and each of the subdivisions of the arc corresponds
to a test. As an example, the first branch order in the graphic shows the information of five tests performed to the first branch
order of dendrites with maximum tree order one, two, three four and five.
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6.3.6 Comparison between layer IIIAnt and IIIPost neurons and layer III neurons from
mice and rats

We use the data from Leguey et al. [2016] for the rat neuronal data, selecting only the layer III subset.
For the mouse data, we use the data from Ballesteros-Yáñez et al. [2010] selecting only the layer III
subset of the wild-type mice data subset. We first compared angular ranges eliminating 5% of the lowest
values and 5% of the highest values. The remaining 90% of the angular vales showed remarkable range
similarities as they ranged from 13 to 98 degrees in humans (IIIAnt and IIIPost data combined), 17 to
92 degrees in rats, 20 to 97 degrees in mice. However, a two sample Watson test for similarity (same
distribution) between layers III neurons of human, rat and mouse reveals significant differences between
the three species (Supplementary Table 11). We further expanded our comparison between human and
mouse cortical areas and performed comparisons between the layer IIIAnt and IIIPost for humans and
the data for mice grouped according to seven different cortical areas, which included: primary motor
cortex, secondary motor cortex, prelimbic/infralimbic cortex, primary somatosensory cortex, secondary
somatosensory cortex, primary visual cortex and secondary visual cortex. Results show in more detail
the dissimilarity between both datasets with only 1/14 non-rejected tests. More specifically, we found
Layer IIIPost similar to primary somatosensory cortex (see Supplementary Table 12).

6.3.7 Comparison between different humans under various groups of data

We now split the data into five different groups according to the different humans that generated the data.
The different labels that identify them are H153, H155, H213, H263 and H264. The first comparison was
between the data grouped only by different humans. The results show a majority of test rejections (9/10)
with the only exception between the data of H155 and H153 (Supplementary Table 13). Subsequently,
we analyze first order branch angle only of those groups, with the goal to locate the source of the diversity
among individuals. We found that for the first branch order only, the data is remarkably different from
the first study, showing a majority of non-rejections for similarity (8/10). We then continued to test
other branch orders, and found that for branch order two, results are similar to the global study with
9/10 rejections for the same pairs of combinations, leaving the comparison of H153 and H155 as the
only non-rejected case (Supplementary Table 14). Finally, we compared the number of branching angles
per dendrite for all different humans, with resulted in a mixed combination between rejections (i.e. the
number of nodes per dendrite does not follow a similar distribution in the comparison) and non-rejections
(5/10 in both cases) (Supplementary Table 15).

6.4 Discussion

In this Chapter the main objective was to analyze the branching angles of human layers III and V pyrami-
dal neurons with the aim of trying to find a statistical distribution that properly models branching angles
in human pyramidal neurons, and to find out possible differences and similarities between branching
angles in different cortical layers of the temporal cortex. Furthermore, we compared the branching an-
gles of human layer III pyramidal neurons with data obtained in previous studies in layer III of the rat
somatosensory cortex (Leguey et al. [2016]) and in several cortical areas of the mouse (Bielza et al.
[2014]). The main conclusions are the following:
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1. The truncated von Mises distribution seems to improve the results of the von Mises distribution to
model branching angles, with excellent results in modeling the data.

2. Moreover, we found that branch orders nearer to the soma have the widest angles and that they
gradually decrease as the branch order increases in all groups. This was more evident when an-
gles are selectively grouped according to the maximum branch order of their dendritic trees in all
groups, suggesting that bigger trees tend to require wider first order angles to grow.

3. The variations between the minimum branching angles, per branch order and maximum tree order,
were clearly lower than the variation of the maximum angles, which could imply that the highest
branch order angles vary less than, for example, first order angles, which perhaps is related to the
fact that first order angles have to allow the dendrite to grow, while the last branch order angles are
the only ones that do not have to.

4. Branch orders are shown to be statistically different from each other, which seems to be a further
evidence that in the process of building a dendrite, different branch orders follow different patterns
(i.e., they have to be modeled separately at least until general variation rules between branchings
are found).

5. Independence tests have shown that no measurable dependency is observed between branching
orders. In this direction, future work could be to consider other forms of dependency or other
ways of splitting the data where such supposed dependencies could be observed.

6. Regarding comparisons between layers III and V, angles in layer VPost were found to be clearly
smaller than the angles in layer IIIPost, whereas the concentration of the angles was similar in all
cases for both layers. The similarity tests showed that the design principles behind the formation of
branching angles differ somehow between the layers IIIPost and VPost, as they can be considered
statistically different. Layer IIIAnt branching angles presented slightly lower concentrated angles
than layer IIIPost. The similarity tests showed that they cannot be concluded to be statistically
different by examining the data. These results are in line with previous studies of pyramidal
neurons in layer III of the mouse cerebral cortex (Bielza et al. [2014]).

7. Importantly, the general rules above summarized were similar for pyramidal cells in human, rat
and mouse. Furthermore, the range of the angular branching angles showed remarkable similarities
between the three species.

8. The five individuals examined showed significant differences in the mean branching angles among
them except in one of the comparisons. However, significant differences in the branching angles
for branch order 1 was only found in two of the ten comparisons, whereas for branching order 2
all were different except in one comparison. Thus, the differences between individuals are mainly
due to branching angles other than for branch order 1.

Therefore, taking into consideration all these results together, we can deduce that there are com-
mon design principles that govern the geometry of dendritic branching angles of pyramidal neurons in
different layers, cortical areas and species. These results were unexpected as major differences in the
structure of pyramidal cells are observed between these neurons in the human, rat and mouse in terms of
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the size and complexity of their dendritic arborization, in the density of dendritic spines on their dendritic
branches and in the total number of dendritic spines. Thus, the present results further suggest that the
branching dendritic angles do not seem to be related to the overall complexity of the dendritic arbors
and number of dendritic spines, or if they are related, these differences must be due to relatively small
variations in the branching angles. For example, these angles are in general wider in humans compared
to rats and mice. Indeed, we found that the distribution of the branching angles of layer III pyramidal
cells between the three species were statistically different in spite of the similarities of the ranges. How-
ever, when we compared the data between human layer IIIAnt and IIIPost with the data for mice grouped
according to seven different cortical areas that were available (primary motor cortex, secondary motor
cortex, prelimbic/infralimbic cortex, primary somatosensory cortex, secondary somatosensory cortex,
primary visual cortex and secondary visual cortex), we found that Layer IIIPost was similar to primary
somatosensory cortex. Thus, further similarities or differences between different species may be found
by examining additional cortical regions and layers. Intuitively, the differences between the human and
mouse regarding different cortical regions would be expected, given the different functional specializa-
tions. Conversely, we do not know why there are similarities between pyramidal cells of human and
mouse in areas as different as the posterior temporal cortex of humans and the primary somatosensory
cortex of mouse. Therefore, further studies are necessary to include more detailed comparisons between
branch orders as the mean angle per area and the range of angles alone do not provide enough informa-
tion to fully address the issue. In addition, it will be necessary to compare not only between human, rat
and mouse pyramidal neurons to try to generalize the results, but also between pyramidal cells of other
species as significant morphological differences do exist between other species (reviewed in Jacobs et al.
[2001], Elston [2007], Elston et al. [2011], Defelipe [2011], Eyal et al. [2014] and Mohan et al. [2015]),
and it is possible that certain morphological features might be related to the dendritic branching angles
of particular branch orders in particular cortical layers, areas or species.

Finally, the neocortex tissue of the five patients examined was histologically normal, despite the fact
that these individuals were epileptic. This tissue was removed to gain access to the epileptic focus that
was located in the mesial structures. In previous studies, it has been shown that the biopsy material
obtained during neurosurgical treatment for epilepsy represents an excellent opportunity to study the
microanatomy of the human brain because the resected tissue can be immediately immersed in the fixa-
tive. Thus, this tissue is lacking possible post-mortem time-induced changes that may occur at both the
neurochemical and anatomical levels, which is the major problem when using brain tissue from autop-
sies. Certainly, this is why the quality of the immunocytochemical staining at both the light and electron
microscopy levels in human biopsy material has been shown to be comparable to that obtained in experi-
mental animals (e.g., del Rı́o and DeFelipe [1994] and Alonso-Nanclares et al. [2008]). Therefore, these
biopsies are of great value since, for obvious ethical reasons, it is as close to a ‘normal’sample of brain
tissue as is possible to obtain for studying the human brain. However, a major drawback is that epileptic
patients are heterogeneous in terms of their disease history and it is possible that the different medical
characteristics of the epileptic patients (i.e., differences in the medication, severity of the disease, onset
and duration, etc.) may modify the brain tissue, but we do not have enough cases to analyze this possi-
bility. Interestingly, the five cases examined showed significant differences in the mean branching angles
among them except in the comparison between two individuals that were 28 and 41 years old at the
time of neurosurgery (H153 and H155, respectively). It is not known whether this represents “normal”
interindividual variability or whether the differences observed were due to the different medical condi-



82 CHAPTER 6. DENDRITIC BRANCHING ANGLES

tions. Nevertheless, these two “similar” cases have a rather different medical history regarding the age at
onset (9 years old for case H153, 17 years old for H155); the duration (19 years for case H153, 24 years
for H155), the seizure frequency (daily for H153, weekly for H155); and the pathology observed in the
mesial structures (no apparent hippocampal alterations in H153, hippocampal sclerosis in H155). Thus,
we are inclined to think that the differences between individuals may simply be due to interindividual
variability. Further studies would be necessary to ascertain the range of variability between pyramidal
cells of the human cerebral cortex.

This work has been published as Fernandez-Gonzalez, P., R. Benavides-Piccione, I. Leguey, C.
Bielza, P. Larrañaga, and J. DeFelipe, “Dendritic branching angles of pyramidal neurons of the human
cerebral cortex”, Brain Structure and Function, vol. 222, issue 4, pp. 1847-1859, 2017.



Chapter 7
Gaussian Bayesian networks for
multidimensional classification of
morphologically characterized neurons in
the NeuroMorpho repository

7.1 Introduction

Neurons’s morphology differences have been observed between different animals, but also within the
same species. The developmental stage and the location in the brain can also show morphological varia-
tions between cells (Jacobs et al. [2014]). In order to statistically analyze these differences, a multidimen-
sional classifier using an interpretable statistical model is one of the most appealing approaches. To build
a model that can effectively predict class labels such as in which species, gender and developmental stage
an animal is and to which cell types the sample neuron belongs, given a set of morphological descriptors
of the neuron, could be considered a big step towards neuron morphology understanding. Specially if
the selected model has the property of interpretability, allowing us to extract knowledge directly from it.

For this work, a class-bridge decomposable multidimensional Gaussian Bayesian network classifier
(CB-MGC) is proposed and trained with the neurons dataset of (Ascoli et al. [2007]). This classifier is
not bounded to a prefixed structure (naive Bayes, tree-like structures in the class variables, etc.) and also
handles variables of continuous (Gaussian) and discrete nature. It is influenced by the works of Pérez
et al. [2006] and Borchani et al. [2010]. The classifier’s strengths are its interpretability, the capability
to capture dependencies between the class variables, the exploitation of the class-bridge decomposabil-
ity property and its ability to handle feature variables of continuous nature straightforwardly, without
the need to discretize the data. Its weakness may be the assumption of Gaussianity in the continuous
nodes, where features whose distribution strongly deviates from the Gaussian distribution could hinder
the model’s performance. However, this is acceptable in this case as the data features tend to distribute
according to Gaussian distributions. The definition and properties of this model will be detailed in Sec-
tion 7.2.

Section 7.3 presents a structural learning algorithm that uses the class-brigde decomposability to
incrementally build a complex network structure while saving computational costs in the process. Section
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7.4 shows the results and final network with a focus on the implications of the obtained relationships in
the final model. Finally, Section 7.5 summarizes the main findings and discusses the conclusions and
implications of this work.

7.2 Multidimensional Gaussian Bayesian network classifiers

A multidimensional Gaussian network classifier (MGNC) is a Bayesian network B = (G,Θ) over a set
Xf = {X1, . . . ,Xm}, m ∈ N of continuous random variables and a set C = {C1, . . . ,Cs}, s ∈ N of
discrete class random variables where Xf is assumed to be jointly distributed as a multidimensional
Gaussian distribution N (µ,Σ), where µ is a vector of means and Σ is the covariance matrix of the
variables in Xf . Xf and C are referred to as the set of feature variables and the set of class variables,
respectively. MGNCs are additionally constrained to satisfy Pa(Ci) ∩ Xf = ∅, that is, no arcs from
feature variables to class variables are permitted. Multidimensional classifiers have been studied initially
in Van Der Gaag and De Waal [2006], and extended in Borchani et al. [2010] and Bielza et al. [2011].

In concordance with the literature, MGNCs can be additionally described by considering three dif-
ferent subgraphs in its structure:

� AC ⊆ VC × VC is the set of arcs connecting solely the class variables and VC is the set of vertices
representing the class variables. The associated subgraph, that contains as nodes all the class
variables and is induced by VC , is denoted as GC = (VC ,AC)

� AXf ⊆ VXf × VXf is the set of arcs connecting solely the feature variables and VXf is the set of
vertices representing the feature variables. The associated subgraph, that contain as nodes all the
feature variables and is induced by VXf , is denoted as GXf = (VXf ,AXf )

� ACXf ⊆ VC × VXf is the set of arcs that go from the class variables to the features variables. The
associated subgraph comprehends all nodes of the network as is denoted as GCXf = (V,ACXf )

For this type of models, classification using a 0-1 loss function (see Section 3.2.4.2) amounts to
solving the most probable explanation problem (that is, the search of the class labels that maximize
the probability of the class variables given the evidence of the feature variables). When calculating
the MPE in a MGNC, it is possible to use Equation (3.25) to compute the MPE by considering that
p(c∣x)∝ p(c,x), where p(ci∣pa(ci)) is computed as a classical discrete probability in a BN and for the
feature nodes, f(xi∣pa(xi)) follows a Gaussian distribution N (µi, σ2

i ), where

� µi = µi∣pci +∑
dpi
j=1 βij∣pci(xj − µj∣pci)

� σ2
i =

∣ΣXi,PXi∣pci
∣

∣ΣPXi∣pci
∣

where pci = paVCi
(xi) is the set of class parents of Xi, paVXfi

(xi) is the set of feature parents of Xi

(pxi or PXi for notation conciseness), dpi = ∣paVXfi
(xi)∣ is the number of feature parents of Xi , βij∣pci

is a regression coefficient defined as:

βij∣pci =
σij∣pci
σ2
j∣pci
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where σij∣pci is the covariance of Xi and Xj conditioned to the class parents of Xi, σ2
j∣pci = σjj∣pci and

ΣL∣pci is the covariance matrix of the set of variables L conditioned to the class parents of Xi.

A GBN possesses several desired properties such as the less demanding number of parameters to
model a continuous distribution and the possibility to compute them independently from the structure
of the GBN (Geiger and Heckerman [1994]). The computation of the MPE, however, concerns only
the class variables, that is, the discrete part of the network, and therefore no complexity alleviation was
found for inference by assuming Gaussianity in the feature nodes. This is a well-known problem as when
learning an unrestricted class structure the MPE problem is exponential in the number of variables. This
issue renders the inference intractable even for a relatively small set of class variables.

7.2.1 Class-bridge decomposability property

In order to tackle the inference problem, CB-decomposable MGNCs are considered, extending previous
works Bielza et al. [2011] and Borchani et al. [2010], defined over discrete feature variables. A MGNC
is a CB-decomposable MGNC if it satisfies the following two properties:

� GC ∪ GCXf can be partitioned as GC ∪ GCXf = ⋃ri=1(GCi ∪ G(CX)i), where GCi ∪ G(CX)i , for
i = 1, . . . , r are complete subgraphs of the original graph, that is, maximal connected components1.

� Ch(VCi) ∩ Ch(VCj) = ∅ with i, j = 1, . . . , r and i ≠ j, where Ch(VCi) stands for the set of
children variables of VCi , the subset of class variables in GCi (i.e non-shared children property).

Then the MPE problem for a CB-decomposable MGNC is transformed into

arg max
c1,...,cn

p(C1 = c1, . . . ,Cn = cn∣x)

∝∏r
i=1 max

c
↓VCi∈Ii

(∏C∈VCi p(c∣pa(c))∏X∈Ch(VCi) p(x∣paVC(x),paVXf
(x)))

where c
↓VCi∈Ii is the projection of the vector c to the coordinates in VCi and Ii stands for the sample space

associated with VCi (that is, Ii = V al (VCi) in shorter notation). Intuitively, this breaks the MPE problem
into r smaller MPE problems (Figure 7.1). Given the exponential nature of the total of possible label
combinations with respect to the number of class variables, this effectively alleviates the computational
burden as well as the sample size needed for the classification problem. It is also possible to see this
property in the factorization of the network, as each component is identified as a subset of the network
factors whose class variables form a closed group (that is, no other reference is found to them in the rest
of the factors of the network).

1A graph is “connected” if for every pair of its vertices there is an path, without regard for the direction of the arcs, that
links them together.
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Figure 7.1: A Bayesian network structure showing three maximal connected components.

7.3 Structural learning algorithm

The proposed learning algorithm can be characterized as a three-step learning algorithm with a greedy
forward search approach. That is, arcs are initialized to the empty set for the three different subgraphs
AC = ∅,AXf = ∅ and ACXf = ∅, obtaining an initial network with no arcs and all nodes present.
Then, it follows with the addition of arcs to the different parts of the network (filling bridge, feature
and class subgraphs in that order) judging their contributions using the global accuracy score in all three
steps. The addition of arcs is designed to exploit the CB-decomposablility property to scale to complex
network structures without unnecessary computational burden. This is accomplished by controlling the
number of maximal connected components at any given moment, only reducing it after less costly arc
insertions have taken place. This effectively allows it to learn a relatively complex structure before
computational complexity becomes an issue. The final stage of computation only increases complexity
when its unavoidable to do so, and it is capable of producing topologically unrestricted class subgraphs.

Once our model is built, we evaluate the inference performance of the trained model using the Ham-
ming score HS (which is simply 1 −HL, where HL is the Hamming loss) and global accuracy metrics
(see Section 3.2.3). From an algorithmical perspective, however, we can define these metrics in a data-
dependent, more comprehensive way, respectively, as follows:

HS = 1

n

n

∑
i=1

∣Ti ∩ Pi∣
∣Ti ∪ Pi∣

,

where, Ti is the set of true values for the variables in C in the ith instance in dataset Dn, and Pi is the set
of predicted labels for variables in C by the classifier for the ith instance, and

GA = 1

n

n

∑
i=1

δPiTi ,

where δP
i

Ti
is a function that outputs 1 if Ti = Pi and 0 otherwise.

The algorithm was tested using a train/split fashion where 1
3 of the total dataset instances were used

and randomly chosen for testing.
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7.3.1 Learning the bridge subgraph

The algorithm first focuses on building a naive Bayes subgraph NBi(Ci,Xe), with Xe ⊂ Xf for each
class variable Ci, i = 1, . . . , s of the network, over which a sequential feature subset selection process
is carried out. First, the features are grouped according to their separation power with respect to Ci by
means of a Kruskal-Wallis test (Kruskal and Wallis [1952]). In order to do this, each feature data is
partitioned into subgroups according to the class label. Then, the Kruskal-Wallis test is used to measure
whether the population of subgroups originate from the same probability distribution. Since features
with lower p−values are considered to be more relevant for classification, they are sorted in ascending
value. Then, the sequential feature subset selection technique is applied, which adds arcs from the Ci
variables to Xj variables if an accuracy improvement is detected.

Finally, it eliminates shared children in order to obtain an initial CB-decomposable MGNC structure
with the maximum number of r maximal connected components, where r = s since each naive Bayes
graph is a maximal connected component. In order to do this, it compares the p−values obtained in
Kruskal-Wallis test for classesCi andCl and variableXj and removes the arc that has a higher associated
p−value. If p−values are equal, arc removal is chosen randomly. Algorithm 7.1 outlines the procedure.

Algorithm 7.1 Learning bridge subgraph

Require: C,Xf , s,m
1: for i = 1 to s do
2: Select class variable Ci
3: Initialize the set of features as Xi = ∅
4: for j = 1 to m do
5: Obtain p−value from kwpval(Xj ,Ci) // The Kruskal-Wallis test after separating feature Xj

according to the values of Ci
6: end for
7: Sort features according to ascending p−values
8: for j = 1 to m do
9: if Acc(NBi(Ci,Xi)) < Acc(NBi(Ci,Xi ∪Xj)) then

10: NBi(Ci,Xe) ∶= NBi(Ci,Xi ∪Xj)
11: end if
12: end for
13: end for
14: Compare all the children of all NBi
15: for all NBa(Ca,Xa),NBb(Cb,Xb) such that Xa ∩Xb ≠ ∅ do
16: for all Xp ∈ Xa ∩Xb do
17: p−values comparison for feature Xp and clases Ca and Cb
18: if kwpval(Xp,Ca) > kwpval(Xp,Cb) then
19: Remove arc from Ca to Xp in NBa
20: else if kwpval(Xp,Ca) < kwpval(Xp,Cb) then
21: Remove arc from Cb to Xp in NBb
22: else
23: Arc removal chosen randomly
24: end if
25: end for
26: end for
27: Output GCXf = ⋃si=1NBi
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7.3.2 Learning the feature subgraph

The second step is to obtain the feature subgraph, for which a maximum number of iterations (parameter
t), of arc insertions attempts, is defined. This decision was adopted to avoid the computational burden of
examining all possible arc insertions. First, the algorithm calculates the global accuracy that corresponds
to the concatenation of the individual class predictions of all existing maximal connected components.

Arc insertions between two unselected features in the previous process are not permited, while the
other cases are allowed. This may allow unselected features in the previous process to become part of
the model structure. When an arc insertion occurs, the parent feature is added to the component. For
each arc insertion between a pair of nodes Xi → Xj the accuracy is recalculated. It is important to
note that because of the CB-decomposability property, at this step only the MPE values for the class
of the component containing the children node need to be recalculated. If there is a global accuracy
improvement, the arc insertion is kept, otherwise is discarded. Because accuracy is used as the metric
for the arc insertions, this is a wrapper structural learning step.

7.3.3 Learning the class subgraph

For the final graph, the algorithm tries to identify the existing dependencies between class variables
and attempt to merge the r maximal connected components. It does this, like in the previous step, in
a wrapper fashion. The algorithm starts by considering all possible pairwise components mergings.
For each component, all single arc insertions between classes that belong to different components are
evaluated, in both directions. If an improvement in accuracy exists, the arc insertion process continues
updating the merged component class subgraph by further arc insertions. This process finishes when
no improvement in accuracy is observed. Similarly, the merging component process finishes when no
component merging improves accuracy or when the number of components has been reduced to one. It is
important to notice that when two components are merged, the MPE values only need to be reevaluated
for those two components, leaving the remaining nodes outside. This process of local computations
guarantees that the computational burden of the MPE increases exponentially only when an arc insertion
produces a network topology that cannot be separated in smaller maximal connected components and
involves a higher number of class variables. If there are only two components and are merged, the MPE
is computed similarly to a classic exact inference approach involving all class variables. Algorithm 7.2
outlines the method.
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Algorithm 7.2 Calculate class subgraph

Require: C,Xf , s,m and output of Step 2
1: Initialize AccImprovement = true, ComponentAccImprovement = true, Rc = {R1, . . . ,Rs} where

each Ri ∈Rc is a GN (initially it is the list of components obtained in Step 2)
2: while AccImprovement and ∣Rc∣ > 1 do
3: lR ∶= ∅ //Where the candidate mergings between components are stored
4: for all possible Ri,Rj component mergings where i, j = 1, . . . , s and i ≠ j do
5: Rij ∶= Ri ∪Rj
6: aRij = Rij
7: while ComponentAccImprovement do
8: Evaluate all possible single arc insertions CRik → CRjh, CRik ← CRjh from class nodes of

different components in Rij
9: if exist arc insertions that improve component accuracy then

10: select best arc and update Rij
11: else
12: ComponentAccImprovement = false
13: end if
14: end while
15: if aRij ≠ Rij then
16: lR ∶= lR ∪Rij
17: end if
18: end for
19: if lR ≠ ∅ then
20: select the best merging of components, Rab, contained in lR,Rc ∶=Rc / {Ra,Rb} ∪Rab
21: else
22: Accimprovement = false
23: end if
24: end while
25: Return the obtained CB-MGC = ⋃∣Rc∣

i=1 Ri ∈Rc

It should be noted that the class subgraph is not bounded to any network topology or any subset of
all possible networks, which itself offers a great appeal with respect to restricted methods. This learning
algorithm operates by scaling the complexity of the network topology through a path that minimizes
the computational burden of calculating the MPE at each step, by exploiting the CB-decomposability
property.

7.4 Classification of neuron’s morphological features

The data was obtained from NeuroMorphov5.7.org, more specifically, the available data from As-
coli et al. [2007]. In its raw form, the dataset contained information about 10880 3D reconstructed
neurons, that were later processed with the L-measure tool (Scorcioni et al. [2008]) to extract a total
of 215 features describing the neurons morphology. Initially, the dataset was composed of seven class
labels (species, gender, brain region, cell type level 1, cell type level 2, development and neocortex) with
missing data, which shows that the initial problem is a multidimensional semisupervised classification
problem. Another difficulty was that some class labels were heavily imbalanced, with the most extreme
case represented by a rabbit’s neuron, with only one instance for the species class. Hence, a prepro-

NeuroMorpho v5.7.org
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cessing step was conducted combining data imputation (using a 1-NN algorithm) with the elimination
of class values that did not reach a critical l number of instances (l can be regarded as a parameter to
the final model that shapes the data that the learning algorithm receives). This number was set to be
l = 200. Preprocessing further continued as for the classifier to optimize its performance, features must
not significantly deviate from Gaussianity and data fitting to a Gaussian distribution should be possible
under all data subsets originated from conditioning the feature to each class variable. With this, dataset
pruning further continued to reach a final count of 5136 instances, 6 classes (the neocortex class variable
was left out as most of its values were missing) and a total of 158 features (57 were either too different
from Gaussian distributions or had subpopulations with zero variance).

A more detailed description of the class labels can be found in Table 7.1. They conform a class car-
dinality space of 1440 possible label combinations. The features cover many measurement perspectives
of the same celular body and offer a vast amount of information of the morphology of a neuron. For a
more detailed description or the morphological details captured by the features, the reader is directed to
Scorcioni et al. [2008].

Table 7.1: Class labels in the final dataset

Specie Gender Brain region Cell type level 1 Cell type level 2 Development
drosophila female anterior olfactory nucleus axonal terminal ganglion cell adult
human male basal forebrain interneuron granulle cell young
monkey hippocampus principal cell medium spiny cell
ray neocortex pyramidal cell

optic lobe tangential cell
retina

The algorithm is now applied, trainning a CB-decomposable multidimensional classifier with the
goal of finding relationships in the data that can help us understand and predict how neuron morphology
changes across the different class labels. This algorithm was programmed using Matlab (version R2015a)
and the Bayes net toolBox package (Murphy et al. [2001]) together with the structural learning package
(Leray and Francois [2004]).

As seen in Figure 7.2, six components have been obtained that noticeably differ from each other
after the first two steps. The parameter t for arc insertion attempts was fixed at t = 250 although it can be
observed, in the scarcity of feature to feature arcs, that most of the arc insertions did not improve the final
accuracy of the model and hence only a small subset produced definite arc inclusions. The software L-
measure generally reports the minimum, maximum average and standard deviation values as descriptive
features of some measured aspect of the neuron. In some cases, it can be observed how these values tend
to appear together in the components (for example the “parent daughter ratio”, that measures the ratio
between the diameter of a dendrite or axonal segment and its segment prolongations after a bifurcation
has taken place, can be seen three times the the component with class variable “development”) which
is perhaps indicative of a statistical dependency existing between that measured aspect and the class
variable connected to the features that describe it. Its also worth noticing that after computing step 2,
the same node can appear in two different components, but as child/parent of the feature variables (for
example, “taper 1 avg” in the component with class variable “gender” and as a parent of “diameter sd”
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in the component whose class variable is “cell type level 2”). When components are merged in Step 3,
intersecting features are merged together.

Figure 7.2: The six components after learning the brigde and feature subgraphs.

In Figure 7.3 the found dependencies between classes in the final network, after computing step 3,
are visualized. Species represents the major discriminant variable between the morphological features
of two neurons, as it conditions all but the development variable. This supports the common intuition
that two animals from different species differ more in their morphology than, for example, two animals
of the same species but of different genders. Along with intuition also seems to be the dependency
between brain region and cell type level 2 as different areas of the brain tend to have different neuron
subpopulations. The gender dependency of development suggests that morphological differences be-
tween individuals of different genders vary with time (intuitively, this may correspond with the stages of
sexual differentiation in the transition from young to adult that some species experience, or a sexual ho-
mogenization passing from adult to old). Moreover, cell type level 2 seems to be the most dependent of
all classes, which also seems intuitive as it is measured at the smallest granularity, that is, “it is the clos-
est to an individual neuron” or the one that has potentially less variability. These findings significantly
improve the confidence on those previously hypothesized relationships between these classes.
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Figure 7.3: Final class subgraph depicting the dependencies found in the data

The final model performance as a multidimensional classifier was measured by the Hamming score
and global acuracy metrics, and found values 0.7666 and 0.2288, respectively.

7.5 Conclusions and future lines of research

This new learning algorithm for a multidimensional classifier effectively models and predicts multiple
classes provided a set of features. Also, it can be effectively used to build a model that predicts multiple
classes of a neuron given a set of morphological descriptors. It is worth noticing that the obtained class
subgraph could not have been obtained under common restrictions for multidimensional classifiers, such
as independent classes, sequential (chain) dependencies or tree structures. Therefore, this learning algo-
rith produces more expressive models that offer a superior performance in terms on interpretability. This
was achieved by the continuous usage of the CB-decomposability property through the learning process,
allowing it to scale from a simple to a complex network topology without computing the MPE problem
with more variables than necessary. It also succeeds in the objective of extracting useful knowledge out
of the data in the field of neuroscience, which we believe validates the application of our model to real
life problems and our choice of this model for this problem.

In regards to future work and improvements, the 1-NN data imputation method can be substituted
by a method based on the structural learning process (such as an expectation-maximization method). As
in its current form, the structural learning algorithm does not explore the addition of arcs between class
variables and feature variables that belonged to different components when merged, an investment in
computational power that could lead to significant improvements in the classifiers accuracy. Also, the
addition of arc removal operations can be considered.

An earlier version of this work has been published as Fernandez-Gonzalez, P., C. Bielza, and P.
Larrañaga, “Multidimensional classifiers for neuroanatomical data”, ICML Workshop on Statistics, Ma-
chine Learning and Neuroscience (Stamlins 2015), pp. 0-6, 2015. The present work has been published
as Fernandez-Gonzalez, P., P. Larrañaga, and C. Bielza, “Bayesian Gaussian networks for multidimen-
sional classification of morphologically characterized neurons in the NeuroMorpho repository”, In Actas
de la 17a Conferencia de la Asociación Española para la Inteligencia Artificial, pp. 39-48, 2016



Chapter 8
Random forests for regression as a
weighted sum of k-potential nearest
neighbors

8.1 Introduction

Random forests is a powerful machine learning ensemble method that has achieved state-of-the-art per-
formance in classification and regression tasks. It is computationally fast, produces high accuracy results,
has a low parameter count for an ensemble and can handle small sample sizes even with a high number
of features. As such, it has earned a wide interest in the research community that spawned a significant
amount of papers (Biau and Scornet [2016]). It operates by training multiple decision or regression trees
each on bootstrapped samples of the data and combining their predictions most typically by voting (clas-
sification) or averaging (regression). In the process of building each tree, a randomly selected subset of
the total number of features is used at each time the data is split to search for the locally optimal splitting
point (also referred to as the cutoff in continuous variables). To determine the optimal splitting point,
a splitting criterion is required. In the random forest literature, the two most used splitting criteria for
classification are the Gini impurity and the information gain. For regression, it is the predicted squared
error/sum of squared errors.

In this chapter, we focus on RFs (Breiman [2001]) for regression. Initially, we have a training dataset
Dn = {(x1, y1), . . . ,xn, yn)} of n i.i.d. samples from a (d + 1)−dimensional random vector (X ,Y)
taking values in Rd × R. Our goal is to estimate the regression function f(x) = E[Y ∣X = x] for any
x ∈ Rd usingDn. In doing so, we attempt to minimize the mean squared errorMSE = E[f̂(x)−f(x)]2,
where f̂(x) is the regression function estimate of f(x). In this context, we refer to the RF regression
estimate as f̂RF (x).

While RF desirability has been displayed at a practical level, sound mathematical understanding of
the method is still a lacking subject. For the case of RFs with regression trees, the problem stems from the
intricate relationships between bagging (Boostrap + AGGregatING) (Breiman [1996] and Büchlmann
and Yu [2002]) and the splitting criteria together, which renders individual regression trees and con-
ventional statistical analyses insufficient for describing the ensemble. In the direction of mathematical
understanding of the model, some early works include Breiman [2001], that offered a widely known
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upper bound on the generalization error based on the strength (individual classifier’s performance) and
correlation (similarity of response of the individual classifiers for given inputs) of the members of the
ensemble. More recently, Lin and Jeon [2006] showed that when regression trees are grown without
pruning and with a fixed parameter k that regulates the tree growth by stopping whenever there are k or
fewer examples in a node, the regression function estimate given by a RF algorithm can be viewed as a
weighted sum of datapoints:

f̂RF1(x0) =
n

∑
i=1

wi(x0)yi, (8.1)

where yi is the response value associated with datapoint xi,wi(x0) is a weight that scales the contribution
of yi to the final prediction and x0 is the target datapoint to be predicted. Additionally, an equivalence
relationship between RFs and a special type of nearest neighbors (Fix and Hodges Jr [1951] and Fix and
Hodges [1952]) called k-potential nearest neighbors (k-PNNs) was found out. It was shown that if we
omit bootstrapping, the regression function estimate given by RFs can be expressed as

f̂RF2(x0) = ∑
xi∈Pk(x0∣Dn)

wi(x0)yi, (8.2)

where Pk(x0∣Dn) is a set containing the k-PNN datapoints of x0 inDn. In this setting, different splitting
criteria determine different wi(x0) values for each datapoint, and different wi(x0) functions. This work
established the foundations for a path towards a sound understanding of the model. Another work, Biau
and Devroye [2010], extended Lin and Jeon [2006] and achieved consistency results on a regression
estimate that uses the 1-PNN, as well as further understanding of the bagging technique when applied
to the well-known nearest neighbors algorithm. Both Equation (8.2) from Lin and Jeon [2006] and the
bagging and 1-PNN analyses of Biau and Devroye [2010] have been sources of inspiration for the work
of this chapter.

While Equation (8.1) shows that the regression function estimate of RFs can be expressed in terms
of the weights, an explicit expression for the weights is still unknown for any splitting criterion. More-
over, RFs equipped with non adaptive splitting criteria (i.e., that do not depend on the Y values) such
as random splitting, while being studied and widely regarded as a simpler case of RF (Cutler and Zhao
[2001], Geurts et al. [2006]), still lack an explicit expression of these weights. In this direction, while
literature concerning bagged regression estimates as weighted sums of datapoints is relatively abundant
for some selected regression estimates (Stone [1977], Samworth [2012], Caprile et al. [2004]), the gen-
eral consensus is that the bagged form of a regression estimate cannot be computed analytically for most
cases and Monte Carlo simulation must be used instead (Steele [2009]).

An explicit expression for the weights for a given splitting criterion would propose an alternative to
the need of training stage for a RF model building algorithm, shifting all computational burden to the es-
timation of regression values of new examples and completely eliminating trees (effectively overcoming
the Monte Carlo computational approach). Additionally, an equivalence between RFs and other more
understood models could provide additional insights that could help us understand the unknown theoret-
ical underpinnings of RFs. To the best of our knowledge, these weights are more directly discussed in
Biau and Devroye [2010], characterized as “nonnegative Borel measurable functions of” x0 that sum to
1, but no method for the explicit, analytical expression of these weights can be found in the literature.

Together with this, Lin and Jeon [2006] and Biau and Devroye [2010] analyses left some open ques-
tions: In Lin and Jeon [2006], the k-PNN equivalence was discovered, but bootstrapping was discarded
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as a simplification on the RF models in order to make the analysis affordable. Thus, the question of
the k-PNNs relationship with RFs equipped with bootstrapping remains unsolved. In Biau and Devroye
[2010], no analysis was performed on the bagged 1-PNN regression estimate and results for k > 1 were
not considered, both remaining as open problems.

In this Chapter we propose a framework for the analysis and explicit calculation of the weights
corresponding to general RFs, using bootstrapping and different splitting criteria, effectively answering
all previously exposed concerns.

In Section 8.2 we review in detail the concept of k-PNNs and outline some of its most interesting
properties.

In Section 8.3 we solve the problem of determining the influence of bootstrapping on bagged estima-
tors (including RF) in terms of weights using k-PNNs. We call these weights bootstrapped weights and
obtain results for k = 1.

In Section 8.4 we analyze the addition of splitting criteria to our previous developments. We first de-
rive an upper bound on the final weights for any type of splitting criterion, and follow it by the proposal
of a regression estimate called random k-PNN selection. We then extend the results of Section 8.3 for
arbitrary k by means of a proposed notation on the bootstrap variations, denominated b-terms. Addition-
ally, we use this notation to derive explicit weights for the random k-PNN selection regression estimate.
Finally, we introduce a framework to derive bagged estimators for the general case of a splitting criterion
and with it, we obtain another regression estimate that corresponds with a RF that uses random splitting
criterion and stops at k datapoints in its leaves.

In Section 8.5 we validate the predictive behavior of both the random k-PNN selection regression
estimate and the obtained RF-equivalent regression estimate with some practical experiments, to illustrate
the results of our work.

Finally, in Section 8.6 we summarize our work and present our conclusions.

8.2 k-potential nearest neighbors

Intuitively, a datapoint xi in the feature space Rd is considered a k-potential nearest neighbor (k-PNN)
(Lin and Jeon [2006]) of another, x0, if the hyperrectangle defined by xi and x0 as opposing vertices (x0

not included) contains k or less datapoints in the feature space. Formally:

Definition 8.2.1. Let R(x0,xi) denote the set of datapoints contained in the hyperrectangle defined by
x0 and xi as opposing vertices (x0 not included) in the feature space in Dn. Then xi is a k-PNN of x0

in Dn if and only if ∣R(x0,xi)∣ ≤ k (xi ∈ Pk(x0∣Dn)).

∣.∣ denotes the cardinality of a set and k ∈ N. Additionally, we now define Fk(x0) as the set of
datapoints of Dn that have exactly k datapoints contained in the hyperrectangle that goes from each of
them to x0. That is, Fk(x0) = {xi ∈ Dn such that ∣R(x0,xi)∣ = k}.

Figure 8.1 shows an example of the k-PNN points of a point x0 for two different values of k (k = 1,2).
Note that ∣Pk(x0)∣ (we use Pk(x0) instead of Pk(x0∣Dn) when the context is clear) can be clearly more
than k. For a more precise study of the cardinality of the k-PNNs, the number of the 1-PNNs to be
expected for uniform and arbitrary finitely bounded densities in Rd have been studied in Lin and Jeon
[2006] and Biau and Devroye [2010], respectively.
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Figure 8.1: X = (X1,X2) feature space plot where we outline the datapoints in F1(x0) (red) and in F2(x0) (blue), with
x0 = (0,0). The number of concentric circles around a datapoint represents the number of times the datapoint is selected as a
k-PNN in the plot for k = 1,2. Notice how the dashed rectangular area does not contain any other datapoint for the datapoints
in F1(x0) and the dashed dot rectangular area contains just one for the datapoints in F2(x0)

k-PNNs have a number of interesting properties:

k-PNNs correspond to a special case of nearest neighbors where the distance value is defined as the
number of datapoints selected by all monotone distances (Lin and Jeon [2006]). A monotone distance
satisfies the following property: Given datapoints xa and xb and the hyperrectangle defined by both as
opposing vertices, any point xc inside the hyperrectangle would be considered “closer” to xa or to xb

than xa to xb, (for example, all p-norm ∣∣.∣∣p distances are monotone distances).

With this we can define the PNN distance between datapoints x0 and xi as a function in N that
outputs the number of datapoints inside the hyperrectangle defined by both as opposing vertices.

The particular case 1-PNN has received special attention and is commonly referred to as the layered
nearest neighbors in the literature. It was initially proposed as an example of scale invariant metric in
Devroye et al. [1996]. In Biau and Devroye [2010], Biau and Devroye showed that the layered nearest
neighbors are closely related to the notions of maximum (Barndorff-Nielsen and Sobel [1966]) and dom-
inance (Bai et al. [2005]) in high dimensional spaces. A point xa dominates another xb if xai ≥ xbi for
all i = 1, . . . , d and a point is a maximum if no point dominates it. The relationship between k-PNNs
and dominance is the following: If we consider each quadrant separately and apply absolute value to the
coordinates, 1-PNNs or layered nearest neighbors are precisely the points that do not dominate any other
point. For arbitrary k, while not explicitly mentioned in Biau and Devroye [2010], the k-PNNs are the
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points that dominate k or fewer points.

Finally, k-PNNs exhibit a property that links them directly to RFs that grow non-pruned trees stop-
ping at leaves with k or less datapoints. Regression tree cuts at splitting points define hyperrectangular
partitions of the feature space,and the number of possible partitions in a RF that include a point x0 with
k or fewer datapoints, is finite and determined by the distribution of the datapoints. As proven in Lin and
Jeon [2006] we have that, for a fixed dataset (i.e., without bootstrapping) the datapoints xi that can be
selected with ∣R(x0,xi)∣ ≤ k, are the k-PNNs of x0 (Pk(x0)), that is, the voting points of a RF (as in
Equation (8.2)).

8.3 Bagging and k-PNN

Biau et al. (Biau et al. [2010]) analyzed the regression estimate resulting from bagging the 1-NN regres-
sion estimator. It was shown that the bagged 1-NN takes the form of a weighted NN estimator where
each point contributes to the regression estimate of x0, f̂∗1−NN(x0), according to

f̂∗1−NN(x0) =
n

∑
i=1

vi(x0)yi,

where all xi datapoints are here sorted by increasing distance to x0 in the feature space, the ∗ symbol
denotes a bagged estimator and vi(x0) is the probability that the i-th NN of x0, xi in Dn, is the closest
neighbor in a bootstrapped dataset. The set of vi’s is in this case a decreasing sequence given by the
expression

vi(x0) = (1 − i − 1

n
)
n

− (1 − i

n
)
n

. (8.3)

We will refer to the set VNN = {v1(x0), . . . , vi(x0), . . . , vn(x0)} as the bootstrap weights for the
NN regression estimate.

Our interest now lies in understanding how bootstrap weights behave in a similar setting but using
the set of k-PNN points instead of the k-NNs. We start by understanding that similarly to the previous
case, each point must be weighted by an additional vi(x0) factor where vi(x0) is the probability that
xi is a k-PNN of x0 in a bootstrapped dataset (xi’s are not sorted here). Our bootstrap weights vi(x0)
would appear in the bagged version of

fk−SA(x0) = ∑
xi∈Pk(x0)

yi, (8.4)

that is, f∗k−SA(x0).

We will refer to Equation (8.4) as “select all” point selection strategy, hence the SA subindex. No-
tice that Equation (8.4) is not an estimator of E[Y ∣X = x]. The normalized version, f̂k−PNN(x0) =

1
∣Pk(x0)∣ ∑xi∈Pk(x0) yi is a regression estimate and is studied in Biau and Devroye [2010] for k = 1 as the
layered NN estimate.

In order to calculate f̂∗k−SA(x0), additional results and definitions are needed, with the final solution,
for arbitrary k, provided in section 8.4. We now continue with the following lemma and the case k = 1:
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Lemma 8.3.1. Let us define the setRm(xi) = R(x0,xi) / {xi}, where x0 and xi are datapoints and x0 is
our prediction target. Then xi is a k-PNN of x0 for all bootstrap variations such that ∣D∗j ∩Rm(xi)∣ ≤ k−1

where D∗j ∈ B(Dn) and B(Dn) = {D∗1 ,D∗2 , . . .D∗nn} is the set of all bootstrap variation selections of
Dn

Proof. See Appendix B.

Intuitively, Lemma 3.1 establishes for a datapoint xi such that ∣R(x0,xi)∣ = p, p ∈ N to be a k-PNN
with p > k, then p − k points of R(x0,xi) need not to appear in a considered bootstrap variation, or
differently said, xi is a k-PNN only in the fraction of the bootstrap variations that satisfy the requirement
of Lemma 3.1 (for p ≤ k, the only difference is that xi is already a k-PNN in Dn). Therefore, we only
need to be concerned with the bootstrap variations that alter Pk(x0).

8.3.1 The 1-PNN case

For the remainder of this section and for purposes of simplicity, we will analyze the case of bootstrap
weights for 1-PNN. Notice that in this case we need Rm(xi) = ∅ for xi to be a 1-PNN.

For purposes of explanation, let us consider a dataset plot (Figure 8.2) and analyze both the cases
of using 1-NN and 1-PNN point selection strategies of f̂1−NN(x0) (Biau et al. [2010]) and fk−SA(x0)
(Equation (8.4)), respectively. Using 1-NN as our criterion and in a continuous feature space, we can
arrange all datapoints in a ranking type hierarchy (from lowest to highest Euclidean distance to x0),
where the point to be selected as 1-NN is always the highest ranked that appears in the bootstrapped
variation. In other words, the i-th ranked point will be selected as the 1-NN in the bootstrap variations
that do not include the first i − 1 ranked points.

For 1-PNNs, distances between points are discrete (PNN distance) and multiple point selections
occur in the general case (that is, multiple 1-PNNs for a given x0 are expected). The result is a seemingly
complex hierarchy where some points are linked to certain others by a “+1 PNN distance” relationship
that determines the bootstrap requirements for a datapoint to be selected as a 1-PNN (Figure 8.2 and
Figure 8.3).

We are now prepared for the following theorem:

Theorem 8.3.1. Let m be the minimum value of k for which all datapoints are m-PNN. Then f∗1−SA can
be written as

f∗1−SA(x0) =
m

∑
i=1

⎛
⎝ ∑

xj∈Fi(x0)
vj(x0)yj

⎞
⎠
, (8.5)

where the set of bootstrap weights VSA are of the form:

vj(x0) = (1 −
∣R(x0,xj)∣ − 1

n
)
n

− (1 −
∣R(x0,xj)∣

n
)
n

where ∣R(x0,xj)∣ = i.

Proof. See Appendix B.

Notice that as expected from multiple point selections, we do not necessarily have ∑ni=1 vi(x0) = 1,
and in most of the cases ∑ni=1 vi(x0) > 1. Generalization of this theorem for k > 1 will be provided in
Section 8.4.
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Figure 8.2: Feature space plot showing the outlining of Fk(x0) of x0 = (0,0) for values of k from 1 to 5.

Our achievement here, described in terms of hierarchies for bootstrap variation requirements, is that
it makes the bootstrap weights of 1-PNNs accessible for calculation as they are effectively expressed in
Theorem 3.1 and by Lemma 3.1, in the same way as the resulting VNN from bagging the 1-NN regression
estimate. Its importance lies in that it describes the voting points (1-PNN) variations under bootstrapping,
thus making it a useful tool for RF analysis.

8.4 Regression estimates as a weighted sum of k-PNNs

We are now interested in obtaining the final weights, that is, the set of weights WRF , that accounts for
both bootstrapping and splitting criterion in a RF algorithm, where wi(x0) ∈WRF is the probability that
xi is selected in a RF algorithm.

In Lin and Jeon [2006] it was shown that the splitting criteria can be viewed as weight redistributors
for the obtained k-PNNs, corresponding to some particular solutions for the weights in Equation (8.2).
Also, for a fixed dataset, the splitting criterion can be interpreted as a selector of k points from Pk(x0).

We add the following result to the previous considerations by understanding the relationship between
bootstrap weights and the final weights:

Lemma 8.4.1. Let f̂RF (x0) be a RF regression estimate that uses bootstrapping and unpruned trees that
stop at k = 1 datapoints in the leaves. Let xi be a datapoint in Dn and x0 the datapoint to predict. Then

vi(x0) = (1 − ∣R(x0,xi)∣ − 1

n
)
n

− (1 − ∣R(x0,xi)∣
n

)
n
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Figure 8.3: Graphical representation of the hierarchical precedence order for 1-PNN for the datapoints in Figure 8.2. In the
plot, original points are arranged in a hierarchy that shows the precedence relationships for the 1-PNN. Similarly, we can see
that the k − 1 points connected by the arrows from another xi are the points that need not to be included in a bootstrapped
sample for xi to be selected as a 1-PNN. For example, x29 will be selected as 1-PNN if and only if x1, x2, x12 and x20 are not
included in the bootstrapped sample.

is an upper bound of the final weight wi(x0) (that is, vi(x0) ≥ wi(x0)).

Proof. See Appendix B.
Lemma 4.1 holds independently of the chosen split. Thus, it also holds for all RFs growing unpruned

trees stopping when there is k = 1 datapoint in the leaves. Intuitively, we can think of the splitting
criterion as a second point selection strategy applied after the selection of the k-PNNs for a given x0,
which causes only up to k k-PNNs to be selected. In the general case, splitting criteria can be viewed
as some form of weight shrinking procedure of bootstrap weights VSA (that is, the bootstrap weights
for the f∗k−SA(x0) regression estimate), that bounds the resulting wi(x0) to ∑ni=1wi(x0) = 1. That is, a
normalized regression estimator.

8.4.1 Analysis of point selection strategies using weighted b-terms

Now let us consider a regression estimate that applies a random selection over the k-PNNs, that is, k
random k-PNN points are uniformly selected among the existing k-PNNs for each bootstrapped sample.
We have

f̂RkS(x0) =
1

k
∑

xi∈Pk(x0)
1[xi∈D(Pk(x0),k)]yi, (8.6)

whereD(Pk(x0), k) is a set containing k uniform draws without replacement of datapoints fromPk(x0).
We call this criterion, random k-PNN selection (hence the RkS subindex on the regression estimate).
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In a setting with a fixed dataset, the probability of selection for each k-PNN is equal to 1
∣Pk(x0)∣ . How-

ever, when considering bootstraping, different bootstrap variations have different number of k-PNNs.
Classical analysis suggests we write the final weight of a point xj under bootstrapping as

wj(x0) =
1

nn

nn

∑
i=1

1[xj∈Pk(x0∣D∗i )]
1

∣Pk(x0∣D∗i )∣
(8.7)

A first look at Equation (8.7) can be regarded as disappointing from a computational perspective,
since it seems we are burdened with the need to calculate each individual ∣Pk(x0∣D∗i )∣ value.

Here we present an analysis framework that exploits the hierarchy of the PNNs and combinatorics
regarding the bootstrap variations to arrive at a better calculation scenario. We introduce now the concept
of b-term (bootstrap term).

Definition 8.4.1. A b-term bi = xa . . .xb . . .¬xc . . .¬xd written as a list of datapoints of Dn, denotes
the proportion of bootstrap variation selections of Dn that include the datapoints xa, . . . ,xb and do not
include (¬) datapoints xc, . . . ,xd.

Also, we define S(bi) as a function that outputs the numerical value associated with a b-term bi. To
further understand b-terms and function S(.), we present here some of their properties (proofs of these
properties are not included for the sake of brevity):

1. Commutativity: Writing order is commutative. That is, bi = xa . . .xb¬xc . . .¬xd = xa . . .¬xc . . .¬xd . . .xb.

2. Reduction by contradiction: For a b-term of the form bi = xa . . .xb¬xa . . .¬xd we have S(bi) = 0.
This can be interpreted as “no bootstrap variation selection can include and not include a point”
(xa in the example) .

3. Reduction by default: For an “empty” b-term bi we have S(bi) = 1. That is, without restrictions
(empty b-term) all bootstrap variations are included.

4. Equivalence class: Let us define E[lp,lm] as the set of all possible b-terms in Dn that have lp ∈ N
included datapoints restrictions and lm ∈ N non-included datapoints restrictions. Then for all
bi, bj ∈ E[lp,lm] we have S(bi) = S(bj).

5. Sum: We define the sum of two b-terms bi, bj as bi + bj and S(bi + bj) = S(bi) + S(bj).

6. Subtraction: Similarly, we define the subtraction of two b-terms bi, bj as bi − bj and S(bi − bj) =
S(bi) − S(bj).

7. Concatenation: We define the concatenation of b-terms bi, bj as bt = bibj . That is, another b-term
containing all bi and bj datapoint restrictions.

8. Concatenation of the sum: (bi + bj)(ba + bb) = biba + bibb + bjba + bjbb. That is, the concatenation
of the sum works in the fashion of a classical product operation.

9. Reduction by sum: For the sum of b-terms, restrictions of different type over the same datapoint
can be canceled. That is, xaxdbi + ¬xaxdbi = xdbi; since (xa + ¬xa) covers all possible cases for
datapoint xa.
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10. Reduction by subtraction: Similar rules apply for defining and using the subtraction of b-terms.

That is, xdbi − ¬xaxdbi = xaxdbi.

11. Reduction by redundancy: Redundancy is canceled in b-terms. That is, bj = xaxabi = xabi.

12. Constant extraction: Constants multiplying b-terms can be computed outside the S(.) function.
That is, S(Abi) = AS(bi),A ∈ Z.

We can now use b-terms to write the bootstrap weights of Equation (8.3) (bagged 1-NN with data-
points sorted by increasing Euclidean distance) as

vi(x0) = S(¬x1¬x2 . . .¬xi−1xi),

and accounting for the decomposability showed in property 9, and property 6, we can rewrite

vi(x0) = S(¬x1 . . .¬xi−1) − S(¬x1 . . .¬xi−1¬xi),

The following lemma can now be introduced:

Lemma 8.4.2. The numerical value of a b-term bi =
lp

³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
xa . . .xb

lm³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
¬xc . . .¬xd ∈ E[lp,lm] can be calculated as

S(bi) =
lp

∑
i=0

(lp
i
)(−1)i (1 − i + lm

n
)
n

(8.8)

Proof. See Appendix B.
It turns out that this notation allows us to express the final weights in a more accessible way than the

direct computation of Equation (8.7). To illustrate this, let us break down Equation (8.7) into its pieces:
We can see that vj(x0) = 1

nn ∑
nn

i=1 1[xj∈Pk(x0∣D∗i )] (as these are all the cases where xj is a k-PNN) and
then see that 1

∣Pk(x0∣D∗i )∣
models the inclusion of the random k-PNN selection for each bootstrapping

case. However, by Lemma 3.1, it is clear that this expression computes many unnecessary cases (as it
iterates over all possible bootstrap variations without regard for changes in Pk(x0∣D∗i )). Since b-terms
cover subsets of the total bootstrap variation cases (those who satisfy the b-term), it is possible to cover
the set of bootstrap variations for which xj is a k-PNN using b-terms or sums of b-terms. For example,
lets consider in isolation datapoints x0,x1,x2 and x12 of Figure 2, with x0 as our prediction target and
k = 1. Clearly, x1,x2 ∈ F1(x0) and x12 ∈ F2(x0) since x1 is in the way. Then, we can simply write
the bootstrap weights of x12 using b-terms as: v12(x0) = ¬x1x12. Now, we need to account for the
inclusion of the random 1-PNN selection using the b-terms notation. It turns out that by the property
of reduction by sum, it is possible to expand a b-term into the different cases where the random 1-PNN
selection takes different values for selecting a given datapoint. Continuing with our example, its possible
to do ¬x1x12 = ¬x1x12x2+¬x1x12¬x2 which effectively accounts for the cases where x2 is present and
absent. Then, the final weight of x12 can be expressed as: w12(x0) = 1

2S(¬x1x12x2) + S(¬x1x12¬x2).
This shows how weighted sums of b-terms can be used to express the final weights WR1S .

Formally, we define for bi ∈ E[lp,lm]:

PR1S(xi, bi) = LR1S(xi, bi)S(bi) (8.9)
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where
LR1S(xi, bi) =

1

lp
.

and for which following property is verified:

PR1S(xi, bi + bj) = PR1S(xi, bi) + PR1S(xi, bj).

Using the function PR1S(xi, bi), it is possible to pair each b-term in isolation or in a sum of b-terms
with the weight obtained by LR1S(xi, bi). Thus, final weights WR1S of any datapoint can be expressed
using this function as long as the necessary b-terms are known.

Notice that in here, it was possible to define the random 1-PNN selector as a function LR1S(., .)
requiring only the local information of the b-term to output its corresponding value.

The S(bi) function, on the other hand, accounted for the k-PNN hierarchy and the selectability and
bootstrap variations all together. In this sense, b-terms can be looked at as bootstrap variations themselves
and hence our target is to find all relevant bootstrap variations for the calculation of wi(x0).

8.4.2 Random k-PNN selection regression estimate

Here we solve the problem of calculating the expression of the bagged version of the regression estimate
in Equation (8.6), that is f̂∗RkS(x0), and the explicit form of its final weights WRkS . Considering our
work so far, all that remains open is to find regularized way to write the expression that we obtain by
expanding the b-terms of vi(x0) using the reduction by sum property until all datapoints are considered.
For this, we add to the previous work on b-terms the following definition:

Definition 8.4.2. We define the restricted concatenation operator

[xaxb . . .¬xc¬xd, . . . ,xfxg . . .¬xh¬xi]
(xjxk . . .¬xm¬xn . . .)

as a special type of concatenation operator which specifies in brackets [., . . . , .] to which other b-
terms the expression (xjxk . . .¬xm¬xn . . .) is concatenated.

For Definition 4.2, let us consider the example

(x1 + ¬x1)(x2 + ¬x2)([x1¬x2,¬x1¬x2](x3 + ¬x3)).

This results in:
x1x2 + x1¬x2(x3 + ¬x3) + ¬x1x2 + ¬x1¬x2(x3 + ¬x3),

where only the b-terms x1¬x2 and ¬x1¬x2 are concatenated with (x3 + ¬x3).

Then, the following theorem holds:

Theorem 8.4.1. Let us consider a datapoint x0 as our prediction target. Weights WR1S for the f̂∗R1S(x0)
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regression estimate have the form

wi(x0) = PR1S(xi, zi(x0))

where

zi(x0)
= (xi)(Req1(xi)) ∏

xj∈Ind(xi)
[Req1(xj)](xj + ¬xj),

Req1(xi) = {¬xa¬xb . . .¬xs} with Rm(xi) = {xa,xb . . . ,xs} and Ind(xi) = Dn / R(x0,xi) as the
complementary set of points of R(x0,xi) w.r.t. the data Dn.

Proof. See Appendix B (Proof of Theorem 4.2).

The expression of zi(x0) shows “a sum expansion of vi(x0), where each added datapoint is restricted
to be concatenated to the b-terms that can be expressed as btReq1(.) (that is, the b-terms that contain
their Req1(.) set)”. This guarantees that we only consider the inclusion or non inclusion of the datapoint
in the subset of cases where it is relevant for the final weight calculation, while ignored otherwise.

Our goal is now to generalize the previous results for arbitrary k. With the b-terms notation, this
turned out to be a natural step forward. We start with the introduction of the following lemma, that gen-
eralizes Lemma 4.1 for arbitrary k.

Lemma 8.4.3. Let f̂∗RF (x0) be a RF regression estimate that uses bootstrapping, unpruned trees and
stops at arbitrary k ∈ N datapoints in the leaves. Let x0 be our prediction target and xi another datapoint.
Then

vi(x0) = S
⎛
⎝
xi

⎛
⎝ ∑
c∈Reqk(xi)

ric
⎞
⎠
⎞
⎠

is an upper bound of wi(x0) (that is, vi(x0) ≥ wi(x0)), where Reqk(xi) = {ri1, ri2, . . . , rih}, h ∈ N, is
defined as the set of b-terms listing all possible bootstrap variations where a subset of the datapoints in
Rm(xi) allows for xi to be selectable as a k-PNN.

Proof. See Appendix B (proof of Theorem 4.2).

For Theorem 4.1, we first notice that Equation (8.9) does not need to change to account for the b-
terms weights in the k > 1 case, since for a b-term bi ∈ E[lp,lm] the corresponding weight in a random

k-PNN selection would be LRkS(xi, bi) = ( 1
k
) ( klp ) =

1
lp

. We can then define

PRkS = PR1S

and write the following theorem:

Theorem 8.4.2. Let us consider a datapoint x0 as our prediction target. Weights WRkS for the f̂∗RkS(x0)
regression estimate with arbitrary k have the form

wi(x0) = PRkS(xi, zi(x0))



8.4. REGRESSION ESTIMATES AS A WEIGHTED SUM OF K-PNNS 105

where

zi(x0) =

(xi)
⎛
⎝ ∑
c∈Reqk(xi)

ric
⎞
⎠ ∏

xj∈Ind(xi)
[Reqk(xj)](xj + ¬xj)

Proof. See Appendix B.

We finally have:

Theorem 8.4.3. Let us consider a datapoint x0 as our prediction target. The f̂∗RkS(x0) regression estimate
has the form

f̂∗RkS(x0) =
n

∑
i=1

wi(x0)yi

where wi(x0)’s are regarded as in the form of Theorem 4.2.

Proof. See Appendix B.

By proving Theorem 4.3 we have succeeded in our original objective of finding a more direct and
accessible approach to compute the weights that in Equation (8.7). Also, with this theorem we have
solved an open problem in Biau and Devroye [2010], since for the random k-PNN selection, the case
k = 1 corresponds to the final weights W of the bagged layered NN regression estimate detailed in that
paper, that is,

f̂∗R1S(x0) = f̂∗1−PNN(x0).

For the general case (since LRkS = LR1S), we also have

f̂∗RkS(x0) = f̂∗k−PNN(x0).

Finally and as a completing remark, we can now express the generalized bootstrap weights for f∗k−SA
as:

Theorem 8.4.4. Let m be the minimum value of k for which all datapoints are m-PNN. The bagged
version of fk−SA is of the form

f∗k−SA(x0) =
m

∑
i=1

⎛
⎝ ∑

xj∈Fi(x0)
vj(x0)yj

⎞
⎠
,

where vj(x0)’s are regarded as in the form of Lemma 4.3.

Proof. See Appendix B (Proof of Theorem 4.2).

8.4.3 Bagged estimators framework

From Equation (8.9), it is not difficult to imagine that other regression estimates may adjust to this model
with a different P.(xi, bi) function. The P.(xi, bi) function general form is, for an estimator f̂.(x0) in



106 CHAPTER 8. RFS AND WEIGHTED SUMS OF K-PNN

the calculation of the weight of xi:

P.(xi, bi) = L.(xi, bi)S(bi). (8.10)

We have seen how the weight calculation obtained in Theorem 4.2 accounts for all the bootstrap cases
of interest within the k-PNNs, thus, the different ways in which we can specify the L.(xi, bi) function
correspond to the different regression estimates. As an example, let us define

L1−NN(xi, bi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if bi = ¬x1¬x2 . . .¬xi−1xibj

0 otherwise

where here, datapoints are sorted by increasing Euclidean distance, (x1 being the closest to x0 and
xn the furthest away) as the L.(., .) function that produces a bagged NN estimate for k = 1.

We will show now how we can use, in this case, the P1−NN(xi, bi) function, to deduce the weights
of Equation (8.3). We use the simple dataset of Figure 8.4.

Figure 8.4: Feature space plot showing four datapoints and Fk(x0) of x0 = (0,0) for values of k from 1 to 3.

For the dataset of Figure 8.4 and k = 1 we can write the b-terms sum expansion per datapoint as
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follows:

z1(x0) =x1x2x4 + x1¬x2x4 + x1x2¬x4 + x1¬x2¬x4

z2(x0) =x1x2x4 + ¬x1x2x4 + x1x2¬x4 + ¬x1x2¬x4

z3(x0) =¬x1¬x2x3x4 + ¬x1¬x2x3¬x4

z4(x0) =x1x2x4 + x1¬x2x4 + ¬x1x2x4

+ ¬x1¬x2x3x4 + ¬x1¬x2¬x3x4

where here, the b-term sums were obtained using zi(x0) of Theorem 4.1. For this example, we have
the Euclidean distance sorting of the datapoints as x1,x2,x4,x3 (thus, the L1−NN(x0) function will
compute them as x1,x2,x3,x4, respectively). If we now apply P1−NN(xi, bi) we obtain:

w1(x0) = S(x1x2x4 + x1¬x2x4 + x1x2¬x4

+ x1¬x2¬x4)
w2(x0) = S(¬x1x2x4 + ¬x1x2¬x4)
w3(x0) = S(¬x1¬x2x3¬x4)
w4(x0) = S(¬x1¬x2x3x4 + ¬x1¬x2¬x3x4)

Now using the properties of the b-terms we can do:

w1(x0) = S(x1x2x4 + x1¬x2x4 + x1x2¬x4

+ x1¬x2¬x4)
= S(x1x4 + x1¬x4)
= S(x1)

w2(x0) = S(¬x1x2x4 + ¬x1x2¬x4)
= S(¬x1x2)

w4(x0) = S(¬x1¬x2x3x4 + ¬x1¬x2¬x3x4)
= S(¬x1¬x2x4)

which effectively yields the weights of the bagged 1-NN as were known in Biau et al. [2010]. Using
our framework and operations on the b-terms, we were able to deduce the form of the weights of the
bagged estimator and reduce it to its known-form, requiring only one b-term per datapoint.

We argue here that any point selection strategy within the set of the k-PNNs can be adapted to this
format, and by applying the b-terms properties to the result of the P.(., .) function, we can observe how
the interplay between the b-terms and the L.(., .) function gives rise to the bagged version of many
known regression estimates (for example, for all regression estimates using p-norm ∣∣.∣∣p distances as
point selectors, their bagged versions can be easily derived in a similar way than with the Euclidean
distance in the 1-NN example). This includes the well-known predictive square error splitting criterion,
considering that for an adaptive splitting criterion, decisions are made using an additional set of values
Y .
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8.4.4 Random forest with random split regression estimate

Now, we are looking to attain one of the main goals of this work: inducing the LRF function that
would allow us to build a regression estimate that outputs similar predictions to those obtained by the
RF algorithm with random split. Using this framework, we reformulated the problem of inducing the RF
estimator by traditional means to that of finding an expression for p(xi∣bi) for any bi in Dn.

We found a recursive procedure that allows us to calculate LRF (xi, bi), with bi ∈ E[lp,lm] and for
arbitrary k as:

LRF (xi, bi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

GRF (xi, bi) if bi includes xi, bi ∈ E[lp,lm] and lp > k
1
lp

if bi includes xi, bi ∈ E[lp,lm] and lp ≤ k
0 otherwise,

where

GRF (xi, bi) =
1

d

d

∑
l=1

⎛
⎝

lp

∑
k=1

I(k + 1, l, bi,Dn) − I(k, l, bi,Dn)
Is(l, bi,Dn)

LRF (xi,C(xi, k, l, bi,Dn))
⎞
⎠
.

I(k, l, bi,Dn) outputs the value in the l-th feature/column of the k-th datapoint in a sorted sample
(from lowest to highest values) of the datapoints listed in x0bi that appear in Dn ∪ x0. Is(l, bi,Dn)
outputs the range of values of the l-th feature/column for the datapoints listed in x0bi that appear in
Dn ∪ x0. C(xi, k, l, bi,Dn) outputs a b-term bs that contains a subset of the listed datapoints of bi. b-
term bs is defined as follows: Let us consider the sorted sample of Dn datapoints listed in bi by their
values in the l-th feature/column. We can then divide bi into two b-terms bs1 and bs2 by splitting the
sorted sample at the k-th position. Then we can define bs1 to be the b-term that lists the datapoints that
in the sorted sample appeared before the k-th position, and bs2 containing the rest so that bs1bs2 = bi.
Finally, we define bs as bs = bs1 if the interval covered by the l-th feature values of the datapoints listed
in bs1 includes the l-th feature value of x0. If it doesn’t, we define it as bs = bs2.

Intuitively, LRF (xi, bi), accounts for all possible cases that the classical RF algorithm with random
split may produce. For GRF (xi, bi), modeling the random subspace method implies d possible choices
of coordinate. Each choice weighted by 1

d (Notice that in this type of RF, this is always the case regard-
less of how we tune this parameter). Then, for bi ∈ E[lp,lm], lp splits are possible (lp − 1 provided by the
lp datapoints listed in bi and 1 provided by x0) per coordinate. Each split is weighted by its probability
of occurrence on the selected coordinate. After choosing the split, two mutually exclusive subsets of
datapoints are created. Then, the one not containing x0 is discarded, while the other is selected. Repeat-
ing this process recursively for the selected subset of datapoints as a new bi produces GRF (xi, bi). The
second case of LRF (xi, bi) accounts for the stopping criteria, which can be plugged directly, and the
third case accounts for the b-terms that do not contribute to the final weight of xi.

With this, we are ready to present the following theorem:

Theorem 8.4.5. Let us consider a datapoint x0 as our prediction target. The f̂RF (x0) regression estimate
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has the form

f̂RF (x0) =
n

∑
i=1

wi(x0)yi

where wi(x0)’s have the form
wi(x0) = PRF (xi, zi(x0))

with
PRF (xi, zi(x0)) = LRF (xi, zi(x0))S(zi(x0))

and zi(x0) is regarded as in the form of Theorem 4.2.

Proof of this result is considered trivial after the proofs of Theorem 4.2 and Theorem 4.3.
This regression estimate, as we will show in Section 8.5, offers similar predictions to those of a RF

in all cases and problems.

8.5 Towards practical implementation and random forest equivalence

After Section 8.4, we are provided with the means to rewrite bagged estimators that select points in the
k-PNN set as sums of weighted b-terms. Additionally, we have succeeded in finding the explicit expres-
sion for these weights in the cases of a RF with random splitting criterion and our proposed f̂RkS(x0)
regression estimate. In this section, we seek to validate our findings at a practical level.

We started by implementing f̂RkS(x0) with an algorithm that closely follows Theorem 4.3. In order
to do so, we first noticed that function S(.) as shown in Equation (8.8) displays a clear exponential
growth with respect to lp (in the binomial coefficient) and n (in the denominator inside the summation,
as it is nn) in computational complexity. In order to alleviate the complexity of both variables we use an
easy workaround as any expression of the type e(i) = (1 + i

n
)n satisfies limn→∞ e(i) = ei. We can take

advantage of this simply by approximating Equation (8.8) with

S(bi) ≈
lp

∑
i=0

(lp
i
)(−1)ie−i−lm , (8.11)

offering an approximate result (∑ni=1wi(x0) ≤ 1) that improves its accuracy the higher n becomes. We
now do

S(bi) ≈ 1

elm

lp

∑
i=0

(lp
i
)(−1)ie−i

= 1

elm

lp

∑
i=0

(lp
i
)(−1

e
)
i

= 1

elm
(e − 1

e
)
lp

which shows much clearly the relationship between bootstrapping and the b-terms. Also, this implies
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that final weights W are, when n→∞, a sum of weighted exponential functions.

As for the number of b-terms to be computed, we can see that the b-terms expansion grows expo-
nentially in the worst case scenario: Examining zi(x0) in Theorem 4.2, the number of b-terms doubles
at each iteration of the product in the subset of b-terms allowed by the [Reqk(.)] set of the datapoint to
be computed. This is still an improvement with respect to classical analysis and Equation (8.7) for the
complete computation of weights (from O(nn) to O(2n)) and in some cases, as we have seen in section
8.4.1, the choice of the L.(., .) can reduce final complexity to a sub-exponential form. For our testing,
however, we limited ourselves to small sample sizes and k = 1.

In setting up our experimental environment, we use two datasets from UCI data repository (Bike and
Concrete, with 5 and 6 variables, respectively) and six datasets from the R package mlbench (Ozone,
Boston Housing, Friedman1 with sd = 1, Friedman2 with sd =125 and Friedman3 with
sd = 0.1, with 12,14,11,5 and 5 variables, respectively). For each dataset, we normalized the response
values Y subtracting the mean and dividing by the standard deviation in order to control the scale of
MSE values. Additionally, we implemented a full random RF that for each tree at each node to split,
selects a random feature and performs a random split between its maximum and minimum values until
there is a single datapoint in the leaves (k = 1).

We computed the MSE statistics between the true values and predictions given by the models to
assess their performance. We additionally computed other statistics for analysis purposes. The results of
the experiments are shown in Table 8.1.

Table 8.1: Comparisons of the results of f̂∗R1S and f̂RF estimates for the selected datasets. The first two rows contain mean
square error comparisons between real values and predicted values of both estimators, the range (±) is simply the standard
deviation of the predictions, the third is the average of the average PNN distance that each testing point obtained w.r.t. the rest
of the points in the dataset and the fourth is the ratio between the dimension of the dataset d and the sample size n.

MSE - f̂∗R1S MSE - f̂RF PNN d
n

Bike 3.89±0.02 4.23±0.08 1.46 0.25
Concrete 1.18±0.00 2.56±0.60 0.00 0.30
Ozone 1.88±0.00 1.66±0.08 0.00 0.60
Boston 1.27±0.00 1.00±0.41 0.00 0.70
Friedman1 1.00±0.00 0.84±0.21 0.00 0.55
Friedman2 0.91±0.11 0.38±0.53 0.22 0.25
Friedman3 0.86± 0.14 0.41±0.54 0.16 0.25

In Table 8.1, most remarkable results come from analyzing the included statistics. In f̂∗R1S evalu-
ations, four of the seven datasets present no variability between predictions, independently of the test
point. In those sets, the average PNN distance is 0, result that can only occur if all datapoints in all cases
were 1-PNNs of each datapoint used in testing. This is expected, as f̂∗R1S only distinguishes between
predictions by differences in the k-PNN distances. Additionally, this case seems to occur at the highest
levels of the d

n ratio.

It is not difficult to notice that increasing dimensionality (d) while maintaining sample size could
reduce the average PNN distance in the general case. To see this clearly, lets imagine a set of datapoints
distributed in the perimeter of a circle around the testing datapoint x0 in a 2-dimensional setting (Figure
8.5, case B). It can be verified that all datapoints in this setting exhibit a PNN distance of 0 w.r.t. x0. If
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Figure 8.5: Two different cases showing maximum k-pnn distance arrangement and minimum k-pnn distance arrangement
between a set of datapoints and the point to predict

we now project all datapoints onto a line by eliminating one of the dimensions, the result is that at most
only the two immediate neighbors of x0 have PNN distance of 0.

To illustrate this practically, we removed all but two features on the previous datasets and repeated
the computations, see Table 8.2.

Table 8.2: Comparisons of the results of f̂∗R1S and f̂RF estimates for the selected datasets and the reduced number of
variables.

MSE - f̂∗R1S MSE - f̂RF PNN d
n

Bike 4.40 ±0.09 4.58±0.14 8.14 0.15
Concrete 1.17±0.10 3.11±0.88 0.52 0.15
Ozone 1.82±0.05 1.86±0.13 2.12 0.15
Boston 1.22±0.39 1.33±0.51 3.77 0.15
Friedman1 0.72±0.28 0.71±0.49 2.06 0.15
Friedman2 0.73±0.35 0.82±0.59 2.11 0.15
Friedman3 0.70±0.42 0.73±0.70 1.67 0.15

For Table 8.2, MSE results lie in favor of f̂∗R1S for most cases, decreasing with respect to Table 8.1,
in opposition with the tendency shown by MSE results of f̂RF . Variability in f̂∗R1S , as expected, has
increased yet remains substantially inferior to that of f̂RF . This seems to indicate that the reason for
f̂∗R1S to perform better is that the effects of bootstrapping have a higher influence on the outcome of the
estimator when the average PNN distance increases.

Further understanding allows for the following characterization: consider point arrangement cases
of Figure 8.5. Computing the b-terms of any weight with any splitting criteria that requires to select
k = 1 datapoints will output the bootstrap weights (case limit of equality in Lemma 4.1) for case A, as
for any given setting, the splitting criterion always selects 1 out of 1 datapoints. Thus, the influence of
the employed L.(xi, bi)S(bi) function degenerates to its form of minimum variance, L.(xi, bi) = 1. For
case B, the b-terms sum expansion is the same for every datapoint, and differences in weights can be
attributed exclusively to the L.(xi, bi) function variability.
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Figure 8.6: MSE comparisons between our regression estimate equipped with the LRF (green triangles) and the RF method
f̂RF (orange circles) across the seven selected datasets.

Thus, we can safely argue that for any given problem, each prediction will fall between cases A
and B, and thus the average PNN distance could be a good indicator of the overall contribution of each
part of the estimator to the final outcome (and partially explain the results of Tables 8.1 and 8.2). Also
this implies that the differences between bagged ∣∣.∣∣p norm estimators (always case A) are governed
exclusively by the differences in order in the ranking of datapoints. Our analysis seems to concur with
literature (Karoui and Purdom [2016]) in the use of bootstrapping in high d

n ratio (case B) problems as
having a mild to poor effect on the overall quality of the predictions.

Finally, we repeated the experiments in Table 8.2 substituting LR1S for LRF and k = 1, to show that
we can achieve a functional practical implementation of a RF using sums of weighted b-terms (Figure
8.6).

In Figure 8.6, it is clearly noticeable that virtually identical results were achieved for all datasets,
where the minimal divergences in MSE can be safely attributed to a finite number of trees (less than
all its possible variations) used to train f̂RF , together with the approximation of the bootstrap weights
values shown in Equation (8.11).

With this we have shown that our results can produce models that are equivalent to traditional ver-
sions of RFs through an alternative path, without computing a single tree and effectively opening a new
way of analyzing regression estimates that conform to the proposed framework. While we believe that
the ideal use of b-terms and Equation (8.10) is analytical, on a practical sense we believe to have uncov-
ered a way for new classes of algorithms to arise, perhaps taking advantage of heuristics to overcome the
exponential expansion of b-terms while making affordable compromises in MSE values.

8.6 Summary and conclusions

In this work we have shown advances in our understanding of the statistical forces behind RFs, by means
of their analogy with the k-PNNs. We first discovered that the developments to obtain the bagged 1-
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NN regression estimate in Biau et al. [2010] could be extended to show the calculation of the bootstrap
weights for k-PNN based regression estimates when substituting the corresponding monotone distance
for its alternative PNN distance.

Then, we analyzed the influence of adding a point selection strategy to the previous results. A point
selection strategy, such as any splitting criterion in a RF, turned out to act as an additional selector of
k datapoints within the k-PNNs, causing some of k-PNNs to be finally selected, and some others to
be not. Thus, the weights assigned to each datapoint had to be updated from bootstrap weights to the
final weights. We first proved that the bootstrap weights act as upper bounds of the final weights for a
RF equipped with any splitting criterion. Followingly, we obtained an explicit expression for the final
weights considering a specific point selection strategy in the k-PNN, the random k-PNN selection, which
induces the bagged regression estimate f̂∗RkS(x0), and showed that f̂∗RkS(x0) = f̂∗k−PNN(x0). In doing
so, we created the concept of b-terms as a list of inclusion/non-inclusion restrictions on the datapoints
present in all bootstrap variations, defined the value of a b-term to be the proportion of bootstrap varia-
tions that comply with the list (and derived a mathematical expression to calculate that value). We then
showed that datapoint weights can be expressed as sums of b-terms coupled with a local weight on each
b-term.

Further understanding uncovered a framework for bagging estimators that included all classes of RF
with a k datapoints stopping criterion. With this, we derived the regression estimate that corresponds
with a RF equipped with random splitting criterion and showed the case of k = 1 at a practical level,
where MSE values of our regression estimate and a full RF implemented in the classical way w.r.t. the
real values were virtually identical. We were also able to conduct additional practical experiments that
revealed how b-terms and k-PNN distance can be used to analyze the effect of bootstrapping in bagged
regression estimators in contrast with the effect of the point selection strategy (splitting criterion in RF).
With this, we validated the f̂∗RkS(x0) for k = 1 as a competent regression estimate. Our results suggest
that it is recommended for problems with high scale disparity between features (since PNN are distance
invariant) and high PNN . Additionally, it is fast to implement (k-PNN calculation for a given datapoint
with arbitrary k was O(n2) in our methods) and intuitive to work with. It may also be a considerable
choice over 1-NN (or bagged 1-NN) when the nearest neighbors assumptions (namely, that datapoints
close in distance have also close y-associated values) do not hold.

We believe that the ideal use of our work would be as an analysis tool for other regression estimates
and as a design platform for variants of random forests. In this setting, a researcher may follow a similar
path to the one shown in this chapter to write a regression estimate as a weighted sum of datapoints were
the weights are expressed as weighted sums of b-terms. Then, analysis on the particular form of that ex-
pression may allow for simplifications previously inaccessible, detection of grouping patterns/regularities
in the addends of the sum and in general, to enjoy a higher degree of algebraic manipulation than in the
initial proposal for that regression estimate.

This work opens numerous possibilities for regression estimates to have an alternative written form
(as weighted sums of b-terms) that has desirable properties. Perhaps reductions in computational com-
plexity for the calculation of well known methods, that have remained hidden so far, can now be un-
locked, and Monte Carlo simulation as the preferred method for computation of those regression estima-
tors can be eschewed.

As a future work, we believe that we have obtained the necessary tools to tackle the specification of
other splitting criteria in RFs in terms of weighted PNNs, as well as provided access to a new form of
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analysis of RF models and other regression estimates.
The present work has been published as Fernandez-Gonzalez, P., C. Bielza, and P. Larrañaga, “Ran-

dom forests for regression as a weighted sum of k-potential nearest neighbors”, IEEE Access, vol. 7,
issue 1, pp. 25660-25672, 2019.
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Chapter 9
Conclusions and future work

9.1 Summary of contributions

1. In Chapter 5 we develop the theory for the univariate and bivariate cases for the truncated von
Mises distribution for the modeling and simulation of angular phenomena in a restricted interval.
The properties, maximum likelihood estimators and moments of the distribution are calculated
for the univariate case, whereas maximum likelihood estimators, the conditional and the marginal
distributions are studied for the bivariate case. The mentioned theoretical developments aim to
establish the distribution as ready for practitioners to use with real data. Subsequently, we perform
simulated studies in order to test the distribution and real data studies with leaf inclination angles
and dihedral angles in protein chains. It is concluded that the distribution performs correctly in
generalizing the von Mises distribution and models properly the data, which allows us to say it can
be considered as a valuable option when directional statistics are needed for a scientific problem.

2. In Chapter 6 we put to use our truncated von Mises distribution developments to model branching
angles of basal dendrites of pyramidal neurons in the human temporal cortex (layers III and V).
We complement the study with population similarity comparison studies, where we form different
subgroups of the total population of neurons and observe the statistical differences that emerge
from those subdivisions. The performed studies are: study of branching angles by branch order,
study of branching angles by branch order and maximum branch order, pairs of angles of con-
tiguous orders comparison, layer IIIPost and layer VPost neurons comparisons, layer IIIPost and
layer IIIAnt neurons comparisons, human and rat layer III neuron comparisons and different hu-
man neuron comparisons. For the first two studies, truncated von Mises distribution models are
estimated from the data and their parameters used to draw statistical conclusions. Additionally,
goodness-of-fit tests are employed to assess the difference with respect to the original von Mises
distribution. Conclusions of the study reveal that the truncated von Mises distribution performs ex-
cellently in modeling the branching angle data, clearly outerperforming the von Mises distribution
without truncation. The conducted study is able to produce meaningful insights into the principles
that govern the branching angles patterns in the human brain.

3. In Chapter 7 we introduce a structural learning algorithm for multidimensional Gaussian Bayesian
network classifiers. The algorithm makes use of the CB-decomposable property to break the MPE
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classification problem into sub-problems with an overall gain in computational power. With this,
we devise a strategy for incremental addition of complexity in the construction of a topologically
unrestricted class subgraph that exploits the previous property to minimize the computational bur-
den. The resultant network presents a class subgraph that can be examined for knowledge dis-
covery and hypothesis generation, and it is not bounded by common topological restrictions in
multidimensional Bayesian classifier literature.

4. In Chapter 8 we present a novel way to analyze the problem of RF for regression expressed as
weighted sums of datapoints. We use the concept of k-PNNs in random forests and analyze
their behavior under bootstrapping. We derive from this an upper bound on all splitting criterion-
induced weights on the datapoints. Moreover, we use the previous bound together with the concept
of b-terms (i.e., bootstrap terms) introduced in this work to create a framework from where we can
derive a certain class of bagged regression estimators, including RFs, as weighted sums of dat-
apoints. Finally, we make use of our obtained framework to produce a model that is equivalent
to the RF regression estimate with random splitting criterion, obtaining also an explicit expres-
sion for writing the prediction as a weighted sum of datapoints. We show this equivalence both
theoretically and practically for k = 1.

We believe that the compilation of these works is able to answer all hypotheses and fulfill all objec-
tives detailed in Chapter 1. Hypotheses 1. and 2. and Objectives 1. and 2. are addressed in the works
that employ the truncated von Mises distribution, that is, Chapters 5 and 6. We also show the benefits
of using the CB-decomposable property and Gaussian feature nodes, detailed in Hypothesis 3., to build
a competently performing multidimensional classifier, as specified in Objective 3. Finally, we have de-
veloped the theory and methodology to write a random forest regression estimate, and other regression
estimates as well, as weighted sums of datapoints, fulfilling Objective 4. and answering affirmatively
Hypothesis 4.

9.2 List of publications

The contents of this dissertation have been gathered in the following publications:
Q1 JCR journals

1. Fernandez-Gonzalez, P., C. Bielza, and P. Larrañaga, “Random forests for regression as a weighted
sum of k-potential nearest neighbors”, IEEE Access, vol. 7, issue 1, pp. 25660-25672, 2019.

2. Fernandez-Gonzalez, P., R. Benavides-Piccione, I. Leguey, C. Bielza, P. Larrañaga, and J. De-
Felipe, “Dendritic branching angles of pyramidal neurons of the human cerebral cortex”, Brain
Structure and Function, vol. 222, issue 4, pp. 1847-1859, 2017.

Conference papers

1. Fernandez-Gonzalez, P., C. Bielza, and P. Larrañaga, “Multidimensional classifiers for neuroanatom-
ical data”, ICML Workshop on Statistics, Machine Learning and Neuroscience (Stamlins 2015), pp.
0-6, 2015.
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2. Fernandez-Gonzalez, P., P. Larrañaga, and C. Bielza, “Bayesian Gaussian networks for multidi-
mensional classification of morphologically characterized neurons in the NeuroMorpho reposi-
tory”, In Actas de la 17a Conferencia de la Asociación Española para la Inteligencia Artificial,
pp. 39-48, 2016

Non-JCR journals

1. Fernandez-Gonzalez, P., C. Bielza, and P. Larrañaga, “Univariate and bivariate truncated von Mises
distributions”, Progress in Artificial Intelligence, pp. 1-10, 2017.

9.3 Future work

In Chapter 5, we covered the univariate and bivariate cases of the truncated von Mises distribution.
However, generalization to an arbitrary number of dimensions was not attempted. Additionally, further
mathematical manipulation might improve our results on the marginal truncated von Mises distribution.

In Chapter 6, we could consider the attempt of other subgroupings of the data if more data and
hypothesis are available. For example, we could include data from more species than rat and mice and
produce more comparative studies. In a more technical vein, we could introduce other measures of
independence (non-linear independence, unlike those derived from Gaussianity) that perhaps allow us
to see the suspected dependency of lower branch orders on the branching angle of their parent order
branching angles.

In Chapter 7, we observed in posterior efforts, when applying our model to different problems, that
for difficult enough problems there may be an initialization problem with the wrapper approach using
solely global accuracy as our metric: If a global accuracy higher than zero can only be achieved for
models with at least a certain set of arcs, the procedure may never progress towards more complicated
structures since it cannot distinguish benefiting candidates. For this reason, we have experimentally tried,
but not yet published, a switch between Hamming score and global accuracy where the first would guide
the network building process at early stages and the second would take over once the network satisfies
the minimum required complexity. Additionally, while the computational cost of building our model is
still lower than without the use of the CB-decomposable property, not limiting the maximum treewidth of
our components would pose a problem when scaling to bigger problems. Thus, we consider attempting
to find a good tradeoff between the loss of topological complexity and the gain in training complexity
per component a valuable research direction. Finally, a mixed network able to handle both discrete and
continuous feature nodes would further increase the flexibility of this model and broaden its range of
application.

The work in Chapter 8 has many possible extensions and future work. Analysis of RFs in its original
algorithm is of great interest and now can be adapted to a weighted sum of k-PNNs. We are currently
enjoying a partially successful research direction, with written forms of this estimator already available
but still immature for publication. As an analysis tool, the task of writing other regression estimates as
weighted sums of datapoints and then observe emerging properties or regularities also hold the potential
for improvements in those regression estimates. Another direction of research concerns the calculation
of b-terms themselves, depending on what input is required for the local weighting of a b-term, further
simplifications are also possible. For example, in the fRkS(.) regression estimate, we are only required to
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know the lp and lm values of a b-term, making it possible to compute together groups of b-terms that be-
long to the same equivalence class, with the corresponding savings in computational time. Our research
has also covered this topic and currently holds some results also immature for publication. In general,
extending the practical appeal of the b-terms analysis may prove to be very rewarding; an algorithm that
is able to alleviate the worst case scenario complexity of b-terms calculation may potentially redefine
the preferred calculation method for some regression estimates, even when reduction of the b-terms sum
expansion to a polynomial form was not attained.
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Appendix A
Univariate and bivariate truncated von
Mises distributions

Proof of Lemma 5.2.1. We have, by means of the power series expansion of the e(⋅) function,

I(θ;µ,κ) = ∫ fuvM(θ;µ,κ)dθ = ∫ eκ cos(θ−µ)dθ = ∫
∞
∑
n=0

(κ cos(θ − µ))n

n!
dθ,

where fuvM(θ;µ,κ) is the unnormalized von Mises distribution, and I(θ;µ,κ) is its distribution func-
tion. Therefore, ∫

b
a fuvM(θ;µ,κ) = I(b;µ,κ) − I(a;µ,κ).

Considering that∑∞
n=0

∣(κ cos(θ−µ))n∣
n! is a solely positive continuous bounded function in [1, eκ], and,

therefore, for any finite integral coefficients i1, i2 ∈ R, it satisfies ∫
i2
i1 ∑

∞
n=0

(κ cos(θ−µ))n
n! dθ < ∞, we can

conclude that it satisfies the Fubini-Tonelli theorem conditions for integral summation exchange.
We then follow with the procedure for the indefinite integral:

I(θ;µ,κ) = ∫
∞
∑
n=0

(κ cos(θ − µ))n

n!
dθ

=
∞
∑
n=0
∫

(κ cos(θ − µ))n

n!
dθ

=
∞
∑
n=0

κn

n!
∫ cosn(θ − µ)dθ. (A.1)

The above integral is defined in a recursive way as

∫ cosn(θ − µ)dθ = sin(θ − µ) cosn−1(θ − µ)
n

+ n − 1

n
∫ cosn−2(θ − µ)dθ.

And it can be calculated by the procedure of integration by parts. In this appendix, however, we give a
non-recursive expression:

∫ cosn(θ−µ)dθ = sin(θ−µ)
⎛
⎝

⌊n
2
⌋+ mod n

2
−1

∑
i=0

⎛
⎝

cosn−2i−1(θ − µ)
∏2i
j=0(n − j)

∏i
j=0(n − 2j)2

⎞
⎠
⎞
⎠
∀n such that n = 2m+1
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with m ∈ N. This materializes out of the observation of the numerical regularities that appear when
“unfolding” the recursive expression:

∫ cosn(θ − µ)dθ = sin(θ − µ) cosn−1(θ − µ)
n

+ n − 1

n
∫ cosn−2(θ − µ)dθ

= sin(θ − µ) cosn−1(θ − µ)
n

+

n − 1

n
(sin(θ − µ) cosn−3(θ − µ)

n − 2
+ n − 3

n − 2
∫ cosn−4(θ − µ)dθ)

= 1

n
sin(θ − µ) cosn−1(θ − µ) + n − 1

n(n − 2)
sin(θ − µ) cosn−3(θ − µ) +

(n − 1)(n − 3)
n(n − 2)(n − 4)

sin(θ − µ) cosn−5(θ − µ) +

(n − 1)(n − 3)(n − 5)
n(n − 2)(n − 4) ∫ cosn−6(θ − µ)dθ

They can be primary generalized using the expression

sin(θ − µ)
⎛
⎝

⌊n
2
⌋+ mod n

2
−1

∑
i=0

⎛
⎝

cosn−2i−1(θ − µ)
∏2i
j=0(n − j)

∏i
j=0(n − 2j)2

⎞
⎠
⎞
⎠

However, while this first expression does suffice for odd n, an extra term appears if n is even as we
reach the point at which the term ∫ cos0(θ−µ)dθ is computed. This can be reflected properly by adding
an addend that takes into account the parity of the formula. In our case, it has the form:

g(n,x) = (−1)nh(x) + h(x)
2

= ((−1)n + 1)h(x)
2

,

where ∀n ∈ N such that n = 2m and m ∈ N, g(n,x) = h(x) and 0 otherwise.

In a shorter notation and adding the parity term, the expression becomes

∫ cosn(θ − µ)dθ = sin(θ − µ)
⎛
⎝

⌊n
2
⌋+ mod n

2
−1

∑
i=0

⎛
⎝

cosn−2i−1(θ − µ)
2i

∏
j=0

(n − j)−(−1)j⎞
⎠
+

((−1)n + 1)∏
⌊n
2
⌋+ mod n

2
−1

j=0 (n − j)−(−1)j(θ − µ)
2

⎞
⎟
⎠
.

Thus, substituting in Equation (A.1) we obtain the final expression for ∫ eκ cos(θ−µ)dθ.

Proof of Theorem 5.3.1. The theorem is entirely derived by means of the trigonometrical equality:
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κ2 cos(x) + c2 sin(x)

= [κ2 cos(arctan( c2

κ2
)) + c2 sin(arctan( c2

κ2
))] cos(x − arctan( c2

κ2
)) .

(A.2)

From the equality we can express the exponent of the conditional distribution in (Equation 5.11)
using a formula of the type κ′ cos(x − µ′). Now if we consider that

κ2 cos(arctan( c2

κ2
)) + c2 sin(arctan( c2

κ2
)) =

κ2 +
c22
κ2√

1 + ( c2κ2 )
2
=
√
κ2

2 + c2
2,

then Equation (A.2) becomes

κ2 cos(x) + c2 sin(x) =
√
κ2

2 + c2
2 cos(x − arctan( c2

κ2
)) . (A.3)

Thus, we can adapt the truncated conditional distribution to the univariate truncated von Mises exponent
by properly selecting:

κ′ =
√
κ2

2 + c2
2

µ′ = µ2 + arctan( c2

κ2
) ,

where c2 = λ sin(θ1 − µ1).

Proof of Theorem 5.3.2. We consider

fumtvM(θ1′) = eκ1 cos(θ1′)∫
b2

a2
eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)dθ2 (A.4)

to be the unnormalized marginal truncated von Mises distribution. For simplicity’s sake, the proof is
developed in a linear context (using classical intervals [x,y], with their associated constraints, instead of
circular intervals Ox,y), whose extension to the circle is deemed as known and trivial at this point. Also,
unless otherwise specified, λ > 0 is assumed and a2, b2 truncation parameters are referred to simply as
the truncation parameters. The proof is as follows:

(a) Determination of the derivative expression and the T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) function

(b) Analysis of the marginal expression with focus on the case of symmetrical truncation parameters
in order to prove cases 1 and 2

(c) Further analysis for the case of non-symmetrical truncation parameters, determining all distinctive
behaviors of the integral subterm of the marginal expression
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(d) Monotony study divided by cases of the circular distance of the truncation parameters w.r.t. µ2

and subintervals of the θ1′ ∈ [−π,π] interval in order to prove case 3. Case 4 is proven by ruling
out every other possible outcome.

In (a), T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) is derived from a particularization of the second derivative of the marginal func-
tion. The meaning of the value of the T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) function is clarified for the symmetrical truncation
parameters. In (b) and (c), the analysis aims to characterize the behavior of the integral term of the
marginal distribution. In (b), the analysis will first observe the particularities of the integral term, espe-
cially, how θ1′ modifies the location and concentration parameters of the von Mises distribution inside
the integral, and then derive from it some properties and insights will also be used for the proof of case
3. We then prove how thsese variations affect the area under the curve and their relationships to the trun-
cation parameters. Finally, partial and total analyses of the derivate of the integral term are performed,
concluding the proof of the first two cases of the theorem. In (c), an analysis of the derivate of the inte-
gral term for non-symmetrical truncation parameters w.r.t. µ2 is performed. Using the previous insights,
the analysis first determines the cases where, according to the truncation parameter values, the marginal
integral term follows a unimodal distribution. The analysis then focuses on the remaining cases in order
to prove that the global maximum of the integral term necessarily appears at the associated point of the
truncation parameter (−π2 for a2 and π

2 for b2), which has the largest circular distance w.r.t. µ2. Also,
in the bi-modal case for non-symmetrical truncation parameters, we analyze how the minimum compre-
hended between the modes appears in the π

2−length interval with 0 as an extrema associated with the
truncation parameter that has the smallest circular distance w.r.t. µ2 ([−π2 ,0] for a2 and [0, π2 ] for b2),
and its relationship with the minimum that appears in [−π,−π2 ] for the associated interval [−π2 ,0] or in
[π2 , π] for the associated interval [0, π2 ]. In (d), the monotony study identifies all different behaviors and
the subinterval in which more than one critical point can occur, thus enabling us to detect bi-modality
with different valued maxima with the proposed criteria.

(a) By differentiating fumtvM(θ1′) w.r.t. θ1 we obtain:

f ′umtvM(θ1′) = −κ1 sin(θ1′)eκ1 cos(θ1′)∫
b2

a2
eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)dθ2

+λ cos(θ1′)eκ1 cos(θ1′)∫
b2

a2
sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)dθ2

= eκ1 cos(θ1′) (−κ1 sin(θ1′)∫
b2

a2
eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)dθ2

+λ cos(θ1′)∫
b2

a2
sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)dθ2) . (A.5)

We observe that

f ′umtvM(0) = λeκ1 (∫
b2

a2
sin(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2)

= λ

κ2
eκ1 (eκ2 cos(a2−µ2) − eκ2 cos(b2−µ2)) . (A.6)

If and only if cos(b2 − µ2) = cos(a2 − µ2), it follows that fumtvM(θ1′) has a critical point at µ1.
Solving and assessing the equation f ′′umtvM(θ1′) = 0 in order to obtain information about the curva-

ture for θ1′ = 0 results in
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−κ1

λ2
+ ∫

b2
a2

sin2(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2

∫
b2
a2
eκ2 cos(θ2−µ2)dθ2

= 0,

from which we can define the T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) function as

T (λ,µ2, κ1, κ2, a2, b2) = −
κ1

λ2
+ ∫

b2
a2

sin2(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2

∫
b2
a2
eκ2 cos(θ2−µ2)dθ2

. (A.7)

However, we still need to understand whether Equation (A.7) is sufficient to distinguish between cases 1
and 2 established in the theorem.

(b) In order to understand the truncated marginal behavior, if we rewrite the integral term in
fumtvM(θ1′) by means of Equation (A.3) we have

fumtvM(θ1′) = eκ1 cos(θ1′)∫
b2

a2
e

√
κ22+(λ sin(θ1′))2 cos(x2−µ2−arctan(λ sin(θ1′ )

κ2
))
dθ2.

It is apparent that the integral term computes the area of location-concentration varying von Mises dis-
tributions as ∫

b2
a2
ftvM (θ2;µ2 + arctan (λ sin(θ1′)

κ2
) ,

√
κ2

2 + (λ sin(θ1′))2)dθ2. If we consider the lo-
cation variations over [−π,π] by means of the sin(θ1′) function, the distribution in the integrand is
displaced over the interval [−arctan ( λ

κ2
) ,0] when sin(θ1′) < 0 (from displacement 0 to displace-

ment −arctan ( λ
κ2

) when θ1′ ∈ [−π,−π2 ] and from displacement −arctan ( λ
κ2

) to displacement 0 when

θ1′ ∈ [−π2 ,0] ), and over the interval [0,arctan ( λ
κ2

)] when sin(θ1′) > 0 (similary for θ1′ ∈ [0, π2 ] and
θ1′ ∈ [π2 , π]). If we consider concentration variations, we can regard the source of bi-modality of the
integral term as the

√
κ2

2 + (λ sin(θ1′))2 subterm, given that sin2(θ1′) is a π−periodic solely positive
function. Additionally, from θ1′ = 0 to θ1′ = π

2 and from θ1′ = −π to θ1′ = −π2 , the concentration pa-
rameter grows from its minimum value κ2 to its maximum value

√
κ2

2 + λ2, while it decreases from its
maximum to its minimum value in the cases of θ1′ from −π2 to 0 and from π

2 to π.
The proof then follows trivially by noting that, truncation parameters aside, the function’s behavior

in [µ2 − π,µ2] can be considered symmetrical w.r.t. µ2 to the function’s behavior in [µ2, µ2 + π]. The
symmetry w.r.t. µ2 in the truncation parameters selects two subintervals of symmetrical behavior w.r.t.
µ1, thus producing a function that is symmetrical w.r.t. µ1.

Further analyzing the integral term we look to determine the critical points and understand how the
selection of truncation parameters affects the integral term behaviour. We take

v1(θ1′) = ∫
b2

a2
eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)dθ2

v2(θ1′) = ∫
b2

a2
sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)dθ2,

where
λ cos(θ1′)v2(θ1′) = v′1(θ1′).

We now want to analyze v2(θ1′) as it is part of the derivate expression of v1(θ1′). Taking the integrand
of v2(θ1′) to be

fv2(θ2; θ1′) = sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)
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Note that, in fv2(θ2; θ1′), the argument is θ2 since it creates the area that is to be computed in v2(θ1′).
θ1′ can be considered here as a modifying parameter. The fv2(θ2; θ1′) function comprises the product
of a strictly positive function e(⋅) and a sin(⋅) function. Therefore, the sign of fv2(θ2; θ1′) is solely
determined by the sign of the sin(⋅) function. To be precise, if θ2 ∈ [µ2 −π,µ2] then fv2(θ2; θ1′) ≤ 0 and
if θ2 ∈ [µ2, µ2 + π] then fv2(θ2; θ1′) ≥ 0. Therefore, we can subdivide v2(θ1′) as

v2(θ1′) = ∫
µ2

a2
fv2(θ2; θ1′)dθ2 + ∫

b2

µ2
fv2(θ2; θ1′)dθ2,

where the first addend is a solely negative term and the second addend is a solely positive term provided
that µ2 ∈ (a2, b2). In the symmetry case, if θ1′ = 0 we have

−∫
µ2

a2
fv2(θ2; 0)dθ2 = ∫

b2

µ2
fv2(θ2; 0)dθ2; (A.8)

for θ1′ ∈ (0, π) we have

−∫
µ2

a2
fv2(θ2; θ1′)dθ2 < ∫

b2

µ2
fv2(θ2; θ1′)dθ2; (A.9)

and for θ1′ ∈ (−π,0) we have

−∫
µ2

a2
fv2(θ2; θ1′)dθ2 > ∫

b2

µ2
fv2(θ2; θ1′)dθ2 (A.10)

Intuitively, the displaced exponential w.r.t. the µ2 term increases all the values of either the negative or
the positive curve of the sin(θ2 −µ2) function and reduces the curve of the opposite sign in less amount,
therefore defining the sign and the value of v2(θ1′). Formally, this to hold, we need to prove that ∀θ1′ ∈
(−π,0) fv2(θ2; 0) − fv2(θ2; θ1′) > 0 if θ2 ∈ (µ2 − π,µ2) and ∀θ1′ ∈ (−π,0) fv2(θ2; 0) − fv2(θ2; θ1′) < 0

if θ2 ∈ (µ2, µ2 + π) for the negative displacement, and an analogous statement for θ1′ ∈ (0, π) positive
displacement. For the negative displacement case, it follows that

sin(θ2 − µ2)eκ2 cos(θ2−µ2) − sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2) > 0

sin(θ2 − µ2) (eκ2 cos(θ2−µ2) − eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2)) > 0.

As sin(θ2 − µ2) < 0 in θ2 ∈ [µ2 − π,µ2] it suffices if

eκ2 cos(θ2−µ2) − eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2) < 0

in θ2 ∈ [µ2 − π,µ2]. We proceed as follows:

eκ2 cos(θ2−µ2) − eκ2 cos(θ2−µ2)+λ sin(θ1′) sin(θ2−µ2) < 0

e−λ sin(θ1′) sin(θ2−µ2) < 1

−λ sin(θ1′) sin(θ2 − µ2) < 0

and, since we have specified θ1′ ∈ (−π,0) and then sin(θ1′) < 0, we have −λ sin(θ1′) > 0. Therefore, the
sign of −λ sin(θ1′) sin(θ2 −µ2) follows from that of sin(θ2 −µ2). This proves the statement for both θ2

intervals in the case of negative displacement. The proof for positive displacement is analogous.
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This result implies that the selection of truncation parameters that are symmetrical w.r.t. µ2 does
not change the monotony of v1(θ1′). More generally, this result implies that no selection of truncation
parameters changes the monotonicity of v2(θ1′), that is, increasing in [−π2 ,

π
2 ] and decreasing otherwise.

Since (A.8), (A.9) and (A.10) hold, we can now perform the sign and critical points analysis
of λ cos(θ1′)v2(θ1′) to obtain that v1(θ1′) follows the monotony of sin2(θ1′) for any a2, b2 such
that cos(b2 − µ2) = cos(a2 − µ2), with critical points {−π2 ,0,

π
2 }. Therefore, in Equation (A.4),

unimodal/bimodal observed distributions are “decided” for this case by the product of v1(θ1′) with
eκ1 cos(θ1′).

Therefore, if T (λ,µ2, κ1, κ2, a2, b2) > 0 then fumtvM(θ1′) presents a minimum critical point at µ1

and the distribution has two equal symmetrical maxima in [−π2 ,
π
2 ] (the maxima location interval can be

proven as a result of monotony and sign comparisons between v1(θ1′) and eκ1 cos(θ1′)). Respectively,
if T (λ,µ2, κ1, κ2, a2, b2) < 0 then fumtvM(θ1′) presents a maximum critical point and the distribution
is unimodal. This result generalizes the outcome for the non-truncated case to symmetrical parameters
other than a2, b2 such that b2 − a2 = 2π (Singh [2002]). This suffices to prove cases 1 and 2 of the
theorem.

(c) For case 3 we want to observe the behavior of the marginal distribution for different cases of
circular distances of a2, b2 truncation parameters w.r.t. µ2. Thus, we need knowledge about the subterm
v2(θ1′) when a2, b2 truncation parameters are not symmetrical w.r.t. µ2 in order to reach useful results.
We will address this point first.

If we now observe λ cos(θ1′)v2(θ1′) = 0 for non-symmetrical parameters we can as before, isolate
two critical points:

θ1′ = −π
2
,

θ1′ = π

2

and a third critical point at some θ1′ such that − ∫
µ2
a2
fv2(θ2; θ1′) + ∫

b2
µ2
fv2(θ2; θ1′) = 0 if a2, b2 are not

truncation parameters that satisfy any of the following conditions:

(i) a2, b2 ∈ [µ2, µ2 + π] as then v2(θ1′) > 0 ∀θ1′ ∈ [−π,π]

(ii) a2, b2 ∈ [µ2 − π,µ2] as then v2(θ1′) < 0 ∀θ1′ ∈ [−π,π]

(iii) µ2 ∈ (a2, b2) such as − ∫
µ2
a2
fv2′ (θ2;−π2 )dθ2 ≤ ∫

b2
µ2
fv2′ (θ2;−π2 )dθ2 as then v2(θ1′) > 0 ∀θ1′ ∈

[−π,π]

(iv) µ2 ∈ (a2, b2) such as ∫
b2
µ2
fv2′ (θ2; π2 )dθ2 ≤ − ∫

µ2
a2
fv2′ (θ2; π2 )dθ2 as then v2(θ1′) < 0∀θ1′ ∈ [−π,π].

Notice that from the viewpoint of truncation parameters, cases (iii) and (iv) can be considered op-
posite. Also, as highlighted by the previous analysis, it is clear that case (iii) implies cos(b2 − µ2) <
cos(a2 −µ2) (more intuitively, cos(b2 −µ2) ≪ cos(a2 −µ2) ) and case (iv) cos(b2 −µ2) > cos(a2 −µ2)
(more intuitively, cos(b2 − µ2) ≫ cos(a2 − µ2) ). We will refer to cases (iii) and (iv) as the strong lower
parameter cases.

Therefore, by manipulating a2, b2 truncation parameters, it is possible to reshape v1(θ1′) to exhibit
a minimum in −π2 and a maximum in π

2 if case (i) or (iii) applies or to exhibit a maximum in −π2 and
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a minimum in π
2 if case (ii) or (iv) applies. In these cases, v1(θ1′) is an integral term with unimodal

behavior.
It follows that any other case for non-symmetrical truncation parameters implies µ2 ∈ (a2, b2), and

v1(θ1′) exhibits two differentiated maxima in −π2 and π
2 . Also, v2(−π2 ) < 0 and v2(π2 ) > 0. If we

examine the case of θ1′ = 0 for truncation parameters a2, b2 such that cos(b2 − µ2) > cos(a2 − µ2)
then − ∫

µ2
a2
fv2(θ2; 0)dθ2 > ∫

b2
µ2
fv2(θ2; 0)dθ2 and therefore v2(θ1′) = 0 for some θ∗1′ ∈ [0, π2 ] such that

v2(θ1′) < 0 if θ1′ ∈ [0, θ∗1′) and v2(θ1′) > 0 if θ1′ ∈ (θ∗1′ ,
π
2 ]. It follows that this also impliesthe existence

of another minimum in [π2 , π] as v2(θ1′) > 0 ∀θ1′ ∈ [π2 , π − θ
∗
1′) and v2(θ1′) < 0 ∀θ1′ ∈ (π − θ∗1′ , π].

Similarly, if cos(b2 − µ2) < cos(a2 − µ2) then − ∫
µ2
a2
fv2(θ2; 0)dθ2 < ∫

b2
µ2
fv2(θ2; 0)dθ2 and therefore

v2(θ1′) = 0 for some θ∗1′ ∈ [−π2 ,0] and −π − θ∗1′ ∈ [−π,−π2 ], that is, the minimum of v1(θ1′) that appears
in [−π2 ,

π
2 ] is more precisely located in the π

2−length interval associated with the truncation parameter
that presents the smallest circular distance w.r.t. µ2 and imples an additional minimum located in the
contiguous π

2−length interval more distant from θ1′ = 0.
Additionally, the global maximum of the two differentiated maxima is that of the π

2−length interval
associated with the truncation parameter that has the largest circular distance w.r.t. µ2. We can prove this
by comparing both maxima as follows:

v1 (−
π

2
) − v1 (

π

2
) > 0 if cos(b2 − µ2) > cos(a2 − µ2).

Thus if we take κ′ =
√
κ2

2 + (λ)2 we have

∫
b2

a2
e
κ′ cos(θ2−µ2−arctan(− λ

κ2
))
dθ2 − ∫

b2

a2
e
κ′ cos(θ2−µ2−arctan( λ

κ2
))
dθ2 > 0.

Expressing this by means of the distribution function we obtain

[I(θ,−µ2 − arctan(− λ
κ2

) , κ′)]
b2

a2

− [I(θ,−µ2 − arctan( λ
κ2

) , κ′)]
b2

a2

> 0. (A.11)

Clearly, I(θ, µ, κ) is strictly increasing and eκ
′ cos(θ2−µ2−arctan(− λ

κ2
)) is symmetrical to

e
κ′ cos(θ2−µ2−arctan( λ

κ2
)) w.r.t. µ2. Therefore

1.

[I(θ,−µ2 − arctan(−λ
κ2

) , κ′)]
µ2

2µ2−b2
= [I(θ,−µ2 − arctan( λ

κ2
) , κ′)]

b2

µ2

2.

[I(θ,−µ2 − arctan(−λ
κ2

) , κ′)]
2µ2−a2

µ2

= [I(θ,−µ2 − arctan( λ
κ2

) , κ′)]
µ2

a2

taking

[I(θ,−µ2 − arctan(−λ
κ2

) , κ′)] = Ie1(θ)

[I(θ,−µ2 − arctan( λ
κ2

) , κ′)] = Ie2(θ),

we can rewrite inequation (A.11) as
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[Ie1(θ)]µ2a2 + [Ie1(θ)]b2µ2 − [Ie2(θ)]µ2a2 − [Ie2(θ)]b2µ2 > 0,

substituting,

[Ie1(θ)]a2µ2 + [Ie1(θ)]µ2b2 − [Ie1(θ)]2µ2−a2
µ2

− [Ie1(θ)]µ22µ2−b2 > 0

−Ie1(a2) + Ie1(b2) − Ie1(2µ2 − a2) + Ie1(2µ2 − b2) > 0

[Ie1(θ)]2µ2−b2
a2

− [Ie1(θ)]2µ2−a2
b2

> 0,

that is, the inequation reduces to the comparison between the area in two subintervals of equal length that
are symmetrical w.r.t. µ2. By this symmetry and by the fact that the mode is in (−π2 ,0) and the anti-mode

in (π2 , π) in eκ
′ cos(θ2−µ2−arctan(− λ

κ2
)), we can safely conclude that the inequation holds thus proving the

statement. Therefore, for any marginal truncated distribution, the global maximum in the integral term
is located in θ1′ = π

2 if cos(a2 − µ2) > cos(b2 − µ2) and in θ1′ = −π2 if cos(a2 − µ2) < cos(b2 − µ2).
At this point all behaviors for critical points and monotony of v1(θ1′) have been characterized.

Analogously to the non-truncated case, the effect of the eκ1 cos(θ1′) subterm has to be taken into consid-
eration in order to determine the shape of the distribution. To do this, we perform a monotony study that
incorporates all previous developments.

(d) After conducting the study on v2(θ1′) and v1(θ1′), we proceed by equating function (A.5) to
zero, resulting in

−κ1 sin(θ1′)v1(θ1′) + λ cos(θ1′)v2(θ1′) = 0.

If we consider the cases where a2, b2 ∈ [µ2, µ2 + π] or a2 is a strong lower parameter w.r.t b2 we have:

1. v2(θ1′) > 0 ∀θ1′ ∈ [−π,π].

2. If θ1′ ∈ [−π,−π2 ], then sin(θ1′) ≤ 0 and cos(θ1′) ≤ 0. In this case, at least a minimum and a critical
point of fumtvM(θ1′) can be found in the examined interval as shown by:

f ′umtvM(−π) = e−κ1 (−λ∫
b2

a2
sin(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2)

f ′umtvM (−π
2
) = κ1∫

b2

a2
eκ2 cos(θ2−µ2)−λ sin(θ2−µ2)dθ2 > 0,

where f ′umtvM(−π) < 0. Notice that if a2, b2 ∈ [µ2, µ2 + π] the critical point neccesarily exists
regardless of the effect of the other parameters.

3. If θ1′ ∈ [−π2 ,0], then sin(θ1′) ≤ 0 and cos(θ1′) ≥ 0. fumtvM(θ1′) exhibits a monotonic increasing
behavior, as all terms involved in the expression are positive.

4. If θ1′ ∈ [0, π2 ], then sin(θ1′) ≥ 0 and cos(θ1′) ≥ 0. Here, at least a maximum and a critical point
can be found in the interval by considering Equation (A.6), where f ′umtvM(0) > 0, and

f ′umtvM (π
2
) = −κ1∫

b2

a2
eκ2 cos(θ2−µ2)−λ sin(θ2−µ2)dθ2 < 0.
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5. If θ1′ ∈ [π2 , π], then sin(θ1′) ≥ 0 and cos(θ1′) ≤ 0. fumtvM(θ1′) exhibits a monotonic decreasing
behavior, as all terms involved in the expression are negative.

Therefore, for this case, the distribution exhibits critical points in two non-contiguous intervals. By
the previous developments, such a distribution of critical points would only correspond to the unimodal
case and also, as the contribution of eκ1 cos(θ1′) is symmetrical w.r.t. µ1 or θ1′ = 0, the marginal function
could only have one global maximum in θ1′ ∈ [0, π2 ] interval and one global minimum in θ1′ ∈ [−π,−π2 ].

The case where a2, b2 ∈ [µ2 − π,µ2] or b2 is a strong lower parameter w.r.t a2 can be understood
as “symmetric behavior w.r.t µ1”, since the results for θ1′ ∈ [−π,−π2 ] now hold for θ1′ ∈ [π2 , π] and
the results for θ1′ ∈ [−π2 ,0] now hold for θ1′ ∈ [0, π2 ]. This property, general to the [−π,π] interval,
guarantees that in our case, it suffices to determine the behavior for one of the two remaining cases to
completely determine the behavior of the marginal function.

We now consider the remaining parameter configurations that satisfy cos(b2 − µ2) > cos(a2 − µ2).

1. If θ1′ ∈ [−π,−π2 ], then v2(θ1′) < 0, thus resulting in fumtvM(θ1′), which exhibits a strictly in-
creasing behavior, as all terms involved in the expression are now positive.

2. If θ1′ ∈ [−π2 ,0], then v2(θ1′) < 0. In this case, after performing sign comparisons on the extrema,
there is at least one critical point and one maximum in the interval.

3. If θ1′ ∈ [0, π2 ], v2(θ1′) < 0 ∀θ1′ ∈ [0, θ∗1′) and v2(θ1′) > 0 ∀θ1′ ∈ [θ∗1′ ,
π
2 ). Therefore, no critical

point exists in [0, θ∗1′), since fumtvM(θ1′) exhibits a decreasing behavior and all terms involved in
the expression are negative. In [θ∗1′ ,

π
2 ), no, one or two critical points can occur as both sign and

monotony comparisons were not conclusive.

4. If θ1′ ∈ [π2 , π], then v2(θ1′) > 0 ∀θ1′ ∈ [π2 , π − θ
∗
1′) and v2(θ1′) < 0 ∀θ1′ ∈ (π − θ∗1′ , π]. Therefore,

no critical point exists in [π2 , π−θ
∗
1′) since fumtvM(θ1′) exhibits a decreasing behavior as all terms

involved in the expression are negative. In (π − θ∗1′ , π], after performing sign comparisons on the
extrema, at least one critical point can occur. Therefore, for this case, the distribution has three
contiguous intervals containing critical points. Since clearly no more than two critical points are
allowed in a π

2−length interval, the case with two possible critical points in [θ∗1′ ,
π
2 ) is the case

of bi-maximality (differentiated maxima) with a minimum and a maximum in θ1′ ∈ [θ∗1′ ,
π
2 ) and

a maximum in θ1′ ∈ [−π2 ,0]. Complementarily, this distribution of critical points “corresponds”
to the bi-maximal (differentiated maxima) behavior of v1(θ1′), and, therefore, the critical point in
θ1′ ∈ [−π2 ,0] is necessarily a maximum, and the critical point in [π2 , π] is necessarily a minimum.
Thus, it can be concuded that in the case of bimodality, the interval associated with the truncation
parameter that has the shortest circular distance w.r.t. µ2 contains the two critical points, whereas
the interval associated with the truncation parameter that has the largest circular distance w.r.t. µ2

contains the global maximum.

If λ < 0, the proof follows trivially by noting that the displacement caused by the sin(⋅) function in
the exponent that appears in the v1(θ1′) subterm is the opposite. This in turn causes the distribution to
have an opposite symmetrical behaviour w.r.t. µ1. This suffices to prove case 3 of the theorem. Case 4
can also be proven with the developed theory. However, it can additionally be proven by ruling out any
other possible outcome, considering the three previously developed cases.



Appendix B
Random forests for regression as a
weighted sum of k-potential nearest
neighbors

Proof of Lemma 8.3.1. We define Rm∗(xi∣D∗j ) = D∗j ∩Rm(xi) and R∗(x0,xi∣D∗j ) = Rm∗(xi∣D∗j ) ∪
{xi},. That is R∗(x0,xi∣D∗j ) is in D∗j the equivalent of R(x0,xi) in Dn.

By the definition of k-PNN, xi is a k-PNN of x0 in D∗j if ∣R∗(x0,xi∣D∗j )∣ ≤ k. Then

∣D∗j ∩Rm(xi)∣ ≤ k − 1

Proof of Theorem 8.3.1. By Lemma 3.1, it is enough to show that each xi in f∗1−SA(x0) is paired with
a weight that accounts for the value of ∣Req1(xi)∣. We can use the proofs of results in Biau et al. [2010]
for 1-NN together with Lemma 1 to prove the expression of the weight as

vj(x0) = (1 −
∣R(x0,xj)∣ − 1

n
)
n

− (1 −
∣R(x0,xj)∣

n
)
n

where
∣R(x0,xj)∣ = i

Now what remains is to show that the right-hand side of Equation (8.5) correctly pairs the bootstrap
weights and the datapoints. This is trivial due to the structure of the double summation and the use of
Fi(x0).

Proof of Lemma 8.4.1. We can prove it by contradiction.

Let us assume a RF regression estimate f̂RF (x0) such that for k = 1, and xi, wi(x0) > vi(x0).

We can find the set V∗xi ⊂ B(Dn) of bootstrap variations where xi is a 1-PNN of x0. Since vi(x0)
value is the proportion of bootstrap variations that do not contain the datapoints inR(x0,xi), then vi(x0)
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can be expressed, by Lemma 1, as:

vi(x0) =
∣V∗xi ∣
nn

If our assumption holds (wi(x0) > vi(x0)), then a bootstrap variation selection set,W∗
xi ⊂ B(Dn)

can be found such that ∣W∗
xi ∣ > ∣V∗xi ∣. However, in that caseW∗

xi necessarily has to account for bootstrap
variation selections where xi is not a 1-PNN.

Proof of Lemma 8.4.2. We can prove this by induction on the two parameters lp and lm of a b-term.
For simplicity, let us define e(i) = (1 − i

n
)n.

If we rewrite the results in Biau et al. [2010] (bagged 1-NN) using the b-terms notation we have

vi(x0) = S(¬x1 . . .¬xi−1) − S(¬x1 . . .¬xi−1¬xi)
vi(x0) = S(¬x1 . . .¬xi−1 − ¬x1 . . .¬xi−1¬xi)

and by b-terms Property 9, we have

vi(x0) = S(¬x1 . . .¬xi−1xi)

For purposes of readability, let us define S′(lp, lm) = S(bi) where bi ∈ E[lp,lm]. Now for the case of lm,
by b-terms property 4, we can eliminate the particular indexes and write

S′(0, lm) = e(lm)

and we assume by induction hypothesis on lm

S′(1, lm − 1) = e(lm − 1) − e(lm).

Then, for S′(1, lm) we can simply write by Property 9, the corresponding b-term as:

bi = ¬x1 . . .¬xlmxlm+1

= ¬x1 . . .¬xlm

− ¬x1 . . .¬xlm¬xlm+1

and obtain
S′(1, lm) = e(lm) − e(lm + 1).

Notice that for purposes of calculation, only parameters lp and lm are needed of a b-term, therefore when
writing a particular expression of bi as a member of E[lp,lm], the most convenient indexes can be chosen
freely without loss of generality.
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We can write the previous result as

S′(1, lm) = S′(0, lm) − S′(0, lm + 1).

If we assume now
S′(lp − 1, lm) = S′(lp − 2, lm) − S′(lp − 2, lm + 1)

as our induction hypothesis for parameter lp, we can use again Property 9, and write the corresponding
b-term as

bj = x1 . . .xlp¬xlp+1 . . .¬xlp+lm

= x1 . . .xlp−1¬xlp+1 . . .¬xlp+lm

− x1 . . .xlp−1¬xlp . . .¬xlp+lm

in order to obtain
S′(lp, lm) = S′(lp − 1, lm) − S′(lp − 1, lm + 1).

Finalizing the proof is now reduced to observe the pattern of how S′(., .) unfolds when calculated. A
well-known property of the Pascal triangle is that P (i, j) + P (i + 1, j) = P (i + 1, j + 1). This shows
that the term-wise sum of two rows of the Pascal triangle where one is shifted by one produces the next
row. This occurs in unfolding our recursive function with alternating signs because we have a difference
rather than a sum. Accounting for all factors yields

S′(lp, lm) = S(bi) =
lp+1

∑
i=1

P (lp, i)(−1)i+1 (1 − i + lm − 1

n
)
n

Proof of Theorem 8.4.2. For zi(x0), it suffices to show that all relevant bootstrap variation selections
(with relevant in the sense of Lemma 1) are listed.

Let the elements in Req1(xi) be regarded as the list of points that increase the PNN distance from
xi to x0. Then we can define Dep(xi,x0) conversely as the set of points whose PNN distance to x0 is
increased by xi (Figure 5, solid line areas).

It can be seen that, regardless of the distribution of the datapoints in Req1(xi), all of them contain
xi in their Dep(xi,x0) sets. Thus, for k > 1, Reqk(xi) contains all combinations of d1 = l − k, d2 =
l − k + 1, . . . and dk = l − 1 non included datapoints where l = ∣R(xi,x0)∣ − 1. Cardinality-wise we have

∣Reqk(xi)∣ =
l−1

∑
j=l−k

(l − 1

j
).

All these combinations, coupled with the addition of the xi restriction yields

vi(x0) = (xi)
⎛
⎝ ∑
c∈Reqk(xi)

ric
⎞
⎠

which corresponds to the “always selected” case (Lemma 4.3).
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We can also see this by considering that

∏
xj∈Ind(xi)

[Reqk(xj)](xj + ¬xj) = 1 (B.1)

simply because the expression (xj+¬xj) inherently cancels to 1. That is, the restricted concatenation op-
erator [.] applies a neutral element to the selected b-terms. More formally if we expand PRkS(xi, zi(x0))
we have

PRkS(xi, zi(x0)) = . . . (xi)(rig)(xj)(bv)l1
+ (xi)(rig)(¬xj)(bv)l2 . . .

where g ∈ Reqk(xi), bv is an arbitrary b-term, l1 = LRkS(xi, (xi)(rig)(xj)(bv)) and l2 =
LRkS(xi, (xi)(rig)(¬xj)(bv)).
Then, only if l1 = l2 = 1 the sum can be reduced to (xi)(rig)(bv). Thus, splitting criteria determine the
reduction possibilities among appearing b-terms (weight shrinking). If no L.(xi, zi(x0)) is defined or
L.(xi, zi(x0)) = 1 operating the b-terms of zi(x0) yields vi(x0) (this proves Theorem 4.4 and Lemma
4.3).

Now, with left-hand side of Equation (B.1) in zi(x0) we ensure that each datapoint outsideR(x0,xi)
is considered when their k-PNN requirements (Reqk) are met in the bootstrap variation selections. This
covers the requirements for all datapoints.

This also proves Theorem 4.1.

Proof of Theorem 8.4.3. Given Theorem 4.2, to complete the proof it suffices to show that for any Dn,
LRkS(xi, bi) chooses k or less points in Pk(x0) to guarantee ∑ni=1wi(x0) = 1.

We have LRkS(xi, bi) = 1
k
k
lp

for a b-term bi ∈ E[lp,lm] that includes xi.
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C. Bielza and P. Larrañaga. Bayesian networks in neuroscience: A survey. Frontiers in Computational
Neuroscience, 8:Article 131, 2014b.
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of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.
Scientific Reports, 4: 5909, 2014.

D. A. Bistrian and M. Iakob. One-dimensional truncated von Mises distribution in data modeling. Annals
of Faculty of Engineering Hunedoara, tome VI, fascicule 3, 2008.
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A. Pérez, P. Larrañaga, and I. Inza. Supervised classification with conditional Gaussian networks: In-
creasing the structure complexity from naive Bayes. International Journal of Approximate Reasoning,
43(1):1 – 25, 2006.

A. M. Prasad, L. R. Iverson, and A. Liaw. Newer classification and regression tree techniques: Bagging
and random forests for ecological prediction. Ecosystems, 9(2):181–199, 2006.

J. R. Quinlan. C4. 5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.

L. E. Raileanu and K. Stoffel. Theoretical comparison between the Gini index and information gain
criteria. Annals of Mathematics and Artificial Intelligence, 41(1):77–93, 2004.

J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. In
Proceedings of the 20th Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 254–269. Springer, 2009.

J. Rissanen. Stochastic complexity. Journal of the Royal Statistical Society: Series B (Methodological),
49(3):223–239, 1987.

R. W. Robinson. Counting labeled acyclic digraphs. New directions in the Theory of Graphs. pp. 239–
273. Academic Press, New York, 1973.

J. D. Rodrı́guez and J. A. Lozano. Multi-objective learning of multi-dimensional Bayesian classifiers.
In Proceedings of the Eighth International Conference on Hybrid Intelligent Systems, pages 501–506.
IEEE, 2008.

E. D. Rothman. Tests of coordinate independence for a bivariate sample on a torus. The Annals of
Mathematical Statistics, 42(6):1962–1969, 1971.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 2016.

A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In IEEE 12th
International Conference on Computer Vision Workshops, pages 1393–1400, 2009.

M. Sahami. Learning limited dependence Bayesian classifiers. In Knowledge Discovery and Data Min-
ing, volume 96, pages 335–338, 1996.

R. J. Samworth. Optimal weighted nearest neighbour classifiers. The Annals of Statistics, 40(5):2733–
2763, 2012.

R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

R. E. Schapire. The boosting approach to machine learning: An overview. In Nonlinear Estimation and
Classification, pages 149–171. Springer, 2003.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.



BIBLIOGRAPHY 147

R. Scorcioni, S. Polavaram, and G. A. Ascoli. L-measure: A web-accessible tool for the analysis,
comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5):
866–876, 2008.

E. Scornet. On the asymptotics of random forests. Journal of Multivariate Analysis, 146:72 – 83, 2016.

R. Shachter and M. Peot. Evidential reasoning using likelihood weighting. Fifth Workshop on Uncer-
tainty in Artificial Intelligence, pages 18–20, 1989.

G. R. Shafer and P. P. Shenoy. Probability propagation. Annals of Mathematics and Artificial Intelligence,
2(1-4):327–351, 1990.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-
time human pose recognition in parts from a single depth image. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 1297-1304, 2011.

C.-Y. Sin and H. White. Information criteria for selecting possibly misspecified parametric models.
Journal of Econometrics, 71(1-2):207–225, 1996.

H. Singh. Probabilistic model for two dependent circular variables. Biometrika, 89(3):719–723, 2002.

V. A. Smith, J. Yu, T. V. Smulders, A. J. Hartemink, and E. D. Jarvis. Computational inference of neural
information flow networks. PLoS Computational Biology, 2(11):e161, 2006.

R.G. Sola, V. Hernando-Requejo, J. Pastor, E. Garcı́a-Navarrete, J. DeFelipe, MT. Alijarde, A. Sánchez,
L. Domı́nguez-Gadea, P. Martı́n-Plasencia, F. Maestú, J. DeFelipe-Oroquieta, S. Ramón-Cajal and
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