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Abstract. A class-bridge decomposable multidimensional Gaussian net-
work is presented as an interpretable and powerful model, to account for
the morphological differences that exist between different neurons when
varying the species, gender, brain region, cell types and developmental
stage of the animal of origin. Also this work includes a learning algorithm
that makes use of the CB-decomposablility property to alleviate the infer-
ence complexity and use it to learn complex network structures that take
into account relationships between classes. The model is trained with data
from NeuroMorpho (v5.7) and the final model is used to test the predic-
tive power of the learning algorithm for Bayesian networks and, given its
interpretability, to extract knowledge at a neuroscience level.

1 Introduction

Neurons’s morphology differences have been observed between different animals,
but also within the same species. The developmental stage and the location in the
brain can also show morphological variations between cells [5]. In order to statisti-
cally analyze these differences, a multidimensional classifier using an interpretable
statistical model is one of the most appealing approaches. To build a model that
can effectively predict class labels such as in which specie, gender and develop-
mental stage an animal is and to which cell types the sample neuron belongs,
given a set of morphological descriptors of the neuron, could be considered a big
step towards neuron morphology understanding. Specially if the selected model
has the property of interpretability, allowing us to extract knowledge directly from
it.

For this work, a class-bridge decomposable multidimensional Gaussian classi-
fier (CB-MGC) is proposed and trained with the neurons dataset [1]. This clas-
sifier is not bounded to a prefixed structure (naive Bayes, tree-like structures
in the class variables, etc.) and also handles variables of continuous (Gaussian)
and discrete nature. Its influenced by the works of [9] and [3]. The classifier’s
strengths are its interpretability, the capability to capture dependencies between
the class variables, the exploitation of the class-bridge decomposability property
and its ability to handle feature variables of continuous nature straightforwardly,
without the need to discretize the data. Its weakness may be the assumption of



Gaussianity in the continuous nodes, where features whose distribution strongly
deviates from the Gaussian distribution could hinder the model’s performance.
However, this is acceptable in this case as the data features tend to distribute
according to Gaussian distributions. The definition and properties of this model
will be detailed in Section 2.

Section 3 presents a structural learning algorithm that uses the class-brigde
decomposability to incrementally build a complex network structure while saving
computational costs in the process.

Section 4 shows the results and final network with a focus on the implications
of the obtained relationships in the final model. Finally, Section 5 summarizes the
main findings and discusses the conclusions and implications of this work.

2 Multidimensional Gaussian network classifiers

A Bayesian network (BN) is a pair B = (G, Θ) over a set of random variables
χ = {X1, X2, . . . , Xn} where G = (V,A) is a Directed Acyclic Graph (DAG) with
a set of vertices V and a set of arcs A and Θ is a set of probability distributions
associated with the random variables in χ. Vertices represent the variables in χ
and the directed arcs represent probabilistic dependence relationships between
the variables. Probability distributions in Θ satisfy θxi|pa(xi) = p(xi|pa(xi)), that
is, conditional probability distributions of variable Xi given a value of the set of
variables Pa(Xi) ∈ χ. In here Pa(Xi) stands for the set of parent variables of Xi

in G. Bayesian networks factorize a joint probability distribution as follows:

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|Pa(Xi)) (1)

A multidimensional Gaussian network classifier (MGNC) is a Bayesian net-
work over a set χc = {X1, . . . , Xm} of continuous random variables and a set
χd = {C1, . . . , Cn−m} of discrete class random variables where χc is assumed to be
jointly distributed as a multidimensional Gaussian distribution N (µ,

∑
), where

µ is a vector of means and
∑

is the covariance matrix of the variables in χc. χc

and χd are referred to as the set of feature variables and the set of class variables,
respectively. MGNCs are additionally constrained to satisfy Pa(Ci)∩χc = ∅, that
is, no arcs from feature variable to class variables are permitted. Multidimensional
classifiers have been studied initially in [11], and extended in [2] and [3].

In concordance with the literature, MGNC can be additioanlly described by
considering three different subgraphs in its structure:

– AC ⊆ VC × VC is the set of arcs connecting solely the class variables. The
associated subgraph, that contains as nodes all the class variables and is
induced by VC , is denoted as GC = (VC , AC)

– AX ⊆ VX × VX is the set of arcs connecting solely the feature variables. The
associated subgraph, that contain as nodes all the feature variables and is
induced by VC , is denoted as GX = (VX , AX)

– ACX ⊆ VC × VX is the set of arcs that go from the class variables to the
features variables. The associated subgraph comprehends all nodes of the
network as is denoted as GCX = (V,ACX)



For this type of models, classification using a 0-1 loss function amounts to
solving the most probable explanation (MPE) problem. That is, for an instance
of the feature variables x = (x1, . . . , xm) the problem can be written as:

c∗ = (c∗1, . . . , c
∗
n) = arg max

c1,...,cn
p(C1 = c1, . . . , Cn = cn|x) (2)

That is, the search of the class labels that maximizes the probability of the
class variables given the evidence of the feature variables. When calculating the
MPE in a MGNC, its possible to use Equation (1) to compute it by considering
p(c|x) ∝ p(c,x) where p(ci|pa(ci)) is computed as a classical discrete probability
in a BN and for the feature nodes, f(xi|pa(xi) follows a Gaussian distribution
N (µi, vi) where

µi = µi|pci +

ni∑
j=1

βij|pci(xj − µj|pci)

vi =

∣∣∣∑Xi,PXi|pci

∣∣∣∣∣∣∑PXi|pci

∣∣∣
where pci = paVCi

(xi) is the set of class parents of Xi, ni is the number of feature

parents of Xi, βij|pci is a regression coefficient defined as:

βij|pci =
σij|pci
σ2
j|pci

(3)

and
∑

L|pci is the covariance matrix of the set of variables L conditioned to the
class parents of Xi.

A Gaussian network possesses several desired properties such as the less de-
manding number of parameters to model a continuous distribution (O (

∏m
i=1 ri)

where r1, . . . , rm are the cardinalities of the variables X1, . . . , Xm in the discrete
case vs. O(n2r) in the continuous one) and the possibility to compute them in-
dependently from the structure of the GN [4] (O(.) is used as an indicator of
complexity).

The computation of the MPE, however, concerns only the class variables, that
is the discrete part of the network, and therefore no complexity alleviation was
found for inference by assuming gaussianity in the feature nodes. This is a well-
known problem as when learning an unrestricted class structure the MPE problem
is exponential in the number of variables. Which renders the inference intractable
for a relatively small set of class variables.

2.1 Class-bridge decomposability property

In order to tackle the inference problem, CB-decomposable MGNCs are consid-
ered, extending previous works [2] and [3] for discrete feature variables. A MGNC
is a CB-decomposable MGNC if it satisfies the following two properties:



– GC ∪GCX can be partitioned as GC ∪GCX =
⋃r

i=1(GCi
∪GCXi

), where GCi
∪

GCXi
, for i = 1, . . . , r are subsets of the original graph denoted as r maximal

connected components.
– Ch(VCi) ∩ Ch(VCi

) = ∅ with i, j = 1, . . . , r and i 6= j, where Ch(VCi
) stands

for the set of children variables of VCi
. The subset of class variables in GCi

(i.e non-shared children property).

Then the MPE problem for a CB-decomposable MGNC is transformed into

arg max
c1,...,cn

p(C1 = c1, . . . , Cn = cn|x) (4)

∝
∏r

i=1 max
c
↓VCi∈Ii

(∏
C∈CVCi

p(c|pa(c))
∏

X∈Ch(VCi
) p(x|paVC

(x),paVX
(x))

)
where c

↓VCi∈Ii is the projection of the vector c to the coordinates in VCi and Ii
stands for the sample space associated with VCi . Intuitively, this breaks the MPE
problem into r smaller MPE problems. Given the exponential nature of the total
of possible label combinations w.r.t. the number of class variables, this effectively
alleviates the computational burden as well as the sample size needed for the
classification problem. Its also possible to see this property in the factorization of
the network, as each component is identified as a subset of the network factors
whose class variables form a closed group (that is, no other reference is found to
them in the rest of the factors of the network).

3 Structural learning algorithm

The proposed learning algorithm can be characterized as a 3-step learning al-
gorithm with a greedy forward search approach. That is, arcs are initialized to
the empty set for the three different subgraphs AC = ∅, AX = ∅ and AXC = ∅,
obtaining an initial network with no arcs and all nodes present. Then, it follows
with the addition of arcs to the different parts of the network judging their con-
tributions using the global accuracy criteria and exploiting the CB-decomposable
property to escalate to complex network structures without too much computa-
tional burden, aiming to obtain a sufficiently good local optimal structure. Also,
this algorithm explores the efficency of introducing feature subset selection strate-
gies when learning the bridgde subgraph, both in a filter and wrapped fashion, to
ensure the quality of the first step resulting structure.

3.1 Learning the bridge subgraph

The algorithm first focus on building a naive Bayes subgraph NBi(Ci, χe), with
χe ⊂ χc for each class variable Ci, i = 1, . . . , n of the network, over which a
sequential feature subset selection process is carried out. First, the features are
grouped according to their separation power by means of a Kruskal-Wallis test [6].
Each feature data is partitioned into subgroups according to the class label. Since
features with lower p−values are considered to be more relevant for classification,
they are sorted in ascending value. Then, the sequential feature subset selection



technique is applied, which adds arcs from the Ci variables to Xj variables if an
accuracy improvement is detected.

Finally, it eliminates shared children in order to obtain an initial CB-decomposable
MGNC structure with the maximum number of r maximal connected components,
where r = n since each naive bayes graph is a maximal connected component.
In order to do this, it compares the p−values obtained in Kruskal-Wallis test
for classes Ci and Cl and variable Xj and removes the arc that had a higher
associated p−value. If equal, arc removal is chosen randomly.

The algorithm is depicted as follows:

1. for i = 1 to n−m do

(a) Select class variable Ci

(b) Initialize the set of features as χi = ∅
(c) for j = 1 to m do

i. Separate feature Xj according to the values of Ci

ii. Obtain p−value from Kruskal-Wallis test
(d) Sort features according to ascending p−values
(e) for j = 1 to m do

i. if Acc(NBi(Ci, χi)) < Acc(NBi(Ci, χi ∪Xj)) do
A. NBi(Ci, χe) := NBi(Ci, χe ∪Xj)

2. Compare all the children of all NBi and for each pair NBa(Ca, χa), NBb(Cb, χb)
such that χa ∩ χb 6= ∅ do
(a) Compare p−values in all Xp ∈ χa ∩ χb If. kwpval(Xp, Ca) > kwpval(Xp, Cb)

do
i. Remove arc from Ca to Xp in NBa

(b) else if kwpval(Xp, Ca) < kwpval(Xp, Cb)
i. Remove arc from Cb to Xp in NBb

(c) else
i. Arc removal chosen randomly between 2.1.i and 2.2.i

3. Output GCX =
⋃n−m

i=1 NBi

3.2 Learning the feature subgraph

The second step is to obtain the feature subgraph, for which a maximum number
of iterations parameter t, of arc insertions attempts, is defined. This decision
was adopted to avoid the computational burden of examining all possible arc
insertions. First, the algorithm calculates the global accuracy that corresponds
to the concatenation of the individual class predictions of all existing maximal
connected components.

Arc insertions may occur from unselected features in the previous process,
but only to the features that are part of the components at the moment of the
arc insertion. When an arc insertion occurs, the parent feature is added to the
component. For each arc insertion between a pair of nodes Xi → Xj the accuracy
is recalculated. It is important to note that because of the CB-decomposability
property, at this step only the MPE values for the class of the component con-
taining the children node need to be recalculated. If there is a global accuracy
improvement, the arc insertion is kept, otherwise is discarded. Because accuracy
is used as the metric for the arc insertions, this is a wrapper structural learning
step.



3.3 Learning the class subgraph

For the final graph, the algorithm tries to identify the existing dependencies be-
tween class variables and attempt to merge the r maximal connected components.
It does this, like in the previous step, in a wrapper fashion. The algorithm starts
by considering all possible pairwise components mergings. For each component,
all single arc insertions between classes that belong to different components are
evaluated, in both directions. If an improvement in accuracy exists, the arc inser-
tion process continues updating the merged component class subgraph by further
arc insertions, this process finishes when no improvement in accuracy is observed.
Similarly, the merging components process finishes when no component merging
improves accuracy or when the number of components has been reduced to one.
It is important to notice that when two components are merging, the MPE val-
ues only need to be reevaluated for those two components, leaving the remaining
nodes outside. This process of local computations guarantees that the compu-
tational burden of the MPE increases exponentially only when an arc insertion
produces a network topology that cannot be separated in smaller maximal con-
nected components, and involves a higher number of class variables. If there is
only two components and are merging, the MPE is computed similarly to a classic
exact inference approach involving all class variables. The algorithm is depicted
as follows:

1. Initialize AccImprovement = true, ComponentAccImprovement = true,
Rc = {R1, . . . , Rn} where each Ri ∈ Rc is a GN (initially is the list of components
obtained in step 2)

2. while AccImprovement and |Rc| > 1 do
(a) lR := ∅
(b) For each possible Ri, Rj component merging where i, j = 1, . . . , n and i 6= j

do
i. Rij := Ri ∪Rj

ii. aRij = Rij

iii. while ComponentAccImprovement do
A. Evaluate all possible single arc insertions CRik → CRjh, CRik ← CRjh

from class nodes of different components in Rij

B. if exists arc insertions that improves component accuracy do select
best arc and update Rij

C. else ComponentAccImprovement = false
iv. if aRij 6= Rij do lR := lR ∪Rij

(c) if lR 6= ∅ do select the best merging of components, Rab, contained in lR,
Rc := Rc − {Ra, Rb} and Rc := Rc ∪Rab

(d) else Accimprovement = false

3. Return the obtained CB-MGC =
⋃|Rc|

i=1 ri ∈ Rc

It should be noted that the class sub-graph is not bounded to any network
topology or any subset of all possible networks, which itself offers a great appeal
with respect to restricted methods. This learning algorithm operates by escalat-
ing the complexity of the network topology through a path that minimizes the
computational burden of calculating the MPE at each step, by exploiting the
CB-decomposability property.



4 Classification of neuron’s morphologycall features

The data was obtained from NeuroMorpho v5.7.org, more specifically, the avail-
able data from [1]. In its raw form, the dataset contained information about 10880
3D reconstructed neurons, that were later processed with the L-measure tool [10]
to extract a total of 215 features describing the neurons morphology. Initially, the
dataset was composed of seven class labels (specie, gender, brain region, cell type
level 1, cell type level 2, development and neocortex) with missing data, which
shows that the initial problem is a multidimensional semisupervised classifica-
tion problem. Another difficulty was that some class labels were heavily imbal-
anced, with the most extreme case represented by a Rabbit’s neuron, with only
one instance for class variable specie. Hence, a preprocessing step was conducted
combining data imputation (using a 1-NN nearest neighbors algorithm) with the
elimination of class values that did not reach a critical l number of instances (l
can be regarded as a parameter to the final model that shapes the data that the
learning algorithm receives). This number was set to be l = 200. Preprocessing
further continued as for the classifier optimize its performance, features must not
significantly deviate from gaussianity and data fitting to a Gaussian distribution
should be possible under all data subsets originated from conditioning the fea-
ture to the class labels. With this, dataset pruning further continued to reach a
final count of 5136 instances, 6 classes (the neocortex class variable was left out
as most its values were missing) and a total of 158 features (57 were either too
different from Gaussian distributions or had subpopulations with zero variance).

A more detailed description of the class labels can be gound in Table 1. They
conform a class cardinality space of 1800 possible label combinations.

Table 1: Class labels in the final dataset

Specie Gender Brain region Cell type level 1 Cell type level 2 Develop.
drosophila female anterior olfactory nucleus axonal terminal ganglion cell adult
human male basal forebrain interneuron granulle cell young
monkey hippocampus principal cell medium spiny cell
ray neocortex pyramidal cell

optic lobe tangential cell
retina

The algorithm is now applied, trainning a CB-decomposable multidimensional
classifier with the goal of finding relationships in the data that can help us un-
derstand and predict how neuron morphology changes across the different class
labels. This algorithm was programmed using Matlab (version R2015a) and the
Bayes net toolBox [8] package together with the Structural learning package [7].

As seen in Figure 1, 6 components have been obtained that noticeably differ
from each other after the first two steps. The parameter t for arc insertion at-
tempts was fixed at t = 250 although it can be observed that most of the arc
insertions did not improve the final accuracy of the model and hence only a small
subset produced definite arc inclusions. The software L-measure generally reports



Fig. 1: Components after second phase of computation. Learned Feature subgraph.

the minimum, maximum average and standard deviation values as descriptive
features of some measured aspect of the neuron. It can be consistently observed
thought the components how these values tend to appear together in the com-
ponents (for example the parent daughter ratio that measures the ratio between
the diameter of a dendrite or axonal segment and its segment prologations after a
bifurcation has taken place) which strengthens understanding of a statistical de-
pendency existing between that measured aspect and the class variable connected
to the features that describe it. Its also worth noticing that after computing step
2, the same node can appear in two different components, but as child of the
feature variables. When components are merged in phase 3, intersecting features
are merged together.

In Figure 2 the found dependencies between classes in the final network, after
computing step 3, are visualized. As it seems, the variable for specie represents
the major discriminant between the morphological features of two neurons, as it
conditions all but the development variable. This supports the common intuition
that two animals from different species differ more in their morphology than,
for example, two animals of the same specie but of different genders. Along with
intuition also seems to be the dependency between brain region and cell type level
2 as different areas of the brain tend to have different neuron subpopulations.
The gender dependency by development suggests that morphological differences
between individuals of different genders vary with time (intuitively maybe this
corresponds to the stages of sexual differentiation in the transition from young
to adult that some species experience, or a sexual homogenization passing from



Fig. 2: Final class subgraph depicting the dependencies found in the data

adult to old). Moreover, cell type level 2 seems to be the most dependent of all
classes, which also seems intuitive as its measured at the smallest granularity,
that is “is the closest to an individual neuron” or the one that has potentially less
variability. These findings significantly improve the confidence on those previously
hypothesized relationships between these classes.

The final model performance as a multidimensional classifier was measured
by the Hamming score and global acuracy metrics, and found values 0.7666 and
0.2288, respectively. These metrics are defined, respectively, as follows:

Hs =
1

N

N∑
i=1

|Ti ∩ Pi|
|Ti ∪ Pi|

(5)

where N is the total number of instances in the data, Ti is the set of true labels
for the i−th instance and Pi is the set of predicted labels by the classifier for the
i−th instance.

Ga =
1

N

N∑
i=1

δPi

Ti
(6)

where δP
i

Ti
is a function that outputs 1 if Ti = Pi and 0 otherwise. The algorithm

was tested using a train/split fashion where 1
3 of the total dataset instances were

used and randomly chosen for testing.

5 Conclusions and future lines of research

This new learning algorithm for a multidimensional classifier effectively models
and predicts multiple classes provided a set of features. Also, it cab ne effectively
used to build a model that predicts multiple classes of a neuron given a set of
morphological descriptors. It is worth noticing that the obtained class subgraph
could not have been obtained under common restrictions for multidimensional
classifiers, such as independent classes, sequential(chain) dependencies or tree



structures. Therefore, this model offers a superior performance in terms on inter-
pretability. This was achieved by the continuous usage of the CB-decomposability
property through the learning process, allowing it to escalate from simple to com-
plex network topology without computing the MPE problem with more variables
than necessary. It also succeeds in the objective of extracting useful knowledge out
of the data in the field of neuroscience, which we believe validates the application
of our model to real life problems and our choice of this model for this problem.

5.1 Improvements and future lines of research

The 1-NN data imputation method will be substituted by a method based on the
structural learning process. As in its current form, the structural learning algo-
rithm does not explore the addition of arcs between class variables and feature
variables that belonged to different components when merging, an investment in
computational power that could lead to significant improvements in the classifiers
accuracy. Also, the addition of arc removal operations can be considered.
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