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Abstract

The evolution of communication and a continued globalization process have resulted in bigger

quantities of data being storaged. However, data has not only increased in volume but also in

complexity. Nowadays, more and more data is collected from different measurement methods.

In this context, traditional clustering algorithms are unable to comprehensively describe all

of the contained information. That is why new clustering techniques that consider multiple

dimensions of data are more necessary than ever. One of these techniques is multidimensional

clustering, which extends model-based clustering by learning mixture models with multiple

categorical latent variables. Each latent variable identifies a dimension along which data

are partitioned into clusters. Each dimension is conformed of a different subset of domain

variables.

Bayesian networks are useful in multidimensional clustering for several reasons. First, their

graphical structure allows for an easier interpretation, showing which variables are relevant

for each clustering. Second, their conditional independences result in more compact models

that are easier to learn. Finally, Bayesian networks support probabilistic inference, which is

useful for making predictions, diagnoses and explanations.

In this dissertation we explore the problem of learning Bayesian network models for multidi-

mensional clustering. Although there is an extensive literature on multidimensional clustering

methods for categorical data and for continuous data, there is a lack of work for mixed data

(i.e., data that is composed of both categorical and continuous variables). For this reason,

we propose approaches that are able to efficiently deal with mixed data by exploiting the

Bayesian network factorization and the variational Bayes framework. More specifically, we

make the following contributions.

First, we present an incremental algorithm for learning conditional linear Gaussian Bayesian

networks with categorical latent variables whose structures are restricted to forests. The

learning process is divided in two phases. In the first phase, the forest structure is expanded

with a new arc or latent variable. In the second phase, the cardinalities of latent variables are

estimated. Furthermore, we devise a variant of this algorithm that only considers a subset

of the possible structures and demonstrate the effectiveness of the approach.

Second, we develop a greedy algorithm for learning conditional linear Gaussian Bayesian

networks with categorical latent variables that are not restricted to tree-like structures. To

this purpose, the proposed method hill-climbs the space of models using a series of latent

operators and a variational Bayesian version of the structural expectation-maximization al-

gorithm.

Finally, we present a multidimensional clustering study with Parkinson’s disease data where



viii

we apply the proposed methodology. We consider data from a large, multi-center, inter-

national, and well-characterized cohort of patients. As a result, eight sets of motor and

non-motor symptoms are identified. Each of them provides a different way to group patients:

impulse control issues, overall non-motor symptoms, presence of dyskinesias and psychosis,

fatigue, axial symptoms and motor fluctuations, autonomic dysfunction, depression, and ex-

cessive sweating.
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Resumen

La evolución de la comunicación y un proceso de globalización continuado han dado lugar a

que se almacenen mayores cantidades de datos. Sin embargo, los datos no solo han aumentado

en volumen sino también en complejidad. Hoy en d́ıa, cada vez se recopilan más datos de

diferentes métodos de medición. En este contexto, los algoritmos de clustering tradicionales

no pueden describir de manera integral toda la información contenida. Es por esto que son

necesarias nuevas técnicas de clustering que consideren múltiples dimensiones de los datos.

Una de estas técnicas es el clustering multidimensional, el cual extiende el clustering basado

en modelos al aprender modelos de mixturas con múltiples variables latentes categóricas.

Cada una de estas variables latentes identifica una dimensión en la cual los datos son dividi-

dos en grupos. Cada dimensión se conforma de un conjunto diferente de variables observadas.

Las redes Bayesianas son interesantes en el clustering multidimensional por varias razones.

En primer lugar, su estructura gráfica permite una interpretación más sencilla, mostrando

qué variables son relevantes para cada clustering. En segundo lugar, sus independencias

condicionales dan como resultado modelos más compactos y fáciles de aprender. Finalmente,

las redes Bayesianas ofrecen la posibilidad de emplear inferencia probabiĺıstica, la cual es útil

para realizar predicciones, diagnósticos y explicaciones.

En esta tesis, exploramos el problema de aprender modelos de redes Bayesianas para clus-

tering multidimensional. Si bien existe una extensa literatura sobre métodos de clustering

multidimensional con datos categóricos y con datos continuos, no se ha estudiado en profun-

didad el caso de datos mixtos (i.e., aquellos que se encuentran formados tanto de variables

categóricas como de variables continuas). Por este motivo, proponemos varios enfoques que

pueden tratar de manera eficiente con datos mixtos mediante la explotación de la factorización

de la red Bayesiana y del framework variacional Bayesiano. Más concretamente, realizamos

las siguientes aportaciones.

En primer lugar, presentamos un algoritmo incremental para el aprendizaje de redes

Bayesianas Gaussianas lineales condicionales con variables latentes categóricas cuyas estruc-

turas se encuentran restringidas a bosques. El proceso de aprendizaje se divide en dos fases.

En la primera fase, la estructura del bosque se expande con un nuevo arco o variable la-

tente. En la segunda fase, se estiman las cardinalidades de las variables latentes. Además,

diseñamos una variante de este algoritmo que solo considera un subconjunto de las posibles

estructuras y demostramos la efectividad de este método.

En segundo lugar, desarrollamos un algoritmo voraz para el aprendizaje de redes Bayesianas

Gaussianas lineales condicionales con variables latentes categóricas cuyas estructuras no se

restringen a bosques. Nuestro método explora el espacio de modelos mediante una serie de op-

eradores latentes y una versión variacional Bayesiana del algoritmo estructural de esperanza-
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maximización.

Finalmente, presentamos un estudio de clustering multidimensional con datos de la enfer-

medad de Parkinson, donde aplicamos la metodoloǵıa propuesta a lo largo de la tesis. En

este estudio, consideramos datos de una cohorte de pacientes grande, multicéntrica, inter-

nacional, y bien caracterizada. Como resultado, identificamos ocho conjuntos de śıntomas

motores y no motores. Cada uno de ellos proporciona una forma diferente de agrupar a

los pacientes: problemas de control de impulsos, śıntomas generales no motores, presencia de

discinesias y psicosis, fatiga, śıntomas axiales y fluctuaciones motoras, disfunción autonómica,

depresión, y sudoración excesiva.
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Chapter 1
Introduction

Clustering is a fundamental tool for data exploration that finds interesting patterns by group-

ing objects based on some notion of similarity. Traditional clustering algorithms aim at

finding the “best” solution at partitioning the data. However, the assumption of a single

clustering solution is often untrue for real-world datasets, where several meaningful sets of

clusters may exist, each of them associated to a specific subset of domain variables. For in-

stance, one can imagine that different subsets of disease symptoms (e.g., muscular disorders,

psychological issues, organ dysfunctions, etc.) that describe a cohort of patients can provide

different ways of grouping those patients. In this setting, multidimensional clustering is a

popular tool due to its probabilistic foundations and its flexibility. Multidimensional clus-

tering [Zhang, 2004; Chen et al., 2012] extends model-based clustering [McLachlan and Peel,

2004; Melnykov and Maitra, 2010] by assuming the existence of a finite mixture model with

multiple categorical latent variables, where each latent variable defines a clustering according

to a different subset of domain variables.

However, working with a multidimensional clustering model is cumbersome because the

number of model parameters increases quadratically with respect to the number of continuous

variables, and exponentially with respect to the number of categorical (both observed and

latent) variables. It is therefore necessary to exploit the conditional independences that may

be present in the data. Conditional independence is a central concept to Bayesian networks

(BNs) [Pearl, 1988; Koller and Friedman, 2009; Maathuis et al., 2018]. A BN is a probabilistic

graphical model (PGM) that represents a joint probability distribution (JPD) as a product

of conditional probability distributions (CPDs). It is a compact graphical representation in

the form of a directed acyclic graph (DAG), where nodes correspond to random variables and

arcs correspond to probabilistic dependences between them.

Learning a BN from data is typically performed by a search method that approaches

the learning process from a model selection perspective. Search methods define a hypothesis

space of potential models, a set of operators to navigate this space, and a scoring function that

measures how well the model fits the observed data [Scanagatta et al., 2019]. When all the

variables in the network are observed, the decomposability property of some BN scores allows

for efficient learning. However, in the presence of latent variables it is not feasible to efficiently

3
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learn a BN because scoring functions do not decompose. Friedman’s structural expectation-

maximization (SEM) [Friedman, 1997] is the most widely used algorithm for learning a BN in

the presence of latent variables. It generalizes the expectation-maximization (EM) algorithm

[Dempster et al., 1977; McLachlan and Krishnan, 2008] to the problem of BN learning.

When a latent variable is known to exist, we can introduce it into the BN model and

apply SEM. However, when performing multidimensional clustering, we do not know either

the appropriate number of latent variables, nor their respective cardinalities. We can address

this problem by developing a search method that explores the space of multidimensional

clustering models using a series of latent operators that introduce latent variables, remove

latent variables, and change the cardinality of latent variables. Each application of these

latent operators could be accompanied by a run of SEM, which introduces, removes, or

reverses BN arcs.

There is an extensive literature on the identification of latent variables using BNs with

categorical and continuous data. However, there still exists a lack of work when dealing

with mixed data. Therefore, we intend to contribute to the multidimensional clustering re-

search by proposing new approaches that can work with categorical, continuous, and mixed

data. To this purpose, we develop several methods for learning conditional linear Gaussian

BNs [Lauritzen and Wermuth, 1989] with categorical latent variables. Since learning this

type of models is computationally unfeasible using exact inference procedures, we base our

approaches on the variational Bayes (VB) framework [Attias, 2000]. We evaluate the per-

formance of our approaches by solving both density estimation and missing data imputation

tasks. In addition, we apply our proposal to the problem of identifying Parkinson’s disease

(PD) subtypes via multidimensional clustering.

Chapter outline

In Section 1.1, we present the research hypotheses and the main objectives of this dissertation.

Then, in Section 1.2, we provide the document organization.

1.1 Hypotheses and objectives

The research hypotheses of this dissertation can be stated as the following two main points:

� The use of a score-based method that searches in the space of directed acyclic graphs

in combination with the variational Bayes framework will allow us to learn conditional

linear Gaussian Bayesian networks with categorical latent variables that accurately fit

the data.

� Conditional linear Gaussian Bayesian networks with multiple categorical latent vari-

ables can be used to identify multiple Parkinson’s disease subtypes via multidimensional

clustering.

Based on these hypotheses, the main objectives of this dissertation are:
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� To develop a new methodology for learning conditional linear Gaussian BNs with cat-

egorical latent variables where the structure is restricted to a forest.

� To develop a VB version of the SEM algorithm that is capable of dealing with incomplete

mixed data.

� To develop a new methodology for learning conditional linear Gaussian BNs with cat-

egorical latent variables with an unrestricted structure.

� To identify multiple PD subtypes and associations between those subtypes via multidi-

mensional clustering with conditional linear Gaussian BNs.

1.2 Document organization

The dissertation includes five parts and eight chapters that are organized as follows:

Part I. Introduction

This part introduces the dissertation.

� Chapter 1 presents the hypotheses and objectives of this work as well as the document

organization.

Part II. Background

This part consists of three chapters that introduce the background of the topics addressed in

this dissertation.

� Chapter 2 introduces BNs as an efficient framework for statistical modelling under

uncertainty. In this chapter, we formally introduce the BN model with its parametriza-

tions, we present the mechanism of probabilistic inference, and we address the problem

of learning BNs.

� Chapter 3 provides an overview of latent tree models, a special type of BN with a rooted

tree structure that contains multiple latent variables. In this chapter, we start with a

formal definition of the latent tree model. Then, we present its learning process and

applications.

� Chapter 4 presents an overview of model-based clustering with BNs. We start this

chapter by discussing traditional model-based clustering, where a single clustering vari-

able is considered. Then, we expand on this topic by considering multiple clustering

variables.
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Part III. Contributions

This part includes three chapters that present the main contributions of this dissertation.

� Chapter 5 addresses the problem of learning forests of tree-structured conditional lin-

ear Gaussian BNs with categorical latent variables. In this chapter, we propose two

incremental algorithms and demonstrate their effectiveness in density estimation exper-

iments using categorical, continuous, and mixed real-world data.

� Chapter 6 provides a method for learning conditional linear Gaussian BNs with cat-

egorical latent variables from incomplete mixed data. Our proposal greedily explores

the space of models using a series of latent operators and a VB version of the SEM al-

gorithm. We explore the performance of our method for the tasks of density estimation

and missing data imputation with categorical, continuous, and mixed real-world data.

� Chapter 7 presents a multidimensional clustering study with PD data. In this chapter,

we apply the methodology introduced in Chapter 6 to identify multiple subtypes of PD.

Furthermore, we study the associations between these subtypes and discuss the clinical

implications of the results.

Part IV. Conclusions

This part concludes the dissertation.

� Chapter 8 summarises the conclusions of this work, suggests future research lines, and

provides the list of publications developed as a result of this research.

Part V. Appendices

This part provides supplementary information about the research.

� Appendix A provides the specification of the motor variables considered in the PD

study of Chapter 7.
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Chapter 2
Bayesian networks

2.1 Introduction

Most real-world problems imply dealing with uncertainty. This is a consequence of several

factors such as partial information, stochastic environments, and measurement errors. Prob-

ability theory provides a well-established foundation for managing uncertainty, therefore it is

natural to use it for reasoning under these conditions. However, if we näıvely apply probabil-

ity to complex problems, we will soon be deterred by the resulting computational complexity

[Sucar, 2015].

PGMs provide a computationally efficient framework for managing uncertainty that com-

bines probability theory with graph theory. The main idea is to consider only those con-

ditional probabilistic independence relations that are held in the problem data and encode

them in a graph. By using a PGM, we can compactly and clearly represent the JPD of the

data, graphically representing relevant relationships between the problem variables. We dis-

tinguish two components in a PGM: the graphical structure and the probabilistic content. In

the graphical structure, nodes correspond to random variables and arcs correspond to prob-

abilistic dependences between them. The probabilistic content quantifies these dependences

using CPDs. The JPD is factorized according to the graphical structure as a product of those

CPDs, which reduces the total number of model parameters and facilitates the computation

of probabilistic queries.

Depending on the type of graphical structure, we can distinguish three main families

of PGMs: (i) Markov networks [Kidermann and Snell, 1980], which assume an undirected

graph to represent relations between the problem variables, (ii) BNs [Pearl, 1988], which

assume a directed acyclic graph, and (iii) chain graphs [Lauritzen and Wermuth, 1989],

which admit both directed and undirected arcs, but without any directed cycles. In this

dissertation, we mainly work with BNs, as they are the most widely used PGM for reasoning

with uncertainty. They are commonly used in fields as diverse as medical diagnosis [Pourret

et al., 2008], maintenance planning [Jones et al., 2010], risk assessment [Fenton and Neil,

2012], neuroscience [Bielza and Larrañaga, 2014] and many more [Koller and Friedman, 2009].

9
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Chapter outline

In Section 2.2, we start with a brief overview of how a graph can encode conditional in-

dependence relations and then formally introduce the BN model with its parametrizations.

In Section 2.3, we present the mechanism of probabilistic inference. Finally, in Section 2.4,

we overview the problem of learning BNs, where we put especial attention in explaining the

differences between the complete and incomplete data case.

2.2 The Bayesian network model

A BN is a compact representation of a JPD over a set of random variables. We can distinguish

two components in a BN: (i) a directed acyclic graphical structure that encodes conditional

independence relations between the different variables, and (ii) a set of parameters that,

together with the graphical structure, define a unique distribution. We start with a brief

overview of how a graph encodes the conditional independence relations and then formally

define the BN model with its parametrizations.

2.2.1 Encoding independences

At the core of BNs is the concept of conditional independence. Let P be a probability

distribution with XA, XB and XC as three disjoint sets of variables. We say that XA and

XB are conditionally independent given XC if

P (XA,XB|XC) = P (XA|XC)P (XB|XC)

and we denote this statement by (XA ⊥ XB|XC). As an example, the BN structure depicted

in Figure 2.1 implies several conditional independence statements over its set of variables

{X1, X2, X3, X4, X5}: (X1 ⊥ X2), (X3 ⊥ {X2, X4}|X1), (X4 ⊥ {X3, X5}|{X1, X2}) and

(X5 ⊥ {X1, X2, X4}|X3). We see a pattern emerging from the independence statements of

this example: the parents of a variable “shield” it from the probabilistic influence of other

variables that are not its descendants. We can formalize this intuition.

Let G be a DAG whose nodes represent a set of random variables X. Let PaGi denote the

parents of Xi in G, and NonDescendantsXi denote the variables in the graph that are nonde-

scendants of Xi. Then G encodes the following set of conditional independence statements,

called the local Markov independences, and denoted by Il(G):

∀Xi : (Xi ⊥ NonDescendantsXi |PaGi ) .

The ability to infer conditional independences from a graph allows us to characterize the

notion of Markov blanket (MB). The MB of any variable Xi ∈ X in G is the set of variables

composed of the parents of Xi, its children and the parents of its children.

In general there are multiple conditional independence statements that can be derived

from Il(G). The notion of d-separation can be used to determine whether a specific statement
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Figure 2.1: Example of a conditional linear Gaussian BN. Blue nodes represent categorical variables
and red nodes represent continuous variables.

(XA ⊥ XB|XC) holds. Let XA, XB and XC be three disjoint sets of nodes in a DAG G. Let

T be the set of possible trials from any node Xa ∈ XA to any node Xb ∈ XB, where a trial

in the graph is a succession of arcs, independent of their directions. Then XC blocks a trial

TI ∈ T if one of the following holds:

1. TI contains a chain Ti−1 → Ti → Ti+1 such that Ti ∈ XC .

2. TI contains a fork Ti−1 ← Ti → Ti+1 such that Ti ∈ XC .

3. TI contains a collider Ti−1 → Ti ← Ti+1 such that Ti and any of its descendants do not

belong to XC .

If all the trials in T are blocked by XC , then XC d-separates XA and XB. It is important

to note that d-separation does not rule out additional conditional independences that may

hold in the distribution and are not encoded by the DAG. For example, if XA and XB are

d-separated given XC , then (XA ⊥ XB|XC) holds in the distribution P . However, a lack of

d-separation does not necessarily indicate that (XA ⊥ XB|XC) does not hold in P . Finally,

d-separation can be efficiently computed in time that is linear in the number of nodes in the

graph [Geiger et al., 1990].

Since we are interested in DAGs that encode a JPD, we now define the relation between

the topological properties of a DAG and the conditional independences of its underlying

probability distribution. We say that a DAG G is an independence map (I-map) of the

distribution P if all the conditional independences that can be derived from Il(G) are satisfied

by P . We can now formally define the BN model.
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2.2.2 Model definition

A BN B = (G,θ) is a representation of a JPD over a set of random variables X. It consists

of two components: (i) a DAG G that encodes the conditional independences Il(G), and (ii)

a set of parameters θ that describes the CPD P (Xi|PaGi ) of each variable Xi ∈ X given its

parents in the graph. In addition, we require that G is an I-map of the JPD P represented

by the BN. This property is key for allowing the BN to compactly factorize the JPD as a

product of CPDs. It is formally expressed by the following theorem:

Theorem 2.1 [Pearl, 1988] Let G be a BN graph over the set of variables X. We say that

G is an I-map of P if and only if P can be expressed as

P (X) =
∏
i

P (Xi|PaGi ) . (2.1)

Using this theorem, a BN is able to define a unique probability distribution that can

be written as in Equation (2.1). This is called the chain rule for Bayesian networks. As

an example, consider the distribution P (X1, X2, X3, X4, X5) of Figure 2.1. By taking into

account the conditional independences represented by the graph, we can write:

P (X1, X2, X3, X4, X5) = P (X1)P (X2)P (X3|X1)P (X4|X1, X2)P (X5|X3) .

2.2.3 Parametrization

Depending on the nature of variables that are present in a BN, we usually distinguish be-

tween categorical, continuous, and hybrid (i.e., mixed) BNs. The latter is composed of both

categorical and continuous variables. Each of these is presented in the following sections.

2.2.3.1 Categorical Bayesian networks

Categorical BNs are strictly composed of categorical variables (i.e., qualitative variables with

a finite number of values). Examples include variables such as sex, eye color, blood type,

and many others. However, discrete variables with a finite number of values can also be

used (e.g., number of children in a family, number of tests in an experiment, etc.). The

terms “categorical” and “discrete” are usually used indiscriminately in the BN literature. For

simplicity, we are going to refer to both types of variables as categorical variables. The natural

choice for modelling categorical variables is the categorical distribution. The categorical

distribution is a generalization of the Bernoulli distribution that allows more than two possible

values. This distribution provides several advantages to categorical BNs. First, all of the

CPDs are categorical distributions, which simplifies computations. Second, each CPD can

be represented in tabular form, where every assignment of a variable and its parents has a

designated probability. Third, they are easily interpretable due to a direct representation

of the BN parameters as probabilities. All these benefits make categorical BNs the most

common parametrization in the literature [Darwiche, 2009].
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As an example, consider the CPD P (X4|X1, X2) of Figure 2.1. In this example, X4 takes

two possible values {t, f}, and their respective probabilities depend on the assignment of

parent variables X1 and X2. One problem, however, arises from using this representation:

the number of parameters in a categorical CPD increases exponentially with respect to the

number of parents, which limits the complexity of the model.

2.2.3.2 Continuous Bayesian networks

Continuous BNs are strictly composed of continuous variables (i.e., quantitative variables

with an uncountable number of values). Examples include variables such as age, weight,

blood pressure and many others. In this section, we describe how continuous variables can

be integrated into the BN framework. We first describe the discretization approach, which

simply transforms continuous variables into categorical variables. Then, we present the linear

Gaussian BN, which is composed of linear Gaussian CPDs and it is the most commonly used

approach. Finally, we comment several semiparametric and nonparametric approaches that

are not based on the Gaussian distribution.

Discretization

Given the desirable properties of categorical BNs, it is natural to bin continuous variables

into a finite set of intervals. Two types of discretization techniques can be distinguished [Fu,

2005]:

� Prediscretization methods, which discretize the data prior to the definition or learning

of the BN. Due to the pertinence of these methods to most machine learning algorithms,

a great deal of research has focused on this area [Liu et al., 2002].

� Integrated methods, which employ a greedy iterative search that alternates between

BN structure learning and discretization. They are more computationally expensive

than prediscretization methods, but they have also shown better results at modelling

the data [Friedman and Goldszmidt, 1996; Monti, 1999].

Discretization is still an active research topic and different strategies can be applied to

different types of data [Nojavan et al., 2017; Beuzen et al., 2018]. The main drawback of

discretizing continuous variables is that it unavoidably results in loss of information. All

variation within the created intervals is discarded. As a consequence, certain dependences

between variables may become unnoticeable [Friedman et al., 2000].

Linear Gaussian Bayesian networks

The most commonly used parametric form for continuous density functions is the Gaussian

distribution. The Gaussian distribution is a member of the exponential family [Wainwright

and Jordan, 2008] that makes very strong assumptions, such as the exponential decay of the

distribution away from its mean, and the linearity of interactions between its variables. While
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these assumptions are often invalid, the Gaussian distribution has proven to be a surprisingly

good approximation for many real-world distributions [Kotz et al., 2004].

In a linear Gaussian BN [Shachter and Kenley, 1989], all of its variables are continuous

and all of its CPDs are linear Gaussians. Let X be a continuous variable with continuous

parents C = {C1, . . . , Ck}. We say that X has a linear Gaussian CPD if there are parameters

β0, . . . , βk and σ2 such that

P (X|C) = N (β0 +
k∑

i=1

βkCi;σ
2) .

From this formulation we can see that X follows a Gaussian distribution with a mean that

is linear in the values of its parent variables C and with a variance σ2. An important result of

this formulation is that linear Gaussian BNs are an alternative representation for the class of

multivariate Gaussian distributions and vice versa. As an example, consider the conditional

distribution P (X5|X3) of Figure 2.1. In this example, X5 has a continuous parent, X3, and

follows a linear Gaussian distribution with parameters β0 = 2.0, β1 = 10.5 and σ2 = 1.25.

Linear Gaussian BNs are widely used in the continuous domain due to their support of

efficient inference [Koller and Friedman, 2009] and learning [Geiger and Heckerman, 1994].

Other approaches

Some researchers have investigated the use of richer (semiparametric or nonparametric) mod-

els for representing nonlinear dependencies in BNs with continuous variables. These include

kernel estimators [Hofmann and Tresp, 1995], neural networks [Monti and Cooper, 1997; Choi

and Darwiche, 2018], and Gaussian processes [Friedman and Nachman, 2000]. While these

approaches may result in a better representation of the underlying probability distribution,

they have several disadvantages: (i) they are harder to interpret due to their use of models

that are opaque to humans, and (ii) they do not usually allow efficient inference or learning.

2.2.3.3 Hybrid Bayesian networks

Hybrid BNs are composed of both categorical and continuous variables. So far we have

discussed the relations between variables of the same type, categorical or continuous. We have

shown that in the case of categorical variables, the categorical distribution is the natural CPD.

In addition, for continuous variables, we have shown the advantages of the linear Gaussian

CPD. We can extrapolate this knowledge to hybrid BNs when both the parents and the

children are categorical or continuous. However, there are two new types of relations that we

need to address: (i) a continuous variable with continuous and categorical parents, and (ii)

a categorical variable with continuous and categorical parents.
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A continuous variable with continuous and categorical parents

The simplest way of making a continuous variable depend on a categorical variable is to

define a different set of parameters for every value of the categorical parent. While there

is no restriction about the parametric form of the continuous variable, we have previously

shown the advantages of the linear Gaussian distribution. If we restrict our attention to linear

Gaussians, we get a class of hybrid BNs called the conditional linear Gaussian BN [Lauritzen

and Wermuth, 1989], where every categorical variable has only categorical parents and every

continuous variable has a conditional linear Gaussian CPD. Let X be a continuous variable,

where C = {C1, . . . , Ck} are its continuous parents and D = {D1, . . . , Dl} are its categorical

parents. We say that X has a conditional linear Gaussian CPD if for every d ∈ ΩD (where

ΩD represents all the joint assignments to D) there are parameters βd,0, . . . , βd,k and σ2
d,

such that

P (X|C,d) = N (βd,0 +
k∑

i=1

βd,iCi;σ
2
d) .

This CPD can be represented in tabular form, where every assignment of the categorical

parent variables has an associated linear Gaussian. As an example, consider the conditional

distribution P (X3|X1) of Figure 2.1. In this example, X3 has categorical parent (i.e., X1)

and follows a conditional linear Gaussian distribution with two sets of parameters. When

X1 = t, then X3 follows N (3.5; 0.75), and when X1 = f , then X3 follows N (0.5; 0.05). In

addition, we can see that a linear Gaussian distribution is simply a conditional linear Gaussian

distribution with no categorical parents and a single set of parameters. This is the case of

P (X5|X3). It follows that the JPD represented by a conditional linear Gaussian BN is a

mixture of Gaussians where every mixture component corresponds to an instantiation of the

categorical variables.

A categorical variable with continuous and categorical parents

Note that the definition of conditional linear Gaussian does not allow for categorical variables

to have continuous parents. In order to overcome this restriction, Koller et al. [1999] pro-

posed to model the CPDs of categorical variables with continuous parents using the soft-max

function. This model is usually referred to as the augmented conditional linear Gaussian BN.

Unfortunately there is no exact inference for this type of BN [Lerner and Parr, 2001], but we

can always resort to the use of approximate inference [Murphy, 1999].

A completely different approach to the hybrid BN representation problem considers a

family of relateds models that include mixtures of truncated exponentials (MTEs) [Moral

et al., 2001], mixtures of polynomials (MoPs) [Shenoy and West, 2011], and mixtures of

truncated basis functions (MoTBFs) [Langseth et al., 2012]. A MoTBF can be seen as a

generalized form of discretization, but instead of using a constant as approximation within

each interval, we use a linear combination of basis functions. MTEs and MoPs are particular

scenarios of MoTBFs when using exponential or polynomial functions, respectively, as basis

functions. These models are interesting because they do not impose any restrictions on
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the interactions between variables (discrete nodes with continuous parents are allowed), and

because they allow exact probabilistic inference. However, their learning capabilities are

currently limited, requiring the structure of a hybrid BN to be supplied in order to learn the

MoTBF model [López-Cruz et al., 2013, 2014; Langseth et al., 2014].

2.3 Inference

Probabilistic inference is one of the most fundamental mechanisms for reasoning under un-

certainty. Given a BN B over a set of random variables X, probabilistic inference allows us

to answer general queries of the form P (i|e) where e are the values of the evidence variables

E ⊂ X and i are the values of the variables of interest I ⊆ {X \E}, whose values we do not

know. For example, in the medical domain, we can query the probability of a certain disease

given the observed symptoms. The goal of inference can be formulated as follows:

P (i|e) =
P (i, e)

P (e)
.

The general problem of probabilistic inference in BNs was first tackled by Kim and Pearl

[1983]. On a very high level, inference algorithms can be divided into two main classes: exact

inference methods and approximate inference methods. We address each of these classes in

the following sections. For additional information on this topic, Salmeron et al. [2018] provide

a recent review of the literature.

2.3.1 Exact inference methods

Exact inference algorithms are designed to give an exact answer to the probabilistic query.

While exact methods were originally designed for categorical BNs, they can be easily adapted

for linear Gaussian BNs using the canonical form representation [Lauritzen, 1992]. There are

three main strategies of exact inference in BNs:

� Variable elimination. As the name suggests, the idea behind variable elimination is

to successively remove variables from a BN while maintaining its ability to answer the

query of interest. It was first formalized by Zhang and Poole [1994], although its origins

go back to Shachter et al. [1990].

� Jointrees. The jointree algorithm is a variation on the variable elimination algorithm

that can be understood in terms of factor elimination. This algorithm improves on the

complexity of variable elimination when answering multiple queries. There are two main

approaches to the junction tree algorithm: (i) the Shenoy-Shafer architecture [Shenoy

and Shafer, 1990], and (ii) the Hugin architecture [Jensen et al., 1990]. Both of them

are based on the work of Lauritzen and Spiegelhalter [1988], which introduced the first

jointree algorithm.

� Conditioning. The first incarnation of the conditioning algorithm was presented by

Pearl [1986] in the context of cutset conditioning, where the conditioning variables cut
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all loops in the network, forming a polytree1. The general algorithm, under the name

of global conditioning, was presented by Shachter et al. [1994], which demonstrated the

relation between conditioning and variable elimination. Finally recursive conditioning

was developed by Darwiche [2001].

Although it is NP-hard to perform exact inference in general BNs [Cooper, 1990], it

becomes tractable in BNs with bounded treewidth [Kwisthout et al., 2010]. The notion of

treewidth was introduced by Robertson and Seymour [1986] and can be understood as a

measure of similarity between a graph and a tree (e.g., trees have a treewidth ≤ 1). However,

this result only applies to categorical BNs and linear Gaussian BNs. Inference in conditional

linear Gaussian BNs is much harder. Even in simple models like polytrees, exact inference is

NP-hard [Lerner and Parr, 2001].

2.3.2 Approximate inference methods

Approximate inference algorithms are designed to give an approximate answer to the proba-

bilistic query, with the understanding that giving the exact probability is not crucial. Unfor-

tunately, identical to the exact case, performing approximate inference has also been demon-

strated to be NP-hard in general BNs [Dagum and Luby, 1993; Lerner and Parr, 2001].

Despite these discouraging results, one can try to produce useful approximate algorithms

with a computational performance that is in many cases far more manageable than that of

exact algorithms. There are two main strategies of approximate inference in BNs:

� Sampling. The idea behind sampling-based algorithms is to randomly pick assignments

of the random variables, called samples, and then estimate the JPD of the query. It

was first introduced for inference in BNs by Henrion [1986], who proposed a method

based on probabilistic logic sampling. Several improvements have been done since then,

such as likelihood weighting [Shachter and Peot, 1989] and Markov chain Monte Carlo

[Pearl, 1987; Hrycej, 1990; York, 1992].

� Optimization. The idea behind optimization-based algorithms is to construct an ap-

proximation to the target distribution, and then optimize a similarity function. This

approach is usually referred to as variational inference [Blei et al., 2016]. Methods in

this class fall into three main categories: belief propagation [Pearl, 1988; Yedidia et al.,

2000], expectation propagation [Minka, 2001] and mean-field variational inference [Saul

et al., 1996]. In this dissertation, we focus on the mean-field approach. It is discussed

in detail in Section 2.4.3 since it is a key part of the learning framework that is used

throughout this dissertation.

1A polytree is a DAG whose underlying undirected graph is both connected and acyclic (i.e., a tree).
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2.4 Learning

In order to introduce the task of probabilistic inference, we have assumed that the structure

and parameters of the BN were already given. There are two possible ways to construct a

BN: (i) to manually define the model, usually with the help of an expert [Beinlich et al., 1992;

van der Gaag et al., 2002], and (ii) to learn it from a dataset D. In this dissertation we focus

on learning BNs from data.

Learning BNs is a very broad topic that depends on the specific goal that we set [Daly

et al., 2011]. We may want to learn only the model parameters for a fixed structure, or some

or all of the structure of a model. In some cases, we may be interested to produce not a

single model but rather a probability distribution over models. In the following sections we

address the problem of learning the BN parameters and structure when data is complete. In

addition, we also address both of these tasks in the presence of incomplete data and discuss

the complications that arise in that scenario.

2.4.1 Parameter estimation

In this section, we present the problem of estimating the parameters of a BN when data

is complete. That is, we assume that the network structure G is fixed and our data D =

{x[1], . . . ,x[N ]} consists of N fully observed instances of the network variables X. As we will

see in Section 2.4.3, this is not always the case.

There are two main approaches to fit the parameters of a BN: (i) maximum likelihood

estimation, and (ii) Bayesian estimation. We address each of these approaches in the following

sections.

2.4.1.1 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is the most common method for parameter estimation

in BNs. At its core is the idea that a good model is one that fits the data well. This goodness

of fit is measured by the likelihood function, which is the probability that a model with a set

of parameters θ assigns to the data D:

L(θ : D) = P (D|θ) =
N∏

n=1

P (x[n]|θ) , (2.2)

where P (x[n]|θ) represents the probability of the nth data instance given the model param-

eters. In practice, it is often convenient to work with the natural logarithm of the likelihood

function, called the log-likelihood (LL):

`(θ : D) =
N∑

n=1

logP (x[n]|θ) .

In the MLE approach, we want to find the set of parameters θ̂ that maximizes the LL of
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the data:

θ̂ = max
θ

`(θ : D) . (2.3)

This poses a high-dimensional optimization problem, even for BNs with a low number of

variables, since we need to optimize over all the CPDs in the network. Fortunately, we can

use the factorization property of Equation (2.1) to write

`(θ : D) =
∑
i

`i(θXi|PaGi
: D) , (2.4)

where θXi|PaGi
are the parameters that encode the CPD of Xi given its parents PaGi and

`i(θXi|PaGi
: D) =

N∑
n=1

logP (xi[n]|paGi [n],θXi|PaGi
)

is the local LL function of Xi. Identically to the LL function, we can easily induce the local

function of the likelihood function, i.e., Li(θXi|PaGi
: D). The exact form of these functions

depends on the form of the CPD, see Koller and Friedman [2009] for a detailed explanation.

The optimization problem of Equation (2.3) is decomposed into a summation of independent

terms, one for each CPD in the network. We can then combine these individual solutions to

get the MLE.

2.4.1.2 Bayesian estimation

By using a point estimate of the parameters, such as the MLE, there is no measure of un-

certainty, and no prior knowledge can be incorporated into the learning process. In Bayesian

statistics, prior knowledge is introduced via a prior distribution over the parameters, and un-

certainty is reflected in its posterior distribution. The posterior distribution encodes updated

beliefs once prior knowledge and data have been taken into consideration. For a fixed struc-

ture G, the posterior distribution of the parameters θ given the observed data D is defined

as

P (θ|D) =
P (D|θ)P (θ)

P (D)
.

The term P (θ) denotes the prior distribution of the parameters, P (D|θ) is the probability of

the data given the set of parameters, which is simply the likelihood function. Finally, P (D)

acts as a normalizing constant for the posterior distribution.

In the case of MLE, we have seen in Equation (2.4) that the likelihood function de-

composes according to the network structure. This decomposition allows us to individually

estimate the parameters θXi|PaGi
of each CPD. For Bayesian estimation, we introduce the

assumption of global parameter independence, which leads to a similar decomposition of the

prior distribution [Spiegelhalter and Lauritzen, 1990]:

P (θ) =
∏
i

P (θXi|PaGi
) .
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The decomposability properties of the likelihood function and the prior distribution pro-

duce that the posterior distribution can also be decomposed as a product of local terms:

P (θ|D) =
1

P (D)

∏
i

[
Li(θXi|PaGi

: D)P (θXi|PaGi
)
]

=
∏
i

P (θXi|PaGi
|D) .

Finally, we need to address the issue of choosing a convenient prior. The form of the prior

depends on the form of the CPD. When estimating the parameters of a categorical CPD,

the common choice is to use Dirichlet priors. The Dirichlet distribution has the appealing

property of being a conjugate prior to the categorical distribution. That is, the posterior

distribution has the same functional form as the prior distribution. For linear Gaussian

CPDs, the conjugate Gaussian-inverse-Gamma prior plays a similar role (or in the case that

we use the multivariate Gaussian representation [Geiger and Heckerman, 1994], the Gaussian-

inverse-Wishart). We can combine the above to learn the CPDs of conditional linear Gaussian

BNs. For more information on this topic, see Bishop [2016].

2.4.2 Structure learning

In this section, we consider the problem of learning the structure of a BN when data is

complete. We can distinguish three main approaches: (i) scored-based structure learning, (ii)

constraint-based structure learning, and (iii) hybrid structure learning. We address each of

these approaches in the following sections.

2.4.2.1 Score-based structure learning

Score-based methods approach the learning process from a model selection perspective. These

methods define a hypothesis space of potential models, a set of operators to navigate this

space, and a scoring function that measures how well the model fits the data. Then, the

learning task is to find the highest-scoring BN structure. While this problem has proven to be

NP-hard [Chickering, 1996; Chickering et al., 2004], various techniques have been developed

to render the structure search tractable. Depending on the nature of their search space, they

are usually divided into two main groups:

� Space of orders. These algorithms assume an initial topological order for the variables,

and use this prior ordering to reduce the complexity of the search space. Given a

BN with m nodes (where there is a maximum number of k parents per node) and an

ordering of the BN nodes, the highest-scoring BN structure can be learned in O(mk)

time [Cooper and Herskovits, 1992]. The main disadvantage of order-based search

is that, without restrictions, the complexity of finding the true ordering is O(m!).

Despite this discouraging result, several algorithms have successfully approached this

problem using both greedy search [Teyssier and Koller, 2005; Scanagatta et al., 2017]

and metaheuristics [Larrañaga et al., 1996a; Hsu et al., 2002; Faulkner, 2007].
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Algorithm 2.1: Hill-climbing (HC)

Input : D, G0, RA

1 G ← G0

2 while True do
3 GAI ← AI(D,G,RA)
4 GAE ← AE(D,G,RA)
5 GAR ← AR(D,G,RA)
6 G′ ← highest scoring structure in {GAI ,GAE ,GAR}
7 if score(G′ : D) > score(G : D) then
8 G ← G′

9 else
10 break /* Stop the loop */

Output: The resulting BN structure G

� Space of structures. These algorithms start with some initial structure G0, usually an

empty graph, which automatically becomes the currently best structure G. Then, they

get all the neighbor structures of G by applying local structure modification operators

such as arc introduction (AI), arc elimination (AE), and arc reversal (AR). Certain

arc restrictions RA may limit the structures produced by these operators. Finally, G
is replaced with the highest-scoring structure. This process is repeated until there are

no changes in the structure that can improve the score. One of the initial works of

this approach is the hill-climbing (HC) method proposed by Chickering et al. [1995],

which is depicted in Algorithm 2.1. Several researchers have presented variants of this

work that seek to make the search process faster and more accurate. These include

techniques based on reducing the search space [Hwang et al., 2002], branch and bound

[Suzuki, 1999, 2018], and metaheuristics, usually with a different representation such as

a connectivity matrix [Larrañaga et al., 1996b; Wong et al., 1999; Blanco et al., 2003;

Kim et al., 2013].

Evaluating a structure from the search space requires computing its score. As expected,

one of the most important decisions in this type of learning is the choice of the scoring

function. There are two main groups of scores: (i) those based on the likelihood function,

and (ii) those based on the marginal likelihood. We address each of these groups of scores in

the following sections. For more information, see Carvalho [2009].

Likelihood scores

A natural choice for the scoring function is the LL, which tries to find a model that would

make the data as probable as possible. However, the LL tends to favour complete BN

structures and it does not provide a useful representation of the independence assumptions

of the learned BN. This lack of generalization (over-fitting) is usually avoided by using a
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penalized version of the LL score:

scoreL(G : D) = `(θ̂G : D)− pen(G,D) , (2.5)

where `(θ̂G : D) is the log-likelihood function, θ̂G are the MLE parameters of the considered

structure G, and pen(G,D) is a penalty function that can depend on G and D. In the

Akaike information criterion (AIC) [Akaike, 1974], pen(G,D) = dim(G), where dim(G) is the

model dimension, or the number of independent parameters in G. The Bayesian infromation

criterion (BIC) [Schwarz, 1978], extends this penalization by including the length of D:

BIC(G : D) = `(θ̂G : D)− dim(G)

2
log(N) ,

where N is the number of instances in D. Note that the BIC coincides with the minimum

description length (MDL) [Lam and Bacchus, 1994] when scoring BN structures.

The decomposability property of the LL allows an efficient computation of these scores.

With a decomposable score, a local change in the structure (such as adding an arc) does not

change the score of other parts of the structure that were unaffected.

Bayesian scores

In the Bayesian learning problem, we assume that the learner has a prior distribution P (G)

over the set of possible structures. In addition, we assume that, once a structure is considered,

the learner has a prior distribution P (θG |G) over its set of parameters θG . By Bayes rule, we

have that

P (G|D) =
P (D|G)P (G)

P (D)
,

where P (D) acts as a normalizing factor that does not help distinguish between different

structures. Thus, we define the Bayesian score as:

scoreB(G : D) = logP (D|G) + logP (G) .

Although the structure prior P (G) gives us a way of preferring some structures over others,

it does not play an important role in the asymptotic analysis of the Bayesian score because it

is not related to the data. For this reason, we often assume a uniform prior over the structures

and ignore this term of the score. The term P (D|G) is the marginal likelihood of the data

given the structure, since it marginalizes out the unknown parameters:

P (D|G) =

∫
P (D|θG ,G)P (θG |G)dθG ,

where P (D|θG ,G) is the likelihood of the data given a structure G with parameters θG , and

P (θG |G) is our prior distribution over the set of parameters for this structure. The integration

over all possible sets of parameters protects us from over-fitting: models with more parameters

do not necessarily have higher marginal likelihood. This is called the Bayesian Occam’s razor
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effect [MacKay, 1991].

The form of the prior distribution over the set of parameters determines the form and

properties of the Bayesian score. If the prior P (θG |G) satisfies both the global parameter

independence and the parameter modularity assumptions, then the Bayesian score is decom-

posable. Bayesian scores that are decomposable include the K2 [Cooper and Herskovits, 1992]

and BDe [Heckerman et al., 1995] scores for categorical BNs, the BGe for linear Gaussian

BNs [Geiger and Heckerman, 1994], and the combination of BDe and BGe for conditional

linear Gaussian BNs [Heckerman and Geiger, 1995].

2.4.2.2 Constraint-based structure learning

Constraint-based methods approach the learning process from a statistical independence point

of view. These methods perform conditional independence tests and select the equivalence

class of BNs that best explains them. An equivalence class of BNs is defined by all the BN

structures that represent the same JPD. Some of the key algorithms of the constraint-based

approach are: inductive-causation [Verma and Pearl, 1990], PC [Spirtes et al., 2000], grow-

shrink [Margaritis, 2003], and incremental association Markov blanket [Tsamardinos et al.,

2003].

All constraint-based methods share a common two-phase structure inherited from the

inductive-causation algorithm. First, they learn the skeleton of the DAG by checking through

conditional independence tests if there is a set of variables that separates a particular pair of

variables. If that set is empty, then there must be an arc. Second, they try to assign directions

to the arcs as in Meek [1995]. The common limitation of these methods is their sensitiveness

to failures in the conditional independence tests. A single mistake in one of these tests suffices

to mislead the learning process. Another drawback is the amount of data required by these

algorithms. The size of the data hugely increases with respect to the number of conditional

variables in the independence test.

2.4.2.3 Hybrid structure learning

Both score-based methods and constraint-based methods have their advantages. For example,

score-based methods usually perform better with less data and constraint-based methods are

usually faster. For this reason, researchers have tried to combine the advantages of both

approaches in the generation of hybrid methods. Some representative hybrid methods include

the works of Singh and Valtorta [1993, 1995], Dash and Druzdzel [1999], de Campos et al.

[2003], and Tsamardinos et al. [2006].

2.4.3 Learning with incomplete data

The assumption of complete data is often unrealistic. In some cases, certain data values are

missing by accident (e.g., they could have been omitted in the collection process). In other

cases, their absence is intentional (e.g., in a medical setting, the presence or absence of a

biopsy result is clearly not random and it is related to the result of a preliminary blood test).
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In addition, data may be also incomplete because some variables may be hidden or latent

(e.g., in a clustering problem, cluster assignments are not observed; in factor analysis, factors

also not observed). The distinction between these cases has been thoroughly studied in the

literature, see Little and Rubin [1987] for more information on this topic.

In this section we consider the problem of learning when missing values and hidden vari-

ables are present. We first address the parameter estimation problem and then discuss the

even more challenging structure learning problem. We first need to expand the notation

previously introduced in Section 2.4.1. For an incomplete dataset D with N instances, we

denote the missing (or latent) variables and their possible assignments in the nth instance

by H[n] and h[n], respectively. In addition, we use H = ∪n h[n] to denote the set of all

possible assignments to all unobserved values in the dataset. Thus, the pair (D,H) defines

an assignment to all variables in all data instances.

2.4.3.1 Parameter estimation

Most of the key properties that helped make parameter estimation feasible with complete

data vanish in the incomplete data setting. The learning task requires to globally optimize

over a high-dimensional space, with an objective that is highly susceptible to local optima.

As a consequence, we need to adjust the MLE and Bayesian estimation approaches.

Maximum likelihood estimation

In the presence of incomplete data, the likelihood function of Equation (2.2) has to consider

an exponential number of assignments to the missing values in the dataset:

L(θ : D) = P (D|θ) =
∑
H
P (D,H|θ) .

As a result, although each of the terms P (D,H|θ) is a unimodal distribution, the sum can

have, in the worst case, an exponential number of modes. However, unimodality is not the

only property that we lose. In the presence of incomplete data, the likelihood function can

be written as

L(θ : D) =
N∏

n=1

P (x[n]|θ) =
N∏

n=1

∑
h[n]

P (o[n],h[n]|θ) , (2.6)

where o[n] refers to the observed values in the nth data instance. Equation (2.6) shows that,

to compute the likelihood function, we need to perform inference for each instance. As we

discussed in Section 2.3, this problem can be intractable. Thus, even the task of evaluating

the likelihood function becomes a difficult computational problem.

Therefore, in the presence of incomplete data, we lose all of the important properties of

the likelihood function: its unimodality, its closed-form representation, and its decomposition

as a product of local likelihoods. Without these properties, the parameter estimation task

becomes a substantially more complex optimization problem.
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The most straightforward approach to this optimization is to apply a gradient ascent

procedure. Binder et al. [1997] derive the gradient form for BNs and show that it can

be efficiently computed by applying probabilistic inference. Unfortunately, gradient ascent

procedures are guaranteed to achieve only a local maximum of the likelihood function. In

order to increase our chances of finding a global maximum, or at least a better local maximum,

we have to consider multiple starting points or apply random perturbations.

An alternative algorithm for optimizing the likelihood function is the EM algorithm

[Dempster et al., 1977; McLachlan and Krishnan, 2008]. Each iteration t of this algorithm

is divided into two steps: (i) the expectation step, in which the estimated parameters θ̂t are

used to infer a posterior distribution P (H|D, θ̂t) of the missing values H given the observa-

tions D, and (ii) the maximization step, in which a new point estimate of the parameters

θ̂t+1 is computed. It can be shown that the EM algorithm is guaranteed to monotonically

improve the likelihood of the observed data until convergence to a (typically) local maxi-

mum. In order to diminish the problem of local maxima and improve the performance of the

EM algorithm, we can run EM from multiple starting points or apply the pyramid scheme

proposed by Chickering and Heckerman [1997].

Bayesian estimation

Since the posterior distribution is a product of the prior distribution and the likelihood

function, it follows that the useful properties shown by the posterior distribution when data

is complete are lost in the incomplete data setting. The posterior P (H,θ|D) becomes a highly

complex and multimodal distribution that can no longer be represented as a product of local

posterior distributions. In order to estimate this complex distribution, we need to resort to

approximate inference methods. In theory, we can apply any approximate inference procedure

to this problem. Thus, all the methods we discussed in Section 2.3.2 can potentially be used

for performing Bayesian estimation with incomplete data. However, due to its speed and

simplicity, we have chosen the mean-field variational inference method. When applied to the

Bayesian learning problem, it is usually referred to as the VB approach [Attias, 2000].

The goal of variational inference is to find an approximate distribution Q(H,θ) from

some tractable family Q that closely approximates the true posterior distribution P (H,θ|D).

For simplicity, we denote these distributions Q and P , respectively. The key principle of

variational inference is to solve this problem via optimization, in which a set of variational

parameters ϕ that makes Q closest to P is identified. The usual cost function for this

optimization problem is the reverse Kullback-Leibler (KL) divergence:

KL(Q||P ) =

∫ ∫
Q(H,θ) log

Q(H,θ)

P (H,θ|D)
dHdθ

= EQ

[
log

Q(H,θ)

P (H,θ|D)

]
(2.7)

= EQ [logQ(H,θ)]− EQ [logP (H,θ,D)] + log p(D) .
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However, we cannot minimize this function because it requires computing the intractable

log p(D). Instead, we can maximize an alternative function that is equivalent to the reverse

KL divergence up to this constant (the marginal likelihood). This function is called the lower

bound of the marginal likelihood or the evidence lower bound (ELBO):

ELBO(Q : D) = EQ [logP (H,θ,D)]− EQ [logQ(H,θ)] . (2.8)

We can infer two things from Equations (2.7) and (2.8). First, we can see that maximizing

the ELBO is equivalent to minimizing KL(Q||P ). Second, we can see that, as its name

suggests, the ELBO is a lower bound of the marginal likelihood (usually called the evidence

in the Bayesian literature), which follows from the derivation through Jensen’s inequality and

the fact that KL(·) ≥ 0 [Jordan et al., 1999]. The complexity of maximizing the ELBO is

determined by the complexity of the variational family Q. In this dissertation, we use the

VB framework, which assumes a factorization of the variational posterior that is based on

the mean-field approximation:

Q(H,θ) =
N∏

n=1

Q(h[n])Q(θ) .

The VB framework iteratively maximizes the ELBO with respect to Q(H) and Q(θ).

This results in an iterative algorithm that is directly analogous to the EM (called the VB-

EM algorithm), which is guaranteed to monotonically increase the ELBO. Its expectation

and maximization steps have the following form:

� Expectation. Update the variational posterior distribution of the unobserved values:

Qt+1(H) ∝ exp

[∫
Qt(θ) logP (D,H|θ)dθ

]
,

� Maximization. Update the variational posterior distribution of the parameters:

Qt+1(θ) ∝ exp

[∫
Qt+1(H) logP (D,H|θ)dH

]
P (θ) .

The exact forms of the variational expectation and maximization equations depend on the

functional forms of the CPDs in the model (e.g. for categorical BNs, see [Beal and Ghahra-

mani, 2006]). However, deriving a set of specific update equations for each type of conditional

distribution is an arduous task. Fortunately, the variational message passing (VMP) frame-

work [Winn and Bishop, 2005] provides a set of general purpose update equations that work

for any BN for which all parent distributions are conjugate. A model in which both of these

constraints hold is known as a conjugate-exponential (CE) model. In this dissertation, we

combine the VMP framework with the VB-EM algorithm to estimate the parameters of a

conditional linear Gaussian BN when data is incomplete. Fortunately, a conditional linear

Gaussian BN is a CE model. Finally, even though we focus on the VB framework, we can
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Algorithm 2.2: Structural EM (SEM)

Input : D, B0, RA

1 for t = 0, 1, . . . until convergence do
/* Expectation step */

2 D∗t ← Complete data using exact inference with Bt
/* Maximization step */

3 Gt+1 ← Structure-Learn(D∗t , RA)
4 θt+1 ← MLE(D∗t , Gt+1)
5 Bt+1 ← {Gt+1,θt+1}

Output: The resulting model Bt

add more flexibility to the parameter estimation process by using more flexible variational

families [Bishop et al., 1998; Barber and Wiegerinck, 1999] and nonconjugate priors [Wang

and Blei, 2013], but at the cost of a more difficult optimization problem.

2.4.3.2 Structure learning

We can distinguish two possible scenarios when learning a BN from incomplete data: (i) data

is partially observed, i.e., no variable in the data has all its values missing, and (ii) there are

latent variables in the data, i.e., one or many variables in the data have all its values missing.

We address each of these scenarios in the following sections.

Structure learning with partially observed data

We need data to be complete in order to apply any of the approaches that we discussed in

Section 2.4.2. Constraint-based methods require data completeness to compute conditional

independence tests, and score-based methods require data completeness for its scores to

be decomposable. A simple approach is to exclude those instances with missing values.

However, estimates obtained from this approach may be biased if the excluded instances are

systematically different from those included. Inverse probability weighting (IPW) [Horvitz

and Thompson, 1952; Robins et al., 1994] is one of several methods that can reduce this

bias. In IPW, complete instances are weighted by the inverse of their probability of being a

complete instance. This idea has been applied to the domain of constraint-based structure

learning. Gain and Shpitser [2018] propose a variant of the PC algorithm that utilizes IPW

for each conditional independence test.

Friedman [1997] proposes a completely different approach by generalizing the EM algo-

rithm to the problem of score-based structure learning. This method, called SEM, is described

in Algorithm 2.2. Similar to EM, it also iterates over a pair of steps. At each iteration t, in

the expectation step, it uses the current model to generate a complete dataset D∗t . Then, in

the maximization step, it estimates not only the parameters of the new model, but also its

structure. Any of the score-based procedures we described in Section 2.4.2.1 can be used for

this purpose. However, the scoring function to be maximized must be a penalized version of
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the LL, as in Equation (2.5).

It is important to note the benefits of SEM compared to a brute-force approach: rather

than re-estimating the model parameters after each structure change, the output of a single

expectation step is used to perform many structure changes. At each iteration t, SEM selects

the model Bt+1 with the highest expected score. The expected score is usually referred to as

score(D∗t ,Bt+1), and its use is motivated by the following inequality:

score(Bt+1 : D∗t )− score(Bt : D∗t ) ≤ score(Bt+1 : D)− score(Bt : D) . (2.9)

Equation (2.9) states that an improvement in the observed score (i.e., using the observed

data D) of network Bt+1, relative to the network Bt that was used to generate D∗t , is at least as

large as the improvement of the expected score using the completed data D∗t . This guarantees

that SEM converges without the need of using probabilistic inference in each structure change.

However, despite the computational savings provided by SEM, it is still a highly demanding

algorithm due to the need of applying probabilistic inference in its expectation step. For

this reason, works like Scanagatta et al. [2018] and Benjumeda et al. [2019] have proposed

adaptations of the SEM algorithm that bound the inference complexity in the expectation

step.

Finally, the idea of SEM can also be applied to Bayesian learning. However, in order

to compute the expectation step we have to rely either on a maximum a posteriori (MAP)

solution or on an approximate Bayesian inference solution. The Bayesian SEM algorithm

proposed by Friedman [1998] advocates for the first solution. In this dissertation, we advocate

for the second solution, where we combine SEM with the VB framework.

Structure learning with latent variables

Latent variables, as opposed to observed variables, are variables that are not directly mea-

sured but rather inferred from the observed variables through the statistical model. When a

latent variable is known to exist, we can introduce it into the BN model and apply methods

such as the SEM algorithm to perform structure learning with incomplete data. However,

we cannot simply place a latent variable arbitrarily in the model and expect our learning

procedure to produce a reasonable model. In fact, if a latent variable is placed where it does

not improve the model score, there is a good chance it will end up being disconnected from

the rest of variables [Koller and Friedman, 2009]. Thus, we need a mechanism to introduce

latent variables in approximately the right location in the BN structure.

There are many approaches that can be used to introduce a latent variable. One approach

is based on finding structural signatures that the latent variable might leave, such as densely

connected variables [Elidan et al., 2000]. Unfortunately, this technique does not perform

too well, since structure learning algorithms are usually biased against fitting models with

densely connected variables, especially with limited data. As a result, Elidan and Friedman

[2005] propose instead to consider information signatures, which are identified using the

information bottleneck method [Tishby et al., 1999; Friedman et al., 2001]. A completely
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different approach is to use a search method to iteratively explore a space of models. This

idea was first proposed by Zhang [2004], which considered the space of latent tree models.

Since then, it has been greatly improved with several methods and different strategies. We

discuss this approach with more detail in Chapters 3, 5, and 6.
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Chapter 3
Latent tree models

3.1 Introduction

In the analysis of real-world data, it is useful to learn a latent variable model (LVM) that

faithfully represents the data generation process. Applications of LVMs are numerous and

cover many scientific fields. This is typically the case for domains such as economics [Aigner

et al., 1984], psychology [Bollen, 2002] and medicine [Rabe-Hesketh and Skrondal, 2008],

to cite some examples. Such fields usually need complex constructs that cannot be directly

observed. For instance, abstract concepts such as human personality in psychology and social

class in socio-economics [Everitt, 1984].

An LVM that has received considerable attention is the latent tree model (LTM). An

LTM is a special type of BN with a rooted tree structure. In this BN, leaf nodes are observed

variables and internal nodes can be either observed or latent variables. Subclasses of LTMs

have been studied for decades. For instance, phylogenetic trees [Durbin et al., 1998] are binary

LTMs (each internal node has two children) whose variables are categorical and have all the

same cardinality. Another subclass of the LTM is the latent class model (LCM) [Lazarsfeld

and Henry, 1968]. In an LCM, all observed variables are conditionally independent given a

single latent variable.

LTMs were first identified as a class of potentially useful models by Pearl [1988]. In

his work, Pearl noticed the ability of these models to capture complex relationships with a

simple structure that could be easily interpretable. Subsequently, Zhang [2004] expanded

Pearl’s work by doing the first systematic study about LTMs. In his work, Zhang proposed

the hierarchical latent class model (HLCM), a generalization of the categorical LCM that

allows multiple latent variables. Since then, LTMs have been extensively studied, proving

their value in many areas of machine learning, such as density estimation, topic detection,

clustering and classification. In this chapter we give a general overview of LTMs and their

applications. For more information on this topic, see the works of Mourad et al. [2013], Zhang

and Poon [2017] and Zwiernik [2018].

31
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Figure 3.1: Example structures of (a) an LCM, (b) an HLCM and (c) an LTM with observed internal
nodes. Categorical observed variables are colored blue while continuous observed variables are colored
red. Categorical latent variables are colored grey, where the number between parentheses corresponds
to their respective cardinalities.

Chapter outline

In Section 3.2, we start with a formal definition of the LTM. In Section 3.3, we present the

learning process of LTMs and address each of the existing approaches. Finally, in Section

3.4, we discuss several applications of LTMs.

3.2 Model definition

An LTM is a tree-structured BN that contains a set of observed (or partially observed)

variables X, and a set of latent (fully unobserved) variables H. Following the notations of

BNs, we denote an LTM as a pair B = (G,θ). The second component θ is the same as in a

BN. It is the collection of parameters that describe the CPD of each variable given its parents

in the tree. However, the first element slightly differs from the previous definition. In addition

to represent the arcs between the variables in the model, we also consider elements of the

structure as the number of latent variables in the model and the cardinality of categorical

latent variables.

Identical to BNs, we can distinguish between categorical, continuous and hybrid (i.e.,

mixed) LTMs. In this dissertation we are especially interested in the hybrid case, more

specifically, in the conditional linear Gaussian case, where categorical variables can have

categorical and continuous children but cannot have continuous parents. Figure 3.1 shows

several example structures of conditional linear Gaussian LTMs. These include: (a) an LCM,

(b) an HLCM, and (c) an LTM with observed internal nodes. In this dissertation, we restrict

ourselves to the common case of LTMs with categorical latent variables. However, LTMs can

also include continuous latent variables (e.g., see Choi et al. [2011]).

3.3 Learning

In order to learn the structure of an LTM, the following information must be determined:

(i) the number of latent variables, (ii) the cardinality of categorical latent variables, and

(iii) the arcs between variables. Akin to BNs, we distinguish three main structure learning
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approaches: score-based learning, constraint-based learning and variable clustering. The

first two approaches are very similar to their BN counterparts. However, while the variable

clustering approach is a hybrid approach, it combines ideas from score-based and constraint-

based learning in a way that is specific to LTMs. We address each of these approaches in

the following sections. With respect to the parameter estimation process, the majority of

the following methods use the EM algorithm (with few noted exceptions, such as the work

of Huang et al. [2020]).

3.3.1 Score-based methods

Score-based methods construct LTMs one local move at a time, such as by introducing a

latent variable, removing an arc, or increasing the cardinality of a categorical latent variable.

The selection of the best move on each iteration is done with the scoring function. Zhang

[2004] was the first to propose an approach of this kind, called double hill-climbing (DHC)

algorithm. DHC starts with an LCM and then explores the space of categorical HLCMs using

the BIC score. At each step of the search, it employs a hill-climbing procedure to identify

the best HLCM that can be produced by introducing a single arc or latent variable. Once

this model is found, DHC optimizes the cardinalities of its latent variables by employing a

second hill-climbing procedure (hence the name of the algorithm).

Using two hill-climbing procedures results in a very computationally expensive process.

For this reason, a less computationally intensive alternative called the single hill-climbing

(SHC) algorithm was later proposed by Zhang and Kočka [2004]. In this work, the authors

take inspiration on the SEM algorithm to reduce the computational cost of evaluating each

operator. In addition, instead of using the BIC score for model selection, they proposed to

use an improvement of BIC score per unit of complexity.

The SHC algorithm was later improved by Chen et al. [2012], who proposed to divide

each search step into three stages: expansion, adjustment and simplification. Each stage

uses its own set of operators (e.g., during the expansion stage, the HLCM is modified by

introducing a new arc or a new latent variable). For this reason, this algorithm is called

EAST (expansion, adjustment, and simplification until termination).

The aforementioned algorithms were all designed to work with categorical data. An

extension of EAST for continuous data was later proposed by Poon et al. [2013]. This algo-

rithm produces HLCMs with categorical latent variables and continuous observed variables.

Additionally, Galimberti et al. [2018] proposed a greedy method for learning forests of uncon-

nected LCMs. All of these methods assume that each observed variable in the model follows

a Gaussian distribution.

Score-based methods do not have any theoretical guarantees for learning LTMs. However,

if they are not trapped by local maxima, the maximized score provides an assurance of the

model quality.
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3.3.2 Constraint-based methods

Constraint-based methods identify conditional independence relations as constraints when

learning BNs from complete data. These constraints are sufficient when variables are fixed.

However, variables are not fixed when learning LTMs, and thus other constraints are required.

For LTMs, some form of sibling test is usually employed. Siblings refer to variables in the

LTM that have the same parent, and a sibling cluster refers to a set of children variables that

have the same parent. The sibling test not only allows the connections among variables to

be determined, it may also suggest that a latent variable can be introduced as the parent of

a sibling cluster.

Phylogenetic tree reconstruction led to the development of constraint-based methods that

use information distances between variables to determine sibling clusters [Saitou and Nei,

1987; Durbin et al., 1998]. A nice property of information distances is that they are additive

Lake [1994]. That is, the information distance between two nodes in an LTM is given by the

sum of the distances along the path that connects them. Due to this property, Choi et al.

[2011] proposed the recursive grouping (RG) method, an algorithm that iteratively finds

parent-child and sibling relationships among variables. RG is structurally consistent. That

is, the LTM structure can be correctly recovered provided that the number of data instances

is large enough. In addition, unlike current score-based methods, RG is not limited to learn

HLCMs. It can learn LTMs with observed variables as internal nodes. However, RG also has

several drawbacks. First, when applied to categorical data, all variables must have the same

cardinality. Second, in the presence of continuous data, all variables must be continuous.

These restrictions make it impossible to mix continuous and categorical variables. The work

of Huang et al. [2020] follows on the idea of RG and circumvents these issues by defining a

new distance metric and a new parameter estimation method that is based on moments and

tensor decompositions [Anandkumar et al., 2014].

Another popular class of constraint-based methods that is not based on information dis-

tances is the family of quartet-based methods. The idea is to first construct a set of quartets

for all subsets of four observed variables and, subsequently, combine these quartets to form

an LTM. A quartet is simply an unrooted tree with four observed nodes, where each latent

node has a minimum of two children. As an example, Figure 3.2 illustrates the four possible

quartets of a set of observed variables {X1, X2, X3, X4}. However, it is known that deter-

mining an LTM that agrees with the maximum number of quartets is NP-hard [Steel, 1992].

For this reason, several heuristics have been proposed [Pearl, 1988; Chen and Zhang, 2006;

Anandkumar et al., 2011].

While constraint-based methods usually give strong theoretical guarantees, they rely on

two assumptions that may not be realistic. First, they assume that the information distances

and quartet tests are accurate. However, this is only true when they are estimated from

infinite data. In reality they have to be estimated from a finite set of data instances, which

lowers the accuracy of the identified relationships between variables. Second, they assume

that data is sampled from an LTM. If the samples are generated from a different model, there

is no guarantee on the performance of the models resulting from these algorithms.
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Figure 3.2: The four possible quartets of the set of observed variables {X1, X2, X3, X4}. Variable
colors and parentheses have the same meaning as in Figure 3.1.

3.3.3 Variable clustering methods

Variable clustering methods arise from the observation that sibling variables in an LTM are

usually more similar to each other than to the rest of variables. From this observation, vari-

able clustering methods use correlation or information-theoretic metrics such as the mutual

information (MI) [Cover and Thomas, 1991] to cluster similar variables. Once variables have

been grouped, a latent variable is added as the parent of each variable cluster. Finally, latent

variables are connected so an LTM can be obtained.

The first approach of this kind was proposed by Wang et al. [2008]. In their work, the

authors developed an algorithm called HCL (a shorthand for hierarchical clustering learning

of LTMs) that constructs a categorical HLCM in the same way as how a dendrogram is

built. Specifically, in each step it finds the pair of variables that have the highest MI (for

latent variables, it is estimated using the highest MI of the observed children). Once a pair is

selected, a new categorical latent variable of predefined cardinality is added as the parent of

the pair and takes their place in the next step. This process is repeated until there is only one

remaining variable, yielding a binary HLCM. Finally, the algorithm applies a regularization

process that may result in a non-binary HLCM.

Harmeling and Williams [2010] proposed two closely related algorithms for learning forests

of binary HLCMs, namely BIN-G and BIN-A. Similar to HCL, both algorithms follow a hier-

archical process based on MI. However, unlike HCL, both algorithms estimate the cardinality

of the resulting categorical latent variables. The main differences between BIN-G and BIN-A

lie in the MI and cardinalities estimation. In BIN-G, the MI between a latent variable and

other variables is estimated using the completed data. In addition, the cardinality of a new

latent variable is locally estimated at the moment of creation. In BIN-A, the MI between

latent variables is estimated using the average MI of their respective observed children. In

addition, the cardinalities of the latent variables are recursively estimated in a bottom-up

fashion once the structure of the model has been defined.

All of the above methods are limited to cluster pairs of variables. To allow a higher

number of variables in the cluster, it is necessary to define a criterion for the size of the

cluster. Wang [2009] proposed such a criterion. A unidimensionality test that determines

whether some variables should belong to the same cluster or different clusters. Given a

subset of variables, the test works by learning an LTM with a score-based algorithm such
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as EAST. If the resulting LTM has more than one variable, it indicates that the subset of

variables belongs to the same cluster. This unidimensionality test was later incorporated

into the bridged islands (BI) algorithm, proposed by Liu et al. [2015]. This algorithm first

partitions the set of all observed variables into sibling clusters. Then, it creates an LCM

with a categorical latent variable for each sibling cluster. After that, it imputes the values

of the latent variables and connects them using Chow-Liu’s algorithm [Chow and Liu, 1968],

resulting in an HLCM.

When the number of variables in the dataset is large (e.g., more than 30 variables), it

might be more reasonable to learn a forest rather than a tree because many variables might

not be significantly dependent of each other. From the above methods, only BIN-A and

BIN-G are able to learn forests of LTMs. However, as we previously commented, they are

limited to forests of binary HLCMs. A method named CFHLC, which stands for construction

of forests of hierarchical latent class models, was proposed by Mourad et al. [2011] to learn

non-binary forests. CFHLC works by grouping similar variables following an information

decay criterion [Ben-Dor et al., 1999]. Once groups have been determined, the cardinality of

the introduced latent variable is given by its number of children variables.

Methods based on variable clustering do not provide any guarantee on their performance.

However, given that their parameters are usually estimated using the EM algorithm, they

return a score that, as in score-based methods, provides an assurance of the model quality

while usually being much faster.

3.4 Machine learning applications

LTMs have proven to be valuable in many machine learning applications such as density

estimation, classification, clustering, and topic detection. We address each of these areas in

the following sections. However, they are not the only known applications of LTMs. Other

interesting uses include those of computer vision [Kaltwang et al., 2015], spatial analysis [Yu

et al., 2016], and deep probabilistic modelling [Chen et al., 2017b].

3.4.1 Density estimation

Density estimation is one of the most common uses of LTMs. The idea is to construct an

estimate of the probability distribution underlying the observed data. The problem of density

estimation has been long studied in the literature, using both parametric [McLachlan and

Peel, 2004] and nonparametric [Scott, 1992] approaches. LTMs offer a parametric perspective

that is not only flexible but also interpretable thanks to their graphical representation. They

serve as an exploratory tool, where the structure of the model reveals how the observed

variables are directly or indirectly (due to latent variables) related to each other.

An example of density estimation with LTMs can be found in Zhang et al. [2008a]. In this

work, the authors learn an LTM from the Coil challenge 2000 data [van der Putten and van

Someren, 2004] using the SHC algorithm. The Coil data has 42 variables. Three variables

show socio-demographic information of the customers, while the others show the ownership of
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various insurance products by the customers. Figure 3.3 shows the resulting model structure,

which groups similar insurance products such as those related to agriculture or to vehicles.

Other examples of density estimation with LTMs can be found in the areas of traditional

Chinese medicine [Zhang et al., 2008b] and finance [Choi et al., 2011].

Wang et al. [2008] suggest the use of categorical LTMs for approximate inference. This

application is closely related to density estimation. Their motivation is that probabilistic

inference may be intractable for some complex BNs. For this reason, it would be interesting

to learn an LTM with a similar probability distribution that would allow us to efficiently

compute inference queries. To carry out this idea, the authors propose to first generate

samples from the original BN and then learn an LTM from them. In their original work, this

approach shows competitive results compared to other approximate inference approaches such

as loopy belif propagation [Murphy et al., 1999]. However, although inference becomes faster,

the training time of the LTM should also be considered.

3.4.2 Classification

Classification is a supervised learning problem where a class label is predicted for a given

data instance. LTMs also find their use in this domain of application. A straightforward

approach is to hierarchically introduce latent variables in a näıve Bayes classifier to relax its

conditional independence assumption. The resulting model is almost identical to an LTM,

except the class variable is the root node of this tree. Zhang et al. [2004] named this classifier

the hierarchical näıve Bayes model. In order to learn it, the authors proposed a generative

approach that used the DHC algorithm with the BIC score. Langseth and Nielsen [2009]

improved this idea with a discriminative approach which, instead of using the BIC score to

guide the search, employed the classification accuracy. In addition, the search algorithm was

modified to improve the computational complexity.

Wang et al. [2013] proposed a different approach for using LTMs in classification. A new

type of model called the latent tree classifier (LTC) was presented. An LTC can be considered

a mixture of LTMs, where the class variable is used as the mixture variable. Specifically, every

class label in an LTC has an associated LTM.

In the multi-label setting, Nimmagadda and Anandkumar [2015] took advantage of the

hierarchical structure of LTMs to group various object categories in the problem of multi-

object classification. In this work, the authors propose to recover the LTM structure using a

variant of the RG algorithm, and estimate model parameters using a feed-forward artificial

neural network.

3.4.3 Clustering

Clustering is an unsupervised learning problem where data instances are assigned to several

groups (called clusters) so that instances belonging to the same group are similar in some

sense. In a mixture model [McLachlan and Peel, 2004], the categorical latent variable can

be used for clustering. Similarly, categorical latent variables in an LTM can be used for this
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purpose and, with multiple latent variables, produce multiple clustering solutions. Zhang

[2004] was the first to apply LTMs to this purpose. This idea was further developed by Chen

et al. [2012], who coined the term “multidimensional clustering”. In an LTM, each categorical

latent variable represents a dimension along which data are grouped into clusters.

In addition to multidimensional clustering, LTMs can also be applied to the case of

unidimensional clustering, where there is a single clustering variable [Poon et al., 2018]. In

this case, the objective of introducing several categorical latent variables is to model local

dependence in an LCM so as to improve clustering quality. We discuss both unidimensional

and multidimensional clustering in Chapter 4.

3.4.4 Topic detection

Topic detection allows us to automatically extract meaning from texts by identifying recurrent

themes or topics. Similar to clustering, it is an unsupervised learning problem. Researchers

have proposed many methods for topic detection [Daud et al., 2010; Jelodar et al., 2019]. The

most commonly used method is latent Dirichlet allocation (LDA) [Blei et al., 2003]. LDA is a

generative probabilistic model of a corpus. The basic idea is that documents are represented

as random mixtures over latent topics, where a topic is characterized by a distribution over

words.

Liu et al. [2014] proposed the first use of LTMs for topic detection. The key idea is to build

a hierarhical model where each latent variable represents a soft partition of the documents

and its states can be interpreted as topics. This way, a document can 100% belong to multiple

topics. The proposed method for topic detection is therefore called hierarchical latent tree

analysis (HLTA). Figure 3.4 shows the model structure that results from applying HLTA to

several magazine texts. In this example, we can see that the LTM groups words that are

semantically similar. One of these groups is the one governed by the latent variable H9, which

is formed by {baseball, games, hockey, league, nhl}. An extension of this algorithm was later

proposed by Chen et al. [2017a], which introduced a faster alternative to the EM algorithm

called progressive EM.

There are three fundamental differences between LDA-based models and LTMs for topic

detection. First, unlike LDA-based models, LTMs do not refer to a document generation

process. Latent variables in an LTM are considered unobserved attributes of the documents.

Second, observed variables in LDA-based models are token variables, where each token vari-

able stands for a location in a document, and its possible values are the words in a vocabulary.

In contrast, each observed variable in an LTM stands for a word and has two values repre-

senting the presence/absence of the word in a document. Finally, the third difference lies

in the definition and characterization of topics. Topics in LDA-based models are probabilis-

tic distributions over a vocabulary. In contrast, topics in LTMs are probabilistic clusters of

documents.
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Chapter 4
Model-based clustering with

Bayesian networks

4.1 Introduction

Clustering is an unsupervised learning problem where data instances are grouped based on

similar characteristics. The resulting groups are called clusters. Ideally, data instances in

the same cluster are more similar to each other than to those in other clusters. Clustering

is also referred to as unsupervised classification because data instances are classified without

any class labels given beforehand. Since it does not need any previous labelling, it is a useful

technique for exploratory data analysis.

Based on their principle, clustering algorithms can be classified as distance-based or

model-based. In distance-based methods, a distance measure is used to determine the simi-

larity or dissimilarity between data instances. Examples of distance-based methods include

hierarchical clustering [Gordon, 1987], K-means [MacQueen, 1967], K-modes [Chaturvedi

et al., 2001], affinity propagation [Frey and Dueck, 2007], and many others [Xu and Wunsch,

2008]. In contrast, model-based methods [McLachlan and Peel, 2004; Melnykov and Maitra,

2010] assume that data has been originated by a finite mixture model (whose components

correspond with the clusters) and try to estimate the probability distribution that underlies

each cluster.

Based on their cluster assignments, clustering algorithms can be classified as hard or

soft. Hard clustering methods assign each data instance to a single cluster. The majority of

clustering algorithms follow this approach. In contrast, soft clustering methods assign each

data instance to all the clusters but with different degrees of membership. This approach is

mainly followed by fuzzy clustering methods [Höppner et al., 1999] and model-based methods.

Compared to non-probabilistic approaches, model-based clustering offers several advan-

tages. First, it provides a measure of uncertainty in its cluster assignments. Second, it

provides a generative model (e.g., a BN), which allows inference and model selection. Fi-

nally, it allows to simultaneously define multiple clusterings on different subsets of observed

41
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variables within a single model.

Chapter outline

In Section 4.2, we start with an overview of traditional model-based clustering, also known as

unidimensional clustering, where a single clustering variable is considered. Then, in Section

4.3, we expand on this topic by considering multiple clustering variables. This model-based

clustering approach is usually referred to as multidimensional clustering.

4.2 Unidimensional clustering

Traditional model-based clustering algorithms assume that data has been generated by a

probability distribution P (X) that can be expressed as a finite mixture of k cluster-specific

CPDs. In this model, each mixture component P (X|H) represents the CPD of the observed

variables given the clustering variable H, whose probability distribution is referred to as

P (H). That is,

P (X) =
∑
H

P (H)P (X|H) .

Estimating the parameters of this model is not trivial given the hidden nature of clustering

variables (i.e., a clustering variable is simply a categorical latent variable whose cardinality

corresponds to the number of clusters). For this reason, its learning process requires a method

that is able to handle incomplete data such as the EM algorithm or the VB-EM algorithm.

Once the model is learned, we can use it for clustering by computing the posterior probability

P (H|X):

P (H|X) ∝ P (H) P (X|H) . (4.1)

However, working with P (H|X) may be cumbersome due to the exponential increase in

model parameters with respect to the number of categorical variables. It is therefore necessary

to exploit the conditional independences that are present in the data. The application of the

BN factorization allows us to simplify Equation (4.1):

P (H|X) ∝ P (H)
∏
i

P (Xi|PaGi ) ,

where PaGi ⊆ {H,X}. Hence, by using a BN we need to learn not only the model parameters

but also its network structure. Several methods have been developed for clustering with BNs.

The majority of them use Bayesian classifier structures such as: (i) the unsupervised näıve

Bayes (i.e., the LCM) [Cheeseman et al., 1988; Barash and Friedman, 2002; Santafé et al.,

2006a], (ii) the unsupervised semi-näıve Bayes [Peña et al., 1999], (iii) the unsupervised tree-

augmented näıve Bayes [Santafé et al., 2006b; Pham and Ruz, 2009], and (iv) the unsupervised

k-dependence Bayesian classifier (uk-DB) [Peña et al., 2000; Pham and Ruz, 2009]. Other

proposals using less common BN structures consider recursive Bayesian multinets [Peña et al.,

2002] and LTMs [Poon et al., 2018]. Figure 4.1 presents some examples of these models.
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Figure 4.1: Examples of (a) an unsupervised semi-näıve Bayes model structure, (b) an unsupervised
tree-augmented näıve Bayes model structure and (c) an uk-DB with k = 2 model structure. Variable
colors and parentheses have the same meaning as in Figure 3.1.

4.3 Multidimensional clustering

A single clustering variable implies the assumption that there exists a single way to partition

the data. However, this assumption is hardly true except maybe for very simple datasets.

In a real-world dataset, there might be multiple ways to partition the data. Following this

idea, multidimensional clustering algorithms assume that data has been generated by a finite

mixture model with multiple clustering variables H = {H1, . . . ,Hs}, where each clustering

variable Hi uniquely partitions the data with a different number ki of clusters:

P (X) =
∑
H1

· · ·
∑
Hs

P (H)P (X|H) .

Suppose we want to cluster the data shown in Figure 4.2 (a), which has two continuous

variables, X1 and X2. The traditional approach is to learn a unidimensional clustering model

such as an LCM (Figure 4.2 (b)) with 6 clusters. However, as shown by Figures 4.2 (e)

and (f), this is not the only possible solution. We can obtain a meaningful clustering from

either one of the variables. If we consider a model with two clustering variables (Figure 4.2

(d)), we get a 2-cluster solution on X1 and a 3-cluster solution on X2. This approach is

called multidimensional clustering because multiple clusterings are obtained along different

dimensions of data. Each dimension corresponds to a subset of observed variables, which

gives meaning to the clustering.

In the example of Figure 4.2, we see one appealing trait of multidimensional clustering:

compactness. The bidimensional clustering model of this example is able to represent the

data with not only fewer clusters than the unidimensional clustering model (5 versus 6), but

also with fewer parameters (181 versus 302). Model compactness becomes more appealing as

the dimensionality of data increases. When the number of observed variables is large, each

cardinality increase of a unidimensional clustering model results in a large increase of model

1H1 and H2 follow categorical distributions with 2 and 6 parameters, respectively. X1 and X2 follow
conditional linear Gaussian distributions with 4 and 6 parameters, respectively.

2H follows a categorical distribution with 6 parameters. X1 and X2 follow conditional linear Gaussian
distributions with 12 parameters each.
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Figure 4.2: Multidimensional clustering with two observed variables. (a) Data. (b) Unidimensional
clustering model structure. Variable colors and parentheses have the same meaning as in Figure 3.1.
(c) Unidimensional clustering on both X1 and X2, resulting in 6 clusters. (d) Bidimensional cluster-
ing model structure. (e) Bidimensional clustering on X1, resulting in 2 clusters. (f) Bidimensional
clustering on X2, resulting in 3 clusters.
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parameters. Alternatively, each cardinality increase of a multidimensional clustering model

only affects a subset of the model parameters, since each clustering variable is only related

to a subset of observed variables.

Identically to the unidimensional case, we are interested in the probability distribution

of the clustering variables H given the observed variables X. When combined with the BN

factorization, this probability distribution, P (H|X), can be expressed as follows:

P (H|X) ∝
∏
i

P (Hi|PaGi )
∏
j

P (Xj |PaGj ) ,

where PaGi ⊆ H and PaGj ⊆ {H,X}. Learning an LVM for multidimensional clustering

is much more computationally expensive than for unidimensional clustering. In contrast

to the unidimensional case, a multidimensional clustering algorithm has to determine: (i)

the number of clustering variables, (ii) the number of clusters in each clustering, (iii) the

observed variables that are relevant for each clustering, (iv) the relationships between clus-

tering variables, and (v) the relationships between observed variables. For this reason, the

majority of multidimensional clustering algorithms have considered restricted models such as

LTMs [Zhang, 2004; Chen et al., 2012; Poon et al., 2013; Liu et al., 2015; Li et al., 2019],

latent forests [Harmeling and Williams, 2010; Mourad et al., 2011; Galimberti et al., 2018],

and DAGs where the observed variables are conditionally independent given the clustering

variables [Asbeh and Lerner, 2016a,b].

4.3.1 Related work

In addition to multidimensional clustering, there are other lines of work that produce mul-

tiple clusterings. They can be classified according to the way new clusterings are found:

sequentially or simultaneously.

4.3.1.1 Sequential clustering algorithms

Sequential clustering algorithms (also referred to as alternative clustering algorithms) retrieve

new data partitions that are distinct to the previously generated ones. Bae and Bailey [2006]

were the first to propose an algorithm of this kind, named COALA (constrained orthogonal

average link algorithm). Given a clustering, COALA applies an agglomerative clustering

process in combination with a series of pairwise cannot-link constraints to generate a new

alternative clustering. These constraints are imposed to data instances that, in the previ-

ous clustering, belonged to the same cluster. Subsequently, Gondek and Hofmann [2007]

presented a method for finding an alternative clustering using an extension of the condi-

tional information bottleneck [Gondek and Hofmann, 2003]. The idea is to generate a new

clustering solution by maximizing the pairwise MI between the new clustering variable and

the observed variables, conditioned on the previous clustering. Dang and Bailey [2010a]

posteriorly presented NACI (non-linear alternative clustering with information theory), a

hierarchical technique that uses information theory to discover an alternative clustering for
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which: (i) the MI between its cluster labels and data instances is maximized, and (ii) the MI

between the alternative clustering and the original clustering is minimized.

These three methods are only able to produce a single alternative clustering. However,

there may exist more than two plausible groupings. Following this line of work, Cui et al.

[2010] developed two methods that iteratively search for alternative clustering solutions in

subspaces that are orthogonal to the previously found ones. Davidson and Qi [2008] pro-

posed a different approach where new clustering solutions are generated by transforming

the previously used data using a distance function that has been learned according to a set

of must-link and cannot-link constraints. This idea was subsequently improved by Qi and

Davidson [2009], who proposed to minimize the KL divergence between the probability dis-

tributions of the original and the transformed data. Alternatively, Niu et al. [2014] devised a

spectral clustering algorithm that generates alternative clusterings by minimizing the Hilbert-

Schmidt independence criterion. Finally, Yang and Zhang [2017] have recently proposed to

use nonnegative matrix factorization to find multiple alternative clusterings.

4.3.1.2 Simultaneous clustering algorithms

Simultaneous clustering algorithms generate new data partitions without taking into consid-

eration any of the previous ones. Caruana et al. [2006] first formulated an approach that is

able to generate a set of potentially interesting clustering solutions by either randomly initial-

izing the clustering algorithm or by using random feature weights. This collection of solutions

is subsequently grouped using agglomerative clustering based on their similarity. Jain et al.

[2008] then proposed two clustering algorithm: (i) a K-means variant that returns uncorre-

lated clusterings based on the notion of orthogonality, and (ii) a sum of parts approach, which

models the clustering problem as one of learning the component distributions when data has

been sampled from a convolution of mixture distributions. A model-based approach called

CAMI (clustering for alternatives with mutual information) was later proposed by Dang and

Bailey [2010b]. CAMI is essentially a regularized version of the EM algorithm that maximizes

the likelihood of each clustering, while at the same time, minimizes the MI between them.

Both Guan et al. [2010] and Niu et al. [2012] introduced non-parametric Bayesian models that

are able to discover multiple clustering solutions and the feature subsets that are relevant to

each of them. Alternatively, Ye et al. [2016] proposed to identify several arbitrarily oriented

subspaces in which clusterings may exist. This work has been recently updated by using

independence subspace analysis [Mautz et al., 2020]. Finally, while not explicitly included in

this section, multidimensional clustering is considered a type of simultaneous clustering.

4.3.1.3 Other related approaches

A completely different strategy consists of generating multiple intermediate clustering solu-

tions and combine them into a single clustering solution. Two approaches that follow this

strategy are those of ensemble and multi-view clustering [Kriegel and Zimek, 2010].

� Ensemble clustering methods create a series of diverse base clusterings and then com-
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bine them to produce a unified solution. We can distinguish two components in every

ensemble method: the generation function, and the consensus function. The gener-

ation function is tasked with the introduction of diversity into the ensembles. The

main sources of diversity are: (i) different subsets of observed variables, (ii) different

subsets of data instances, and (iii) different clustering algorithms. Alternatively, the

consensus function is tasked with the combination of intermediate clustering solutions.

For more information on this topic, see Strehl and Ghosh [2003] and Vega-Pons and

Ruiz-Shulcloper [2011].

� Multi-view clustering methods search for clusterings in different subspaces and then

combine them into a single solution. Three main approaches can be distinguished: (i)

co-training [Bickel and Scheffer, 2004], (ii) subspace clustering [Kriegel et al., 2009;

Zhang et al., 2018], and (iii) multiple kernel clustering [Zhao et al., 2009]. See Yang

and Wang [2018] for a recent review on multi-view clustering.
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Chapter 5
Incremental learning of latent

forests from mixed data

5.1 Introduction

Forests of LTMs are appealing owing to their ability to separate groups of similar variables

in different trees. Although several methods for learning latent forests have been studied

[Harmeling and Williams, 2010; Mourad et al., 2011; Galimberti et al., 2018], they have two

main limitations. First, current methods rely on MLE of model parameters, which does not

provide a measure of uncertainty, and does not allow to incorporate prior knowledge into the

learning process. Second, these methods are currently limited to work with either categorical

or continuous data.

In this chapter, we propose two incremental algorithms for learning forests of conditional

linear Gaussian LTMs. Unlike current methods, the proposed algorithms are based on the VB

framework, which allows them to work with mixed data and to introduce uncertainty into the

learning process. Our first algorithm, which we refer to as incremental learner, hill-climbs the

space of latent forests in a two-phase iterative process. In its first phase, the forest structure

is expanded with a new arc or latent variable. In its second phase, the cardinalities of latent

variables are estimated. Our second algorithm, which we name constrained incremental

learner, modifies the previous procedure by considering only a subset of candidate structures

in each step of the search. We demonstrate the effectiveness of our proposals by comparing

them with existing methods. To this purpose, we conduct density estimation experiments

using categorical, continuous, and mixed real-world data.

This chapter includes the content of Rodriguez-Sanchez et al. [2020]. In addition, all code,

data, and results are available at https://github.com/ferjorosa/incremental-latent-forests.
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Chapter outline

In Section 5.2, we present our approaches for incrementally learning forests of conditional

linear Gaussian LTMs. Then, in Section 5.3, we explore the performance of our methods

with respect to the state of the art for various experimental settings: (i) categorical data, (ii)

continuous data, and (iii) mixed data. Finally, we report our conclusions and propose future

research directions in Section 5.4.

5.2 Incremental learning

In this section, we propose a search-based method that hill-climbs the space of latent forests

using the VB framework. Instead of exploring this space directly, we approach this search as

an iterative process with two phases:

� Structure phase. The forest structure is incrementally built, in which variables are

connected via a new arc or latent variable.

� Cardinalities phase. The cardinalities of previously involved latent variables are

estimated.

Our search method uses two search operators (latent variable introduction and arc in-

troduction) to modify the forest structure, and another two operators (cardinality increase

and cardinality decrease) to estimate the cardinalities of latent variables. We describe these

operators in Section 5.2.1 and present our search procedure in Section 5.2.2. An alternative

search method that considers fewer candidate models is presented in Section 5.2.3. In Section

5.2.4, we describe an efficient method for evaluating candidate models. Finally, in Section

5.2.5, we address the problem of specifying prior distributions.

5.2.1 Search operators

� Latent variable introduction (LI) generates a new model by introducing a new

categorical latent variable H as the parent of two variables (observed or latent) that

currently have no parent. The cardinality of H is set to two. We only consider pairs of

variables to reduce the computational complexity of this operator. This restriction is

compensated by the following operator.

� Arc introduction (AI) creates a new model by introducing an arc from one variable

to another. In this operator, both directions are considered. Since we focus on con-

ditional linear Gaussian LTMs, arcs from continuous variables to categorical variables

are ignored by the operator.

� Cardinality increase (CI) creates a new model by increasing the cardinality of a

categorical latent variable H by one. This operator is not applicable if the variable has

a cardinality equal to kmax, which can be specified by the user.
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� Cardinality decrease (CD) produces a new model by decreasing the cardinality of a

categorical latent variable H by one. This operator is not applicable if H already has

a cardinality of two.

5.2.2 Search procedure

The search starts with an unconnected forest B = (G,θ) in which no latent variables H are

present and whose observed variables X are independent. These observed variables form the

working set W. Then, the parameters of this model are estimated via the VB-EM algorithm

and its corresponding score is stored as a baseline for comparison. Once the initial model has

been estimated, the search method explores the space of latent forests by alternating between

the structure and cardinalities phases. The search continues until the model score ceases to

increase or there is only one remaining variable in W. We call this method incremental

learner (IL) and it is formally described in Algorithm 5.1. Its two phases are as follows:

� In the structure phase, the LI and AI operators are applied to each pair of variables in

W, resulting in the BLI and BAI sets of candidate models. Each candidate model is

then evaluated by estimating its parameters and storing its score. When this process is

completed, the highest scoring model BS is selected, and all of its latent variables that

were involved in the selected operator are stored in a new set of variables V. We refer

to this phase as the structure subroutine and it is formally described in Algorithm 5.2.

� In the cardinalities phase, the CI and CD operators are applied to the latent variables in

V, resulting in the BCI and BCD sets of candidate models. In contrast to the structure

phase, this is done iteratively. It starts with BC and then, at each iteration, it applies

the CI and CD operators, selecting the best candidate model B′C . If its score is greater

than that of BC , the candidate takes its place and the process continues. Once the

score ceases to improve, the resulting model is returned as BC . We refer to this phase

as the cardinalities subroutine and it is formally described in Algorithm 5.3.

Fig. 5.1 provides an example execution of the IL algorithm. It starts with an unconnected

latent forest with sets of two categorical and two continuous observed variables, {X1, X2} and

{X3, X4}, respectively. In its first iteration, the AI operator is selected and X3 becomes the

new parent of X4, resulting in the removal of X4 from W. In its second iteration, the LI

operator is selected and a new latent variable H1 is included as the parent of X2 and X3, thus

removing both X2 and X3 from W. The cardinality of H1 is estimated and it remains at its

initial value (i.e., two). In the third and last iteration, the AI operator is selected again, and

H1 is set as the parent of X1. Unlike the previous iteration, the cardinality of H1 is increased

to four. Given that only one variable remains in W, the process stops, and if the score of

the model is greater than that of the previous iteration, then B is updated and returned.
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Algorithm 5.1: Incremental learner (IL)

Input : D, kmax

1 W← X
2 Let B be an unconnected latent forest with nodes X
3 while |W| 6= 1 do
4 BS ,V← structure(D, B, W)
5 BC ← cardinalities(D, BS , V, kmax)
6 if score(BC : D) > score(B : D) then
7 B ← BC
8 Update W with V

9 else
10 break /* Stop the loop */

11 Model refinement (see Section 5.2.4 for details)

Output: The resulting latent forest B

Algorithm 5.2: structure

Input : D, B, W

1 BLI ← LI(D B, W)
2 BAI ← AI(D, B, W)
3 BS ← highest scoring model in {BLI ,BAI}
4 V← latent variables involved in the selected operator

Output: The resulting latent forest BS and V

Algorithm 5.3: cardinalities

Input : D, B, V, kmax

1 BC ← B
2 while True do
3 BCI ← CI(D, BC , V, kmax)
4 BCD ← CD(D, BC , V)
5 B′C ← highest scoring model in {BCI ,BCD}
6 if score(B′C : D) > score(BC : D) then
7 BC ← B′C
8 else
9 break /* Stop the loop */

Output: The resulting latent forest BC
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Figure 5.1: Example execution of the IL algorithm with three iterations. It introduces an arc in its
first iteration, a latent variable in its second iteration, and another arc on its third (and last) iteration.
Variable colors and parentheses have the same meaning as in Figure 3.1.

Model evaluation

Every application of a search operator produces a set of candidate models. Each of these

models is then evaluated by estimating its parameters via the VB-EM algorithm and storing

the resulting score. The scoring function that is traditionally used within the VB framework

is the ELBO (see Equation 2.8). However, when applied to models with categorical latent

variables, an adjustment must be made to the ELBO in order to account for the parameters’

lack of identifiability. To better understand this problem, consider the CPD of a variable

whose parent is a categorical latent variable with k labels. There are k! equivalent settings

of parameters for this CPD that merely differ by permuting the parent labels. Two common

approaches exist for addressing this redundancy: (i) using asymmetric priors, and (ii) intro-

ducing a small penalty into the ELBO score. We use the second approach when there is a

lack of expert knowledge in the learning process. In this context, a simple penalty involves

subtracting the term log k! from the ELBO [Bishop, 2016]. We can generalize this idea for

a model with multiple latent variables the following way. Let B be a latent variable model

with s categorical latent variables, each latent variable Hi with a cardinality ki. We define

the scoring function, score(B : D), as a penalized version of the ELBO (p-ELBO), where QB

refers to the variational distribution of B:

score(B : D) = p-ELBO(QB : D) = ELBO(QB : D)−
s∑

i=1

log ki! . (5.1)

Complexity analysis

The following auxiliary variables are considered for the complexity analysis of IL:

� W→ current set of variables with no parents (i.e., the working set).

� kmax → maximum latent cardinality.

In the structure phase, the LI and AI operators evaluate a total of O(3(|W|2 − |W|)/2)

candidate models. In the cardinalities phase, the number of evaluations depend on the
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previously selected operator. The maximum number of evaluations occurs when a latent

variable is the new parent of two other latent variables, resulting in O(3(kmax−2)) evaluations

for CI and CD. Therefore, the total number of candidate models evaluated at each iteration

is O(3(|W|2−|W|)/2+3(kmax−2)). Note that each evaluation requires running the VB-EM

algorithm.

As can bee seen, IL can be very time-consuming due to two factors: (i) the evaluation

of a large number of models, and (ii) the VB-EM algorithm. To address these challenges,

we propose an alternative search procedure that considers fewer candidate models in Section

5.2.3, and in Section 5.2.4, we propose a local version of the VB-EM algorithm that speeds

up model evaluation.

5.2.3 Constrained search

A straightforward approach for increasing the speed of IL is to introduce restrictions into

the search process [Tsamardinos et al., 2006; Gámez et al., 2011]. We achieve this by only

evaluating certain structures. More specifically, in the structure phase, instead of considering

all pairs of variables in the working set W, we select the pair of variables {Wi,Wj} with the

highest MI. The rationale for this approach stems from the following observation [Harmeling

and Williams, 2010]. Let P (W) be the probability distribution over the set of variables in

W. Knowing that all variables in W are considered to be independent of each other, we

can approximate P (W) with another distribution, P̂ (W), that models the joint distribution

P (Wi,Wj) of the selected pair and the marginal distributions of the remaining variables:

P̂ (W) = P (Wi,Wj)
∏
k 6=i,j

P (Wk) =
P (Wi,Wj)

P (Wi)P (Wj)

∏
k

P (Wk) .

P (Wi,Wj) represents the connection (via an arc or a latent variable) between Wi and Wj .

Then, our objective is to select the pair of variables whose connection makes P̂ (W) as close

to P (W) as possible. Evaluating this separation using the KL divergence, we have:

KL(P ||P̂ ) =

∫
P (W) log

P (W)

P̂ (W)
dW

=

∫
P (W) log

P (W)P (Wi)P (Wj)

P (Wi,Wj)
∏

k P (Wk)
dW

=

∫
P (W) log

P (W)∏
k P (Wk)

dW − I(Wi,Wj) ,

where I(Wi,Wj) is the MI between Wi and Wj and it is defined as

I(Wi,Wj) =

∫ ∫
P (Wi,Wj) log

P (Wi,Wj)

P (Wi)P (Wj)
dWidWj . (5.2)

By selecting the pair of variables with the highest MI, we minimize the KL divergence

between P (W) and P̂ (W). However, I(Wi,Wj) is often intractable to compute given that Wi
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Algorithm 5.4: Constrained incremental learner (CIL)

Input : D, kmax, α

1 W← X
2 Estimate the MI matrix with each pair in W
3 Let B be an unconnected latent forest with nodes X
4 while |W| 6= 1 do
5 U← α pairs of variables in W with the highest MI
6 BS ,V← structure( D, B, U)
7 BC ← cardinalities(D, BS , V, kmax)
8 if score(BC : D) > score(B : D) then
9 B ← BC

10 Update W with V
11 Update the MI matrix with respect to W

12 else
13 break /* Stop the loop */

14 Model refinement (see Section 5.2.4 for details)

Output: The resulting latent forest B

and Wj can be either categorical or continuous. For this reason, approximate MI estimators,

such as binning, k-nearest neighbors [Kraskov et al., 2004], or kernel density estimation [Moon

et al., 1995], are required. By approximating the MI, we cannot ensure that the selected pair

of variables results in the truly minimal KL(P ||P̂ ). A simple way to alleviate this problem

is to consider the α pairs of variables with the highest MI.

We apply this idea to IL, resulting in the constrained incremental learner (CIL), which is

formally described in Algorithm 5.4. CIL is very similar to IL. The main execution differences

occur: (i) at the beginning of the algorithm (i.e., line 2), where CIL estimates the MI matrix

with each pair of variables in W, (ii) in the structure phase (i.e., line 6), where CIL only

considers the α pairs of variables in W with the highest MI, and (iii) at the end of each

iteration (i.e., line 12), where CIL updates the MI matrix. The update removes the selected

pair of variables and estimates the MI of those variables that are new in W (i.e., the MI of a

newly created latent variable and the rest of variables in W). In this method, α represents

a compromise between model quality and computational cost.

Complexity analysis

CIL generates fewer candidate models than IL at each step of the search. While its cardinal-

ities phase is identical to that of IL, its structure phase depends only on α, which results in

a total of O(2α+ 3(kmax − 2)) evaluations at each step of the search.
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5.2.4 Efficient model evaluation

Repeatedly evaluating candidate models can become prohibitive when each evaluation in-

volves running the VB-EM algorithm. Previously, we addressed this problem by reducing the

number of candidates. However, when the number of variables is high, this reduction may be

insufficient. One solution that has been successfully applied in the phylogenetic [Guindon and

Gascuel, 2003] and LTM [Chen et al., 2012; Harmeling and Williams, 2010] literature involves

optimizing some parameters of the model while the rest of parameters are kept unchanged.

Following this idea, we propose to replace the VB-EM algorithm with a more efficient

procedure that is able to estimate the variational posterior distributions of a subset of vari-

ables while the variational posterior distributions of the rest of variables are kept unchanged.

We refer to this method as local VB-EM. Thus, when evaluating a candidate model using

local VB-EM, we estimate the variational posteriors of: (i) variables involved in the search

operator, and (ii) variables belonging to the MBs of the variables in (i).

To illustrate the behavior of local VB-EM, let us examine the rightmost example in Figure

5.1 (iteration 3), which results from applying the AI operator on H1 and X1. Evaluating this

model requires the estimation of the variational posteriors of X1 and H1 as well as X2 and

X3, which belong to the MB of H1. Incidentally, we do not require to update X4 because it

does not belong to the MB of either H1 or X1.

One iteration of local VB-EM is computationally much cheaper than one iteration of VB-

EM because it updates fewer variational parameters. This also implies that a run of local

VB-EM requires fewer steps to converge than a run of VB-EM. However, parameter estimates

provided by local VB-EM may deviate from those provided by VB-EM. To prevent this from

affecting the quality of the IL and CIL results, we can perform a run of VB-EM after several

search steps or before returning the model. We advocate for the second approach, performing

a run of VB-EM before returning the model.

Finally, like VB-EM, local VB-EM may get trapped at local maxima. To avoid this,

we use a variant of the multiple-restart approach proposed by Chickering and Heckerman

[1997] and adapt it for the variational case. First, we sample c initial configurations of the

variational parameters ϕ being considered. Next, we perform one local VB-EM step and

retain c/2 of the configurations that lead to the largest score values. Then, we perform two

local VB-EM steps and retain c/4 configurations. We continue this procedure, doubling the

number of local VB-EM steps at each iteration until only one configuration of the parameters

remains.

5.2.5 Prior specification

A key aspect in Bayesian learning is the specification of prior distributions, which includes

their form and parameters. Since IL and CIL are designed to work with CE models, the

forms of prior distributions are already established by the VMP algorithm (see Winn and

Bishop [2005]), and it is only necessary to focus on their parametrization.

Tuning prior parameters is largely dependent on the availability of expert information.
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This information can be obtained from a person or from other directly related studies (see

Bayesian meta-analysis [Gelman et al., 2013]). When expert information is available, prior

parameter values can be selected to best reflect the expert knowledge. When this information

is unavailable, we propose using the following strategy, which varies for observed and latent

variables. First, for observed variables, we use an empirical Bayes [Casella, 1985] approach

and assign maximum likelihood estimates to their prior parameters. Second, for categorical

latent variables, we assume a symmetric Dirichlet prior with a total concentration of 1.

5.3 Experiments

In this section, we evaluate the performances of IL and CIL in terms of data fitting and

computational complexity. For CIL, we used α values of 1 and 10. The goal of using these

values was to evaluate whether an increase in α produced better results or simply an increase

in computational complexity. To this end, we conducted comparative density estimation

studies using categorical (Section 5.3.1), continuous (Section 5.3.2) and mixed (Section 5.3.3)

real-world data. In these experiments, IL and CIL were compared to several LTM methods

of the state of the art. However, given that most of these algorithms are specifically designed

to work in either the categorical or continuous domain, we complemented these comparisons

with other approaches that are not based on LTMs but can deal with mixed data. The

following approaches were considered:

� EAST. Expansion, adjustment and simplification until termination algorithm [Chen

et al., 2012]. Score-based method that constructs categorical HLCMs following a greedy

process with five operators. We used the Java implementation provided as an executable

at http://www.cse.ust.hk/vlzhang/ltm/softwares/EAST.zip.

� GEAST. Gaussian version of the EAST algorithm for continuous data [Poon et al.,

2013]. It constructs HLCMs with categorical latent variables and continuous observed

variables. We used the Java implementation provided at https://github.com/kmpoon/

pltm-east.

� BI. Bridged islands algorithm [Liu et al., 2015]. Variable clustering method that con-

structs categorical HLCMs. It first generates a series of categorical LCMs and then con-

nects them using the Chow-Liu method [Chow and Liu, 1968]. We used the Java imple-

mentation provided as an executable at http://www.cse.ust.hk/vlzhang/ltm/softwares/

BI.zip.

� KDE. Kernel density estimator that can deal with mixed data, and uses Silverman’s

rule of thumb for bandwidth selection [Li and Racine, 2003]. We used the multivariate

implementation provided by the Python library Statsmodels (https://www.statsmodels.org/).

� MSPN. Mixed sum-product networks [Molina et al., 2018], which combine sum-product

networks [Poon and Domingos, 2011] with non-parametric estimation to learn hierarchi-

cally structured latent variable models that do not require the specification of variables’

http://www.cse.ust.hk/~lzhang/ltm/softwares/EAST.zip
https://github.com/kmpoon/pltm-east
https://github.com/kmpoon/pltm-east
http://www.cse.ust.hk/~lzhang/ltm/softwares/BI.zip
http://www.cse.ust.hk/~lzhang/ltm/softwares/BI.zip
https://www.statsmodels.org/
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Dataset m N Origin

HIV-test 4 428 [Zhang, 2004]

Hayes-roth 5 160 [Dua and Graff, 2019]

Balance-scale 5 625 [Dua and Graff, 2019]

Car-evaluation 7 1728 [Dua and Graff, 2019]

Nursery 9 12960 [Dua and Graff, 2019]

Breast-cancer 10 277 [Dua and Graff, 2019]

Web-phishing 10 1353 [Dua and Graff, 2019]

Solar-flare 13 1389 [Dua and Graff, 2019]

Zoo 17 101 [Dua and Graff, 2019]

Vote 17 232 [Dua and Graff, 2019]

Spect-heart 23 267 [Dua and Graff, 2019]

Alarm 36 1000 [Liu et al., 2015]

Coil-42 42 5822 [Zhang et al., 2008a]

News-100 100 16242 [Liu et al., 2015]

Webkb-336 336 1038 [Liu et al., 2015]

m: total number of variables.

N : sample size.

Table 5.1: Basic properties of the categorical datasets. The datasets are sorted in ascending order
according to their dimensionality.

parametric forms. We used the implementation provided by the Python library SPFlow

(https://github.com/SPFlow/SPFlow).

� GLFM. General latent feature model [Valera et al., 2020], which handles both cate-

gorical and continuous observed variables using a Bayesian nonparametric model with

Markov chain Monte Carlo inference. We ran 1000 iterations of the sampler using the

Python implementation available at https://github.com/ivaleraM/GLFM.

As a performance measure, we used the 10-fold cross-validated predictive log-likelihood

(CVPLL). That is, we divided each dataset into 10 equal-sized folds, trained a model on 9

of them, and computed the predictive log-likelihood on the remaining fold. Both IL and CIL

were implemented in Java 8 using the AMIDST toolbox [Masegosa et al., 2019]. Experiments

were conducted on a computer with an Intel Core i7-6700K CPU at 4.00 GHz with 64GB

RAM, running Windows 10 Enterprise.

5.3.1 Comparative study on categorical data

To conduct the study, we used 15 real-world categorical datasets of various dimensionalities

(m) and sample sizes (N). The majority of these datasets were retrieved from the UCI

repository [Dua and Graff, 2019]. We also added several datasets that had been previously

used in the literature. Table 5.1 shows the basic properties of each dataset. None of these

datasets provided expert knowledge to set Bayesian priors. For this reason, we set the prior

parameters of the IL and CIL models using an empirical Bayes approach.

Tables 5.2 and 5.3 display the average (and standard deviation) results for the CVPLL

and execution time, respectively. The maximum time allowed per fold was one week. The

winner in each row is highlighted in blue. For a better comparison between IL and CIL, we

https://github.com/SPFlow/SPFlow
https://github.com/ivaleraM/GLFM
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highlighted in yellow the score results from CIL that were in second place behind IL. Our

objective was to evaluate whether CIL was able to produce top results in less time than IL.

In this study, CIL and IL were compared with EAST, BI, GLFM and MSPN. Although KDE

was initially considered, its results were not included due to space limitations. In addition,

KDE was unable to outperform any of the considered methods and returned an error in three

of the datasets.

Results indicate that IL and CIL are competitive in terms of both model quality and

execution time. Table 5.2 shows that IL and CIL had the best score performance in 5 out

15 datasets, where CIL [α = 10] was second behind IL in one of the datasets. The best

scoring method was BI, being first in 6 out 15 datasets. EAST and MSPN each obtained the

highest score in 2 out of 15 datasets. GLFM was unable to reach first position in any of the

considered datasets.

Table 5.3 shows that, in terms of speed, MSPN was the fastest of the seven methods

evaluated, having the best performance in 8 out 15 datasets. It was followed by CIL [α =

1], which had the best performance in 6 out 15 datasets. EAST and IL appeared to be the

slowest methods, being unable to complete their executions in high-dimensional datasets due

to their respective computational complexities.

Finally, while CIL was considerably faster than IL, we did not observe substantial differ-

ences between their respective scores. This observation was independent of the selected α

value. We attribute this score similarity to the exact estimation of MI with categorical data

(see Section 5.2.3). In fact, CIL [α = 1] returned almost identical results to those of CIL

[α = 10] and IL in all the datasets (expect Car-evaluation)

5.3.2 Comparative study on continuous data

As with the comparative study on categorical data, we ran experiments on 15 real-world

continuous datasets that were taken from the UCI repository and the current literature.

Table 5.4 shows the basic properties of each dataset. We also used CVPLL as the evaluation

measure and allowed a maximum execution time of one week per fold. In addition, given the

absence of expert knowledge, we used an empirical Bayes approach to set the prior parameters

of the IL and CIL models. CVPLLs and execution times of each method are displayed in

Tables 5.5 and 5.6, respectively. In this study, CIL and IL were compared with GEAST,

KDE, MSPN and GLFM.

Table 5.5 indicates that, in terms of model quality, GEAST was the best performing

method, returning the highest CVPLL score in 7 out of 15 datasets. GEAST was followed by

IL, which had the best performance in 4 out 15 datasets. It should be noted that even though

CIL [α = 10] had the best performance in only 3 out 15 datasets, it returned competitive

results that outperformed all the considered methods (except IL) in 6 out of 15 datasets.

KDE and MSPN each obtained the highest score in 1 out of 15 datasets. Similar to the

categorical comparative study, GLFM was unable to outperform the rest of methods in any

of the considered datasets.

Table 5.6 shows that, even though GEAST was the best performing method in terms
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Dataset m N Origin

Real-state 5 414 [Dua and Graff, 2019]

Buddymove 6 249 [Dua and Graff, 2019]

Qsar-fish 7 908 [Dua and Graff, 2019]

Qsar-aqua 9 545 [Dua and Graff, 2019]

ILPD 9 579 [Dua and Graff, 2019]

Alcohol 10 125 [Dua and Graff, 2019]

Travel-reviews 10 980 [Dua and Graff, 2019]

Wine-quality 12 4898 [Dua and Graff, 2019]

Wine 13 178 [Dua and Graff, 2019]

Leaf 14 340 [Dua and Graff, 2019]

NBA 18 441 [Poon et al., 2013]

WDBC 30 569 [Dua and Graff, 2019]

Waveform 40 5000 [Dua and Graff, 2019]

100-plants 64 1600 [Dua and Graff, 2019]

Geo-music 71 2856 [Dua and Graff, 2019]

m: total number of variables.

N : sample size.

Table 5.4: Basic properties of the continuous datasets. The datasets are sorted in ascending order
according to their dimensionality.

of CVPLL, it still had the same computational issues with high-dimensional datasets as its

categorical version (i.e., EAST). GEAST was unable to complete its execution in 3 of the

experiments. Similarly, IL was unable to complete its execution in 1 of the experiments. In

terms of speed, KDE was the fastest method in all of the considered datasets.

Although there were no substantial differences between the CVPLL scores of IL and

CIL with categorical data, we observed the opposite behavior with continuous data. More

specifically, there was no dataset in which CIL [α = 1] resulted in the same score as IL.

This coincides with our intuition from Section 5.2.3. When handling continuous or mixed

data, we must rely on approximate MI methods, which may result in suboptimal solutions

(i.e., the k-nearest neighbors approach proposed by Kraskov et al. [2004]). For these cases,

increasing the number of candidate models considered on each step of the algorithm improves

the quality of the results. This is illustrated by Table 5.5, which shows that CIL [α = 10]

performs considerably better than CIL [α = 1].

5.3.3 Comparative study on mixed data

As with previous comparative studies, we ran experiments on 15 real-world mixed datasets

taken from the UCI repository and the current literature. Table 5.7 shows the basic properties

of each dataset. We also used CVPLL as the evaluation measure and allowed a maximum

execution time of one week per fold. In addition, given the absence of expert knowledge,

we used an empirical Bayes approach to set the prior parameters of the IL and CIL models.

CVPLLs and execution times of each method are displayed in Tables 5.8 and 5.9, respectively.

In this study, CIL and IL were compared with KDE, MSPN and GLFM.

Table 5.8 shows that, in terms of model quality, IL was the best performing method,

returning the highest CVPLL score in 7 out of 15 datasets. It should be noted that even
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Dataset m #Categorical #Continuous N

Haberman 4 1 3 306 [Dua and Graff, 2019]

Iris 5 1 4 150 [Dua and Graff, 2019]

User-knowledge 6 1 5 258 [Dua and Graff, 2019]

Vertebral 7 1 6 310 [Dua and Graff, 2019]

Ecoli 7 1 6 336 [Dua and Graff, 2019]

Planning-relax 12 1 12 4898 [Dua and Graff, 2019]

Thoracic-surgery 14 11 3 470 [Dua and Graff, 2019]

Vehicle 19 1 18 846 [Dua and Graff, 2019]

Thyroid 21 16 5 3103 [Dua and Graff, 2019]

Parkinsons 23 1 22 195 [Dua and Graff, 2019]

Autos 24 10 14 193 [Dua and Graff, 2019]

Ionosphere 34 1 33 351 [Dua and Graff, 2019]

Qsar-biodeg 41 1 40 1055 [Dua and Graff, 2019]

Housing-prices 64 33 34 1338 [Dua and Graff, 2019]

Census-india 144 1 143 1908 [Dua and Graff, 2019]

m: total number of variables.

#Categorical: number of categorical variables.

#Continuous: number of continuous variables.

N : sample size.

Table 5.7: Basic properties of the mixed datasets. The datasets are sorted in ascending order according
to their dimensionality.

though CIL [α = 10] was second behind IL with 6 out 15 datasets, it returned competitive

results that outperformed all the considered methods (except IL) in 9 out of 15 datasets.

KDE and MSPN each obtained the highest score in 2 out of 15 datasets. Similar to previous

comparative studies, GLFM was unable to outperform the rest of methods in any of the

considered datasets.

Table 5.6 illustrates that, similar to the continuous case, KDE was the fastest method,

ranking first in 12 out 15 datasets. It was followed by CIL[α = 1], which ranked first in

the three datasets in which KDE returned an error. IL had computational issues with high-

dimensional datasets and was unable to complete its execution in two of the experiments.

Similar to the continuous case, we observed considerable CVPLL differences between IL,

CIL [α = 1], and CIL [α = 10]. This coincides with our previously discussed intuition (Section

5.2.3) about approximate MI estimation. Although CIL obtained slightly worse results (in

terms of model quality) than IL, it was able to work with high-dimensional data, which

makes it a reasonable alternative to IL when the number of variables is high or there is a

computational limitation.

5.4 Conclusions and future work

In this chapter, we proposed an incremental method that, in combination with the VB frame-

work, is able to learn forests of conditional linear Gaussian LTMs from data. Considering that

directly searching this space requires the evaluation of a large number of candidate models,

a constrained variant that only evaluates the most prominent α candidates of each iteration

was also developed. As demonstrated by the experimental results, the constrained approach
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is a valid alternative to the incremental approach. It returns almost identical results for

categorical data experiments, and displays only slightly worse performance for continuous

and mixed data experiments. We believe that these differences are caused by the use of

approximate MI estimation, and demonstrate that they can be reduced by increasing α.

Although restricting the structure search to an incremental process limits the space of

possible models, our experiments demonstrate that this restriction still leads to compet-

itive results. Furthermore, due to this restriction, our proposed method is able to work

effectively with both low- and high-dimensional datasets. Other methods (e.g., GEAST)

may perform better by considering a larger number of candidate models at each iteration,

but their computational complexity makes them unfeasible when the number of variables is

large. Additionally, and in contrast to current LTM methods, by taking advantage of the VB

framework, we are able to provide a means of incorporating prior knowledge and produce

superior evaluation of the generalization properties of a model given data.

There are various future research directions. First, inspired by factor analysis, our meth-

ods can be modified to work with Gaussian latent variables, where the number of factors can

be analogously estimated to the cardinality of categorical latent variables. Second, we can ex-

tend parameter estimation by using more flexible variational families [Barber and Wiegerinck,

1999; Bishop et al., 1998] and nonconjugate priors [Wang and Blei, 2013], but at the cost of

a more difficult variational optimization problem. Third, we can add more flexibility to the

structure by replacing the arc addition operator with a VB version of SEM. This can allow us

to efficiently add and remove arcs without relying on an incremental process (see Chapter 6).

Finally, selecting the most probable latent forest may not be suitable when we are interested

in quantifying our confidence in the forest structure or when we have a low number of data

instances. For these cases, Bayesian estimation can also be introduced into the search process

by averaging over the set of possible latent forests (i.e., by using Bayesian model averaging

[Hoeting et al., 1999; Fragoso et al., 2018]). For this, we can define a Markov chain over the

space of possible latent forests (given our search operators) and then do a random walk in

this Markov chain.
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Chapter 6
Learning Bayesian networks from

incomplete mixed data

6.1 Introduction

Real-world data is often complex, large, and incomplete. In this setting, learning BNs that

accurately capture the underlying probability distribution may enable us to better under-

stand the data, estimate missing or corrupted values, and make predictions, diagnoses and

explanations. To this end, BNs with latent variables have demonstrated their effectiveness in

capturing the data generation process, as they are able to represent underlying data concepts

by grouping similar observed variables.

There is an extensive literature on the identification of latent variables using BNs with

homogeneous data, where all the domain variables are of the same type, that is, categorical or

continuous. These works have considered from limited structures such as trees (see Chapter

3) and polytrees [Rodriguez-Sanchez et al., 2018], to general structures such as DAGs [Elidan

and Friedman, 2005; Asbeh and Lerner, 2016a,b]. However, there still exists a lack of work

when dealing with heterogeneous (i.e., mixed) data, which in fact is common in real-world

applications. In this chapter, we propose a new approach for learning BNs with categorical

latent variables that is suitable for mixed datasets. The proposed method hill-climbs the

space of conditional linear Gaussian BNs with categorical latent variables using a series of

latent operators and a VB version of the SEM algorithm. We demonstrate the effectiveness

of our approach by solving unsupervised tasks, such as density estimation and missing data

imputation.

This chapter includes the content of Rodriguez-Sanchez et al. [2021a]. In addition, all

code, data, and results are available at https://github.com/ferjorosa/GLSL.

Chapter outline

In Section 6.2, we describe the VB-SEM algorithm. In Section 6.3, we present our method

for learning conditional linear Gaussian BNs with categorical latent variables. Then, in
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Algorithm 6.1: VB-SEM

Input : D, B0, RA

1 for t = 0, 1, . . . do
/* Expectation step */

2 D∗t ← Complete latent data using variational inference with Bt
/* Maximization step */

3 Gt+1 ← GS(D∗t , RA)
4 θt+1 ← VB-EM(D, Gt+1)
5 Bt+1 ← {Gt+1,θt+1}
6 if score(Bt+1 : D) ≤ score(Bt : D) then
7 break /* Stop the loop */

Output: The resulting model Bt

Section 6.4, we explore the performance of our method for the tasks of density estimation

and missing data imputation. Finally, we draw our conclusions and propose future research

lines in Section 6.5.

6.2 VB-SEM

In this section, we introduce a variant of SEM that it is framed within the VB framework to

ensure its applicability to mixed data. We refer to this method as VB-SEM. The introduction

of the VB framework arises from the need to apply probabilistic inference in the expectation

step of SEM. Since exact inference is NP-hard for conditional linear Gaussian BNs even when

restricting the BN structure to a polytree [Lerner and Parr, 2001], approximate inference is

required. We chose VI, and more specifically the VB framework, due to its speed and easy

integration with BNs through the VMP framework [Winn and Bishop, 2005].

Algorithm 6.1 describes VB-SEM, which performs as follows. It receives a dataset D, an

initial model B0, and a set of arc restrictions RA that may limit the structures produced by

the algorithm (e.g., we may not be interested in adding/removing certain graph arcs). Line 1

is the main loop of the algorithm. Line 2 describes the expectation step, in which the current

model Bt estimates the values of its latent variables and generates a completed dataset D∗t .

Lines 3-7 describe the maximization step. In line 3, the completed dataset is used to learn

the structure Gt+1 of the new model Bt+1. For simplicity, we use an HC method with AI,

AE, and AR operators. Once the structure has been learned, the parameters θt+1 of the

new model are estimated using the observed data D (line 4). To this purpose, the VB-EM

algorithm is employed. Finally, the resulting model Bt+1 is compared with the current best

model Bt, and the model with greater score with respect to D is selected.

VB-SEM estimates the parameters and score of the new model with respect to the ob-

served data (i.e., the observed score) rather than with the completed data (i.e., the expected

score) to improve its model fitting with respect to the observed data. Despite the desirable

properties of SEM, Equation (2.9) offers no guarantee that the model selected at the end of the
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search is near the optimum of the observed score [Koller and Friedman, 2009]. For example,

if an HC method is used inside SEM, only the first structure change (e.g., the introduction of

a new arc) guarantees an improvement with respect to the observed score. Benjumeda et al.

[2019] address this problem by estimating the observed score after each structure change at

the expense of the score decomposition. Their approach applies to categorical data, where

exact inference can be made tractable by bounding the treewidth of the BN. We instead

consider the approximation of estimating the expected score when learning the BN structure,

and the observed score when estimating the parameters. The scoring function that is tradi-

tionally used within the VB framework is the ELBO. However, when applied to models with

multiple categorical variables, it is more appropriate to use a penalized version such as the

p-ELBO (see Equation 5.1).

Finally, a key aspect for the performance of VB-SEM is prior specification. When expert

information is available, prior parameters can be selected to best reflect the expert knowledge.

When this information is unavailable, we propose to use the following strategy: (i) observed

variables assume empirical Bayes [Casella, 1985] priors (with maximum likelihood estimates

as the values of prior parameters), and (ii) categorical latent variables assume a symmetric

Dirichlet prior with a total concentration of 1.

6.3 Greedy latent structure learner

In this section, we propose a greedy search method for learning conditional linear Gaussian

BNs with categorical latent variables. Our method iteratively explores this space of models

using five latent operators and the VB-SEM algorithm. Latent operators are tasked with

introducing latent variables, removing latent variables, and changing the cardinality of la-

tent variables. Each application of the latent operators produces a candidate model whose

structure is subsequently refined using a local run of VB-SEM, which introduces, removes,

or reverses BN arcs. Both aspects of the structure search (i.e., latent variables and BN arcs)

are separated to reduce the computational cost of the algorithm.

We start with a description of the latent operators in Section 6.3.1. Then, in Section 6.3.2,

we present a local version of the VB-SEM algorithm. Finally, in Section 6.3.3, we discuss the

search procedure.

6.3.1 Latent operators

� Latent variable introduction (LI) generates a new model by introducing a new

categorical latent variable H as the parent of two variables (observed or latent) that

currently have no parents. The cardinality of H is set to two. We only consider pairs

of variables to reduce the computational complexity of this operator. This restriction

will be compensated by the local VB-SEM algorithm.

� Conditional latent variable introduction (CLI) produces a new model by intro-

ducing a new latent variable H ′ as the parent of two variables (observed or latent) that
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Figure 6.1: Example application of the CLI operator. The base model contains two latent variables
(i.e., H1 and H2). However only H1 has more than two children. As a result, two candidate models are
generated by introducing a new latent variable H3 as the child of H1. Variable colors and parentheses
have the same meaning as in Figure 3.1.

currently have a latent variable H as their parent. H ′ becomes the new child of H. The

cardinality of H ′ is set equal to the cardinality of H. This operator is not applicable if

H only has two children. Figure 6.1 provides an example application of this operator.

� Latent variable elimination (LE) generates a new model by removing a latent vari-

able and its associated arcs.

� Cardinality increase (CI) creates a new model by increasing the cardinality of a

categorical latent variable H by one. This operator is not applicable if the variable has

a cardinality equal to kmax, which is established by the user.

� Cardinality decrease (CD) produces a new model by decreasing the cardinality of a

categorical latent variable H by one. This operator is not applicable if H already has

a cardinality of two.

6.3.2 Local VB-SEM

Repeatedly evaluating candidate models produced by the latent operators can become pro-

hibitive when each evaluation involves a full execution of VB-SEM. Therefore, we propose

replacing VB-SEM with a local version of this method, which only considers the section of the

model that is affected by the latent operator while the rest of the model is kept unchanged.

We refer to this method as local VB-SEM.

In the local VB-SEM algorithm, we allow adding, removing, or reversing arcs that contain

any of the variables considered by the latent operator. Once the structure has been learned,

the local VB-EM algorithm (see Section 5.2.4) estimates the parameters of those variables

belonging to the MBs of: (i) variables initially selected by the latent operator, and (ii)

variables affected by a structure change (e.g., a new incoming arc). For any variable in a

BN, its MB consists of the set of all its parents, children, and spouses (parents of children)

in the network. Therefore, the pseudocode of local VB-SEM is identical to the pseudocode

of VB-SEM (Algorithm 6.1), except that the structure learning process is always restrained
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Figure 6.2: Example execution of the local VB-SEM algorithm with two iterations. The initial model
is a candidate of the latent introduction operator, which has introduced H2. It introduces two arcs in
its first iteration (H2 → X4 and X5 → X4 ) and one arc in its second iteration (X3 → X6). Variables
highlighted in green have their parameters estimated by the local VB-EM algorithm. Variable colors
and parentheses have the same meaning as in Figure 3.1.

by a specific set of arc restrictions, and the parameter estimation process is done with the

local VB-EM algorithm.

One iteration of local VB-SEM is computationally much cheaper than one iteration of

VB-SEM because it considers fewer structure changes and it updates fewer model parameters.

This also implies that a run of local VB-SEM usually requires fewer steps to converge than

a run of VB-SEM. The computational complexity of local VB-SEM is upper-bounded by the

computational complexity of VB-SEM.

Figure 6.2 provides an example execution of the local VB-SEM algorithm. The initial

model is a candidate of the LI operator, which has introduced a new latent variable H2 as the

parent of the observed variables X5 and X6. In its first iteration, local VB-SEM introduces

two new arcs: H2 → X4 and X5 → X4. After the structure learning process, the local

VB-EM algorithm estimates the parameters of H2, X4, X5, and X6 (highlighted in green in

the figure), all of which belong to the MBs of the variables initially selected by the latent

operator. In its second and last iteration, local VB-SEM introduces a new arc from X3 to

X6 and estimates the parameters of H2, X2, X3, X4, X5, and X6. While X2 does not belong

to the MB of the variables initially considered by the latent operator, it does belong to the

MB of a variable affected by a structure change (i.e., X3). This is not the case of H1 and X1,

whose parameters are kept unchanged.

6.3.3 Search procedure

The search starts with an initial model B0 established by the user. Given this model, let W

denote the set of variables that are considered by the LI operator (i.e., the set of variables that

currently have no parents) and let HC denote the set of latent variables that are considered by

the CLI operator (i.e., the set of latent variables that currently have three or more children).

Once the initial model has been established, the search method traverses the space of models

by iteratively applying the latent operators. Each application of a latent operator produces a

set of candidate models that are evaluated using the local VB-SEM algorithm with p-ELBO

as the scoring function (see Equation (5.1)). Once all candidate models have been evaluated,

the highest scoring model B′ is selected. If its score is higher than that of B, the new model
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Algorithm 6.2: Greedy latent structure learner (GLSL)

Input : D, B0, kmax, RA

1 B ← B0

2 Let W be the set of variables that currently have no parent in B
3 Let HC be the set of latent variables with 3 or more children in B
4 while True do
5 BLI ← LI(D, B, W, RA)
6 BCLI ← CLI(D, B, HC , RA)
7 BLE ← LE(D, B, RA)
8 BCI ← CI(D, B, kmax, RA)
9 BCD ← CD(D, B, RA)

10 B′ ← highest scoring model in {BLI ,BCLI ,BLE ,BCI ,BCD}
11 if score(B′ : D) > score(B : D) then
12 B ← B′
13 Update W and HC with respect to B
14 else
15 break /* Stop the loop */

/* Model refinement */

16 B′ → VB-SEM(D, B, RA)

Output: The resulting model B′

takes its place and the process is repeated. Once the search stops, the resulting model is

refined using a full run of VB-SEM. This search procedure is formally defined in Algorithm

6.2.

Figure 6.3 provides an example execution of the GLSL algorithm. It starts with an

empty graph with three categorical variables {X1, X2, X5} and three continuous variables

{X3, X4, X6}. In its first iteration, the LI operator is selected and a new latent variable H1

is introduced as the parent of X3 and X4. In addition, the local run of VB-SEM results in

other three arcs: H1 → X1, H1 → X2, and X5 → X4. In its second iteration, the CI operator

is selected, and the cardinality of H1 is increased. No structure changes are introduced by

the local VB-SEM. In its third iteration, the CLI operator is selected. A new latent variable

H2 is introduced as the child of H1, and as the parent of X3 and X4. In the fourth and last

iteration, the CD operator is selected, and the cardinality of H2 is decreased. In addition,

the local run of VB-SEM introduces a new arc from X1 to X3. Finally, the refinement run

of VB-SEM introduces a new arc from X5 to X6 and the model is returned.

6.3.3.1 Complexity analysis

The following auxiliary variables are considered for the complexity analysis of GLSL:

� W→ current set of variables with no parents.

� H→ current set of latent variables.
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Figure 6.3: Example execution of the GLSL algorithm with four iterations. It introduces a latent
variable H1 in the first iteration, it increases the cardinality of H1 in the second iteration, it introduces
a new conditional latent variable H2 in the third iteration, and it decreases the cardinality of H2 in
the fourth iteration. Each iteration is followed by a local run of the VB-SEM algorithm, which is
tasked with introducing, removing, or reversing BN arcs. Once the iteration process of GLSL finishes,
a full run of VB-SEM refines the structure, introducing a new arc from X5 to X6. Variable colors and
parentheses have the same meaning as in Figure 3.1.

� HC → current set of latent variables with three or more children.

� ChCi → current set of children variables of the latent variable Hi ∈ HC .

At each iteration of the GLSL algorithm, the CI, CD, and LE operators evaluate a total

of O(|H|) candidate models each. In turn, the LI operator evaluates a total of O((|W|2 −
|W|)/2) candidate models. Estimating the number of candidate models that are evaluated

by the CLI operator is more complex than for LI. This is because CLI depends on the

current number of latent variables and their respective number of children variables. The

CLI operator evaluates a total of O(
∑

i(|ChCi|2 − |ChCi|)/2) candidate models. Therefore,

the total number of candidate models evaluated at each iteration of GLSL is O(3|H|+(|W|2−
|W|)/2+

∑
i(|ChCi|2−|ChCi|)/2). Note that each evaluation requires running the local VB-

SEM algorithm.
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6.4 Experiments

In this section, we evaluate the performance of GLSL at solving two unsupervised tasks.

First, we evaluate GLSL at learning an LVM that is able to generalize and fit the data well

(Section 6.4.1). Second, we evaluate GLSL at imputing missing data (Section 6.4.2). We

considered an empty graph as the initial structure for GLSL in all of the experiments. In

addition, GLSL did not consider any additional arc restrictions except for those intrinsic

to conditional linear Gaussian BNs. GLSL was implemented in Java 8 using the AMIDST

toolbox [Masegosa et al., 2019]. Experiments were conducted on a computer with an Intel

Core i7-6700K CPU at 4.00 GHz with 64GB RAM, running Windows 10 Enterprise.

6.4.1 Density estimation

In this section, we evaluate the performance of GLSL in terms of data fitting and computa-

tional complexity. To this end, we conducted comparative studies using categorical (Section

6.4.1.1), continuous (Section 6.4.1.2) and mixed (Section 6.4.1.3) real-world data. In these

experiments GLSL was compared to the following methods:

� EAST. Expansion, adjustment and simplification until termination algorithm [Chen

et al., 2012].

� GEAST. Gaussian version of the EAST algorithm [Poon et al., 2013].

� BI. Bridged islands algorithm [Liu et al., 2015].

� KDE. Multivariate kernel density estimator [Li and Racine, 2003].

� MSPN. Mixed sum-product networks [Molina et al., 2018].

� GLFM. Gaussian latent feature model [Valera et al., 2020].

� IL. Incremental learner (see Section 5.2.2).

� CIL. Constrained incremental learner with α = 10 (see Section 5.2.3).

As a performance measure, we used the 10-fold CVPLL. That is, we divided each dataset

into 10 equal-sized folds, trained a model on 9 of them, and computed the predictive LL on

the remaining fold.

6.4.1.1 Comparative study on categorical data

To conduct the study, we used 15 real-world datasets of various dimensionalities (m) and

sample sizes (N) that were taken from the UCI repository and the current literature. Table

5.1 shows the basic properties of each dataset. None of these datasets provided expert

knowledge to set Bayesian priors. For this reason, we set the prior parameters of the IL, CIL,

and GLSL models using an empirical Bayes approach.
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Tables 6.1 and 6.2 display the average (and standard deviation) results for the CVPLL

and execution time, respectively. The maximum time allowed per fold was one week. The

winner in each row is highlighted in blue. In this study, GLSL was compared with EAST, BI,

MSPN, GLFM, IL, and CIL [α = 10]. Although KDE was also initially considered, its results

were not included due to space limitations. In addition, KDE was unable to outperform any

of the considered methods and returned an error in three of the datasets.

Table 6.1 indicates that GLSL returned the best results in terms of model quality, achiev-

ing the highest CVPLL score in 6 out of 15 datasets. IL and CIL were close behind, achieving

the highest score in 5 and 4 datasets, respectively. BI returned competitive results, and while

it only achieved the highest score in 3 out of 15 datasets, it was the best perfoming method

for high-dimensional data (i.e., News-100 and Webkb-336).

Table 6.2 shows that, even though GLSL was the best performing method in terms of

CVPLL, it presented computational issues when dealing with high-dimensional data. GLSL

was unable to complete its execution in three of the experiments. Similarly, both IL and

EAST were unable to complete its execution in one of the experiments. In terms of speed,

MSPN was the fastest method in all of the considered datasets.

6.4.1.2 Comparative study on continuous data

As with the previous comparative study, we considered 15 real-world continuous datasets from

the UCI repository and the literature. Table 5.4 shows the basic properties of each dataset.

We also used CVPLL as the evaluation measure and allowed a maximum execution time of

one week per fold. In addition, given the absence of expert knowledge, we used an empirical

Bayes approach to set the prior parameters of the IL, CIL, and GLSL models. CVPLLs and

execution times of each method are displayed in Tables 6.3 and 6.4, respectively. In this

study, GLSL was compared with GEAST, KDE, MSPN, GLFM, IL, and CIL [α = 10].

Table 6.3 indicates that, in terms of model quality, GEAST was the best performing

method, returning the highest CVPLL score in 6 out of 15 datasets. GEAST was followed by

GLSL, which achieved top performance in 5 out of 15 datasets. GLSL considerably improved

the results of IL and CIL, achieving a better performance in all of the datasets in which it was

able to complete its execution. Each of the KDE, MSPN, IL, and CIL methods obtained the

highest score in 1 out of 15 datasets. Similar to the categorical comparative study, GLFM

was unable to outperform the rest of methods in any of the considered datasets.

Table 6.4 shows that, even though GEAST and GLSL were the best performing methods

in terms of CVPLL, they both showed computational issues with high-dimensional datasets.

Both of them were unable to complete their executions in 3 of the experiments. Similarly, IL

was unable to complete its execution in one of the experiments. In terms of speed, KDE was

the fastest method in all of the considered datasets.
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6.4.1.3 Comparative study on mixed data

As with previous comparative studies, we ran experiments on 15 real-world datasets taken

from the UCI repository and the current literature. Table 5.7 shows the basic properties

of each dataset. We also used CVPLL as the evaluation measure and allowed a maximum

execution time of one week per fold. In addition, given the absence of expert knowledge,

we used an empirical Bayes approach to set the prior parameters of the IL, CIL, and GLSL

models. CVPLLs and execution times of each method are displayed in Tables 6.5 and 6.6,

respectively. In this study, GLSL was compared with KDE, MSPN and GLFM, IL, and CIL

[α = 10].

Table 6.5 illustrates that, in terms of model quality, GLSL was the best performing

method, returning the highest CVPLL score in 10 out of 15 datasets. IL and CIL were

behind with 2 and 3 datasets, respectively. The rest of methods were unable to achieve the

highest score in any of the datasets, except KDE, which outperformed all of the methods in

1 dataset.

Table 6.6 illustrates that, similar to the continuous case, KDE was the fastest method,

ranking first in 12 out 15 datasets. It was followed by CIL, which ranked first in 2 of

the datasets, and MSPN, which ranked first in 1 of the datasets. Both IL and GLSL had

computational issues with high-dimensional datasets. However, GLSL was considerably much

slower than IL.

6.4.2 Missing data imputation

In this section, we evaluate the performance of GLSL at imputing missing data, where we

assume that the data is missing completely at random. To this end, we conducted comparative

studies with categorical (Section 6.4.2.1), continuous (Section 6.4.2.2) and mixed (Section

6.4.2.3) real-world data. For each dataset, we generated 5 different incomplete datasets,

removing completely at random a percentage of the data ranging from a 10% deletion to a

50% deletion. In these experiments, GLSL was compared to the following methods (all of

which can handle categorical, continuous, and mixed data):

� Mean imputation. Baseline algorithm that imputes the mean of each continuous

variable and the mode of each categorical variable that are missing in the data.

� MICE. Multiple imputation by chained equations [Azur et al., 2011], which is an iter-

ative method that performs a series of supervised regression models, in which missing

data is modelled conditionally on the other variables in the data. We used the imple-

mentation provided by the Python library scikit-learn (https://scikit-learn.org/).

� GLFM. Gaussian latent feature model [Valera et al., 2020].

� HI-VAE. Heterogeneous incomplete variational autoencoder [Nazabal et al., 2020],

which provides a general framework for variational autoencoders that effectively incor-

porates incomplete data and handles both categorical and continuous variables. We

https://scikit-learn.org/
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use the same neural network architecture as in the article and set the dimensionality of

parameters z, y and s to 10, 5 and 10, respectively. We trained the model with mini-

batches of 1000 samples and 2000 epochs, using the Python implementation available

at https://github.com/probabilistic-learning/HI-VAE.

As a performance measure, we estimated the average imputation error. Given a dataset

with N instances and m variables, the average imputation error is computed as follows:

AvgErr =
1

m

∑
i

err(i) ,

where we use the following error metrics for each variable Xi, since the computation of the

errors depends on the type of variable we are considering:

� Normalized root mean square error for continuous variables, i.e.,

err(i) =

√
1/N

∑
n(xi[n]− x̂i[n])2

max(Xi)−min(Xi)
.

� Accuracy error for categorical variables, i.e.,

err(i) =
1

N

∑
n

(xi[n] 6= x̂i[n]).

Imputations were done using MAP estimates, where x̂i[n] refers to the imputed value of

Xi in the data instance n.

6.4.2.1 Comparative study on categorical data

To conduct the study, we considered 15 real-world categorical datasets from the UCI reposi-

tory and the literature. Table 5.1 shows the basic properties of each dataset. None of these

datasets provided expert knowledge to set Bayesian priors. For this reason, we set the prior

parameters of GLSL models using an empirical Bayes approach.

Figure 6.4 illustrates the average imputation error for each method and dataset as we

varied the percentage of missing data. While there existed some disparities between datasets,

GLSL and HI-VAE were the best-performing methods, achieving top performance in several

datasets and consistently outperforming mean imputation. Both MICE and GLFM returned

worse results than GLSL and HI-VAE in the majority of datasets. In addition, there were

several datasets (i.e., Breast cancer, Solar flare, and Webkb-336) in which both MICE and

GLFM returned even worse results than mean imputation. As in the density estimation

experiments, GLSL was unable to finish execution in the 3 largest datasets (i.e., Coil-42,

News-100, and Webkb-336). In order to better compare the performance of the considered

methods, Figure 6.5 presents a summary of the average imputation error for each categorical

dataset (for which GLSL completed its execution) at each missing percentage.

https://github.com/probabilistic-learning/HI-VAE
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Figure 6.4: Average imputation error for each method and categorical dataset as the percentage of
missing data varies.
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Figure 6.5: Summary of the average imputation error of each method for different percentages of
categorical missing data.

MICE GLFM HI-VAE GLSL

HIV-test 0.04 (0.01) 9.62 (0.31) 30.04 (4.82) 54.10 (11.80)

Hayes-roth 0.05 (0.01) 6.38 (0.32) 34.15 (3.97) 33.26 (21.68)

Balance-scale 0.05 (0.01) 27.50 (0.65) 38.49 (1.46) 136.46 (115.71)

Car-evaluation 0.09 (0.02) 122.24 (3.58) 61.36 (2.70) 1622.92 (716.22)

Nursery 0.47 (0.11) 1373.71 (136.66) 725.40 (72.46) 71 558.75 (38 145.17)

Breast-cancer 0.10 (0.02) 29.83 (5.19) 53.48 (3.63) 3231.11 (1 983.94)

Web-phishing 0.15 (0.03) 185.68 (33.65) 84.75 (4.84) 7901.43 (3 595.63)

Solar-flare 0.26 (0.09) 128.02 (2.17) 100.48 (7.08) 75 919.43 (47 139.73)

Zoo 0.21 (0.05) 22.71 (3.40) 99.18 (10.23) 8691.76 (3 493.95)

Vote 0.20 (0.05) 35.99 (1.81) 105.45 (10.39) 7361.50 (2 627.54)

Spect-heart 0.32 (0.04) 45.56 (2.49) 102.38 (4.28) 13 022.11 (1 959.14)

Alarm 2.58 (1.18) 340.33 (41.92) 296.01 (10.84) 692 848.89 (50 811.14)

Coil-42 11.81 (2.90) 1596.19 (263.70) 1046.58 (41.46) time

News-100 187.62 (54.31) 13 637.22 (668.41) 9927.24 (716.26) time

Webkb-336 819.96 (87.68) 4422.09 (60.27) 3233.39 (545.97) time

The winner in each row is highlighted in blue. Numbers between parentheses correspond to

standard deviations.

time: the algorithm was unable to complete a run in a week.

Table 6.7: Missing data imputation times (in seconds) for various categorical datasets (rows) and
algorithms (columns).
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Table 6.7 presents the average execution time of each method for each dataset. We

grouped the results of all the considered missing percentages since we did not observed much

difference between them in terms of execution times. From the results, MICE was the fastest

method, ranking first in all of the considered datasets. GLSL was the slowest method, being

unable to complete its execution in 3 out of 15 datasets.

6.4.2.2 Comparative study on continuous data

As with the previous comparative study, we considered 15 real-world continuous datasets

from the UCI repository and the current literature. Table 5.4 shows the basic properties of

each dataset. None of these datasets provided expert knowledge to set Bayesian priors. For

this reason, we set the prior parameters of GLSL models using an empirical Bayes approach.

Figure 6.6 illustrates the average imputation error for each method and dataset as we

varied the percentage of missing data. In addition, Figure 6.7 presents a summary of the av-

erage imputation error for each continuous dataset (for which GLSL completed its execution)

at each missing percentage. Contrary to the categorical case, MICE was the best-performing

method, achieving top performance in the majority of datasets, especially when the per-

centage of missing data was low (i.e., 10% and 20%). HI-VAE displayed the second best

performance. From the considered methods, GLSL and GLFM showed the worst perfor-

mances. GLFM behaved slightly better when the percentage of data was low (i.e., 10% and

20%) and GLSL performed slightly better when the percentage of data was high (i.e., 40%

and 50%). Finally, although GLSL did not show a great performance, its error results did not

degrade as much as other methods (i.e., GLFM and MICE) with respect to the percentage

of missing data.

Identically to the categorical case, Table 6.8 illustrates that MICE was the fastest method,

ranking first in all of the considered datasets. Additionally GLSL was the slowest method,

being unable to complete its execution in 3 out of 15 datasets.

6.4.2.3 Comparative study on mixed data

As with previous comparative studies, we considered 15 real-world mixed datasets from the

UCI repository and the current literature. Table 5.7 shows the basic properties of each

dataset. None of these datasets provided expert knowledge to set Bayesian priors. For this

reason, we set the prior parameters of GLSL models using an empirical Bayes approach.

Figure 6.8 shows the average imputation error for each method and dataset as we varied

the percentage of missing data. In addition, Figure 6.9 exhibits a summary of the aver-

age imputation error for each mixed dataset (for which GLSL completed its execution) at

each missing percentage. Similar to the categorical case, GLSL and HI-VAE were the best-

performing methods. Of the two, GLSL performed better when the percentage of missing

data was high (i.e., 40% and 50%), and HI-VAE performed better when the percentage of data

was around 20% and 30%. They showed a similar performance when the missing percentage

was very low (i.e., 10% of missing data). Both MICE and GLFM performed worse than GLSL
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Figure 6.6: Average imputation error for each method and continuous dataset as the percentage of
missing data varies.
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Figure 6.7: Summary of the average imputation error of each method for different percentages of
continuous missing data.

MICE GLFM HI-VAE GLSL

Real-state 0.04 (0.01) 15.57 (0.29) 59.55 (2.36) 1651.05 (1 306.12)

Buddymove 0.07 (0.01) 14.14 (0.40) 69.40 (5.79) 518.42 (273.74)

Qsar-fish 0.09 (0.01) 73.21 (3.87) 90.79 (13.79) 3245.26 (1 405.43)

Qsar-aqua 0.10 (0.03) 70.45 (0.99) 103.17 (5.45) 6483.70 (4 925.20)

ILPD 0.14 (0.02) 99.03 (4.97) 184.03 (7.25) 11 009.09 (3 816.93)

Alcohol 0.11 (0.04) 16.47 (1.90) 186.32 (7.89) 1064.20 (1 142.59)

Travel-reviews 0.15 (0.02) 156.85 (0.88) 115.99 (2.86) 14 084.96 (7 381.36)

Wine-quality 0.54 (0.09) 1158.77 (8.64) 369.92 (18.55) 722 189.04 ( 445 835.68)

Wine 0.16 (0.07) 44.86 (7.26) 144.38 (42.75) 4867.45 (2 822.69)

Leaf 0.18 (0.06) 100.78 (7.44) 144.20 (10.08) 8211.79 (4 116.24)

NBA 0.23 (0.14) 343.20 (92.55) 259.49 (89.40) 81 962.45 (30 689.33)

WDBC 0.61 (0.29) 1053.38 (94.75) 295.10 (77.39) 359 282.92 ( 145 634.42)

Waveform 8.67 (3.21) 1922.38 (49.72) 1361.52 (270.29) time

100-plants 2.02 (1.06) 8902.59 (587.20) 1073.49 (86.73) time

Geo-music 14.93 (4.49) 5967.75 (691.06) error time

The winner in each row is highlighted in blue. Numbers between parentheses correspond to

standard deviations.

time: the algorithm was unable to complete a run in a week.

Table 6.8: Missing data imputation times (in seconds) for various continuous datasets (rows) and
algorithms (columns).
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and HI-VAE. Of the two, GLFM was the worst performing method, even achieving slightly

worse average performance than mean imputation when there was a 50% of missing data.

Identically to both the categorical and continuous cases, MICE was the fastest method

(see Table 6.9), ranking first in all of the considered datasets. Additionally GLSL was the

slowest method, being unable to complete its execution in the 3 largest datasets.

6.5 Conclusions and future work

In this chapter, we developed a new method, named GLSL, for learning conditional linear

Gaussian BNs with multiple categorical latent variables. Since searching directly in the space

of models would be computationally unfeasible, GLSL follows instead an iterative process with

five latent operators and a VB version of the SEM algorithm. The main idea is to produce

multiple candidate models that introduce a new latent variable, remove an existing latent

variable, or change the cardinality of a latent variable. Then, learn the local structure of the

proposed candidates and select the model with the highest score.

We demonstrated the applicability of GLSL in density estimation and missing data im-

putation tasks. In these experiments, we considered categorical, continuous, and mixed

real-world data. GLSL demonstrated its good performance against several parametric and

nonparametric methods from the state of the art. However, its implementation could be

improved to obtain faster results.

There are various future research directions. First, we can extend VB-SEM by using more

flexible variational families (instead of VB) and prior distributions [Barber and Wiegerinck,

1999; Bishop et al., 1998; Wang and Blei, 2013], but at the expense of a more difficult

variational optimization problem. Second, we can speed up GLSL by using parallelization

(e.g., by simultaneously evaluating multiple latent operators). Finally, we can investigate

a variant of variational autoencoders where there is a latent superstructure with multiple

categorical latent variables [Li et al., 2019; Falck et al., 2021] that is learned using GLSL.
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Figure 6.8: Average imputation error for each method and mixed dataset as the percentage of missing
data varies.
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Figure 6.9: Summary of the average imputation error of each method for different percentages of
mixed missing data.

MICE GLFM HI-VAE GLSL

Haberman 0.03 (0.01) 8.47 (0.16) 45.35 (9.80) 34.94 (16.02)

Iris 0.06 (0.00) 8.65 (0.67) 49.41 (7.27) 114.92 (47.38)

User-knowledge 0.07 (0.01) 19.57 (0.38) 73.28 (4.00) 86.27 (14.10)

Vertebral 0.08 (0.02) 38.31 (2.03) 74.09 (22.83) 804.44 (380.33)

Ecoli 0.09 (0.01) 31.87 (1.37) 70.97 (16.28) 1997.56 (1 252.17)

Planning-relax 0.15 (0.04) 54.41 (13.55) 108.18 (17.92) 888.81 (436.57)

Thoracic-surgery 0.17 (0.06) 139.67 (6.72) 171.18 (11.85) 4060.89 (1 679.43)

Vehicle 0.25 (0.10) 562.70 (34.00) 302.30 (27.32) 310 741.70 ( 208 581.18)

Thyroid 0.57 (0.25) 2722.98 (173.77) 520.57 (10.99) 654 996.82 ( 482 907.46)

Parkinsons 0.37 (0.08) 134.35 (11.78) 193.93 (26.80) 47 831.03 (38 792.18)

Autos 0.34 (0.12) 151.87 (63.79) 176.70 (35.57) 288 169.36 ( 268 149.54)

Ionosphere 0.66 (0.13) 470.76 (92.36) 400.10 (22.51) 105 642.05 (12 690.94)

Qsar-biodeg 1.54 (1.25) 3209.04 (184.74) 562.45 (15.39) time

Housing-prices 5.37 (3.39) 13 403.68 (1 608.05) 771.79 (123.27) time

Census-india 25.87 (9.55) 47 979.61 (7 153.93) 1748.12 (543.79) time

The winner in each row is highlighted in blue. Numbers between parentheses correspond to

standard deviations.

time: the algorithm was unable to complete a run in a week.

Table 6.9: Missing data imputation times (in seconds) for various mixed datasets (rows) and algorithms
(columns).



Chapter 7
Identifying Parkinson’s disease

subtypes via multidimensional

clustering

7.1 Introduction

PD is a progressive neurodegenerative disease that is clinically characterized by a broad

spectrum of motor and non-motor manifestations [Greenland et al., 2019]. There is, however,

considerable clinical phenotypic and natural history related variability between PD patients,

which may indicate the existence of disease subtypes. Identification of PD subtypes may help

understand the underlying disease mechanisms, since homogeneous groups of patients may

be more likely to share pathological and genetic features. In addition, identification of PD

subtypes may ultimately lead to more precise treatment strategies (i.e., precision medicine)

[Chase, 2015; Marras et al., 2020].

Data-driven techniques such as clustering may be suitable for establishing PD subtypes.

In clustering, patients are assigned to several groups (i.e., clusters) so that patients belonging

to the same group share similarities. Each of these groups is usually then considered a subtype

of the disease. Previous clustering studies have already identified PD subtypes with motor

and non-motor symptoms [Mavandadi et al., 2009; van Rooden et al., 2011; Erro et al., 2013;

Pont-Sunyer et al., 2015; Ma et al., 2015; Erro et al., 2016; Fereshtehnejad and Postuma, 2017;

Mu et al., 2017; Martinez-Martin et al., 2020]. However, to the best of our knowledge, all of

them have used method such as K-means [MacQueen, 1967], latent class analysis [Lazarsfeld

and Henry, 1968], and agglomerative hierarchical clustering [Gordon, 1987], that assumed

the existence of a single true clustering in a dataset. As a result, each patient was assigned

to a single subtype that considered all the symptoms.

Recently, several issues have been raised about data-driven PD subtypes, such as the low

number in the samples, their lack of internal homogeneity, and their difficulty to reproduce

meaningful data in real life and external validity [Qian and Huang, 2019; Espay and Marras,

91
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2019; Fearon et al., 2021; Mestre et al., 2021]. We believe that these issues may be a conse-

quence of considering a single clustering solution. The assumption that each patient should

be assigned to a single generic subtype does not hold for PD, which is usually multifaceted

and can be meaningfully partitioned in multiple ways [Thenganatt and Jankovic, 2014; Mar-

ras, 2015]. For this reason, we advocate for multidimensional clustering (see Chapter 4).

The idea is to use statistical principles to find sets of related symptoms where patients are

divided into a number of distinct groups. Each set of symptoms defines a different clustering

of patients. As a result, each patient is assigned to one subtype for each clustering. The

analysis of these subtypes and their associations may provide more accurate insights about

the considered symptoms, as well as their relationship with socio-demographic and clinical

information of the patients.

Based on the above, the objectives of this chapter were: (i) to identify PD subtypes

using multidimensional clustering, and (ii) to analyze the associations between the resulting

subtypes. To this end, we used data from a large, multi-center, international, and well-

characterized cohort of patients, where both motor and non-motor symptoms were recorded.

This chapter includes the content of Rodriguez-Sanchez et al. [2021b]. In addition, all

code, data, and results are available at https://github.com/ferjorosa/parkinson-subtypes.

Chapter outline

In Section 7.2, we introduce the data and methods that were used in this study. Then, in

Section 7.3, we present the results of applying these methods to the data. Finally, in Section

7.4, we discuss the clinical implications of our results, exploring their impact on current

research and proposing future research directions.

7.2 Methods

7.2.1 Study design

The analysis was carried out on data gathered from the first validation study of the Move-

ment Disorder Society non-motor rating scale (MDS-NMS), an international, multi-center,

cross-sectional study that included 402 PD English-speaking patients from England and the

United States [Chaudhuri et al., 2019]. The study was approved by the institutional review

boards or ethics committees of the participating centers. All patients gave their written in-

formed consent to participate in the study. Institutional review boards or ethics committees

that approved the study: (1) National Research Ethics Service Committee East Midlands -

Northampton, England; (2) Institutional Review Board at the Perelman School of Medicine

at the University of Pennsylvania, United States. In addition, the study was conducted ac-

cording to good clinical practice and all research was performed in accordance with relevant

guidelines and regulations.

https://github.com/ferjorosa/parkinson-subtypes
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7.2.2 Assessments

For all patients, socio-demographic information and basic clinical variables (i.e., sex, age, age

of onset, and disease duration) were recorded and the following assessments were applied:

1. The Movement Disorder Society unified Parkinson’s disease rating scale (MDS-UPDRS)

[Goetz et al., 2008], which is composed of 65 items divided across 4 parts, namely, Part

I: Non-motor Experiences of Daily Living (13 items); Part II: Motor Experiences of

Daily Living (13 items); Part III: Motor Examination (33 items); and Part IV: Motor

Complications (6 items). Each item has 5 options of response, running from 0 (normal)

to 4 (maximum intensity). The total score of each part is obtained by summing the

respective item scores.

2. The MDS-NMS [Chaudhuri et al., 2019], which is composed of 52 items grouped into 13

domains: depression, anxiety, apathy, psychosis, impulse control and related disorders

(ICRDs), cognition, orthostatic hypotension, urinary, sexual, gastrointestinal, sleep

and wakefulness, pain, and other. Each item is scored for both frequency and severity,

where both scores have 5 options of response, ranging from 0 (normal) to 4 (maximum

intensity). Each item score is generated by multiplying frequency and severity. The

score of each domain is obtained by summing the respective item scores. The MDS-

NMS also includes a subscale for non-motor fluctuations, composed of 8 items, which

was not considered in this study.

3. The Hoehn & Yahr (H&Y) staging system [Hoehn and Yahr, 1967], which ranges from

1 to 5.

7.2.3 Data analysis

Items from the MDS-NMS were grouped into their respective domains, with the exception

of the items from the “other” domain (unintentional weight loss, decrease in sense of smell,

physical fatigue, mental fatigue, and excessive sweating). These items were individually

considered due to their individual and unique status. This resulted in 17 non-motor variables.

Additionally, motor items from the MDS-UPDRS were classed as 5 motor cardinal signs:

tremor, rigidity, bradykinesia, dyskinesias and motor fluctuations; and 2 motor subtypes:

axial symptoms and postural instability gait difficulty (PIGD) [Stebbins et al., 2013]. This

resulted in 7 motor variables. The specific MDS-UPDRS items that constitute each motor

variable are provided as supporting material (see Appendix A). Finally, with the objective

of improving the interpretability of the results, both motor and non-motor variables were

normalized to the [0, 1] range using min-max scaling.

7.2.3.1 Multidimensional clustering

To identify subtypes (i.e., groups of individuals) with specific patterns in the motor and non-

motor domains, multidimensional clustering was performed. A BN was used to represent the
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multidimensional clustering model. More specifically, a conditional linear Gaussian BN. To

learn this model, GLSL (see Section 6.3) was employed. In order to make the resulting model

easier to interpret, we established the restriction that each observed variable could only have

one parent. This way, every latent variable acted as a clustering variable that could be easily

interpreted by looking at its observed descendants. In addition, the model would have a

hierarchical structure. This restriction did not affect clustering variables, which could have

multiple parents, allowing multiple clusterings to be interconnected.

By using a conditional linear Gaussian BN, each subtype was defined by a linear Gaussian

distribution whose dimensions corresponded to the clustering symptoms. The symbol µ was

used to denote the mean of this subtype for a specific symptom and the symbol σ was used

to denote the standard deviation. In addition, to improve the readability of these subtypes,

we devised a simple scale that considered the quartiles of the normalized [0, 1] range to refer

to the mean symptom severity: (i) slight [0.01, 0.25]; (ii) mild [0.26, 0.50]; (iii) moderate

[0.51, 0.75]; and (iv) severe [0.76, 1]. Note that this scale differs from the MDS-UPDRS and

MDS-NMS ratings.

7.2.3.2 Comparative subtype analysis

To explore the relationship between socio-demographic information, basic clinical variables,

H&Y stage and the identified subtypes, hypothesis tests were performed. Each pair of sub-

types in a clustering were compared. For continuous variables such as age, age of PD onset,

and PD duration, a Mann-Whitney U-test [Mann and Whitney, 1947] (implemented in the

Python library SciPy version 1.5.2) was used. When three or more subtypes were present

in a clustering, a Kruskal-Wallis test [Kruskal and Wallis, 1952] (implemented in SciPy) was

performed instead, followed by a post-hoc analysis using Tukey’s range test [Tukey, 1949]

(implemented in the Python library Statsmodels version 0.11.1). For categorical variables

such as the sex of the patient and discrete variables such as the H&Y stage, χ2 tests (im-

plemented in Scipy) [Pearson, 1900] were performed. Statistical significance was defined as

p-value p < 0.01.

7.2.3.3 Probabilistic inference

To analyze the multidimensional clustering model and extract useful associations between

subtypes (and their relevant symptoms), probabilistic inference was employed (see Section

2.3). For example, consider two hypothetical clustering variables, A and B, which are con-

nected by an arc in the multidimensional clustering model. Clustering A defines two subtypes

{A1, A2} according to a set of symptoms. Clustering B defines three subtypes {B1, B2, B3}
according to a different set of symptoms. We are interested in estimating the difference be-

tween the probability distributions P (B) and P (B|A = A1), but also the difference between

P (B) and P (B|A = A2). That is, how belonging to a subtype in A affects the probability

distribution of B. The inverse probabilistic queries are also relevant (i.e., how belonging to

a subtype in B affects the probability distribution of A). Since each subtype in a clustering
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is characterized by a set of symptoms with a certain severity, we are incidentally studying

the relationships between their respective symptoms (i.e., how an increase or decrease of the

severity of certain symptoms affect the probability of suffering the other symptoms with more

or less severity) when we analyze the relationships between subtypes of different clusterings.

In this study, probabilistic inferences were carried out using Monte Carlo sampling in the

tool GeNIe (https://www.bayesfusion.com/genie/).

7.3 Results

A total of 402 patients were considered for this study. Average onset age was 59 ± 11 years,

62% were male and average PD duration was 8 ± 6 years. 13% of the patients were in H&Y

stage 1; 54% in H&Y stage 2; 28% in H&Y stage 3; and 5% in H&Y stage 4. No patients in

this study were in H&Y stage 5.

With respect to missing information, 64 values (< 1% of the total) were missing, mostly

in the Sexual domain of the MDS-NMS. As our multidimensional clustering method was able

to work with missing information, no patients were excluded from the analysis. For more

information about the data, see Table 7.1.

7.3.1 Model selection

In this section, we evaluate the quality of the multidimensional clustering model returned

by GLSL. Due to the absence of prior information, we considered empirical Bayes priors for

GLSL. We compared GLSL with several model-based clustering methods from the literature

that allow continuous data. We considered three unidimensional clustering methods and two

multidimensional clustering methods:

� LCM [Lazarsfeld and Henry, 1968], which learns an LVM where where all the observed

variables are conditionally independent given a single categorical latent variable. The

cardinality of the latent variable is iteratively estimated by maximizing the BIC score.

The implementation is provided in our public repository.

� uk-DB [Pham and Ruz, 2009], which learns an LVM with a single categorical latent

variable that is the parent of all the observed variables. Observed variables may also be

the children of other k − 1 observed variables. The cardinality of the latent variable is

iteratively estimated using a scoring function, and the arcs between observed variables

are usually estimated using SEM. We used the p-ELBO and the VB-SEM algorithm

for the structure learning process. We also considered a value of k up to 5. The

implementation is provided in our public repository.

� Gaussian mixture model (GMM) [McLachlan and Peel, 2004], which learns an LVM

where all the observed variables follow a joint Gaussian distribution that is conditioned

on a categorical latent variable. The cardinality of the latent variable is iteratively

https://www.bayesfusion.com/genie/
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Variables N Mean (SD) Median Min Max

C
li
n
ic
a
l Age 402 67.42 (9.96) 68 35 93

Age of onset 402 59.23 (10.67) 59 26 93

Disease duration 402 8.19 (5.93) 7 0 35

H&Y 402 2.25 (0.74) 2 1 4
M

D
S
-N

M
S

Depression 401 0.07 (0.13) 0.01 0.00 0.90

Anxiety 402 0.09 (0.13) 0.03 0.00 0.84

Apathy 402 0.08 (0.15) 0.00 0.00 0.75

Psychosis 402 0.03 (0.06) 0.00 0.00 0.56

ICRDs 401 0.02 (0.05) 0.00 0.00 0.39

Cognition 402 0.10 (0.12) 0.05 0.00 0.69

Orthostatic hypotension 402 0.07 (0.13) 0.00 0.00 0.75

Urinary 402 0.16 (0.19) 0.08 0.00 1.00

Sexual 375 0.14 (0.25) 0.00 0.00 1.00

Gastrointestinal 401 0.10 (0.12) 0.06 0.00 0.73

Sleep and wakefulness 401 0.12 (0.12) 0.08 0.00 0.79

Pain 402 0.13 (0.15) 0.08 0.00 0.83

Unintentional weight loss 402 0.06 (0.18) 0.00 0.00 1.00

Decrease in sense of smell 402 0.39 (0.40) 0.25 0.00 1.00

Physical fatigue 402 0.21 (0.27) 0.06 0.00 1.00

Mental fatigue 402 0.09 (0.19) 0.00 0.00 1.00

Excessive sweating 402 0.07 (0.18) 0.00 0.00 1.00

M
D
S
-U

P
D
R
S

Tremor 391 0.13 (0.12) 0.11 0.00 0.57

Rigidity 398 0.19 (0.16) 0.15 0.00 1.00

Dyskinesias 402 0.07 (0.15) 0.00 0.00 1.00

Motor fluctuations 401 0.16 (0.19) 0.06 0.00 0.81

Bradykinesia 394 0.29 (0.17) 0.25 0.00 0.89

Axial symptoms 402 0.23 (0.15) 0.21 0.00 0.86

PIGD 393 0.22 (0.19) 0.15 0.00 0.85

Items from both the MDS-NMS and MDS-UPDRS scales were normalized

to the [0,1] range using min-max scaling.

N : sample size without missing values.

SD: standard deviation.

Min and Max: minimum and maximum recorded values.

MDS-NMS: Movement Disorder Society Non-Motor Rating Scale.

MDS-UPDRS: Movement Disorder Society Unified Parkinson’s Disease Rating Scale.

H&Y: Hoehn & Yahr stage.

ICRDs: impulse control and related disorders.

PIGD: postural instability gait difficulty.

Table 7.1: Descriptive statistics of the data.

estimated by maximizing the BIC score. The implementation is provided in our public

repository.

� GEAST. Gaussian version of the EAST algorithm [Poon et al., 2013].

� IL. Incremental learner (see Section 5.2.2).

� Multi-partition mixture model (MPMM) [Galimberti et al., 2018], which learns a

forests of unconnected LCMs by iteratively grouping similar (according to MI) observed

variables. The cardinality of each LCM is independently estimated by maximizing the

BIC score. The implementation is provided in our public repository.
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Method Log-Likelihood1 BIC1 Learning time (s) #Clusterings #Subtypes #Parameters

LCM 8808.38 8076.81 40.34 1 5 245

GMM 8795.14 6849.29 79.26 1 2 1202

uk-DB 7717.87 7277.13 115.75 1 2 147

GEAST 11150.21 10397.66 23650.34 18 55 301

IL 5496.33 5298.45 192.80 3 6 66

MPMM 5104.10 4912.21 1216.89 1 2 64

GLSL 11028.08 10635.31 7764.83 9 19 131

1 The higher the score the better.

LL: log-likelihood.

BIC: Bayesian information criterion.

s: seconds.

#Clusterings: total number of clusterings.

#Subtypes: total number of subtypes across all clusterings.

#Parameters: number of model parameters.

Table 7.2: Models considered in this study.

From the considered methods, GEAST and MPMM were the only ones inherently in-

capable to work with missing values. For this reason, their models were learned using an

imputed version of the dataset. Missing data imputation was carried out by the MICE al-

gorithm [Azur et al., 2011]. We used the implementation provided in the Python library

Scikit-learn version 0.24.2.

In order to evaluate the quality of these models, we estimated their LL and BIC scores. As

indicated by Table 7.2, the scores of the unidimensional clustering models (i.e., LCM, GMM

and uk-DB) were similar between them, but far from the majority of the multidimensional

clustering models (i.e., GEAST and GLSL). IL and MPMM were the exception, returning

the worst models even though they were multidimensional. In terms of score, GLSL returned

the best model, showing the highest BIC score. Although GEAST obtained a better LL,

the BIC difference indicated that GEAST probably suffered from overfitting. This intuition

was corroborated by the fact that the GEAST model had 18 clusterings and 301 parameters,

while the GLSL result had 9 clusterings and 131 parameters.

In terms of clustering quality, we observed remarkable differences between unidimensional

clustering models, and even greater differences between unidimensional and multidimensional

clustering models. First, we observed that both uk-DB (see Figure 7.1) and GMM (see Figure

7.2) were only able to find two subtypes. These two subtypes could be easily associated with

the general severity of all the disease symptoms. One subtype was formed by patients with

low (mean of 0.06) symptom severity and the other subtype was formed by patients with a

slightly higher (mean of 0.18) symptom severity.

The other unidimensional clustering model, i.e., the LCM (see Figure 7.3), was able to find

five subtypes: (i) patients with almost no severity in both motor and non-motor symptoms

(mean of 0.05); (ii) patients with slight severity in both motor and non-motor (mean of

0.11), (iii) patients that also had slight severity in both motor and non-motor (mean of 0.12),

but with some differences, such as the presence of sweating and the absence of weight loss

problems; (iv) patients with slightly higher symptom severity in both motor and non-motor
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symptoms (mean of 0.17), especially in mental problems such as depression, apathy and

anxiety; (v) patients with mild severity in all symptoms (mean of 0.25).

While LCM was able to find more subtypes than both GMM and uk-DB, its subtypes also

lacked specificity. The absence of feature selection or multiple clusterings led to every subtype

being dependent on all the motor and non-motor symptoms. This resulted in insubstantial

variables (i.e., tremor and rigidity, whose severity did not change much between subtypes)

and general patterns (i.e., there were no remarkable differences between subtypes apart from

subtypes 1 and 5, which were practically opposite). The main problem of unidimensional

clustering models lies on the dimensionality of each subtype. Given that each subtype depends

on all of the observed variables, increasing the number of subtypes to model a specific pattern

results in a large number of unnecessary parameters (overfitting). For this reason, and to

avoid overfitting, unidimensional clustering models usually end up identifying only a few

subtypes.

Multidimensional clustering models returned by GEAST (see Figure 7.4) and GLSL (see

Figure 7.5) were able to find a higher number of subtypes that were only related to certain

symptoms. These subtypes were not only far more specific, but they also appeared to be

far more faithful to the data (much higher scores). Between the two algorithms, GLSL was

able to find the highest scoring model. While GEAST was able to find a good-fitting model,

its intrinsic restriction to learning tree structures resulted in a model with 18 clusterings

(55 subtypes) that was difficult to interpret. Alternatively, the model found by GLSL had

9 clusterings, with a total of 19 subtypes. In addition, it was able to exclude the tremor

and rigidity symptoms from the clustering, which, as previously commented, appeared to be

independent of the rest of symptoms. Compared to the GEAST result, GLSL returned a

model much easier to interpret. Finally, IL and MPMM were unable to successfully group

related symptoms. IL returned a model with three clustering variables and 6 subtypes (see

Figure 7.6). MPMM returned a model with a single clustering variable and 2 subtypes

(see Figure 7.7). In both models, the majority of the observed variables ended up being

independent.

7.3.2 Multidimensional clustering and subtype analysis

The multidimensional clustering model that resulted from applying GLSL is protrayed in

Figure 7.5. It consisted of 9 (alphabetically-named) clustering variables. Each clustering

variable provided a different way to group PD patients according to a specific set of motor and

non-motor variables. For example, in clustering A, patients were divided into two subtypes

according to the severity of their ICRDs and PIGD. There was, however, one clustering

variable that differed from the rest by not being directly related to any motor or non-motor

variables. Instead, it acted as an auxiliary latent variable that connected clusteringsG (weight

loss - depression) and H (excessive sweating - anxiety). This variable was I, and to simplify

the analysis, its relevant information was condensed in those of G and H. As a result, 8

clustering variables were considered, each with a different number of subtypes. The sex, age,

age of onset, disease duration and H&Y stage of each subtype is provided in Table 7.3.
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Figure 7.1: Unidimensional clustering model structure returned by the uk-DB algorithm. Motor
variables are colored yellow while non-motor variables are colored purple. Clustering variables are
colored grey, where the number in parentheses corresponds to the number of subtypes.

Tremor, Rigidity, Dyskinesias, Motor fluctuations, Bradykinesia, Axial symptoms, PIGD, Depression, Anxiety, Apathy, Psychosis, ICRDs, Cognition,
Hypotension, Urinary, Sexual, Gastrointestinal, Sleep, Pain, Weight loss, Smell, Physical fatigue, Mental fatigue, Sweating

Figure 7.2: Unidimensional clustering model structure returned by the GMM algorithm. Colors and
parentheses have the same meaning as in Figure 7.1. We followed the style of Poon et al. [2013] to
represent joint nodes (i.e., nodes with a set of observed variables).
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Figure 7.3: Unidimensional clustering model structure returned by the LCM algorithm. Colors and
parentheses have the same meaning as in Figure 7.1.
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to represent joint nodes (i.e., nodes with a set of observed variables).
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Figure 7.5: Multidimensional clustering model structure returned by the GLSL algorithm. Colors and
parentheses have the same meaning as in Figure 7.1.
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Figure 7.6: Multidimensional clustering model structure returned by the IL algorithm. Colors and
parentheses have the same meaning as in Figure 7.1.
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Figure 7.7: Multidimensional clustering model structure returned by the MPMM algorithm. Colors
and parentheses have the same meaning as in Figure 7.1.
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Clustering A (ICRDs - PIGD)

� Subtype A1 (84%) was characterized by patients that did not show problems to control

their impulses (µ = 0.00, σ = 0.00), but did show slight PIGD (µ = 0.22, σ = 0.19).

� Subtype A2 (16%) was characterized by patients that showed slight problems to control

their impulses (µ = 0.09, σ = 0.08), and also presented slight PIGD (µ = 0.20, σ =

0.16).

Clustering B (apathy - cognitive - pain - gastrointestinal - sleep - urinary)

� Subtype B1 (49%) was formed of patients that showed no apathy (µ = 0.00, σ = 0.00),

slight cognitive changes (µ = 0.03, σ = 0.04), slight pain (µ = 0.06, σ = 0.07), slight

gastrointestinal problems (µ = 0.04, σ = 0.05), slight sleep disorders (µ = 0.06, σ =

0.07), and slight urinary issues (µ = 0.06, σ = 0.09).

� Subtype B2 (51%) was formed of patients that showed slight apathy (µ = 0.16, σ =

0.18), slight cognitive changes (µ = 0.17, σ = 0.14), slight pain (µ = 0.19, σ = 0.17),

slight gastrointestinal problems (µ = 0.15, σ = 0.14), slight sleep disorders (µ = 0.17,

σ = 0.13), and slight urinary issues (µ = 0.25, σ = 0.22).

Clustering C (dyskinesias - psychosis)

� Subtype C1 (59%) was composed of patients that showed no dyskinesias (µ = 0.00, σ

= 0.01) or psychosis (µ = 0.00, σ = 0.00).

� Subtype C2 (27%) was composed of patients that showed slight dyskinesias (µ = 0.18,

σ = 0.18) and slight psychosis (µ = 0.02, σ = 0.03).

� Subtype C3 (14%) was composed of patients that showed slight dyskinesias (µ = 0.15,

σ = 0.23) and slight psychosis (µ = 0.14, σ = 0.11).

Clustering D (mental fatigue - physical fatigue)

� Subtype D1 (66%) consisted of patients that showed no mental fatigue (µ = 0.00, σ =

0.01) and slight physical fatigue (µ = 0.14, σ = 0.06).

� Subtype D2 (34%) consisted of patients that showed mild mental fatigue (µ = 0.28, σ

= 0.23) and mild physical fatigue (µ = 0.35, σ = 0.06).

Clustering E (axial symptoms - bradykinesia - loss of smell - motor fluctuations)

� Subtype E1 (47%) was constituted by patients that showed slight axial symptoms (µ

= 0.19, σ = 0.15), slight bradykinesia (µ = 0.21, σ = 0.02), mild loss of smell (µ =

0.29, σ = 0.15), but no motor fluctuations (µ = 0.00, σ = 0.02).
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� Subtype E2 (53%) was constituted by patients that showed mild axial symptoms (µ =

0.26, σ = 0.15), mild bradykinesia (µ = 0.30, σ = 0.02), moderate loss of smell (µ =

0.51, σ = 0.15), and mild motor fluctuations (µ = 0.30, σ = 0.16).

Clustering F (orthostatic hypotension - sexual problems)

� Subtype F1 (55%) was composed of patients that showed no orthostatic hypotension

(µ = 0.00, σ = 0.02) and slight sexual problems (µ = 0.01, σ = 0.03).

� Subtype F2 (45%) was composed of patients that showed slight orthostatic hypotension

(µ = 0.15, σ = 0.17) and mild sexual problems (µ = 0.29, σ = 0.30).

Clustering G (weight loss - depression)

� Subtype G1 (80%) was characterized by patients that showed no weight loss (µ = 0.00,

σ = 0.01) and slight depression (µ = 0.03, σ = 0.04).

� Subtype G2 (20%) was characterized by patients that showed mild weight loss (µ =

0.26, σ = 0.32) and slight depression (µ = 0.24, σ = 0.20).

Clustering H (excessive sweating - anxiety)

� Subtype H1 (74%) consisted of patients that showed no degree of excessive sweating

(µ = 0.00, σ = 0.01) and slight anxiety (µ = 0.06, σ = 0.07).

� Subtype H2 (26%) consisted of patients that showed mild degree of excessive sweating

(µ = 0.27, σ = 0.28) and slight anxiety (µ = 0.19, σ = 0.19).

7.3.3 Probabilistic inference

A total of 29 probabilistic queries were performed to analyze the connections between the 8

clustering variables. Their results are portrayed in Table 7.4.

7.4 Discussion

Clustering variables were underpinned by a reasonable spread of contributory PD symptoms,

thus bridging a statistical and clinical divide. Tremor and rigidity were the exceptions,

appearing to be independent of the rest of variables in the model (see Figure 7.5). Weak

correlation between rigidity, tremor, and non-motor symptoms is not uncommon and has

also been observed in a recent study that considered a similar population [Berganzo et al.,

2016].

In clustering A, patients were divided into two subtypes according to the severity of their

ICRDs and PIGD. Although the mean PIGD of the subtypes did not differ by much, subtype

A2 was characterized by a higher severity of ICRDs, a younger age and a younger age of

onset. A relationship between young age, early PD onset and more severe ICRDs has been
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Probabilistic query Probability increase Result

P (B|A = A1) B1: +0.05 0.49 → 0.54

P (B|A = A2) B2: +0.24 0.51 → 0.75

P (A|B = B1) A1: +0.08 0.84 → 0.92

P (A|B = B2) A2: +0.08 0.16 → 0.24

P (C|B = B1) C1: +0.19 0.59 → 0.78

P (C|B = B2)
C2: +0.10 0.27 → 0.37

C3: +0.09 0.14 → 0.23

P (B|C = C1) B1: +0.16 0.49 → 0.65

P (B|C = C2) B2: +0.16 0.51 → 0.67

P (B|C = C3) B2: +0.37 0.51 → 0.88

P (D|B = B1) D1: +0.20 0.66 → 0.86

P (D|B = B2) D2: +0.20 0.34 → 0.53

P (B|D = D1) B1: +0.14 0.49 → 0.63

P (B|D = D2) B2: +0.28 0.51 → 0.79

P (F |B = B1) F1: +0.22 0.55 → 0.77

P (F |B = B2) F2: +0.22 0.45 → 0.67

P (B|F = F1) B1: +0.19 0.49 → 0.68

P (B|F = F2) B2: +0.23 0.51 → 0.74

P (G|B = B1) G1: +0.11 0.80 → 0.91

P (G|B = B2) G2: +0.11 0.20 → 0.30

P (B|G = G1) F1: +0.06 0.49 → 0.55

P (B|G = G2) F2: +0.29 0.51 → 0.80

P (E|D = D1) E1: +0.10 0.47 → 0.57

P (E|D = D2) E2: +0.20 0.53 → 0.73

P (D|E = E1) D1: +0.14 0.66 → 0.80

P (D|E = E2) D2: +0.13 0.34 → 0.47

P (H|G = G1) H1: +0.05 0.74 → 0.79

P (H|G = G2) H2: +0.18 0.26 → 0.44

P (G|H = I1) G1: +0.05 0.80 → 0.85

P (G|H = I2) G2: +0.13 0.34 → 0.47

Table 7.4: Probabilistic queries that were performed to analyze the GLSL result.

previously observed [Weintraub et al., 2015]. Both socio-demographic aspects are known

risk factors for ICRDs along with motor complications, a pre-PD history of ICRDs, and a

dopamine agonist treatment [Gatto and Aldinio, 2019].

Apathy, cognition, pain, gastrointestinal, sleep and urinary symptoms were associated

in clustering B. Two subtypes were identified, where the subtype B2 was characterized

by a higher severity of these symptoms. This subtype is consistent with the Parkinson’s

apathy subtype [Dujardin et al., 2014; Sauerbier et al., 2015], which has been described to

be formed by older patients that showed cognitive impairment, sleep disorders, and relatively

severe motor symptoms. The relationship between sleep disorders and urinary problems may

indicate the presence of nocturia [Batla et al., 2016]. In addition, a recent study has also

identified a relationship between constipation and cognitive dysfunction in two independent

cohorts of patients [Leta et al., 2021].

Clustering C distinguished three subtypes that differed according to the severity of dysk-

inesias and psychosis. Subtypes C2 and C3 consisted of patients with a longer duration of

the disease and a younger age of onset. These subtypes coincided with the observation that

dyskinesias and psychosis are usually present in late stages of PD and may be associated with
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higher dopaminergic medication doses [Espay et al., 2018; Dave et al., 2020].

Fatigue is considered a common and complex non-motor symptom of PD, prevalent from

the prodromal to the palliative stage. It is usually present from early stages of the disease

and may often persist or even worsen over time [Friedman et al., 2016]. While fatigue is

usually regarded as an independent symptom, it has been moderately associated with apathy,

sleep disorders, depression, and motor problems [Stocchi et al., 2014; Siciliano et al., 2018].

Our model was able to capture this duality by identifying a specific clustering for fatigue

symptoms (i.e., D), and connecting it with clusterings B (apathy, sleep and depression) and

E (motor problems). In addition, patients that suffered from more severe fatigue showed a

longer duration of the disease and a younger age of PD onset.

Bradykinesia, axial symptoms, and motor fluctuations were associated in clustering E

with a decrease in sense of smell (i.e., hyposmia). Patients were divided into two sub-

types. While both subtypes presented motor issues, subtype E2 was characterized by a

higher severity of motor symptoms, hyposmia, and the presence of motor fluctuations. Anos-

mia/hyposmia is considered a preclinical marker of PD with relatively static severity. How-

ever, while it has not been associated to any particular PD phenotype [Rossi et al., 2016;

Sui et al., 2019], a recent study has noted that normosmic PD patients usually display better

motor function than hyposmic PD patients [Lee et al., 2015].

In clustering F , patients were divided into two subtypes based on orthostatic hypotension

and sexual problems. While the rest of clusterings were independent of the sex of the patient,

71% of patients in F2 were male, showing significant differences in the sex of the patients

belonging to F1 and F2. We also observed significant differences in the H&Y stage and

PD duration of these patients, reflecting the later occurrence of the autonomic features of

orthostatic hypotension and sexual dysfunction [Özcan et al., 2016; Palma and Kaufmann,

2018; Hiorth et al., 2019].

Weight loss and depression were associated in clustering G. Two subtypes were identified,

where G2 was characterized by mild weight loss and depression. Loss of appetite due to

depression is a known weight loss factor [Ma et al., 2018]. There were no significant differences

in sex, age, age of onset, or H&Y stage of the patients belonging to G1 and G2.

Regarding clustering H, anxiety was associated with excessive sweating. Anxiety was

present in both its defined subtypes, but patients in H2 showed a higher severity of this

symptom along with the presence of a mild degree of excessive sweating. This result is

consistent with a recent study [van Wamelen et al., 2019] in which anxiety and depression

were more prominent in PD patients with hyperhidrosis.

It is important to note that none of the discovered clusterings were fully independent of

each other. Belonging to a specific subtype in a clustering influenced the subtype probabil-

ities in the rest of clusterings. By using probabilistic inference, we were able to study the

effect of these associations on their respective symptoms. Some interesting patterns that we

observed included: (i) patients with ICRDs (A2 subtype) had a 0.75 probability of presenting

the symptoms of B2. This result is consistent with a recent study that has challenged the tra-

ditional concept of apathy and ICRDs as opposite symptoms [Scott et al., 2020]; (ii) patients
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that suffered psychosis (C3 subtype) had an 0.88 probability of suffering the symptoms of

B2. The presence of visual hallucinations has been linked to sleep deprivation, cognitive im-

pairment and depression [Ffytche et al., 2017; Lenka et al., 2019]; and (iii) patients with mild

mental and physical fatigue (D2 subtype) had a 0.79 probability of suffering the symptoms of

B2 and a 0.73 probability of suffering the symptoms of E2. As previously discussed, fatigue

has been related to the presence of apathetic symptoms, sleep disturbances, and higher H&Y

stages [Stocchi et al., 2014; Siciliano et al., 2018].

The majority of clusterings were directly or indirectly influenced by B, which acted as a

pivotal latent variable in the model. This aligns with the current observation that sleep dis-

orders, depression, constipation, and other non-motor symptoms appear across the spectrum

of patients with PD [Schapira et al., 2017].

7.4.1 Limitations

This study has some limitations. Concerning the population of the study, patients were not

specifically selected for this analysis, but rather for the validation of the MDS-NMS. Nonethe-

less, the large sample size and the high quality of the collected data will allow these results to

be contrasted and compared with the results of future studies. The sample was comparatively

younger than the average population of patients with PD. It is therefore possible that the

results differ in those with an older age where higher rates of comorbidities exist. In addition,

we did not report a control group, although our intention was not to describe the symptoms

as discriminant from normal subjects. Finally, we did not consider PD genetic biomarkers,

which could provide more information about the identified subtypes.

7.4.2 Conclusions

Dividing PD patients into groups with common symptoms may help understand their under-

lying pathologies. In this study, we used multidimensional clustering to categorize patients

according to 8 different sets of motor and/or non-motor symptoms. By using probabilistic

inference, we were able to explore the resulting subtypes and extract useful patterns. Inde-

pendent confirmation of these results could allow for more precise PD treatments. In the

future, it would be interesting to research how the evolution of PD throughout the years

would affect these subtypes, and to which extent they could be markers of PD progression.
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Chapter 8
Conclusions and future work

In this chapter, we summarize the most important contributions of this dissertation and

describe future research directions. The chapter also includes the list of publications and

submissions produced during this research.

Chapter outline

In Section 8.1, we summarize the main contributions of this dissertation. Then, in Section 8.2,

we provide the list of publications and submissions produced during this research. Finally,

in Section 8.3, we discuss future work and open issues.

8.1 Summary of contributions

Chapters 5 - 7 describe the original contributions of this dissertation.

� Chapter 5 proposes two incremental algorithms for learning forests of conditional linear

Gaussian LTMs. Unlike current methods, the proposed algorithms are based on the VB

framework, which allows them to work with mixed data and to introduce uncertainty

into the learning process. The first method, which we refer to as incremental learner,

hill-climbs the space of latent forests in a two-phase iterative process. In its first phase,

the forest structure is expanded with a new arc or latent variable. In its second phase,

the cardinalities of latent variables are estimated. Considering that directly searching

this space requires the evaluation of a large number of candidate models, a constrained

variant that only evaluates the most prominent α candidates of each iteration is also

developed. As demonstrated by the density estimation experiments, the constrained

approach is a valid alternative to the incremental learner method. It returns almost

identical results for categorical data experiments, and displays only slightly worse per-

formance for continuous and mixed data experiments. We believe that these differences

are caused by the use of approximate MI estimation, and demonstrate that they can

be reduced by increasing α.
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� Chapter 6 presents a greedy algorithm for learning conditional linear Gaussian BNs with

categorical latent variables. While it takes inspiration from the approaches presented

in Chapter 5, the resulting models are not limited to tree-like structures. This is

accomplished by introducing a VB version of the SEM algorithm. The main idea is

to produce multiple candidate models that introduce a new latent variable, remove

an existing latent variable, or change the cardinality of a latent variable. Then, learn

the local structure of the proposed candidates using the VB-SEM algorithm and select

the model with the highest score. The experiments demonstrate the effectiveness of

the approach by solving both density estimation and missing data imputation tasks. In

those experiments, our method is compared with several parametric and nonparametric

methods from the state of the art. However, our implementation could be improved to

obtain faster results.

� Chapter 7 provides a multidimensional clustering study with PD data. The data of 402

PD patients from an international, multi-center, and cross-sectional study is used to

learn a conditional linear Gaussian BN with several categorical latent variables. Each

latent variable represents a different clustering of PD patients that considers a unique

subset of motor and/or non-motor symptoms. As a result, eight sets of related symp-

toms are identified. Each of them provides a different way to group patients: impulse

control issues, overall non-motor symptoms, presence of dyskinesias and psychosis, fa-

tigue, axial symptoms and motor fluctuations, autonomic dysfunction, depression, and

excessive sweating. Each of these groups can be seen as a subtype of the disease. Sig-

nificant differences between subtypes (p < 0.01) are found in sex, age, age of onset,

disease duration, and H&Y stage.

8.2 List of publications

Peer-reviewed JCR journals

� F. Rodriguez-Sanchez, P. Larrañaga, and C. Bielza. Incremental learning of latent

forests. IEEE Access, 8:22420-224432, 2020.

� F. Rodriguez-Sanchez, C. Bielza, and P. Larrañaga. Multi-partition clustering of mixed

data with Bayesian networks. Submitted, 2021.

� F. Rodriguez-Sanchez, C. Rodriguez-Blazquez, C. Bielza, P. Larrañaga, D. Weintraub,

P. Martinez-Martin, A. Rizos, A. Schrag, and K. R. Chaudhuri. Identifiying Parkinson’s

disease subtypes with motor and non-motor symptoms via model-based multi-partition

clustering. Submitted, 2021.

Peer-reviewed conferences

� F. Rodriguez-Sanchez, P. Larrañaga, and C. Bielza. Discrete model-based clustering

with overlapping subsets of attributes. Proceedings of the 9th International Conference
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on Probabilistic Graphical Models, pages 392-403, 2018.

Technical reports

� F. Rodriguez-Sanchez, P. Larrañaga, C. Bielza. Multi-facet determination for clustering

with Bayesian networks. TR:UPM-ETSIINF/DIA/2017-1: Universidad Politécnica de

Madrid, 2017.

8.3 Future work

This section points out future research lines to the topics covered in this dissertation.

� Our proposals from Chapters 5 and 6 aim at learning BNs with categorical latent

variables. Inspired by factor analysis, these works can be expanded to work with con-

tinuous latent variables, where the number of factors can be analogously estimated to

the cardinality of categorical latent variables.

� We can extend the parameter estimation of Chapters 5 and 6 by considering more

flexible variational families [Barber and Wiegerinck, 1999; Bishop et al., 1998] and

nonconjugate priors [Wang and Blei, 2013], but at the cost of a more difficult variational

optimization problem.

� In Chapters 5 and 6 we focus on selecting the most probable model by maximizing

the p-ELBO. However, this approach may not be suitable when we are interested in

quantifying our confidence in the structure of the result or when we have a low number

of data instances. For these cases, Bayesian estimation can be introduced into the

structure learning process by averaging over the set of possible BN structures (i.e., by

using Bayesian model averaging [Hoeting et al., 1999; Fragoso et al., 2018]).

� We intend to parallelize our proposals from Chapters 5 and 6. The idea would be to

simultaneously evaluate multiple latent operators.

� There is a growing interest in combining complex LVMs with unsupervised deep learning

models [Li et al., 2019; Falck et al., 2021]. In this context, we can investigate a variant

of variational autoencoders whose latent superstructure is learned using our method

from Chapter 6.

� It would be interesting to consider data from more PD patients to analyze the con-

sistency of the subtypes identified in Chapter 7. It would be especially interesting to

access longitudinal data to study how the evolution of PD throughout the years would

affect these subtypes, and to which extent they could be markers of PD progression.
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Appendix A
Motor variables specification

Cardinal signs

� Tremor (MDS-UPDRS items 2.10, 3.15 - 3.18)

� Rigidity (MDS-UPDRS items 3.3a-e)

� Dyskinesias (MDS-UPDRS items 4.1, 4.2)

� Motor fluctuations (MDS-UPDRS items 4.3 - 4.6)

� Bradykinesia (MDS-UPDRS items 3.4 - 3.8, 3.14)

Motor subtypes

� Axial symptoms (MDS-UPDRS items 2.1 - 2.3, 3.1 - 3.2, 3.9, 3.13)

� PIGD (MDS-UPDRS items 2.12, 2.13, 3.10, 3.11, 3.12)
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H. Langseth, T. D. Nielsen, I. Pérez-Bernabé, and A. Salmerón. Learning mixtures of trun-

cated basesi functions from data. International Journal of Approximate Reasoning, 55(4):

940–956, 2014.
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D. Mautz, W. Ye, C. Plant, and C. Böhm. Non-redundant subspace clusterings with Nr-

Kmeans and Nr-DipMeans. ACM Transactions on Knowledge Discovery from Data, 14(5):

1–24, 2020.

S. Mavandadi, S. Nazem, T. R. T. Have, A. D. Siderowf, J. E. Duda, M. B. Stern, and

D. Weintraub. Use of latent variable modeling to delineate psychiatric and cognitive profiles

in Parkinson disease. The American Journal of Geriatric Psychiatry, 17(11):986–995, 2009.

G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley & Sons,

2008.

G. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, 2004.

C. Meek. Causal inference and causal explanation with background knowledge. In Proceedings

of the 11th Conference on Uncertainty in Artificial Intelligence, pages 403–410, 1995.

V. Melnykov and R. Maitra. Finite mixture models and model-based clustering. Statistics

Surveys, 4:80–116, 2010.

T. A. Mestre, S. M. Fereshtehnejad, D. Berg, N. I. Bohen, K. Dujardin, R. Erro, A. J.

Espay, G. Halliday, J. J. van Hilten, M. T. Hu, B. Jeon, C. Klein, A. F. G. Leentjens,

J. Marinus, B. Mollenhauer, R. Postuma, R. Rajalingam, M. Rdŕıguez-Violante, T. Simuni,
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