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Introduction

Optimization in Machine Learning

Huge spaces to be optimized

Structures. Combinatorial optimization
Number of possible feature subsets, f (n), for a supervised classification problem with n predictor variables
(Saeys et al. 2007): f (n) = 2n

Number of possible partitional clustering assignments, S(N, K ), of N objects into K groups (Sharp 1968):

S(N, K ) =
1

K !

K∑
i=0

(−1)K−i
(K

i

)
iN

Number of Bayesian networks structures, f (n), is super-exponential in the number of nodes, n (Robinson 1977):

f (n) =
n∑

i=1

(−1)i+1
(n

i

)
2i(n−i)f (n − i), for n > 2,

which is initialized with f (0) = f (1) = 1

Parameters. Continuous optimization
Maximum likelihood estimation is not always achieved by means of a closed form
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Introduction

Machine Learning
Methods

Preprocessing

Dimensionality reduction (PCA, MDS, t-SNE, ..)
Visualization
Discretization

Supervised classification
Non probabilistic classifiers

k -nearest neighbors
Classification trees
Rule induction
Artificial neural networks
Support vector machines

Probabilistic classifiers
Discriminant analysis
Logistic regression
Bayesian classifier

Metaclassifiers
Stacking. Cascading. Bagging. Boosting.
Random Forest. Hybrid classifiers

Multidimensional classification

Clustering
Hierarchical clustering
Partitional clustering
Probabilistic clustering

Reinforcement learning

Probabilistic graphical models
Bayesian networks
Markov networks

Bielza and Larrañaga 2021
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Optimization in Machine Learning
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Estimation of Distribution Algorithms

EDAs. A Toy Example

max O(x) =
6∑

i=1

xi

with xi = 0, 1
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Estimation of Distribution Algorithms

EDAs. A Toy Example

max O(x) =
6∑

i=1

xi

with xi = 0, 1

X1 X2 X3 X4 X5 X6 O(x)
1 1 0 1 0 1 0 3
2 0 1 0 0 1 0 2
3 0 0 0 1 0 0 1
4 1 1 1 0 0 1 4
5 0 0 0 0 0 1 1
6 1 1 0 0 1 1 4
7 0 1 1 1 1 1 5
8 0 0 0 1 0 0 1
9 1 1 0 1 0 0 3
10 1 0 1 0 0 0 2
11 1 0 0 1 1 1 4
12 1 1 0 0 0 1 3
13 1 0 1 0 0 0 2
14 0 0 0 0 1 1 2
15 0 1 1 1 1 1 5
16 0 0 0 1 0 0 1
17 1 1 1 1 1 0 5
18 0 1 0 1 1 0 3
19 1 0 1 1 1 1 5
20 1 0 1 1 0 0 3
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Estimation of Distribution Algorithms

EDAs. A Toy Example

Learning the probability distribution from the selected individuals

X1 X2 X3 X4 X5 X6
1 1 0 1 0 1 0
4 1 1 1 0 0 1
6 1 1 0 0 1 1
7 0 1 1 1 1 1

11 1 0 0 1 1 1
12 1 1 0 0 0 1
15 0 1 1 1 1 1
17 1 1 1 1 1 0
18 0 1 0 1 1 0
19 1 0 1 1 1 1
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Estimation of Distribution Algorithms

EDAs. A Toy Example

Learning the probability distribution from the selected individuals

X1 X2 X3 X4 X5 X6
1 1 0 1 0 1 0
4 1 1 1 0 0 1
6 1 1 0 0 1 1
7 0 1 1 1 1 1

11 1 0 0 1 1 1
12 1 1 0 0 0 1
15 0 1 1 1 1 1
17 1 1 1 1 1 0
18 0 1 0 1 1 0
19 1 0 1 1 1 1

p(x) = p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4)p(x5)p(x6)
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EDAs. A Toy Example

Learning the probability distribution from the selected individuals

X1 X2 X3 X4 X5 X6
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10
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Estimation of Distribution Algorithms

EDAs. A Toy Example
Obtaining the new population by sampling from the probability distribution

p(X1 = 1) =
7
10

; p(X2 = 1) =
7

10
; p(X3 = 1) =

6
10

p(X4 = 1) =
6
10

; p(X5 = 1) =
8

10
; p(X6 = 1) =

7
10

p(x) = p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4)p(x5)p(x6)

0.23 p(X1 = 1) = 7
10 > 0.23 −→ 1

0.65 p(X2 = 1) = 7
10 > 0.65 −→ 1

0.89 p(X3 = 1) = 6
10 < 0.89 −→ 0

0.12 p(X4 = 1) = 6
10 > 0.12 −→ 1

0.48 p(X5 = 1) = 8
10 > 0.48 −→ 1

0.54 p(X6 = 1) = 7
10 > 0.54 −→ 1
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Estimation of Distribution Algorithms

EDAs. A Toy Example
Obtaining the new population by sampling from the probability distribution

X1 X2 X3 X4 X5 X6 O(x)
1 1 1 0 1 1 1 5
2 1 0 1 0 1 1 4
3 1 1 1 1 1 0 5
4 0 1 0 1 1 1 4
5 1 1 1 1 0 1 5
6 1 0 0 1 1 1 4
7 0 1 0 1 1 0 3
8 1 1 1 0 1 0 4
9 1 1 1 0 0 1 4

10 1 0 0 1 1 1 4
11 1 1 0 0 1 1 4
12 1 0 1 1 1 0 4
13 0 1 1 0 1 1 4
14 0 1 1 1 1 0 4
15 1 1 1 1 1 1 6
16 0 1 1 0 1 1 4
17 1 1 1 1 1 0 5
18 0 1 0 0 1 0 2
19 0 0 1 1 0 1 3
20 1 1 0 1 1 1 5
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Estimation of Distribution Algorithms

Probabilistic Models in EDAs
Univariate EDAs. Mühlenbein and Paaß (1996) (UMDA)

Probabilistic model: pl (x) =
∏n

i=1 pl (xi )

Structural learning: not necessary

Bivariate EDAs. De Bonet et al. (1997) (MIMIC)
Probabilistic model:
pπl (x) = pl (xi1 | xi2 )pl (xi2 | xi3 ) · · · pl (xin−1 | xin )pl (xin )

Structural learning: best permutation

Multivariate EDAs. Etxeberria and Larrañaga (1999) (EBNA); Pelikan et al. (1999) (BOA); Harik
et al. (1999) (EcGA); Mühlenbein and Mahnig (1999) (LFDA)

Probabilistic model: pl (x) =
∏n

i=1 pl (xi |pai )

Structural learning: directed acyclic graph

EDAs in continuous domains. Assuming Gaussianity: Larrañaga et al. (2000)

Univariate: UMDAG
c

Bivariate: MIMICG
c

Multivariate: EMNAG
global , EMNAG

ee, EGNAG
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Estimation of Distribution Algorithms

Graphical Representation of EDAs

Population of
candidate solutions

1

M

1

M

Selected
candidates

N

Bayesian network
or Gaussian network

New candidate
solutions

1

M

c©Pedro Larrañaga EDAs in ML EvoStar 2022



Estimation of Distribution Algorithms

Evolution of Bayesian Network Structures in a EBNA Search (Bengoetxea 2002)
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Estimation of Distribution Algorithms

A Node for the Objective Function (Miquélez et al. 2004)

Estimation of Bayesian classifiers optimization algorithms
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Estimation of Distribution Algorithms

A Node for Each Objective Function (Karshenas et al. 2014)

EDAs for multiobjective optimization
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Estimation of Distribution Algorithms

EDAs

Books

Larrañaga and Lozano 2002 Pelikan 2005 Lozano et al. 2006

Special issues

2002 2005 2009
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Bayesian Networks

Bayesian Networks

DAG + CPTs

Conditional independence: W and T are conditionally
independent given Z⇔ p(W|T, Z) = p(W|Z)

Directed acyclic graph (DAG)

Conditional probability tables (CPTs)

p(X1, . . . , Xn) =
n∏

i=1

p
(
Xi | Pa(Xi )

)

p(A,N, S,D, P) = p(A)p(N|A)p(S|A)p(D|N, S)p(P|S)

Inference

Exact: variable elimination, message passing

Approximate: sequential simulation and MCMC

p(Xi |Stroke=yes)

Bielza and Larrañaga 2021
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Bayesian Networks

Conditional Independence

p(Xi ) p(Xi |Stroke=yes)

p(Xi |Stroke=yes, Neural Atropy=yes) p(Xi |Stroke=yes, Neural Atropy=yes, Age=young)
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Bayesian Networks

Learning Bayesian Networks from Data

Two tasks

Parameters p
(
Xi = xi | Pa(Xi ) = paj

i

)
: MLE or Bayesian

Structure: conditional independence tests or by optimizing a score

AIC, BIC
BD, K2, 

BDe, BDeu

Greedy, simulated 
annealing, EDAs, 
genetic algorithms,  
MCMC

Dynamic 
programming, 
branch & bound, 
mathematical 
programming

Score and search

Search spaces Scores Search

DAGs
Equiv.
classes

Orderings
Penalized 
likelihood

Bayesian Exact Approximate

Scores

Penalized likelihood: avoid structural
overfitting

Bayesian: arg maxG p(G|D), with

p(G|D) ∝

marginal likeli.︷ ︸︸ ︷
p(D|G)

prior︷ ︸︸ ︷
p(G), with

p(D|G) =
∫

p(D|G,θ)︸ ︷︷ ︸
likelihood

f (θ|G)︸ ︷︷ ︸
prior param.

dθ
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Bayesian Networks

Bayesian Networks

Books

Pearl 1988 Lauritzen 1996 Neapolitan 2003

Darwiche 2009 Koller and Friedman 2009 Maathius et al. 2019
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EDAs in Preprocessing

Improving Table Interpretation (Bengoetxea et al. 2011)

The problem. The way rows and columns are ordered in a table is a very sensitive issue that affects its readability. The
optimal ordering of tables is equivalent to solving two travelling salesman problems, one for the R rows and the other for
the C columns⇒ cardinality of the search space: R! · C!

Individual representation.
(a) Discrete: x = (x1, ..., xR , xR+1, ..., xR+C ), where xi = k means that the order of the original i th row is k ,
and xR+j = l means that the order for the j th column is l
(b) Continuous: the real vectors of values were transformed into permutations as the respective order in the
continuous individual

EDAs. Univariate, bivariate and multivariate in both discrete and continuous domains

References

E. Bengoetxea, P. Larrañaga, C. Bielza, J.A. Fernández del Pozo (2011). Optimal row and column ordering to improve
table interpretation using estimation of distribution algorithms. Journal of Heuristics, 17(5), 567–588
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the C columns⇒ cardinality of the search space: R! · C!

Individual representation.
(a) Discrete: x = (x1, ..., xR , xR+1, ..., xR+C ), where xi = k means that the order of the original i th row is k ,
and xR+j = l means that the order for the j th column is l
(b) Continuous: the real vectors of values were transformed into permutations as the respective order in the
continuous individual

EDAs. Univariate, bivariate and multivariate in both discrete and continuous domains
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EDAs in Preprocessing

Wrapper Multidimensional Discretization (Flores et al. 2007)
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The problem. Optimal (maximizing the estimated
accuracy) multidimensional discretization

Individual representation depends on the

discretization process (number of bins and

cutpoints for each predictor variable)
An individual in the EDA represents a
discretization policy that transforms the
original dataset into a discretized one

EDAs. UMDAG
c
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EDAs in Supervised Classification

Feature Subset Selection (Inza et al. 2000)

The problem. Optimal (maximizing the accuracy) subset of features for a given supervised classification paradigm

Individual representation. x = (x1, ..., xn) where xi = 1 if variable Xi is selected, and 0 otherwise

EDAs. EBNA for ID3 and naive Bayes
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EDAs in Supervised Classification

Feature Subset Selection

References

M. Ayodele (2019). Application of estimation of distribution algorithm for feature selection. Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2019, 43-44

E. Cantú-Paz (2002). Feature subset selection by estimation of distribution algorithms. Proceedings of the 4th Annual
Conference on Genetic and Evolutionary Computation, 303-310

I. Inza, P. Larrañaga, B. Sierra (2001). Feature subset selection by Bayesian networks: A comparison with genetic and
sequential algorithms. International Journal of Approximate Reasoning, 27, 143–164

I. Inza, P. Larrañaga, R. Etxeberria, B. Sierra (2000). Feature subset selection by Bayesian network–based optimization.
Artificial Intelligence, 123, 157–184

S. Maza, M. Touahria (2019). Feature selection for intrusion detection using new multi-objective estimation of distribution
algorithms. Applied Intelligence, 49, 4237-4257

G. Neuman, D. Cairns (2013). Applying a hybrid targeted estimation of distribution algorithm to feature selection
problems. Proceedings of the 5th International Joint Conference on Computational Intelligence, ECTA-2013, 136-143

Y. Saeys, S. Degroeve, D. Aeyels, Y. Van de Peer, P. Rouzé (2003). Fast feature selection using a simple estimation of
distribution algorithm: A case study on splice site prediction. Bioinformatics, 19, 2, ii179-ii188

c©Pedro Larrañaga EDAs in ML EvoStar 2022



EDAs in Supervised Classification

k -Nearest Neighbors (Inza et al. 2002)

d(x, xi ) =
n∑

j=1

wjδ(xj , x i
j )

Feature weighting

The problem. Search for the optimal (in terms of
accuracy) feature weighting

Individual representation: discrete (three
possible values), or continuous

EDAs. EBNA and EGNA
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Algorithms. A New Tool for Evolutionary Computation, Kluwer Academic Publishers, 295–311
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EDAs in Supervised Classification

Classification Trees (Cagnini et al. 2017)

Optimal classification tree

The problem. Optimal (maximizing the estimated
accuracy) classification tree for continuous
predictors

Individual representation. Binary tree with a given
maximal depth. Root node and internal nodes
selected from probability distributions

EDAs. UMDA

References
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EDAs in Supervised Classification

Rule Induction (Sierra et al. 2002)

{
R : IF (X25 = 2 AND X56 = 3) OR

(X2 = 1 AND X5 6= 1) THEN C = I

}

Pittsburgh-like approach

The problem. Optimal (maximizing the estimated accuracy) rule. Classifier system

Individual representation. The antecedent of the rule consists on disjunction of simple antecedents, where a single rule
dimension is given by n, the number of predictor variables, allowing for each variable to take values that are equal to,
different from, and any possible value

EDAs. UMDA, EBNA
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EDAs in Supervised Classification

Artificial Neural Networks (Baluja 1995)

Optimal weights

The problem. Minimization of E(w,w′) = 1
N
∑N

k=1(ck − ĉk )2. Alternative to the backpropagation algorithm, a gradient
descent method

Individual representation. k -dimensional vectors of real numbers, where k denotes the number of weights in the artificial
neural network (a feed-forward multilayer perceptron)

EDAs. PBIL: pl+1(x) = (1− α)pl (x) + α 1
N
∑N

k=1 xl
k :M
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EDAs in Supervised Classification

Artificial Neural Networks
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EDAs in Supervised Classification

Logistic Regression (Robles et al. 2008)

The logistic regression model: p(C = 1|x,β) = θx = eβ0+β1x1+···+βnxn

1+eβ0+β1x1+···+βnxn

The likelihood function is: L(β|x1, ..., xN ) = p(c1, ..., cN |x, θx) =
∏N

i=1 θ
ci
i (1− θi )

1−ci

The likelihood equations are:



∂ lnL(β)
∂β0

=
∑N

i=1 ci −
∑N

i=1
eβ0+β1xi1+···+βnxin

1+eβ0+β1xi1+···+βnxin
= 0

∂ lnL(β)
∂β1

=
∑N

i=1 ci xi1 −
∑N

i=1 xi1
eβ0+β1xi1+···+βnxin

1+eβ0+β1xi1+···+βnxin
= 0

.

.

.
∂ lnL(β)
∂βn

=
∑N

i=1 ci xin −
∑N

i=1 xin
eβ0+β1xi1+···+βnxin

1+eβ0+β1xi1+···+βnxin
= 0



The (iterative) Newton-Raphson method: β̂new = β̂old −
(
∂2 lnL(β)

∂β∂βT

)−1
∂ lnL(β)
∂β

Pareto front for calibration and discrimination

Each individual in the EDA is represented as a vector of real numbers with cardinality n + 1

Two UMDAG
c s were developed, one for calibration (log-likelihood) and the other for discrimination (area under the ROC

curve)

The best individuals obtained with each of these UMDAG
c s were evaluated in the other objective, thus obtaining an

approximation to the Pareto front for the bi-objective problem
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EDAs in Supervised Classification

Logistic Regression
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EDAs in Supervised Classification

Bayesian Classifiers (Robles et al. 2004)

Semi-naive Bayes
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p(c|x1, x2, x3, x4) ∝ p(c)p(x1, x3|c)p(x4|c) p(c|x1, x2, x3, x4) ∝ p(c)p(x1, x2, x3, x4|c)

UMDA based approach. Individuals will have n variables each one with an integer value in {0, 1, 2, ..., n} representing
the (super)node each variable belongs to
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EDAs in Supervised Classification

Boosting (Cagnini et al. 2018)

Improving AdaBoost with UMDAG
c

The base classifiers are classification trees. Each classifier φi is trained on data setDi of size N sampled fromD which
focuses more on the mistakes of the previous classifier φi−1

Voting weights given by AdaBoost as starting point for the UMDAG
c

References
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algorithms. IEEE Congress on Evolutionary Computation
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EDAs in Clustering
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EDAs in Clustering

Hierarchical Clustering (Fan 2019)

Stochasticity in the merging operations in agglomerative hierarchical clustering

UMDA promoting that the subsets with more instances have a greater probability of being joined as long as the value of
the distance with the centroid linkage does not exceed a certain threshold

The constructed dendrogram does not necessarily have to be complete

References

J. Fan (2019). OPE-HCA: An optimal probabilistic estimation approach for hierarchical clustering algorithm. Neural
Computation and Applications, 31, 2095-2105
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EDAs in Clustering

Partitional Clustering (Roure et al. 2002)

K -means. Forgy (1965)

K -means (hill-climbing strategy) with computations of the new centroids once all objects are assigned to their respective clusters

EDAs with an object membership representation

Each individual is a string of lenght N (number of objects to clusters) where each position can take one value in
{1, ..., K}, with K denoting the number of clusters

The i th position of the string represents the cluster number to which object xi belongs

EDAS: MIMIC, EBNABIC
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EDAs in Clustering

Partitional Clustering
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EDAs in Clustering

Probabilistic Clustering (Peña et al. 2004)
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p(c, x | θS ) = p(c | θc )
n∏

i=1

p(xi | c, paS
i , θc , θi )

The value of variable C is unknown, it is estimated with the EM algorithm

UMDA to search for the optimal structure of dependency between the variables. Each individual in the UMDA represents

an upper triangular connectivity matrix H with n2−n
2 elements hij , such that:

hij =

{
1 if Xj ∈ Pai
0 otherwise
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EDAs in Reinforcement Learning
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EDAs in Reinforcement Learning

Reinforcement Learning (Handa and Nishimura 2008)

Handa and Nishimura 2008
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EDAs in Reinforcement Learning

Reinforcement Learning (Handa and Nishimura 2008)
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EDAs in Bayesian Networks
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EDAs in Bayesian Networks

Learning from Data (Blanco et al. 2003)

Learning structure and parameters Space of DAGs

Univariate EDAs: UMDA

Individual representation: connectivity matrix
(Bayesian network structure)

If no total ordering between the variables is
assumed: simple repair operator (randomly
delete cycles)
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EDAs in Bayesian Networks

Bayesian Networks
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Estimation of Distribution Algorithms in Machine Learning

Methods

Preprocessing

Dimensionality reduction (PCA, MDS, t-SNE, ..)
Visualization
Discretization

Supervised classification

Non probabilistic classifiers
k -nearest neighbors
Classification trees
Rule induction
Artificial neural networks
Support vector machines

Probabilistic classifiers
Discriminant analysis
Logistic regression
Bayesian classifier

Metaclassifiers
Stacking
Cascading
Bagging
Boosting
Random Forest
Hybrid classifiers

Multidimensional classification

Clustering

Hierarchical clustering
Partitional clustering
Probabilistic clustering

Reinforcement learning

Probabilistic graphical models

Bayesian networks
Markov networks
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Conclusions and Further Topics

Conclusions

Estimation of distribution algorithms competitive with the state of the art heuristics in machine learning

Bayesian networks as a framework providing interpretability for machine learning and optimization

Further topics

EDAs
Development of EDAs that incorporates advances in methodology for learning Bayesian networks from data
Continuous optimization: Semiparametric Bayesian networks

EDAs in machine learning
Preprocessing: Parallel coordinates
Feature subset selection: Multivariate filtering approach
k -nearest neighbors: Prototype selection, distance election
Multilabel classification: Chain classifiers
Clustering: Divisive hierarchical clustering, K -medians, K -modes, fuzzy C-means, SOM, biclustering, clustering
multi-view

Bayesian networks
Mallows distribution for the best order in (a) structure learning in the space of ordering, (b) triangulation
of the moral graph
Evidence explanation: Most relevant explanation, MAP-independence explanation, counterfactual
reasoning
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