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 Decision Analysis by Augmented

 Probability Simulation

 Concha Bielza * Peter Muiller o David Rios Insua
 Decision Analysis Group, Madrid Technical University, Spalin

 Institute of Statistics and Decision Sciences, Duke University, Dturham, North Carolina 27706

 School of Engineering, Universidad Rey Jutan Carlos, Spain

 W A Te provide a generic Monte Carlo method to find the alternative of maximum expected

 utility in a decision analysis. We define an artificial distribution on the product space

 of alternatives and states, and show that the optimal alternative is the mode of the implied

 marginal distribution on the alternatives. After drawing a sample from the artificial distribu-

 tion, we may use exploratory data analysis tools to approximately identify the optimal

 alternative. We illustrate our method for some important types of influence diagrams.

 (Decision Analysis; Influence Diagrams; Markov Chlain Monite Carlo; Optimal Design; Simutlation)

 1. Introduction

 1.1. Decision Analysis by Simulation

 Decision Analysis provides a framework for solving

 decision making problems under uncertainty, based

 on finding an alternative with maximum expected

 utility. While conceptually simple, the actual solution

 of the maximization problem may be extremely in-

 volved, e.g., when the probability model is complex,

 the set of alternatives is continuous, or when a se-

 quence of decisions is included. Therefore, only par-

 ticular probability models are studied, such as the

 multivariate Gaussian in Shachter and Kenley (1989).

 Inclusion of continuous variables in simple problems

 is carried out through discretization (Miller and Rice

 1983, Smith 1991), through summaries of the first few

 moments and derivatives (Smith 1993), or through

 approximations by means of Gaussian mixtures (Po-

 land 1994). In complicated problems, there may be no

 hope for an exact solution method and we may have to

 turn to approximate methods, specifically, simulation.

 As observed in Pearl (1988, p. 311) and Cooper

 (1989), in principle, any simulation method to solve

 Bayesian networks (BN) may be used to solve decision

 problems represented by influence diagrams (ID) by

 means of sequentially instantiating decision nodes

 and computing expected values. Cooper notes that, for

 a given instantiation of the decision nodes, the com-

 putation of the expected value at the value node can

 be reformulated as a computation of a posterior dis-

 tribution in an artificially created additional random

 node. The problem of solving BNs is summarized, for

 example, in Shachter and Peot (1990). Exact algo-

 rithms, e.g., using clique join trees (Lauritzen and

 Spiegelhalter 1988), cutset conditioning (Pearl 1986),

 or arc reversal (Shachter 1986, 1988), proved to be

 intractable in many real-world networks, leading to

 approximate inference algorithms based on simula-

 tion methods. These include short-run algorithms,

 such as Logic Sampling (Henrion 1988), Likelihood

 Weighting (Shachter and Peot 1990) and its improved

 modifications, Bounded Variance, and A4S4 algorithms

 (Pradhan and Dagum 1996); and long-run algorithms,

 using Markov chain Monte Carlo methods like Gibbs

 sampling (Pearl 1987, Hrycej 1990, York 1992) or

 hybrid strategies (Brewer et al. 1996).

 However, as Matzkevich and Abramson (1995)

 note, we only have a couple of outlines of simulation

 methods specifically for IDs in Jenzarli (1995) and

 Charnes and Shenoy (1996). Whereas the first one

 0025-1909/99/4507/0995$05.00
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 combines stochastic dynamic programming and Gibbs

 sampling, the latter simulates iid observations from

 only a small set of chance variables for each decision

 node instead of using the entire distribution. Both

 become intractable when continuous decision spaces

 are included.

 In recent statistical literature the same problem, i.e.,

 that of finding the optimal action in a decision prob-

 lem, has been considered in Muiller and Parmigiani

 (1996) and Carlin et al. (1998), among others. Again, all

 these approaches use Monte Carlo simulation to eval-

 uate the expected utility of given instantiations of

 nodes.

 1.2. Augmented Probability Simulation

 In this paper we propose a scheme that differs in

 important ways from the above mentioned ap-

 proaches. Since they use simulation to evaluate ex-

 pected utilities (losses) for given instantiations of the

 decision nodes, they do not accommodate continuous

 variables, especially decision variables, unless a dis-

 cretization is carried out or the probability distribu-

 tions are in a conjugate framework. In contrast, we go

 a step further and define an artificial distribution on all

 nodes, including the decision nodes. We show that

 simulation from this artificial augmented probability

 model is equivalent to solving the original decision

 problem. The specific strength of the proposed

 method is its generality. The algorithm can, in princi-

 ple, accommodate arbitrary probability models and

 utility functions, as long as it is possible to pointwise

 evaluate the probability density and the utility func-

 tion for any chosen value of all involved nodes.

 Evaluation of the probability density up to a constant

 factor suffices. The idea of augmenting the probability

 model to transform the optimization problem into a

 simulation problem is not entirely new. For example,

 Shachter and Peot (1992) have proposed a similar

 approach that involves augmenting the probability

 model to include the decision nodes and thus trans-

 forms the original optimization problem into a simu-

 lation problem. But to the best of our knowledge the

 approach described here is the first to solve this

 simulation problem by systematically exploiting

 Markov chain Monte Carlo simulation methods re-

 cently developed in the statistical literature.

 The method starts by considering an artificial dis-

 tribution on the space of alternatives and states. The

 distribution is defined in such a way that its marginal

 on the space of alternatives is proportional to the

 expected utility of the alternative and, consequently,

 the optimal alternative coincides with the mode of the

 marginal. Then, the proposed simulation-based strat-

 egy follows these steps: (i) Draw a sample from the

 artificial distribution; (ii) Marginalise it to the space of

 alternatives; and, (iii) Find the mode of the sample as

 a way of approximating the optimal alternative. A key

 issue is how to sample from the artificial distribution.

 For that we introduce Markov chain Monte Carlo

 (MCMC) algorithms. See, for example, Smith and

 Roberts (1993), Tierney (1994), or Tanner (1994) for a

 review of MCMC methods.

 Section 2 describes the basic strategy with a simple

 example. Section 3 is of a more technical nature and

 provides generic methods to sample approximately

 from the artificial distribution and identify the mode

 of the sample. Section 4 discusses application exam-

 ples. Section 5 compares our method with alternative

 schemes and identifies situations that call for different

 approaches.

 2. Basic Approach
 Here we outline the basic approach. Assume we have

 to choose under uncertainty an alternative d from a set

 A4. The set of states 0 is 0. We propose as optimal the

 alternative d* with maximum expected utility:

 maxdEj[V(d) = f u(d, O)pd(O)dO], where tt(d, 0) is
 the utility function modeling preferences over conse-

 quences and Pd(O) is the probability distribution mod-
 eling beliefs, possibly influenced by actions. When the

 problem is structurally complicated, say a heavily

 asymmetric and dense, large influence diagram with

 continuous non-Gaussian random variables, nonqua-

 dratic utility functions and/or continuous sets of

 alternatives at decision nodes, finding the exact solu-

 tion might be analytically and computationally intrac-

 table, and we might need an approximate solution

 method. We will provide such an approximation

 based on simulation.

 Assume that p,(O) > 0, for all pairs (d, 0) and u(d, 0),
 is positive and integrable. Define an artificial distribution
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 over the product space A4 x 0 with density h propor-

 tional to the product of utility and probability, specifi-

 cally h(d, 0) X u(d, 0) Pd(O). Note that the artificial
 distribution h is chosen so that the marginal on the

 alternatives is h(d) = f h(d, O)dO oc V(d). Hence, the
 optimal alternative d* coincides with the mode of the

 marginal of the artificial distribution h in the space of

 alternatives. As a consequence, we can solve the ex-

 pected utility maximization problem approximately

 with the following simulation based approach: (i) draw a

 random sample from the distribution h(d, 0); (ii) convert

 it to a random sample from the marginal h(d); and (iii)

 find the mode of this sample.

 This augmented probability model simulation is

 conceptually different from other simulation algo-

 rithms reviewed earlier. Simulation is not used to

 pointwise evaluate expected utilities for each decision

 alternative. Instead, simulation generates the artificial

 probability model h(Q) on the augmented state vector
 (d, 0).

 The key steps are (i) and (iii). For (ii), since we use

 simulation to generate from h(d, 0), we can get a mar-

 ginal sample from h(d) by simply discarding the simu-

 lated 0 values. For (iii) we rely mainly on tools from

 exploratory data analysis, as we describe in ?3.3. For (i),

 we will introduce generic Markov chain simulation

 methods. Their underlying idea is simple. We wish to

 generate a sample from a distribution over a certain

 space, but cannot do this directly. Suppose, however,

 that we can construct a Markov chain with the same

 state space, which is straightforward to simulate from

 and whose equilibrium distribution is the desired distri-

 bution. If we simulate sufficiently many iterations, after

 dropping an initial transient phase, we may use the

 simulated values of the chain as an approximate sample

 from the desired distribution. We will provide several

 algorithms for constructing chains with the desired equi-

 librium distribution, in our case the artificial distribution

 h, in ?3.2. In the rest of this section we will provide an

 algorithm and a simple example, so that readers may

 grasp the basic idea, without entering into technical

 details. Readers familiar with MCMC simulation may

 skip directly to ?3.

 The strategy we propose now is very simple, but

 may be only undertaken in limited cases. Suppose the

 conditional distributions h(d I 0) and h(0 I d) are avail-

 able for efficient random variate generation. Then, we

 suggest the following scheme, which is known as the

 Gibbs sampler in the statistical literature (Gelfand and

 Smith 1990): (i) Start at an arbitrary value d? E -A, and

 set i = 1; (ii) Generate 0i - h(O I d1); (iii) Generate d

 - h(d I 0i); Set i = i + 1 and repeat steps (ii) and (iii)

 until convergence is judged.

 As a consequence of results in Tierney (1994) and

 Roberts and Smith (1994) we have:

 PROPOSITION 1. If the utility function is positive and

 integrable, Pd(o) > 0,for all pairs (d, 0), and A and 0 are
 intervals in R", the above scheme defines a Markov chain
 with stationary distribution h.

 It is impossible to give generally applicable results

 about when to terminate iterations in Markov chain

 Monte Carlo simulations. It is well known that this is

 a difficult theoretical problem, see, e.g., Robert (1995)

 and Polson (1996), who discuss approaches to find the

 number of iterations that will ensure convergence in

 total variation norm within a given distance to the true

 stationary distribution. However, practical conver-

 gence may be judged with a number of criteria, see,

 e.g., Cowles and Carlin (1996) or Brooks and Roberts

 (1999). Most of these methods have been implemented

 in CODA (Best et al. 1995), which we have used in our

 examples. Once practical convergence has been

 judged, say after k iterations, we may record the next

 N iterations of the simulation output (d1, 01), . .. , (dN,
 ON), and use (d1, . . ., dN) as an approximate sample

 from h(d). From that we may try to assess the mode.

 We illustrate the above approach with an artificial

 example, adapted from Shenoy (1994).

 EXAMPLE 1. A physician has to determine a policy

 for treating patients suspected of suffering from a

 disease D. D causes a pathological state P that, in turn,

 causes symptom S to be exhibited. The physician

 observes whether (S = 1) or not (S = 0) a patient is

 exhibiting the symptom. Based on this information,

 she either treats T (T = 1) the patient (for P and D) or

 does not (T = 0). The physician's utility function

 depends on T, P, and D, as shown in Table 1. The
 value 0.001 was changed from the original value (0) to

 adapt to the general result in Proposition 1. The

 MANAGEMENT SCIENCE/Vol. 45, No. 7, July 1999 997
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 Table 1 The Probability Model p(D, P, S), the Physician's Utility Function u(T, P, D), and h(d, D, P, 5)

 u(T = ds, D, P) h(d, D, P, 5 ) u(c)p( )

 D P S p(D, P, S) d = (0,0 ) (0,1) (1, 0) (1,1) d = (0,0 ) (0,1) (1, 0) (1,1)

 0 0 0 0.612 8 4 8 4 4.896 2.448 4.896 2.448

 0 0 1 0.153 8 8 4 4 1.224 1.224 0.612 0.612

 0 1 0 0.0405 2 6 2 6 0.081 0.243 0.081 0.243

 0 1 1 0.0945 2 2 6 6 0.189 0.189 0.567 0.567

 1 0 0 0.016 1 8 1 8 0.016 0.128 0.016 0.128

 1 0 1 0.004 1 1 8 8 0.004 0.004 0.032 0.032

 1 1 0 0.024 0.001 10 0.001 10 0.000 0.240 0.000 0.240

 1 1 1 0.056 0.001 0.001 10 10 0.000 0.000 0.560 0.560

 Note. The probabilities used in steps (ii) and (iii) of the Markov chain Monte Carlo scheme described in the text are proportional to the entries in the appropriate column

 and row, respectively, of the h section at the right of the table.

 probability of disease D (D = 1) is 0.1. For patients

 known to suffer from D, 80% suffer from P (P = 1).

 On the other hand, for patients known not to suffer

 from D (D = 0), 15% suffer from P. For patients

 known to suffer from P (P = 1), 70% exhibit symptom

 S, and for patients known not to suffer from P (P

 = 0), 20% exhibit S. We assume that D and S are

 probabilistically independent given P. To implement

 the proposed algorithm, we need to find the condi-

 tional distributions h(0 I d) and h(d I 0). In this case, 0

 = (D, P, S) and d = (dl, do), where d, is the decision
 taken if the symptom is exhibited, and do, if it is not
 exhibited. ds = 1(0) means to treat (not to treat) the

 patient. Let p(D, P, S) = p(D)p(P I D)p(S I P) denote
 the probabilities given in the above description. With

 h(d, D, P, S) o: u(T = ds, P, D)p(D, P, S) we find
 h(D, P, S I d, d o) a u(T ds, P, D)p(D, P, S), and
 h(d1, do I D, P, S) oc u(T =ds, P, D).

 Our proposed method goes as follows: (i) Start at an

 arbitrary decision (do, do) and set i = 1; (ii) Generate
 O0 - h(0 I d1-') = h(D, P, S I dl-1, do-1); (iii) Generate
 di - h(d I O0) = h(d1, d0 I Di, S, P'); Set i = i + 1 and
 repeat steps (ii) and (iii) until convergence is judged.

 Once convergence is judged, we record the next N

 iterations of the algorithm (01, dl), . . ., (0N, dN), and
 use (dl, .. ., dN) as an approximate sample from the

 marginal in d of the artificial distribution. We leave

 out some values between those recorded to avoid

 serial correlation. Since alternatives are finite in num-

 ber, we just need to inspect the histogram to approx-

 imate the mode. From a simulated sample of size 1000,

 we find that the optimal decision is d = (d1 = 1, d0
 = 0), that is treat if symptom is present and not treat

 if symptom is absent.

 Note in the example how the proposed augmented

 probability model simulation differs from other sim-

 ulation methods proposed for the solution of IDs. We

 use one simulation over the joint (0, d) space to

 simulate from h(Q) instead of many small simulations
 to evaluate expected utilities for each possible decision

 one at a time. Of course, the previous example is

 extremely simple in that we are able to sample from

 h(d I 0) and h(0 I d), and, by inspection of the histo-

 gram, we may approximate the modes. The following

 sections deal with more complex cases.

 3. Sampling from the Artificial
 Distribution

 We shall provide here a generic method to sample

 from the artificial distribution h(). Typically, this
 distribution will not be straightforward to simulate

 from, requiring generation from possibly high dimen-

 sional models, including complex probability and

 utility functions, continuous decision and chance

 nodes, and possibly conditioning on observed data.

 MCMC simulation schemes are the most commonly

 used methods known to accommodate such general-

 ity; hence we choose them.

 Given the enormous interest in IDs as a tool for
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 Figure 1 A generic influence diagram for our scheme.

 U

 structuring and solving decision problems, see, e.g.,

 Matzkevich and Abramson (1995), we concentrate on

 such structures. An ID is a directed graph representa-

 tion of a decision problem as a probability network

 with additional nodes representing decisions and val-

 ues. For notational purposes, we will partition the set

 of nodes into five subsets, differentiating three types

 of chance nodes: (i) Decision nodes d, representing

 decisions to be made. (ii) Chance nodes, including

 random variables x observed prior to making the

 decision, i.e., data available at the time of decision

 making; not yet observed random variables y, i.e.,

 data which will only be observed after making the

 decisions; and unobservable random variables 0, i.e.,

 unknown parameters; (iii) One value node u repre-

 senting the utility function u(d, x, 0, y). Figure 1

 provides a simple generic ID for our scheme. An ID is

 solved by determining a decision d* with maximum

 expected utility. This requires marginalizing over all

 chance nodes (y, 0), conditioning on x, and maximiz-

 ing over d. See Shachter (1986) for a complete descrip-

 tion and an algorithm to solve IDs.

 The method we propose here is applicable to IDs

 with nonsequential structure, i.e., decision nodes must

 not have any chance nodes as predecessors that have

 distributions depending, in turn, on other decision

 nodes. Except for some technical conditions there will

 be no further requirements.

 3.1. The Probability Model Defined by Influence

 Diagrams

 An ID defines the conditional distributions p(x I 0),

 p(O) and Pd(Y I 0), a joint distribution on (x, 0, y) via

 Pd(X, 0, y) = p(0)p(x I 0)P(Y I 0), and a conditional
 distribution Pd(O' y I x) oc p(0)p(x I 0)Pd(Y I 0), for (0,
 y) given the observed nodes x. Typically, x and y are

 independent given 0, allowing the given factorization,

 and p(O) does not depend on d. If a particular problem

 does not fit this setup, modifications of the proposed

 algorithm are straightforward.

 In the context of this probability model, solving the

 ID amounts to maximizing the expected utility over d,

 where pd(0, y I x) is the relevant distribution to com-
 pute this expectation. In summary, solving the ID

 amounts to finding

 max V(d) = u(d, x, 0, y)dpd(0, y I x)1 . (1)

 We solve this problem approximately by simulation.

 Augment the probability measure Pd(O' y I x) to a
 probability model for (0, y, d) by defining a joint p.d.f.

 h(d, 0, y) Xc u(d, x, 0, y)pd(0, y I x).

 The mode of the implied marginal distribution h(d)

 oC u(d, x, 0, Y)Pd(O' y I x)dOdy = V(d) corresponds
 to the optimal decision d*. The underlying rationale of

 our method is to simulate a Markov chain in (0, y, d),

 defined to have h(d, 0, y) as its asymptotic distribu-

 tion. For big enough t, the simulated values (0t, yt, dt)

 from successive states of the simulated process pro-

 vide, approximately, a Monte Carlo sample from h(d,

 0, y). Note that the simulation is defined on an

 augmented probability model h (d, 0, y) rather than on

 Pd(0, y) for each possible instantiation of the actions d,
 as traditional methods do. By considering the mar-

 ginal distribution of dt in this Monte Carlo sample, we

 can infer the optimal decision using methods such as

 those discussed in ?3.3.

 The key issue is the definition of a Markov chain

 with the desired limiting distribution h(). For that, we
 capitalise on recent work in numerical Bayesian infer-

 ence concerning the application of Markov chain

 Monte Carlo methods to explore high dimensional

 distributions which do not allow analytic solutions for

 expectations, marginal distributions, etc.

 3.2. Markov Chain Monte Carlo Simulation

 We shall provide a general algorithm which will be

 valid for all IDs satisfying the structural conditions

 MANAGEMENT SCIENCE/Vol. 45, No. 7, July 1999 999
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 specified above and some minor technical conditions

 discussed below. The algorithm we describe is of the

 Metropolis type (Tierney 1994): We generate a new

 candidate for the states from a probing distribution,

 and then move to that new state or stay at the old one

 according to certain probabilities. We do this transi-

 tion in three steps, for d, 0, and y. We only require to

 be able to evaluate the utility function u (d, x, 0, y) and

 the probability distributions Pd(Y I 0), p(O), p(x I 0),
 for any relevant d, x, 0, y. This will typically be

 possible, since the definition of the ID includes explicit

 specification of these distributions, i.e., the modeler is

 likely to specify well-known distributions.

 The scheme requires specification of probing distri-

 butions gl, g2, and g3. The choice of probing distribu-
 tions gj( * I * ) is conceptually arbitrary, with the only
 constraint that the resulting Markov chain should be

 irreducible and aperiodic. As we shall argue, when-

 ever possible, we assume symmetric probing distribu-

 tions, i.e., satisfying g(a I b) = g(b I a). For example,

 g(a I b) could be a multivariate normal distribution

 N(b, E) for some E. Details about the choice of

 probing distribution are discussed in the appendix.

 We then have:

 ALGORITHM 1.

 1. Start at values (d?, 00, y?) for decisions, param-

 eters and outcomes, and set i - 1.

 2. Let u1 = u(d1-, x, Oi-1 yi-);
 Generate a "proposal" - - gl(d I d1) and eval-
 uate al = u(d, x, oi-1, yil1);

 Compute a, min{l, [h(d, 01, yi1)]/[h(d' 1,
 01, y )]) = min{l, (fl/ul) * [pd(yi-l I 0'-')]/
 [ Pd-( i-1 I i-1)]);
 With probability al, set d = d; otherwise, keep d
 = di- 1

 3. Let u2 u(d, x, 0i- y-l);

 Generate a "proposal" 0 I 0'-1) and eval-
 uate u2 u(d, x, 6 yil-);
 Compute a2= min{l, [h(d', 0, y1-1)]/[h(d, Oi-1 yi-1)])

 = rmin{l, (a2/U2) *[p()p(X I 1)pd(Y1 I 0)]!

 [p(01)p(x I 01)pdi(y I 01 )]);
 With probability a2, set O0 = 0; otherwise, keep O
 = oi-1

 4. Let t3 = u(d, x, 0i yi-l).

 Generate a proposal y 93(I yI-l) and evaluate

 U3 = ft,x, 0, g).

 Compute a3 = min{l, [h(d', O0, 9)]/[h(d', O0,
 yi-l)] = min{l, (U3/U3) [Pdi( 01)]!

 [ (i- I Oi)JJ. I 0)]).
 With probability a3 set y'- =; otherwise keep
 y = yi-l

 5. Set i = i + 1. Repeat steps 2 through 4 until

 chain is judged to have practically converged.

 This algorithm defines a Markov chain, with h(d, 0,

 y) as stationary distribution. The generality of this

 algorithm comes at a price, namely possible slow

 convergence. Depending on the application, long sim-

 ulation runs might be required to attain practical

 convergence. However, this fully general algorithm is

 rarely required.

 Many problems allow simpler algorithms based on

 using p(O I x) and Pd(Y 0) to generate proposals. Algo-
 rithm 2, given below, only requires a probing distribu-

 tion g(d I d) for d, evaluation of the utility function and

 algorithms to generate from p(O I x) and Pd(Y I 0). While

 simulating from Pd(Y' 0) is typically straightforward,
 simulating from p(O I x) is not. In general, this distribu-

 tion will not be explicitly specified in the ID, but needs to

 be computed through repeated applications of Bayes

 formula, or several arc reversals in the language of IDs.

 However, note that simulating from p(O I x) amounts to

 solving the statistical inference problem of generating

 from the posterior distribution on 0 given the data x.

 Hence, we can appeal to versions of posterior simulation

 schemes appropriate for a variety of important inference

 problems recently discussed in the Bayesian literature

 (see, e.g., Smith and Roberts 1993, Tanner 1994, and

 Tiemey 1994). Before starting the algorithm described

 below, we generate a sufficiently large Monte Carlo

 sample from p(O I x) by whatever simulation method is

 most appropriate.

 ALGORITHM 2.

 1. Start at values (do, 00, y0) and set i = 1;
 2. Evaluate ui = u(d1-, x, Oi-1 yil);
 3. Generate (d, 0, g) - g(d I d(i-1))pd(& g I x)

 = g(d I d("))p( I x)pd(g I 6);
 4. Evaluate u u(d, x, 0, g);
 5. Compute a min{l, [h(d, 0, g)]/[h(di-1, Oi-1,

 yi-1)] . 1pdi-[1(Oi,1 yi-1 I x)] /[ pd(0, I X)]
 = min(l, a/Tu1);

 1000 MANAGEMENT SCIENCE/Vol. 45, No. 7, July 1999

This content downloaded from 
�����������138.100.13.44 on Tue, 12 Dec 2023 08:24:25 +00:00������������ 

All use subject to https://about.jstor.org/terms



 BIELZA, MULLER, AND INSUA

 Decision Analysis by Augmented Probability Simuilation

 6. With probability a, set (di, O0, y') = (d, 6, y);
 otherwise, keep (di, 0i, yi) = (d-1, O-1, yi-l)

 7. Set i = i + 1. Repeat steps 2 through 6 until

 convergence is practically judged.

 In step 3, generation of 0 - p(O I x) is done using the

 simulated Monte Carlo sample generated earlier.

 ALGORITHM 3. The algorithm simplifies if x is miss-

 ing in the ID, i.e., if no data is given at the time of the

 decision. The associated Algorithm 3 would be stated

 as Algorithm 2, with the proposal distribution in step

 3 replaced by (d, 6, y) - g(d I d)pd(6, y)
 = g(dId)p(O)pd(Y17O). Sampling from Pd(O, Y)
 = P(0) Pd(Y I 0) will be feasible in general, since these
 distributions are defined explicitly in the ID.

 3.3. Finding the Optimal Solution

 The MCMC simulation provides us with an approxi-

 mate simulated sample { (d 1, 01, y 1), . . . , (d N, ON, yN)}
 from h(d, 0, y), from which we deduce an approxi-

 mate sample (d1, . .. , dN) from the marginal h(d). The

 mode of h(d) is an approximation of the optimal

 alternative.

 In the case of discrete alternatives, the problem is

 simple since we only have to count the number of

 times each element has appeared, and choose the one

 with the highest frequency. It may be worthwhile

 retaining not one but several of the most frequent

 decisions, and study them in further detail, as a way of

 conducting sensitivity analysis.

 In the case of continuous alternatives, as a first

 approach we may use graphical exploratory data

 analysis tools, especially with low dimensional deci-

 sion vectors. When the decision vector d is one- or

 two-dimensional, we may produce a histogram (or a

 smooth version) and inspect it to identify modes. For

 higher dimensional decision vectors d, we propose to

 consider the problem as one of cluster analysis. Modes

 of h(d) correspond to ds with higher density, which

 suggests looking for regions with higher concentration

 of sampled ds. This leads us to compute a hierarchical

 cluster tree for the simulated points dt. Since we are

 assuming h to be a density with respect to Lebesgue

 measure in BRi, and we are interested in identifying

 regions where the optimal alternative might lie, we

 suggest using complete linkage with Euclidean dis-

 tance. Once we have a classification tree, we cut at a

 certain height and obtain the corresponding clusters.

 The location of the largest cluster indicates the area of

 the best decision. Again, as before, it may be useful to

 keep several larger clusters and explore the corre-

 sponding regions. The result of course would depend

 on the cutting height, but by exploring several heights

 we may be able to identify several decisions of inter-

 est. We illustrate the approach in ?4.2.

 4. Examples

 4.1. Example 2: A Medical Decision Making

 Problem

 We illustrate the algorithm with a case study concern-

 ing the determination of optimal apheresis designs for

 cancer patients undergoing chemotherapy. Palmer

 and Muiller (1998) describe the clinical background

 and solve the problem by large scale Monte Carlo

 integration.

 Between a pretreatment and start of chemotherapy,

 stem cells (CD34) are collected to allow later reconsti-

 tution of white blood cell components. Depending on

 the pretreatment, the first stem cell collection process

 (apheresis) is scheduled on the fifth or seventh day

 after pretreatment. A decision is to be made on which

 days between pretreatment and treatment we should

 schedule stem cell collections to (i) collect some target

 number of cells; and (ii) minimize the number of

 aphereses. We have data on I = 22 past patients, and

 for the first day of the new patient.

 Let yij, i = 1, . . ., I, and = 1, ... ., n , denote the
 observed CD34 count for patient i on day ti. Also, yi

 = (yil, ... , yi,,i) shall designate the i-th's patient data
 and x = (yl, . .. X, yI) the combined data vector.
 Palmer and Muller (1998) specify the following prob-

 ability model for this process. The likelihood is based

 on the observation that the typical profile of stem cell

 counts over days shows first a rise after pretreatment,

 reaches a maximum, and then slowly declines back

 towards the base level, as shown in Figure 2. To model

 such shapes we use a nonlinear regression model. Let

 g(t; e, s) = 1/cF(t; a, b) denote a Gamma probability
 density function with parameters b = e Is2, a = e * b
 chosen to imply mean and variance matching e and s2
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 Figure 2 Three typical patients. The dashed lines connect the data points. The solid curve plots the fitted profile, using the described probability model.
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 and rescaled by c[(a - 1) bla -exp(- (a 1)), so
 that sup(g) = 1. We use g( *; e, s) to parametrize a
 nonlinear regression for the profiles through time of
 each patient:

 Yij =zig(tij; ei, si) + E ij,

 j= 1, . .. , ni, withEi - N(O, (r2).

 The prior model on the patient-specific parameters

 is hierarchical. Patient i undergoes one of two possible

 pretreatments xi C {1, 21, which serves as a covariate

 to specify the first level prior: Oi - N(-q,,, V). The
 hyperprior at the second level is common for both

 cases: Tk - N(t, E), k = 1, 2. The model is completed
 with a prior on V and &:2 V-1 _ W[q, (qQ)-1] and u--2
 - Gamma(aO/2, bo/2).

 Figure 2 shows observed counts yij and fitted pro-
 files 9 j = E[zig(tij; e , s ) I x] for some typical patients.
 For a new patient h = I + 1 denote with y = (y I, ....
 Yi,7) the (unknown) stem cell counts on days t,,, ....,

 th'n," For a first day to, we already have a count Y1uo
 Using the notation introduced at the beginning of ?3,

 x = (Yl, . Y', Yylo) is the observed data vector, y
 = Y,, is the future data vector, and 0 = (01, ..., 01,
 01?+1,1 r1 'q2, V, o-) are the unobservable parameters in
 the model. Given the typical profile, the optimal

 decision will schedule aphereses for all days between

 some initial day do and a final day dl, i.e., the decision
 parameter is d = (d, d1).

 Let A be the event of failing to collect a target

 number y* of stem cells,
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 {di

 A= yhjLh < Y|
 j=do

 where Lh is the volume of blood processed at each

 stem cell collection for the new patient. Let na = d

 - do + 1 denote the number of scheduled stem cell
 collections. The utility function is u(d, x, 0, y) = -cnfa

 - p Pr(A I d, 0), where c is the sampling cost and p a

 penalty for underachievement of the target. We need

 to maximize over d the expected utility V(d) = f u(d,
 x, 0, y)dp(y I 0)dp(0 I x). Note that the probability

 model p(0)p(x, y I 0) does not depend on the decision

 nodes, but there is data x influencing the belief model.

 Since p(0 I x) may be actually sampled with a Markov

 chain Monte Carlo method described in Palmer and

 Muller (1998), we use Algorithm 2 to solve the prob-

 lem. To ensure a positive utility function we add a

 constant offset to u(-).
 We found the optimal design d* for a future patient

 with the above belief and preference model when p/ c

 = 10.0. For a patient undergoing treatment Xh = 1

 with a first observation yo = 20.0 on day th,O = 5, the
 optimal apheresis schedule for the remaining six days

 was found to be given by do = 6, d, = 6. Since the
 decision space is two dimensional, we can do this by a

 simple inspection of the histogram. Figure 3 plots the

 estimated distribution h(d) a V(d).

 4.2. Example 3: A Water Reservoir Management

 Problem

 In Rios Insua et al. (1997), we describe a complex

 multi-period decision analysis problem concerning

 the management of two reservoirs: Lake Kariba (K)

 and Cahora Bassa (C). Here we solve a simplified

 version using the proposed MCMC approach to sim-

 ulate from the augmented probability model.

 We want to find, for a given month, optimal values

 to be announced for release from K and C through

 turbines and spillgates, d', d2, d', d2, respectively. The
 actual amounts of water released depend on the water

 available, which is uncertain, since there is uncertainty

 about inflows ik and iC to the reservoirs. There is a

 forecasting model for both ik and jC, the latter being
 dependent on the water released from K and the

 incremental inflows (inc), which, in turn, depend on a

 parameter P3. The preference model combines utilities

 Figure 3 The grey shades show a histogram of the simulated d' for the

 medical problem. Inspection of h(d) reveals the optimal
 decision at d = (6, 6) (white triangle).
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 for both K and C. Those for K depend on the energy

 deficit (def), the final storage (stok) and the amount of

 water spilled (spi). Those for C depend on the energy

 produced (ene) and the final storage (stoC). Initial

 storages sk and sc have influence as well over actual

 releases. Figure 4 shows the influence diagram repre-

 senting the problem. Nodes with double border are

 either known values or deterministic functions of their

 predecessors. They are required to compute the value

 node u, but will not show up in the probability model.

 In terms of our notation, the problem includes four

 decision nodes d = (dk, dk, dc, dc) and two chance

 nodes ik and P.
 Figure 5 shows some profiles of the histogram of the

 simulated dt - h(d), generated by Algorithm 3. The

 decision parameter is four-dimensional. Hence we

 used a four-dimensional grid (with 10 x 10 x 10 x 10

 cells) to record a four-dimensional histogram of the

 simulated states. Simple inspection of the empirical

 distribution allows to read off the optimal release at d

 = kdk = 3247, d2k = 1000, dfc = 4121, dc = 200}.
 The solution is based on 100,000 simulated values

 from the Markov chain Monte Carlo scheme. Figure 5

 illustrates also another feature of our method which is
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 Figure 4 Influence diagram for the reservoir problem.
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 a simple sensitivity analysis procedure at no extra

 cost. Darkness in Figure 5b suggests that expected

 utility is rather flat when releases through turbines are

 fixed at their optimal values, hence suggesting insen-

 sitivity with respect to changes in spill. On the other

 hand, Figure 5a, with just one dark area where the

 estimated optimum is, suggests that expected utility is

 fairly peaked in release through turbines, and hence

 very sensitive to changes in energy releases.

 Alternatively, as discussed in ?3.3, we consider a

 hierarchical cluster tree of the simulation output. The

 dots in Figure 5 show the solution based on cutting a

 hierarchical cluster tree of 1000 simulated values d

 - h(d) at height 2000 and finding the cluster with the

 most members. The optimum is found at d* = Id`
 = 3353, d* = 742, dc = 3616, dc* = 476}. This comes
 reasonably close to the optimum estimated earlier.

 5. Discussion

 5.1. Comparison with Alternative Schemes

 The scheme described in Algorithms 1, 2, and 3

 transforms the original expected utility maximization

 problem (1) into a simulation problem. Our scheme is

 very generic, in the sense of accommodating arbitrary

 probability models, be they discrete or continuous,

 and utility functions, as long as the probability density

 (or probability mass function) and the utility function

 are pointwise evaluable. The main difference with

 other simulation schemes earlier considered in the

 literature is that instead of using simulation to evalu-

 ate expected utilities (losses) for each possible instan-

 tiation of decisions, we use simulation from an artifi-

 cial auxiliary model which augments the original

 probability model to include an artificial distribution

 over decision nodes. Whether one or the other ap-

 proach is more efficient depends on the specifics of the

 considered decision problem. No general comparisons

 are possible. Even in specific examples, performance

 will depend heavily on arbitrary choices like the

 amount of discretization, which is necessary for many

 methods; run length of the involved Monte Carlo

 simulations; chosen MCMC scheme, etc. However,

 some general observations about the relative effi-

 ciency of the methods are possible.

 In problems with few alternatives, analytic solu-

 tions using methods like arc reversal (Shachter

 1986), and simulation methods which use simula-

 tion to pointwise evaluate expected utilities, like

 Likelihood Weighting (Shachter and Peot 1990), are

 typically more efficient than simulation over the

 auxiliary probability model. Bielza and Shenoy

 (1998) discuss a decision problem (the "reactor

 problem") with six possible actions, and chance

 nodes with less than 10 possible joint outcomes. An

 exact solution using Shachter's (1986) algorithm

 requires one arc reversal and the largest state space

 used during the solution phase contains four vari-

 ables. By comparison, we implemented the same

 example using augmented probability simulation,

 following Algorithm 3. We used 100,000 iterations

 in the MCMC simulation. The computational effort

 of one iteration is approximately comparable to one

 arc reversal. Thus the exact solution is clearly far

 more efficient in terms of computing time. Alterna-

 tively, consider simulation to compute the expected

 utility of each of the six possible actions, using, for

 example, Likelihood Weighting. Considering the

 involved numerical standard errors, Monte Carlo

 simulation sizes of around 1000 simulations for each

 alternative decision would be adequate. Thus, also
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 Figure 5 (a) Expected utility as a function of release for energy (d', dDC with spill fixed at the optimal levels; and (b) as a function of spill (d', dD) with

 release through turbines fixed at the optima. The diamond indicates the optimal decision. The dots indicate the simulations in the largest

 cluster of the hierarchical clustering tree cut at height 2000.
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 Likelihood Weighting dominates simulation from

 the augmented probability model.

 In problems where the optimal decision is to be

 computed conditional on some already available data x

 the comparison changes, especially if the posterior dis-

 tribution of the unknown parameters is significantly

 different from the initial prior distribution, i.e., under

 low prior probability for the evidence x. Consider, for

 example, the application reported in ?4.1, which is not

 amenable to exact methods. Using Monte Carlo simula-

 tion to compute expected utilities for alternative deci-

 sions, we can no longer generate independent samples.

 Following Jenzarli's (1995) proposal we could use Gibbs

 sampling to compute expected utilities. Depending on

 the specific choices of the implemented MCMC scheme

 and termination criteria, one would typically use on the

 order of 10,000 iterations (Palmer and Miller 1998).

 Discretizing the sample space, one could, in principle,

 also use Logic Sampling (Henrion, 1988). However,

 Logic Sampling would not be advisable for this problem

 since the fraction of simulated experiments which gen-

 erate variables corresponding to the actual observations

 would be dose to zero (i.e., p(XE) 0, in the notation of
 Shachter and Peot 1990). For similar reasons, Likelihood

 Weighting (Shachter and Peot 1990) would fail. Since

 only leaf nodes are observed, the sample scores would

 be proportional to the likelihood function, i.e., the

 scheme would amount to importance sampling using

 the prior probability model as importance sampling

 function. This can, however, be addressed using

 bounded variance type algorithms as discussed, for

 example, in Pradhan and Dagum (1996).

 Finally, many decision problems involve continu-

 ous decision variables, like the example considered in

 ?4.2. Continuous decision parameters create no prob-

 lem for simulation from the augmented probability

 model, but would not allow a straightforward appli-

 cation of any scheme based on evaluating expected

 utilities for one decision at a time. Even if discretiza-

 tion was used, say on a 10 x 10 x 10 x 10 grid, the

 resulting number of alternative actions renders such
 schemes difficult to use.
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 5.2. Conclusion

 Complex decision problems may render impossible

 the application of exact methods to obtain optimal

 decisions. As a consequence, we should look for

 approximation methods, including simulation.

 We have proposed a simulation-based strategy for

 approximating optimal decisions in a decision analy-

 sis. Our experiments and examples suggest that this

 approach may be very powerful. Implementation of

 the algorithms is fairly straightforward based on the

 schemes provided. Specific cases may require simple

 modifications such as the ones suggested in ?3.2. The

 exploration of the sample in search for modes may be

 done with standard statistical software. As we men-

 tioned in the discussion of Example 3, one feature of

 our method is the provision of simple sensitivity

 analysis features, at no extra cost.

 A number of challenging problems remain, partic-

 ularly perhaps, the extension of our scheme to sequen-

 tial decisions. The straightforward approach of ex-

 panding the model to non-sequential normal form

 may only be applied when the number of decision

 nodes is small. Another challenging problem would

 be to develop a computational environment based on

 our approach. It would be also interesting to develop

 further methods to look for modes in multivariate

 settings.

 Similar ideas may be pursued to solve traditional

 statistical optimal design problems. From a formal

 point of view, an optimal design problem can be

 described as a stochastic optimization problem (1).

 This is explored in Clyde et al. (1995) for the special

 case of Algorithm 3 with continuous sample spaces

 and nonsequential setup.'

 1 Research supported by grants from the National Science Founda-

 tion, CAM, CICYT, CICYT-HID and the Iberdrola Foundation. Parts

 of it took place while Peter Muller was visiting UPM and David Rios

 Insua was visiting CNR-IAMI. We are grateful for discussions with

 Mike Wiper.

 Appendix: Implementation

 The choice of the probing distributions gj( * I * ) in Algorithm 1 is
 conceptually arbitrary, with the only constraint that the resulting

 Markov chain be irreducible and aperiodic.

 In the statement and proofs of the proposed algorithms, we

 assumed g to be symmetric in its arguments, i.e., g(a I b) = g(b I a).

 If d E RP is a continuous parameter, we propose to use a normal

 kernel g(d I d) = N(d, Y) with some appropriately chosen covari-

 ance matrix X, for example, a diagonal matrix with diagonal entries

 corresponding to reasonable step sizes in each of the decision

 parameters. Good values for the step size can be found by trial and

 error with a few values. In a particular setup, Gelman, Roberts and

 Gilks (1996) show that the optimal choice of step size should result

 in average acceptance probabilities around 25%, and similarly, for

 other parameters.

 If d is discrete, a simple choice for g(d I d) could generate d - 1

 and d + 1 with probability 0.5. Of course, many other problem

 specific choices are possible. In Example 2, e.g., we define d = (do,

 d,) by choosing with probability 6 one of six possible moves: (i)
 increase d0 and d1 by 1 day; (ii) decrease d0 and dI by 1; (iii) increase
 do by 1; (iv) decrease do by 1; etc.

 Should symmetry of g be violated, an additional factor g(d I d)/

 g(d I d) would be added in the expressions for acceptance probabil-

 ities. This would correspond to Metropolis-Hastings steps, rather

 than Metropolis steps. Convergence proofs for the proposed scheme

 are simple, based on results in Tierney (1994) and Roberts and Smith

 (1994).
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