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Abstract

With the proliferation in recent years of industrial systems monitored by sensors, there has

been a drastic increase in the volume of data recovered that characterizes these systems.

Specifically, the continuous recovery of data generates multivariate time series, which have

specific characteristics and require special treatment. Additionally, industrial systems usually

entail complex underlying processes, and these recovered time series offer valuable informa-

tion about these processes and about the relationships between the variables in our system.

One model that allows us to work with time series data and that is able to offer us in-

sights about the underlying process is dynamic Bayesian networks. However, the dynamic

Bayesian network architecture is very restrictive, and cannot be freely applied to a wide range

of industrial processes. Time series do not necessarily follow autoregressive order 1 and the

relationships between their variables can come from non-linear physical processes. As op-

posed to this, dynamic Bayesian networks for continuous data usually assume normality and

autoregressive order 1. On top of that, they are inherently lineal models in the case of linear

Gaussian networks. These restrictions cause that dynamic Bayesian networks incur in severe

inaccuracies when applied directly to industrial problems. In this dissertation, we focus on

extending the dynamic Bayesian network model so that it can be applied as a general purpose

model in industrial problems.

As our first contribution, we explore higher autoregressive orders of dynamic Bayesian net-

works to apply them for long-term forecasting of the temperature inside an industrial furnace.

We create several dynamic Bayesian network models that are able to assimilate the tendency

of the time series better as we increase the Markovian order of the networks up to a certain

point. Thus, we are able to create a dynamic Bayesian network model that accurately fore-

casts the temperature inside an industrial furnace over spans of thousands of hours.

To fix the issue of increasing complexity when learning higher order networks, we propose

a particle swarm algorithm to move through the space of possible structures. Firstly, we

restrict the search to transition networks, which are graphs that only allow arcs to the most

recent instant. Secondly, we define a natural number encoding and operators that are invari-

ant to the Markovian order of the network in terms of particle size. Regardless of the desired

Markovian order of the network, the size of the vectors that encode the graphs remains con-

stant, increasing the efficiency of the algorithm for higher orders.

To make dynamic Bayesian network models more flexible in the presence of non-linear sys-

tems, we propose a hybrid model between model trees and dynamic Bayesian networks. This

hybrid approach fits a classification and regression tree to some dataset and then fits a dy-

namic Bayesian network model in each of its leaf nodes. With this structure, we can use the

tree to classify each new instance into one of the leaf dynamic Bayesian network models and
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use the most appropriate one to forecast the next instant. Afterwards, the forecasted values

are processed again with the tree and a new dynamic Bayesian network model is selected,

dynamically choosing the most fitting network for each instant over time. This allows us to

perform non-linear inference via this piecewise regression mechanism.

As a last application of dynamic Bayesian networks, we have used them to forecast fu-

ture states in a classification problem through time of the state of patients infected by the

COVID-19, using neural networks as the classifier model.

Finally, we compiled and distributed the dynamic Bayesian network framework and all of

our contributions inside an open source R package that allows a streamlined application of

dynamic Bayesian networks in any industrial and real world settings.
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Resumen

Con la proliferación en estos últimos años de sistemas industriales monitorizados por sensores,

ha habido un incremento drástico en el volumen de datos recuperados que caracterizan

estos sistemas. En particular, el guardado continuo de datos genera series temporales

multivariantes, las cuales tienen caracteŕısticas espećıficas y requieren un tratamiento

especial. Además, los sistemas industriales normalmente contienen procesos complejos

subyacentes, y estas series temporales ofrecen información valiosa sobre estos procesos y

sobre cómo se relacionan las variables de nuestro sistema entre ellas.

Un modelo que nos permite tratar datos de series temporales y que es capaz de ofrecernos

información sobre el proceso subyacente son las redes bayesianas dinámicas. Sin embargo,

la arquitectura de estas redes es muy restrictiva, y no puede ser aplicada directamente a

muchos procesos industriales. Las series temporales no necesariamente siguen un orden

autorregresivo unitario y pueden tener variables cuyas relaciones vienen definidas por

procesos f́ısicos no lineales. Sin embargo, las redes bayesianas dinámicas para datos

continuos suelen asumir normalidad en los datos y orden autorregresivo 1, siendo modelos

lineales por definición en el caso de las redes lineales gaussianas. Estas restricciones provocan

que la precisión de las redes bayesianas dinámicas disminuya cuando se aplican directamente

a problemas industriales. En esta tesis vamos a extender el modelo de redes bayesianas

dinámicas para que pueda usarse como un modelo de propósito general en problemas

industriales.

En primer lugar, relajamos la restricción del orden autorregresivo de las redes bayesianas

dinámicas para aplicarlas a la predicción a largo plazo de la temperatura dentro de un

horno industrial. Para ello, creamos varios modelos de redes bayesianas dinámicas que son

capaces de modelar mejor la tendencia de las series temporales según aumentamos el orden

markoviano de las redes hasta un cierto punto. Con esto, generamos un modelo de redes

bayesianas dinámicas que puede hacer predicciones precisas de la temperatura dentro del

horno industrial a lo largo de periodos de miles de horas.

Para solucionar el aumento de complejidad del aprendizaje de estructuras de alto

orden, proponemos un algoritmo de enjambre de part́ıculas para movernos en el espacio de

posibles grafos. Primero, restringimos la búsqueda a grafos que únicamente permiten arcos

dirigidos al instante más reciente. Después, definimos unos operadores y una codificación por

medio de vectores de números naturales que son independientes del orden markoviano de la

red en términos de tamaño de las part́ıculas. Aśı, el tamaño de los vectores que codifican las

estructuras se mantiene constante sin importar el orden markoviano, mejorando la eficiencia

del algoritmo para órdenes altos.

Para hacer los modelos de redes bayesinas dinámicas más flexibles en presencia de sistemas no
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lineales, proponemos un h́ıbrido entre model trees y redes bayesianas dinámicas. Este h́ıbrido

ajusta un árbol de clasificación y regresión a un conjunto de datos y después ajusta un modelo

de red bayesiana dinámica en cada una de las hojas del árbol. Con esta estructura, podemos

utilizar el árbol para asignar cada nueva instancia a un modelo de una hoja del mismo y

aśı usar el modelo de red bayesiana dinámica apropiado para predecir el siguiente instante.

Esto nos permite realizar inferencia no lineal utilizando este mecanismo de regresión a trozos.

Como último caso de uso, hemos aplicado las redes bayesianas dinámicas a un problema

de clasificación a lo largo del tiempo del estado de pacientes que sufren infecciones de

COVID-19, usando redes neuronales combinadas como modelo clasificador.

Finalmente, hemos compilado y distribuido el modelo base de red bayesiana dinámica

y todas nuestras contribuciones en un paquete de código abierto en R que permite una

aplicación directa de las redes bayesianas dinámicas en casos industriales.
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Chapter 1
Introduction

In recent years, machine learning has become one of the most popular tools for solving prob-

lems in all kind of real world situations. We can find applications in industrial scenarios like

electrical motor monitoring [Kirchgässner et al., 2021] or refinery furnace modelling [Sundar

et al., 2020], in neuroscience [Bielza and Larrañaga, 2014], in natural language generation

[Gatt and Krahmer, 2018], in automatic image identification and description [Hossain et al.,

2019], in automatic driving [Kiran et al., 2021] and many other fields.

However, behind all these applications there are machine learning models trained with

data. These models can be fitted to perform all kinds of tasks, but each one has its own

advantages and disadvantages. Some of them are suited to model nonlinear problems where

as others are limited to linear problems, some require huge amounts of data and processing

power to be trained while others can be trained with smaller datasets and demand less from

processors, and some can show how they perform their tasks while others work as black boxes

that offer results without showing the reasoning behind. These are just some examples that,

usually, no machine learning model is suited for every task [Adam et al., 2019]. Most models

have fields where they are popular tools, and they have evolved over time in order to overcome

some of their initial drawbacks and extend their capabilities [Wang and Raj, 2017].

If we focus ourselves in industrial systems, the increasing number of sensors monitoring

processes in real time has generated huge loads of time-series data, where many readings of

these sensors are recorded as time passes. This has given rise to an increased interest in

machine learning models that can work with time-series and the specific problems related

to them, such as estimating the remaining useful life of components [Ma et al., 2014; Cai

et al., 2019] or forecasting possible future values for specific variables, which can also be

applied to situations outside industry like stock market predictions [Duan, 2016] or medicine

[Ehwerhemuepha et al., 2021].

In this dissertation, we will focus on one specific machine learning model, dynamic

Bayesian networks (DBNs). This model allows us to work with time-series data by iden-

tifying conditional independence relationships between variables over time. They can be

applied as general purpose models, but suffer from some shortcomings that limit their use.

When applied to continuous variables, DBNs are linear models that can usually assume au-
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toregressive order 1, which limits their accuracy in real world scenarios where systems do

not usually follow these assumptions. On top of that, their application is not straightfor-

ward because of the lack of software packages that allow fast prototyping of DBN models.

Throughout this work, we will define modifications and additions to the DBN framework in

order to improve the capabilities of DBNs as general purpose models applied to real world

problems. We will also compile all these modifications inside an open source R package that

allows a streamlined application of these models

Chapter outline

First, in Section 1.1 we present the hypotheses and objectives of this work. Then, in Section

1.2 we discuss the organization of the rest of the document.

1.1 Hypotheses and objectives

This dissertation revolves around three main hypotheses:

• High-order Gaussian DBNs can be used to accurately model the profile and tendency

of multivariate time-series inside industrial furnaces in long-term scenarios.

• The extension of DBN models to higher autoregressive orders and to nonlinear pre-

dictions will allow their application as general purpose models that fit industrial data

accurately and competitively with other state-of-the-art time-series forecasting models.

• The development of a DBN framework that allows a straightforward application and

modelling of data-driven networks will boost the usage and industrial prototyping of

DBNs.

In order to prove these hypotheses, our main objectives in this work are:

• To develop a tool that allows seamless and straightforward learning and inference of

high-order Gaussian DBNs.

• To develop a particle swarm algorithm that is capable of learning high-order DBN

structures and is invariant of the desired Markovian order of the networks.

• To create a new framework that allows Gaussian DBNs to perform nonlinear forecasting.

• To extend the use of DBNs as general purpose time-series forecasting models in indus-

trial settings and compare them with other state-of-the-art models.

1.2 Document organization

This document includes five parts, nine chapters and an appendix organized as follows:
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Part I. Introduction

This part provides the preambles of this work.

• Chapter 1 shows the hypotheses and objectives of the thesis. It also presents the

document organization.

Part II. Background

• Chapter 2 provides an introductory background to Bayesian network (BN) basic theory.

We introduce the formal definition of the joint probability distribution and explain the

process of learning both the structure and the parameters of a BN. Finally, we provide

methods to perform exact and approximate inference with the model.

• Chapter 3 explains the extension of BNs to the dynamic scenario. We begin with a

short introduction to time-series (TS) data and how to work with them. Then, we

explain the modifications performed on the baseline BN framework in order to allow it

to work with time-series. After presenting learning and inference methods, we end the

chapter explaining how to perform forecasting.

Part III. Contributions

This part contains the five chapters corresponding to the contributions of this work.

• Chapter 4 addresses the modelling of an industrial furnace with high-order DBNs. In

this chapter we evaluate how increasing the Markovian order of DBNs helps when

modelling the trend of TS and improves the accuracy of long term forecasting.

• Chapter 5 provides a new structure learning algorithm specific for high-order DBNs.

Our new method uses particle swarm optimization to move through the space of possible

DBN structures and is encoded in a way that increasing the Markovian order does not

increase the size of the particles.

• Chapter 6 provides a new hybrid model between model trees and DBNs. This new

model is able to perform nonlinear forecasting via piecewise regression. This addresses

the linearity constraint of Gaussian DBNs, which makes the model incur in innacuracies

when modelling nonlinear processes.

• Chapter 7 provides a method to couple Gaussian DBNs with static classifiers to identify

whether patients infected with the COVID-19 are going to be in a critical state in the

next 40 hours or not. It provides a framework to make Gaussian DBNs able to perform

classification tasks over time with the aid of a classifier. In this case, the classifier that

provided the best accuracy was a neural network.

• Chapter 8 discusses the open source R package developed throughout all the contri-

butions. This package encapsulates the functionality of creating DBNs, visualizing
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them and performing forecasting. The package has gained a level of notoriety by being

downloaded by more than 18,000 people worldwide.

Part IV. Conclusions

This part offers the conclusions of this work.

• Chapter 9 summarises the contributions of this work, provides a list with all the pub-

lications related to this dissertation and defines some possible future work.

Part V. Appendices

This part offers supplementary information.

• Appendix A defines a system of ordinary differential equations that simulates the fouling

phenomenon. This simulator can be used to generate synthetic nonlinear datasets for

testing purposes.
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Chapter 2
Bayesian networks

2.1 Introduction

When we deal with industrial problems, we have to face several issues regarding the data

recovered from them. Industrial systems usually represent processes not perfectly defined

and understood by their operators, and tend to be affected by a stochastic component. This

situation creates streams of data that do not always follow clear distributions and that can be

affected by uncontrollable exogenous agents. In addition, data recovered from these processes

comes from sensors, which can suffer from noisy readings and that not always cover all the

aspects of the original process. This leaves us with data that defines both the state and the

performance of our industrial system, but which has also a great deal of uncertainty.

One of the ways to treat uncertainty in data is through the use of probabilistic models

and probability theory. By adjusting a probability distribution to our data and estimating its

parameters, we can obtain a model that explains the data and allows us to perform queries

that take into account the uncertainty. However, estimating probability distributions in large

multivariate spaces can be prohibitive due to the computational complexity.

To approach this dimensionality issue, we can employ probabilistic graphical models.

These models offer a way to describe the complex structure of multivariate probability dis-

tributions in compact graphs that can be interpreted by human users. In particular, in this

dissertation we will focus on BNs, which are a type of probabilistic graphical models that

encode the conditional independence relationships between the variables in our system as a

directed acyclic graph. This way, they allow a complex probability distribution to be repre-

sented in a compact way that can be used to perform inference and to answer probabilistic

queries.

Chapter outline

The rest of this chapter is organized as follows. Section 2.2 introduces the BN model and

differentiates between the types of BN depending on the nature of the variables. Section 2.3

revolves around the learning of both the graphical structure and the parameters associated
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with each node in the graph inside a BN. Lastly, Section 2.4 describes how to perform inference

in the BN frameworks.

2.2 Bayesian networks

A BN is a representation of a joint probability distribution (JPD) P over a set of random vari-

ables X = {X1, X2, . . . , Xn}. This JPD is defined by independence relationships between the

random variables. In the most elemental case, we can define the JPD of a set of independent

variables as:

P (X) = P (X1)P (X2) · · ·P (Xn), (2.1)

where we say that for any disjoints sets of nodes Y1 and Y2 where Y1,Y2 ∈ X, P (Y1,Y2) =

P (Y1)P (Y2), denoted as Y1⊥Y2. However, the assumption that all the variables in our

system are independent from one another is not usually valid in most scenarios. A more

natural relationship between variables is that of conditional independence. We say that two

variables X1 and X2 are conditionally independent from one another given another variable

X3 if:

P (X1, X2|X3) = P (X1|X3)P (X2|X3), (2.2)

which we denote as X1⊥X2|X3. Conditional independence is similar to that of total inde-

pendence, but in this case we need to know the value of the variable X3 for X1 and X2 to be

independent from one another.

2.2.1 Structure

We can define a BN as a tuple (G,θ), where G is a directed acyclic graph (DAG) and θ

is the set of parameters that define the conditional probability distribution (CPD) of each

variable in the BN. Inside G, each node corresponds to a random variable and the arcs

define the conditional independence relationships between triplets of random variables. These

relationships can be explained by using the concept of local independences.

Let Pa(Xi) denote the set of parents of the node Xi in G and let NonDescendants(Xi)

be the set nodes that do not descend from Xi. The local independences imply that a node

Xi is independent of its non descendants in the graph G given its parents, which is formally

defined as:

∀Xi : Xi⊥NonDescendants(Xi)|Pa(Xi) (2.3)

This means that the conditional independence relationships between the variables in the

BN are encoded via the arcs in the graph and the local independences. We can then factorize

the JPD in a BN using the set of parents of each variable in G:
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Figure 2.1: Examples of d-separation of the sets X1 and X2 given X3. From left to right, there are
sequential, divergent and convergent scenarios. In the first two cases, X1 and X2 are d-separated
given X3, but they are not in the convergent case because Xb is part of X3.

P (X) =

n∏
i=1

P (Xi|Pa(Xi)). (2.4)

2.2.1.1 D-separation

Based on local independences, we can derive the set of conditional independence statements

encoded in G by using the concept of d-separation [Geiger et al., 1990]. Given three disjoints

sets of nodes X1, X2 and X3, to know if X1⊥X2|X3 holds in G we have to check all the

sequences of nodes from X1 to X2 without taking into account the direction of arcs, that is,

we have to check all the trails from X1 to X2 in G. Let T be the set of all possible trails

from any node Xa ∈ X1 to any node Xb ∈ X2. Then X3 blocks a trail T ∈ T if:

• T contains a sequential chain with the form Xa → Xb → Xc or Xa ← Xb ← Xc where

Xc ∈ X3

• T contains a divergent chain with the form Xa ← Xb → Xc where Xc ∈ X3

• T contains a convergent chain with the form Xa → Xb ← Xc such that Xc and any of

its descendants do not belong to X3

If all the trails in T are blocked by X3, then X3 d-separates X1 and X2, which we

denote d-sep(X1,X2|X3)G . We illustrate the sequential, divergent and convergent concepts

of d-separation in Figure 2.1.

2.2.1.2 I-maps

In the case of BNs, we need to ensure that there is a correspondence between the set of

conditional independences encoded in G and the set of conditional independences of the JPD

P . This correspondence is called a mapping, and in particular we are interested in I-maps.

We say that a DAG G is an I-map of a probability distribution P if the set of all conditional

independence relationships encoded in G are also true for P . We can use the concept of

d-separation to formally define I-maps:

d-sep(X1,X2|X3)G =⇒ (X1⊥X2|X3)P , (2.5)
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where we specify that any sets of nodes X1 and X2 d-separated in G by a third set X3 have

an implied conditional independence relationship in P .

In a BN, the DAG G needs to be an I-map of the JPD P to allow the BN to compactly

factorize P in the unique way defined by Equation (2.4).

2.2.2 Parameters

Apart from the graph G, the other component that forms a BN are the parameters θ =

(θ1, . . . , θn). These parameters θi define the conditional probabilities assigned to each node

Xi given its parents Pa(Xi). When a variable does not have parents, its parameters define

the marginal distribution associated to its corresponding node. On the other hand, non-

orphan variables in G have parameters that define the effects of its parents on its conditional

probability distribution.

The form of these parameters depends on whether our variables are discrete, continuous

or a mixture of both.

2.2.2.1 Discrete variables

The most extended representation is that of BNs composed solely of discrete variables, that

is, variables with a numerable set of states that they can take. This includes both qualitative

variables that have a finite number of possible categories, such as blood type or hair color,

and variables with a finite number of numerical values they can take, such as number of

siblings or star rating of a hotel.

For these kinds of variables, the most popular representation for their parameters is that of

a table. The idea behind this tabular form is that we need to represent the CPD of a variable

depending on every single value configuration that its parents can take. This generates local

conditional probability tables (CPTs) that dictate the probability P (Xi = x|pa(Xi)) for

every value x of Xi and every configuration of Pa(Xi). In addition, these CPTs require that

P (Xi = xi|pa(Xi)) ≥ 0 for every value configuration and that
∑

xi
P (xi|Pa(Xi)) = 1. This

ensures that the underlying CPD of the model is well defined.

Given that the parameters are explicitly represented as probabilities, the tabular repre-

sentation is easily interpretable, but it presents the heavy drawback of an exponential number

of parameters. As the number of parents of a variable grows, the CPTs become exponen-

tially large in turn. This presents a limitation to both parameter learning and inference

complexity. To overcome this issue, the two most common alternatives are canonical models

and graphical CPTs [Sucar, 2015]. Canonical models reduce the number of parameters per

parent node when the probability of a random variable in a BN presents specific deterministic

characteristics, such as those present in logical gates. Examples of this representation are

the noisy-OR [Pearl, 1988] and the noisy-MAX [Diez, 1993] models. On the other hand, a

more general solution for more compact CPTs is that of graphical substructures like decision

trees [Friedman and Goldszmidt, 1998; Talvitie et al., 2018]. These solutions improve the

computational costs of the CPT representation, but ultimately the only feasible way to limit
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the exponential explosion of parameters is by limiting the number of parents of the variables

in the graph.

2.2.2.2 Continuous variables

In the presence of continuous variables, we face a situation where variables can take values

in a real interval. As such, our previous tabular representation is not able to encode the

CPDs of these variables. We need to define f(Xi|pa(Xi)), which is the conditional density

function of Xi, in a way that all the infinite values that the parent variables can take have

an established effect on Xi.

The first typical solution to this issue is to go back to the discrete scenario by discretiz-

ing all the variables. However, this approach inevitably incurs in a loss of information by

simplifying a continuous space into a finite set of bins. In addition, a balance has to be

found between a very high computational cost due to a high number of possible values for

the discretized variables, and a severe information loss.

If we opt for working with the continuous variables, the most common way to define the

dependency of a continuous node Xi on a continuous parent is to make the mean of Xi a

linear function of Pa(Xi). This way, the value of Xi is well defined based on all the possible

values of Pa(Xi) given the probability distribution that we assume for Xi.

The most popular representation for this conditional density function is the Gaussian

distribution. By assuming that all the variables in our system follow a normal distribution

and that their variances are independent from one another, we obtain the linear Gaussian

CPDs [Shachter and Kenley, 1989]. In a linear Gaussian CPD we have that:

f(Xi|pa(Xi)) ≡ f(Xi|x1, . . . , xk) = N (β0 + β1x1 + · · ·+ βkxk;σ
2
i ), (2.6)

where N (µ;σ) denotes a normal distribution with mean µ and variance σ, β0, . . . , βk are

the parameters that define the effect of the values of Pa(Xi) on the mean of Xi and σ2
i is

the unconditional variance of Xi. It is important to note that when all the nodes in a BN

have linear Gaussian CPDs, the BN serves as an alternative representation of a multivariate

Gaussian distribution. With linear Gaussian CPDs, inference and parameter learning are

greatly simplified from the discrete case and from other more complex continuous represen-

tations, but we apply strong assumptions on the variable distribution in turn. All in all, this

representation acts as a good approximation for real-world problems [Kotz et al., 2004].

Other representations for BNs with continuous variables are also seen in the literature.

We can find approaches similar to the linear Gaussian CPDs that allow more complex rela-

tionships between the variables or different distributions. These include distributions like the

inverse-Gaussian or the gamma distributions [Masmoudi and Masmoudi, 2019], kernel density

estimation CPDs [Atienza et al., 2022] and Gaussian processes surrogate models [Zhu et al.,

2019], among others. These kind of representations allow for more complex relationships

between the variables than the linear Gaussian model, but they loose interpretability due to

the more complex parameters and most of them have to resort to simulation techniques for
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inference and parameter learning. In this work, we will focus our attention on linear Gaussian

CPDs.

2.2.2.3 Hybrid networks

When we encounter both discrete and continuous variables at the same time, we need to define

new conditional independence relationships that cover all the possible values of the variables.

So far, we have discussed the case of a discrete variable with discrete parents and a continuous

variable with continuous parents. We will now go over the case of continuous variables with

discrete parents and discuss some possible approximations to the case of discrete variables

with continuous parents.

The most extended approach to continuous variables with discrete parents is that of con-

ditional linear Gaussian CPDs [Lauritzen and Wermuth, 1989]. They assume linear Gaussian

CPDs and do not allow continuous parents for discrete variables. This representation stores

several linear Gaussian CPDs, one for each different configuration that the discrete parents

of a continuous variable can take. For each different configuration c of the discrete parents

Pad(Xi), we have that:

f(Xi|pag(Xi), c) = N (β0c + β1cx1 + · · ·+ βkcxk;σ
2
ic), (2.7)

where Pag(Xi) are the continuous parents of Xi. This encoding has the advantages and

simplicity of linear Gaussian CPDs while mitigating the linearity issue of the model, but it

forces strong restrictions on the graph structure and a high number of interconnected discrete

variables incurs in the same exponential explosion of tabular CPDs as the purely discrete case.

In the case of discrete nodes with continuous parents, the conditional linear Gaussian

CPD cannot be applied. An extended version of this CPD was proposed by Lerner et al.

[2001] which allows arcs from continuous variables to discrete ones through the use of the

soft-max function. Other authors opted for approaches related to dividing the continuous

space of the parent variables into several subspaces, like mixtures of truncated exponentials

[Moral et al., 2001], mixtures of polynomials [Shenoy and West, 2011], and the generalization

of both with mixtures of truncated basis functions [Langseth et al., 2012; Pérez-Bernabé

et al., 2020]. These approximations use the sum of a set of basis functions to divide the space

of continuous variables into hyper-cubes. Afterwards, the effect of the continuous variable

over the discrete one is defined depending on the hyper-cube that the continuous variable

belongs to.

2.3 Learning

The problem of fitting BNs requires learning both the structure of the graph G and the

parameters θ. To learn the structure of the network we need to find the underlying conditional

independence relationships between our variables. This in turn fixes the number of parameters

of our model and, after making some assumptions on the distributions of our variables, allows

14



us to find the most appropriate values for θ.

Traditionally, BNs have been learned either manually from expert knowledge or auto-

matically from data. In this work, we will focus on learning Gaussian BNs from complete

datasets, i.e., without missing values.

2.3.1 Parameter estimation

Let us assume that we already have a graph structure G and a dataset D = {d1,d2, . . . ,dm},
where di = (xi1, x

i
2, . . . , x

i
n) is a row in our dataset with the values of all variables X =

{X1, X2, . . . , Xn} in our graph. In this scenario, we want to learn the network parameters

θ defined by G that best fit our data D. We can typically perform this automatically from

data via maximum likelihood estimation or Bayesian estimation.

2.3.1.1 Maximum likelihood estimation

One of the most common methods for parameter estimation is maximum likelihood estimation

(MLE). With this method, our aim is to obtain the parameter set θ by using a point estimate

based on all instances of D. To know whether a set θ fits some data properly we use the

likelihood function:

P (D|G,θ) =
m∏
i=1

P (di|G,θ) =
m∏
i=1

n∏
j=1

P (xij |pa(xij)), (2.8)

where pa(xij) represents the values that the parents of Xj took in the di instance. To

obtain the set of parameters θ̂ that best fit D via MLE, we have to maximize Equation

(2.8) with respect to θ. Given that the likelihood and the log-likelihood obtain the same set

of parameters, we maximize over the log-likelihood for convenience. This log-likelihood is

defined as:

L(G,θ : D) =
m∑
i=1

n∑
j=1

logP (xij |pa(xij)) =
n∑

j=1

L(Xj |Pa(Xj),θj : D), (2.9)

where L(Xi|Pa(Xi),θi : D) is the local log-likelihood of variable Xi and θi are the set of

parameters of the P (Xi|Pa(Xi)) CPD. Given that the likelihood is locally decomposable, we

sum over the local log-likelihood of each variable Xj and further simplify Equation (2.9):

L(G,θ : D) =
m∑
i=1

n∑
j=1

L(xij |pa(xij))). (2.10)

In this scenario, the maximization of θ̂ is defined as:
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θ̂ = argmax
θ

L(G,θ|D) = { argmax
θ1

m∑
i=1

L(xi1|pa(xi1),θ1), . . . ,

argmax
θn

m∑
i=1

L(xin|pa(xin),θn)}, (2.11)

and due to the CPDs not sharing any parameters, we can find the MLE parameters inde-

pendently for each node Xj . Depending on the CPD of each node, the local log-likelihood

functions can take different forms. We will go over the case of linear Gaussian CPDs for BNs

with only continuous variables.

2.3.1.2 Estimation of Gaussian networks

Following on Equation (2.6), we can see that the parameters of a node with a linear Gaussian

CPD are a set of linear regression coefficients θj = (β0j , β1j , . . . , βkj) and a standard deviation

σ2
j . Given that the local likelihood corresponds to a CPD of linear regressors, the most popular

method to estimate the local β0, . . . , βk parameters is using linear algebra through ordinary

least squares regression. For a specific node Xj we can write:

xj = pa(xj)θ̂j + ej , (2.12)

where xj is the vector of dimension m with all the values that Xj took in our dataset D,
pa(xj) is the matrix of dimension m×|Pa(Xj)|+1 with all the values that the parent nodes

of Xi took in D and ej is the residuals vector of dimension m obtained. Additionally to the

values contained in pa(xj), we have to concatenate a unitary column vector to pa(xj) to

account for the effect of β0, which is the intercept and is not ligated to any parent of Xj .

Now, the least square estimator is that whose values of θ̂j minimize the sum of squares of

the residuals ej :

sum(ej) =

m∑
i=1

ei 2j = ei Tj eij = (xj − pa(xj)θ̂j)
T (xj − pa(xj)θ̂j)

= xT
j xj − xT

j pa(xj)θ̂j − θ̂j
T
pa(xj)

Txj + θ̂j
T
pa(xj)

Tpa(xj)θ̂j (2.13)

To obtain the maximum likelihood estimation of θ̂j , we need to minimize the sum of

squares of the residuals. To accomplish this, we differentiate with respect to the parameters

and equate to 0:

∂sum(ej)

∂θ̂j
= −2pa(xj)Txj + 2pa(xj)

Tpa(xj)θ̂j = 0

θ̂j = (pa(xj)
Tpa(xj))

−1pa(xj)
Txj (2.14)
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Now we are only missing the standard deviation σ2
j . In this case, we use the sum of

squared residuals to calculate its value:

σ̂2
j =

sum(ej)

m− |θ̂j |
, (2.15)

where m was the total number of instances in D and |θ̂j | is the total number of parameters

of node Xj , which is always equal to the number of parents of the node plus one.

In the case a node Xj with no parents, the only parameter β0 that the node has is the

most likely value in our dataset D, that is, the arithmetic mean of the components of vector

xj . Afterwards, its parameter σ2
j is calculated as usual with Equation (2.15), but in this case

ej are the residuals obtained from subtracting the arithmetic mean of xj to each of the values

of xj .

2.3.2 Structure learning

The task of learning the graph structure of a BN is a complex problem where the search space

of possible DAGs grows super-exponentially with the number of nodes [Robinson, 1977]. In

order to find appropriate structures, many authors have proposed different structure learning

algorithms. Typically, these have been categorized as score-based, constraint-based or hybrid

depending on how they navigate the solution space of possible graphs. We will cover each

category and focus on some specific algorithms that are relevant to this work. For a more

in-depth review of existing algorithms, we refer the readers to Scanagatta et al. [2019] and

to Kitson et al. [2023].

2.3.2.1 Score-based structure learning

Score-based algorithms define the task of finding the best graph structure as an optimization

problem. If we define a score that identifies how well does a graph fit some data, then we can

maximize this score to find an optimal structure. However, the problem of finding the optimal

network is NP-hard [Chickering et al., 2004] and algorithms have to resort to heuristics in

the search phase to find the best possible structure instead of the optimal one.

Score phase

Let D be our training dataset and let G be a DAG structure in the space of all possible valid

DAGs gBN . Our objective can now be defined as:

argmax
G∈gBN

score(G,D). (2.16)

A very direct choice for this score would be the log-likelihood score that we previously used

in Equation (2.9) for parameter learning. This score would determine how likely is it that a

graph structure G and its MLE parameters θ̂ generated our dataset D. This can be written

as L(G, θ̂|D), but this method tends to generate fully connected graphs. Instead, penalized
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versions of the log-likelihood like the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC) [Geiger and Heckerman, 1994] are more used in practice. These

scores use a penalizing factor for the number of parameters that a model has, generating

sparser graphs. They can be both expressed with the same general formula:

score(G,D) = L(G, θ̂|D)− pen(G,D), (2.17)

where pen(G,D) is a penalization function. In the case of AIC, pen(G,D) is just the number

of parameters of G (nparams(G), and for the BIC score the penalization is pen(G,D) =
nparams(G)

2 log(m).

Search phase

With a scoring function, we can now perform the search through the space of possible networks

as the optimization problem defined in Equation (2.16). However, given that finding the

optimal BN structure is an NP-hard problem and that the search space is super-exponential

on the number of nodes, the most common procedure is to apply some heuristic to search for

good candidate networks rather than the optimal one.

A very popular search procedure in this context is the greedy hill-climbing algorithm.

This method starts from an initial structure G0 and applies local modifications to improve

its overall score. These operations usually comprise the addition, deletion or reversal of arcs.

Given that the likelihood-based scores are decomposable and can be calculated independently

for each variable as shown in Equation (2.10), local changes to specific nodes only affect a

small part of the final score. By initially precalculating the resulting scores for each operation

in every node, the algorithm can easily find the one that increases the global score the most

and then apply it. Afterwards, the precalculated scores affected by the arc modification

performed are recalculated and a new modification is selected in this greedy manner until

no further improvements to the score can be found. Some variations of this algorithm that

try to avoid local optima include the use of random restarts or the addition of TABU lists

[Tsamardinos et al., 2006], where a TABU list is used to avoid repeating steps in the greedy

search, and the K2 algorithm [Cooper and Herskovits, 1992], where only additions of parents

to nodes are allowed from an initially empty graph G0. For reference, we include in Algorithm

2.1 the pseudo-code of the greedy hill-climbing algorithm with the addition of random restarts.

Another extended approach is the use of evolutionary or swarm intelligence search algo-

rithms to move through the solution space. By encoding the graph structure of the network

as an individual in the optimization process and adapting the addition, deletion and reversal

of arcs operators, among other possible ones, the application of these kinds of algorithms

can be very natural given the immense solution space. We can find examples of genetic al-

gorithms [Larranaga et al., 1996; Sun and Zhou, 2022], estimation of distribution algorithms

[Blanco et al., 2003], particle swarm optimization [Gheisari and Meybodi, 2016] or ant colony

optimization [Wu et al., 2010], among others. For more examples of these kinds of algorithms,

we refer the readers to the works of Larrañaga et al. [2013] and Sun and Zhou [2022].
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Algorithm 2.1: Greedy hill-climbing algorithm with random restarts.

Input: Initial graph G0, number of random restarts rmax, score S, set of available
operators Op

Output: The best graph found Gbest
Data: Training set D

1 end = False;
2 r = 0;
3 score = S(G0, D);
4 scorebest = score;
5 pre scores = precalculate scores(G0, D, S, Op); // Score all possible

operators

6 G = G0;
7 Gbest = G0;
8 while not end do
9 op = find best operator(pre scores); // op ∈ Op

10 Gmod = apply operator(G, op);
11 scoremod = S(Gmod, D);
12 if scoremod > score then
13 G = Gmod;
14 score = scoremod;
15 pre scores = update scores(G, D, S, op); // Update only the scores

related to op

16 if score > scorebest then
17 scorebest = score;
18 Gbest = G;
19 if score ≥ max(pre scores) then
20 if r < rmax then
21 r = r + 1;
22 G = randomize(G); // Apply a random restart

23 else
24 end = True; // Convergence at no improvement and max restarts

25 return Gbest;

2.3.2.2 Constraint-based structure learning

In the case of constraint-based algorithms, the main idea is to generate an initial network

structure based on the underlying conditional independences between variables found in our

data. If we manage to identify these conditional independences, then we can model them

with the arcs of the graph. For this task, we can use conditional independence tests such as

the χ2 test for discrete variables and the t-test for Pearson’s correlation coefficient [Edwards,

2012] for continuous variables:

t(X,Y |Z) = ρX,Y |Z

√
m− |Z| − 2

1− ρ2X,Y |Z
, (2.18)
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where m is the total number of instances in our dataset, ρX,Y |Z is the partial correlation

coefficient of X and Y given the set of variables Z and |Z| is the number of variables in

the set Z. Other tests based on measures like mutual information are also popular in the

literature. These kinds of tests can be used to define the local structures of the network: if

we do not find sufficient evidence to reject the null hypothesis of conditional independence of

X and Y given Z, then we keep the arc between X and Y . In practice, if no Z is found for

two variables X and Y that defines them as independent given Z, then there should be an

arc X − Y in some direction. By applying this procedure to all the variables in our graph,

we can find all the local structures of our nodes. Afterwards, we merge them into a single

skeleton graph with possibly undirected arcs. The last step in these kinds of algorithms

usually entails refining the skeleton graph and orienting any undirected arc in order to obtain

a DAG. Theoretically, if the conditional independence tests do not fail and are able to identify

all conditional independence relationships in our data, this kind of algorithms should return

the optimal network, but these tests tend to fail on real world datasets. Some examples

of these kinds of methods are the PC algorithm [Spirtes et al., 2000; Tsagris, 2019], the

grow-shrink algorithm [Margaritis, 2003] and the max-min parents and children algorithm

[Tsamardinos et al., 2003].

2.3.2.3 Hybrid structure learning

In the case of hybrid algorithms, they try to incorporate the advantages of both score-based

and constraint-based methods. They usually try to limit the search space by taking into

account the underlying conditional independence relationships between variables present in

the dataset D and afterwards use the heuristics of score-based algorithms in the reduced

solution space.

One particular hybrid algorithm that is of relevance to this work is the max-min hill-

climbing (MMHC) algorithm [Tsamardinos et al., 2006]. This algorithm starts by defining an

initial skeleton graph through the use of conditional independence tests to find the possible

parents of nodes. This step is performed with the constraint-based max-min parents and

children algorithm [Tsamardinos et al., 2003], which finds a set of undirected edges between

the variables. Once a set of undirected edges has been found for every variable in the graph,

a hill-climbing algorithm similar to the one shown in Algorithm 2.1 is run, but only arcs

present in the set returned by the parents and children algorithm can be added. This way,

the algorithm combines the use of the conditional independence relationships in the dataset

with the heuristic search of the hill-climbing algorithm to orient the undirected edges obtained

with the conditional independence tests.

Other examples of hybrid structure learning algorithms include the works of De Campos

et al. [2003], Dash and Druzdzel [1999] and the RSMAX2 algorithm [Scutari et al., 2014].

Recently, hybrid algorithms have also seen active development, as shown by the works of Dai

et al. [2020] or Sun and Zhou [2022].

For further comparison of the performance of score-based, constraint-based and hybrid

structure learning algorithms we refer the readers to Scutari et al. [2019].
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2.4 Inference

Once that we have learned the structure and the parameters of a BN, we can use our model

to perform probabilistic inference. The main idea of this process is that given the values of

some evidence variables E = e, we want to know the most likely values that another set of

unobserved variables X is going to take:

P (X|E = e) =
P (X, e)

P (e)
(2.19)

This procedure allows BNs to perform similar tasks to other general purpose machine

learning models, like classification or regression. Moreover, any variable in the BN can be

the objective of inference and it allows for more complex probabilistic queries. However,

inference in BNs is an NP-hard problem no matter if we perform exact [Cooper, 1990] or

approximate [Dagum and Luby, 1993] inference. As such, this can create scenarios where

inference is prohibitively slow in complex BNs. Fortunately, we can bypass this issue in some

specific cases like BNs with linear Gaussian CPDs. We will briefly go over some common

exact and approximate inference methodologies and explain the exact inference procedure

with the Gaussian multivariate equivalent on Gaussian BNs, which is of relevance to this

work.

2.4.1 Exact inference

When we want to obtain exactly conditional probabilities as in Equation (2.19), we say that

we perform exact inference. One general purpose popular approach is the variable elimination

algorithm. This algorithm can be applied to BNs with categorical CPDs, with linear Gaussian

CPDs or with a mixture of both.

Variable elimination

The main idea of this algorithm is to take advantage of the independence relationships inside

a BN to marginalize the JPD and calculate probabilities more efficiently. Let us have a set

of variables X = {X1 ∪̇ X2 ∪̇ Xr} composed of unions of disjoint sets, where X1 are our

objective variables for the inference, X2 are our evidence variables and Xr are the rest of

unobserved variables which are not our objective. Following Equation (2.19), our inference

has the form:

P (X1|X2) =
P (X1,X2)

P (X2)
, (2.20)

where both terms of the fraction can be defined as:

21



P (X1,X2) =
∑

Xi∈Xr

P (Xi) (2.21)

P (X2) =
∑

Xi∈X1

P (Xi,X2) (2.22)

The problem arises in the summations of products
∑

Xi∈Xr
and

∑
Xi∈X1

, because these

generate a high number of summations of local probabilities, many of which are repeated

throughout the whole computation. This problem gets even more complicated if the variables

are not binary and have large CPTs. In the variable elimination algorithm, we try to use the

BN representation to eliminate those calculations that are not needed to obtain our objective

probabilities. We call the different terms that are generated during the calculations factors,

and they are functions over a subset of variables. Each factor maps a specific instantiation of

these variables to non-negative numbers that can be reused throughout the inference process.

To simplify these calculations, we can rearrange these operations by taking advantage of the

properties of summation and multiplication. If we arrange the variables in an optimal order,

we can drastically reduce the number of operations needed to obtain these probabilities by

generating less factors and reusing already calculated ones. However, finding this optimal

order is an NP-hard problem, and many times we have to resort to heuristics to find good

orderings in a reasonable time frame.

Multivariate Gaussian equivalent

An interesting case specific to linear Gaussian CPDs is the possibility to alternate between

a BN and its equivalent multivariate Gaussian distribution [Koller and Friedman, 2009]. We

can transform the structure and parameters of a Gaussian BN into a mean vector µ and

a covariance matrix Σ so that we are able to perform fast inference with the multivariate

Gaussian distribution defined by them.

To obtain the mean vector, we have to calculate the most likely values for each of the

variables, that is, their mean given the parameters in the network:

µXi = β0 +

|Pa(Xi)|∑
j=1

βjµXj , (2.23)

where |Pa(Xi)| is the number of parents of Xi, and so the summation iterates through the

means of all the parents of Xi. Note that in the case of variables with no parents, their mean

is defined only by their own mean parameter, which when learned by MLE it is equivalent

to the mean of the variable in the dataset.

On the other hand, we can calculate the covariance matrix with two steps. First, to

calculate the variances in the diagonal of the Σ matrix, we use the parameters of each

variable and the variance of the parent variables:
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Σii = σ2
i +

|Pa(Xi)|∑
j=1

β2
j σ

2
j . (2.24)

Similarly to the mean calculation, variables without parents will simply use their own

variance. After calculating the diagonal, we can compute the covariances Σij between vari-

ables:

cov(Xi, Xj) = Σij = Σji =

|Pa(Xj)|∑
k=1

βkΣik. (2.25)

When we complete this process, we obtain a multivariate Gaussian distribution N (µ,Σ)

that allows us to perform inference over a set of unobserved variables X1 using another set of

observed variables X2 as evidence. By splitting between unobserved and observed variables

the mean vector µ =
(
µ1

µ2

)
and the covariance matrix Σ =

(
Σ11Σ12

Σ21Σ22

)
, we can calculate the

means µ1|2 and covariance matrix Σ1|2 of the unobserved variables given the observed ones

[Murphy, 2012]:

f(x1|x2) = N (µ1|2,Σ1|2) (2.26)

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2) (2.27)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 (2.28)

This inference process allows us to perform fast inference on linear Gaussian networks,

where the only costly operation is the inversion of the Σ22 covariance submatrix of the

observed variables.

2.4.2 Approximate inference

In case we are not interested in obtaining the exact solution when performing inference, we

can resort to obtaining approximate results instead. Through approximate inference, we can

define the inference process as a sampling procedure. Even though approximate inference

in BNs is also an NP-hard problem [Dagum and Luby, 1993], we can find improvements in

terms of execution time when compared to exact inference methods for categorical or hybrid

BNs.

One popular method for approximate inference in BNs is importance sampling [Yuan

and Druzdzel, 2006]. Generating the values of variables via sampling is a straightforward

procedure by forward sampling. This method begins by obtaining a topological ordering of

the variables in a BN, that is, ordering them in such way that variables without parents

are listed first and then we list variables whose parents have already been listed. This way,

if we sample all the variables in a BN following such ordering, when we sample a node we

make sure that its parents have already been sampled. In the case that we have observed

variables, we use their observed values instead of sampling them. Then, we define a particle
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as a complete sampling of all the nodes of a BN, where all the variables have a value. If

we generate a set of N particles, by using the relative frequency in the categorical case or

by averaging the particles values in the continuous case we can approximately estimate the

values of a set of unobserved variables X1 given another set of observed variables X2 in the

BN. However, this method only relies on the size N of randomly generated samples which do

not take into account how likely each of them is to occur. Importance sampling is a variation

that takes into account the likelihood of each particle given the parameters of the BN, so

that we can take this likelihood when we average a final value. This way, we obtain more

realistic predictions in the presence of unlikely evidence.

Other sampling methods, like Markov chain Monte Carlo approaches [York, 1992], try

to generate samples from the posterior distribution of the network in the way of Bayesian

statistics. This can offer better accuracy when we have an idea of the shape of the prior

distribution, but in turn can be slower in terms of execution time.
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Chapter 3
Dynamic Bayesian networks

3.1 Introduction

In real world scenarios, it is very common for industrial systems to operate for prolonged

periods of time. Due to the monitoring of sensors, data is recorded and stored over time.

This generates datasets where instances are ordered in time from the oldest one to the newest,

generating time-series. As time progresses, we can see the evolution of all the variables in

the system inside these time-series.

In order to make use of this additional information, we need to take into account the effect

of this time component in our models. In the case of BNs, one of the ways available to deal

with time-series is by extending them to dynamic models able to work variables over time.

A dynamic Bayesian network will model the same independence relationships as a static BN,

and it will also reflect the effect that past values have on the current and future instants.

By being able to deal with the additional dimension that time represents, dynamic

Bayesian networks allow a much richer representation of industrial systems than that of

static models. In addition, new operations like forecasting, estimating the remaining useful

life of components or simulating the behaviour of processes will become available. This offers

new takes on relevant industrial problems.

Chapter outline

The rest of this chapter is organized as follows. Section 3.2 introduces the concept of time-

series and some of its basic characteristics that differentiate it from static data. Section

3.3 explains how the extension from BNs to dynamic Bayesian networks is performed and

the resulting structure of dynamic Bayesian networks. Section 3.4 introduces how is the

structure learning procedure of dynamic Bayesian networks. Lastly, Section 3.5 introduces

some methods to perform inference in dynamic Bayesian networks and some specific time-

series operations like forecasting.
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3.2 time-series characteristics

A time-series (TS) is a collection ordered in time of instances of a single (univariate) or

multiple (multivariate) random variables. We can refer to discrete TS when instances are

separated at equal intervals from each other, or at least recorded at known distances from

each other, or we can refer to continuous TS, when instances are recorded continuously in

a given interval of time [Brockwell et al., 2002]. In this work, we will focus exclusively on

discrete TS. An example of a univariate TS can be seen in Figure 3.11.
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Figure 3.1: Example of a TS reflecting the production of olive oil in Spain from October 2018 to April
2019. In this case, the values of the production in kilotonnes were recorded with a monthly frequency.

When we analyse TS, we are interested in extracting information from the original system

that generated them. We refer to this system as a stochastic process. A stochastic process

is a collection of single or multiple random variables ordered in time, in our case at known

time intervals from each other. When the random variables Xt in a stochastic process take

specific values xt, we obtain a time-series. A time-series is a specific realization of certain

stochastic process, and by analysing several realizations of this process we can model the

random variables in each instant and extract relevant information from the underlying process

[Mauricio, 2007]. This relationship between TS and stochastic processes is shown in Figure

3.2.

We can further illustrate this by extending our previous olive oil production example. If

we suppose that our stochastic process is the yearly olive oil production in Spain, then in

Figure 3.1 we are observing a single instance of this process in the form of the TS. In this

1Source of the olive oil production data: https://www.mapa.gob.es/es/agricultura/temas/
producciones-agricolas/aceite-oliva-y-aceituna-mesa/Datos_produccion_movimiento_
existencias_AICA.aspx
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Figure 3.2: Example of a stochastic processX generating two TS x and x′. These TS are just instances
of a stochastic process where the random variables took specific values.

case, we can have several TS of this particular process that instantiate the random variables

Xt corresponding to each month of the year, as shown in Figure 3.3.
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Figure 3.3: The TS corresponding to the olive oil production in Spain from 2015 to 2020. Each one
of these TS can be considered a particular instance of the underlying stochastic process.

In an industrial environment, if we record the values of some sensors inside a system

over a period of time we obtain a TS with the values of all the variables ordered from the

oldest recorded to the most recent ones. This is a particular instance of the underlying

stochastic process defined by that industrial system. A single TS can generate a dataset

suitable for fitting some machine learning model, but ideally we would prefer several time-

series from the same process. Usually, the variables inside stochastic processes have some

kind of relationship between the previous instants and the next ones, although this is not

always the case. For example, in the case of white noise where all the random variables of

the process are sampled from a N (0, 1) distribution, they are independent and identically

distributed (i.i.d.). This means that the values of some variable from previous instants are not

relevant when forecasting that same variable in the future. Luckily, on real world scenarios
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this is rarely the case due to the autoregressive component that most processes have. We say

that the value of a variable in a process depends on the previous value of that same variable,

or that it is first-order autoregressive, if:

Xt = βXt−1 + ϵt, (3.1)

where β is the autoregressive parameter that determines the relationship between Xt and

Xt−1 and ϵt is white noise. Additionally, defining a process as first-order autoregressive

means that we assume that the next instant is calculated directly with the previous one, and

older values prior to t− 1 have no effect on the value of t. This assumption can be too strict

for some processes, and it can be relaxed with the general formula of p-order autoregression:

Xt =

p∑
i

βiX
t−i + ϵt (3.2)

This higher order autoregressive component allows modelling more complex behaviours in TS

and will be relevant later on in this work. Along with this autoregression, we also find some

of the most relevant features of TS analysis: trend and seasonality. These features define the

behaviour of a TS and need to be addressed to properly model processes. We can represent

a classical decomposition model for time-series analysis as:

Xt = mt + st + Y t + ϵt, (3.3)

where mt is a slowly changing function that defines the trend, st is a periodic seasonal

component that affects the TS and Yt are the stationary residuals that we want to model.

The stationary residuals have mean and covariance independent from time and contain either

the relevant autoregressive information to model Xt in the manner of Equation (3.2) or, in

the case of no autoregressive component, the mean and variance information that represents

the distribution of the random variable Xt.

3.2.1 Trend and seasonality

The aforementioned slowly changing function mt modifies the local mean of a time-series

over time in an increasing or decreasing manner, and the seasonal component st is a function

with a certain period that modifies our TS over specific spans of time. By removing both the

trend and seasonality components in a TS, we obtain stationary residuals that can be used

to fit zero-mean models. This procedure is very common in general approaches to modelling

time-series, given that with this transformation we obtain a scaled dataset with apparently

constant mean and computable covariances between the variables at different times. Some

models require both components to be removed, but the modelling of the trend component

will be a point of study on a later chapter of this work.

There are two popular approaches to identify and remove trends and seasonality in TS:

to find an estimation of these components and remove them from the series or to differentiate
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the series with lag-p operators. We can see the estimation in two different ways. The first

one consists in assuming that both components can be estimated with a filter operator, and

so applying, for example, linear smoothing with a finite moving average filter or some more

complex filter like exponential smoothing can remove local trends and seasonality from TS.

The problem with these filters is that choosing the appropriate one for a specific TS is not

a trivial matter, and oftentimes requires previous intuition and testing several different ones

to evaluate which filter performs better. On the other hand, we can assume that these trend

and seasonality functions have some specific form, for example polynomial, and fit models

for them through least squares regression. After we fit them, we subtract from the original

series the trend and seasonality estimations obtained.
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Figure 3.4: The resulting olive oil production time-series after performing lag-1 and lag-12 operators
to remove both the trend and the seasonality in the data. We can see that the obtained residuals are
close to stationary, which makes them suitable for being fitted by zero-mean models.

In the case of differentiation, we use the lag-p operator ∇p to subtract the value at the

last t− p instant to the values of Xt:

∇pX
t = Xt −Xt−p (3.4)

Usually, lag-1 or lag-2 operators suffice to remove the trend component of a TS. In the

case of the seasonality component, differentiation is also a very effective method. In that

scenario, higher lag-p operators are useful to remove yearly effects in series spanning over

several years. If we apply two consecutive lag-1 and lag-12 operators to the TS shown in

Figure 3.3, we observe in Figure 3.4 and in Table 3.1 that the means and variances remain

very similar between all years, which points to the residuals obtained being stationary or

close to it. If we wanted to be completely certain, we would have to perform statistical tests
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Year Mean Standard deviation

2016/2017 2.32 151.36
2017/2018 -1.30 95.03
2018/2019 2.68 156.57
2019/2020 -7.32 155.20

Table 3.1: Resulting means and standard deviations from the olive oil production TS after performing
lag-1 and lag-12 operators.

to see if the differences in mean and variance are significant from one year to another, but it

is worth noting that perfectly stationary residuals are seldom achieved with real world data.

The differentiation method has the advantage that no prior knowledge of specific filters is

needed and that it is easier to implement and apply.

3.3 Dynamic Bayesian network definition

In the presence of TS data, we need to make adjustments to the base BN framework in order

to be able to use this data to fit a model. A BN is capable of modelling a number of random

variables in a static manner, but a TS offers us the values that the different random variables

of an underlying stochastic process took at specific points in time. For this purpose, we need

to define dynamic Bayesian networks (DBNs) [Murphy, 2002; Koller and Friedman, 2009]

capable of representing the effect that past instants have on the future.

Given that we are capable of representing JPDs over a set of random variables with static

BNs, a first approach to modelling TS with BNs would be to partition time into instances

defined by the frequency of the TS, which we will refer to as time slices, and then model each

time slice with a static BN. This procedure takes into account the effects that the random

variables have on each other inside a time slice. However, this representation disregards

the temporal component by having disconnected time slices and it would only be useful for

modelling processes that are not autoregressive. We illustrate this procedure in Fig. 3.5. As

we can see, the random variables found in the stochastic process S can be modelled with

a static BN in each time slice by using the data found in the TS s to fit the distributions.

However, unless we introduce inter-slice arcs (shown as dotted arrows in the figure), past

values will not have any effect on future ones. It is worth noting that in the example we kept

the same BN structure for all time slices. We refer to this as homogeneous DBNs, and is not

necessarily always the case, but for the sake of simplicity we will use homogeneous DBNs in

the examples.

The inter-slice arcs can go from some previous time slice t − i, i > 0, i ∈ N, to t. This

allows any autoregressive order to be represented inside the DBN model. A benefit that this

kind of arcs have is that, because they are only allowed from older to newer time slices, the

addition of new inter-slice arcs cannot introduce cycles and invalidate the DBN structure.

This concept will be useful later on in this work. To define the JPD of a DBN model, we

now take into account all previous time slices up to some horizon T :
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Figure 3.5: Representation of a DBN in relation with some stochastic process S and a TS s generated
from it. We can model the relationships of random variables within the same time slice with intra-slice
arcs similarly to a static BN, but we need the dotted inter-slice arcs to represent the autoregressive
component of TS.

p(X0,X1, . . . ,XT ) ≡ p(X0:T ) = p(X0)
T−1∏
t=0

p(Xt+1|X0:t), (3.5)

where Xt = (Xt
1, X

t
2, . . . , X

t
n) is the set of nodes at time slice t. In theory, this representation

has all the needed components to model stochastic processes through TS data, but in practice

it is computationally prohibitive to model all time slices from 0 to T . Two issues arise: an

indefinite number of time slices depending on how long the TS are and a super exponential

space of possible DBN structures. A stochastic process can contain an indefinite number of

time instants and, subsequently, random variables. As we process longer TS, the number

of time slices needed increases, and the space of possible DBN structures increases super

exponentially with respect to the number of nodes [Robinson, 1977]. On a similar note, as

the number of time slices grows, if we do not limit the autoregressive component, we can find

ourselves with an intractable amount of arcs going from previous time slices to future ones.

In order to fix both issues, we need to introduce a simplifying assumption called the

Markovian order. The Markovian order of the DBN defines that future time slices are inde-

pendent of the past given k previous time slices. This puts a limit to the number of time

slices that we model inside a DBN, and it simplifies the JPD computation from Equation

(3.5) greatly:
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p(X0:T ) = p(X0)
k−1∏
t=0

p(Xt+1|X0:t)
T−1∏
t=k

p(Xt+1|X(t−k+1):t), (3.6)

where m is the Markovian order of the network. Traditionally, the most common Markovian

order for DBNs would be order 1, which is equivalent to modelling first order autoregressive

stochastic processes. In that specific scenario, the computation of the JPD is simplified even

further:

p(X0:T ) = p(X0)
T−1∏
t=0

p(Xt+1|Xt) (3.7)

We usually refer to DBNs with a Markovian order greater than 1 as high-order DBNs.

Even though they are able to represent higher autoregressive orders than order 1 DBNs,

learning their structure and performing inference on them poses a greater challenge. Addi-

tionally, one important advantage that the Markovian order offers is that it allows us to use a

temporal window of size m+1 when processing TS data to fit our DBN models. This means

that by fixing a Markovian order m, we need to fit m+1 time slices with their corresponding

nodes, inter and intra-slice arcs. If we have one or several TS sequences s of length T , T > m,

we can partition this sequence into several m+ 1 sized batches of consecutive values. These

batches can then be used to fit our DBN models. In practice, this procedure allows DBNs to

be fitted with several unequal length TS. This characteristic is of importance when applying

DBNs to real-world problems, where the length of data from industrial processes can vary

depending on circumstances outside of the system.

3.4 Learning

The issue of learning a DBN structure from data is similar to that of a static BN, but on

a much bigger search space. In essence, each DBN structure has one or more static BN

structures per time slice and the additional arcs from the inter-slice transition structure.

Additionally, some authors learn an initial static BN structure (prior model) that represents

the initial JPD of the process [Trabelsi, 2013]. Depending on the characteristics that we

assume for our DBN model, we have different possible structures:

• We say that a DBN structure is homogeneous when all time slices t have the same BN

static structure.

• We say that a DBN structure is stationary when the inter-slice arcs from time slice t

to t+ 1 are always the same and do not depend on t.

• We say that a DBN is high-order when we fix a Markovian order higher than 1.

Depending on the specific characteristics of our desired DBN model some structure learn-

ing algorithms will be suitable or not. Broadly speaking, most DBN structure learning algo-

rithms consist of adaptations of static BN learning methods to the dynamic case. Many can
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be adapted by performing a two-step pass, learning first the intra-slice arcs of the network and

then the inter-slice arcs. For this reason, we will maintain the score-based, constraint-based

and hybrid categorization from Chapter 2.3.2.

3.4.1 Score-based methods

The score-based methods are a popular option in learning DBN structures. In essence,

evaluating a network with some dataset via a score can be transferred directly from BNs to

DBNs, and so the biggest issue raises from the huge increase in search space that comes with

DBNs.

We can find adapted versions of the greedy hill-climbing algorithm that we covered in

Algorithm 2.1 in works like Tucker and Liu [2003], van Berlo et al. [2003] and Wu and Liu

[2008]. These modifications need to include in the set of available operators the addition or

deletion of inter-slice arcs to model the dynamic structure. For scoring, we can use the same

log-likelihood scores as for BNs, but we can find specific scores made for DBNs, like the mutual

information score from Vinh et al. [2011] or loss functions derived around acyclicity constraints

[Pamfil et al., 2020]. Some authors also opt to perform the search via sampling with Markov

chain Monte Carlo methods [Wu and Liu, 2008; Robinson et al., 2010; Grzegorczyk and

Husmeier, 2011].

In contrast with the local search procedure of the greedy hill-climbing, we have global

search evolutionary algorithms. Methods like genetic algorithms [Tucker et al., 2001; Ross and

Zuviria, 2007; Ashrafi, 2021] or particle swarm optimization [Xing-Chen et al., 2007; Santos

and Maciel, 2014] have seen much interest due to their ability to move through vast search

spaces. This characteristic works well with the super-exponential search space of possible

DBN structures. A defining characteristic of these kinds of methods is that they need to

define an encoding for their individuals, and this plays a key role in the performance of each

algorithm. While some authors simply opt to use the binary adjacency matrices of DBNs as

an encoding, which is prone to generating invalid individuals if the matrices are not checked

for acyclicity in the equivalent DAG, other authors define specific data structures that, by

definition, cannot represent invalid networks [Santos and Maciel, 2014].

3.4.2 Constraint-based methods

In the case of DBNs, pure constraint-based methods tend to not be as popular as other

approaches. This is probably due to the fact that the amount of statistical tests that need

to be performed can become a prohibitive issue for high numbers of variables or higher

Markovian order. Even so, we can still find extensions of classic BN structure learning

algorithms to the dynamic scenario, like the PC algorithm [Liu et al., 2021], the grow-shrink

algorithm [Li et al., 2011; Naili et al., 2019] or the incremental association Markov blanket

algorithm [Li et al., 2011; Haque et al., 2022].
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3.4.3 Hybrid methods

In the case of hybrid methods that combine score-based and constraint-based characteristics,

the dynamic max-min hill-climbing (DMMHC) algorithm from Trabelsi et al. [2013] is of

particular relevance to this work. This method extends the max-min hill-climbing algorithm

from Tsamardinos et al. [2006] to the case of DBNs. It performs two search phases, one for

the initial network at t0 and another one for the transition network in a first order Markovian

fashion. It also proposes an extension to high-order DBNs, but the increase in complexity

that comes with this kind of structures can degrade the execution time of the algorithm

greatly.

3.5 Inference

In contrast with static BNs, DBNs need to be able to perform operations unique to TS data

such as forecasting values up to a certain point T in the future based on some initial data.

To be able to do this, we first need to make use of an inference method from Section 2.4.

In our case, we will be using Gaussian DBNs, and so we will apply the exact multivariate

Gaussian equivalent method in this work.

With a Markovian order k DBN, we can only represent k past instants of time and a

future instant of unknown values. By providing the values of the variables in previous time

slices as evidence in the DBN, we can predict the values of the future time slice with our

multivariate Gaussian equivalent inference method. However, this procedure only allows us

to predict a single instant into the future. In order to forecast up to horizon T , we need

to either unroll the DBN into T future time slices by assuming homogeneity of the network

and replicating the structure of the network, or use a temporal window. The drawback of

unrolling the network is that we can end up performing inference on hundreds of unknown

nodes all at once if we need to perform long term inference. On the other hand, using a

sliding window approach will allow us to perform inference only on one time slice at a time,

which is less time consuming and can be extended to any arbitrary horizon T .

In the baseline case of Markovian order 1, the procedure followed to forecast the multi-

variate TS with a sliding window is to provide it with some initial evidence of the nodes at

time slice t− 1 and predict the state of the nodes that conform the system at t. In the next

iteration, the forecasted values of the nodes at t will be used as evidence for t+1. In the gen-

eral case of arbitrarily large temporal windows, evidence is provided for all time slices except

the present one. First, given the initial state vector s0 = ((x01, . . . , x
0
n), . . . , (x

t
1, . . . , x

t
n)) with

values of the variables in our system observed at instant t and at many previous instants as

defined by the Markovian order of the network, we perform inference to obtain the values

x̂t+1 = (x̂t+1
1 , . . . , x̂t+1

n ) that the variables are predicted to take at the next instant. After

this, we move all the previous evidence forward in time. We forget the oldest evidence x0

from the system and introduce x̂t+1 as the new evidence of the last instant to create the new

state vector s′ = ((x11, . . . , x
1
n), . . . , (x̂

t+1
1 , . . . , x̂t+1

n )). This completes the current inference

step, while s′ is used as the initial state vector of the next inference step, predicting the
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Figure 3.6: Schematic representation of the sliding window mechanism in an inference step. The new
x̂t+1 is predicted with the DBN model and is introduced into the state vector, removing the oldest
x0.

next state of the system. This process is illustrated in Figure 3.6. We can perform as many

inference steps as needed to reach the desired horizon T .

One advantage of DBNs is that forecasting can be performed with some kind of interven-

tion in mind by fixing some of the initial evidence to some values that are to be tested. This

way, we can use the DBN model as a simulator to test how modifying specific variable values

will affect the future state of some system.

Another operation that can be performed with DBNs is what we call smoothing. This

is an opposite function to forecasting and consists of, given data of the current state of the

system, predicting backwards in time in order to see where could this data come from. This

operation can be useful in situations with missing data, where predicting backwards can help

filling gaps, or as noise removal to perform smoothing of TS curve profiles.
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CONTRIBUTIONS
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Chapter 4
Long-term forecasting of

multivariate TS in industrial

furnaces with DBNs

4.1 Introduction

As the first step in our work, we need to asses the effectiveness of DBNs in complex industrial

environments. This is also an opportunity to propose the use of high Markovian order DBNs

to model the tendency of TS better.

A common objective in industrial environments of this kind is to be able to forecast one

or more of the variables that compose the system in order to optimize some of its aspects.

The difference from the univariate case is that we must take into account not only the

autoregressive component but also the influence that the TS can have on the other TS.

An additional problem that TS can have is the presence of seasonality and non-stationarity

[Cheng et al., 2015]. In real-world situations, TS tend to be non-stationary because they

have different trends or scaling variances as time t increases. This non-stationary component

typically has to be identified and addressed in order to apply models such as the autoregressive

integrated moving average (ARIMA) [Peña et al., 2011] to the data. The seasonal component,

on the other hand, requires specific treatment depending on the kind of cycles present and

their characteristics.

Inside an industrial furnace, one of the processes that costs a great deal of money in terms

of efficiency loss is the deposition of solidified impurities of the fluid being processed in the

tubes where it is preheated before entering the furnace [Pogiatzis et al., 2012]. This process

is called fouling, and it forces the furnace tubes to be cleaned periodically. Fouling has been

treated extensively in the literature with different techniques, ranging from physical models

defining the process to more data-driven approaches. Some of the more classical methods

focus on developing physical equation models that simulate the fouling effect inside the tubes.

In Diaz-Bejarano et al. [2019], the authors simulate the growth of the fouling layer and its
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thermal resistance with a physical model over long spans of time. A similar approach is

used in both Pogiatzis et al. [2012] and Santamaria and Macchietto [2019], where the authors

simulate the fouling effect with a physical model, but they reformulate it afterwards into a

non-linear programming problem which they use to optimize the cleaning schedule that must

be performed to remove the fouling layer over time.

An alternative approach to this optimization is proposed by Diaby et al. [2016], where

instead of non-linear programming they opt to use a genetic algorithm to find the optimal

cleaning schedule while simulating the fouling effect. A very popular alternative to these

kind of models is a data-driven approach, where data from simulations or from operating

furnaces is used to fit machine learning models to capture the fouling effect. In particular,

neural networks (NNs) have found a lot of use in this area. A feed-forward network with three

hidden layers is used in Radhakrishnan et al. [2007], where they forecast the temperature of

the fluid inside the tubes over a span of two weeks. This temperature is also an indicative

of the fouling effect over time, given that it will be harder to increase it as the fouling layer

grows if no countermeasure is taken. Lalot et al. [2007] identify drifts in the temperature TS

that are a result of the fouling effect and use a mixed approach where they either recommend

forecasting with a recurrent two hidden layer NN when this drift is sudden and with a Kalman

filter if the drift appears slowly over time. A simpler approach is proposed by Davoudi and

Vaferi [2018] with a feed-forward dense network with 10 hidden neurons distributed in two

hidden layers. Instead of forecasting the temperatures over time, they use the network to

obtain an index that approximates the thermal resistance of the current fouling layer in a

single instant. Sundar et al. [2020] propose a similar approach, but they apply an ensemble

of NNs with two hidden layers to predict the fouling resistance based on the state of the

system. A review of similar methods of fouling prediction in industrial furnaces is discussed

in Wang et al. [2015]. In our case, this problem can be seen as one of multivariate TS that

have a non-stationary component as they follow an evolving trend over time and a seasonal

component of non-homogeneous cycles recovered from the furnace. We will focus on the

approach of forecasting the temperature inside the tubes to represent the fouling effect over

time.

Fouling causes a decrease in the thermal conductivity of the tube walls in the furnace.

As a result, as the fouling layer grows, we have to increase the heat provided to maintain the

temperature of the fluid constant inside the tubes. When the temperature of these tube walls

rises above a certain threshold, the efficiency loses become too severe and a cleaning must be

performed to remove the fouling layer. If we are able to predict the temperature that we need

to have the tube walls at in the long term, we can estimate the number of hours left until the

next cleaning must be performed. In addition, given that we want to gain some insight on the

fouling phenomenon and how the variables in our system affect each other, we propose the use

of Gaussian DBNs [Murphy, 2002] for long term forecasting of the system evolution. We will

treat the variables inside the TS recovered from the sensors of the furnace as different nodes

in our network and aim to model the conditional probabilistic independence relationships

among them. Once we learn the structure of the network and its parameters from the data,
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the dynamic part of the DBN will model the temporal component of the system. We can

then forecast the state of the system and the temperature of the tube walls up to a certain

horizon. With the resulting structure of the DBN, we are able to understand which sensors

in the system are more relevant and how the variables interact with each other. As opposed

to a black-box model, we have a clear picture of which variables influence future predictions.

In addition, DBNs are a good tool for making long-term forecasts that take into account

the evolution of the tendencies in TS, which is key in the problem at hand. To provide a

comparison with another state-of-the-art model, we will also train a convolutional recurrent

neural network (CRNN). NNs are very popular in the literature, and a CRNN will allow us

to perform forecasting over different spans of time.

This chapter includes the content of Quesada et al. [2021b]. The data used is not made

public due to privacy reasons, but the code used was compiled initially into the first version

of the dbnR package.

Chapter outline

The rest of the chapter is organized as follows. Section 4.2 introduces the fouling problem.

Section 4.3 explains the preprocessing performed on the data recovered from an industrial

furnace. Section 4.4 is devoted to the learning and inference methods used for the DBN, the

results obtained and the comparison with the CRNN. Section 4.5 concludes the chapter and

describes future work.

4.2 Forecasting the temperature of an industrial furnace

Inside an industrial furnace, fluids are circulated through tubes and heated to some desired

temperature to make them chemically reactive. In our case, the fouling effect degrades the

heat capacity of the tubes over time by creating an insulating layer on their walls, as depicted

in Fig. 4.1. The fouling degradation forces the preheat train to use more energy to attain

the same temperature inside the tube, up to a limit point where the melting temperature of

the tube walls is nearly reached. At this stage, the heating costs are very high as a result of

the degenerated heat transfer coefficient, and the desired temperature of the fluid cannot be

obtained because of this physical limit. To solve this problem, some cleaning of the insulating

deposits has to be performed, either by physical or chemical means, after which the tube walls

revert to their initial state and the fouling process begins again. This is what gives rise to

the seasonality in the corresponding TS. In addition, because the fouling process depends on

many different factors, the limit point is not reached after the same number of hours every

time, which creates non-homogeneous cycles in the data.

Inside the furnace, there are four different sections of tubes being heated. These sections

are grouped in pairs according to proximity, which means that their conditions are similar

and they have some influence in their paired section. We show an illustration of the furnace

layout in Fig. 4.2. To estimate the state of the system, sensors inside the furnace record

hourly operational data of the temperature at different points, the pressure inside the tubes,
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Figure 4.1: Schematic representation of the fouling effect inside a tube in the furnace. The fouling layer
appears over time and has to be removed when the working conditions degrade past a temperature
that would melt the tube walls.

the feed rate and the state of the heaters. Although fouling also depends on the composition

of the fluid being processed, we do not have information about it. In this scenario, we take

a data-driven approach by approximating the state of the fouling effect inside the furnace

over time with only data related to the physical properties and then modelling the gradual

degradation the furnace undergoes.

At section level, the cleaning of the tubes greatly affects the measurements of their sensors.

It is important to note that while one section is in a cleaning period, the others are working

normally. The main problem with this strategy is that cleaning a section may affect the

state of its paired section, which is reflected as severe interventions on the TS as shown in

Fig. 4.3. Given that the cleanings are planned in such a way that at most one section is not

operational at any one time, the effects of this phenomenon are visible in nearly all cycles.

These spontaneous interventions, and the usual noise and outliers typical in industrial data,

have to be taken into account in the preprocessing of the data.

In this scenario, our objective is to be able to forecast the evolution of the temperature

we have to provide to the tube walls during a cycle in a time window of 2000 hours. The end

of a cycle is not only based on a threshold for the temperature of the tube walls but can also

be cut short by the operators to avoid two or more sections undergoing cleaning operations

at the same time.

4.3 Preprocessing

The multivariate TS input data were composed of the hourly recordings of the sensors that

describe the furnace state over a time span of five years. This data came from several years

of sensor readings inside an industrial furnace heating a fluid prone to fouling. This TS
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Figure 4.2: Illustration of the layout of the four different sections (S1, S2, S3 and S4) inside the furnace.
When one needs to be shut down to perform cleaning operations, the others remain operational.

exhibited the typical characteristics of industrial generated data, such as noise, outliers and

missing values. Prior to the modelling phase, the dataset had to be preprocessed to reduce

its dimensionality and to address some of its irregularities, such as the effect of cleanings in

other sections and noise in the signals.

4.3.1 Characteristics of the data

The input dataset consisted of 226 variables recovered from the same number of sensors

inside the furnace. These sensors record data that describe the heating process, such as the

flow pressure inside the tubes, temperatures at specific points and the state of the heaters.

Some of these variables show seasonality caused by the cleanings performed on the sections,

and others are unaffected by them. In addition, there are many variables with redundant

information that come from sensors that record the same characteristic and are placed next

to each other. This results in very similar TS or even copies of the same TS shifted in time.

Regarding the rows in the dataset, there are a total of 43,415 with a time difference of one

hour between two consecutive instances. The sensors had different periods, and the shortest

period was hourly. Thus, we reduced all of them to the hourly dimension in the recording
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Figure 4.3: The heat supplied to the tubes during a cycle in one section. The periods in which cleaning
is being performed in another section are shown in red. One of these cleanings severely affects the
temperature of the tube.

process to avoid the problem of having mixed sampling frequencies in the TS [Andreou et al.,

2010].

4.3.2 Cleaning and imputation

Many of the TS in the dataset had missing values due to sensor malfunctions or system

shutdowns. In the span of five years, this is a common scenario that produces information

loss. Before treating the TS, these missing values had to be processed either to accept the

information loss or to try to impute the missing values. In our dataset, we encountered three

different situations:

1. Sporadic missing values of less than ten hours. These cases were imputed using linear

interpolation, because such short periods in a time span of 2000 hours should not create

severe fluctuations, and they should have a mild impact on the subsequent training of

the model.

2. Prolonged periods of approximately 100 hours of missing data. These are more severe

cases with a greater impact on the information that a cycle can provide, given that

cycles last 2000 hours on average. In this case, linear or polynomial interpolation

could introduce much undesired noise into the model, so we decided to use ARIMA

interpolation [Moritz et al., 2015]. This procedure fits an ARIMA model to the data

immediately before the missing block and then tries to forecast the missing values.

3. Extreme cases where thousands of hours are missing. This happened in two columns of

the dataset. In these cases, we opted to drop these variables entirely, as we could not
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afford to impute such long periods and then use these synthetic data to fit a model and

forecast from it.

Interpolations were performed in R software with the package ImputeTS [Moritz and

Bartz-Beielstein, 2017].

In this case, seasonal-trend decomposition [Cleveland et al., 1990] could not be applied

properly because the seasonal component was very irregular and did not show a clear period.

This was aggravated by the fact that some cycles were stopped early by the operators of the

furnace to avoid having more than one section on a cleaning period at the same time. When

they expected that at the end of a cycle two sections would need cleaning, they stopped one

of them early to keep at least three out of the four sections operational at all times.

Once the data was complete, some signal denoising and outlier smoothing were required,

as some of the sensors corresponding to temperatures inside the furnace had clear trends but

very noisy readings. In addition, we treated the effect of the cleanings in nearby sections as

if they were outliers and smoothed them. For this purpose, we used Friedman’s smoother

implementation in the forecast R package [Hyndman et al., 2007]. This method consists

of locally fitting linear least-squares regressions to outlier points of the TS with a temporal

window around them to obtain a smoothed outcome.

4.3.3 Cycle treatment

In this case, the seasonal component is not innate to the process, but rather forced via human

intervention to revert the system to a prior state. The information to model is the behaviour

of a cycle over time without being conditioned by its ending point. A cycle always ends with a

cleaning, and with this approach we can forecast when this cleaning will be mandatory due to

the limit temperature being reached. Instead of treating the TS as a whole, we use the points

where the cleaning interventions occur and divide the series into independent and identically

distributed cycles, as shown in Fig. 4.4. The objective is to predict the temperature to be

provided to the tube walls as the fouling process worsens over time. This information is

important to the operator of the furnace to estimate when a section will need to be cleaned.

To achieve this, the cycles have to be identified and the dataset indexed by them. In

total, there were 22 cycles.

For a DBN, given that the network has some Markovian order, we can adapt the full

training dataset to learn the structure and parameters by dividing it into a set of i.i.d.

cycles. Once it is divided into different cycles, we learn the parameters and the structure

globally from all of them.

To learn the dynamic relationships among variables, we need to adapt our dataset so

that each row contains the values of all the variables in an instant and in all of the previous

instants that are needed for the desired Markovian order. To perform this operation, we use

the following definition:

Definition 4.1 Given a dataset D with M rows, we define a shift function that takes as

input a column of D and an order O and returns its last M −O rows.
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Figure 4.4: A segment of the temperature TS on the tube walls. Three different cycles are shown in
different colours. The black dotted lines show the limits of each cycle. If we split the multivariate TS
into these independent cycles, we obtain several i.i.d. instances of the same underlying process.

In practice, shifting a column in a dataset D with O = 1 means that all but the first row

will be returned. When we combine a column C with its shifted version for O = 1, we obtain

the value in each row at t = 0 and t = 1, effectively preparing that column to learn the

influence of the previous time slice on the present. The shift function can also be used with

higher orders to see the influence of older time slices. To obtain a dataset D with the columns

shifted to the desired Markovian order k for a DBN, we need to apply the shift function to

all the columns in D for all orders O in 1, . . . , k. An example of adapting a dataset to learn

a Markovian order one DBN is shown in Fig. 4.5.

4.3.4 Feature selection

The motivation for selecting relevant features is that it is a means to reduce the dimensionality,

and it is a way to detect which sensors are not providing sufficiently relevant information and

which are providing redundant information. A posterior evaluation of the model can then

decide whether the irrelevant sensors are worth keeping.

With 226 variables for each section, the resulting Markovian order one DBN would have

twice the number of nodes. This situation is feasible for Gaussian DBNs, but the amount of

redundant information is expected to be high. Many of the sensors record data about the

same specific characteristic but at relatively close points in the furnace.

In this situation, TS clustering [Montero et al., 2014] was performed to group variables

based on their behaviour over time. We used hierarchical clustering with the adaptive dissim-

ilarity index distance [Chouakria and Nagabhushan, 2007]. This metric takes into account

the proximity of the values in two TS and similar changes in the behaviour of both of them.

To address the effect of having TS of different orders of magnitude, we performed max-min
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Figure 4.5: Adapting a dataset D to learn a Markovian order one DBN. All columns are shifted with
O = 1 and added to the dataset. The grey row contains missing values and should be deleted.

normalization. Given that our objective was to filter out redundant variables, we established

a conservative cut-off point for the clusters, as shown in Fig. 4.6. In this way, we make

sure that selecting one variable as the representative of the cluster will not lead us to discard

useful information.

As a result, we obtained 35 variables for each section. As expected, the redundancy

among the sensors was very high, and there were clusters of five or more sensors that yielded

TS with minimal differences between them.

4.4 Methods and results

To apply a DBN model, we must first define the structure learning algorithm and the inference

method to follow. We will train multiple DBNs to compare the behaviour and accuracy of

their forecasts. Afterwards, we will also train a CRNN to compare its performance with the

DBN model.
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Figure 4.6: One of the clusters obtained from the hierarchical clustering. A comparison between the
two most distant series in the cluster is shown. Variables inside the same cluster are mostly redundant
TS with some variations in scale.

4.4.1 Structure learning

The structure of the DBN was learned with the adapted dataset and an adapted version of the

DMMHC algorithm as explained in Trabelsi [2013]. To create Gaussian DBNs and perform

forecasting for TS, we created an R package called dbnR1, freely available in the CRAN

repository, with which we implement all the phases of structure learning and inference and the

visualization methods required. This package began as an extension of the bnlearn package

[Scutari, 2010] to dynamic scenarios. To learn the structure of a DBN, we use bnlearn’s

MMHC implementation and partially adapt it by following the DMMHC algorithm. This

is done in two steps: first, we learn the static structure of the network with the MMHC

algorithm and then we learn the inter-time slice arcs of the net. Moreover, we added the

option to modify the Markovian order of the network arbitrarily to adapt the autoregressive

order empirically as needed. To our knowledge, there are no R packages that cover all these

aspects of Gaussian DBN learning and inference.

4.4.2 DBN models

The differences among the networks we trained were mostly structural, relative to the size of

the temporal window considered and the amount of initial evidence provided. In particular,

we focused on creating DBNs with increasing Markovian orders, where we allowed arcs from

a time slice to any more recent one. By this means, we can take into account longer temporal

1https://CRAN.R-project.org/package=dbnR
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lags, where variables in earlier states of the system may be able to add relevant information

to the present state.

Increasing the Markovian order results in more complex models in terms of the number of

nodes and arcs, and we aim to trade off the efficiency costs with better forecasting accuracy.

If we overestimate the Markovian order, the learning of the structure and parameters from

the data will take too long and the predictions will degrade due to overfitting.

We also added a variable representing the time since the beginning of the cycle. This

gave the model an idea of the state that the system should be in based on how long it has

been running. As a result, the tendency was better captured.

It is important to note that we decided not to normalize the TS before using them to

fit the DBN model. The only visible difference when normalizing was in the values of the

weights inside the linear Gaussian CPDs, given that those coefficients had to account for the

differences in scales between the parent nodes and their children. On this note, we also did

not standardize the TS to remove their tendencies. The reason is that we aim to model these

tendencies with the Markovian order of the networks. As we provide the model with more

initial evidence, we find that the future tendency of the TS is captured better in the forecasts.

The initial resulting Markovian order one network has 70 nodes and 466 arcs without

limiting the number of parents of each node in the DMMHC algorithm. It is a dense network,

but feasible in terms of exact inference in a DBN. Each order increase adds 35 new nodes

and all the new arcs that appear from the new time slices to more recent time slices.

Once the structure of the DBN and its parameters are learned from the training data, we

need to make inference on it. In inferring, we need to provide the DBN with some evidence

to forecast the most likely state of the system over the coming hours. In the dynamic case,

the evidence from past time slices should be used to predict the next time slices. Depending

on the Markovian order of the DBN, the amount of evidence needed for the past time slices

will vary. To perform inference, we implemented the exact inference method by calculating

conditional probabilities in the equivalent multivariate Gaussian.

4.4.3 Convolutional recurrent neural networks

In order to compare the results of the Gaussian DBN with another typical model in the

literature, we will fit a CRNN. NNs have been widely applied in similar problems, and the

are shown to be a powerful tool for predicting the fouling phenomenon. In our case, we need

our model to be recurrent in order to be able to forecast TS of variable length.

We will take a similar approach to the case of the DBN model by providing the network

with a temporal window of the 24 previous hours of operation and predicting the next 24

hours. Afterwards, the predictions will become the inputs of the network to predict the

next window. Similarly to the DBN case, we will predict the whole state of the system

rather than only the temperature to be able to use the predicted state as input. To train

the model, we will use the same preprocessed dataset, but in this case we will normalize the

data. Normalization is a very common procedure with neural networks, and we saw a clear

improvement of the training loss after we applied it. This model is coded in Python 3.8 using
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TensorFlow and Keras, and the code is available in a GitHub repository 2.

4.4.4 Results

Among the 22 cycles available in the dataset, two of them were degraded and had to be

removed. The first degraded cycle lasted only 598 hours, while the average cycle length was

2073.05 hours. This is because the sensors only started collecting data at the end of this

cycle. The other degraded cycle had a length of 787 hours and was cut short by the operators

of the furnace to avoid having two sections undergo a cleaning period at the same time. After

removing those cycles the 20 remaining cycles ranged from 1046 to 3635 hours.

With these 20 cycles, we prepared a 5-fold cross-validation experiment, leaving 16 cycles

in each execution for training and 4 for testing. The model is trained and tested for all the

folds and the mean absolute error (MAE) results are then averaged. Given that the cycles

have different time spans, the forecast length is the same as that of the test cycle each time,

up to a maximum of 2000 hours. The resulting errors of the different models are shown in

Table 4.1. For the error metric, we calculated the MAE as:

MAE =

∑n
i=1 |xi − x̂i|

s
(4.1)

where xi are the real values of the TS, x̂i are the predictions and s is the total number of

samples. The MAE measures how much the forecasted curve differs from the real profile of

the cycle. A high MAE indicates that the forecasts differ greatly from the real behaviour of

the furnace, either by over- or underestimating the temperature rise. If we miss the ending

point temperature by too many degrees, this could mean that we estimate that a cleaning will

occur several days or even weeks away from the real date on which it has to be performed.

For this reason, the MAE of the model should be below 20, as a larger error could mean

estimating the ending point of a cycle some days later than it should be.

The results show that the error decreases as the Markovian order increases up to order

4, as shown in Fig. 4.7, but the training time of the networks increases sharply and the BIC

score of the networks decreases due to the increase in the number of nodes and arcs. Up to

a Markovian order of 4, the accuracy of the forecasts continues to improve due to the better

performance of the DBN in learning the different tendencies that can appear in the data.

By giving the network more past time slices and having the present time slice depend on

them, the initial evidence given to the network helps it decide whether the tendency of the

series will grow more sharply, as shown in Fig. 4.8. At Markovian order four and greater,

increasing the Markovian order decreases the forecast accuracy due to the accumulated noise

and overfitting, which increases because the network is extended backwards by many time

slices.

Once we chose the Markovian order four DBN, we assessed how the average error in the

forecast varies as time increases. The majority of the cycles exhibited a low MAE in the

first days of predictions and then an increase. Then, the error diminished progressively as

2https://github.com/dkesada/kTsnn
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Figure 4.7: As the Markovian order of the trained networks increases, the error in the forecasts
decreases to a point where the networks start overfitting and accumulating error.

Figure 4.8: Resulting predictions of a Markovian order four Gaussian DBN for two cycles with different
characteristics. The black line represents the real temperature TS while the red curve is the estimation
of the DBN. Note how the predictions adapt to the observed tendency in the initial evidence provided.
The predictions are extended to the full length of the cycles, with the first being an example of a cycle
that ends early.

the cycle reached its ending point. This behaviour can be seen in Fig. 4.9. This indicates

that the model is appropriate for short-term predictions as well as for predicting the end of

a cycle’s life, which was our original objective. On the other hand, the predictions are less

accurate around the 400-hour mark, where many of the predictions behave uniquely due to

the interventions of the furnace operators. Our objective of predicting the evolution of the

series in the long term is fulfilled by predicting what the initial growth of the series will be

in the short term and what temperature the series will have by the end of the forecast.

The inference process maintains a good execution time overall, and the bottleneck is the

learning of the structure. It is important to note that, rather than an exact prediction, we

obtain a probability distribution that defines the estimate of the variable, and in our case we

take the mean as the most probable value in calculating the metrics. In Fig. 4.8, we plot the
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Table 4.1: DBN forecasting results

Order BIC Training time Exec. time MAE

1 -3.56e6 4.72m 4.6s 17.11
2 -4.2e6 9.35m 7.63s 16.82
3 -4.83e6 20.31m 9.84s 16.16
4 -5.46e6 43.88m 12.8s 15.99
5 -6.09e6 1h 32m 16.54s 16.56
6 -6.71e6 3h 7m 20.81s 16.77
7 -7.33e6 6h 39m 25.62s 19.53

Figure 4.9: Average absolute error over time of forecasting with the Markovian order four network.
The absolute error is low in the first days and then increases due to the cycles individual behaviours.
As the ending point of the cycles approaches, the error decreases.

mean of the distribution in each time slice.

If we examine the network, we can see which variables directly influence the value of the

average oven temperature. In Fig. 4.10, we can see an example of our visualization tool with a

Markovian order four DBN. We can see that the time since the last cleaning and the pressure

of the gas in the heaters, among other variables, appear as parents of the temperature, as

well as the temperature in the last four temporal instants. With the time since the start of

the current cycle we model the state of the fouling effect in the system, and the gas pressure

directly influences the heat transferred to the tube walls. The appearance of the flow of fuel

administered to the oven heaters four hours previously as a direct parent of the temperature

indicates possible past interventions on a four hour-basis. With this structure, we can also

simulate scenarios to see how the variation of certain temperature variables will affect the

system in the future.
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Figure 4.10: A screenshot of the visualization tool included in our package showing the parent and
child nodes of the objective variable (cyan) in the Markovian order four DBN.

The results of the Markovian order four network prediction over the test cycles show it

to be a powerful tool in forecasting the profile that the temperature curve will have over the

coming months. By providing it with four hours of previous evidence of the behaviour of the

furnace, the operators of the plant will be able to gain information on the life expectancy of

the current cycle and plan the cleaning of the tubes accordingly.

In contrast, we can see the MAE results when forecasting in short, mid and long-term

with the CRNN model in Table 4.2. The network averaged 44.7 minutes of training time on

300 epochs. It shows exceptionally good results on short and mid-term forecasting, but it

degrades rapidly on the long-term. One interesting contrast that can be seen in Fig. 4.11 in

comparison to forecasting with DBNs is that the profile of the curve it predicts is less smooth,

providing a prediction that looks closer to real data. This is due to the DBN predicting the

expected mean over time, not the exact value. The real value is expected to fall close to the

mean in an interval defined by the variance. The results for short and mid term forecasting

with the CRNN are better than the DBN model, but the long-term forecasting degrades

rapidly. In the scenario of finding the expected remaining useful life of each cycle, the DBN

model is able to give us a good estimate, while the CRNN is able to predict the near future

more accurately.

Table 4.2: CRNN forecasting results

Time span Exec. time MAE

50h 0.98s 4.63
100h 1.6s 7.05
250h 3.4s 14.01
500h 6.57s 47.43
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Figure 4.11: Results of giving the CRNN the first 24 hours of a cycle as inputs and forecasting the
next 50 hours. The forecasting returns an accurate profile in the short term. As opposed to the DBN,
this model is normalized with the mean and variance of the training dataset.

The decrease in accuracy on the long-term is very likely due to lack of data to fit CRNNs

that are able to predict a longer span of time. This type of neural network models are very

powerful for either static predictions or forecastings, but require enough previous samples

to be able to converge to a stable state. In our case, generating new data takes months of

continuous operation, and due to the typical noise or unforeseen problems that can arise in

industrial applications, not all of this data recovered from sensors can be salvaged afterwards.

From our point of view, a model for short or mid-term forecasting with CRNNs that can

be fitted with reasonable sized datasets is a very useful and powerful tool for black-box

forecasting of this kind of TS to make decisions that affect the near future. Moreover, instead

of seeing DBNs and CRNNs as exclusive choices of fouling models, it can be argued that they

can complement each other in different scenarios. By fitting a DBN model that is specifically

tailored to perform long-term forecastings, we can combine it with a CRNN that excels at

shorter forecastings and obtain the benefits of both. We can combine the interpretability of

the DBN to improve both models at the same time and the efficacy of the CRNN to perform

accurate forecastings and decisions about the near future. Forecasting the temperature over

a long span of time with the DBN can give us an idea of the remaining useful life of our

current cycle, and performing short-term forecasts with the CRNN as time passes can give

us a clearer idea of how the profile of the curve is going to change in the near future and can

help us adjust our decisions within the expected time frame that the long-term forecasting

provided us.
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4.5 Conclusions and future work

Although only the physical properties of the process of interest were available, our DBNs

were capable of making long-term predictions with an acceptable MAE while our CRNNs

were able to make short and mid-term predictions with high accuracy. The strong outliers

of the cleanings present in the dataset did not have a severe impact on the forecasting, and

the Markovian assumption for the network helped in modelling the tendency of the series.

However, increasing the order of the DBN drastically increases the learning time of the

structure and decreases the BIC score, so a compromise must be found between the desired

accuracy and the complexity of the model.

The reduced number of cycles resulted in the Markovian order one DBN models learning

the most common tendency. Given that the DBN did not have enough evidence to discern

between tendencies, all forecasts tended to the same curve profile, incurring in greater error.

On the other hand, when we increased the Markovian order of the network, we allowed the

model to identify the tendency in the previous time slices. This resulted in much better

forecasts and greater robustness in cases with seasonality, where not all the cycles present

the same characteristics. In comparison, the CRNN model used was able to provide very

accurate predictions of the near future, but failed to predict spans of thousands of hours. We

proposed a combination of both models, where we could take advantage of the strengths of

both of them without having to resort to bigger datasets for fitting more complex models.

The structure of the network helps us understand the interactions among the variables

inside the furnace. Inspecting the structure, we can see which variables make the objective

temperature conditionally independent of the rest of the variables of the oven. This can help

us decide which of the sensors are more relevant, and it allows the operator to see which

variables affect the forecasting directly and the influence of each of them. In contrast to a

black-box model, the structure of the network offers an explanation of how the model makes

forecasts. The individual effect of a certain variable on the objective temperature can be

checked in its corresponding node in the network, which helps in discovering new information

on the relationships between the variables inside the furnace.

We have shown that DBNs are useful models when treating TS in industrial environments,

and we have provided the tools to apply them to specific scenarios and visualize the results.

The comparison with the popular NN models in the literature also showed some interesting

interactions between both of them and the possibility of combining the two models. In the

future, we would like to address the issue of automatically finding the optimal Markovian

order of a DBN to make the model easier to deploy. To accomplish this, we want to explore

the relationship between the Markovian order, the autoregressive order in the ARIMA family

of models and the tendency of the TS. We would also like to apply DBNs in cases where the

chemical properties of the fluid are available in each cycle, as we would be able to extract

more relevant conclusions related to the needed temperature given a specific composition.

The last issue we would like to tackle is a more in-depth hybrid model between Gaussian

DBNs and CRNNs, where the initial forecasting is performed with the CRNN model and its
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outputs are fed to the Gaussian DBN model for long-term forecasting. This hybrid model

could potentially produce better results than the use as separate tools.
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Chapter 5
Structure learning of high-order

DBNs via PSO with order invariant

encoding

5.1 Introduction

After applying high-order DBNs to the industrial problem of fouling, the issue of increasing

execution times for structure learning algorithms became highly apparent. The base DMMHC

algorithm is very effective for Markovian order 1 networks, but as the number of variables

and time slices increase, it becomes unfeasible to learn a graph with it. To tackle this issue,

we will propose our own structure learning algorithm specific for high Markovian orders.

Meta-heuristic optimization algorithms can be applied to structure learning by searching

over the space of possible network structures and assessing the fitness of each solution with

some score. In the case of particle swarm optimization (PSO) algorithms [Kennedy and

Eberhart, 1995], they offer a powerful solution for big search spaces but require them to

be continuous and real numbered, and the space of possible BN structures does not fulfill

these requirements. To fix this issue, some authors have translated the space of possible BN

graphs into a continuous one over which PSO can be applied [Liu and Liu, 2018]. Many other

authors [Du et al., 2005; Gheisari and Meybodi, 2016; Santos and Maciel, 2014; Xing-Chen

et al., 2007] have opted for translating the operations of the PSO algorithm to perform discrete

movements and then be able to apply the framework of PSO to BN structure learning. In

particular, Du et al. [2005] propose to encode particles as binary adjacency matrices that are

modified as the particle moves to represent additions and deletions of arcs. Santos and Maciel

[2014] extend this concept by defining particles as lists with the parents of each node, and so

a particle moving means adding or deleting parent nodes. However, these approaches become

less efficient as the number of nodes and the Markovian order increase, and the correct order

is assumed to be known beforehand. We will expand on both of those methods by defining an

encoding for particles that is unaffected by the Markovian order and allows for more efficient
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searches in larger spaces.

This chapter includes the content of Quesada et al. [2021a]. In addition, all code, data,

and results are available at https://github.com/dkesada/natPSOHO.

Chapter outline

The rest of the chapter is organized as follows. In Section 5.2 we explain how to deal with the

concept of high-order DBNs in PSO. Section 5.3 contains the details of our order invariant

DBN structure encoding into PSO particles and their operators. Section 5.4 shows the

empirical results. Finally, Section 5.5 concludes the chapter and gives some final remarks.

5.2 Background

In the field of BN structure learning, one family of methods is dedicated to applying PSO

to move through the space of possible structures to find an optimal solution. Depending on

the type of BN that we want to model, encoding the individuals and moving through the

solution space can be done in different ways. In our case, we will center our attention in DBN

models and translating the PSO operations to the discrete space defined by our encoding of

a particle.

5.2.1 High-order dynamic Bayesian networks

We call a high-order dynamic Bayesian network (HODBN) a DBN model where the first-

order Markovian assumption is relaxed and the network is represented with more than two

time slices. To leverage the increase in complexity of this kind of model, we can restrict

the arcs in the network so that they can only be directed to nodes in the most recent time

slice, in our case X0. This kind of DBN structures are called transition networks [Santos and

Maciel, 2014] and they avoid by definition any kind of cycles, which simplifies the search. The

space of possible structures that transition networks allow is also much smaller than that of

regular DBN models. To prove this, let G be a DBN network structure and G′ be a transition

network, both with the same number of nodes n0 per time slice, total number of nodes n and

Markovian order k. Let D be the set of all possible inter-slice arcs in G and T be the set

of all possible arcs in G′. We can calculate the number of possible DBN structures gDBN as

the different combinations of the elements in D, that is, the different combinations of all the

possible arcs in the network:

gDBN =

|D|∑
i=0

(
|D|
i

)
=

|D|∑
i=0

|D|!
i!(|D| − i)!

. (5.1)

By definition, |T| ≤ |D| because even though both have the same number of nodes, the

arcs in T are restricted in a way that satisfies T ⊆ D. If we apply Equation (5.1) to calculate

the number of possible transition networks gTN , we can see that:
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Figure 5.1: An example of a Markovian order 2 transition network with three nodes per time slice.
Only arcs directed to t0 from earlier time slices are allowed.

|T| < |D| =⇒ gTN << gDBN . (5.2)

If we would also take into account the possible intra-slice arcs in D, the inequality in

Equation (5.2) would be super-exponentially bigger. Moreover, increasing k by one translates

into adding only n2
0 arcs in the case of the transition network, as we only allow arcs from

the new n0 nodes to the nodes in X0. This means that increasing k by one increases |T|
by the constant n2

0. On the other hand, this operation means adding n0 ∗ n new inter-slice

arcs in the case of a regular DBN, which increases |D| exponentially with each increase in

k. This shows that not only |T| is always smaller than |D|, but it also increases drastically

slower when we increase the Markovian order of the network. For both the lack of cycles in

transition networks and their reduced, although still vast, space of possible structures we will

be using this kind of network in the rest of the chapter. An example of a HODBN with the

restrictions of a transition network can be seen in Figure 5.1.

5.2.2 Particle swarm structure learning

The PSO algorithm [Kennedy and Eberhart, 1995] is a meta-heuristic technique that simu-

lates a swarm consisting of n particles moving in a k -dimensional space to find the optimal

solution. Particles can be defined as Pri = {Pi, Vi, Pl, Pg}, where Pi is its current position,

Vi is its current velocity, Pl represents the best position found by the particle so far and Pg

is the best position found by the whole swarm. A position represents one specific solution of

the optimization problem, and the velocities modify these positions, allowing the particles to

move in the solution space. To calculate in each iteration t the next position P t+1
i and the
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next velocity V t+1
i of each particle, the following updating rules are applied:

V t+1
i = wV t

i + c1r1(Pl − P t
i ) + c2r2(Pg − P t

i ), (5.3)

P t+1
i = P t

i + V t+1
i , (5.4)

where w, c1, c2 ∈ R, w is the inertia factor of the last velocity, c1 is the factor that weighs

the importance of the local best position, c2 weighs the global best position and r1 and r2 are

two real numbers sampled uniformly from the interval [0, 1]. One of the key factors in PSO is

the pondered effects that the global and local best positions have on the current velocity of

a particle, which can change in each iteration if a particle finds a position that has a better

score than Pl or Pg. The inertia factor defines how much importance is given to the random

search of each particle, increasing or decreasing the exploratory capabilities of the swarm. A

higher inertia factor will mean that the t + 1 velocity of the particle will be very similar to

the one it had in the previous instant t.

Although PSO was originally designed for continuous and real valued spaces, there are

adaptations to discrete scenarios. In particular, the approach established by Du et al. [2005]

defines positions and velocities as the binary adjacency matrix of a BN. In this case, velocities

matrices can take any value from the set {−1, 0, 1}, representing deletions, non modifications

or additions of arcs respectively. This same approach is taken by Santos and Maciel [2014],

but instead of adjacency matrices they define a structure called causality list that establishes

positions and velocities as sets of parent nodes.

To be able to apply PSO to the problem of learning DBN structures, we need a score

that measures how likely it is that a network structure fits some data. Let D be our training

data and let G be the network structure represented by a position. Our objective can now

be defined as:

argmax
G∈gDBN

score(G,D). (5.5)

This score of fitness is necessary to assess which particles in the solution space fit the

training data better and guide the exploration towards them. There are many examples of

scores in the literature, such as the BIC [Schwarz, 1978] and the AIC [Akaike, 1998] scores for

discrete networks, or the Bayesian Gaussian equivalent (BGe) [Geiger and Heckerman, 1994]

score and the adapted BIC and AIC scores for Gaussian Bayesian networks. Depending on

the type of score used, the same algorithms can be used to learn both discrete and Gaussian

Bayesian networks.

5.3 Encoding and operators

One of the crucial elements of meta-heuristic optimization algorithms is the encoding used. A

suboptimal encoding could generate losses in efficiency by having redundant solutions, having
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to fix invalid individuals each iteration or by not allowing an even exploration of the solution

space.

Our proposed encoding maps each possible transition network structure to a vector of

natural numbers. This mapping is bijective in both sets: a transition network structure

can only be represented with one specific vector, and a vector only represents one specific

transition network structure.

5.3.1 Natural vector encoding

In a particle swarm scenario, each particle has a position and a velocity. In our case, posi-

tions represent specific transition network structures and velocities represent additions and

deletions of arcs.

In a transition network, there are several nodes representing the same variable in different

instants of time. We define the concept of a temporal family of nodesXf
i = {X0

i , X
1
i , . . . , X

T
i }

as the set of nodes representing a single variable Xi in all existing time slices of the network.

Inside a temporal family, we call a receiving node the node X0
i in the present time slice. This

node is the only one in a temporal family that can have arcs pointing to it from any other

node in earlier time slices. In our encoding, we will divide a vector in as many sections as

receiving nodes X0
i there are in the network. Each of these sections is further subdivided

into a subsection consisting of a single natural number for each existing temporal family Xf
i

in the network. This number defines with its binary representation the existing arcs from a

certain temporal family to a specific receiving node. Each 1-bit encodes an arc from a specific

member of the temporal family to the receiving node. By definition, this encoding does not

allow invalid individuals because only receiving nodes can have arcs pointing to them and

no cycles can appear. Furthermore, the length of the encoded vectors only depends on the

number of existing receiving nodes, and not on the Markovian order. Higher orders will only

mean bigger natural numbers in the vector. To clarify this explanation, an example of a

position and the network it encodes can be seen in Figure 5.2.

The velocities follow the same encoding, but represent arc additions or deletions instead

of the presence or absence of an arc. Each velocity is composed of two vectors, Vp and Vn,

defining additions and deletions of arcs respectively.

5.3.2 Position and velocity operators

To perform the operations of the PSO, we will adapt them to the discrete space defined by

our encoding. In essence, we will need to be able to add positions and velocities, subtract

positions and multiply velocities by real numbers. All operators shown are supposed to be

bitwise logical operations. Both positions and velocities have the same vector length, so when

operated together this bitwise operations will be performed throughout both vectors to each

pair of natural numbers.
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3 0 1 1 2 0 0 0 3

1 1 1 0 1 1

Figure 5.2: Representation of a position natural vector on the left and its equivalent transition network
on the right. The transition network has three nodes per time slice and a Markovian order 2 for
simplicity and clarity. Notice how increasing the order, thus adding many possible nodes and arcs,
only implies bigger natural numbers in the vector, but it does not increase its length. For example,
increasing the order up to 3 in the figure would only mean that natural numbers up to 7 can now
appear in the vector.

2 2 0 2 1 0 3 2

3 2 3 2

2 1 0 1

1 2 3 2

;

;

Figure 5.3: An example of adding a position and a velocity encoding a network with two receiving
variables X0

0 and X0
1 and maximum Markovian order 2 for simplicity. All the operations are performed

bitwise on the natural numbers of all vectors.

5.3.2.1 Position plus velocity

To add a velocity to a position, first we add all the arcs in Vp by performing a logical ‘or’ in

the form of P′ = P ∨Vp. As for the negative part, we define the ⊖ operator as:

x1 ⊖ x2 = x1 ∧ ¬x2. (5.6)

This operator is equivalent to a 1-bit subtractor without borrow. By performing P′⊖Vn,

we remove the 1-bits that are present in both the position and negative velocity temporal

families and maintain the rest unaffected. The consecutive positive and negative operations

will add and remove the marked arcs of the velocity in the original position. An example of

this operation can be seen in Figure 5.3.

5.3.2.2 Addition of velocities

Given two velocities V1 and V2, to add them we first need to combine their positive and
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negative parts. For this, we operate V′
p = V1

p ∨ V2
p and V′

n = V1
n ∨ V2

n. Afterwards,

we perform a bitwise logical ‘and’ operation to identify redundancies in the form of Rd =

V′
p∧V′

n. Any 1-bit present in Rd means that an arc is being added and deleted at the same

time in the resulting velocity, and it has to be set to 0 in both positive and negative vectors

of V′ with the ‘xor’ operator by performing V′
p⊕Rd and V′

n⊕Rd respectively. An example

of this operation is shown in the following lines:

V1 = [1, 0, 2, 0]; [2, 0, 0, 3],V2 = [0, 1, 2, 1]; [0, 2, 0, 2],

V1 ∨V2 = [1, 1, 2, 1]; [2, 2, 0, 3] = V′,

V′
p ∧V′

n = [0, 0, 0, 1] = Rd,

V′ ⊕Rd = [1, 1, 2, 0]; [2, 2, 0, 2].

5.3.2.3 Subtraction of positions

Given two positions P1 and P2, the operation P1 − P2 = V′ returns the velocity V′ such

that P1+V′ = P2. This effect is obtained by using the operator ⊖ defined in Equation (5.6)

to calculate both the positive part V′
p = P2 ⊖ P1 and the negative part V′

n = P1 ⊖ P2 of

the velocity. Notice that the ⊖ operator is not commutative, and so the inverted positions in

each operation give different results. The ⊖ operator can be used to get the bits that need to

be added to transform a position into another. An example to clarify this operation is shown

in the following lines:

P1 = [1, 0, 2, 1],P2 = [1, 1, 0, 3],

V′
p = P2 ⊖P1 = [0, 1, 0, 2],

V′
n = P1 ⊖P2 = [0, 0, 2, 0],

V′ = [0, 1, 0, 2]; [0, 0, 2, 0].

5.3.2.4 Multiplication of velocities by real numbers

Let |V| be the total population count in a velocity, that is, the total number of 1-bits in

both positive and negative vectors. As proposed by Santos and Maciel [2014], multiplying a

velocity by a real number increases or decreases |V| in the form of ⌊α ∗ |V|⌋ = |V|′. This

means that we will randomly add or delete 1-bits in the velocity until the new total number

of operations is obtained. We will follow a uniform distribution when sampling a temporal

family in the vector and the open bits in the natural numbers. If α < 0, Vp and Vn will be

swapped with each other to invert all additions and deletions of arcs in the velocity and the

absolute value of α will be used.
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Figure 5.4: Pipeline of the PSO algorithm. The particles move applying the updating rules described
in Section 5.2.2 and the operators described in Section 5.3.2. The position with the best fitness is
translated into its DBN equivalent and returned as the best solution found.

5.4 Results

In this section we will first discuss the implementation of our PSO structure learning algorithm

(natPSOHO) and compare it with two other algorithms: the PSO for HODBNs proposed by

Santos and Maciel [2014] and our variation of the dynamic max-min hill climbing algorithm

[Trabelsi et al., 2013]. This comparison will consist of recovering several synthetic randomly

generated networks from sampled datasets, evaluating the execution time and how many

of the original arcs are recovered from the data. The Markovian order and the number of

receiving nodes will vary, to assess the efficiency and precision of the algorithms as both these

factors increase. The number of iterations of the PSO algorithms is set to 50 with populations

of 300 particles, and all the datasets will consist of 10.000 instances. These parameters remain

constant through all the experiments.

5.4.1 Implementation

All the algorithms have been implemented in R and C++. The code of the natPSOHO

algorithm, the experiments and the generation of the synthetic datasets have been combined

into an R package that is publicly available in a GitHub repository1. All experiments were

conducted on an Ubuntu 18 machine with an Intel i7-4790K processor and 16 Gb of RAM.

Due to the translation of the position and velocity operations to our specific encoding, we

can use the normal pipeline of the PSO algorithm shown in Figure 5.4 without any change.

For the evaluation of the positions based on the dataset, we will use the BGe score.

As recommended in other PSO works [Liu and Liu, 2018], the inertia value w is set high

at the beginning and slowly decreases as the iterations advance to favour exploration at first,

and c1 is set high and decreases over time while c2 is set low and increases over time, so

that the positions close to the global optimum are properly explored prior to finishing the

execution.

5.4.2 Experimental comparison

The results for Markovian orders 1 and 2 networks can be found in Table 5.1. We can see

that for smaller networks with few nodes and low Markovian order, the DMMHC algorithm

is much faster than the particle swarm ones, but its execution time scales rapidly with the

1https://github.com/dkesada/natPSOHO
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number of variables. We will not be testing the DMMHC algorithm on higher orders, given its

poor scalability and the similar performance to the other two algorithms in terms of number

of real arcs recovered. On the other hand, the natPSOHO algorithm is less efficient in time

than the binary PSOHO for low-order networks and many receiving nodes, but it consistently

outperforms the other two algorithms in terms of real recovered arcs.

Table 5.1: Results for low-order networks

[Order, n0,Arcs] Algorithm Rec. arcs Exec. time

natPSOHO 47 1.49 m
[1, 10, 47] PSOHO 42 1.55 m

DMMHC 36 0.22 s

natPSOHO 96 3.24 m
[1, 15, 111] PSOHO 78 2.81 m

DMMHC 69 2.54 s

natPSOHO 152 5.81 m
[1, 20, 201] PSOHO 118 4.22 m

DMMHC 100 42.21 s

natPSOHO 86 3.37 m
[2, 10, 96] PSOHO 68 2.88 m

DMMHC 71 24.1 s

natPSOHO 175 7.1 m
[2, 15, 234] PSOHO 139 12.68 m

DMMHC 132 40.73 m

natPSOHO 288 14.24 m
[2, 20, 398] PSOHO 215 23.15 m

DMMHC 233 19.1 h

The results for recovering high-order networks from data can be seen in Table 5.2 and in

Figure 5.5. We can see how the execution time for the natPSOHO algorithm scales better

than the other method as we increase the Markovian order of the networks. We can also

see that the number of recovered arcs is consistently higher in the case of the natPSOHO

algorithm. In order to evaluate the networks, the BGe score is used to find the fitness of the

particles. We have enhanced this score by omitting the scoring of nodes outside of t0, due

to the fact that in transition networks these nodes never have parents and their structure

remains constant. Regardless of this, the score takes longer to compute for networks with a

higher number of arcs. Given that the natPSOHO algorithm consistently recovers more arcs

from the real networks that generated the synthetic data, the execution time of the score

is also consistently higher. This makes it impossible to achieve a constant execution time

on the evaluation of the networks, but the constant execution time in the operations of the

particles is shown in the overall better performance of the algorithm.

The percentage of recovered arcs decreases in both algorithms as we increase the order
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Table 5.2: Results for high-order networks

[Order, n0,Arcs] Algorithm Rec. arcs Exec. time

[3, 10, 147] natPSOHO 125 4.93 m
PSOHO 85 7.56 m

[3, 20, 616] natPSOHO 398 23.8 m
PSOHO 308 37.06 m

[4, 10, 208] natPSOHO 157 6.87 m
PSOHO 110 11.06 m

[4, 20, 825] natPSOHO 533 38.02 m
PSOHO 423 1.04 h

[5, 10, 247] natPSOHO 181 9.23 m
PSOHO 148 16.87 m

[5, 20, 982] natPSOHO 622 57.45 m
PSOHO 425 1.3 h

[6, 10, 294] natPSOHO 208 12.43 m
PSOHO 170 21.6 m

[6, 20, 1171] natPSOHO 739 1.4 h
PSOHO 517 2.04 h

due to the PSO not being close to convergence. The solutions obtained are the best ones

found after 50 iterations, but it is expected that the algorithms did not yet converge to a

solution due to the number of iterations being constant in all experiments. As the size of the

search space increases, the number of iterations should also increase accordingly.

Figure 5.5: Execution time in minutes and percentage of recovered arcs of both PSO algorithms with
300 particles, 50 iterations and 20 receiving nodes when learning transition networks as we increase
the Markovian order.
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5.5 Conclusions and future work

We have presented a new high-order DBN structure learning algorithm that employs PSO

to find the network structure that best fits the training data provided. Its order invariant

encoding allows a good scalability to bigger networks and high Markovian orders. It also

offers the possibility to search up to a maximum desired order rather than having to specify

it beforehand.

When learning high-order networks, the search space becomes huge rapidly. Algorithms

that rely on independence tests, like the DMMHC algorithm, can become unfeasible in terms

of execution time due to the high number of variables and the datasets with thousands of

instances. On the other hand, PSO algorithms can scale well to finding solutions in bigger

search spaces, but suffer slightly in smaller ones.

The execution time of the proposed natPSOHO algorithm scales much better in high-

orders due to the underlying data structures being constant in size and the operations being

performed bitwise. It is shown to be an effective algorithm when dealing with processes with

big search spaces generated by high-order networks. In situations where the exact Markovian

order is not known beforehand, a higher number of iterations and a maximum desired order

can be provided and the algorithm will search for a fitting network in that scenario.

In future work, we would like to refine our encoding and generalize it to be used with any

meta-heuristic algorithm, not only with PSO. The main issue that it presents is that even

though it relies on vectors of natural numbers, the operators must be bitwise. This would

require a transition to a different encoding that is able to take advantage of the natural

numbers, like the Gray code, or a generalization of the bitwise treatment before being able

to extend it to other frameworks.
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Chapter 6
Piecewise forecasting of nonlinear

TS with model tree DBNs

6.1 Introduction

After applying HODBNs to industrial furnaces and defining a structure learning algorithm

specific for this kind of networks, we now switch to another of the shortcomings of DBNs. By

definition, Gaussian BNs are linear models, and so are Gaussian DBNs. This means that when

we try to use Gaussian DBNs as general purpose models in a wide range of applications, we

may find that the linearity constraint produces severe inaccuracies when modelling nonlinear

processes. In this chapter, we are going to tackle the nonlinearity issue and apply our DBN

models to a variety of different systems to evaluate their general use capability.

In a multivariate setting, we must take into account the effects that fluctuations in a

variable have on the rest of the system. This means that we face a set of coupled univariate

TS where variations in one series can generate linear or nonlinear changes in the others. As

a result, modelling a multivariate process over time requires updating the state of the system

and forecasting the evolution of all variables simultaneously.

In recent years, DBN models have seen a lot of use in industrial settings due to their

characteristics as TS forecasting models and their interpretability, which has changed DBNs

into more general purpose models. They have been applied to stock market forecasting [Duan,

2016], to ecosystem changes prediction based on climate variations [Trifonova et al., 2019],

to topic-sentiment evolution analysis over time [Liang et al., 2020], to assess the remaining

useful life of structures [Zhu et al., 2019; Cai et al., 2019], to monitor aircraft wing cracks

evolution over time [Li et al., 2017] and to identify abnormal events during cybersecurity

threats [Vaddi et al., 2020], among others. However, in a continuous case, where Gaussianity

is typically assumed, DBNs present some drawbacks: DBN models are inherently linear

models, and they do not allow the insertion of discrete variables without the introduction of

additional constraints [Koller and Friedman, 2009]. Over time, industrial processes commonly

follow complex nonlinear relationships or have changing distributions of the variables as
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the system evolves, incurring in a phenomenon called concept drift [Gama et al., 2014].

In both scenarios, a traditional DBN presents weaknesses inherent to the model that will

result in severe inaccuracies when modelling and forecasting this kind of pattern. In the

aforementioned applications, Gaussian DBNs are used to fit nonlinear problems. In those

cases, the authors have to either assume Gaussianity in their experiments, discretize the

variables to be able to apply discrete DBNs or modify the DBN architecture with nonlinear

conditional probability distributions that do not allow exact inference and need Markov Chain

Monte Carlo sampling [Liang et al., 2020].

To address the linearity issue of Gaussian DBNs, we propose a new hybrid model called

model tree dynamic Bayesian network (mtDBN). This model combines a classification and

regression tree (CART) [Breiman et al., 1984] with DBNs in a manner similar to that of

model trees [Quinlan, 1992]. First, a tree is fitted over the data with the desired variables,

with the possibility of adding the elapsed time as a variable too. This tree structure is used

to classify all instances of the dataset into different subpopulations depending on which leaf

node they correspond to. Finally, a DBN model is fitted to each of the subsets of data

in the leaf nodes. This way, we obtain several DBN models tuned specifically for certain

contexts of the feature space defined by the tree splits instead of a unique global network.

When performing forecasting, we first classify the current state of the system with the tree

structure, and then we perform inference with the appropriate DBN model. This results in a

piecewise regression [Vanli and Kozat, 2014], which is closer than a linear model to the real

behaviour of a nonlinear or non-stationary system. Another advantage of this model is that

in the presence of discrete variables, one can use all or several of them in the construction of

the tree structure and then train Gaussian DBNs on each leaf node, thus avoiding switching

to DBN models with discrete and continuous variables and their limiting constraints.

To compare the results obtained with DBN and mtDBN models with another state-

of-the-art TS forecasting model, we use long short-term memory (LSTM) neural networks

[Schmidhuber, 2015] and high-order fuzzy cognitive maps (HFCM) [Kosko, 1986]. LSTM

models have found much use and popularity in recent years [Van Houdt et al., 2020], and

they have been applied to a wide range of TS forecasting problems. On the other hand,

fuzzy cognitive maps are graph-based TS forecasting models. They share similarities with

RNN and use fuzzy sets to represent the relationships between the variables in real world

problems. They have seen much use in recent decades and many studies have been presented

introducing new variations of this framework [Orang et al., 2022].

The main contribution of this chapter is the introduction of a hybrid model between model

trees and DBNs, which allows nonlinearity in the forecasting via piecewise regression. Our

results in three different datasets show that the mtDBN model outperforms DBN models and

is competitive with other state-of-the-art TS forecasting models. The mtDBN model learning

and inference procedures are also distributed as an open source R package to facilitate its

future possible applications.

This chapter includes the content of Quesada et al. [2022]. All code, data, and results are

available at https://github.com/dkesada/mtDBN. Additionally, the code of the LSTM models
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can be found at https://github.com/dkesada/kTsnn, and the code of the HFCM models is at

https://github.com/dkesada/HFCM.

Chapter outline

The rest of the chapter is organized as follows. Section 6.2 defines our proposed mtDBN

model. In Section 6.3 we explain the experimental methods and compare the results of the

mtDBN and state-of-the-art methods. Finally, in Section 6.4, we give some final remarks and

conclusions for the chapter.

6.2 Tree-based dynamic Bayesian networks

6.2.1 Hybrid definition: mtDBN

Our proposed mtDBN model consists of a hybrid between model trees [Quinlan, 1992] and

DBNs in a similar fashion to Bayesian multinets [Bilmes, 2000] in a dynamic scenario. The

objective of the tree is to divide instances from the original dataset into different contexts

leading to each leaf node. Afterwards, we train several DBN models using the different

instances attached to each leaf node. Similar to a multinet architecture, all the networks in

the leaf nodes are related to each other, given that they model different situations from the

same process, and the tree structure serves as a switch that selects the appropriate model

for some new instance that we want to forecast. We chose model trees as the switch in our

hybrid because it allows the DBN model to retain its interpretability. The leaf nodes in a

tree are clearly differentiated by each branch split, and one can easily see the characteristics

of the instances in each leaf node. This way, we can evaluate the specific DBN fitted to a leaf

node knowing the context of that leaf node.

Typically, model trees require a response variable to be predicted, although in DBN

models any variable can be the objective of inference. Thus, depending on the problem, we

can choose any variable in the system as the objective variable for both growing the tree

structure and forecasting in the network. Moreover, there is also the possibility of growing

a multivariate regression tree [Larsen and Speckman, 2004] and performing inference over

several variables at the same time with multi-output regression.

Similar to a model tree, we may have a Gaussian DBN model in each leaf node instead of a

linear regression. Given a dataset D, we can fit either a univariate or multivariate tree model

and then evaluate which leaf node each of the instances belongs to. With these subdatasets,

we can train each of the aforementioned DBNs and store them in a vector M of models and

link each leaf node with one position of this vector. Then, while performing forecasting, a

new instance is sorted down the tree to find its corresponding leaf node, and then we use

the network inside M that is attached to that leaf node to forecast. Afterwards, if we are

predicting up to a certain horizon in the future, the results of the forecasting are processed

again with the tree to select a new DBN model to continue the forecasting. This way, we

select an appropriate network based on the state of the system at each instant. Given that
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Figure 6.1: Schematic representation of the mtDBN architecture. The tree structure is initially used
to divide the original dataset D into several datasets Dleaf . Each one of these datasets is then used
to fit a DBN model, which will be stored in the model vector M. Afterwards, the tree structure will
be used to classify new instances according to the appropriate DBN model inside M.

the inference performed by Gaussian DBNs is linear, with this hybrid we can augment it to

perform piecewise linear regression to achieve pseudo nonlinear forecasting with DBN models.

The architecture of the hybrid mtDBN model is depicted in Fig. 6.1.

In our case, we opted to use a CART model [Breiman et al., 1984] with reduced variance

splitting criterion for the tree structure that classifies instances into different leaf nodes. We

chose this model due to its generality and simplicity as a starting point for the hybrid. CART

models are well established and extended, and variance reduction splitting can be applied as

a general method for continuous data. The model that defines the multinet, in our case the

CART model, can potentially be swapped for more appropriate ones in different applications,

such as a clustering method or another type of tree-based model. The splitting criterion can

also be defined differently to prioritize specific behaviours, for example, using information

gain [Sharma and Kumar, 2016] or change point detection methods on TS [Aminikhanghahi

and Cook, 2017]. In this first version, we want to establish a more general approach that

can be specialized to different scenarios. The pseudocode of the learning phase of our hybrid

model is shown in Algorithm 6.1. We will refer to specific lines of this algorithm during the

remainder of this section.
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Algorithm 6.1: Learning the mtDBN model from data

Input: Parameters α, inc cte, min inst, homogen, mv
Output: The hybrid model MmtDBN

Data: Training set D
1 valid = False;
2 full tree = growCART (D, α, mv);
3 while not valid do
4 pruned tree = pruneCART (full tree, α);
5 Dclass = classifyDataWithTree(D, pruned tree);
6 valid = checkInstancesPerLeafNode(Dclass, min inst);
7 α = α+ inc cte

8 if homogen then
9 dbn struc = learnDBNStruct(D);

10 MmtDBN = [ ]
11 for unique tree node data Dleaf in Dclass do
12 if not homogen then
13 dbn struc = learnDBNStruct(Dleaf );

14 M i
mtDBN = fitDBNParameters(Dleaf , dbn struc);

15 return MmtDBN ;

Our dataset D contains all instances of our regressor variables Xj inside a table structure:

D = [X0, . . . ,Xn] =


x00 · · · xn0
...

. . .
...

x0l · · · xnl

 , (6.1)

where l denotes the total length of the dataset. The specific value of variable Xj in instance

k is thus defined by xjk. In Algorithm 6.1, we provide D as input data.

We begin by defining an objective response variable to grow the tree. In our implementa-

tion, we allow both univariate and multivariate model trees, but in this section, we focus on

univariate trees for simplicity. Note that, no matter the kind of model tree used, the mtDBN

model will always perform multivariate inference. Once we set the response variable Y , which

is one of our Xj variables, we grow the tree defining cut-offs on some regressor variable Xj

based on the sum of squares of Y :

SS =
∑
i

(yi − ȳ)2, (6.2)

where yi is the value of Y in an instance of our dataset and ȳ is the sample mean. The

only difference with multivariate trees is that this sum of squares would be calculated for a

vector Y of response variables instead of a single response variable. We calculate the cut-off

point that generates two new tree nodes by maximizing the reduction of SS on both branches

rooted at Xj compared to the parent node:
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δtree = SSp − (SSl + SSr), (6.3)

where δtree is the total improvement of a split, SSp is the sum of squares of the parent tree

node, SSl is the sum of squares of the left branch and SSr is the sum of squares of the right

branch. We calculate the best δtree for all Xj variables available and then choose the one

that maximizes it. Given that our regressor variables are continuous, there are potentially

infinite possible cut-off points. To solve this issue, we only check the cut-off points defined by

the values of Xj in our data D; that is, we evaluate Equation (6.3) for Xj ≥ xjk in the left

branch and Xj < xjk in the right branch. During the growing phase, we grow a univariate

or multivariate tree until either none of the possible new splits obtain a positive δtree or

we reach a maximum tree depth defined by the user in line 2 of Algorithm 6.1. The input

parameters homogen and mv in Algorithm 6.1 are used to determine whether a homogeneous

or non-homogeneous and univariate or multivariate tree is built. Once we grow the tree, we

prune it by fixing an α ∈ (0, 1] parameter that defines a threshold over δtree. If a split does

not satisfy δtree ≥ αδPtree, where δPtree is the total improvement of the previous tree node,

then that subtree is pruned. The growing and pruning of the tree is encapsulated from line

2 to line 7 of Algorithm 6.1. In addition, we want to focus some attention on line 5 because

it labels each row in D to its corresponding leaf node in the pruned tree and generates the

Dclass dataset. This will be key in the next steps of the algorithm when we use specific

instances to learn each DBN model.

It is important to note that we apply the splitting criterion to the TS data in a static

fashion, without taking into account the time difference between instances. This is because

we want to be able to select the appropriate DBN model based on the current state of the

system in each instant. If one wants to add the temporal component to the tree construction,

the time passed since the beginning of the process may be added as a variable. This could

potentially give the tree an idea of how long the system has been running, and it allows splits

based on how much time has passed.

When we obtain an adequate tree model, we use the splitting rules defined by the tree to

process the original dataset and assign each instance to its corresponding leaf node, generating

several subdatasets. Afterwards, we use these subdatasets to fit a different DBN model for

each leaf node. This way, each of the DBNs is tuned to its specific context as defined by

the tree structure. This process is shown in Algorithm 6.1 from line 8 to line 14. These

models can be homogeneous if they all share the same network structure learned from the

whole dataset in lines 8 and 9, but each has different parameters fitted in line 14, or non-

homogeneous if both the structure and the parameters of each network are learned from the

local instances of each leaf node in lines 12 to 14. The loop in line 11 iterates over the different

subdatasets Dleaf generated by the classification in line 5. Each Dleaf contains only those

instances corresponding to a specific leaf node to fit the DBN with that specific part of the

complete dataset D.

As a reliability measure, we added the min inst parameter that sets a minimum number

of instances per leaf node. This avoids training DBN models with few data. We perform this
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by pruning the tree structure and checking the number of instances per leaf node with that

structure. If it has fewer instances than the minimum allowed, we increase the parameter α

by a constant defined by the user with the inc cte parameter and repeat the pruning process

to generate shallower trees from line 5 to line 7. In particular, in line 6, we declare a pruned

tree valid or invalid by recounting the number of instances in each leaf inside Dclass and

checking that they are all above the minimum.

6.2.2 Forecasting

Once a tree is obtained and all necessary DBN models are fitted, they can be used simultane-

ously to perform forecasting over some time horizon T . We begin the forecasting procedure

with an initial evidence vector s0 defined as:

s0 = (x0,x1, . . . ,xt) = ((x01, x
0
2, . . . , x

0
n), . . . , (x

t
1, x

t
2, . . . , x

t
n)), (6.4)

where n is the number of variables per time slice and t+1 is the number of time slices in the

network. This vector s0 defines the state of the system at the initial point of the forecast. The

t-th time slice represents the variables in the present, and only (xt1, . . . , x
t
n) will be processed

by the tree structure to determine which of the DBN models in the mtDBN will be the most

suitable to forecast the next instant. Inspired by model trees, we also fit a DBN model on

the tree nodes just before the leaf nodes. When we perform the forecast, we use both the

correspondent DBN model attached to the leaf node of the tree and the DBN attached to the

parent node of that leaf. Afterwards, we average the forecasting results of both DBN models

to obtain a final forecast of the next state of the system. This step helps the hybrid model

obtain smoother transitions between the DBNs of each leaf node. Once we obtain the new

forecasted vector x̂t+1 = (x̂t+1
1 , x̂t+1

2 , . . . , x̂t+1
n ) from the inference of the two DBN models, we

delete the oldest x0 and insert x̂t+1 as the new xt, moving all the evidence for the remaining

time slices forward in a sliding window fashion. The whole process is illustrated in Fig. 6.2.

The new s′ vector obtained after all the evidence is moved forward is used in the next

forecasting step and processed by the tree prior to the next forecast. This way, when fore-

casting with our hybrid model to some horizon, a DBN will be dynamically selected in each

forecasting step based on the current state of the system. This provides the desired nonlinear

behaviour with piecewise forecasts and allows the model to adapt to both nonlinear systems

and sudden interventions or drifts.

6.3 Experimental results

To test the effectiveness of our proposed model, we set up several experiments with both

synthetic and real-world data from nonlinear processes. By analysing the forecasting results,

we can assess how the mtDBN model fits nonlinear processes in comparison with classical

DBN models, LSTM neural networks and HFCMs, which are well behaving and popular

models.
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Figure 6.2: Representation of the mtDBN forecasting a single instant. The state vector is classified
by the tree, and the correspondent DBN leaf and parent models are used to predict the next state
vector.

All the programming code of the models, experiments and datasets can be found online

in a GitHub repository1. The DBN and mtDBN models are written in both R and C++, the

latter used for expensive computations, and distributed as R packages on CRAN and GitHub.

All experiments were performed on an Ubuntu 18 machine with an Intel i5-4790k processor

and 16 GB RAM.

6.3.1 Simulated nonlinear problem: Fouling phenomenon

To obtain performance results in a controlled environment, for our first experiment we gener-

ated a synthetic dataset from a nonlinear process defined by a system of ordinary differential

equations (ODEs). Our scenario defines the fouling chemical reaction that occurs inside in-

dustrial furnaces that we covered in Chapter 4. As we heat a chemically reactive fluid to

some desired temperature, this fluid can be prone to depositing solidified impurities on the

inside of the pipes. As time passes, these impurities can generate an insulating layer that

will force us to progressively increase the furnace temperature to keep the fluid temperature

inside the pipes constant, which is the cause of severe costs in terms of efficiency loss. Due

to the inherently nonlinear nature of the physical relationships that define this phenomenon,

it can be used as an example to test the effectiveness of our hybrid model.

1https://github.com/dkesada/mtDBN
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However, the previous dataset used was private industrial data and we did not have access

to it anymore. To generate a new dataset, we used a system of ODEs that define a simplified

fouling phenomenon without spatial dimensions. We modelled the following 10 variables:

the fluid temperature T1, the tube wall temperature T2, the thickness of the fouling layer

Sc, the concentration Ca of particles in the fluid prone to depositing, the amount of fuel

mc administered to the furnace heaters, the density ρ1 of the fluid and its thermal capacity

Cp1, the flow inside the tubes Qin, the volume vol and concentration of particles Cain in the

fluid prone to depositing that is renewed at each instant. The details about the simulation

construction and definition are further discussed in Appendix A.

Once the simulation was created, we generated independent and identically distributed

multivariate TS of 100 time instants running a cycle. Each cycle represents the case where the

furnace is reverted to an initial state after cleaning the fouling layer inside the tube, and we

performed 100 time instants of operation as the time horizon. For each cycle, we set random

starting values for the fluid properties and several different behaviours for the temperature

and flow variations so that different fluids and furnace configurations were seen in the data.

In total, we generated a dataset of 1000 cycles of 100 time instants each, that is, 100,000

instances and 10 variables. Then, we performed a 30-fold cross validation where 967 cycles

were used in training and 33 were used for testing in each of the 30 hold-out processes. In

our experiments, we used the first instance of each cycle as evidence, and we forecast T1 until

the last time instant. The mean absolute error and mean absolute percentage error (MAPE)

were estimated in all instants and then averaged in all cycles to obtain the accuracy of each

model. The DBN structures were learned using our particle swarm algorithm [Quesada et al.,

2021a].

To assess our proposed model, we compare mtDBN variations that employ multivariate

and univariate trees and homogeneous and non-homogeneous DBN structures for the models

attached to the leaf nodes. Univariate trees can be better suited for problems where we are

only interested in forecasting one variable. With our DBN models, we always forecast the

complete multivariate state vector, but the tree structure can focus on a single objective

variable that is of interest. With multivariate trees, we can cover situations where we may

have several objective variables that we are interested in forecasting. On the other hand,

non-homogeneous models can perform better when the process that we are trying to model

is non-stationary, given that the conditional independence relationships defined by the DBN

structures can differ from one leaf model to another. Homogeneous models are expected to

work better in modelling processes that are nonlinear in nature but do not drift over time

because the dependence between variables will always have the same structures but different

parameters underneath. We set the Markovian order of the DBNs to 1, given that we know

beforehand that our ODE system is autoregressive of order 1 and only uses the last time

instant to generate the next one.

We also tune and fit LSTM and HFCMmodels in the experiment for the sake of comparing

the performance of DBN-based models with other state-of-the-art models for TS forecasting.

LSTM models are specifically tailored to forecast both univariate and multivariate TS, and
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their recurrent structure can be used to perform forecasts of arbitrary length, similar to the

case of DBN models. The code of these models and the experiments can also be found online

in a GitHub repository2. HFCM are also graphical models that can be used for multivariate

TS forecasting, and serve as a middle ground between DBNs and LSTMs because they share

characteristics with both models. Our version of the HFCM comes originally from a project3

that applies HFCMs to the uWave dataset, which is a dataset used to train gesture recognizers.

An autoregressive version of HFCMs has been programmed by using a sliding window that

transforms the predictions of the model into inputs for the next instant. This was necessary

to perform the long-term and mid-term forecasting in two of the experiments. The code of

both the model and the experiments can also be found online in a GitHub repository4.

Homogen? Tree MAE MAPE Train (m) Exec (s)

DBN - - 80.23 13.42 7.99 0.58
mtDBN Yes Univariate 60.33 9.72 8.08 1.388
mtDBN Yes Multivariate 49.60 8.07 8.29 1.387
mtDBN No Univariate 79.52 12.83 32.91 1.388
mtDBN No Multivariate 54.15 8.90 32.04 1.387
LSTM - - 59.81 10.20 7.09 0.08
HFCM - - 177.32 27.29 59.27 1e-3

Table 6.1: Results in terms of the MAE, MAPE, training and execution time of the models for the
fouling experiment.

The results in Table 6.1 show that the mtDBN models obtain better MAE and MAPE

results than the baseline DBN model at the cost of longer training and execution times. The

MAE result of the best hybrid model is almost half the baseline MAE of the regular DBN

model. In the case of non-homogeneous models, where each leaf node has a different DBN

structure, the training time increases due to having to run the structure learning algorithm

for all the different contexts. In this experiment, we can see that the model that excels is

the homogeneous and multivariate mtDBN. This can be explained from the point of view of

the process that we are modelling. Our simulation generates traces from a nonlinear system

of ODEs that does not change over time. This means that the relationships established be-

tween the variables remain constant throughout, and this is best represented by homogeneous

models. Multivariate trees also seem to outperform their univariate counterparts, likely be-

cause the DBN models perform multivariate inference themselves. The execution time in

the mtDBNs is consistently higher due to having to classify the state of the system in each

forecasting step with the tree structure to select the appropriate DBN model and having to

forecast with both the leaf node model and the parent node model to smooth the results.

However, given that the forecasting process of all the mtDBN models is the same, all their

execution times are equivalent. When we compare the best resulting mtDBN model with the

2https://github.com/dkesada/kTsnn
3https://github.com/julzerinos/python-fuzzy-cognitve-maps
4https://github.com/dkesada/HFCM
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baseline unique DBN, we can see that we do not sacrifice too much training and execution

time in exchange for a significant reduction in the MAE and MAPE.

Given that our proposed mtDBN model combines DBN models with model trees, we

want to ensure that the results obtained with the hybrid are statistically significant when

compared with the baseline model. For this purpose, we performed pairwise Wilcoxon rank-

sum tests to check that the mean accuracies obtained from the mtDBN models are statistically

significantly better in comparison with the baseline model. We chose this non-parametric test

because the samples do not follow Gaussian distributions. The results shown in Table 6.2

show that all mtDBN models reject the null hypothesis of equal performance in MAE. We

also performed this test between the baseline model, the best mtDBN model and the LSTM

model with multiple comparisons and observed from the p-values that they all reject the null

hypothesis of equal performance in MAE, as shown in Table 6.3. Given that we have more

than two data samples from all the tested models, we also performed the Kruskal-Wallis test

on our results. This allows us to perform a non-parametric test that does not rely on pair

wise tests between the models. The test obtains a p-value of 2.2e-16, which indicates that at

least one of the sample results from the models is better and statistically significant from the

others.

Homogen? Tree p-value

Yes Univariate 2.200e-16
Yes Multivariate 2.200e-16
No Univariate 1.471e-11
No Multivariate 2.200e-16

Table 6.2: Resulting p-value of the Wilcoxon rank-sum tests for the forecasts of the different hybrid
models in comparison with the baseline DBN model for the fouling experiment.

DBN mtDBN LSTM HFCM

DBN - 2.20e-16 1.82e-08 2.20e-16
mtDBN 2.20e-16 - 2.20e-16 2.20e-16
LSTM 1.82e-08 2.20e-16 - 2.20e-16
HFCM 2.20e-16 2.20e-16 2.20e-16 -

Table 6.3: Resulting p-value of the Wilcoxon rank-sum tests in the multiple comparisons between the
baseline DBN model, the homogeneous multivariate mtDBN, the LSTM and the HFCM model. All
the tests reject the null hypothesis of equal performance in MAE.

In comparison with the LSTM model, the MAE results are much better than the baseline

and similar to the hybrid models. In terms of time costs, training times of the LSTM model

are similar to the DBN and homogeneous mtDBN models, and its execution time is the

second best, only behind the HFCM model. They are very powerful models in this kind of

settings, and their only remarkable downsides are that they are black box models and that

the tuning process can be very time consuming due to the large number of parameters and
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Figure 6.3: Example of the tree structure of a homogeneous multivariate mtDBN model. The resulting
tree has five different leaf DBN nodes, represented in various colours. The splitting rules are shown in
the branches, and the average value of the objective temperature T1 and the number of instances N
per node are shown inside the tree nodes from the initial 96,700 instances in the training dataset at
the root of the tree. From the tree, we can identify that the mc variable reduces the sum of squares
the most in the different scenarios. From the root node, lower quantities of fuel mc administered to
the furnace will result in slower processes with lower T1 and vice versa. In the case of extremely high
T1, the most severe cases are defined by a high flow of fluid Qin entering the system.

network architectures that may be evaluated before finding some optimal configuration being

guided blindly. In contrast, the HFCM model works noticeably worse than the rest of the

models in this synthetic long-term case. This is due to the fact that fuzzy cognitive map

models perform well on short-term predictions, but worse on long-term predictions [Feng

et al., 2021]. The training time ramps up due to the internal optimization of the weight

matrix having to work with long cycles of 100 instances each, and the accuracy of the model

is almost twice as worse than the baseline DBN model. In terms of execution time though,

it is by far the fastest model.

Fig. 6.3 shows an example of the tree structure from an mtDBN model. This tree structure

is interpretable and can garner valuable insights into the problem at hand. For example, in

this particular case, we know that the amount of fuel mc administered to the furnace is an

external parameter decided by a human operator. Higher mc on the right branch of the

tree generates higher fluid temperatures T1 and promotes a faster creation of the insulating

fouling layer Sc. This increase in Sc means that increasingly higher values of mc will be

needed to maintain a high T1. Additionally, the reaction is further characterized by the flow

rate Qin on the rightmost branch with the highest T1 cases. A fast flow rate can only be
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Figure 6.4: Example of the DBN structure of the homogeneous multivariate mtDBN model. The
objective variable T1 at the present instant is represented as the blue node, and all the parent nodes
in red represent those variables at the previous instant. With these parent nodes, we can see the
autoregressive component and the most relevant variables in the inference of T1, i.e., Sc, T2, mc, Qin

and vol.

coupled with high T1 if the furnace is near its maximum temperature and the process has

not been running for long, because it is very unlikely to achieve a high T1 along with a

fast flow rate and an already thick insulating layer. This differentiation with Sc of whether

the furnace is working at different capacities improves the overall performance of the mtDBN

compared to the baseline DBN by allowing the hybrid to switch between models in the middle

of forecasting based on the current state of the system. It is important to note that we can

explain the cuts performed by the tree structure more in-depth because we already know the

underlying process that we are modelling. In a real case scenario, the tree structure offers

valuable information on how this process operates, but we will likely not reach the level of

interpretation shown in this example without the insight of an expert on the problem.

For illustration purposes, we also interpret the structure of a DBN model in the homo-

geneous multivariate mtDBN in Fig. 6.4. We see how the T1 and T2 values at the previous

instant affect the predictions of the current value of T1, which is directly defined in the un-

derlying system of equations. Both mc and Qin affect the objective temperature, as hinted at

by the tree structure, and finally, both Sc and the volume are also relevant to the variation
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Figure 6.5: Example of predicting the fluid temperature T1 of a 100 instant trace using the homoge-
neous multivariate mtDBN. The model used for forecasting is changed three times during forecasting
based on the predicted state of the system at each instant. It is important to note that we only show
the fluid temperature in the figure, but all variables in the system are jointly forecasted simultaneously
to obtain the state of the system at the next instant.

in T1. By using both the tree and DBN structures, we can identify the key variables that

intervene in the estimation of our objective variable T1 in the underlying process, and we can

check the specific effect that these variables have in the inference performed by the DBN.

To put the profile of the forecasted temperature curves into context and to illustrate what

the predictions look like, an example of forecasting a cycle with the best mtDBN model is

shown in Fig. 6.5. In total, four different leaf node models are used in that specific forecasting

to obtain the desired piecewise prediction of the temperature.

6.3.2 Real data application: Electrical motor

To observe the effectiveness of our hybrid model using real-world data, we set up a similar

exercise using public experimental data collected from an electrical motor [Kirchgässner et al.,

2021]. The motor speed, temperature in different sections, voltages and torque were recovered

each instant from sensors, generating a multivariate TS dataset of several recording sessions

with a total of 11 variables. The objective is to forecast the rotor temperature of the motor,

given that this feature is not easily monitored inside electric motors and obtaining accurate

predictions can increase the efficiency due to being able to predict overheating situations

ahead of time and prevent them.

The dataset consists of 69 different recording sessions. A session consists of recordings
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Figure 6.6: Example of the objective temperature in two different sessions in our dataset. Session 10
is rather irregular, with several interventions drastically changing the tendency of the series. Session
12 is a more common case in our data, with only one significant intervention after 6000 seconds.

of the active motor from an initial idle state up to some point in time. The values of the

sensors were recorded with a frequency of 2 Hz, that is, each row is separated by 0.5 seconds.

There are a total of 1,330,816 instances in the dataset, with the shortest session spanning

2,176 instances (18.13 minutes) and the longest 43,971 (6.12 hours). In this scenario, we

face two problems: high dimensionality in terms of the number of instances and sessions

of different lengths in the data. Performing long-term forecasting of complete cycles from

a single starting point seems unreasonable due to the length of the TS. To aggravate this

problem, the profile of the curves is very irregular, and interventions in the system affect the

tendency during sessions, as seen in Fig. 6.6.

To approach the dimensionality issue, we reduce the frequency of the data to 0.03̇ Hz

so that rows are separated by 30 seconds each. When reducing the frequency, the mean of

each 60-instance bin is returned as the new value. After this process, the dataset is reduced

to 22,247 instances total, with sessions ranging from 37 to 734 rows. To check that we are

not losing too much information with this reduction of frequency, we compute the average

distance between the original TS and the reduced ones using the dynamic time warping

distance implemented in the dtw R package [Giorgino, 2009]. Given that the TS are not too

noisy, as seen in Fig. 6.6, and that we are averaging binwise, we do not expect the reduced

versions to be very distant from the original ones. The total average normalized distance

between the series is 0.1291, and this coupled with the alignments depicted in Fig. 6.7

indicates that there was not a severe information loss during the frequency reduction step.
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Figure 6.7: Example of the alignment of two TS sessions of the objective variable in the original and
reduced datasets. The alignment being almost a straight diagonal line indicates that no displacement
in time is seen and that no drastic jumps in values are present.

To address cycles of different lengths, we forecast up to fixed intervals of time instead

of the whole sessions. We perform several consecutive forecasts of 20 instants. In the DBN

models, we fixed the Markovian order to 2 for the structure of the networks because this real

case scenario does not necessarily have an autoregressive order of one. The MAE result of

these predictions were calculated, and the total MAE of a model is the global mean value

of all the forecasts. To divide the dataset into training and test partitions, we used 3-fold

cross-validation to form groups of 66 sessions for training and three sessions for testing. This

way, the groups were formed randomly and all cycles appear in the test once.

The results of the experiments show that the mtDBN models also improve the MAE and

MAPE results of the baseline DBN model in this experiment, as seen in Table 6.4. In this

84



Homogen? Tree MAE MAPE Train (m) Exec (s)

DBN - - 1.616 2.970 8.53 0.102
mtDBN Yes Univariate 1.499 2.602 8.73 0.215
mtDBN Yes Multivariate 1.574 2.807 8.74 0.214
mtDBN No Univariate 1.484 2.558 36.45 0.214
mtDBN No Multivariate 1.553 2.806 36.59 0.215
LSTM - - 2.289 3.937 2.21 0.083
HFCM - - 2.958 5.150 37.07 2e-4

Table 6.4: Results in terms of the MAE, MAPE, training time and execution time of the models for
the motor dataset.

Homogen? Tree p-value

Yes Univariate 1.540e-03
Yes Multivariate 1.633e-03
No Univariate 1.764e-06
No Multivariate 2.079e-03

Table 6.5: Resulting p-value of the Wilcoxon rank-sum tests for the electric motor dataset with respect
to the regular DBN model.

DBN mtDBN LSTM HFCM

DBN - 1.764e-06 8.981e-16 2.200e-16
mtDBN 1.764e-06 - 2.200e-16 2.200e-16
LSTM 8.981e-16 2.200e-16 - 1.894e-05
HFCM 2.200e-16 2.200e-16 1.894e-05 -

Table 6.6: Results of the Wilcoxon rank-sum tests in the multiple comparisons for the motor ex-
periment. Similar to the synthetic case, all the pairwise tests reject the null hypothesis of equal
performance in MAE.

scenario of mid-term forecasting, the different DBN models are able to fit the contexts defined

by the tree better than a global linear DBN model. The execution and training times of the

hybrid models present the expected characteristics, taking longer to compute, similar to the

synthetic case. The best resulting model was the non-homogeneous univariate mtDBN, which

indicates that the underlying process is probably non-stationary and thus better modelled

with different DBN structures, although not by a large margin. The univariate trees obtaining

better results than the multivariate trees could be due to defining less significant subsets of

data in the leaf nodes for the objective of predicting a single temperature. In this mid-term

scenario, focusing on forecasting the objective variable with univariate trees can lead to a

better accuracy if the error on the prediction of the rest of the variables does not add up. In

this case, all models perform better than in the synthetic one, which can be seen in the MAPE

being lower in Table 6.4 than in Table 6.1. The MAPE indicates that the predictions in this

experiment are more accurate than in the previous experiment, which is due to performing
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Figure 6.8: Example of the tree structure of the non-homogeneous univariate mtDBN model in the
case of the electric motor. In this case, the initial cuts are made around the yoke and tooth temper-
atures inside the motor. It makes sense that temperatures at other points of the motor are useful in
determining our objective temperature pm, and for very high temperatures, the electric current id
defines the two most extreme groups.

shorter term forecastings.

We also performed statistical significance tests in this case. The p-values shown in Table

6.5 indicate that we reject the null hypothesis of equal performance with respect to the unique

DBN model for all mtDBN models. As in the previous experiment, we also performed pairwise

Wilcoxon rank-sum tests between the models to check for statistically significant differences

in performance in terms of the MAE, and all the models rejected the null hypothesis, which

can be seen in Table 6.6. The Kruskal-Wallis test also obtained a p-value of 2.2e-16, which

shows that at least one of the models obtains better, statistically significant results from the

others.

The tree structure shown in Fig. 6.8 identifies the two temperatures inside the motor,
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Figure 6.9: Example of the objective variable pm (in blue) and its parent nodes inside the DBN
structure in the non-homogeneous mtDBN model of Markovian order 2. Apart from the autoregressive
component of pm on itself, we can see that two variables are also used in the tree structure, stator
tooth and id, and two other temperatures, stator winding and ambient, are used by the DBN model
to predict pm. Intra-slice arcs are not permitted due to the structure learning algorithm used.

stator tooth and stator yoke, as those that better differentiate the different contexts of the

objective temperature, and in the case of very high temperatures, the electric current id

helps determine whether we are in the case of the highest temperatures of the dataset. In

the case of temperatures, the relationships between the variables do not increase linearly as

the temperature increases. The baseline DBN model approximates the global behaviour of

the system, while the mtDBN model defines different splits based on these temperatures.

The hybrid structure allows the model to switch between the leaf node models depending on

the current temperatures of the system, both at the beginning of the prediction and while

performing forecasting. This helps improving the accuracy of the mtDBN models.

We can also look at the DBN structure shown in Fig. 6.9 for further insight. Given that

the model is non-homogeneous, this structure corresponds to the third leaf node, the one

with the higher number of instances in the training dataset. We can see that, apart from the
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variables used in the tree, the DBN also uses the ambient and the stator winding temper-

atures to perform inference. This information could help an expert in the field understand

the relationships of the variables in the problem and identify the most important physical

relationships inside the system. In our case, we cannot extract a level of information as deep

as in the synthetic case, but it can help us understand which are the most important variables

in the system model and subsequently which interventions will affect it the most and what

variables the model bases its forecasts on.

The LSTM model results remain in a similar range and are specially good in terms of

training and execution time. The performance in terms of the MAE does not differ much

from the rest of the models, given that this kind of model excels when trained with a large

number of instances and the dimensionality is drastically reduced in the preprocessing. In

this scenario, the biggest drawback we could find is in terms of interpretability of the model.

The forecasts and times of the LSTM model are very competitive, but it offers no insight

into how the system works and what the model bases its predictions on. The HFCM model

obtains much better results in this experiment compared to the long-term scenario of the

synthetic data. The MAE and MAPE results obtained are comparable to the LSTM results

but slightly worse, because it still suffers from the mid-term predictions. On the other hand,

the execution time is the best of all the models once again, but the training time is the

slowest, even slower than the homogeneous mtDBN models.

6.3.3 Real data application: TSEC stock index

One of the most popular real world applications of TS forecasting models is in financial data

from the stock market [Singh and Huang, 2019]. In this experiment, we have chosen the

Taiwan Stock Exchange Corporation (TSEC) weighted index, which aggregates the stock

values of almost 900 Taiwanese companies, as our objective index. The original data was

obtained from yahoo! finance5.

We extracted 16 months worth of daily values from the 1st of January 2021 to the 29th of

April 2022. The dataset is composed of five variables: the opening value of the index (Open),

the closing value (Close), the maximum value during that day (High), the minimum value

(Low) and the volume of transactions (V olume). In contrast with the other experiments, we

have a reduced dataset of 319 instances in total, given that the stock market closes during the

weekends and on specific holidays, with four out of five variables which are deeply correlated

due to being specific values that the index took during a single day. This correlation can

be seen in Fig. 6.10. In this scenario, our objective will be to forecast the opening value

that the index will take on the next day. This case offers a clear contrast with the previous

experiments and can be used to evaluate the performance of the mtDBN model with reduced

training data and very short-term predictions. Our objective variable has a mean value of

17205, with a maximum value of 18620 and a minimum of 14937. We also set a minimum

of 50 instances per leaf node as a safety measure, given that the number of instances in the

5https://finance.yahoo.com/quote/^TWII/history?p=^TWII
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Figure 6.10: Heatmap showing the correlation between the variables in the TSEC stock dataset. Most
of the variables have a correlation very close to 1, except for the volume of daily transactions.

dataset is very low.

Homogen? Tree MAE MAPE Train (m) Exec (s)

DBN - - 64.55 0.385 21.08 0.009
mtDBN Yes Univ 55.18 0.327 20.68 0.011
mtDBN Yes Multiv 61.12 0.362 20.88 0.008
mtDBN No Univ 56.88 0.336 11.73 0.011
mtDBN No Multiv 61.47 0.364 13.69 0.008
LSTM - - 77.48 0.460 0.96 0.112
HFCM - - 84.87 0.504 6.58 3e-5

Table 6.7: Results in terms of the MAE, MAPE, training time and execution time of the models for
the stock index dataset.

Homogen? Tree p-value

Yes Univariate 0.033
Yes Multivariate 0.542
No Univariate 0.193
No Multivariate 0.120

Table 6.8: Resulting p-value of the Wilcoxon rank-sum tests for the stock index dataset with respect
to the regular DBN model.
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DBN mtDBN LSTM HFCM

DBN - 0.033 1.165e-3 3.280e-3
mtDBN 0.033 - 1.430e-4 4.636e-5
LSTM 1.165e-3 1.430e-4 - 0.405
HFCM 3.280e-3 4.636e-5 0.405 -

Table 6.9: Results of the Wilcoxon rank-sum tests in the multiple comparisons for the stock index
experiment. The pairwise tests show that the LSTM and HFCM models do not present significant
differences in their results.

The results of the experiment in Table 6.7 show that all the hybrid mtDBN models obtain

better accuracy results than the baseline DBN model in both MAE and MAPE. The MAPE

results show that this is the most accurate scenario for all the fitted models, largely due to the

fact that we are performing single-step forecasting. In this case, given that we are predicting

only the next instant, it is not possible to perform piecewise regression, because only a single

prediction with a single model is performed. As a result, the only difference between the

baseline and the mtDBN models is in which DBN model is used to perform forecasting. This

is clearly evidenced in Table 6.8, where only the homogeneous univariate mtDBN obtains

statistically significant results when compared with the baseline. A univariate tree is the

most effective in this experiment due to most of the variables being deeply correlated with one

another. There is little improvement from adding another variable as the possible objective of

the tree when they all encode redundant information. Ultimately, the univariate homogeneous

mtDBN model is able to obtain statistically significantly better results than the baseline

because the tree structure is able to differentiate appropriate scenarios where a specifically

trained DBN model can perform a single prediction more accurately than a global DBN

model.

The tree structure of the model can be seen in Fig. 6.11. We can appreciate that the tree

structure separates the values of the variable High into three groups: one for the instances

under the mean value of the stock index, one for the instances around that value and one

for the instances above. With the information at hand, this kind of division is the most

interesting one, given that stock indexes values behave differently while on their highest and

on their lowest based on the effects of market operations of selling and buying. Another

interesting result from the tree structure is that the number of instances in each leaf node is

so low that it takes less training time to learn three networks in the non-homogeneous models

than a single network with all the instances in the homogeneous ones in Table 6.7. This result

is not seen in the other experiments because they both have thousands of instances per leaf

node, which ramps up the structure learning time.

The DBN structure in Fig. 6.12 shows that the value of the Open variable is mainly

decided by the last two opening values of the stock index and the closing value of the last

day. It makes sense that the opening value of the next day is directly influenced by the closing

value of the previous day, and using the lowest values of the index in the two previous days

can help mitigating the cases where the index tanked its value one day, but it recovered on
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Figure 6.11: Tree structure of the homogeneous univariate mtDBN model. The splits define three
cases depending on the highest value that the stock index took that day. From left to right, the leaf
nodes define the cases where the stock index was lower than the mean, the cases where it was around
the mean and the cases where it was higher than the mean.

the other one.

In this case, both the LSTM and HFCM models obtain comparable accuracies to the

DBN based models. The LSTM model has the best training time, while the HFCM has the

fastest execution time. The tests in Table 6.9 show that the results of the LSTM and the

HFCM are equivalent in terms of accuracy, given that their differences are not statistically

significant. When comparing all the algorithms with the Kruskal-Wallis test, we obtained a

p-value of 3.12e-05. Ultimately, the results obtained by the homogeneous univariate mtDBN

are statistically significantly better than the other models for this specific scenario.

6.4 Conclusions and future work

In this chapter, we proposed a hybrid model, mtDBN, that performs piecewise forecasting

of nonlinear multivariate TS combining a model regression tree and DBN models. The tree

model divides the contexts represented in the training dataset, and different DBN models are

fitted to each. Then, the tree structure is used as a model selector in a multinet architecture
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Figure 6.12: Example of the DBN structure of the homogeneous univariate mtDBN model in the stock
dataset. The opening index value of the next day is obtained taking into account the lowest values of
the last two days and the closing value of the previous day.

for deciding which DBN model to use in each instant of the forecast. Thus, we overcome

one of the shortcomings of Gaussian DBN models when applied to real data, that they

can only model linear processes. Our results on both synthetic and real data show that

the hybrid mtDBN model effectively reduces the error of a baseline DBN when applied to

nonlinear problems at the cost of a higher training time and a similar execution time. The

hybrid model proved to be a viable alternative when applying DBN models in this kind of

setting. To make the experiments replicable, we made all code available online, we created

a simulation for the first experiment that is publicly available and used public data from

real-world problems for the second and third experiments. We also offer the hybrid mtDBN

model on a public repository inside an R package that makes it ready to use and deploy.

We presented the most elemental version of the mtDBN model. In future work, we would

like to try different splitting criteria for growing the tree model. In particular, given that we

are working with TS data, it could be interesting to define a tree model that separates TS

based on their similarity with a metric such as dynamic time warping [Berndt and Clifford,

1994]. Another open option is the use of a different partition method, for example clustering

or more complex tree structures such as random forests, to perform the initial dataset division

and classification of new instances during forecasting.
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Chapter 7
Classifying the evolution of

COVID-19 severity on patients by

coupling DBNs and NNs

7.1 Introduction

In the previous chapters we have dealt with extending Gaussian DBNs to higher orders

(Chapter 5) and to nonlinear scenarios (Chapter 6) in order to use them as general purpose

models in a wide range of applications. However, classification is also a very important

objective in many different settings. While DBNs are able to perform classification in their

discrete and hybrid variants, purely Gaussian DBNs cannot perform this operation. In this

chapter, we will pair DBNs with static classifiers in order to apply them to a medical scenario,

where we need to both forecast into the future and make predictions on the state of patients.

Throughout the COVID-19 pandemic, healthcare systems all around the world have suf-

fered a staggering pressure due to the high number of infected patients that arrived at medical

centres. The nature of this pandemic was such that patients could range from completely

asymptomatic patients to those with severe, life-threatening disease. As a result, and given

that the amount of resources in medical centres is limited, it was a crucial task to discern

whether or not a patient presented with symptomatology that could turn out to be a critical

condition or stayed only in the mild range of clinical expression.

The issue of predicting the clinical outcome of COVID-19 patients has raised much inter-

est in recent years. Some authors opted for discerning the severity of the illness depending

on certain comorbidities like heart failure [Arévalo-Lorido et al., 2022], neurodegenerative

diseases [Yu et al., 2021], cardiovascular diseases [Ehwerhemuepha et al., 2021], or chronic

pulmonary diseases [Momeni-Boroujeni et al., 2021]. These studies have shown that comor-

bidities related to COVID-19 increase the risk of death of a patient. For this reason, many

efforts have been dedicated to preprocessing clinical data and selecting an appropriate set of

variables that can predict the effect of the illness.
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From the point of view of predicting the outcome from data, many machine learning ap-

proaches have been tested in the literature. Some authors opted for performing a statistical

analysis and applying logistic regression for classifying mortality [Yu et al., 2021; Ehwerhe-

muepha et al., 2021; Wu et al., 2020; Xiong et al., 2020; Berenguer et al., 2021]. Another

popular approach consists of training simple perceptron or multilayer neural network mod-

els to approximate a function that relates the variables in the system and classifies patient

instances [Pinter et al., 2020; Dhamodharavadhani et al., 2020; Aznar-Gimeno et al., 2021;

Kianfar et al., 2022]. Tree-based models like random forests [Ehwerhemuepha et al., 2021;

Aznar-Gimeno et al., 2021; Cornelius et al., 2021; Pourhomayoun and Shakibi, 2021; Tezza

et al., 2021] or XGBoost [Ehwerhemuepha et al., 2021; Aznar-Gimeno et al., 2021; Bertsimas

et al., 2020; Vaid et al., 2020; Yadaw et al., 2020] are also some of the most popular and best

performing tools for this task. In the case of graphical models, BNs have also been applied

to predicting the severity of COVID-19 on patients while also trying to gain some insights

into the problem at hand [Fenton et al., 2021; Vepa et al., 2021].

Another possible approach is to view the problem as a TS forecasting issue. Each patient

that arrives at a hospital has their vital signs measured and has blood analysis performed.

Afterwards, if the patient is not discharged and requires further care, new parameters are

registered on a semi-regular basis. This generates TS data for each patient, where measure-

ments are taken over a period of several hours each until either the patient improves or passes

away. In this scenario, TS models can be applied to forecast the state of a patient and predict

whether they will be suffering from severe symptoms in the near future or not. This approach

has also been explored in the literature with models like DBNs [Pezoulas et al., 2021], RNNs

[Villegas et al., 2021] and dynamic Markov processes [Momeni-Boroujeni et al., 2021].

In this chapter, we take a hybrid approach between static and dynamic models. We use

pseudonymized data from a cohort of SarsCov2 patients admitted to the 4 hospitals belonging

to Fundación Jimenez Dı́az Health Research Institute, in Madrid, during the sixth wave of

the COVID-19 pandemic. After preprocessing this data consisting of 15,858 patients and 532

variables and choosing an appropriate variable set with machine learning feature selection

methods, we trained hybrid models between DBNs as forecasting models and several classifier

models, with NNs having the best performance among them. The main idea of our proposal is

to obtain the first vital signs and blood analysis from a patient and then perform forecasting

of these variables with the DBN model up to 40 hours in the future. Afterwards, the classifier

model can use the forecasted values to predict the patient as critical or not in this interval.

Applying classifier models directly to the data recovered from a patient in its current state

lacks the effect of the temporal component. By modelling the evolution of patients with the

DBN, we provide information to the classifier models about the expected state of a patient

in the near future. This procedure can help identifying whether a patient that just arrived

at triage in a medical centre is going to worsen significantly in the following days.

This chapter includes the content of Quesada et al. [2023]. The dataset used is not made

public due to privacy reasons, but all code and results are available at https://github.com/

dkesada/Class-DBN.
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Chapter outline

The rest of this chapter is organized as follows. Section 7.2 explains the architecture of the

hybrid model with the neural network, where this classifying model is interchangeable with

any other static classifier. Section 7.3 presents the data and the experimental results of the

tested models. Finally, Section 7.4 gives some conclusions and future work.

7.2 Combining DBNs and static classifiers

When we predict COVID-19 severity on patients in the near future, we face several issues.

On the one hand, we only have the data of their vital signs and blood analysis when the

patient first arrives at the hospital. As we are interested on their state on the following days,

we need to forecast the evolution of these variables over time. On the other hand, we need

a mechanism that identifies given a state vector of a patient whether they are in a critical

state or not.

7.2.1 Forecasting the state vector

When a patient afflicted with COVID-19 stays in intensive care for a prolonged period of time,

they are monitored and new readings of their vital signs and blood analysis are recorded on

a semi-regular basis of several hours or days. All the variables in these instances form a state

vector st =
[
st0, s

t
1, . . . , s

t
n

]
at each point in time t, and the final data recovered from a patient

k is a vector of instances p0:T
k =

[
s0, s1, . . . , sT

]
ordered in time from the oldest vital sign

readings and blood analysis to the most recent ones. When we combine data from several

patients, it generates a TS dataset that can be used to train a TS forecasting model. It is

worth noting that the length T of the data from each patient depends on the time they spent

in the hospital. If a patient is discharged with only one vital sign reading and blood analysis,

then we do not have data with a time component. In this situation, this patient could not

be used for training our temporal model.

Given that in our case all the variables in a state vector st are continuous, we will use a

Gaussian DBN to model the dependencies and to perform forecasting. A DBN model can help

us gain some insight on which variables have a greater impact on the evolution of a patient.

Furthermore, the ability of DBNs to be trained with different length TS after deciding a

Markovian order is also relevant in this problem, given that the number of instances per

patient varies greatly. By setting a Markovian order 1, we will be able to use the data from

all patients except the aforementioned ones with a single reading, where no temporal data

at all can be used. As we increase the Markovian order, the sample size to learn the DBN

diminishes.

After training the DBN model, we can use it to forecast the state vector of a patient up

to a certain point in the future. This forecasting represents an estimate of the evolution that

the patient will undergo, and it can be used to assess whether it will lead to severe symptoms

or not. This process effectively gives an estimate of the future vital signs and blood analysis
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of a patient without spending additional resources and time on it.

7.2.2 Classifying critical values

The task of evaluating whether a patient is in a critical state of the COVID-19 infection has

been performed in the literature mainly through some kind of medical score [Fan et al., 2020]

or by labelling instances due to some external indicator, for example being transferred or not

to the intensive care unit. If we obtain a labelled dataset of patients through any of these

methods, we can then take a machine learning approach by training classifier models that

identify whether a patient is in a critical state given their state vector s.

If we combine this approach with the forecasting of the state vector, we get a hybrid

model between static classifiers and TS models that is capable of evaluating the present and

near future condition of a person suffering from COVID-19. When a patient arrives at a

hospital and gets their vital signs and blood analysis recorded, we obtain the state vector

s0 of the very first instant of time. Then we can feed s0 to a trained classifier model to

evaluate whether this patient is already in a critical state or not. If this is not the case, we

can then use s0 as the starting point for our DBN to perform forecasting. This will return

the values of ŝ1, ŝ2, . . . , ŝt up to a certain point t in time. All these state vectors can in turn

be classified to evaluate the expected severity of the symptoms in that patient. With this

method, we can see if a patient is expected to end up suffering from critical COVID-19 and

when approximately will this situation occur. To illustrate this whole process, a schematic

representation of this framework can be seen in Fig. 7.1.

Our proposed framework supports any kind of classifier that is able to produce a discrete

prediction given a continuous state vector st. We used a modular implementation where

the classifier used can be a support vector machine, an XGBoost, a neural network and a

Bayesian classifier. All these classifiers been used in the literature and applications where one

is more effective than the others can be found. Due to this architecture, any other classifier

model could potentially be introduced as a new module if needed.

7.3 Experimental results

For our experiments, we used a dataset consisting of pseudonymized data from the 27th of

October 2021 to the 23rd of March 2022 recovered from 4 different Spanish hospitals from

the Fundación Jiménez Dı́az in Madrid. and the study protocol was approved by their local

Ethics Committee. This data covered patients that had confirmed cases of COVID-19 via

a positive PCR test. After preprocessing it, we used this data to fit our proposed model

and evaluate its capabilities to predict the future critical status of patients suffering from the

COVID-19 disease.
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DBN

Figure 7.1: Schematic representation of the classifier-DBN framework. After obtaining a state vector
s0 from a patient, we can use it to forecast the next t state vectors with the DBN model and check if
they are critical at each time t with our static classifier.

7.3.1 Preprocessing

In our raw dataset, there are a total of 21,032 rows with incomplete data from 15,858 patients

and 532 variables, most of which had missing values for the majority of patients. This is a

common occurrence in a medical dataset of these characteristics, given that not the same

tests are performed to all the patients and some of the results have to be recorded manually.

The consecutive rows in the dataset that correspond to a same patient are ordered chrono-

logically resulting in TS sequences. However, the frequency at which the instances were

recorded is uneven. This is due to the fact that performing blood analysis from patients and

obtaining the results does not take a fixed amount of time and is not always performed after

fixed intervals. To tackle this issue, we established a period of 4 hours between each row

and formed batches of instances where missing data was filled with the average values of the

rest of instances in the same batch. This 4-hour period was chosen because usually new tests

were performed on average roughly after every 4 hours in our dataset.

From the 21,032 rows, 13,971 were from patients that appear only in a single instance,

since in the sixth pandemic wave in Madrid the vast majority were discharged from the

hospital afterwards due to mild symptomatology and only 48 of these patients passed away.

This data cannot be used to train the DBN models, given that a single register is not enough

to form a TS sequence. However, it will be used to train the classifier models. From the

remaining patients with more than a single instance, the majority of them have either two or

three rows of recorded values. To illustrate this, we show a histogram with the distribution
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Figure 7.2: Histogram with the number of instances per patient greater than 1 in the dataset. Inside
the last bin we have grouped all the patients with 10 or more instances. A higher number of instances
indicates a longer stay in the hospital and as such a more severe case of COVID-19, which was far
less common than a mild case in the sixth wave.

of the number of instances per patient in Fig. 7.2.

Regarding the 532 variables in our dataset, most of them correspond to specific values in

uncommon tests and analysis, and they have over 70% of missing values across all instances.

In our case, we have opted for reducing the number of variables to only those that are

obtained from the vital signs of a patient, like their body temperature and their heart rate,

their descriptive characteristics like age, gender and body mass index, and the variables from a

regular blood analysis like the albumin and D-dimer values. All these variables are routinely

taken when a patient arrives at the emergency room and obtaining them does not pose a

severe expense of resources. This reduced the number of variables to 62, and from those we

chose to retain all vital sign readings and descriptive characteristics, while applying feature

subset selection on the blood analysis related variables, resulting in a total of 38 variables.

This subset selection was performed via random forest importance on classification on our

objective variable, which will be whether or not a patient was admitted to the intensive care

unit or passed away. This is what defines our critical cases of COVID-19, which are only a
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Figure 7.3: Structure of the NN model used in the experiments.

18.8% of the total number of patients in our dataset.

7.3.2 Classification results

In this section we show the experimental results obtained with different combinations of

classifier-DBN models. For our experiments, we used an XGBoost, a support vector ma-

chine, a neural network and a Bayesian classifier. In particular, this Bayesian classifier is a

tree-augmented naive Bayes built following the hill-climbing super-parent (HCSP) algorithm

[Keogh and Pazzani, 2002]. The NN had an internal structure of 5 hidden dense layers with

64, 32, 16, 16 and 8 neurons each. They all used RELU activation functions and had their

weights initialized with the identity. The last layer used a single neuron with a sigmoid acti-

vation function for binary classification. A result greater than 0.5 is equated to predicting a

critical status for a patient, and a result lesser or equal to 0.5 predicts a non-critical scenario.

A representation of this structure can be seen in Fig. 7.3. All the project was coded in R

and is publicly available online in a GitHub repository1. The dataset used is not made public

due to privacy and legal reasons.

Regarding the software we used in our experiments, the DBN models were trained using

our own public package dbnR [Quesada, 2021], the XGBoost models were trained with the

xgboost package [Chen et al., 2022], the support vector machines (SVMs) were trained with

the e1071 package [Meyer et al., 2022], the neural networks with the keras R interface [Allaire

and Chollet, 2022] and the Bayesian classifiers with the bnclassify package [Mihaljević et al.,

2018]. The parameters of each classifier were optimized using differential evolution with the

R package DEoptim [Mullen et al., 2011] guided by the geometric mean (g-mean) [Tharwat,

2021] of the models. This metric is defined as gm =
√
recall ∗ specificity, and uses all values

in the resulting confusion matrix when calculating the final score. Using both the recall

and specificity of the predictions ensures that the imbalance between critical cases and non-

1https://github.com/dkesada/Class-DBN
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critical cases is taken into account when optimizing the parameters. We do not want a model

optimized solely with respect to accuracy because it would lead to models that only predict

the majority class of non-critical for all patients.

To alleviate the issue of imbalanced data, we also applied SMOTE oversampling with

the DMwR package [Chawla et al., 2002; Torgo, 2010] to synthetically generate instances of

both critical and non-critical cases. This is a common practice that creates synthetic data to

offset the difference between the number of instances of the majority and minority classes.

In our case, we will use SMOTE to create modified datasets for training our classifiers. This

will help the models to avoid getting stuck on predicting the majority non-critical class for

almost all instances.

To test our hybrid models, we take the state vector of a patient in an instance and forecast

up to 10 instants into the future with the DBN model. Then, we use the classifier model to

identify each of these forecasts as critical or not and we compare the predicted label with

the true label of the instance. Given that each instance is separated from the next one by 4

hours, in total we forecast 40 hours into the future with the DBN model. With this method,

we will be able to see the behaviour of the classifiers and the changes in accuracy and g-mean

as we use state vectors from further into the future. The average results obtained across all

forecasts of the models can be seen in Table 7.1. Additionally, we performed the Kruskal-

Wallis test on our results to evaluate whether the results obtained from the different models

are statistically significant from one another or not. The Kruskal-Wallis test allows us to

perform a non-parametric statistical test on the samples of all of our 4 models that does not

assume normality on the samples and allows multiple models to be tested simultaneously.

The test obtains a p-value of 9.71e-5, which indicates that at least one of the sample results

from the models is better and has statistically significant differences from the others.

g-mean Accuracy Train (h) Exec (s)

XGBoost 0.455 ± 0.032 0.698 ± 0.012 1.950 9.634
SVM 0.522 ± 0.056 0.735 ± 0.015 1.145 9.654
NN 0.541 ± 0.041 0.771 ± 0.016 1.384 9.863
HCSP 0.468 ± 0.072 0.736 ± 0.018 1.046 9.878

Table 7.1: Mean results in terms of the accuracy, g-mean score, training and execution time of the
models on average for all the experiments. It is worth noting that training time includes optimization
of parameters, which involves the creation of multiple models to evaluate different configurations.

The results in Table 7.1 show that, on average, the most accurate model is the neural

network in both accuracy and g-mean. The performance of both the SVM and the HCSP

are very similar in terms of accuracy, but the difference in g-mean score of the SVM shows

that it is able to discern better the more uncommon critical instances. For this particular

case, although the XGBoost model is very popular in the literature, it obtains worse overall

results than the rest of the classifiers. In our experiments, due to the imbalance between

classes we had to find a compromise between the global accuracy and the accuracy of the
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Figure 7.4: Classification results of the neural network model as we feed it with the state vectors
further ahead in time with the DBN model. The classification performance of the neural network
improves monotonically by combining it with the DBN forecastings.

minority class. If left unchecked, the models would become biased to the majority class and

predict almost unanimously every single instance as non-critical, invalidating the use of the

model while obtaining accuracies close to 90%. By using the g-mean as optimization metric

in combination with the SMOTE oversampling, we were able to alleviate this problem. A

high accuracy on the majority class of non-critical patients will be able to help reduce the

oversaturation of ICU resources, given that all models can evaluate whether a patient will

reach a critical state of the COVID-19 infection or not in less than 10 seconds. On the other

hand, being able to discern the few critical cases that arise is also needed to help doctors

determine which patients need more specific care to try to reduce the mortality rate. On

the topic of training time, training and tuning the models takes on average between one

and two hours. Given that this kind of models should not need to be retrained until some

significant issue happens with the disease, like a new variant or new specific symptoms appear

on patients that differ from the training data used, these training times should be reasonable

to be performed once. Another possible approach in a real world scenario could be that of

periodic retrainings on a weekly or monthly basis, where a lower volume of data would obtain

faster training times.

Given that the model with the NN obtains the best average results, we show in Fig. 7.4

the details of its performance depending on the time horizon. The first instant at 0 hours

is equivalent to performing classification with the NN model directly to the state vector

obtained from the patient. From there on, we perform forecasting up to 40 hours with the

DBN model of this state vector and use the results as input for the NN model. We can see

that the NN model performs considerably better if we couple it with the DBN to classify
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Figure 7.5: Subset of relevant variables to the forecasting of maximum oxygen saturation (Max 02 sat
in light blue) in the DBN model. The initial and maximum oxygen saturation variables from the last
instant (Initial 02 sat and Max 02 sat in red) affect the calculation of the next 4 hours maximum
oxygen saturation value. Other variables like body temperature Min body temp, systolic Min SBP
and diastolic Min DBP blood pressures and heart rate Min heart rate also influence this value in the
forecast.

the forecasted state of the patients rather than their initial state. As we forecast the state

vector of patients further into the future, the NN improves its classification performance

monotonically. However, we cannot extend this forecasting indefinitely. Trying to forecast

longer term than the proposed 40 hours resulted in too much accumulated noise and error,

which degraded the performance of all classifiers.

In addition, DBNs perform multivariate inference and are interpretable models. This

allows them to offer doctors the forecasted values of any variable in the system as well as the

underlying relationships between the rest of variables that led to those results. In the case

of relevant values like the oxygen saturation of a patient, which is a good indicator of the

state of a patient suffering from respiratory issues, we show an example of the relationships

present in the DBN model in Fig. 7.5. This subgraph shows the variables directly related

to the maximum oxygen saturation registered in a 4-hour interval. We can see the previous

maximum value of oxygen saturation from the last instant, which is to be expected due to
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the autoregressive component of TS. On a similar note, the initial values of oxygen saturation

registered serve the model to define the range of the maximum value: lower initial oxygen

saturation will likely lead to lower maxima and vice versa. Additionally, we also find that

body temperature leading to fever, maximum diastolic blood pressure and minimum heart

rate are also direct indicators of maximum oxygen saturation and play an important role

in its forecasting. Lastly, minimum systolic and diastolic blood pressures are also affected.

A lower level of oxygen saturation will cause higher systolic and diastolic blood pressures,

increasing both minima. This situation is reflected in the fact that these values are child

nodes that depend on the current value of oxygen saturation.

7.4 Conclusions and future work

In this chapter we have presented a hybrid model between DBNs and static classifiers where

the state vector recovered from a patient suffering from COVID-19 is used to forecast their

future state. This information is then used to assess how severe will their infection be in

the following 40 hours based on their current vital signs and basic blood tests. This method

shows the best performance when combining DBN and NN models. While the NN is capable

of discerning whether or not a patient will reach a critical state with better accuracy and

g-mean than the other classifiers, the DBN adds an explainable layer regarding the variables

extracted from the patient. This model could help doctors decide whether or not a patient

needs further specialized care and allow for a better organization of the resources available in

medical centres. Additionally, we offer the code of all our models online for future reference

and use.

For future work, this model could be applied in different environments that require fore-

casting TS and classifying the state of a system. The combination of a generative model that

forecasts the state of a system with a classifier model that evaluates this expected future state

is a promising framework that could prove useful in several applications like remaining useful

life estimations for industry 4.0. Another possible improvement could be the potential use of

the DBN model as a simulator, introducing interventions in the forecasting in order to see the

effects that possible actions can have in the expected future. In the medical case, the effects

of specific drugs or treatments could potentially be reflected in the DBN predictions, and

in other industrial cases this could lead to optimizing the expected future based on possible

interventions in the initial state.
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Chapter 8
dbnR: Gaussian DBN learning and

inference in R

8.1 Introduction

As we progressed through this thesis, we developed dbnR, an R package that encapsulates

all the process of generating a DBN model, performing inference with it and visualizing the

network. This code served as a framework where we could compile all of our new developments

and easily deploy our models on different datasets. In this last chapter, we will go into detail

on how dbnR is coded and how does it work. One of the most important parts of this thesis

was for it to be relevant and useful to researchers and professionals all around the world,

and the best way to make it so was to generate a useful open source tool that can be easily

applied to some data.

In recent years, the use of DBNs has gained popularity in several fields, as shown in

previous chapters. Most of the time, authors resort to implementing the models themselves.

Other times, researchers opt for adapting existing static BN packages, such as bnlearn

[Scutari, 2010] in R or pgmpy [Ankan and Panda, 2015] in Python. Both of these options

can be very time-consuming and result in ad hoc implementations that, for the most part,

are not extendable to new applications.

It is uncommon to find software packages specifically designed for DBNs. In R, we can

find dbnlearn [Fernandes, 2020], a package that allows creating univariate DBNs and making

predictions of the next instant with them. These univariate DBNs only have a single variable

repeated in several instances of time and always have the same fixed structure, where nodes

are connected to the node in the next instant and to the objective variable. Underneath, the

package uses the parameter learning and inference offered by bnlearn. In Python, there is the

pyAgrum package [Ducamp et al., 2020], which is a wrapper of the C++ library aGruM. It

offers learning, inference and visualization of BNs and supports DBNs, but it only allows the

use of discrete variables and discretizes continuous ones. If we opt for adapting existing BN

software for a dynamic scenario, there are several possibilities. The most versatile one is the
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use of bnlearn with certain restrictions and pre-processing steps for learning DBN structures

with BN methods. Afterwards, one can use either gRain [Højsgaard, 2012] for inference with

discrete variables or rbmn [Denis and Scutari, 2021] for inference with continuous ones. In

Python, one can use either pgmpy or bnlearn [Taskesen, 2020], which has the same name

but a different author from the original R package by Scutari, to potentially fit a DBN model.

However, both packages only support discrete variables, and only pgmpy has the skeleton

of the classes for a potential extension to DBNs. In the case of discrete DBNs, these options

could offer a solution after the user adapts them, but neither offers an option for continuous

variables.

The process of training a DBN model from data and forecasting has several intermediate

steps [Koller and Friedman, 2009]: adapting the dataset for TS learning, applying a structure

learning algorithm, visualising the network, using an exact or approximate inference method

and running a forecasting motor. With dbnR, our objective is to create a simple pipeline

where upon providing some data, we can obtain a model that we can visualize and use to

perform inference. All the intermediate steps are encapsulated and parametrized inside the

package to allow both a simple deployment and the possibility of tuning the learning and

inference process to the user needs. Throughout this chapter, we will show several examples

of code executed directly on the R prompt with the R> symbol at the beginning. These are

basically lines of code and what would they return if run in a real prompt.

This chapter includes the content of an article submitted to the Journal of Statistical Soft-

ware. The stable dbnR [Quesada, 2021] source code and binaries can be found in the Com-

prehensive R Archive Network (CRAN)1, while active development is underway in GitHub2.

Chapter outline

The rest of the chapter is organized as follows. Section 8.2 covers the definition of the DBN

model in the package. Section 8.3 discusses the structure learning algorithms available in

dbnR and the visualization tool. Section 8.4 presents the inference and forecasting methods.

Section 8.5 describes the main pipeline, functions and the classes of the package. Section 8.6

showcases a complete example of applying DBNs for forecasting some data. Finally, Section

8.7 offers some final remarks and conclusions.

8.2 BN definition in dbnR

In the literature, the most well-known package that offers support for all types of BNs is

bnlearn. It allows training and inference with all of them, but it does not include DBNs.

In our package, we opted to focus on Gaussian DBNs for two reasons. First, real-world data

recovered from sensors are usually real valued. Second, exact inference with Gaussian BNs is

much faster to compute than with their discrete counterparts due to the CPD of their nodes.

1https://cran.r-project.org/package=dbnR
2https://github.com/dkesada/dbnR
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In Gaussian BNs, we assume that all the variables in our system follow a normal distribution

represented as a linear Gaussian model, as in Equation (2.6).

Given the popularity of bnlearn, we opted to extend some of the functionality of this

package to the case of Gaussian DBNs. As a result, all dbnR networks extend the S3

classes ‘bn’ for the graph structure and ‘bn.fit’ for the fitted networks offered by bnlearn.

The new resulting ‘dbn’ and ‘dbn.fit’ classes enable all the graph operations and the score

functions coded in bnlearn to work with the DBN models in dbnR. The network structure

in bnlearn uses an R ‘data.frame’ as the main data structure for both the BN graph and

the fitted model. This ‘data.frame’ stores the information of each node parent and children

as string vectors and the values of the parameters β0i, . . . , βki and σ2
i as numeric vectors. To

allow the previously mentioned compatibility with bnlearn, we maintained this structure

and added two new modifications; we switched the use of ‘data.frame’ to ‘data.table’ [Dowle

and Srinivasan, 2021], and we added the multivariate Gaussian equivalent of the network

as a new attribute of the S3 ‘dbn.fit’ object. The switch to ‘data.table’ was motivated by

the efficiency of this data structure compared to ‘data.frame’ in terms of making queries,

operating with the data and passing it down between functions. On the other hand, to allow

fast exact inference, we switched to C++ using rcpp [Eddelbuettel and François, 2011] to

calculate the mean vector µ and covariance matrix Σ, and we store them as attributes of

our S3 object so that they can be used in place of the graph structure when forecasting with

the network. We use C++ several times in our package, especially when we need to perform

heavy computations or matrix operations inside structure learning algorithms.

After extending the ‘bn’ class from bnlearn to the DBN scenario, we opted for taking a

different route in terms of the structure learning algorithms and the inference motor inside

dbnR.

8.3 Structure learning

To learn the effect that past values of the variables have on the present, the first step we need

to take is to adapt our datasets to the time discretization of DBNs. In TS data, instances are

arranged in chronological order, where the oldest instance is usually the first row. Depending

on the desired Markovian order, we need to shift the rows in our dataset to ensure that the

values of several rows are grouped into a single row. To illustrate this process, we show an

example in Figure 8.1. Unlike in (3.5), we set t = 0 as the most recent time slice instead

of the oldest. This is merely a convention change motivated by an easier implementation

of the package architecture. Given that we allow an arbitrary Markovian order, it is more

convenient to have the most recent time slice always named t0 during inference regardless of

the order.

In dbnR, the function fold_dt performs this dataset modification automatically. To

begin the learning process, we call this function to adapt our data to the desired format. The

example in Figure 8.1 can be replicated with the following code:

R> df <- data.frame(X1 = c(3, 6, 4, 9), X2 = c(-1, -2, -3, -4))
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3 -1 NA NA

6 -2 3 -1

4 -3 6 -2

9 -4 4 -3

3 -1 NA NA NA NA

6 -2 3 -1 NA NA

4 -3 6 -2 3 -1

9 -4 4 -3 6 -2

3 -1

6 -2

4 -3

9 -4

Markovian order 1

Markovian order 2

Figure 8.1: Example of transforming a dataset with two variables X1 and X2 into several variables
depending on the desired Markovian order. The rows in the original data are ordered from the oldest
recorded values, X1 = 3 and X2 = −1, to the newest. The grey rows contain missing values and
should be deleted.

R> df

X1 X2

1 3 -1

2 6 -2

3 4 -3

4 9 -4

R> dbnR::fold_dt(df, size = 2)

X1_t_0 X2_t_0 X1_t_1 X2_t_1

1: 6 -2 3 -1

2: 4 -3 6 -2

3: 9 -4 4 -3

R> dbnR::fold_dt(df, size = 3)

X1_t_0 X2_t_0 X1_t_1 X2_t_1 X1_t_2 X2_t_2
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1: 4 -3 6 -2 3 -1

2: 9 -4 4 -3 6 -2

Note that due to restrictions in variable names, the time slice that each variable corresponds

to is written as t_x. The size argument determines the total number of time slices in the

network, that is, the Markovian order plus one.

In the most recent dbnR version (version 0.7.9), three structure learning algorithms

are available: a version of Trabelsi et al. [2013] dynamic max-min hill-climbing, Santos and

Maciel [2014] binary particle swarm optimization algorithm and Quesada et al. [2021a] natural

number order invariant encoding PSO algorithm. There is only a single function that handles

the calls to all the different algorithms:

learn_dbn_struc(dt, size, method, f_dt, ...)

The learn_dbn_struc function requires the training dataset and a desired size, and depending

on the method argument ("dmmhc", "psoho" or "natPsoho", respectively, for the three aforemen-

tioned methods), it will call the appropriate non-exported function of the specific structure

learning algorithm inside the package. The f_dt argument allows the user to pass down a

dataset shifted manually or with the fold_dt function in case it is needed, and the ellipsis

can be used to pass down further algorithm-specific arguments. It will return an S3 ‘dbn’

object that extends the ‘bn’ object from bnlearn.

Once we have the structure of the DBN, we need to fit its parameters to our data with

the following function:

fit_dbn_params(net, f_dt, ...)

The fit_db_params function takes a ‘dbn’ object and a dataset shifted with the fold_dt

function to learn the parameters of the DBN and return a ‘dbn.fit’ object. The function

allows us to use the maximum likelihood estimation implemented in bnlearn to learn the

parameters of the provided network from the shifted dataset. The µ vector and the Σ matrix

are estimated from the fitted DBN and added along with the size of the network as attributes

of the ‘dbn.fit’ object automatically in the fit_dbn_params function for future inference and

forecasting.

8.3.1 Dynamic max-min hill-climbing

This was the first algorithm implemented in dbnR mainly as an extension of the offered

methods in bnlearn for the case of DBNs. The DMMHC algorithm builds a DBN structure

in two steps: learn the static structure and learn the transition network. The static structure

is the BN structure of the first time slice, with only intra-slice arcs, and it represents the

effect of the variables in the same time instant. The transition network is the structure

that represents only the inter-slice arcs in the DBN and the effects that the past has on the

present. The basic max-min hill-climbing algorithm is used to learn both of these structures

separately.
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In our case, we used the max-min hill-climbing implementation available in bnlearn to

learn both of these networks, and then combined them into a single structure. To force the

additional constraints on arcs imposed by DBNs, we make use of the blacklist argument

that allows the user to introduce a matrix of forbidden arcs that will not appear in the final

network. This blacklist argument will be used to ban inter-slice arcs backwards in time

while learning the transition network. The construction of the blacklist matrix is performed

automatically with regular expression operations based on the names of the variables. The

user will not have to worry about this process, and additional arcs might be added to the

blacklist if needed.

Once both networks are built, we combine all their arcs to generate the final network

structure that can be used in the fit_dbn_params function to fit its parameters. The original

algorithm in Trabelsi et al. [2013] is defined for Markovian order 1 DBNs, and extending it

to higher orders only implies learning a larger transition network with more than two time

slices. It performs well for Markovian order 1 or 2 networks, but due to the super-exponential

nature of the number of possible BN structures depending on the number of nodes [Robinson,

1977], it scales poorly to higher orders.

8.3.2 Binary encoding PSO

The first alternative to the DMMCH is the PSO algorithm presented by Santos and Maciel

[2014]. In this case, the problem of finding an optimal DBN structure is transformed into an

optimization one, where the quality of each network is evaluated with a score. The graph

structure is encoded into a list of lists, where the parents of each node are defined in a binary

representation. An arc from one node to another is defined by a 1 in this list, and its absence

is defined by a 0. To drastically reduce the space of possible DBN structures, only inter-slice

arcs from older time slices to the most recent one are allowed.

This algorithm has been implemented from scratch in dbnR using R6 classes [Chang,

2021] and follows an object-oriented programming paradigm. The ‘Particle’ class in the

framework contains a ‘Position’, which encodes the binary list of lists, and a ‘Velocity’,

which contains arc additions or deletions with the same binary representation. The custom

operations defined for these positions and velocities can be found in Santos and Maciel [2014]

and are encapsulated inside the R6 classes. These operations also switch to C++ when

needed. The particles are evaluated by calculating the BIC score [Schwarz, 1978] or the BGe

score [Geiger and Heckerman, 1994] of the graph encoded in each particle. We defined a

‘PsoCtrl’ class that initializes and contains all the particles and controls the execution of the

search by evaluating the positions of the particles, obtaining the local and global optima,

calculating new velocities and moving the particles. The best position found at the end of

the process is transformed into its equivalent DBN form and is returned as the solution of

the search.
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8.3.3 Natural number invariant encoding PSO

The implementation of this algorithm is in many ways similar to the binary PSO algorithm, as

they share the same pipeline. The main differences between them are the encoding of the DBN

structures and the operations between positions and velocities. In this case, the networks are

encoded in vectors of natural numbers of constant length regardless of the Markovian order

desired. Each particle consists only of a ‘numeric’ vector, where each number corresponds to

a single node of the network in t0. This number encodes the information about which arcs

from previous nodes point to that specific node. The binary bitwise representation of the

natural number indicates which arcs are present in the DBN and which arcs are not. With

this encoding, a higher Markovian order only generates larger natural numbers, but it does

not increase the size of the ‘numeric’ vectors. The operations of additions and deletions of arcs

are now performed bitwise with custom operators on the natural numbers representing the

existing arcs, making this encoding scalable to high orders. Similar R6 classes ‘natParticle’,

‘natPosition’ and ‘natVelocity’ were generated for this algorithm to follow similar developing

procedures.

8.3.4 Structure visualization tool

To offer the possibility of visualizing the graph structure of both the BNs learned with

bnlearn and the DBNs learned with dbnR, we implemented a tool using the visNetwork

package [Almende et al., 2019]. This tool is included in dbnR, but the visNetwork package is

listed as suggested and will only be downloaded in case the user needs to plot some network.

By using visNetwork, we plot the graph structures as HTML widgets that the user can

interact with by highlighting arcs and nodes and by clicking on and dragging the nodes. The

tool is intended only for visualization purposes, and any changes to the graph structure have

to be made programmatically.

Plotting a BN or a DBN structure can be done with a single function call:

plot_network(structure, ...)

The structure argument can be a ‘bn’, a ‘bn.fit’, a ‘dbn’ or a ‘dbn.fit’ object obtained after

learning a network structure with either bnlearn or dbnR. The ellipsis argument is used to

provide two additional parameters for the DBN case: the offset argument, which modifies

the size of the blank space between time slices in the plot, and the subset_nodes argument,

which allows the user to plot only a certain subgraph from the whole network by providing

a vector with the names of the desired nodes. An example of two network structures plotted

with this tool can be seen in Figure 8.2.

8.4 Inference and forecasting

Once we have the structure and the parameters of a DBN, we can use the model to per-

form inference over some data. In dbnR, we offer an approximate inference method and
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Figure 8.2: Example of the visualization of the structure of both a BN (left) and a DBN (right). The
nodes on both networks can be clicked on to be highlighted and dragged to reposition them.

an exact one. The approximate inference is performed via the likelihood weighting [Korb

and Nicholson, 2010] based on Monte Carlo sampling offered in bnlearn. The exact infer-

ence algorithm has been implemented in dbnR specifically for Gaussian BNs by using the

equivalent multivariate joint distribution.

8.4.1 Exact inference

One way to perform exact inference in a Gaussian BN is to use the equivalent multivariate

joint distribution of the network. To do this, we can use the mean vector µ and the covari-

ance matrix Σ that we calculated when learning the network structure. When we perform

inference, the values of some of the variables are known beforehand and used to predict the

most likely values for the rest of the variables in the system. Note that in the degenerated

case where no evidence whatsoever is provided, the values predicted for the variables are the

marginal means in µ. In the dynamic scenario, usually the variables in the past are observed

and will be used to perform inference over the variables in the present. Multivariate Gaussian

inference as shown in Equations (2.26), (2.27) and (2.28) can be performed in dbnR with

the function

mvn_inference(mu, sigma, evidence)

The mu and sigma arguments, which correspond to µ and Σ respectively, are stored in the

‘dbn.fit’ as attributes, and the evidence argument is a named vector with the values of the

observed variables inX2. This function returns a list with both the calculated µ1|2 from (2.27)

and Σ1|2 from (2.28). Typically, the mvn_inference function is not used outside of dbnR

because it is already encapsulated in other exported methods for prediction and forecasting

with DBN models, but we exported it too in case the user needs to perform inference over
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only a specific subset of nodes or wants to perform inference over a multivariate Gaussian

distribution outside of the scope of the package.

8.4.2 Forecasting TS

When using DBNs to deal with TS data, one of the most common operations that we can

perform is forecasting up to some horizon T . In dbnR, we perform forecasting with DBN

models using a sliding window procedure. This process was explained in Chapter 3.5 and

illustrated in Figure 3.6. We perform as many inference steps as needed with this procedure

in order to reach the desired horizon T . Finally, when the forecasting is completed, the

values of the target variables at each instant are returned, and the mean absolute error

is calculated with the original TS if some test data are provided. If the user is making

predictions without knowing the future values of the TS, as in a real-world application, no

metrics will be calculated.

The whole process of forecasting up to some horizon T is encapsulated in the function

forecast_ts(dt, fit, obj_vars, ini, len, mode, print_res, plot_res)

By providing a ‘data.frame’ and a ‘dbn.fit’ with the dt and the fit arguments, the dbnR

package handles the moving window procedure underneath. The forecasting can be tuned by

defining the target variables with obj_vars, setting the initial instance of the forecasting in

the ‘data.frame’ with ini, defining the horizon T regarding how long the forecasting should be

with len and if either exact or approximate inference should be used with the mode parameter.

If test data are provided in dt and the print_res argument is set to True, the MAE of the

forecasting compared to the original TS will be printed. The plot_res argument shows a plot

of both the original and the predicted TS. An example of forecasting a TS and plotting the

results can be seen in Figure 8.3.

An additional argument prov_ev can be provided to the forecast_ts function, which

allows the user to give specific future evidence to the DBN in each forecasting step. This can

be useful when employing a DBN as a simulator to make interventions in the forecasting and

see the effects that they have in the prediction profiles.

8.4.3 Smoothing

Additionally, DBN models can perform smoothing operations over TS [Koller and Friedman,

2009]. In this context, smoothing refers to, given some initial evidence from instants 1 to

t, performing inference over p(X0|X1:t). Essentially, we predict the past given the current

value of the variables in our system. Afterwards, we move all evidence backwards in the same

manner as the sliding window from the forecasting case, but in the opposite direction in time.

If we repeat this process up to horizon T in the past, we will obtain a TS that reflects the

predicted state of the system along several instants in the past. Typically, this operation is

performed when we do not know the past state of the system, for example, due to missing

data or when we want to check how much our past data differ from the smoothed values to

check for faulty sensor recordings.
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Figure 8.3: Plot returned by the forecast ts function after forecasting 20 instances of a TS. The pm
variable represents the magnet temperature inside an electric motor. The black line represents the
original values of the TS, and the red line represents the forecasting. Only the values of the variables
at the initial instant 0 are known as evidence to the DBN.

Smoothing is called in a similar way to forecasting by using the function

smooth_ts(dt, fit, obj_vars, ini, len, mode, print_res, plot_res)

8.5 Pipeline and main functions

The dbnR package is focused on making DBN models readily available for application. As

such, the main pipeline from some dataset to a fitted DBN model is kept as simple as possible.

A diagram of this pipeline can be seen in Figure 8.4, where with four function calls, we can

obtain a fully functional DBN model and perform inference with it.

Apart from the essential functionality, dbnR offers other utilities. In Table 8.1, we

show all the exported functions of the package. All three structure learning algorithms are

encapsulated and parametrized inside the learn_dbn_struc() function.

Additionally, all the functions for the addition or deletion of arcs and nodes offered by

bnlearn also work for ‘dbn’ objects. To show this compatibility, we use the code below to

obtain a random DBN structure and a simulated dataset with the generate_random_network_

exp function, and then apply some graph modification functions.
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f_dt_trainDataset

f_dt_test

learn_dbn_struct() dbn fit_dbn_params() dbn.fit forecast_ts()

plot_network()

fold_dt()

Figure 8.4: Diagram with the main workflow of the dbnR package. We start by preparing a dataset;
then, we learn the DBN structure, learn its parameters and typically perform forecasting. Optionally,
the network structure can also be plotted.

Task Function Output

Learning
Learn DBN structure learn_dbn_struc ‘dbn’
Fit DBN parameters fit_dbn_params ‘dbn.fit’
Calculate µ from ‘dbn.fit’ calc_mu ‘numeric’
Calculate Σ from ‘dbn.fit’ calc_sigma ‘matrix’

Visualization
Plot BN or DBN plot_network HTML
Plot DBN plot_dynamic_network HTML
Plot BN plot_static_network HTML

Inference
Forecast a TS forecast_ts ‘list’
Smooth a TS smooth_ts ‘list’
Multivariate Gaussian inference mvn_inference ‘list’
Inference over ‘data.table’ predict_dt ‘data.table’
Inference over ‘data.table’ predict_bn ‘data.table’

Utilities
Rename variables into t_x time_rename ‘data.table’
Fold dataset fold_dt ‘data.table’
Fold dataset based on index filter_fold_dt ‘data.table’
Dataset folding utility filter_same_cycle ‘data.table’
Create a random DBN generate_random_network_exp ‘list’
Reduce frequency of TS reduce_freq ‘data.table’

Table 8.1: Overview of all the exported functions in the dbnR package ordered by the type of task
they perform.

R> dbn_ex <- dbnR::generate_random_network_exp(n_vars = 3, size = 2,

+ min_mu = -5, max_mu = 5, min_sd = 0.5,

+ max_sd = 2, min_coef = -1, max_coef = 1,

+ seed = 42)

R> names(dbn_ex$net$nodes)

[1] "X0_t_0" "X1_t_0" "X2_t_0" "X0_t_1" "X1_t_1" "X2_t_1"

R> dbn_ex$net$arcs

115



from to

[1,] "X0_t_1" "X0_t_0"

[2,] "X1_t_1" "X0_t_0"

[3,] "X0_t_1" "X1_t_0"

[4,] "X1_t_1" "X1_t_0"

[5,] "X2_t_1" "X1_t_0"

[6,] "X0_t_1" "X2_t_0"

[7,] "X2_t_1" "X2_t_0"

We generated a random DBN with two time slices and three variables per time slice. In total,

the network structure has six nodes and seven arcs. If we want to delete the first arc, we can

do so with the drop.arc function from bnlearn, and if we want to delete a node entirely, we

can use the remove.node function.

R> dbn_ex$net <- bnlearn::drop.arc(dbn_ex$net, "X0_t_1", "X0_t_0")

R> dbn_ex$net$arcs

from to

[1,] "X1_t_1" "X0_t_0"

[2,] "X0_t_1" "X1_t_0"

[3,] "X1_t_1" "X1_t_0"

[4,] "X2_t_1" "X1_t_0"

[5,] "X0_t_1" "X2_t_0"

[6,] "X2_t_1" "X2_t_0"

R> dbn_ex$net <- bnlearn::remove.node(dbn_ex$net, "X0_t_0")

R> names(dbn_ex$net$nodes)

[1] "X1_t_0" "X2_t_0" "X0_t_1" "X1_t_1" "X2_t_1"

Several other auxiliary functions from bnlearn, such as obtaining the node ordering of a

network with the node.ordering function or getting the Markov blanket of a node by calling

mb can be used in a similar manner.

8.6 Example application: Sample motor dataset

To show a practical full example of using the dbnR package, we use a dataset to learn the

structure of three different DBNs, fit their parameters and perform forecasting with them.

We use the sample dataset included in the package. The data come from the electric motor

temperature dataset in Kaggle [Kirchgässner et al., 2021], from which we selected a sample

of the first 3000 instances intended only for testing purposes of the package utilities. For the

complete dataset, we refer the readers to the original source3.

3https://www.kaggle.com/wkirgsn/electric-motor-temperature
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R> dt <- dbnR::motor

R> summary(dt)

ambient coolant u_d

Min. :-0.79598 Min. :-0.07434 Min. :-1.6415

1st Qu.: 0.01516 1st Qu.: 0.05816 1st Qu.: 0.3122

Median : 0.05754 Median : 0.09546 Median : 0.3137

Mean : 0.05927 Mean : 0.89587 Mean : 0.3006

3rd Qu.: 0.10300 3rd Qu.: 2.15739 3rd Qu.: 0.3157

Max. : 0.20956 Max. : 2.27659 Max. : 2.2359

u_q motor_speed i_d

Min. :-1.332770 Min. :-1.22243 Min. :-2.4526

1st Qu.:-1.328685 1st Qu.:-1.22243 1st Qu.: 0.2333

Median :-1.326736 Median :-1.22243 Median : 1.0291

Mean :-0.601467 Mean :-0.58853 Mean : 0.4785

3rd Qu.: 0.008286 3rd Qu.: 0.02407 3rd Qu.: 1.0291

Max. : 1.729171 Max. : 1.87129 Max. : 1.0292

i_q pm stator_yoke

Min. :-2.9470 Min. :-0.14291 Min. :-0.0564

1st Qu.:-0.2524 1st Qu.:-0.11738 1st Qu.: 0.1337

Median :-0.2457 Median : 0.04524 Median : 0.2650

Mean :-0.2941 Mean : 0.01934 Mean : 0.5307

3rd Qu.:-0.2457 3rd Qu.: 0.12920 3rd Qu.: 0.9512

Max. : 2.2931 Max. : 0.25813 Max. : 1.5442

stator_tooth stator_winding

Min. :-0.31658 Min. :-0.53658

1st Qu.: 0.01911 1st Qu.:-0.22645

Median : 0.31257 Median : 0.13088

Mean : 0.27072 Mean : 0.08419

3rd Qu.: 0.46184 3rd Qu.: 0.39245

Max. : 0.92338 Max. : 0.71988

The sample dataset consists of 11 continuous variables that correspond to different temper-

atures, voltages and currents inside an electrical motor. Our aim is to use the data to fit

the DBN models and showcase the whole process of training a DBN with some dataset and

perform forecasting.

Initially, we split our data into training and test sets, and then use the fold_dt function

to generate the necessary temporal variables in each row.

R> dt_train <- dt[1:2800]

R> dt_test <- dt[2801:3000]

R> size <- 2
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R> f_dt_train <- dbnR::fold_dt(dt_train, size)

R> f_dt_test <- dbnR::fold_dt(dt_test, size)

R> print(names(f_dt_train))

[1] "ambient_t_0" "coolant_t_0" "u_d_t_0"

[4] "u_q_t_0" "motor_speed_t_0" "i_d_t_0"

[7] "i_q_t_0" "pm_t_0" "stator_yoke_t_0"

[10] "stator_tooth_t_0" "stator_winding_t_0" "ambient_t_1"

[13] "coolant_t_1" "u_d_t_1" "u_q_t_1"

[16] "motor_speed_t_1" "i_d_t_1" "i_q_t_1"

[19] "pm_t_1" "stator_yoke_t_1" "stator_tooth_t_1"

[22] "stator_winding_t_1"

For the sake of simplicity, we fix the size of the folding to 2 so that we learn Markovian order

1 DBNs. After splitting and folding, we create the necessary variables for the desired size

and obtain a dataset that can be used for learning the structure and the parameters of the

DBN models.

R> t <- Sys.time()

R> net_dmmhc <- dbnR::learn_dbn_struc(dt_train, size, method = "dmmhc",

+ f_dt = f_dt_train)

R> Sys.time() - t

Time difference of 0.348067 secs

R> set.seed(42)

R> t <- Sys.time()

R> net_psoho <- dbnR::learn_dbn_struc(dt_train, size, method = "psoho",

+ f_dt = f_dt_train, n_it = 10)

|=====================================================================

=====================================================================

===============================================================| 100%

R> Sys.time() - t

Time difference of 8.868454 secs

R> t <- Sys.time()

R> net_nat <- dbnR::learn_dbn_struc(dt_train, size, method = "natPsoho",

+ f_dt = f_dt_train, n_it = 10)

|=====================================================================

=====================================================================

===============================================================| 100%
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R> Sys.time() - t

Time difference of 3.020932 secs

We used the three available structure learning algorithms and printed the execution time spent

by each one. For small DBNs, the execution time of the DMMHC algorithm is unrivalled by

the particle swarm algorithms, but it scales poorly to a greater number of nodes and higher

Markovian orders. Note that the particle swarm algorithms are not deterministic, and we

had to set a seed number to obtain reproducible results. They also print a progress bar that

shows how much of the process is done in terms of the number of iterations finished from the

total number of iterations allowed with the n_it parameter.

With the network structures, we can now learn their parameters from the folded dataset

with the fit_dbn_params function. This returns a ‘dbn.fit’ object that can be used to perform

inference.

R> fit_dmmhc <- dbnR::fit_dbn_params(net_dmmhc, f_dt_train)

R> fit_psoho <- dbnR::fit_dbn_params(net_psoho, f_dt_train)

R> fit_nat <- dbnR::fit_dbn_params(net_nat, f_dt_train)

R> fit_dmmhc$pm_t_0

Parameters of node pm_t_0 (Gaussian distribution)

Conditional density: pm_t_0 | coolant_t_0 + stator_winding_t_0 +

motor_speed_t_1 + pm_t_1

Coefficients:

(Intercept) coolant_t_0 stator_winding_t_0

0.0017474119 -0.0014122266 0.0011111532

motor_speed_t_1 pm_t_1

0.0005594395 0.9849412445

Standard deviation of the residuals: 0.004961973

We can inspect a fitted model by checking specific nodes. In the previous code chunk, we

printed the parameters of the pm_t_0 node. This variable represents the temperature of the

permanent magnet in the rotor of the motor and can be used to predict overheating. By

checking its parameters, we can see all its parent nodes, as well as the effects that each one

has on it. Note that all variables are normalized, so the scales of the parameters are similar

and can be compared. We can see that the values of the last instant pm_t_1 have a parameter

of approximately 0.985, which hints at the fact that the previous value in the TS is a very

good prediction of the next one and has high correlation. If the variables were not normalized,

the parameters would need to account for the difference in magnitude of the variables, and

they would be much harder to interpret.

In our DBN models, the DMMHC algorithm allows intra-slice arcs, as shown by the

pm_t_0 variable having as parents other variables in t0. The PSO algorithms, however, do

not allow this kind of arc and only learn inter-slice arcs directed to t0.
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R> fit_nat$pm_t_1

Parameters of node pm_t_1 (Gaussian distribution)

Conditional density: pm_t_1

Coefficients:

(Intercept)

0.02872801

Standard deviation of the residuals: 0.123039

R> summary(f_dt_train[, pm_t_1])

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.14291 -0.11971 0.06236 0.02873 0.13503 0.25813

In the case of variables with no parents, it can be seen that their intercept is equal to the

mean of the TS in the original training dataset. This can be seen in the case of the PSO

algorithms in each variable outside t0, given that only variables in t0 are allowed to have

parent nodes in those algorithms.

With the fitted models, we can now perform inference over the test dataset. First, we

use the mvn_inference function directly to perform a single inference step. We use the values

from previous time slices as evidence and perform inference over the variables at t0.

R> ev_vars <- names(f_dt_test)[grepl("t_1$", names(f_dt_test))]

R> ev <- f_dt_test[1, .SD, .SDcols = ev_vars]

R> ev

ambient_t_1 coolant_t_1 u_d_t_1 u_q_t_1 motor_speed_t_1

1: 0.1377959 2.177947 0.3127252 -1.329747 -1.222431

i_d_t_1 i_q_t_1 pm_t_1 stator_yoke_t_1 stator_tooth_t_1

1: 1.029135 -0.2457216 -0.1207832 1.471376 0.8375071

stator_winding_t_1

1: 0.3224269

First, we extract the values of all the variables whose name finishes with "t_1", that is, all

the variables that are at the t1 time slice from the first row of the folded test dataset. We

can now feed the data to any of the ‘dbn.fit’ objects that we trained earlier.

R> res <- dbnR::mvn_inference(attr(fit_dmmhc, "mu"),

+ attr(fit_dmmhc, "sigma"), evidence = ev)

R> res

$mu_p

[,1]
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coolant_t_0 2.1771681

stator_tooth_t_0 0.8386566

stator_yoke_t_0 1.4720731

stator_winding_t_0 0.3229435

u_d_t_0 0.3156188

pm_t_0 -0.1206166

ambient_t_0 0.1371033

u_q_t_0 -1.3303784

i_d_t_0 1.0286580

motor_speed_t_0 -1.2240255

i_q_t_0 -0.2442530

$sigma_p

coolant_t_0 stator_tooth_t_0 stator_yoke_t_0

coolant_t_0 3.730297e-03 -9.341215e-05 -6.949001e-05

stator_tooth_t_0 -9.341215e-05 2.389378e-03 1.943209e-05

stator_yoke_t_0 -6.949001e-05 1.943209e-05 -4.629102e-03

stator_winding_t_0 2.617418e-07 -1.718153e-05 -2.775256e-05

u_d_t_0 6.505213e-18 -1.870926e-17 -6.396793e-18

pm_t_0 -5.267734e-06 1.128278e-07 6.729829e-08

ambient_t_0 -7.032338e-07 1.722317e-07 -4.054521e-05

u_q_t_0 -1.899465e-07 4.068401e-09 2.426676e-09

i_d_t_0 5.745827e-07 -1.480856e-05 -4.137123e-07

motor_speed_t_0 -8.185877e-09 1.694358e-07 4.753232e-09

i_q_t_0 -3.539884e-08 8.669667e-09 -2.040933e-06

stator_winding_t_0 u_d_t_0 pm_t_0

coolant_t_0 2.617418e-07 -8.673617e-18 -5.267734e-06

stator_tooth_t_0 -1.718153e-05 4.370690e-18 1.128278e-07

stator_yoke_t_0 -2.775256e-05 1.864828e-17 6.729829e-08

stator_winding_t_0 -2.205694e-03 -1.019150e-17 -2.451233e-06

u_d_t_0 -4.835542e-17 2.375250e-03 -3.361027e-18

pm_t_0 -2.451233e-06 6.505213e-19 -4.675682e-04

ambient_t_0 -2.870911e-07 -1.169272e-06 -8.393435e-06

u_q_t_0 -8.838777e-08 1.821460e-17 -1.685981e-05

i_d_t_0 -2.332173e-05 1.573537e-05 -2.672546e-08

motor_speed_t_0 2.660363e-07 -1.800034e-07 -1.428645e-07

i_q_t_0 -1.445137e-08 -2.165141e-05 -4.225023e-07

ambient_t_0 u_q_t_0 i_d_t_0

coolant_t_0 -7.032338e-07 -1.899465e-07 5.745827e-07

stator_tooth_t_0 1.722317e-07 4.068400e-09 -1.480856e-05

stator_yoke_t_0 -4.054521e-05 2.426675e-09 -4.137123e-07
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stator_winding_t_0 -2.870911e-07 -8.838777e-08 -2.332173e-05

u_d_t_0 -1.169272e-06 -2.645453e-17 1.573537e-05

pm_t_0 -8.393435e-06 -1.685981e-05 -2.672546e-08

ambient_t_0 2.150180e-04 -3.026546e-07 -1.184961e-08

u_q_t_0 -3.026546e-07 -4.193088e-04 -9.636789e-10

i_d_t_0 -1.184961e-08 -9.636806e-10 1.887835e-02

motor_speed_t_0 -2.434532e-09 -3.560678e-06 -2.159572e-04

i_q_t_0 1.083404e-05 -1.523479e-08 -1.436411e-07

motor_speed_t_0 i_q_t_0

coolant_t_0 -8.185875e-09 -3.539884e-08

stator_tooth_t_0 1.694358e-07 8.669667e-09

stator_yoke_t_0 4.753232e-09 -2.040933e-06

stator_winding_t_0 2.660363e-07 -1.445137e-08

u_d_t_0 -1.800034e-07 -2.165141e-05

pm_t_0 -1.428645e-07 -4.225023e-07

ambient_t_0 -2.434532e-09 1.083404e-05

u_q_t_0 -3.560678e-06 -1.523479e-08

i_d_t_0 -2.159572e-04 -1.436411e-07

motor_speed_t_0 -5.066376e-02 1.513799e-09

i_q_t_0 1.513799e-09 -9.822611e-03

This returns both the µ1|2 vector and Σ1|2 matrix calculated in Equation (2.27) and (2.28),

respectively. The µ1|2 vector is used as the resulting value from the exact inference, that

is, the most likely value for our predicted variables given the provided evidence. The Σ1|2
matrix is also returned, but it is less interesting in the case of Gaussian DBNs given that

it remains constant no matter the evidence we provide, as shown by Equation (2.28), where

only the constant values of the covariance matrix are used in its calculation.

The mean vector obtained only corresponds to a single instant prediction. We can au-

tomate this process for all the rows in a dataset with the predict_dt function in case our

objective is to predict only the next time instant.

R> res <- dbnR::predict_dt(fit_dmmhc, f_dt_test, obj_nodes = "pm_t_0")

[1] MAE:

pm_t_0

0.0005821966

[1] SD:

pm_t_0

0.0007559006

Along with the predictions, the predict_dt function prints the average MAE and the

standard deviation of the residuals and plots the predictions, as shown in Figure 8.5. Although

the inference to horizon 1 obtains a seemingly low MAE and the plot seems to be a good
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Figure 8.5: Plot of the predictions (red) returned by the predict dt function. All the predictions are
performed to horizon 1 using the last instant as evidence. They are deceivingly accurate because the
last instant is always used as evidence for the next prediction. If looking closely, it can be seen that
large changes in the profile of the curve are not properly predicted by the DBN until one instant later
when evidence of these changes is provided to the model.

result, single-step predictions can be misleading. As shown earlier by the parameters, a good

prediction of the next instant of a TS is the previous one. Sometimes, a TS model can just

be passing forward the values of the variables, incurring good predictions for T = 1 but

obtaining worse results when forecasting.

For forecasting, we use the forecast_ts function, which allows us to forecast up to an

arbitrary time horizon. We use the pm_t_0 variable as our target variable, but more than one

variable can be selected simultaneously as target variables.

R> res <- dbnR::forecast_ts(f_dt_test, fit_dmmhc, obj_vars = "pm_t_0",
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Figure 8.6: Plot obtained from forecasting 30 instances with a DBN model using only the evidence
from the initial point at t = 0.

+ ini = 40, len = 30, mode = "exact")

Time difference of -0.1097059 secs

[1] The average MAE per execution is:

[1] pm_t_0: 4e-04

The obtained forecast shown in Figure 8.6 follows the tendency of the TS, but it is much

smoother than the real values. This is because the exact inference in DBN models returns

the most likely value in each instant, which is the mean value of the conditional multivariate

Gaussian distribution. As such, the variance shown in Σ1|2 is expected to take place, but it

remains constant throughout the forecast. It is also important to note that the model only
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sees the evidence at the first instant of time, which means that any future intervention in the

TS will not be seen by the DBN.

If we are applying a DBN model in real time, we do not have the values of the full TS

when performing forecasting. In this case, we can provide the model with the evidence of the

initial time point, and it will return the forecast without performing MAE calculations.

R> res <- dbnR::forecast_ts(f_dt_test[40], fit_dmmhc, obj_vars = "pm_t_0",

+ ini = 1, len = 5, mode = "exact",

+ plot_res = FALSE, print_res = FALSE)

R> res$pred$pm_t_0

[1] -0.1169029 -0.1167780 -0.1166541 -0.1165312 -0.1164092

We can also use the DBN model as a simulator by providing specific evidence over time during

forecasting. Thus, we can test the effects of specific values on some key variables or see how

certain interventions affect the system. In our example data, we may want to test how the

increasing or decreasing revolutions per minute of the motor represented by the motor_speed

variable affects our objective temperature. Our first scenario is to fix this value at a very

low rate, lower than the real values of the TS. In the second scenario that we propose, we

progressively increase the revolutions per minute over time from a very low starting point to

see the effects that accelerating a car would have on the permanent magnet temperature.

f_dt_i <- f_dt_test[40:70]

summary(f_dt_i$motor_speed_t_0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.222 -1.222 -1.222 -1.222 -1.222 -1.222

f_dt_i[1:5, motor_speed_t_0]

[1] -1.222428 -1.222428 -1.222430 -1.222432 -1.222431

We first extract the 30 instances of our previous forecasting to test both interventions because

we already know how the model behaves for that period of time. The motor_speed variable is

fairly constant at -1.22 on this interval. Note that the variables are normalized, and it does

not mean negative revolutions per minute. We will modify this subset of data by fixing the

values of motor_speed_t_0 to a lower value of -1.4, and then to a sequence of values increasing

from -1.4 to -1.1 to simulate motor acceleration.

R> f_dt_i[, motor_speed_t_0 := -1.4]

R> res <- dbnR::forecast_ts(f_dt_i, fit_dmmhc, obj_vars = "pm_t_0",

+ ini = 1, len = 30, mode = "exact",

+ prov_ev = "motor_speed_t_0")
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Figure 8.7: A comparison between the plotted forecasts of fixing the motor speed variable to -1.4
(left) and progressively increasing it from -1.4 to -1.1 (right). The real values of the TS are represented
by black lines, and the red lines represent the forecasts. The effects of both actions can be clearly
seen in the profile of the predictions.

Time difference of -0.2303832 secs

[1] The average MAE per execution is:

[1] pm_t_0: 9e-04

R> f_dt_i[, motor_speed_t_0 := seq(from = -1.4, to = -1.1, by = 0.3 / 30)]

R> res <- dbnR::forecast_ts(f_dt_i, fit_dmmhc, obj_vars = "pm_t_0",

+ ini = 1, len = 30, mode = "exact",

+ prov_ev = "motor_speed_t_0")

Time difference of -0.232743 secs

[1] The average MAE per execution is:

[1] pm_t_0: 4e-04

The plots resulting from both scenarios can be seen in Figure 8.7. If we set a low motor_speed,

the temperature of the magnet increases much more slowly than in the real case. However, we

can see the effect that accelerating the motor would have on the temperature, which ramps

up when we start increasing the revolutions per minute. This behaviour as simulators of the

real world is a powerful tool that can turn DBNs into generative models that offer insight

into industrial processes before making an intervention in a system.
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8.7 Conclusions and future work

In this chapter we have presented the dbnR package for Gaussian DBN learning, inference

and visualization. The package covers the whole process from learning both the structure

and parameters of a DBN model to performing inference and forecasting with it. It also ex-

tends the functionality of the most popular BN package in R, bnlearn, to the case of DBNs.

The intermediate steps of the learning and inference process, including the structure learning

algorithms, are presented and discussed regarding both their definitions and their implemen-

tations. The dbnR package has managed to achieve a level of notoriety and diffusion, with

over 18,000 downloads worldwide.

For future work, we would like to add an option to show an automatically generated user

interface with shiny [Chang et al., 2021]. This would give the simulator of DBN models

more capacity to interact with the user, as well as generating tools readily available for a

data scientist to present prototypes to an expert on a specific problem. This can be especially

useful in the case of BNs and DBNs due to their capacity to incorporate expert knowledge

into the model itself and to show the results of inference clearly and directly to the model

end users.
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Chapter 9
Conclusions and future work

In this chapter, we review the most important contributions of this work and discuss possible

future research options. We also include the publications and submissions produced during

this research.

Chapter outline

In Section 9.1, we review the main contributions of this work. Section 9.2 provides a list

of works published and submitted during this research. Finally, Section 9.3 revolves around

possible future work.

9.1 Summary of contributions

The third part of this document compiles all the contributions done over the years.

• Chapter 4 proposes the use of high order DBNs in the industrial setting of furnaces

suffering from the fouling phenomenon. This was a new approach in the field of fouling

prediction, and varying the Markovian order of the network provided and increase of

the accuracy of the DBNs when modelling the tendency of the TS up to a certain order.

The experiments on a real world dataset showed that we can accurately make long term

predictions of the profile of the temperature curves with high order DBNs.

• Chapter 5 offers a new structure learning algorithm tailored specifically for high order

DBNs. After applying DBNs to the fouling problem and realizing that the DMMHC

algorithm scales poorly with the Markovian order, we proposed a new algorithm based

on PSO to be able to explore the space of possible networks more efficiently. Our

order invariant encoding proved to be more efficient in the experimentation than the

baseline DMMHC algorithm and than another PSO structure learning algorithm from

the literature.

• Chapter 6 presents a hybrid between DBNs and model trees that is capable of perform-

ing piecewise regression. This in turn allows us to overcome the linearity constraint
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of Gaussian BNs, and we can use this hybrid approach to model nonlinear problems.

The results on a synthetic problem and two real world problems showed the accuracy

improvement of our proposed hybrid approach in comparison with the baseline DBN

model, and it behaves well against other state-of-the-art forecasting models like LSTMs

and HFCMs.

• Chapter 7 proposes the coupling of Gaussian DBNs and neural networks to solve classi-

fication problems over time. In particular, we addressed the problem of, given a patient

infected with the COVID-19, deciding whether this patient is going to reach a critical

state or not in the next 40 hours. This coupling is shown to improve the performance

of baseline classification on the experimentation.

• Chapter 8 discusses our developed open source R package, dbnR. This package encap-

sulates all the process of learning, visualizing and performing inference with Gaussian

DBN models in order to make their application to new problems as straightforward

as possible. Great portions of our contributions are contained in this package to be

accessible to the broadest number of users as possible. The package managed to get a

level of attention in the DBN ambit, with over 18,000 downloads worldwide and having

been used in several scientific publications.

9.2 List of publications

Peer-reviewed JCR journals

• D. Quesada, G. Valverde, P. Larrañaga, and C. Bielza. Long-term forecasting

of multivariate time series in industrial furnaces with dynamic Gaussian Bayesian

networks. Engineering Applications of Artificial Intelligence, 103:104301, 2021.

• D. Quesada, C. Bielza, P. Fontan, and P. Larrañaga. Piecewise forecasting of nonlinear

time series with model tree dynamic Bayesian networks. International Journal of

Intelligent Systems, 37(11):9108–9137, 2022.

• D. Quesada, P. Larrañaga, and C. Bielza. Classifying the evolution of COVID-19

severity on patients with combined dynamic Bayesian networks and neural networks.

Submitted, 2023.

• D. Quesada, P. Larrañaga, and C. Bielza. dbnR: Gaussian dynamic bayesian network

learning and inference in R. Submitted, 2023.

Peer-reviewed conferences

• D. Quesada, C. Bielza, and P. Larrañaga. Structure learning of high-order dynamic

Bayesian networks via particle swarm optimization with order invariant encoding.

In International Conference on Hybrid Artificial Intelligence Systems, pages 158–171.

Springer, 2021.
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Technical reports

• D. Quesada, P. Larrañaga, C. Bielza. Forecasting symptom severity

of COVID-19 patients with dynamic Bayesian network hybrid classifiers.

TR:UPM-ETSIINF/DIA/2022-2: Universidad Politécnica de Madrid, 2022.

9.3 Future work

In this section we propose possible future research lines for some of the subjects of this

dissertation.

• Further exploration of the relationship between the Markovian order and the autorre-

gresive order from Chapter 4 could result in an adaptation of automatic autoregression

estimation like the Box-Jenkins model to the case of DBNs.

• The use of PSO in Chapter 5 proved to be intuitive to implement, but there are many

other evolutionary algorithms available in the literature. It could be interesting to

evaluate the proposed encoding in the different environments provided by these other

algorithms.

• In Chapter 6 we presented the most basic version of the mtDBN framework, where the

DBNs were embedded in the leaves of a CART. This model can be further explored by

defining different partition methods, as in the case of clustering, or by defining context

specific metrics for splitting criteria of populations, like mutual information.

• At the moment, the only available parameter learning method inside dbnR is MLE. It

could be interesting to add a Bayesian estimation method that could provide different

results in exchange of a longer execution time.

• To make the use of DBNs readily available to a greater number of data scientists, dbnR

could be adapted into a graphical interface setting, where there would be no need to

have any knowledge of R coding.
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Appendix A
ODE system for the fouling

phenomenon

ODE system definition

The main idea of our simulation is to generate an environment where we have a fluid flowing

through a tube and a heat source heating the walls of said tube. Meanwhile, as this fluid

is heated, it precipitates materials that create an insulating layer inside the tube over time.

This is a process called fouling [Quesada et al., 2021b].

Our aim is to define a simplified version of this phenomenon, one that reflects the non-

linear relationships of the variables and respects the underlying physical process. Our first

simplification is that the simulation does not have a spatial component, so heat will transfer

from the heat source to the tube walls by radiation from a single point to another and from

the tube walls to the fluid by convection. This generates a heating component that increases

the temperature of the fluid. As the fouling process occurs, the thermal conductivity of the

system decreases, and the heat transferred from the tube walls to the fluid is reduced. To

dissipate heat from the system, we have a flow component that renews fresh cooler fluid at

each instant. All fluid volumes are heated as a whole and move in and out of the system as

a singular unit. Initially, the fluid heats easily, but as the fouling layer grows, it becomes

increasingly harder to keep the fluid temperature high.

The first component that we define is the growth of the insulating layer over time:

∂Sc

∂t
= A1k1Ca, (A.1)

where Sc is the thickness of the insulating layer, t is the time, A1 > 0 is a control constant, k1

is the reaction speed at which particles prone to fouling precipitate and Ca is the concentration

of particles prone to fouling in the fluid. Equation (A.1) controls the rate at which the fouling

layer grows and is dependent on the value of Ca, which is a property of the fluid, and on k1.

The value of k1 is defined by:
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k1 = A2e
−A3
RT1 , (A.2)

where A2 > 0 is a constant pre-exponential factor, A3 > 0 is an activation energy constant,

R is the ideal gas constant and T1 is the temperature of the fluid. A higher fluid temperature

will accelerate the growth of the insulating layer.

The second component is the evolution of the concentration of particles prone to fouling

Ca:

∂Ca

∂t
= −A4k2Ca, (A.3)

k2 = A′
2e

−A′
3

RT1 (A.4)

The process is very similar to the previous one, but in Equation (A.3), the concentration

diminishes each instant. In this case, a high T1 increases the consumption rate of Ca, but it

also affects the growth rate of Sc.

Once we have modelled the fouling layer and the concentration of particles that generate

it, we can define the evolution of the fluid temperature T1 and the flow component:

ρ1Cp1(
∂T1

∂t
−A5Qin∆T ) = f1(T1, T2) (A.5)

f1(T1, T2) =
A6

Sc
(T2 − T1) (A.6)

Qin = vol
π(2r)2

4
(A.7)

In Equations (A.5) and (A.6), ρ1 is the density of the fluid, Cp1 is the thermal capacity of

the fluid, Qin represents the flow of new fluid inside the system each instant, ∆T = Tin − T1

is the difference of temperature between the fresh fluid entering the system and the fluid

currently in the system, T2 is the temperature of the tube wall and A5 and A6 are control

constants. In essence, the convective component of the equations will transfer heat from the

tube wall to the fluid, and as Sc from Equation (A.1) increases, this convective component

will degrade. The flow component Qin in the system adds the effect of cold fluid entering the

system each instant through the area of the tube.

In Equation (A.7), vol is the volume of fluid going through the system each instant, and

r is the radius of the tube. The effect of this component is written in Equation (A.5) as the

product A5Qin∆T of the flow rate and the difference in the fluid temperature ∆T . The cold

fluid entering the system translates into a loss of temperature in the fluid from the previous

instant. This is of vital importance because it adds a mechanism to reduce the temperature

of the system. Without it, the simulation will only increase its temperature monotonically.

Now, with both Sc and the new flow, there can be situations where the heat transfer between

T2 and T1 is so low that the fluid loses temperature over time due to the effect of the colder
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flow. It also adds the volume inside the tube as a variable that can be manipulated by an

agent to perform interventions in the system.

The last equations define the temperature of the tube walls T2 and the temperature of

the furnace T3:

ρ2Cp2(
∂T2

∂t
) = f2(T1, T2, T3) (A.8)

f2(T1, T2, T3) =
A6

Sc
(T1 − T2) +A7(T

4
3 − T 4

2 ) (A.9)

T3 = Tmin +
1

1 + e−mc
(Tmax − Tmin) (A.10)

In Equations (A.8) and (A.9), T2 is defined by its interactions with T1 and T3, the latter

being the main factor that defines the value of T2 because T3 represents the temperature inside

the furnace. In the previous equations, ρ2 is the density of the tube wall alloy material, Cp2

is its thermal capacity and A7 is a control constant. The tube wall temperature is raised by

radiation from T3 and is decreased by induction due to the colder fluid inside, but this effect

is more insignificant than the radiation.

In Equation (A.10), we define how T3 is calculated. The furnace temperature changes

inside a range defined by a minimum temperature Tmin and a maximum Tmax depending on

the amount of fuel mc administered to the furnace heaters. This simulates the behaviour of

a valve with a sigmoid function, where an operator can modify the heat inside the furnace

by varying mc.

The variables that can be manipulated to generate traces from the same process are the

fluid properties such as the initial values of Sc and Ca, the values of ρ2 and Cp2, the furnace

state variables such as mc and the volume vol. These can be modified to obtain different

behaviours in the traces generated, but the other parameters remain constant. The idea is

to circulate different types of fluids through the same furnace and increase or decrease the

temperatures inside the furnace through interventions on mc and vol.

With this ODE system, we can generate a synthetic dataset with an arbitrary number of

traces from the fouling process and use it to train our models. The code of the simulation

and the functions to generate the seeded datasets are readily available in a public repository

online1. An example of the kind of traces it generates is shown in Fig. A.1.

1https://github.com/dkesada/mtDBN
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Figure A.1: Example of a 100 time instant trace created by the simulation. Several time series with
data and some noise of each variable are generated.
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