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Abstract— This paper investigates the use of empirical and
Archimedean copulas as probabilistic models of continuous
estimation of distribution algorithms (EDAs). A method for
learning and sampling empirical bivariate copulas to be used in
the context of n-dimensional EDAs is first introduced. Then, by
using Archimedean copulas instead of empirical makes possible
to construct n-dimensional copulas with the same purpose. Both
copula-based EDAs are compared to other known continuous
EDAs on a set of 24 functions and different number of variables.
Experimental results show that the proposed copula-based
EDAs achieve a better behaviour than previous approaches in
a 20% of the benchmark functions.

I. INTRODUCTION

In evolutionary optimization, the class of algorithms that
employ probabilistic modeling are usually called estimation
of distribution algorithms (EDAs) [10], [13], [17]. In EDAs
probabilistic models are learnt from the selected individuals
and used to generate new solutions. This is a significant
difference with respect to other evolutionary algorithms
based on crossover and mutation operators. EDAs have
been successfully applied to solve problems with discrete
and continuous representations. Although the main rationale
behind the EDAs, i.e. learning and sampling from prob-
abilistic models, is the same for discrete and continuous
problems, there exist fundamental differences between the
characteristics of these two domains. In this paper we analyze
a class of EDAs for problems with continuous or real value
representation[1], [11].

There are many different approaches to continuous opti-
mization using EDAs. Most of this research applies Gaus-
sian probabilistic models [8]. However, other approxima-
tions depart from the Gaussianity assumption. Examples
of these approaches include the application of indepen-
dent component analysis (ICA) [3], [18], [29], histogram
based probabilistic modeling [24], Cauchy distribution [19]
and Copula methods [20], [27], [28]. While probabilistic
modeling using Gaussian distributions has proved to be an
effective alternative for many optimization problems, there
are situations where Gaussian models fail. Therefore, it is a
relevant question to investigate non-Gaussian approaches to
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probabilistic modeling in EDAs. In this paper we focus on
probabilistic modeling using Copulas.

Copula functions describe the dependence structure of two
or more random variables associated by a joint probability
distribution function. In other words, they provide an scale-
free description of how a number of random variables are
distributed. Once the copula is unveiled, the whole joint
probability distribution function can be found. Moreover we
can use the copula function to generate new samples with
such a joint probability distribution.

Bivariate, a.k.a. 2-copulas, are well known. A compre-
hensive text about the subject is due to Nelsen [14]. There
are numerous methods to find the copula that best fits a
data set [4], [5], [6] and they are being applied in many
different fields such as finance [15], [16], signal processing
[2] or networked systems [22]. But constructing n-copulas is
difficult. Research has focused on Elliptic and Archimedean
copulas because of their good properties [12].

Wang et al. [27] introduced two different bivariate copulas,
and the approximation of the marginals was made by means
of Gaussian distributions. Nine functions with two variables
were used as benchmark and no comparison with other EDAs
was included. On the other hand Salinas-Gutiérrez et al. [20],
use the Archimedean family of Frank copulas and Gaussian
copulas to model n-dimensional distributions. The introduced
algorithm is inspired in the MIMIC8 [9] which learns a
chain-shaped structure. To learn the chain, the introduced
copula-based EDAs finds a permutation that minimizes the
Kullback-Leibler divergence between the empirical density
function and copula-based approximation. To this end, the
copula entropy between each pair of variable is estimated.
These copula-based EDAs were tested on five functions
with n = 10 dimensions and results were compared with
MIMICE,.

Our approach is different to previous uses of copulas in
EDAs in various aspects. Firstly, we use not only Archi-
medean or Gaussian copulas as in previous research [20],
[27], [28]. Instead, we introduce empirical copulas with
the purpose of not being constrained a priori by a set
of candidate copulas. This makes necessary to develop a
methodology for generating random variates no matter the
dimensionality of the search. The procedure proposed in
this paper does not provide neither a proper n-copula nor
a joint probability distribution function of the best fitted.
Instead it focuses only on obtaining a new set of points with
a similar distribution, following Vapnik’s motto of “trying
to solve only the problem that one has, and not a more
general one”. Secondly, while copulas and other alternative



probabilistic modeling methods can be used together with
Gaussian distributions, the approach we follow does not
consider Gaussian modeling at any step. In addition we
extend the use of Archimedean copulas to n variables. And
finally, we conduct an extensive evaluation on a large set of
benchmark functions for different dimensions.

The paper is organized as follows. Section II introduces
the main concepts from copula theory. In Section III differ-
ent variants of copula learning and sampling methods are
proposed. The experimental framework and the numerical
results from our experiments are presented in Section IV.
Finally conclusions and trends for future work are outlined
in Section V.

II. COPULA FUNCTION THEORY
Definition 1: A function C(u,v) : [0,1]* — [0,1] is
a copula if and only if it satisfies the three following
conditions:
Forevery 0 <u <landevery 0 <v <1

C(0,v) =C(u,0) =0 (D
c(1,v) =v,C(u,1) = u, )
and for every 0 <wu; <wug <landevery 0 <wv; <wvy<1

C(Ug,vg) - C(UQ,Ul) - C(Ul,’Ug) + C(Ul, ’Ul) Z 0. (3)

Copulas therefore satisfy the conditions of zero-grounded
bivariate distribution functions of U and V with uniform
margins. Hence a probabilistic interpretation may be given
in the same way as any other joint cumulative distribution
function (JCDF):

C(u,v) =Pr(U <u,V <w).

Then the unique joint probability density function (JPDF)
¢(u,v) assocciated to C' is such that:

Clu,v) = /u / c(v, v)dvdo.

— 00 —O0

The relevance and utility of copulas is due to Sklar’s
theorem [23].

Theorem 1: (Sklar’s Theorem) Let Hxy (x,y) be the
JCDF of X and Y with margins F'x (z) and Fy (y) and such
that u = Fx(z) and v = Fy (y). Then there exists a copula
C such that for all x,y in (—o0, +00),

Hxy(z,y) = C(u,v) 4)

If F'x and Fy are continuous then C' is unique; otherwise
C' is uniquely determined on Range(Fx) x Range(Fy).
Conversely if C' is a copula and Fx and Fy are cumulative
distribution functions (CDF) then the function H xy defined
by (4) is the JCDF with margins F'x(z) and Fy (y).

Thus, it is possible to separate 1) the marginal behaviour
due to the individual contributions of the random variables
X,Y, described by its margins F'x and Fy respectively, and
2) the dependence structure, which is given by the copula (C'
couples X and Y'). Moreover, a key feature of copulas is that

they are invariant under strictly monotone transformations of
their random variables (U and V). In other words, the way
X and Y move together is modelled by the copula, whatever
scales of X and Y were.

Once the copula is known, one can use the conditional
distribution method to generate new samples.

Definition 2: Let U and V be two random variables whose
JCDF is the copula C. Then the conditional copula for V
given U = u is

0

U
Again, the probabilistic interpretation of the conditional
copula is the same as any conditional distribution function:

Cyu(v) =Pr(V <o|U = u).

Then, the following procedure generates 2 random variates
(u,v) whose JCDF is the copula C:

1) Draw u and ¢, two samples uniformly distributed in
the unit interval.
2) Set v =CS " (tug).

Here C ") (t|uo) denotes the quasi-inverse of the conditional
copula C,, for a given u = ug, defined as follows.

Definition 3: Let F' be a CDF. Then the quasi-inverse of
F is any function F(—1) with domain [0, 1] such that:

F(FEV(@) =t,
for all ¢ in the Range(F). Otherwise

FEY @) = inf{z|F(z) > t} = sup{z|F(z) < t}.

III. CoPULA-BASED EDAS

In this section we describe two variants of copula-based
EDAs (CEDA) that are proposed in this paper. The first one
considers empirical copulas and the second the Archimedean
family. A general pseudocode is shown in Algorithm 1. Both
variants differ only in the type of learning and sampling
methods used (steps 5 and 6).

Algorithm 1: CEDA

1 Generate an initial population D, of individuals
and evaluate them

2 t— 1
do {

D#¢, « Select N individuals from D;_; using
truncation selection

5 Using D7, as the data set, learn a copula
based approximation C

6 Dy «— Sample M individuals from C using a
copula sampling method

7 } until Stopping criterion is met




A. EDAs based on empirical copulas

A straightforward approach is to use empirical distribu-
tions and numeric methods both for the derivative and the
inverse functions of the copula as well as the margins. The
advantage is not to be bounded to a set of candidate JCDFs
nor copulas out of which one has to choose the best fitted.
Thus rare distributions are also captured. On the other hand
they have the shortcoming of rough outcomes in the extremes
that numerical methods provide.

Definition 4: The empirical CDF of a data set {z;} € R
with ¢ =1,..., N is the function F(z;) = t;, being
. #{{Ej ] < I'Z}

- N-1
where the symbol # stands for the cardinality of the set.

This definition is extended to its continuous version F'(z) :
R — [0,1] by doing:

t; (6)

LIP(z4,t;,2) if inf{z;} <2 <sup{x;}
F(z) = 0 if < inf{x;}
1 if > sup{wx;},

(7
where LIP(x;,t;,2) is the linear interpolation of the point
x given the pairs (x;,t;) computed with the definition 4.
The quasi-inverse of the empirical CDF is then obtained as
follows:

LIP(t;, i, t)
inf{x;}
sup{x;}

if inf{¢;} <t <sup{t;}
if ¢ > sup{t;}.

FED(@) =

®)

Regarding the empirical copula, the starting point is to
obtain its empirical density.

Definition 5: The empirical density copula of a data set
{uj,v;} € [0,1]* with j = 1,...,N, is the function
c(ur,vr) = t;, with i = 1,..., N, being N, = 21022 V]
and t; the relative frequency of the pair (u},v}) in a 3D
histogram of N, x N, bins, each one of them centred on
(u? ).

The empirical copula C(uf,v) = T; is constructed
doing the cumulative sum of the empirical density, first in
one variable and then in the other. The extension to the

continuous unit square is:

LIP(ul, v, T;, u,v)
if inf{ul} <wu <sup{uf} and
inf{vf} <wv <sup{v}}
0 if u < inf{uf} or v < inf{v}}
u if v > sup{v}}
v if u > sup{u;},

C(u,v) = 9)

where LIP(u}, v}, T;, u,v) is the linear interpolation in two
dimensions of the point (u,v) given the triples (u},v},T;)
computed with Definition 5.

Finally, for the conditional copula, rather than approximat-
ing the derivative with respect to the first argument of the
empirical copula it is faster to take the cumulative sum of the
empirical density in the direction of the second argument,

already computed in the steps for obtaining the empirical

copula. The outcome of this operation is a succesion of
CDFs indexed by {u;} and denoted as C\+ (v;). Then, alike
with empirical CDFs, the extension of the inverse conditional
copula to the continuous is defined by

C{V(t) = EICDF(Cys (v)), v}, t) for uf ~u,  (10)

where the function a; ~ b returns the element of the set {a;}
closest to b and EICDF (Clyx (v]), v}, t) is computed with (8)
using the given parameters in the inner function LIP.

1) Learning empirical CEDA: Let S = [a,b]™ be the
search space. Let P = {p1,...,pm} C S be the population
that is being evaluated in the objective function f. Let
fo be the threshold that defines the subset of best fitted
X ={x1,...,2¢} C P such that f(z;) > fo. Representing
x; = [z}, ..., 27T, for i = 1,... ¢, where upperscript T

denotes the transpose, the subset X takes the form of a matrix

xi xé . x%
2 23 ... a?
xy xy Ty

Thus, the i-th column of X will be x;, as defined above,
whereas the j-th row of X will be denoted as z; =
[a:{,...,xg] forj=1,...,n.

Let us define the new variable y; in the following recursive
way:

o T, for i=1
vi= Hi—l,i(yi—laii) for i:2a"'7n_17

where H;_1 ;(yi—1,2;) is the JCDF of y;_; and the i-th row
of X. Therefore, there must be an underlying copula C;_ ;
that constructs its dependence structure. Thus, according to
Sklar’s theorem:

Y1 = Zq;

Y2 = Hi2(y1,25) = Cr2(G1(y1), F2(z5)) = Cr2(u1, v2);

(11

In general

Yi = H¢71,i(y171,£¢) =
Ci—1,i(Gi—1(yi—1), Fi(z;)) =
Ci—1,i(ui—1,v4),
with 4 = 1,...,n — 1; being G; the CDF of y; and F} the
CDF of z;, for j =1,...,n.

2) Sampling with empirical CEDA: Now using the inverse
of the conditional copula is possible to generate a whole new
population P = {p1,...,Dm} with the same distribution than

X following the Algorithm 2.

(12)

B. EDAs based on Archimedean copulas

As an alternative to empirical copulas one can attempt to
use any of the known closed forms both for a given copula
and its inverse conditional. That way neither generates a new
population with a similar distribution of the old one nor
obtains a real copula describing the dependence structure of
the population. However it is possible to achieve the second
objective by choosing Archimedean copulas.



Algorithm 2: New population from Emp. CEDA

1 Draw 4, and ¢, both uniformly distributed in [0,1]
and obtain

90,V
T du

V2

(tldy).

2 Setp! =G V(@) and p2 = F ) (d2).
3 For k=2ton—1:
4 Set g = Cr—1 1 (tk—1, Ok)-
5 Set iy = Gr(Jk)-
6 Draw a new ¢ as in step 1 and obtain
) Crpsr ™Y
e D
7 Set pit = F 7 (141)-
8 End
9 Repeat from step 1 until completing a whole new

population, i.e. fori =1,...,m.

1) Learning Archimedean CEDA:

Definition 6: An n-copula C' is said to be Archimedean
if there exists a function (¢) : [0,1] — [0, 00) continuous,
strictly decreasing, convex and with ¢(1) = 0 such that

13)

Clur, uz,...) = o (p(ur) + o(uz) + -+,

and function ¢(t) is called generator of C.

From Definition 6 is easy to see that Archimedean cop-
ulas are both symmetric, i.e. C(u1,u2) = C(uz,u1), and
associative, i.e. C(C(uy,uz2),us) = Cluy,C(ug,uz)) =
C'(u1,u2,us). The latter is the key to construct the n-copula.
It is important to remark the differences between previous
works. Regarding [28] we extend the use to n variables;
whereas, unlike [20], here it is not necessary to estimate any
copula between pairs of variables. Due to the associativeness
of Archimedean copulas, the copula must be exactly the
same for every pair of variables. That is the reason why the
learning algorithm is reduced to fixing the copula a priori.

2) Sampling Archimedean CEDA: What in Section III-
A.2 was a recursive way only to generate new samples
preserving a certain distribution now turns into the actual
way to construct a real n-copula. Moreover, although the
n-copula is known, it is not necessary to construct but its
bivariate version. The algorithm given in Section III-A.2 is
now simplified in the Algorithm 3.

Here, C(u,v) is the Archimedean copula chosen in Sec-
tion III-B.1 and F; is the empirical CDF of every variable,
i.e. the margins of the copula, computed as in Section III-A.

IV. EXPERIMENTS

In this section we investigate the behaviour of different
copula-based EDAs on a large benchmark of functions.
First, the experimental framework is introduced, then, the
numerical results are presented and discussed.

Algorithm 3: New population from Arch. CEDA

1 Draw w; = 44 and ¢, both uniformly distributed
in [0,1] and obtain

0 (s
uzzac*( D(t]ay).

2 Setpl=F (@) and p? = FV ().
3 For k=2ton—1:
4 Set Wy, = C(?f}k_l, ﬁk).
5 Draw a new ¢ as in 1 and obtain
X O (—1)an
g1 = %cﬂ D (t[iog, ).
6 Set pF+t = F 7 (dgg1)
7 End
8 Repeat from step 1 until completing a whole new

population, i.e. fori =1,...,m.

A. Experimental framework

We compare a number of EDAs grouped into three sets.
The first and second sets are the CEDAs proposed in the
paper whereas the third one is a group of well-known
EDAs whose performance has been already proved. All of
them follow the general scheme shown in Algorithm 1 but
steps 4 and 5, where sampling and learning algorithms are
implemented, are modified according to the set used.

The first set of CEDAs is based on three popular Archi-
medean copulas for which there are closed forms of the
inverse conditional copula, namely Frank, Clayton and HRT,
which can be found in [25] for instance. All of them depend
on a parameter a that determines the degree of association
of the copula and its structure of dependence as Figure 1
shows.

(A,B) Copula Frank with a = {—5,5}. It is symmetric,
allows negative dependence between the variables
and tends to the independence as a goes to 0. They
will be also represented as CEDAZT{™: .

(C,D) Copula HRT with a = {0.2,5}. It is asymmetric,
with greater dependence in the positive tail than
in the negative, and tends to the independence
as a increases. They will be also represented as
CEDAEL,

Copula Clayton with a = {0.2, 5}. It is asymmetric,
with greater dependence in the negative tail than in
the positive, and tends to the independence as a
approagllles to 0. They will be also represented as
CEDAC! o7

The second set is the CEDA based on empirical copulas.

(G) Obtained by the procedures given in Section III-A
and also represented as CEDAE™P,

Finally, the third set consists of the following EDAs based
on Gaussian distributions.

(E.F)

(H) UMDA.: A univariate marginal distribution algo-
rithm where each variable is independently mod-
eled using a univariate Gaussian distribution [9].
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Fig. 1. Scatterplot of 500 pairs (u,v) € [0,1]? sampled with the used
Archimedean copulas showing the way they are concentrated depending
both on parameter a and the copula used.

@D EMNA: A multivariate EDA where the density
function is modeled using a multi-variate Gaussian
distribution. To avoid (likely but unfrequent) nu-
merical errors in the computation of the covariance
matrix, the population is restarted when the vari-
ance goes below a given threshold [9].

J) EDDA: The eigenspace EDA is based on an
eigenspace analysis of the covariance matrix of the
population. The algorithm is similar to EMNA but
after an eigenspace decomposition of the covariance
matrix is computed, the minimum eigenvalue is
reset to the value of the maximum eigenvalue [26].

As a function benchmark we use the 24 functions from
the Black-Box Optimization Benchmarking ' at GECCO-
2009. These functions as well as the experimental setup are
described in [7].

The population size is M = 1000 for all functions and
problem dimensions. The truncation selection parameter used
is T' = 0.5 and the stop criterion is reaching a maximum
of 100 generations. All algorithms have been implemented
in Matlab using the MATEDA-2.0 software [21]. Methods
for Empirical and Archimedean copulas were developed ad
hoc; nevertheless Matlab Statistical Toolbox 7.2 incorporates
functions for all the procedures used in this paper.

B. Numerical Results

In order to evaluate the algorithms we carried out three
experiments. The first one focuses on the accuracy attained
as the dimension of the problem increases from 2 to 5 and to
10 variables. The second one gives a closer look to the case
with 5 variables comparing also the number of successes and
the number evaluations of evaluations required to achieve
them. Finally, we investigate the behavior of the different
EDAs from a global perspective, computing on average the
fraction of successful trials as a function of the number of
evaluations and of the optimization accuracy.

"http://coco.gforge.inria.fr/doku.php?id=bbob-2009

1) Accuracy: We consider three different dimensions: 2,
5 and 10 variables. The aim is to determine the order of
magnitude of Af, the difference between the optimum fo:
and the closest value of f attained, measured in ten to the
power of k € {—8,—4,—2,1}. Results are shown in Table
I where columns A to J are the values of the smallest k& for
each one of the EDAs used.

For each row, the smallest value is highlighted in yellow.
In addition, if a CEDA (columns A to G) performs equal
to the smallest non-CEDA (columns H,LJ) it is highlighted
in cyan. Finally if a CEDA performs better than the best
non-CEDA, it is highlighted in green.

Comparing CEDA and non-CEDA for 2 variables only
for function 5 is impossible to find a CEDA that per-
forms at least equal than a non-CEDA. The rest of func-
tions can be split into two groups, considering the num-
ber of CEDAs that perform equal. Thus for functions
{1,2,3,4,7,15,16,17,20, 21, 23}, almost half of the bench-
mark set, all the CEDAs attain the highest accuracy, (10~%),
the same than at least one non-CEDA and sometimes even
better; whereas for the rest only some CEDAs perform well.

As the number of variables increases to 5 and 10 non-
CEDASs become outranked in 6 functions for 5 variables and
in 4 for 10 variables, and matched in other 5 functions for 5
variables and 7 for 10 variables.

2) Successful trials and number of function evaluations:
We now consider not only the order of magnitude of the
accuracy attained (k) but also the number of succesful trials
(NT) and the median number of function evaluations to reach
the best function value (RTg,..) in thousands. Additional
parameters are: 5 variables, 30 trials and 198000 as the
maximum number of function evaluations. Results are shown
in Table II, where rows are sorted first in the decreasing
order of k, then in the increasing order of NT and finally in
the decreasing order of RT,... Thus it is clear that CEDAs
outrank to non-CEDAs in a 25% of the benchmark set cor-
responding to functions {3,4,8,9,16, 23}, and have a quite
similar performance in functions {1,2}, which altogether
cover one third of the benchmark set.

3) Empirical distribution of trials: In the last experiment
we evaluate the general behavior of all the algorithms for
all the functions. Figure 2 shows the empirical cumulative
distribution functions (ECDFs) plotting the fraction of trials
versus the number of function evaluations divided by search
space dimension D = 5, to fall below fop +Af with Af =
10%, where k is the first value in the legend. The second
value in the legend indicates the number of functions that
were solved in at least one trial.

By analyzing the number of functions that were solved
in at least one trial we get a perspective of the general
behavior of the different EDAs. It can be seen that the best
performance is achieved by EMNA, which is able to solve,
for all levels of accuracy 10 or more functions. However,
the behavior of the CEDAs is acceptable for the first level of
accuracy. They are able to solve 23 out of the 24 functions.
Particularly relevant is the behavior of CEDA®™P which is



TABLE I
ACCURACY ATTAINED

2 Variables
f A B C D E F G H 1 J
L. -8 8 -8 8 -8 -8 -8 -8 -8 -8
2. -8 8 -8 8 -8 -8 -8 -8 -8 -2
3. -8 8 -8 8 -8 -8 -8 -8 -8 -8
4. -8 8 -8 8 -8 -8 -8 -8 -8 -3
5. -1 1 -1 1 2 -1 -1 -8 -8 -8
6. -5 8 -8 5 -5 -5 -3 -8 3 -8
7. -8 8 -8 8 -8 -8 -8 -8 -8 -8
8. -5 5 -8 5 -5 -3 -3 -8 -8 -8
9. -5 5 -5 5 -5 -8 -5 -8 -8 -8
10. -3 1 -1 3 -1 -1 -1 -5 -8 -3
1. -3 3 -2 1 -2 -2 0 -3 -8 -2
12. -8 8 -8 8 -8 -8 -8 -8 -8 -3
13. -3 3 -3 3 -5 -3 -2 -3 -8 -3
14, -8 5 -5 8 -8 -8 -3 -8 -8 -5
15. -8 8 -8 8 -8 -8 -8 -8 -8 -8
16. -8 8 -8 8 -8 -8 -8 -5 -8 -3
17. -8 8 -5 8 -8 -5 =8 -8 -5 -8
18. -3 2 -1 2 -3 -3 -2 -8 -8 -3
19. -5 8 -5 5 -8 -5 -5 -8 -8 -8
20. -8 8 -8 8 -8 -8 -8 -8 -8 -8
21. -8 8 -8 8 -8 -8 -8 -8 -8 -8
22. -8 8 -8 8 -8 -8 -5 -8 -8 -8
23. 2 1 -1 1 2 -1 -1 -1 -2 -1
24. 0 0 -1 0 0 0 -1 -1 -1 0

5 Variables
f A B C D E F G H 1 J
1. -8 8 8 -5 -5 -5 -8 -8 -8 -8
2. -8 8 -8 -3 -2 -3 -8 -8 -8 1
3. -8 8 -8 0 1 1
4. -8 8 s 1 1
5. -1 0 0 0 0 0 -8 -8 -8
6. 0 0 0 0 0 -1 0 0 0 -8
7. -1 -5 -2 0 -1 0 -1 -8 -8 -8
8. 1 1 -1 1 0 1
10. 0 0 -8 1
11. 1 1 1 1 1 1 1 0 -8 1
12. -1 0 -1 0 -1 0 -1 0 = 1
13. 2 -1 0 0 0 0 0 -3 -8 -1
14. -3 -3 -3 2 -3 2 3 -5 -8 3
15. 1 1 1 1 1 1 0 1 0 1
6 | o OO 0 o o
17. -3 -2 -3 -3 ) -2 -8 -5 -8
18. 0 -1 -1 0 0 0 -1 -3 -5 -3
19. 0 0 0 0 -1 0 -1 -1 -1 -1
20. -5 0 0 0 -3 0 -1 -8 0 0
21. 0 0 -1 0 2 -1 -5 -8 -8 -8
22. -3 -3 -5 0 -3 -1 -1 -5 -8 -8
3. | -1 q-*qq 0 0 0
24. 1 1 1 1 1 1

10 Variables
f A B C D E 1 J
B -5 -5 -1 -2 -1 -8 -8
2. -3 2 -8
O
5. 0 0 0 -8
6. 0 0 e
7. 0 0 0 -8 -8
8. 0 0 0 1 1
9. 1 1 1 1
10. -8
1. 1 -8
12. 1 -1 0 -2 1
13. 1 0 -8 0
14. 2 2 0 1 0 -1 -3 -3 -8 -3
15. 1 1 0
16. 1 1 1 1 1 1 1 1 1 1
17. 1 1 1 0 1 0 -1 -3 =5 =5
18. 1 1 1 0 1 0 -1 -2 =5 -2
19. 1 1 1 1 1 1 1 0 0 0
20. 0 0 1 0 1 1 0 1 1 1
21. 1 1 1 1 1 -1 -3 -5 -8 -8
22. 0 0 1 1 1 1 0 0 0 0
23. 0 0 0 0 1 0 0 0 0 0
24.

Accuracy attained by the EDAs proposed, represented in 10% where k is
the value shown for each function (rows 1 — 24) and each EDA (columns
A-J). Blank spaces mean that the algorithm did not achieve an accuracy
with order of magnitude 10'. Tables are shown considering 2, 5 and 10
variables in the objective functions f. The smallest value of each row is
highlighted in yellow. Values in columns A to G equal to the smallest of
columns H, I, and J are highlighted in cyan. Values in columns A to G
smaller than the smallest of columns H, I, and J are highlighted in green.

the only algorithm that solves 15 out of the 24 for the second
level of accuracy. There are important differences between
the Archimedean CEDAs, particularly for the last level of
accuracy where CEDALT9%k and CEDAZLT2"* are the only
Archimedean CEDAs that solve at least one function.
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Fig. 2. Empirical cumulative distribution functions (ECDFs) plotting the
fraction of trials versus the number of function evaluations divided by search
space dimension D = 5, to fall below fopt + Af with Af = 10, where
k is the first value in the legend. The second values in the legends indicates
the number of functions that were solved in at least one trial.

Considering the fraction of successful trials (those were
the desired accuracy was reached), the CEDAs using Frank
copulas reach better results than EMNA and UMDACc, but in
this case the best contender is EDDA.



TABLE I
PERFORMANCE FOR 5 VARIABLES AND EVERY OBJECTIVE FUNCTION

71 .2 7.3 Fa 7.5 7.6
EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc
H -8 15 26 H -8 15 36 B -8 8 250 A -8 1 2800 J -8 15 43 J -8 5 530
J -8 15 27 1 -8 15 230 A -8 5 470 B -8 1 2800 H -8 15 30 F -1 1 2800
1 -8 14 250 A -8 9 220 G -8 3 58 G -5 3 34 1 -8 1 5900 D 0 4 550
A -8 9 190 G -8 8 61 F -5 2 1300 D -3 1 2800 A -1 1 2800 G 0 3 31
G -8 41 B -8 7 310 E -5 1 2800 E -1 4 580 G 0 18 15 A 0 3 820
B -8 8 240 C -8 1 2900 C -5 1 2800 C -1 3 2800 B 0 15 78 B 0 3 820
C -8 1 2800 F -3 3 840 D -3 2 1300 F -1 2 1300 E 0 14 25 1 0 3 1900
F -5 4 580 D -3 1 2800 H 0 3 85 H 1 16 20 D 0 14 32 C 0 2 820
E -5 4 590 E -1 1 2800 I 1 17 170 J 1 15 26 F 0 12 65 E 0 2 1300
D -5 4 590 J 1 3 960 J 1 15 12 1 1 15 220 C 0 2 25 H 0 1 31
7.7 7.8 7.9 F.10 711 F.12
EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc
J -8 15 52 G -1 1 19 G -1 1 19 I -8 15 230 T -8 15 230 T -5 1 5800
1 -8 15 210 A 0 3 820 A 0 2 1300 H 0 1 140 H 0 3 180 C -1 3 2800
H -8 1 33 E 0 2 1300 B 0 2 1300 J 1 4 690 G 1 14 33 G -1 1 72
B -5 1 2800 B 0 2 1300 C 0 2 2900 G J 1 14 62 E -1 1 2800
G -1 4 20 C 0 2 2800 7 0 1 2800 E D 1 8 180 A -1 1 2800
A -1 4 580 1 0 2 2900 E 0 1 2800 F F 1 7 230 B 0 4 600
C -1 3 1300 D 1 17 22 I 0 1 5900 C B 1 5 410 H 0 3 30
E -1 1 2800 H 1 16 9.6 H 1 19 36 D E 1 4 550 F 0 3 830
F 0 11 83 J 1 15 72 D 1 14 27 A C 1 1 310 D 0 3 830
D 0 7 240 F 1 14 22 F 1 13 45 B A 1 1 2800 J 1 7 370
7.13 .14 .15 .16 717 7.18
EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc
1 -8 12 350 1 -8 15 230 I 0 4 1400 A -1 1 2800 J -8 15 150 1 -5 12 350
J -1 9 300 H -5 13 90 G 0 1 37 B -1 1 2800 H -8 7 85 ] -3 13 220
H -1 2 37 B -5 5 440 H 1 16 11 G 0 16 58 I -5 15 250 H -3 1 11
A -1 2 1300 J -5 3 910 J 1 15 12 I 0 13 360 C -3 4 2900 C -1 3 1400
B -1 1 2900 A -3 5 450 A 1 15 54 H 0 12 72 G -1 13 28 B -1 2 1300
E 0 4 590 C -3 4 2800 B 1 14 74 E 0 5 430 B -1 9 190 G -1 1 110
D 0 3 830 G -3 3 61 E 1 8 210 J 0 5 480 A -1 8 220 D 0 12 64
G 0 2 62 E -3 1 2800 F 1 4 560 D 0 3 810 D -1 6 330 F 0 12 66
F 0 2 1300 F -1 15 8.6 D 1 2 1300 C 0 2 830 F -1 5 410 A 0 12 88
C 0 2 1300 D -1 15 9.6 C 1 1 280 F 0 2 1300 E -1 4 570 E 0 8 200
7.19 7.20 721 .22 7.23 .24
EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc EDA k NT RTsucc
1 -1 5 1100 H -8 15 55 il -8 12 120 I -8 3 960 A -1 1 2800 H 1 17 39
H -1 3 57 A -5 1 2800 I -8 10 430 I -8 3 1800 G 0 30 33 J 1 15 28
J -1 3 880 E -3 1 2800 H -8 3 49 C -5 5 2800 1 0 30 26 G 1 15 31
G -1 2 110 G -1 1 21 G -5 1 43 H -5 3 58 H 0 30 96 I 1 15 230
E -1 1 3000 1 0 16 220 C -1 3 2800 E -3 6 3400 E 0 15 9.6 B 1 8 260
D 0 15 52 B 0 15 16 E -1 1 2800 B -3 1 2800 B 0 15 17 A 1 6 370
F 0 15 7.7 J 0 14 110 F -1 1 2800 A -3 1 2900 J 0 15 44 E 1 5 430
A 0 15 14 F 0 13 46 A 0 8 190 G -1 4 59 D 0 14 25 F 1 5 430
B 0 15 18 D 0 10 110 B 0 8 190 F -1 3 870 F 0 13 43 D 1 3 820
C 0 2 12 C 0 2 140 D 0 6 300 D 0 12 55 C 0 2 72 C 1 1 230

Performance of the proposed EDAs for each objective function (in all cases n = 5). Tables are sorted first by increasing
Af, measured in 10* and represented by k. The second sorting criterion is the number of successfull trials (NT) in
decreasing order. Finally we also consider the number of function evaluations necessary to reach the optimum (RTsucc) in

increasing order.

V. CONCLUSIONS

In this paper we first introduce a simple method to use
bivariate empirical copulas in n-dimensional EDAs. After-
wards we change the learning method by using an Archi-
medean copula instead of the empirical one. Three Archi-
medean copulas, with different parameters, have been used
to model search distributions in EDAs. We have compared
CEDA algorithms with classical EDAs based on Gaussian
distributions in a wide set of functions, representing different
domains of difficulty.

The use of copula functions in EDAs is still a large
unexplored area. Previous works in this line either consider
only 2-dimensional problems or attempt to find an underlying
n-copula that captures the real dependence structure. Our
proposal is to consider bivariate empirical copulas first. Using
them we do not provide the real underlying n-copula, but a
method to generate new populations considering the marginal
behaviour of each variable and the dependence between
variable x; with the distribution of the copula C;_1 ;_o.
Then, due to Archimedean copulas are associative, using
one of them instead of the empirical copulas turns the
method proposed into a way to construct real n-copulas.

Again it is not the real underlying copula because it needs
to be prefixed beforehand. In that sense, our proposal is
similar to standard EDAs that rely on Gaussian multivariate
distribution to obtain new generations, which is seldom the
one that models the real distribution. The advantage of our
proposal consists of not only allowing the incorporation of
marginal behaviours but also the provision of closed forms
of the inverse conditional copula, so faster and more accurate
outcomes are expected.

Our hypothesis is that there are situations where the
assumption of Gaussian distributions can be outranked by
best fitted distributions. The exhaustive experimental results
show that CEDAs proposed outperformed Gaussian EDAs
for a noticeable 20% of the tested functions, whereas in the
remaining 80% it is still possible to find better performance
in some of the CEDAs proposed with respect to at least one
non-CEDA. Another result derived from our analysis is the
evidence that the parameters of the Archimedean copulas can
have an important effect in the optimization results.

Next steps in our research are: 1) To determine which
characteristics of CEDAs make them particularly suitable
to optimize a given function. 2) Neither a study of which




bivariate Archimedean copula nor which parameter is best for
conducting the CEDA has been done. Thus, it is interesting
to investigate whether tuning copula parameters may improve
CEDA performance and the computational burden that it
involves. 3) To incorporate advanced sampling strategies in
order to avoid search stagnation.
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