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The literature reports many scientific works on the use of artificial intelligence techniques such as neural networks
or fuzzy logic to predict surface roughness. This article aims at introducing Bayesian network-based classifiers to
predict surface roughness (Ra) in high-speed machining. These models are appropriate as prediction techniques
because the non-linearity of the machining process demands robust and reliable algorithms to deal with all the
invisible trends present when a work piece is machining. The experimental test obtained from a high-speed milling
contouring process analysed the indicator of goodness using the Naive Bayes and the Tree-Augmented Network
algorithms. Up to 81.2% accuracy was achieved in the Ra classification results. Therefore, we envisage that
Bayesian network-based classifiers may become a powerful and flexible tool in high-speed machining.
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1. Introduction

Classification is an essential task for (defect) diagnosis,
pattern recognition and prediction. Supervised classi-
fication is a task that assigns predefined class labels to
items of data described by a set of characteristics or
attributes (Duda, Hart, and Stork 2001).

Bayesian networks are a kind of probabilistic
graphical model (directed acyclic graph) representing
the conditional independencies embodied in a given
joint probability distribution over a set of variables
(network nodes) (Castillo, Gutiérrez, and Hadi 1997).
Used as intelligent decision systems, inferences over the
network generate probability charts that can provide
sound support for particular decisions about a node.
They also indicate the node’s relationships with other
variables. This information cannot always be detected
by an expert’s knowledge alone, and it provides an
intuitive understanding of the model.

One of the major advantages of Bayesian networks
is that they admit partial observations, i.e. not all the
nodes have to be instantiated. Partial observations
received in real-time can be immediately assimilated by
the probabilistic network as evidence. This allows the
real-time predictions to be updated as new observa-
tions are incorporated.

The article is organised as follows. Section 2
highlights the problems of predicting surface roughness

and the models currently developed to tackle them.
Section 3 defines Bayesian classifiers focussing on
the structures used here, Naive Bayes and Tree-
Augmented Naive Bayes (TAN) (Friedman, Geiger,
and Goldszmit 1997), and briefly describes the learning
methods for each of these structures. Section 4 shows
our Bayesian network-based proposal and analyses the
experimental results of classifying surface roughness in
high-speed milling processes. Finally, Section 5 rounds
the article off with some conclusions.

2. Surface roughness prediction

2.1. Difficulties when measuring surface quality

The main thrust of research in this area is to increase
the use of high-speed machining in the automotive or
aeronautical industries. These industries, as many
others, require some pieces with high-quality surface
properties and dimensional tolerances associated with
their work to be performed, fixed by the standards that
they are obliged to meet.

The surface quality of a piece is measured by
the surface integrity that, apart from the surface
topography, takes into account the mechanical and
metallurgical properties. These properties are very
important in fatigue, corrosion resistance or service
life of the piece. The surface topology is identified by
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its surface texture, where deviations in the pieces are
measured and compared with the nominal surface.
Surface roughness is the most representative parameter
for describing the surface texture (Correa, de, Ramirez,
Alique, and Rodriguez 2004).

Surface integrity implies assessing the sub-surface
layers for their mechanical and metallurgical properties.
This assessment is done using X-ray diffraction or other
fundamentally laboratory techniques, which obviously
take up time and effort. The techniques are destructive
and, consequently, require specific testing profiles.

However, surface roughness is easy to measure. It is
one of the most commonly used parameters in
industry, and is what most current research has
focussed on. Surface measurement instruments as
surface (or stylus) profilometers are used together
with  post-process statistical control inspection
methods to make roughness measurements since the
profilometers cannot be used in-process.

The surface roughness term is quantified by surface
characteristic parameters. The measurement most
commonly used is the roughness average Ra. Ra is
the arithmetic mean of the absolute ordinate values
fix) within a sampling length (L), as shown in
Equation (1).

L
Ra = l/ |f(x)|dx (1)
L Jy

According to ISO 4288:1996, Ra values belong to
[0.006 pm, 50 um]. This parameter is primarily used to
supervise the production process, where a gradual
change may occur in the surface finish, mainly due to
tool wear. As Ra is an arithmetical average, see
Figure 1, the surface defects do not have much effect
on its results. Therefore, Ra is not used to detect
defects because it does not differentiate between peaks
and troughs.

As mentioned above, profilometers cannot be used
in-process and even using pre-process methods to
assure the quality of the designed product based on the
Taguchi method (Montgomery 1996), an intermediate
stage needs to be added to guarantee surface quality
during the machining process. Measuring Ra in-process
is not an casy task given the problems of the sensors
most commonly used in the workshop: they tend to
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Figure 1. Average surface roughness graph or Ra.

be invasive hindering their use and they do not
directly measure Ra but other variables related to
surface quality. Thus, an accelerometer measures
vibrations and a dynamometer measures forces.
Therefore, it is necessary to develop virtual sensors
based on predictive models. These models should be
founded on machining (mechanistic) theory and
supported by observed (empirical) data. The aim of
this article is to propose one such model to predict Ra
based on observed data but also taking into account
the physics of the machining process.

2.2. State-of-the-art

On the one hand, the most commonly used artificial
intelligence techniques within this context are artificial
neural networks (ANN) with different training
algorithms. Backpropagation is the usual and most
tested algorithm. It provides very good results in the
milling process, as investigated by one of the authors
(Correa 2003).

On the other hand, statistical models use regression
analysis, offer more information and give a better view
of the process than the ANN models, since the
functional relationships can be determined between
variables (Correa et al. 2004). However, when the data
are sparse and/or generated by experimental designs,
regression analysis is unable to produce a better model
than ANN (Feng and Wang 2003). In these cases, both
models have a statistically satisfactory behaviour from
the point of view of model validation and model
construction. There is no significant difference between
the linear regression model and the ANN model
from the point of view of the results (errors), although
the ANN model tends to better generalise than the
regression model. The main papers that use ANN
and/or regression models are briefly detailed in what
follows.

In the last 10 years, Iowa State University has
conducted detailed research on topics like prediction
and control in machining targeting tool state and
surface roughness. The group led by J. Chen has
published several works on this topic for turning and
milling tasks (Lou and Chen 1997; Lou and Chen 1999;
Lou, Chen, and Li 1999).

(Tsai et al. 1999) present a surface roughness
prediction system for the milling process, where
they innovate and include spindle vibration and
rotation — VAPR (vibration average per revolution) —
in the roughness recognition system. Their work
includes a review of the techniques used for measuring
roughness, where they list the sensors used in the
process. Most sensors were developed for turning. To
find the predicted R, value, two statistical models were
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developed with multiple regression, and one model with
ANN based on an off-line trained backpropagation.
The three models were tested in an end-milling
operation with 6061 aluminium, and just four-flutes
tools. The criterion used to judge the model efficiency
and capacity at predicting average roughness values was
the roughness deviation percentage, established as:

A |predicted R, — actualR,| 100

actualR,

After comparing the models, it was concluded that
the results obtained with the ANN model were much
nearer to the real Ra values than using the multiple
regression model.

In the late 1990s, a design of experiments
(DoE) was used to select the manufacturing process
parameters that could give good-quality products.
Yang and Chen (2004) proposed a system for identify-
ing optimum surface roughness in an end-milling
operation applying the technique known as Taguchi
parameter design (Montgomery 1996) based on off-line
quality control techniques with activities done during
the product plan or process and its development
stages. They performed an analysis of the results of
experiments using high-speed four-flutes tools in an
end-milling operation on 6061 aluminium blocks and
determined the optimum cutting conditions to obtain
the minimum surface roughness. This work was
only tested with one material type and a particular
combination of cutting conditions.

In 2003, Huang and Chen (2003) proposed an
in-process surface roughness prediction system
associating a neural network with sensoring technology
applied to a decision-making system for a wide range of
machining processes in an end-milling process. This
system was based on works by Ismail, Elbestawi, Du,
and Urbasik (1993); Lou et al. (1999); Tsai et al. (1999),
where surface roughness is related to cutting force and
speed. Huang and Chen considered the forces applied to
all the cutting planes (Fx and Fy) irrespective of the
normal force to the cutting plane (Fz), and found that
the cutting forces have a high correlation with the
surface roughness. The experimental data were
obtained taking only 6061 aluminium cutting pieces
with maximum turning speed levels of 2250 rpm.

In the same year, Samson and Chen (2003) also
used neural networks and proposed a surface rough-
ness recognition system in turning operations. Taking,
up Tsai et al’s (1999) idea, they used VAPR to
compare a statistical model with a neural network.
Taking the same input variables as in the previous
works, but changing the forces (dynamometer) for
vibration (accelerometer), a common feature in these
processes, they obtained a network with a 4-7-7-1

architecture, the same as in Huang and Chen (2003)
with fairly similar results.

Yang et al. (2006) proposed an adaptive surface
roughness control system for end-milling operations.
This system was based on the neuro-fuzzy training
scheme proposed by Chen (2000). The fuzzy regions
were defined for each parameter: cutting speed, feed
rate, resulting force on the cutting plane (Fxy), normal
force to the cutting plane (Fz), Ra deviation (DRa) and
feed rate deviation (Df). The system had two
subsystems, one for predicting in-process Ra and
another to control the feed rate (Df) that is adapted
based on the predicted Ra.

Kirby, Zhang, and Chen (2004) published the
development of a surface roughness prediction system
using accelerometers in a turning operation with
multiple regression techniques. In 2006, the same
authors (Kirby, Chen, and Zhang 2006) published
the development of an adaptive control system that
uses the same technique proposed by Chen (2000) and
developed for milling by Yang et al. (20006).

Evolutionary computation methods have also
been recently used for the Ra prediction (Suresh,
Venkateswara Rao, and Deshmukh 2002; Brezocnik
et al. 2004). Suresh et al. (2003) proposed a genetic
algorithm to optimise a surface roughness (Ra) model
based on surface response methodology and obtained
process parameters (cutting speed, feed rate, depth of
cut and tool nose radius) attaining the required surface
quality. Brezocnik et al. (2003) presented a Ra
predictor integrating genetic programming and genetic
algorithms starting from spindle speed, feed rate, depth
of cut and vibrations, where one of the main
conclusions was to establish that the surface roughness
is most influenced by the feed rate, and the vibrations
increased the prediction accuracy.

Therefore, the main tools used in the most recent
significant works for predicting surface roughness are
linear or multiple regression and ANN, and they often
do not bear in mind the mechanical analysis of the
cutting process or the expert’s (operator, production
engineer or mechanical engineer) process experience.
This was a fundamental point for us when choosing the
tool to develop an optimum Ra predictor.

In short, there is no agreement on the general
prediction concept and on the models to be used, since
the research done to date has not yet satisfied
industry’s real needs. Also, there is no reliable device
on the market to measure on-line surface roughness.
The use of off-line surface roughness measurement
instruments means that production line efficiency is
affected due to the lack of real-time control. This is
especially evident in the time required for post-process
inspection and in the waste of material and production
time on manufacturing faulty pieces.
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3. Bayesian network-based classifiers

Bayesian networks have important practical applica-
tions and are very competitive with other artificial
intelligence methods like ANN or decision trees.
A Bayesian classifier is a Bayesian network applied
to classification tasks, where each training sample
changes the estimated probability that a hypothesis is
correct and prior knowledge can be used to determine
the probability of a hypothesis. A Bayesian network
can classify new instances by combining different
hypotheses probabilistically.

The aim of supervised classification is to classify
instances given by certain characteristics x;=
(X1, X, . .., X;,) Into r class labels, ¢;, i=1,...,r. The
main principle of a Bayesian classifier is the application
of Bayes’ theorem (James, 1985). Bayes’ theorem,
Equation (2), calculates the posterior probability
P(cjlx;) from the conditional probabilities P(x;]cy)
and the prior probabilities P(cy) as

P(xilc;)P(c))
Zk P(xilck)P(Ck) .

The posterior probability P(c;|x;) is the probability that
a sample with characteristics x; belongs to class c;.
The prior probability P(c;) is the probability that
a sample belongs to class ¢; given no information on its
characteristic values. The probabilities of Equation (2)
can be estimated from the expert or from a training set
required for building the classifier, where each instance
i is given by (x;, ¢)).

Bayes’ rule is used to predict the class and classify
each unseen instance: a new instance or example only
characterised with the values of the predictor variables
is given a class label according to the class that has the
maximum posterior probability. A useful property of
the Bayesian classifier is that it is optimum in the sense
that the expected rate of misclassifications is reduced to
a minimum (Ripley 1996).

Of the different Bayesian classifiers, we will focus
on two specific structures: Naive Bayes and TAN.
The first paradigm (Minsky 1961) is the simplest
model. It is defined by the conjunction between the
conditional independence hypothesis of the predictor
variables given the class, yielding the following
factorisation to be substituted in Equation (2):

P(cjlxi) = 2

P(xilc;) = P(xitlcy) - - - P(xinlcy)

Although this assumption is violated on numerous
occasions in real domains, the paradigm still performs
well in many situations (Domingos and Pazzani 1997;
Hand and You 2001). The TAN classifier (Friedman
et al. 1997) extends the Naive Bayes model with
a tree-like structure across the predictor variables.
This tree is obtained by adapting the algorithm

proposed by Chow and Liu (1968) and calculating
the conditional mutual information for each pair of
variables given the class.

4. Classifying Ra using bayesian networks

As mentioned above, what we are looking for here is
an efficient Ra classifier learnt via a Bayesian network
to try to convey the physical relationships of the
machining process and other not so obvious (perhaps
stochastic) relationships among the variables, not
generally analysed in depth in other Ra-predicted
models based on artificial intelligence. The final aim
is to develop a virtual sensor to predict Ra on-line,
while the machining process is taking place.

4.1. Predictor variables

The main relationships between cutting data in
a milling process are explained by the following
formulas:

QO X 7w X rpm
1000 3
feed rate = fz x flutes x rpm A)

V,=

V =a, x a, x feed rate

where:
V, = cutting speed (mmin~")
rpm = spindle speed (min~")
feed rate = machine feed (mm min~")
fz=feed per tooth (mm tooth™")
@=tool diameter (mm)
flutes = total number of teeth
a, = axial depth of cut (mm)
a, = radial depth of cut (mm)
V' = material removal rate (mm> min~")

The classifier was developed using the ‘Elvira’
programme (Elvira 2002). Elvira is the result of
a research project funded by the Ministry of Science
and Technology in which several Spanish universities
and researchers from other Spanish and Latin
American centres are participating. This programme,
developed in Java, is available on the Internet. It is
designed to edit and make inferences with Bayesian
networks and influence diagrams, and also to generate
Bayesian networks from a data file, as in our case.

Seven variables measured inside and outside the
milling process were taken to construct the network
structure. The average surface roughness, Ra, was
chosen as the class variable, and it was the only
variable measured post-process. The cutting force (FT)
was measured during the cutting process, once the
following cutting parameters had been set: cutting
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depth (a,), feed rate and spindle speed (rpm). Finally,
two tool variables were included: number of teeth
(flutes) and tool diameter (Q).

Since Bayesian network algorithms require all the
variables to be discrete, we chose the K-means
algorithm (MacQueen 1967) to discretise feed rate
and Ra, and Fuzzy K-means algorithm (Duda et al.
2001) to discretise rpm and FT, all with K=4. The other
variables were already discrete. The K-means algo-
rithm, Equation (4), is an algorithm for clustering
objects into K partitions based on attributes. It is
a variant of the expectation-maximisation algorithm
whose goal is to determine the K-means of data
generated from Gaussian distributions. It assumes that
the object attributes form a vector space. The objective
is to minimise total intra-cluster variance or the
squared error function:

K
T=Y ">l — i )

=1 .Y_,'GS,'

where there are K clusters S;, i=1,2,..., Kand y;is the
centroid or mean point of all the points x; € S;.

The algorithm starts by partitioning the input
points into K initial sets, either at random or using
some heuristic data. It then calculates the mean point,
or centroid, of each set. It constructs a new partition by
associating each point with the closest centroid. Then
the centroids are recalculated for the new clusters,
and the algorithm is repeated by alternate application
of these two steps to convergence. Convergence is
when the points no longer switch clusters (or, alter-
natively, centroids are no longer changed).

In the fuzzy K-means algorithm, given a set of r
classes, ¢y, ¢3,...,¢, and a set xy,x3,...,x, of N
samples, it is considered from a fuzzy perspective that
a sample x; can belong to more than one class. This
membership is measured by what is known as the
membership degree, P(c;|x;), indicating how much
sample x; belongs to class ¢, The classes are
characterised by a vector called class centre, my,
m,,...,m. The fuzzy K-means algorithm looks for
a minimum of the following global heuristic function
cost defined in Duda et al. (2001):

r N
Tp =YY [Pl 1 — mi|?
i=1 j=1

where b is a free parameter, chosen to adjust the
overlapping or different class mix. If b is 0, Jp is
a simple sum of squares error criterion with each
pattern assigned to one class; if 5> 1, each pattern can
belong to more than one class.

These algorithms were chosen because of the nature
of the process, which, together with the expert’s

knowledge, makes it possible to define prior intervals
for clustering the sample data according to the variable
to be treated. This was helpful in the choice of the
discretisation algorithm that is closer to this clustering
(Table 1).

The Ra class labels (Table 1) were assigned in
accordance with the average roughness value (um)
established according to ISO 1302:2002 standard. They
are as follows: Mirror 0.10, Polished 0.20, Ground
0.40, Smooth 0.80, Fine 1.60, Semi-fine 3.20, Medium
6.30, Semi-rough 12.50, Rough 25 and Clean 50. In our
case we took the range from Smooth to Medium
because of the operation (groved) and type of material
(steel) used in the experiment.

4.2. Data and experimental setup

To obtain data, tests were carried out in a Kondia
HS1000 machining centre equipped with a Siemens
840D open-architecture CNC. The blank material used
for the tests was a 180 mm profile of F114 steel cutting
with Karnash end-mill tools model 30.6472 with two
flutes and model 30.6455 with six flutes. For the test,
each tool (0 6,8,10 and 12 mm separated by families
according to the flute numbers, 2 and 6) mechanised
each slot with constant values of spindle speed and
depth of cut, with increments of 25, 50 and 75% of the
initial feed rate. Then other slots were mechanised
increasing the value of the spindle speed (under the
same pattern of 25, 50 and 75%) maintaining constant
values of feed rate and depth of cut. For all the tests,
new tools and combinations of parameters free of
chatter were always used. A data set of 250 records

Table 1. Grouping for each variable after applying the
corresponding discretisation algorithms.

Variable Label Lower limit Upper limit
FT (N) <35 6.687 35.02
<56 >35.02 56.17
<73 >56.17 73.33
<142 >73.33 142.31
rpm Slow 5520 7964
Medium >7964 10,758
Semi-quick >10,758 14,813
Quick >14,813 19,400
feed rate <1000 300 1000
<2050 >1000 2050
<2775 >2050 2775
<3850 >2775 3850
Ra Smooth 0.7 1.1
Fine >1.1 2.1
Semi-fine >2.1 5.1
Medium >5.1 8.5
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was obtained. Each record includes the information on
the seven variables defined in Section 4.1.

All machined profiles were measured with the
stylus profilometer Karl Zeiss Handysurf model
E-35A to evaluate the changes of the Ra (um) value
due to the increment of feed rate and spindle speed that
also varied the cutting forces. To measure these forces,
a multi-component dynamometer with an upper plate
was used. Ra was measured along the feed-rate
direction.

4.3. Case I: learning a Naive Bayes classifier

The first network was obtained with the Naive Bayes
classifier structure. Laplace correction was applied to
the probabilities estimates. This is a good option
because our training data do not have representatives
from all the possible combinations of variables.
Laplace correction ensures that a proportion of
participation is assigned even to examples that are
not present at the time of training but that can appear
in the future.

The network generated using the Elvira inference
mode is shown in Figure 2. Each node shows the prior
probability (i.e. without introducing any evidence) of
its associated variable. Thus, initially the probability
that the tool has six flutes is 0.26 and 0.74 is the
probability that the tool has two flutes. With Elvira it
is also possible to detect the causal effect between
nodes, shown as different kind of arcs. The network

learnt in Figure 2 only indicates a positive relation-
ship between Ra and the flutes node (dotted arc).
This means that higher values of Ra make high values
of flutes more probable. However, the relationship
between Ra and the rest of the variables: feed rate,
rpm, FT, axial depth of cut (a,) and diameter (J) was
found to be neither positive nor negative, i.e. indefinite
(solid arcs).

Assuming that the aim of a classification model is
to correctly classify new cases, it should not be
validated on the same data used to create the classifier.
Accordingly, the K-fold cross-validation method was
chosen (Stone 1974). The original sample is partitioned
into K disjoint subsamples. Of the K subsamples,
a single subsample is retained as the validation data for
testing the model, and the remaining K — 1 subsamples
are used as training data. The cross-validation
process is then repeated K times (the folds), with
each of the K subsamples used exactly once, like the
validation data. Then the K results from the folds can
be averaged (or otherwise combined) to produce
a single estimate.

A confusion matrix was generated after validation.
This is a contingency table crossing the variable
derived from the classification output by the model
with the variable that has the true classification.
The results are shown in Table 2.

The Naive Bayes classifier accuracy was 76%.
This is the honest estimate of the true error rate,
i.e. an indicator of how good the classifier is or the

a,
12 - 015
10 = 16
08 = 011
086 w—0.19
04 = 015
0.2 — (23

[%] W ( Ra feed rate
Medium == 020
12 - 040 un <3850 == 0.14
10 - 021 e, 10 <2775 w032
8 - 020 Fine  wm 020 <2050 036
6 - 019 Smooth  ws 0.20 <1000  wm 0.19
flutes
6flutes == 026 | —__Tpm
2flutes wemm0.74 chk ._0'33
Semi-quickwm (.26
Medium  wm 0.20
Slow - 021

FT

<142 - 019
<73 - 026
<56 —( 32
<35 - 0723

Figure 2. Bayesian network using Naive Bayes in inference mode. Prior probabilities of each variable are shown at each node.
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probability of it classifying new cases correctly.
Analysing the confusion matrix, it was found that
accuracy was better for Smooth class (98% of the cases
were properly classified), Semi-fine (85% correctly
classified) and Medium classes (62%). However, there
was greater confusion with Fine class. In this case,
50% were correctly classified, whereas 28% Fine were
classified as Semi-fine and 22% as Smooth.

4.4. Case 2: learning a TAN classifier

The second network was obtained with the TAN
structure. Figure 3 shows the marginal probabilities of

Table 2. Confusion matrix using Naive Bayes.

1187

each of the variables involved. The TAN network
shows the relationship and type of causal effect existing
between its nodes. This provides more information on
the relationship of each variable with the class, because
all the links in the Naive Bayes structure have the same
weight and there is no influence between the predictor
variables.

For this structure, the relationships we have
obtained match the knowledge of the machining
process. For instance, the relationship between the
tool characteristics (flutes and diameter) with the
cutting axial depth is unusual and it is not present in
other kind of models based on other predictive
techniques. This relationship is not evident from (4),
see Section 4.1, but after consulting the expert, it was
confirmed that there is an intuitive relationship
between these nodes. This relationship links tool
geometry characteristics and workpiece material

Real Medi i-fi Fi th . . .

. edium Semi-fine e Smoo properties with the axial depth.

Assigned Table 3 shows the results. The confusion matrix
Medium 31 0 0 0 shows an accuracy of 81.2%, higher than in Case 1.
IS:‘?ml'fme lg 82 ;‘5‘ (]) Analysing this matrix the results generally improve,
Sllllllgoth 0 9 11 49 although the percentage of correct classifications for

some classes decreases slightly. The percentage of
a,
12 - U‘?SW ( fhitos
1.0 = (.16 * | 6flutes == 030
0.8 - (012 2flutes  wemm0.70
06 - (18
04 = 015
02 - 022
r Y Ra
Medium == 020 feed rate
Semi-fing wem0.40 <3850 wm 014
Fine  wm 020 o | <2775 w032
Smooth wm 020 T €2050 a0 36
<1000  wm 019
7]
12 — (38
10 - 022 FT
38 - 0.21 <142 = 020
6 - 019 <73 = (.26
<56 — () 3
<35 - 023
\d
rpm
Quick —() 32

Semi-quick mm 026
Medium  wm 0.21
Slow - 0.21

Figure 3. Bayesian network using TAN in inference mode. Prior probabilities of each variable are shown at each node.
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correctly classified cases for the Fine class increases
considerably from 50 to 80%. For the Smooth class,
the percentage of correct classifications decreases
from 98 to 90%, for the Semi-fine class from 85 to
83%, and for the Medium class, there is an increase
from 62 to 70%.

4.5. Response to the evidence input

Now we can take advantage of the different queries we
can make to the network. First, the model can infer
what the (prior) probabilities (shown as dark bars) of
each Ra value are without introducing any evidence.
Second, we introduce some evidence at the rpm,
feed rate and FT (shaded) nodes, and the network
computes the posterior probabilities of each Ra value
given that evidence (light grey bars). All the results are
summarised in Table 4.

The second column of Table 4 summarises the
marginal probabilities assigned to each Ra class with-
out introducing any evidence (prior probabilities).
The mode is located in the Semi-fine class, with
a probability 0.4. Columns 3 and 4 of Table 4 show
the posterior probabilities after incorporating evidence
on feed rate (‘<3850°) and on rpm (‘Quick’),
respectively. Each time a node is instantiated, it is
shaded in the respective figure.

According to the model output, when the feed rate
is increased to ‘<3850’, there is a 0.65 probability of Ra
being achieved in the Semi-fine range (Figure 4).

Table 3. Confusion matrix using TAN.

Real Medium Semi-fine Fine Smooth
Assigned
Medium 35 0 0 0
Semi-fine 12 83 5 1
Fine 3 14 40 4
Smooth 0 3 5 45

Similarly, the Ra value is affected when the spindle
speed (rpm) is increased to the ‘Quick’ range, since the
probability of Ra belonging to the Semi-fine class
changes from 0.40 to 0.46, whereas it moves from 0.20
to 0.26 in the Smooth class (Figure 5).

Given that with the rpm effect, the highest prob-
ability (0.47) was that the feed rate variable was in the
range ‘<2775 and that the FT variable was in the range
‘<56’ (with a probability of 0.29), these three variables
were then simultaneously so instantiated (column 5 of
Table 4). The quality (Ra) moved up into the Smooth
range with a probability of 0.78 (Figure 6).

Now, to verify that the model complies with the
physics of the process, let us ask the network what
happens when the flutes variable is firstly instan-
tiated at 6. Physically speaking, the rpm and feed rate
should increase, with respect to the prior probabilities
shown in Figure 3, the probability of being at their
quickest ranges of values, as the model actually
outputs: the rpm moves up to ‘Quick’ (probability
0.40) or ‘Semi-quick’ (probability 0.33), the feed rate
achieves ‘<3850’ (probability 0.19), while Ra is in ‘Fine’
(0.18) or ‘Smooth’ (0.08). Secondly, when flutes
is instantiated at 2, rpm is in ‘Medium’ (0.29) or
‘Semi-quick’ (0.25), feed rate is ‘<1000’ (0.35), while
Ra is in ‘Fine’ (0.21) or ‘Smooth’ (0.25). In both cases
the other nodes (cutting force, axial depth of cut and
tool diameter) also change their probability values
influenced by the instantiated variable. Another test
aimed to show that rpm increases if feed rate is
instantiated and its values are increased, since these
variables have a direct physical relationship, as was
shown in Section 4.

Working in a reverse order, this model can also be
used to output the cutting parameter and tool variable
values. This is done by instantiating Ra at the target
level. For example, if we want Ra to be in the ‘Fine’
class, the model recommends a,=1.0 (probability
0.43), rpm=Medium (probability 0.43), feed rate<
1000 (probability 0.46) and tool of diameter 10 mm
(probability 0.47) with two flutes (probability 0.73), as
you could actually prove in the laboratory.

Table 4. Ra probabilities calculated from the starting data without instantiations (second column) and after introducing

evidence on feed rate, rpm, and FT variables (columns 3-5).

Example 3
Example 1 Example 2 Instantiating FT at
Prior Instantiating feed Instantiating rpm ‘<56’, feed rate at ‘<2775

Ra classes probabilities rate at ‘<3850’ at ‘Quick’ and rpm at ‘Quick’
Medium 0.20 0.27 0.15 0.01
Semi-fine 0.40 0.65 0.46 0.20
Fine 0.20 0.05 0.13 0.01
Smooth 0.20 0.03 0.26 0.78
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Figure 4. Tree-Augmented Naive Bayes classifier instantiating the feed rate at ‘<3850’. Posterior probabilities of each variable,
given this evidence, are shown at each node in grey.
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5. Conclusions

The use of Bayesian classifiers for modelling surface
roughness in a milling process is an important advance
towards achieving optimum machining. The method
presented in this article is an analysis of the use of
Bayesian networks with the Naive Bayes and TAN
structures to develop empirical models that estimate
the surface finish, specifically Ra, in machining
processes, using data obtained in the cutting process.

The variables defined for each node are the same
irrespective of the method used to obtain the network.
The significant differences lie in the relationships
among the network nodes in the learnt structures
and, consequently, in their inferred probabilities.

Bayesian networks have proved to be a very
useful tool for providing knowledge to develop an
Ra predictor, since interesting relationships between
nodes were found. According to the expert’s knowl-
edge, some such relationships are evident in the
process, even though they do not have any mathema-
tical relationship in the formulas that define the metal
cutting process.

The processing time for each classifier handling a file
of 250 records was 150 ms for Naive Bayes and 78 ms
for TAN. From the point of view of performance,

the TAN classifier is better because it generates a more
complete network than Naive Bayes and processing
time is lower. The results of the two structures were
compared using experimental data. Both models
provided a statistically satisfactory prediction.

With other artificial intelligence techniques used to
predict Ra, the error rates range from 2 to 25%.
Despite being at an initial phase of the study, our
model reports an average classification accuracy of
81.2%, the Smooth class having the best accuracy of
90%. Also, we can make different queries to the
network and infer the Ra distribution given some
evidence or knowledge on the rest of variables.
Furthermore, the model may be used to recommend
the values of each variable that yield, with certain
probability, a desired Ra level. Our model definitely
contributes towards a better knowledge of the process
with variables not taken into account in previous
studies.

Other process characteristics could be added to the
network to improve model performance, including
the type of material to be machined and the geometry
of the pieces, etc. The relationship between these
variables, and between these variables and the Ra
value, has not yet been investigated. This would be
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a significant milestone. The research group is now
focussing on these new variables.
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