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Abstract—With the increase of device connectivity in Industry
4.0, securing industrial networks to defend them against cy-
berattacks has become a primary concern. Motivated by the
huge data generated by devices in industrial environments,
artificial intelligence has emerged as a promising complement
to traditional cybersecurity. In order to gain insight about the
possibility of cyberattacks, we propose a novel methodology to
analyze industrial network traffic in real time exploiting the
sequence modelling capabilities of the transformer architecture,
widely used by the GPT model family for sequential language
generation. We demonstrate that our method provides state-of-
the art performance with promising explainability potential.

I. INTRODUCTION

Factory digitalization arrived in the mid 20th century with
the introduction of programmable logic controllers (PLCs) into
machinery, signaling the starting point for the third industrial
revolution, following the pioneer use of steam power in the
first one and the raise of oil, gas and electric power in
the second one. Less than a hundred years later, we are
living a fourth industrial revolution towards what is commonly
referred to as Industry 4.0. By employing smart technologies,
Industry 4.0 reached an unprecedented level of automation and
efficiency in production [1].

The Internet of Things, hereon referred to as IoT, can be
defined as a group of infrastructures interconnecting devices,
and allowing their management and the access to data they
generate [2]. The connected devices are not only computers,
but also elements that are not usually considered to be such
thing, namely actuators and sensors. Every connected object
in an IoT scenario represents a node in a virtual network,
within which it is capable to automatically (with minimal
human intervention) communicate its state to other devices,
continuously transmitting large volumes of data [3].

In the industrial setting, IoT turns into IIoT (Industrial
IoT), aiming to optimize production by enabling real-time,
autonomous exchange of information within the industrial
environment, playing a central role in the development of In-
dustry 4.0 [4]. IIoT allows machinery to intercommunicate and
interoperate, earning factories the “smart” tag by empowering
intelligent automation. Even though this shift in the industry
paradigm has ultimately entailed enhanced productivity at
reduced costs, it has also contributed to increase the attack
surface of industrial systems and the amount of cyber-threats

that these are exposed to [5]. Our goal is to mitigate this
problem by introducing network monitorization techniques
based on Artificial Intelligence (AI), as traditional security
does not fit in IoT environments [6]. IIoT networks generate
massive amounts of sensor and instruction data, making AI’s
excellent data-analysis competences a perfect match.

In order to provide a robust defense against unseen and
evolving threats, network monitorization systems must steer
towards an approach based on anomaly detection (AD). More-
over, as network traffic data is inherently sequential, it is a
natural choice to turn to sequential AI models for this task. The
transformer [7] is a sequence transduction model, i.e., it allows
reasoning from a set of observed train sequences to a new set
of test sequences. As the transformer is low-cost on training
and highly parallelizable, it has become the de facto standard
in Natural Language Processing (NLP) [8]. Additionally, the
transformer model offers inherent interpretability properties
[9], allowing for explaining algorithms to provide insight about
how a certain result was achieved. These explanations are
highly valuable, since they guarantee that the reasoning of the
model is guided by truthful principles [10]. In cybersecurity,
explanations can help decide the appropriate response to a
detected attack by tracing back the relevance of each predictive
variable in a result from the model.

We propose a new anomaly-based Network Intrusion De-
tection System (NIDS) using a transformer model. Prior to
our work there were very few studies on the application of
this architecture to cybersecurity. In 2021, Wang and Li [11]
introduced for the first time a hybrid model combining a
transformer and a convolutional neural network to detect dis-
tributed attacks. Marino et al. [12] also conducted a research
on the application of transformer models in the cybersecurity
context, using an intermediate graph model for interpretability
purposes. The rest of the paper is structured as follows:
Section II introduces the transformer model and the attention
mechanism. Our methodology is provided in Section III, while
the conducted experiments and their results are presented in
Section IV. Conclusions are drawn in Section V.

II. THE TRANSFORMER-BASED MODEL

This section is divided into two parts. The first one develops
the concept of attention and the second one explains how the
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original transformer model presented in [7] is built.

A. The attention mechanism and self-attention

An attention function is, by definition, just a weighted
averaged of values [13]. In its most general form, an attention
function maps a query, q, a set of keys, K, and its correspond-
ing values, V , to an output.

The output of an attention function is built upon a similarity
score between the query and each possible key, which defines
the weights for the averaged sum of the values:

Attention(q,K, V ) =
∑
i

Score(q, ki)vi

Essentially, the attention mechanism captures how much a
query relates to each key in a database, and then it scales
the values according to these relations. In [7], the proposed
attention function is the “Scaled Dot-Product Attention”, for
which the dot product is used as the similarity measure
between the query and the keys. For this mechanism, both
the query and the keys are vectors of the same dimension dk,
while each value is represented by a vector of dimension dv .
If we let Q be a matrix packing several queries, the Scaled
Dot-Product Attention is computed as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

As a means to improve the representational capabilities of
the attention mechanism, the queries, keys and value matrices
are put through a linear transformation before evaluating the
attention function. Likewise, a linear transformation is applied
to the output of the attention function, yielding the final result.
In practice, these linear projections are implemented as linear
layers of a neural network, so its weights are learnt during
the training process by gradient backpropagation. Finally, in
order to provide information from a variety of representation
subspaces, the queries, keys and value matrices are linearly
transformed h times in h parallel attention heads, instead of
only once, with the output of the h different attention functions
being concatenated before the final linear transformation. Sub-
figure 1a depicts the described multihead attention mechanism.

The term self-attention refers to the application of an atten-
tion mechanism to an input sequence x = (x1, . . . , xn) with
xi ∈ Rdx acting as the queries, keys and values at once [14].
A self-attention transformation of a sequence returns a new
representation of it for which every element has been weighted
by its relation to each other position in the sequence. Thus,
self-attention mechanisms enable the capture of sequential
dependencies without employing recurrent architectures.

B. The transformer structure

The transformer is a sequence transduction model com-
prised of two parts: an encoder and a decoder. The encoder
maps a sequence of inputs x = (x1, . . . , xn) to a same
length sequence of lower-dimensional representations z =
(z1, . . . , zn). The decoder uses z as input, mapping it to an
output sequence of arbitrary length: y = (y1, . . . , ym). In [7],

(a) (b)

Fig. 1. Attention mechanisms. Subfigure 1a, taken from [7], is the attention
mechanism presented in the same work, while Subfigure 1b has been modified
to depicts the instance of it used in our model, with only one attention head.

both the encoder and the decoder are built as stacks of identical
layers. The encoding layers are composed by:

• A self-attention step, using the input sequence as the
query, the set of keys and the set of values.

• A feed forward step, applying a linear transformation
upon its inputs, followed by an activation function.

On the other hand, each one of the decoding layers per-
forms, sequentially:

• A masked self-attention step, using the target sequence as
the query, the set of keys and the set of values. In order to
avoid leakage of information from yet unseen positions
of the target sequence during training, this self-attention
step is said to be masked: each position of the sequence
can only attend to the previous ones, and the forbidden
attention values are set to −∞.

• An attention step for which the queries and the keys are
taken from the encoder output, while the input values
come from the output of the masked self-attention step.

• A feed forward step, applying a linear transformation
upon the output of the encoder-decoder attention layer,
followed by an activation function.

The transformer is built upon a concatenation of N encoding
layers, forming an encoder block, and N subsequent decoding
layers, forming a decoder block. The encoder receives a
sequence as an input, while the decoder receives a shifted
version of the input sequence that is missing the last w
positions. The decoder output is transformed by a final neural
linear layer to provide a reconstruction of the original sequence
from its shifted version and the encoding information.

A simplified scheme of the transformer model based on the
one presented in [7] can be found in Figure 2. Note that:

• The full encoder and decoder blocks are built from N
stacked up encondig or decoding layers, respectively.

• After each step in each encoding or decoding layer,
residual addition and batch normalization is applied. This
is, the output of every step is post-processed as:

Sublayer(x) = Norm(Sublayer(x) + x),
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Fig. 2. Simplified scheme of the transformer, based on the diagram presented
in [7]. The input order for the attention functions is inherited from Figure 1.

where x is the input of the step and Sublayer(x) repre-
sents the applied function.

• Both the encoder and the decoder inputs are positionally
encoded, this is, each element of the sequence is summed
to a certain vector that codifies information about its
relative position within the sequence. This operation
yields a new representation of the inputs that equips the
model with a sense of order [15].

III. METHODOLOGY FOR SEQUENTIAL NETWORK AD

A. Network traffic data

Raw network traffic data in the form of IP packets can
be captured in order to feed AI models. For this work,
however, we used IP flow exporting to process packet data.
Flow exporting groups packets exchanged in continuous time
windows of traffic between the same source and destination
IP and ports and through the same protocol. Each flow is
described by a series of aggregated statistics derived from the
packets it collects [16].

Our model will train and perform AD over recordings
of flows in a given network that are sequentially ordered
according to their ending time. Additionally, each flow will
undergo a normalization process by standardization before
being ran through the model.

B. Network AD using the transformer model

To the best of our knowledge, Marino et al. [12] approached
for the first time the problem of network intrusion detection
using transformers. Following their work, we also used a
sliding-window approach to network monitoring: incoming
flows are grouped in windows of a fixed length lw to be
inputted as sequences to the model.

Given a window W = {x1, . . . , xlw} of grouped flows,
which constitutes the input of the encoder, a shifted version of

it, made by removing the last ls flows, is fed to the decoder.
The goal, thus, will be for the decoder to reconstruct the
original window, of length lw, from its shifted version, of
length lw − ls. Mathematically, this is achieved by means
of setting a Mean Squared Error (MSE) loss function to be
optimized by gradient backpropagation. The MSE loss for a
given window can be expressed as:

Loss(W) = ∥W − D(E(W ),Wshifted))∥,

where ∥.∥ stands for the Euclidean module, E(W ) represents
the output computed by the encoder for window W and
D(E(W ),Wshifted) denotes the output of the decoder for the
shifted window and the consequent encoder output.

AD is performed by measuring the loss function for new
flow sequence samples. A given flow xk is assigned an
anomaly score corresponding to the loss function computed
over the window Wx = (xk−lw , . . . , xk), this is:

Score(x) = ∥Wx − D(E(Wx),Wx,shifted))∥,

where Wx,shifted is the shifted version of Wx, comprising the
flows xk−lw to xk−(lw−ls).

When the transformer model is trained following the opti-
mization of this loss function, it can be used to capture the
normal behaviour of a network by learning to predict benign
sequences of flows traversing the network one flow at a time.
Attack detection is based in the idea that flows containing an
attack should represent a statistical anomaly when compared to
normal traffic, so that the reconstruction of the flow sequence
will be poor when presented with an attack, thus yielding a
high loss value upon evaluation.

C. Configuration of the transformer model

The training and detection processes of the proposed system
can be adjusted to the particularities of each network and its
traffic data by varying the following hyperparameters:

• The number of encoding and decoding layers in the
encoder and decoder blocks, respectively, Nlayers.

• The length of the flow sequence window considered as
an instance, lw. This is the encoder input size.

• The length of the shift for the decoder input, ls, which
stands for the number of flows that the decoder will have
to predict for a given window of length lw − ls.

• The number of attention heads, h.
• The number of training iterations, or epochs, Nepochs.
• The number of instances being fed to the model at the

same time to exploit its parallelization features. This is
referred to as the batch size of the training, bs.

In practice, we’ve fixed ls to one unit, but have experi-
mented with different window lengths ranging from 25 to 100
flows, and exceptionally some tests with even longer windows.
Our implementation of the transformer model uses only one
attention head, since the number of attributes describing each
flow is much smaller than that of data from the NLP field,
for which the transformer was originally developed. Hence,
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splitting attention into several heads makes no difference to
the AD power of the system.

IV. EXPERIMENTS AND ANALYSIS OF THE RESULTS

To demonstrate the cyberattack detection capabilities of the
proposed transformer-based model, a series of experiments
have been conducted, baring in mind the double objective
of empirically proving that our transformer model provides
state-of-the art AD performance as a NIDS while comparing
it against other well-established AD methods in the same
industrial cybersecurity context.

The code for the implementation of the model and the
experiments has been made publicly available, and can be
found on GitHub in the following repository: https://github.
com/jogecodes/transformerAD.

A. The WUSTL-IIoT-2021 dataset

As a platform to deploy our tests upon, we selected the
WUSTL-IIoT-2021 dataset [17] for being a representative
sample of a real IIoT network [18]. This dataset contains
1.194.464 pre-aggregated flows, each one described by 41
features, all of which are integer or float-point variables.

The importance of the features of the WUSTL-IIoT dataset
(from now on we will ommit the 2021 label) has been
previously tested, yielding the result that all of them are
relevant enough as to be used in both training and AD.

For the experiment results to be consistent, we have split
the WUSLT dataset in four approximate quarter parts of nearly
300.000 flows each. The first one, consisting exclusively of
normal flows, will be used as training data. The following
parts contain, 78.305 Denial of Service (DoS) attacks, 8.240
reconnaissance attacks, and, lastly, 259 command injection and
212 backdoor attacks. These types of attack have been selected
to be representative of the industrial cyber-threat paradigm
[17]. Reconnaissance attacks are aimed to gather control sys-
tem network information, map the network architecture, and
identify the characteristics of the devices in the network. DoS
attacks against industrial systems attempt to stop the proper
functioning of some portion of the cyber-physical system or
to disable its totality. Command injection attacks insert false
commands into a control system, overwriting machinery logic,
code, or even remote terminal register settings [19]. Finally,
backdoor attacks exploit vulnerabilities in the architecture
perimeter that are forgotten, unnoticed, or disregarded, and
allow to gain access to the system [20].

B. Performance report

The ratio of discovered attacks in the incoming traffic is,
undoubtedly, the most important measure to assess the quality
of a NIDS. However, in practice, every particular industrial
cybersecurity scenario has a set of specific needs regarding
aspects such as the tolerance for false alarms or the availability
of alternative resources to palliate for the lacks of a given
security system. If we think of AI models as another link in
the chain of cybersecurity, it becomes clear that the optimal

performance measure should be flexible enough to account for
tuning of the model in each specific industrial context.

The Receiver-Operator Characteristic curve [21], or ROC
curve, is a graphical representation of how the performance of
a binary classifier responds to a variation of the threshold that
splits the testing samples in its two possible classes according
to a given score. By convention, the class assigned to the
samples scored above the threshold is denoted as “positive”
and those lying below the threshold are labelled “negative”.

The ROC curve uses thresholds ranging from the lowest-
given score from all testing samples to the highest one. In
the lower end, all samples will be classified as positive, thus
yielding a True Positive Rate (TPR, the ratio of correctly
classified positive examples) of 1 and a False Positive Rate
(FPR, the ratio of incorrectly classified negative examples) of
1 as well. When using the highest possible threshold, all of the
samples will be labelled negative, so that both the TPR and
the FPR will be 0. The ROC curve lies then on the FPR−TPR
plane, and a random binary classifier would be represented as
the diagonal from the origin of the plane to the (1, 1) point.

The Area Underneath the ROC Curve (AUC) can be used as
a performance measure for a binary classifier. However, this
metric is not representative for the discrimination power of a
model in a dataset with a highly imbalanced class ratio, as it
is the case for the WUSTL-IIoT dataset. Real-life industrial
networks will be subject to very little attack traffic compared
with the traffic coming from normal behaviour.

To palliate this problem, we have computed an additional
performance measure based on the precision-recall tradeoff.
Precision (P ) is defined as the of correctly classified positive
examples to the total number of examples of examples labelled
positive. Recall (R) is equivalent to the True Negative Rate
(TNR, the ratio of correctly classified negative instances). The
PR curve is formed by plotting on the R − P plane the P
and R values for a test set labelled according to incremental
threshold values, ranging from the lowest given score to the
highest one. For the PR curve, an unskilled classifier randomly
assigning labels with equal probability would be represented
by a horizontal line with P equal to the ratio of positive
samples to the total number of samples. Derived from the PR
analysis, the F-score is defined as the harmonic mean of P
and R [22], F = 2PR

P+R .
Both the ROC and the PR curves provide a visual inter-

pretation of the performance of a classifier using different
thresholds, leaving room for adjustment to a specific scenario.

C. Experimental results over the WUSLT-IIoT dataset

When deploying any AI model in any context, and in order
to ensure proper fitting to the data, convergence during training
must be studied; A stable learning process will have a steadily
decreasing average loss throughout the training epochs.

In Figure 3, the evolution of the average training loss of
various transformer models trained over the WUSTL-IIoT data
using different combinations of the batch size and number
of layers hyperparameters. It can be seen that convergence
is always achieved, though using smaller batch sizes makes
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Fig. 3. Evolution of the mean training loss for six transformer models using
different number of encoding/decoding layers and batch size. The experiments
were carried out over 25 training epochs and a window length of lw = 50.

TABLE I
MODEL SCORES ON THE WUSTL-IIOT DATASET DOS ATTACK DATA

Measure Transformer ECOD DeepSVDD RNN-AE
AUC 0.9744 0.9637 0.9346 0.9309

F-score 0.9431 0.9251 0.9046 0.8104

convergence faster. As a downside, decreasing bs reduces par-
allelization, thus increasing the time of computation. Increas-
ing Nlayers also has a negative impact over the computational
time, since the number of trainable parameters is proportional
to the number of layers in the encoding and decoding blocks.
Although more parameters provide the model with more fitting
power, as these tests were carried out using a window of
lw = 50, the models do not need more than one layer to
properly adjust to the training data.

Figures 4 and 5 show the behaviour of the proposed
transformer model over the different parts of the WUSTL-
IIoT dataset. As the partial section of the WUSTL-IIoT dataset
containing the DoS attacks is the only balanced one, both the
ROC curve and the PR curve have been included in Figure 4.
Our transformer model demonstrates very good anomaly dis-
crimination power. Table I summarizes the performance of our
system on this portion of the test dataset compared to three
widely used alternative model-based AD methods:

• ECOD, a parameter-free, interpretable AD algorithm
based on empirical cummulative distributions [23].

• DeepSVDD, a method based on training a neural network
by minimizing the volume of the minimal hypersphere
that encloses the network representations of the data [24].

• A RNN-based autoencoder (RRN-AE), which is another
sequence transduction model for AD but powered by a
recurrence mechanism, instead of an attention one [25].

The partition containing the reconnaissance attacks, as well
as the one containing the command injection and backdoor
threats, suffer from class imbalance, as they contain way less
attacks than normal traffic. Consequently the ROC curve dia-
gram has been ommitted for these data portions, and only the
PR curves are shown in Figure 5. For the same reason, Table II

(a) ROC curve for the transformer model over the DoS data.

(b) PR curve for the transformer model over the DoS data.

Fig. 4. ROC and PR curves for an example transformer model over the first
part of the WUSTL-IIoT dataset, representative of the DoS type of attacks.

TABLE II
MODEL SCORES ON THE WUSTL-IIOT RECONNAISSANCE (R) AND

COMMAND/BACKDOOR (C/B) PARTITIONS

Measure Transformer ECOD DeepSVDD RNN-AE
F-score (R) 0.7686 0.7077 0.7861 0.419659

F-score (C/B) 0.8909 0.6810 0.8799 0.075891

only collects the F-score metric for the Reconnaissance and
Command/Backdoor partition.

Our proposed transformer model provides the best detection
results for the DoS attacks in terms of both the F-score and
the AUC metrics. It also provides the best optimal F-score.
It also obtains the higher F-score over the command injection
and backdoor attacks, only being beaten by the DeepSVDD
model on the reconnaissance attacks partition of the dataset.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed an industrial NIDS framework
based on AD using a transformer model, which proved to
be a highly functional solution to the problem. Prior to the
present study, the potential of this sort of models in this
application had only been explored comprehensibly in [12].
The fundamental contributions we made are related to the sim-
plification of the multi-head attention mechanism, including
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(a) PR curve for the transformer model over the reconnais-
sance attack data.

(b) PR curve for the transformer model over the command
injection and backdoor attack data.

Fig. 5. PR curves for an instance of the transformer AD model over the second
and third part of the WUSTL-IIoT dataset, containing the reconnaisance and
the command injection and backdoor attacks, respectively.

a detailed explanation of its role in sequential network flow
analysis, and the application of the transformer model to the
IIoT environment and its associated cyberattacks, elaborating
further on the current state of the art of transformers in
cybersecurity. Still, this is an ongoing work, and we have
deemed the following to be the most interesting lines of
research for its continuation:

• The development of a distributed AD system that also
acts upon sequences of flows extracted from the traffic
between two nodes of the network.

• Exploiting the intepretability capabilites of the trans-
former model to provide explanations of its results [9].
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