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Abstract

The Internet of things is a paradigm with the goal of creating customizable goods and ser-

vices based on user experience. This paradigm has been applied in industrial environments

generating what is called the industrial Internet of things. This new paradigm measures

industrial assets continuously. The collected information is processed to extract data insights

regarding the assets status or health. Depending on the asset status, maintenance policies

can be planned to prevent the assets failure or degradation. To elaborate such insights, arti-

ficial intelligence models are usually applied to learn and predict industrial data patterns and

behaviors. Nonetheless, in many cases, computational and reliability restrictions are present,

and fast and explainable models are required to satisfy the industry needs.

Hidden Markov models (HMMs) are statistical models that are capable of learning data

patterns and detect non-stationary behavior in data. When HMMs are compared to other

models, HMMs are economic, explainable and reliable. They are economic because their

learning and inference algorithms can run in a reasonable time without the need for graphic

cards or other power-intensive computing devices. They are explainable since all the learned

parameters are interpretable from a probabilistic and area-of-knowledge points of view. They

are reliable, because, if a mistake is committed by the model, it is possible to detect and infer

its causes from the models parameters and structure.

Due to the previous discussion, the motivation and results of this thesis aim to extend

theoretically current HMMs, to make them more relevant, general and useful for industrial

applications. For all the proposed models, the expectation-maximization algorithm was used

for the learning phase. The first contribution appears in Chapter 4, where context-specific

Bayesian networks were used to model the emission probabilities of continuous variables. That

model is referred as AsLG-HMM since linear Gaussian Bayesian networks were used. The

model was compared to a mixture of Gaussian HMM, where improvements in log-likelihoods

by the proposed model were observed in both synthetic data and real data from ball-bearings.

Nonetheless, such model was further developed in Chapter 5, where autoregressive values of

the observable variables were considered in the context-specific Bayesian networks. This

model is referred to AR-AsLG-HMM. In this case, the model was studied with further math-

ematical rigor. Also, a forward greedy algorithm was proposed to discover structures of

Bayesian networks for the emission probabilities. The model was tested with synthetic and

real data incoming from air quality and ball-bearing data. For this model, several types

of HMMs were used for comparison. The learning times were also considered for evalua-
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tion. The proposed model showed improvements in log-likelihood with fair learning times,

and additional data insights were provided due to the learned Bayesian networks. As com-

ment, AR-AsLG-HMM served as a cornerstone model for other contributions in this thesis.

In Chapter 6, AR-AsLG-HMM was endowed with feature saliencies to enable the model to

perform an embedded feature selection procedure. This implies that the model during its

learning procedure determined the relevant features. This model is referred to FS-AsHMM.

In this case, the model was compared to other HMMs with feature saliencies. Synthetic data

and real data from ball-bearings and cameras with face- expressions data were used for vali-

dation. The model obtained better results regarding expression recognition and detection of

non-relevant features.

The previous contributions were focused to offline analysis. Nevertheless, this thesis is

focused on working in industrial environments, where data-streams are generated and the

models are expected to adapt to changes in data. To address such issue, in Chapter 7 the

AR-AsLG-HMM was adapted to be used in data-stream and perform continuous learning.

Novel-concept detection techniques were used to determine when new unobserved patterns

appeared. Based on the data-insights of the AR-AsLG-HMM from the data-stream, a health-

index and a regression model were proposed to determine the health status and remaining

useful life of ball-bearings. Two datasets were used to validate the proposed methodology:

open access datasets with ball-bearings which are run to failure, and a ball-bearing testbed

from a company promoting the thesis, Aingura IIoT. Additionally, in collaboration with the

Barcelona Supercomputer Center, the methodology code was optimized to be embedded into

edge devices and use it in real life applications. The methodology was compared to others

in the state of the art. It obtained better results in terms of health estimation, and fair

results regarding the remaining useful life prediction. Next, in Chapter 8 a feature saliency

model for HMMs was adapted to determine relevant harmonics of ball-bearings data in online

environments. However, this study was a preliminary work for what was done in Chapter 9,

where local feature saliencies were applied on AR-AsLG-HMMs. This model is referred

to LFS-AsHMM. This model was adapted to be used in data-streams with novel-concept

detection techniques to keep track of the evolution of relevant features. This model updated

the relevant features only when the data needed it. Synthetic and real open access data

from ball-bearings was used for validation. The model was compared to other strategies and

methodologies that perform feature selection in data-streams. However, these strategies did

the feature selection whenever a new instance arrived and not when needed. Unfortunately,

this model did not get to be implemented into edge devices during the writing of this thesis.

Finally, the proposed models assume linear Gaussian data and if such assumption fails,

the models are no longer valid. To address such problem, in Chapter 10, the ideas used on

AR-AsLG-HMM were imposed over HMMs with non-parametric emission probabilities, more

precisely, kernel density estimations were used to approximate the emission probabilities,

and the estimations depended on context-specific Bayesian networks. The proposed model

is referred to KDE-AsHMM. The proposed model is validated using synthetic non-linear

Gaussian data and open access real data from sound recognition problems and drill milling
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processes. The model showed improvements in likelihood and sound recognition accuracy

when compared to other HMMs. Nonetheless, the learning times and computational resources

were high demanding. At the end of the thesis, in Chapter 11, the corresponding conclusions,

final remarks and future research lines were proposed.
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Resumen

El internet de las cosas es un paradigma con el objetivo de crear bienes y servicios perzon-

alizados basados en la experiencia del usuario. Este paradigma se ha aplicado en entornos

industriales generando lo que se denomina el Internet de las cosas industriales. Este nuevo

paradigma mide los activos industriales de forma continua. La información recopilada se

procesa para extraer información sobre el estado o la salud de los activos. Según el estado de

los activos, se pueden planificar poĺıticas de mantenimiento para evitar fallas o degradación

de los activos. Para elaborar tales conocimientos, modelos de inteligencia artificial se aplican

para aprender y predecir patrones y comportamientos de datos industriales. No obstante, en

muchos casos existen restricciones computacionales y de confiabilidad, y se requieren modelos

rápidos y explicables para satisfacer las necesidades de la industria.

Los modelos ocultos de Markov (HMM) son modelos estad́ısticos que son capaces de apren-

der patrones de datos y detectar comportamientos no estacionarios en los datos. Cuando los

HMMs se comparan con otros modelos, los HMMs son económicos, explicables y confiables.

Son económicos porque sus algoritmos de aprendizaje e inferencia pueden ejecutarse en un

tiempo razonable sin necesidad de tarjetas gráficas u otros dispositivos informáticos que

consumen mucha enerǵıa. Son explicables ya que todos los parámetros aprendidos son inter-

pretables desde un punto de vista probabiĺıstico y de área de conocimiento. Son confiables,

puesto que si el modelo comete un error, es posible detectar e inferir sus causas a partir de

los parámetros y la estructura del modelo.

Debido a la discusión anterior, la motivación y los resultados de esta tesis tienen como

objetivo extender los HMM teóricamente actuales, para hacerlos más relevantes, generales

y útiles para aplicaciones industriales. Para todos los modelos propuestos se utilizó el algo-

ritmo de maximización de expectativas para la fase de aprendizaje. La primera contribución

aparece en el Caṕıtulo 4, donde se utilizaron redes bayesianas espećıficas del contexto para

modelar las probabilidades de emisión de variables continuas. Ese modelo se conoce como

AsLG-HMM ya que se utilizaron redes lineales gaussianas bayesianas. El modelo se com-

paró con una mezcla de Gaussian HMM, donde se observaron mejoras en las probabilidades

logaŕıtmicas del modelo propuesto tanto en datos sintéticos como en datos reales de ro-

damientos de bolas. No obstante, dicho modelo se desarrolló más en el Caṕıtulo 5, donde se

consideraron los valores autorregresivos de las variables observables en las redes bayesianas

espećıficas del contexto. Este modelo se denomina AR-AsLG-HMM. En este caso, el modelo

fue estudiado con mayor rigor matemático. Además, se propuso un algoritmo voraz directo
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para descubrir estructuras de redes bayesianas para las probabilidades de emisión. El modelo

se probó con datos sintéticos y reales provenientes de la calidad del aire y datos de cojinetes

de bolas. Para este modelo, se usaron varios tipos de HMM para comparar. Los tiempos

de aprendizaje también fueron considerados para la evaluación. El modelo propuesto mostró

mejoras en la probabilidad de registro con tiempos de aprendizaje justos, y se proporcionaron

conocimientos de datos adicionales debido a las redes bayesianas aprendidas. Como comen-

tario, AR-AsLG-HMM sirvió como modelo fundamental para otras contribuciones en esta

tesis. En el Caṕıtulo 6, se dotó a AR-AsLG-HMM con variables destacadas para permitir

que el modelo realice un procedimiento de selección de variables incorporado. Esto implica

que el modelo durante su procedimiento de aprendizaje determinó las variables relevantes.

Este modelo se denomina FS-AsHMM. En este caso, el modelo se comparó con otros HMM

con variables sobresalientes. Para la validación se utilizaron datos sintéticos y datos reales de

rodamientos de bolas y cámaras con datos de expresiones faciales. El modelo obtuvo mejores

resultados en cuanto al reconocimiento de expresiones y detección de variables no relevantes.

Las contribuciones anteriores estaban enfocadas al análisis fuera de ĺınea. Sin embargo,

esta tesis se centra en trabajar en entornos industriales, donde se generan flujos de datos y se

espera que los modelos se adapten a los cambios en los datos. Para abordar este problema,

en el Caṕıtulo 7, el AR-AsLG-HMM se adaptó para usarse en flujo de datos y realizar

un aprendizaje continuo. Se utilizaron técnicas de detección de conceptos novedosos para

determinar cuándo aparećıan nuevos patrones no observados. Con base en los conocimientos

de datos del AR-AsLG-HMM del flujo de datos, se propusieron un ı́ndice de salud y un modelo

de regresión para determinar el estado de salud y la vida útil restante de los rodamientos de

bolas. Se utilizaron dos conjuntos de datos para validar la metodoloǵıa propuesta: conjuntos

de datos de acceso abierto con rodamientos de bolas que funcionan hasta el fallo y un banco

de pruebas de rodamientos de bolas de la empresa promotora de la tesis, Aingura IIoT.

Además, en colaboración con el Barcelona Supercomputing center, se optimizó el código de

la metodoloǵıa para integrarlo en edge devices y usarlo en aplicaciones de la vida real. La

metodoloǵıa fue comparada con otras en el estado del arte. Obtuvo mejores resultados en

cuanto a la estimación de la salud, y resultados regulares en cuanto a la predicción de la vida

útil remanente. A continuación, en el Caṕıtulo 8, se adaptó un modelo de prominencia de

variable para HMM para determinar los armónicos relevantes de los datos de rodamientos en

entornos en ĺınea. Sin embargo, este estudio fue un trabajo preliminar para lo que se hizo en el

Caṕıtulo 9, donde se aplicaron las prominencias de variables locales en AR-AsLG-HMM. Este

modelo se denomina LFS-AsHMM. Este modelo se adaptó para usarse en flujos de datos con

técnicas de detección de conceptos novedosos para realizar un seguimiento de la evolución de

las variables relevantes. Este modelo actualizó las variables relevantes solo cuando los datos

lo necesitaban. Para la validación se utilizaron datos de acceso abierto sintéticos y reales

de rodamientos de bolas. El modelo se comparó con otras estrategias y metodoloǵıas que

realizan la selección de variables en flujos de datos. Sin embargo, estas estrategias haćıan la

selección de funciones cada vez que llegaba una nueva instancia y no cuando era necesario.

Desafortunadamente, este modelo no llegó a implementarse en dispositivos de Edge durante
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la redacción de esta tesis.

Finalmente, los modelos propuestos asumen datos gaussianos lineales y si tal suposición

falla, los modelos ya no son válidos. Para abordar tal problema, en el Caṕıtulo 10, las ideas

utilizadas en AR-AsLG-HMM se impusieron sobre los HMM con probabilidades de emisión no

paramétricas, más precisamente, se utilizaron estimaciones de densidad kernel para aproximar

las probabilidades de emisión, y las estimaciones depend́ıan de redes bayesianas espećıficas

del contexto. El modelo propuesto se refiere a KDE-AsHMM. El modelo propuesto se valida

utilizando datos gaussianos no lineales sintéticos y datos reales de acceso abierto de prob-

lemas de reconocimiento de sonido y procesos de fresado de perforación. El modelo mostró

mejoras en la probabilidad y la precisión del reconocimiento de sonido en comparación con

otros HMM. No obstante, los tiempos de aprendizaje y los recursos computacionales fueron

muy exigentes. Al final de la tesis, en el Caṕıtulo 11, se propusieron las correspondientes

conclusiones, comentarios finales y futuras ĺıneas de investigación.
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Chapter 1
Introduction

1.1 Motivation

Nowadays the use of artificial intelligence is being more and more extensive in different daily

life areas. The increasing capacity in data-storage, data processing speed and Internet cov-

erage, have enabled companies, governments and individuals, to obtain, storage and process

huge amounts of data. With the introduction of the Internet of things paradigm, goods and

services have mechanisms to extract data from their usage and condition. The extracted

data is later analyzed in order to generate better and more customized products for future or

current clients. In particular, an interesting application of this paradigm is the industrial In-

ternet of things with the 4.0 industrial revolution (4IR). The 4IR proposes to sensor industrial

assets and production/delivery lines in order to generate actionable insights (Larrañaga et al.

[2018]). However, to obtain such actionable insights, it is required to capture, store, process

and analyze data, and this routine may be done in the industrial asset itself or in an external

server. In the first case, we talk about edge computing: it requires the incorporation of edge

devices as small computers embedded or close to the asset itself; this computer can be used

when the data processing is not complex and does not require huge amounts of data. In the

second case, we talk about cloud computing: this paradigm is an option when the required

data storage is important and the algorithms to analyze and process the data are highly time

and memory consuming. In both cases, as an industrial asset or delivery/production line

may be established in a position far from the control center location, the use of new Internet

technologies such as 4G or 5G can be useful for the data or actionable insights transmission

and communication.

It is desirable for an industrial asset or production/delivery line to prevent anomalies due

to failures or degradation (Tseng [1996]). Within industrial environments, ball bearings are

components which can be found in almost all rotating machinery, and they are commonly

associated with premature failures. An unexpected failure of these components can be critical

enough to stop a production system completely (Mobley [2002]). In spite that these are

designed to not fail under certain given mechanical and thermal constrains, these can fail or

reduce their remaining useful life (RUL) due to changes in their operating conditions (Sutrisno

3
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et al. [2012]). Given this scenario, artificial intelligence via machine learning techniques can

be applied to detect and avoid undesired situations in industrial assets or production/delivery

lines due to a ball bearing failure. In this case, an intelligent system should be able to estimate

the RUL without expensive and extensive training and inference procedures (Skariah et al.

[2020]).

In many cases, the failing mode of an industrial asset or mechanical component as a ball

bearing change abruptly even under the same industrial constraints. A predictive machine

learning algorithms have to deal with highly unbalanced data, as there are not enough failures

to train a standard predictive model. Therefore, a machine learning-based ball bearing health

assessment system has the following specific challenge to overcome: to detect and adapt to

low degradation rates, unbalance data training cases and to be applicable and robust for

machines with extensive lifespans. A possible solution to these issues is to use adaptive

models which update themselves when previously unknown patterns are being observed in

data streams. The identification of such trends is pertinent for a model or AI performance

in an online environment, where learned trends may become obsolete (Markou and Singh

[2003]). Then, an intelligent system dedicated to estimate and predict the ball bearing RUL,

should be able to self-adapt, detect new patterns in data and use the newest trends to re-

estimate the RUL prediction. Furthermore, the model used must run its learning, prediction,

and novel pattern detection algorithms as soon as data arrives to be feasible for industrial

applications. Under such circumstances, hidden Marjov models (HMMs) are a candidate

machine learning model to be used. HMMs are probabilistic graphical models where time

dynamics are taken into consideration and are capable of model non stationary data (Rabiner

[1990]). Due to its simplicity, they do not require large amount of time and memory resources

for their learning and inference tasks, which is desirable when working in edge computing

environments. Additionally, as it is a probabilistic graphical model, its parameters and

structure can be interpreted and failures and data insights can be more easily explained.

1.2 Objective and methodology

From the previous discussion, the following question arises:

Is it possible to define an adaptive model or methodology based on HMMs capable to work

online to estimate ball bearings health and RUL?

The previous question comes with several functional requirements that arise when the

methodology or model is expected to work with data streams in edge devices. The functional

requirements are:

A. The model must be fast in the learning and inference phases

B. The model must be able to detect novel concepts in data streams and adapt to them

C. The model must be able to estimate the industrial asset (ball bearing) health and

remaining useful life (RUL)
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D. The model must work in unsupervised environments, since not enough failure labeled

data is usually available

E. The model must determine the most relevant features in an online manner

F. The model must be interpretable

This thesis will focus on exploring the answer to the previous question taking into account

the functional requirements. To do so, various extensions of HMMs are proposed in order

to obtain and extract additional data insights. These new HMMs are defined theoretically

and their training and inference algorithms are explained with mathematical detail and rigor.

The computational complexity of the algorithms is taken into consideration, especially for

the training phase, since it was noted from previous works e.g., Diaz-Rozo et al. [2020], that

this phase was a bottleneck for online applications. Then, datasets coming from mechanical

setups with ball bearings are used to validate the models. To show the capabilities of the

proposed models and methodologies, they are compared to others from the state of the art.

In this sense, it is proven that the advantages and developments that this thesis is proposing

are not irrelevant. However, for the sake of generality, the models are also tested with other

kind of data such as air pollution data, grammatical face expression and sound records data

sets. In this manner, it is also demonstrated that the proposed models are not ad hoc for

ball bearing data.

1.3 Thesis organization

The thesis is divided into three parts: foundations , contributions and conclusions. The

foundations (Part I) have two chapters:

� Chapter 2 contains the theoretic tools to understand this thesis. Basics of Bayesian

networks, HMMs, kernel density estimation and novelty detection. Special attention is

given to asymmetric HMMs, since from these models, all the contributions are devel-

oped.

� Chapter 3 reviews the state of the art related with HMMs, their asymmetric version,

methods for machine-tool prognosis, offline and online feature subset selection and

kernel density estimation on HMMs.

In the contributions (Part II) there are seven chapters.

� Chapter 4 introduces the first model extension of asymmetric HMMs; the model enables

asymmetric HMMs to deal with Gaussian variables.

� Chapter 5 extends furthermore the capabilities of asymmetric HMMs, allowing observ-

able variables to depend on previous observations.

� Chapter 6 enables asymmetric HMMs to determine the most relevant features in an

embedded manner, i.e., the features are selected during the learning process.
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� Chapter 7 is focused on applying the asymmetric HMMs to online prognosis of ball

bearings in data streams inside edge devices. This chapter can be pointed out as

the core of this thesis, since the main research question and several of the functional

requirements are explored.

� Chapter 8 proposes a first approach to perform feature subset selection in online envi-

ronments using HMMs.

� Chapter 9 extends the ideas proposed in Chapters 6 and 8, where the proposed model

is capable of determining the most relevant features for each data instance in a data-

stream environment.

� Chapter 10 serves as a final extension of the ideas proposed in Chapter 5, which provides

a possible answer to the question: How can the proposed models be extended to deal with

non linear Gaussian data? The solution is based on kernel density estimations.

Later, in the conclusions (Part III), a single chapter is found. Chapter 11 provides an

answer to the main question of the thesis considering its restrictions. Strengths and drawbacks

from each of the proposed models and methodologies are reviewed to determine the level of

satisfaction with the functional requirement constraints. Also, open issues and possible future

research lines are discussed.

Finally, five appendices are found at the end of the thesis with proofs of theorems, sensi-

tivity analyses of the prognosis model and parameters for synthetic data.

1.4 Notation

In this thesis, the following conventions are made: boldface symbols are used to denote

vectors: X is a scalar, whereas X is a vector or matrix. Capital letters are used to denote

random variables, and small letters are used to refer to values of the random variables: X is

a random variable and x is a sample from such variable. The range of a random variable X is

denoted as R(X). For the sake of space
∑

x∈R(X) f(x) is written as
∑

R(X) f(x). The symbol

> will be used to denote matrix transpose, therefore (X1, ...., XT )> is a column vector of size

T . The notation X1:T refers to the row vector (X1, ..., XT ) of size T . If Xt = (Xt
1, ..., X

t
M )

is a row vector of size M , then X1:T = (X1, ...,XT )> is a matrix of size T ×M . If x is a row

vector of size T and y is another row vector of size L, then, the concatenation of vectors is

denoted as [x|y], this new row vector has size T +L. The notation Set(X1:T ) = {X1, ..., XT }
indicates that the vector X1:T is being used as a set. If A is a set and A ⊂ B, then Ac

refers to the complement of A in B or Ac = B\A. Finally, if X1:T is a vector of size T , then

Matrix(X1:T ) is a matrix of zeros of size T × T , but the diagonal corresponds to X1:T .
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Chapter 2
Theoretical background

In real world problems, it is desirable to measure the probability of future or current events

given a set of previously observed ones. A common assumption to compute such probabil-

ities is to assume that each event is independent of the others, and the observed variables

corresponding to the event are also independent, more formally: if X0:T = (X0, ....,XT ) is

a list of events with Xt = (Xt
1, · · · , Xt

M ), then, the independence assumption factorizes the

joint distribution as follows:

P (X0:T ) =
T∏
t=0

M∏
m=1

P (Xt
m), (2.1)

in spite that this assumption eases the computation and estimation of probabilities, it is

known in economics, physics, engineering, biology and so on, that time dependencies and

probabilistic relationships among variables is latent and should not be omitted. A way to

overcome this issue is using Bayesian networks and their extensions, which serves as an

approximation to considerate probabilistic dependencies. This chapter will provide the fun-

damental tools to read and understand the contributions of this thesis. The tools are focused

on modeling probabilistic time series, kernel density estimation, and detect novel trends in

data using dynamical Bayesian networks. For a deeper scope in Bayesian networks and dy-

namic Bayesian networks, the reader is referred to Koller and Friedman [2009] and Murphy

[2002]. Additionally, some foundations signal processing and time series are provided in order

to work with data from industrial assets.

2.1 Bayesian networks

2.1.1 Fundamentals

This section begins with a important concept related to probabilistic dependencies:

Definition 2.1. Let X, Y and Z be random variables. X is conditionally independent

9
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of Y given Z if:

P (X|Y,Z) = P (X|Z) (2.2)

This concept can be used to factorize the joint probability function considering probabilis-

tic relationships among variables. The joint probabilistic function without any simplification

can be written as:
P (Xt) = P (Xt

1, ..., X
t
M )

= P (Xt
1|Xt

2, · · · , Xt
M )P (Xt

2, ..., X
t
M )

=
M∏
m=1

P (Xt
m|Xt

m+1:M ),

(2.3)

Observe that this factorization relies in the index ordering and therefore can be different.

However, this representation is not desired. As instance, in the binary case, i.e., each vari-

able is Bernoulli, each factor P (Xt
m|Xt

m+1:M ) requires to store and estimate 2M−m+1 − 1

probabilities. It is pertinent to reduce the number of parameters and dependencies. Taking

into consideration the conditionally independent property, each factor P (Xt
m|Xt

m+1:M ) can

reduce its dependencies. Let Pat(Xt
m) ⊆ Set(Xt

m+1:M ) be the set of parents of Xt
m or the

subset of variables with the following property:

P (Xt
m|Xt

m+1:M ) = P
(
Xt
m|Pat(Xt

m), (Pat(Xt
m))c

)
= P (Xt

m|Pat(Xt
m)).

(2.4)

In this sense, (Pat(Xt
m))c is the set of variables conditionally independent of Xt

m given

Pat(Xt
m). The set Pat(Xt

m) contains the relevant dependencies of Xt
m for the given index

ordering. The factorization of the joint probability function would be:

P (Xt) =

M∏
m=1

P (Xt
m|Pat(Xt

m)) (2.5)

An example is provided to illustrate the advantages of using conditional independencies.

The factorization in Eq. (2.3) can be pictured as a directed graph in the following manner:

each node of the graph is a variable Xt
m, if Xt

m depends on Xt
n, and arc form Xt

n to Xt
m

is drawn. For m = 4, the factorization in Eq. (2.3) is pictured. Observe that no loop is

generated in the graph, and therefore, the graph is actually a directed acyclic graph (DAG).

Let assume that Xt
1 is independent of Xt

4 given Xt
3 and Xt

2, Xt
2 is independent of Xt

3 given

Xt
4, and Xt

3 is independent of Xt
4. With these considerations, assuming additionally that the

variables are Bernoulli, the number of parameters is reduced from 2 + 22 + 23 + 24 − 4 = 26

to 2 + 2 + 22 + 23 − 4 = 12. The reduced graph considering the mentioned conditional

independencies is drawn in Fig. 2.1.

Now, a useful definition (D-separation) is introduced. It will be useful to characterize

conditional independencies in arbitrary graphs:

Definition 2.2. A set of nodes Z D-separatestwo sets of nodes X and Y in a DAG if, for
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Xt
4

Xt
3

Xt
2

Xt
1

Figure 2.1: Inferred graph from factorization from Eq. (2.3)

Xt
4

Xt
3

Xt
2

Xt
1

Figure 2.2: Inferred graph after introducing conditional independencies

every pair of nodes x ∈ X and y ∈ Y connected by an undirected path, there is a node c in

such path that fulfills one of the followings:

1. c is a converging node in the directed graph with c and its descendants do not belong

to Z.

2. c is not a converging node and c ∈ Z.

In Koller and Friedman [2009] it is proven that if two nodes x and y are D-separated

given a set Z in a DAG, they are conditionally independent. Usually, a DAG model for a set

of variables is proposed and the D-separation property is used to determine for each variable

its conditional independencies. Now, with these definitions and the previous concepts being

cleared, a fundamental definition for this thesis is introduced:

Definition 2.3. Given a set of random variables Set(Xt), a Bayesian network is a tuple

(P,B), where B is a DAG with the following properties.

1. The nodes of B are the elements of Set(Xt).

2. Each node is conditionally independent of its non-descendants given its parents.
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3. Each node has a local probability P
(
Xt
m|Pat(Xt

m)
)

such that the joint probability is

factorized as P
(
Xt
)

=
∏M
m=1 P

(
Xt
m|Pat(Xt

m)
)
.

4. D-separated variables in the graph are independent.

Bayesian networks are a useful tool to provide probabilistic models to describe and predict

random variables and stochastic processes. Due to its structure, it can provide insights of the

nature of the problem and the probabilistic relationships among variables. It also reduces

the number of parameters, which reduces the risk of data overfitting.

2.1.2 Kahn topological ordering

When working with Bayesian networks, it is required for some inference task to visit every

node and have information from all the parent nodes. To ensure that, when passing over a

node, the information of its parents is already stored, a topological ordering can be imposed.

A topological ordering is an ordered list which goes from the nodes with less dependencies

to the ones with the most dependencies. The algorithm described by Kahn [1962] provides

a topological ordering for a directed graph B that also provides a condition to ensure that

B has no cycles. In the case of Bayesian networks, it is pertinent to ensure that a given

graph is a DAG. The main idea of the algorithm is to add a variable to the ordering list only

if all its parents have been already added. A pseudo code of such strategy is presented in

Algorithm 2.1.

Algorithm 2.1 Topological sorting

Input: A directed graph B.
Return: A list L with a topological ordering.

Set L a zero dimensional vector
Set S a set with the nodes of B with not incoming arrows.
while S 6= ∅ do:

Choose s ∈ S.
Set L := [s, L] (concatenation).
for q which s ∈ Pa(q) do:

Set Pa(q) := Pa(q)\{s}.
if Pa(q) = ∅ then:

Set S := S ∪ {q}.
if {q : Pa(q) 6= ∅} 6= ∅ then:

return L and B has a cycle and is not a DAG
else:

return L and B is a DAG

2.1.3 Linear Gaussian Bayesian networks

Linear Gaussian Bayesian networks (LGBNs) are Bayesian networks designed to work with

continuous variables. However, it is assumed that the variables are related in a linear manner
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and the error follows a Gaussian distribution. Therefore, the marginals, joint and conditional

distributions are Gaussian.

Definition 2.4. Let Xt = (Xt
1, ..., X

t
M ) be a continuous random vector. A linear Gaussian

Bayesian network over Xt is a a Bayesian network (θ,B), where B is a directed acyclic

graph (DAG). The parents of Xt
m are given by B and are represented by an ordered vector

of length km denoted as Pa(Xt
m) = (U tm,1, ..., U

t
m,km

), m = 1, ...,M , with U tm,l ∈ Set(Xt),

l = 1, ..., km. θ is formed by the local distributions of each Xt
m conditioned on Pa(Xt

m). The

joint density probabilistic function satisfies:

fXt(Xt) =
M∏
m=1

fXt
m

(Xt
m|Pat(Xt

m))

=
M∏
m=1

N (Xt
m|βm,0 + βm,1U

t
m,1 + · · ·+ βm,kmU

t
m,km , σ

2
m)

=

M∏
m=1

N (Xt
m|U t

mβm, σ
2
m)

(2.6)

In the previous equation βm = (βm,0, βm,1, ..., βm,km)> and U t
m = (1, U tm,1, ..., U

t
m,km

).

Sometimes, it is required to compute some information measures such as divergence,

entropy and so on. Many of such measures have closed formula for Gaussian distributions

but not for LGBN. The next theorem with its proof in Koller and Friedman [2009], gives us

a tool to transform LGBN in multivariate Gaussian distributions (MVG).

Theorem 2.1. Let Xt
m be a node of a LGBN with parents U t

m, weights βm and variance

σ2
m. Assuming that U t

m are jointly Gaussian with normal distribution N (µU ,ΣU ). Then,

the following holds:

1. The distribution of Xt
m is a normal distribution P (Xt

m) = N (µXt
m
, σ2

Xt
m

):

µXt
m

= µUβm

σ2
Xt
m

= σ2
m + β>mΣUβm

(2.7)

2. The joint distribution over [Xt
m|U t

m] is a normal distribution where its covariance matrix

is computed as:

Cov[Xt
m, U

t
m,l] =

km∑
k=1

βm,k[ΣU ]l,k l = 1, ..., km (2.8)

As corollary, if the topological sorting algorithm given in Section 2.1.2 is used an a order

of the graph is used to apply Eq. (2.7) and Eq. (2.8). Then the mean vector and covariance

matrix of all the nodes of a LGBN are computed and a MVG is obtained.
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2.1.3.1 Learning the parameters of a LGBN

To learn the parameters of a LGBN, for each node Xt
m, the set of parameters βm and σ2

m

need to be estimated. Estimation techniques such as the maximum likelihood estimation

(MLE) can be applied for this case. Assume that a sample x0:T has been measured. The

MLE estimator can be found solving:

θ̂ = arg max
θ

ln
(
P (x0:T |θ)

)
(2.9)

In our case, the set of parameters θ = {βm, σ2
m}Mm=1 such that maximizes the log-likelihood

must be estimated:

ln
(
fX0:T (x0:T |θ)

)
= ln

(
T∏
t=0

fXt(xt|θ)

)
= ln

(
T∏
t=0

M∏
m=1

N (xtm|utmβm, σ2
m)

)

=
M∑
m=1

T∑
t=0

ln
(
N (xtm|utmβm, σ2

m)
) (2.10)

Deriving the previous equation with respect to the parameters βm and σ2
m, equating to zero

and solving with respect to the parameters, the following estimating formulas are obtained:

β̂m =
(

(u0:T
m )>u0:T

m

)−1
(u0:T

m )>x0:T
m

σ̂2
m =

1

T + 1

T∑
t=0

(xtm − utmβ̂m)2
(2.11)

The estimation formulas are the same as in the case of ordinary least square (OLS) prob-

lems. Observe that it was assumed that each sample is independent of the others and no

temporal probabilistic dependencies are taken. Once a set of parameters has been learned,

the likelihood computation of a new sample follows from using Eq. (2.6).

2.1.4 Kernel density estimation

2.1.4.1 Motivation

In many scenarios, due to the central limit theorem, the Gaussian distribution is well fitted

to explain and model data distribution from continuous stochastic variables. Nevertheless, in

other cases, the observed data distribution do not correspond to a Gaussian one, as instance,

the waiting times for an event to happen are better modeled using an exponential distribution,

the sum of waiting times behaves as a gamma distribution, and so on. Nonetheless, in many

cases, it is not known the nature of the data distribution and it must be estimated in some

non parametrical manner.

The first approximation to estimate an unknown distribution is using histograms. But,

this approximation has many issues. The number, width and position of the bin edges must

be deduced and the final estimation is not continuous nor smooth Silverman [1986]. A more
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sophisticated and general approximation was introduced in Rosenblatt [1956] and Parzen

[1962], where the data distribution approximation was assumed to be a sum of delta Dirac

equations, and the estimation of the probability density function (pdf) is the derivative of it.

As result of this hypothesis, the density was estimated using a mixture of uniform distribu-

tions, weighted by a bandwidth h (similar to the bin width in an histogram). Nonetheless,

this mixture was generalized in the following manner: let K : R → R be a symmetric pdf,

also known as the kernel, h > 0 a bandwidth, D = (y0, ..., yT ) a training dataset i.i.d from a

random variable Y , a kernel density estimation (KDE) of the pdf fY (y) is defined as:

f̂Y (y|D,h) =
T∑
t=0

1

nh
K

(
y − yt

h

)
. (2.12)

2.1.4.2 Kernel and bandwidth selection

There are many issues to solve when working with kernels, such as selecting the kernel function

K and the bandwidth h. Usually, K is the normal distribution, i.e., K(x) = (2π)−1e−
x2

2 , this

kernel is selected due to its well known properties as smoothness and unbounded support.

However, in Parzen [1962], the selection for K is not crucial in terms of asymptotic behavior.

It was proven that the approximation f̂Y is asymptotically unbiased, if h→ 0 when T →∞
and K has the following properties:

1. sup|y|<∞ |K(y)| <∞ (bounded)

2.
∫∞
−∞ |K(y)|dy <∞ (finite absolute integral)

3. limy→∞ |yK(y)| = 0 (K annihilates y in the limit)

Additionally, it was proven the following two limit properties:

1. limn→∞Var[f̂Y (y|D,h)] = (nh)−1fY (y)
∫∞
−∞K

2(x)dx (limit of the pointwise variance)

2. limn→∞E

[(
f̂Y (y|D,h)− fY (y)

)2
]

= 0 (quadratic mean consistency)

Nonetheless, K can be constructed to ensure the minimization of the error of the estimation,

given that a proper h has been chosen. In Rosenblatt [1956], h is selected as solution of

minimizing the mean integral squared error (MISE):

MISE(h) = E

[∫ ∞
−∞

(
f̂Y (y|D,h)− fY (y)

)2
dy

]
=

∫ ∞
−∞

(
E[f̂Y (y|D,h)]− fY (y)

)2
dy +

∫ ∞
−∞

Var[f̂Y (y|D,h)]dy

(2.13)
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Assuming that the first statistical moment of K is zero, its second moment is finite, not null

and fY (y) is smooth, then, the following approximations can be made (using Taylor series):

E[f̂Y (y|D,h)]− fY (y) ≈ 1

2
h2f

′′
Y (y)dy

∫ ∞
−∞

x2K(x)dx,

Var[f̂Y (y|D,h)] ≈ (nh)−1fY (y)

∫ ∞
−∞

K2(x)dx,

(2.14)

and therefore, the approximate MISE (AMISE) can be defined and used as objective function

for determining h:

AMISE(h) =
1

4
h4

∫ ∞
−∞

f
′′
Y (y)2dy

(∫ ∞
−∞

x2K(x)dx

)2

+ (nh)−1

∫ ∞
−∞

K2(x)dx (2.15)

For this function, the minimization is easily done, but the solution h∗ depends on f
′′
Y (y) which

is unknown:

h∗ =

( ∫∞
−∞K

2(x)dx

n
∫∞
−∞ f

′′
Y (y)2dy(

∫∞
−∞ x

2K(x)dx)2

)1/5

(2.16)

In Jones et al. [1996] many strategies to approximate f
′′
Y (y) or to minimize the MISE or

AMISE function are reviewed and compared. If h∗ is introduced in Eq. (2.15), the optimal

approximate mean integrated square error is:

AMISE(h∗) =
5

4n4/5
C(K)

(∫ ∞
−∞

f
′′
(x)dx

)1/5

. (2.17)

Where C(K) =
(∫∞
−∞ x

2K(x)dx
)2/5 (∫∞

−∞K(x)2dx
)4/5

. It can be noted that minimiz-

ing C(K), also minimizes the AMISE value. Minimizing C(K) with constrains
∫
K(x) =∫

x2K(x) = 1 leads to the the Epanechnikov kernel Epanechnikov [1969]:

Ke(x) =


3

4
√

5

(
1− x2

5

)
, |x| ≤

√
5

0, |x| >
√

5
(2.18)

It can be noted that the optimal kernel Ke(x) is not smooth and has compact support.

For some applications, these properties can be troublesome. It has been proven that other

kernels (e.g. Gaussian, rectangular, triangular, e.t.c.) are almost as efficient as Ke(x) in

terms of C(K) Silverman [1986]. Therefore, as long as K fulfills the conditions to guarantee a

consistent estimation of the density, K can be chosen as desired depending on the application.

All the previous discussion about estimations and properties can be easily generalized

to the case of multidimensional data as stated in Silverman [1986], where the KDE can be

defined as:

f̂Y (y|D,h) =
1

nhM

T∑
t=0

K

(
y − yt

h

)
(2.19)
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2.1.4.3 Bayesian networks based on KDE

In Silverman [1986], it is exposed a table with the minimum number of instances required to

obtain a 1% in the KDE relative square error estimation. This error was measured for a single

point of a MVG distribution for different dimensions. For example, 223 instances are required

in four dimensions, 43700 instances in eight dimensions and 842000 in ten dimensions. It is

observed, that the amount of instances required to obtain an error of 1% (for a single point

estimation), increases rapidly with the dimension. Which implies that KDE is not suitable

to be used in high dimensions. However, it is reasonable to think that a Bayesian network

representation can be used to alleviate this issue and make KDE estimations scalable to high

dimensions. Recall that in a Bayesian network, the joint probability distribution is factorized

using conditional independencies, and therefore, for each variable Xt
m, its conditional proba-

bility P (xtm|Pa(xtm))) must be computed. In the case of KDE, the conditional dependencies

can be computed using directly the definition of conditional pdf Pérez et al. [2009]. Or more

formally:

f̂Xm(Xt
m|Pa(Xt

m)) =
f̂Xm,Pa(Xm)(X

t
m,Pa(Xt

m))

f̂Pa(Xm)(Pa(Xt
m))

(2.20)

In this case, for each factor, two densities must be estimated using KDEs: the joint probability

of a variable and its parents and the marginal of its parents. Therefore, the estimation of the

joint pdf of Xt would be:

f̂X(Xt) =
M∏
m=1

f̂Xm(Xt
m|Pa(Xt

m)) (2.21)

From Eq. (2.20), it is deduced that a KDE estimation in a Bayesian network is reasonable

when each variable has a little amount of parents. Otherwise, the curse of dimension would

make the estimation highly unbiased and expensive to compute. In Pérez et al. [2009], various

structure learning algorithm were used to learn the Bayesian network, as for example, the

Three augmented network (TAN) algorithm by Friedman et al. [1997], the k-dependency

Bayesian classifier (kDB) Sahami [1996] or the PC algorithm by Spirtes et al. [2000]. For

many of these algorithms, is required to know and compute quantities as mutual information

or cross entropy; nonetheless, since the KDE can provide an estimation of the density, is

possible to estimate such quantities. In the case of the mutual information, it was estimated

in the following manner:

I(Xm, Xn) =

∫ ∞
−∞

fXm,Xn(x, y) ln

(
fXm,Xn(x, y)

fXm(x)fXn(y)

)
dxdy

I(Xm, Xn) = EXm,Xn

[
ln

(
fXm,Xn(x, y)

fXm(x)fXn(y)

)]
Î(Xm, Xn) =

1

T + 1

T∑
t=0

ln

(
f̂Xm,Xn(Xt

m, X
t
n)

f̂Xm(Xt
m)f̂Xn(Xt

n)

) (2.22)
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2.2 Learning algorithms for incomplete data

The traditional and most common way to learn the parameters θ for a probabilistic parametric

model is the MLE method which can be summarized in the Eq. (2.9). However, to apply this

method by traditional means, some assumptions must be done over the probability function

or density of the model, i.e., the function must be at least differentiable and the evidence

must be all observable or the likelihood function must be one to one with the parameter

space and for all the parameters the likelihood function must has the same support Hogg

and McKean [2005]. Others possible generalization of the MLE to learn the parameters are

the maximum a posteriori (MAP) where the parameters are assumed to be random variables

and they are estimated as:

θ̂ = arg max
θ

P (θ|x0:T ) = arg max
θ

P (x0:T |θ)P (θ), (2.23)

where the prior P (θ) must be defined and hyper-parameters regarding the prior must be

tuned. However, some probabilistic models can be easily described with the addition of

hidden or unobserved variables, then, the MLE and MAP estimations cannot be directly

applied. In the presence of hidden or unobserved variables, the expectation-maximization

(EM) algorithm is the standard method to estimate the model parameters. The EM algorithm

will be further explained in this section and will be the main tool to estimate parameters

in this thesis and can be considered also as a generalization of the Baum-Welch algorithm

Rabiner [1990]. Other technique to deal with hidden variables is the stochastic variational

Bayesian method (SVB). But as in the case of the MAP estimation, it requires the definition

of priors and tuning hyper-parameters. Also, this method is better suitable when there is not

a closed formula to estimate aposteriori probabilities of the hidden variables, which for this

thesis, is not the case. For a brief comparison between the MLE, MAP, EM, SVB and other

parameter estimation methods, the reader is referred to Tzikas et al. [2008].

2.2.1 The expectation-maximization algorithm

The expectation-maximization (EM) algorithm Dempster et al. [1977] introduces a function

Q which serves as lower bound of the log-likelihood of the observed variables. Assume that

X are the observable variables, H are the non-observable discrete ones and x is a sample

from X. Such bound can be deduced as follows:

LL(θ) := ln(P (x|θ)) =
∑
R(H)

P (h|x,θ′) ln(P (x|θ))

=
∑
R(H)

P (h|x,θ′) ln

(
P (x,h|θ)

P (h|x,θ)

)
= Q(θ|θ′) +H(θ|θ′)

(2.24)
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In the previous equation:

Q(θ|θ′) :=
∑
R(H)

P (h|x,θ′) ln(P (x,h|θ)) (2.25)

H(θ|θ′) := −
∑
R(H)

P (h|x,θ′) ln(P (h|x,θ)), (2.26)

Q(θ|θ′) is the auxiliary function which serves as lower bound of the log-likelihood function;

whereas H(θ|θ′) is the cross entropy of the parameter θ given θ′, with θ′ being an arbitrary

set of parameter. The previous formulas can be exchanged with integral sign if the variables

H are continuous.

In order to optimize Q(θ|θ′), it is required to estimate the latent or a posteriori prob-

abilities of the hidden variables P (h|x,θ′), this step is called the E-step. Then, Q(θ|θ′) is

maximized with respect to θ, this step is called the M-step. In Dempster et al. [1977], it was

shown that the iteration of these two steps, gave as result, a set of parameters θ̂ that reached

a local optima of the likelihood function.

Algorithm 2.2 Expectation Maximization

Input: A prior θ(0), an evidence x, an error ε
Return: Parameter θ̂

Set l = 0.
while error > ε do:

Estimate P (h|x,θ(l)) (E-step)
Solve θ(l+1) = arg maxθQ(θ|θ(l)) (M-Step)
Calculate error = LL(θ(l+1))− LL(θ(l))
if error < ε do:

Set θ̂ := θ(l+1)

Set l := l + 1
return θ̂

2.2.1.1 Learning Gaussian mixture models

As example, the EM algorithm is applied to learn the parameters of a Gaussian Mixture

model. A Gaussian mixture model is a soft clustering model that assumes that the data

distribution can be modeled with a convex combination of normal distributions. This model

is vastly used in the literature as it will be seen in Chapter 3, and therefore is briefly explained

here. Consider the next definition:

Definition 2.5. A Gaussian mixture model (GMM) is a clustering model which uses a

hidden variable Ct = (Ct1, ..., C
t
N ) independent of itself over time, which follows a multinomial

distribution. Whereas, the observable variables Xt follow a MVG distribution, are indepen-

dent of themselves over time and depend on Ct. Set Θ = {ϑi,µi,Σi}Ni=1, the parameters of

the model. A GMM is characterized by:
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1. Marginals: P (Ct|Θ) =
∏N
i=1 ϑ

cti
i , cti ∈ {0, 1},

∑N
i=1 c

t
i = 1,

∑N
i=1 ϑi = 1

2. Full information: P (Xt,Ct|Θ) =
∏N
i=1(ϑiN (Xt|µi,Σi))

cti

From the definition, the marginal and conditional probability of Xt can be computed:

P (Xt|Θ) =
∑
R(Ct)

P (Xt,Ct|Θ) =
N∑
i=1

ϑiN (Xt|µi,Σi). (2.27)

P (Xt|Ct,Θ) =
P (Xt,Ct|Θ)

P (Ct|Θ)
=

N∏
i=1

(N (Xt|µi,Σi))
cti . (2.28)

Assuming that a prior Θ(s) has been discovered. Including the full information into Eq. (2.25),

it follows:

Q(Θ|Θ(s)) =
∑

R(C0:T )

P (c0:T |x0:T ,Θ0)

(
N∑
i=1

cti ln(ϑiN (xt|µi,Σi))

)
. (2.29)

But, using the fact that Ct is independent of itself over time and marginalizing, it holds:

Q(Θ|Θ(s)) =
T∑
t=0

N∑
i=1

ζt(i) ln(ϑiN (xt|µi,Σi)). (2.30)

In the previous equation ζt(i) = P (Cti = 1|xt,Θ(s)). The estimation of ζt(i) is equivalent to

perform the E-step. A closed formula is obtained:

ζt(i) =
P (Cti = 1,xt|Θ(s))

P (xt|Θ(s))
=

ϑiN (xt|µi,Σi)∑N
j=1 ϑjN (xt|µj ,Σj)

. (2.31)

To perform the M-step, Eq. (2.30) has to be optimized with respect to Θ. However, there are

restrictions on some parameters of the model (
∑

i=1 ϑi = 1) and hence a Lagrangian function

L must be constructed to take into consideration these constraints. Then, the function L is

derived with respect to each parameter and equalized to zero.

From the M-step, the following updating formulas are obtained:

ϑ
(s+1)
i =

∑T
t=0 ζ

t(i)

T + 1

µ
(s+1)
i =

∑T
t=0 x

tζt(i)∑T
t=0 ζ

t(i)

Σ
(s+1)
i =

∑T
t=0(xt − µi)>(xt − µi)ζt(i)∑T

t=0 ζ
t(i)

(2.32)
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2.2.2 The structural EM algorithm

In many scenarios, when it is desired to apply Bayesian networks to represent the data,

no model from domain-knowledge can be provided, and discover conditional independencies

for several tuples of variables can be expensive. Nevertheless, statistical methodologies can

be used to discover associations in data such as the TAN , the kDB or the PC algorithm.

However, in the case of the TAN or the kDB, a class variable is required, which in the

case of HMM is not valid, and in the case of PC algorithm, the computation of mutual

information for several variables it si unfeasible. Another possible solution is to use heuristic

or meta-heuristic strategies to search the space of possible DAGs. The main of the search is

to optimize the fitness of the model; nonetheless, as said in Bueno et al. [2017], when many

parameters are used in dense networks, the likelihood improves but it can be due to data

overfitting. Therefore, a penalized fitness can be used as objective function; some examples

of such scores are the Bayesian criterion information (BIC) Schwarz [1978] or the Akaike

information criterion (AIC) Akaike [1974]. Let #(B) be the number of parameters needed by

the Bayesian network (P,B), and T the number of instances of the evidence x, then:

BIC(B, λ) = lnL(x|B,λ)− 0.5#(B) ln(T + 1), (2.33)

AIC(B, λ) = 2 ln(L(x|B,λ)− 2#(B). (2.34)

In Friedman [1998] the structural EM (SEM) algorithm was introduced with its conver-

gence and optimality properties. SEM helps us to find the desired model and parameters in

the presence of hidden variables. The SEM takes into account the overfitting issue and during

its optimization process, the score function has a BIC penalization style. In this manner,

the networks are expected to be enough complex to explain the data preventing overtfitting

issues. The SEM is described in Algorithm. 2.3. Friedman [1998] proposed the auxiliary

function Q(B,λ|B0,λ0) to be optimized during the structural learning of the model:

Q(B, λ|B0,λ0) = EP (H|x,B0,λ0)[P (x,H|B,λ)]− 0.5#(B) ln(T + 1). (2.35)

2.3 Hidden Markov models

Until now, time dynamics have been omitted in the Bayesian networks, or in other words,

the samples have been assumed to be independent over time. There are Bayesian networks

which address the time dependencies. Murphy [2002] discussed this issue and proposed the

dynamical Bayesian networks. Two main models (and their extensions) were recognized as

dynamical Bayesian networks, which are: Kalman filters and hidden Markov models. In spite

of the relevance of Kalman filters, they are not going to be reviewed further in this thesis.

On the other hand, the hidden Markov models are going to be reviewed in deep, since this is

the base model for the extensions proposed in this thesis.
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Algorithm 2.3 Structural Expectation Maximization

Input: Prior B(0), Prior λ(0,0), SEM error ε1, EM error ε2, maximum number of iterations
lmax and data x
Return: (λ∗,B∗)

Set l1 = 0
while l1 < lmax and error1 > ε1, do:

Use EM with ε2, x and λ(l1,0), find λ(l1,∗) for graph B(l1)

Find a graph B(l1+1) that maximizes Q(B,λ|B(l1),λ(l1,∗))
Find λ(l1+1,0) that maximizes Q(B(l1+1),λ|B(l1),λ(l1,∗))
Compute error = BIC(B(l1+1),λ(l1+1,0))− BIC(B(l1),λ(l1,∗))
if error < ε1 or l1 ≥ lmax

Use EM with ε2 and λ(l1+1,0), find λ(l1+1,∗) for model B(l1+1)

Set λ∗ := λ(l1+1,∗)

Set B∗ := B(l1+1)

Set l1 := l1 + 1
return λ∗ and B∗

2.3.1 Fundamentals

LetX0:T be an observable stochastic process. Assume that the processX0:T is dependent of a

hidden or unobservable stochastic processQ0:T = (Q0, ..., QT ), where the range of Qt is finite,

i.e, R(Qt) := {1, 2, ..., N}, t = 0, 1, ..., T . These values are called states and determine the

process X0:T . A HMM is a double stochastic process, where the stochastic hidden process

Q0:T is assumed to fulfill the Markov property. Whereas, X0:T is usually assumed to be

independent of itself over time and dependent of Q0:T . In a more formal way, an HMM can

be defined as follows (Rabiner [1990]):

Definition 2.6. A hidden Markov model is a triplet λ = (A,B,π) where A = [aij ]
N
i,j=1

is a matrix representing the transition probabilities between the hidden states i, j at time

t, i.e. aij = P (Qt+1 = j|Qt = i); B = [bj(X
t)]Nj=1 is a vector representing the emission

probability of the observations given the hidden state; if Xt is discrete and its range has κ

possible values, then bj(X
t) = [P (X = xk|Qt = j)]κk=1 and B has dimension κ × N . If Xt

is continuous, bj(X
t) = f(Xt|Qt = j) and the components of B are pdfs. Finally, π is the

initial distribution of hidden states π = [πj ]
N
j=1, where πj = P (Q0 = j).

Q0 Q1 Q2 Q3

X0 X1 X2 X3

. . .

Figure 2.3: An HMM can be seen as a probabilistic graphical model.

Note that the model assumes that the transition probabilities and emission probabilities
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do not depend on time t, i.e., atij = aij and btj(x
t) = bj(x

t). Also, an HMM can be seen as

a probabilistic graphical model (Fig. 2.3), where the nodes of the graph represent random

variables and the arcs represent direct probabilistic dependencies, see Murphy [2002].

Given a model λ = (A,B,π), an instance x0:T of X0:T and q0:T of Q0:T , it is possible

to compute the joint probability function (or the complete information) of the model. To do

this, conditional independencies can be deduced from the graph in Fig. 2.3 using D-separation

(see Section 2.1.1). The found conditional independencies factorize the complete information

as:

P (q0:T ,x0:T |λ) = πq0

T−1∏
t=0

aqt,qt+1

T∏
t=0

bqt(x
t). (2.36)

Three main tasks can be performed in the context of HMMs. First, given a model λ, compute

the likelihood of a new instance x, i.e., P (x|λ), which can be done using the forward-backward

algorithm. Second, given a model λ and a set of observations x0:T , estimate the most probable

sequence of hidden states, which can be solved using the Viterbi algorithm. Third, learn the

model λ, which is estimated with the EM algorithm instead of the maximum likelihood

method. These algorithms can be further detailed in Rabiner [1990]. Nevertheless, for the

sake of completeness, they are reviewed.

2.3.2 The EM algorithm for HMMs

In this section, it is shown how the EM algorithm can be used to learn the model λ =

(A,B,π). Since this procedure will be repeatedly done during all the document, special

attention to details are provided.

The algorithm consists of two steps, the expectation (E) step and the maximization (M)

step. Assume that N hidden states are used and a current model λ(s) is known. Using

Eq. (2.36) in Eq. (2.25), it is obtained that Q(λ|λ(s)) in the context of HMM is:

Q(λ|λ(s)) =
∑

R(Q0:T )

P (q0:T |x0:T ,λ(s)) lnπq0+
∑

R(Q0:T )

T−1∑
t=0

P (q0:T |x0:T ,λ(s)) ln aqt,qt+1

+
∑

R(Q0:T )

T∑
t=0

P (q0:T |x0:T ,λ(s)) ln bqt(x
t).

(2.37)

Marginalizing the latent probabilities in each sum, Q(λ|λ(s)) can be written in a tractable

way:

Q(λ|λ(s)) =

N∑
i=1

γ0(i) lnπi +

T−1∑
t=0

N∑
i=1

N∑
j=1

ξt(i, j) ln aij +

T∑
t=0

N∑
i=1

γt(i) ln bi(x
t), (2.38)

where γt(i) := P (Qt = i|x0:T ,λ(s)) and ξt(i, j) = P (Qt = i, Qt+1 = j|x0:T ,λ(s)). Addition-

ally, it is noticeable that the quantities γt(i) and ξt(i, j), i, j = 1, ..., N , t = 0, ..., T can be
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decomposed in factors as follows:

γt(i) = P (Qt = i|x0:T ,λ(s))

=
P (Qt = i,x0:T |λ(s))∑N
j=1 P (Qt = j,x0:T |λ(s))

=
P (xt+1, ...,xT |Qt = i,λ(s))P (Qt = i,x0, ...,xt|λ(s))∑N

j=1 P (Qt = j,x0:T |λ(s))

=
βt(i)αt(i)∑N
j=1 β

t(j)αt(j)
.

(2.39)

Using the same tricks, it can be obtained that:

ξt(i, j) = P (Qt = i, Qt+1 = j|x0:T ,λ(s))

=
P (Qt = i, Qt+1 = j,x0:T |λ(s))∑N

u,v=1 P (Qt = u,Qt+1 = v,x0:T |λ(s))

=
αt(i)aijbj(x

t+1)βt+1(j)∑N
u,v=1 α

t(u)auvbv(xt+1)βt+1(v)
.

(2.40)

αt(i) = P (Qt = i,x0, ...,xt|λ(s)) is the forward variable and βt(i) = P (xt+1, ...,xT |Qt =

i,λ(s)) is the backward variable. They can be estimated using the forward-backward algo-

rithm which will be described in Section. 2.3.3. Therefore, estimating γt(i) and ξt(i, j) for

i = 1, ..., N , t = 0, ..., T , in the case of HMMs corresponds to the E-step.

For the M-step, Eq. (2.38) must be optimized with respect to λ. The updating formulas

for parameters A and π can be computed using Lagrange multipliers. The restrictions are:∑N
i=1 πi = 1,

∑N
j=1 aij = 1, i = 1, ..., N . The Lagrangian function with multipliers µ0, ..., µN

is:

L(λ) = Q(λ|λ(s)) + µ0(1−
N∑
i=1

πi) +
N∑
i=1

µi(1−
N∑
j=1

aij). (2.41)

Computing the derivative of L in Eq. (2.41) with respect to πi and equating to zero, it follows

that:
∂L
∂πi

=
γ0(i)

πi
− µ0 = 0 (2.42)

The value of µ0 must be determined. Using
∑N

i=1 πi = 1 and
∑N

i=1 γ
t(i) = 1 for t = 0, ..., T ,

then:

πi =
γ0(i)

µ0
⇒

N∑
i=1

πi =

∑N
i=1 γ

0(i)

µ0
⇒ µ0 = 1. (2.43)

Therefore, the updating formula for πi is:

π
(s+1)
i = γ0(i), i = 1, ..., N. (2.44)
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Similarly, with respect to aij :

∂L
∂aij

=
T−1∑
t=0

ξt(i, j)

aij
− µi = 0 (2.45)

The value of µi must be also determined for i = 1, ..., N . Using the fact that
∑N

j=1 aij = 1

and
∑N

j=1 ξ
t(i, j) = γt(i) for t = 1, ..., T , then:

aij =

∑T−1
t=0 ξt(i, j)

µi
⇒

N∑
j=1

aij =

∑T−1
t=0

∑N
j=1 ξ

t(i, j)

µi
⇒ µi =

T−1∑
t=0

γt(i). (2.46)

Therefore, the updating formula for aij is:

a
(s+1)
ij =

∑T−1
t=0 ξt(i, j)∑T−1
t=0 γt(i)

, i, j = 1, ..., N. (2.47)

The updating formula for parameter B relies on the assumptions made over the observable

variables and the emission probabilities. Note that if the hypotheses about the transition

probabilities between hidden states or observable variables change, the formulas described

above do not longer hold.

2.3.3 Forward-backward algorithm

Given a current model λ(s), to compute the forward αt(i) = P (Qt = i,x0:t|λ(s)) and backward

βt(i) = P (xt+1:T |Qt = i,λ(s)) variables they can be written in a recursive way:

αt+1(i) =
N∑
j=1

P (Qt = j,Qt+1 = i,x0, ...,xt+1|λ(s))

=
N∑
j=1

P (xt+1|Qt+1 = i,λ(s))P (Qt = j,Qt+1 = i,x0...,xt|λ(s))

=

N∑
j=1

P (xt+1|Qt+1 = i,λ(s))P (Qt+1 = i|Qt = j,λ(s))P (Qt = j,x0, ...,xt|λ(s))

=

N∑
j=1

bi(x
t+1)ajiα

t(j), t = 0, ..., T − 1, i = 1, ..., N.

(2.48)



26 CHAPTER 2. THEORETICAL BACKGROUND

βt(i) =
N∑
j=1

P (Qt+1 = j,xt+1, ...,xT |Qt = i,λ(s))

=

N∑
j=1

P (xt+2, ...,xT |Qt+1 = j,λ(s))P (xt+1, Qt+1 = j|Qt = i,λ(s))

=
N∑
j=1

P (xt+2, ..,xT |Qt+1 = j,λ(s))P (xt+1|Qt+1 = j,λ(s))P (Qt+1 = j|Qt = i,λ(s))

=

N∑
j=1

βt+1(j)bj(x
t+1)aij , t = T − 1, ..., 0, i = 1, ..., N.

(2.49)

In summary:

αt+1(i) =
N∑
j=1

bi(x
t+1)ajiα

t(j), βt(i) =
N∑
j=1

βt+1(j)bj(x
t+1)aij . (2.50)

The initialization for the forward and backward variables are respectively α0(i) = πibi(x
0)

and βT (i) = 1, i = 1, ..., N . Observe in particular that the forward variable can help us to

compute the likelihood of xt since:

P (x0:T |λ(s)) =

N∑
i=1

P (x0:T , QT = i|λ(s)) =

N∑
i=1

αT (i). (2.51)

However, in practice, the scaled forward-backward algorithm must be used since this algo-

rithm converges to zero when the dataset is long. The long multiplications of values smaller

than 1 provoke such problem. A tutorial to scale the forward-backward algorithm is presented

in Rabiner [1990].

2.3.4 The Viterbi algorithm

The Viterbi algorithm (Viterbi [1967]) can be described as an MLE algorithm which uses a

forward dynamic programming strategy to search optimal sequences. Given a model λ and

a sample x0:T , it is desired to estimate the most probable sequence of hidden states q0:T . To

do so, the next auxiliary problem is solved for every time instance t = 0, ..., T and hidden

state i = 1, ..., N :

δt(i) = max
q0,...,qt−1

P (Qt = i,x0, ...,xt, q0, ..., qt−1|λ). (2.52)
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It is noticeable that the variable δt(i) can be written as:

δt(i) = max
q0,...,qt−1

{P (x1, ...,xt, q0, ..., qt−1, Qt = i|λ)}

= max
q0,...,qt−1

{P (xt|Qt = i,λ)P (x1, ...,xt−1, q0, ..., qt−1, Qt = i|λ)}

= max
q0,...,qt−1

{P (Qt = i|qt−1,λ)P (x1, ...,xt−1, q0, ..., qt−1|λ)}P (xt|Qt = i,λ)

= max
j=1,...,N

{ajiδt−1(j)}bi(xt).

(2.53)

In summary:

δt(i) = max
j=1,..N

{ajiδt−1(j)}bi(xt), (2.54)

with initialization δ0(i) = πibi(x
0) for i = 1, ..., N . The maximization problem in Eq. (2.54)

can be solved recursively as in the forward or the backward variables. However, to find the

most probable sequence of states q0:T = (q0, ..., qT ) it is necessary to use an auxiliary variable

ψt(i), i = 1, ..., N , t = 0, ..., T which will record the probabilities of transitions between states

and will be used to perform a backtracking procedure. In Algorithm. 2.4 a pseudo-code of

the algorithm is provided.

Algorithm 2.4 The Viterbi algorithm for HMMs

Input: Parameters λ = (A,B,π), and a sample x0:T

Return: The most probable sequence of states q0:T = (q0, ..., qT )
Compute δ0(i) = πibi(x

0), i = 1, ..., N
Compute ψ0(i) = 0, i = 1, ..., N
for t = 1, ..., T do:

Compute δt(i) = maxj=1,...,N{ajiδt−1(j)}bi(xt), i = 1, ..., N
Compute ψt(i) = arg maxj=1,...,N{ajiδt−1(j)}, i = 1, ..., N

Compute qT = arg maxj=1,...,N{δT (j)}
for t = T − 1, ..., 0 do:

Compute qt = ψt+1(qt+1)
Return q0:T

2.3.5 Asymmetric HMMs

Asymmetric hidden Markov models were defined by Bueno et al. [2017] as a way to personalize

and adapt the emission probabilities of discrete HMMs to different scenarios. This model was

motivated to reduce the set of parameters in HMMs in order to avoid overfitting problems.

The main idea is to take into consideration information asymmetries, i.e., the hidden variable

determines a context and that context can provide a personalized emission probability for

each instance of the hidden state, where the set of parameters to explain the observed data

changes. To define formally an asymmetric HMM (As-HMM), it is necessary to introduce

what a context-specific Bayesian network is (Boutilier et al. [1996]):
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Definition 2.7. Let Xt = (Xt
1, ..., X

t
M ) and Qt be random variables. For each qt ∈ R(Qt)

a Bayesian network over Xt is associated, called the context-specific Bayesian network

related to qt or (Pqt ,Bqt). The following conditional distribution is defined:

Pqt(X
t) := P (Xt|qt) =

M∏
m=1

P (Xt
m|Patqt(X

t
m)). (2.55)

Definition 2.8. An asymmetric hidden Markov model λ = (A,B,π) is an HMM with

initial distribution π = [πj ]
N
j=1, where πj = P (q0 = j), transition probabilities between the

hidden states A = [aij ]
N
i,j=1, where aij = P (Qt+1 = j|Qt = i) and emission probability vector

B = [bj(x
t)]Nj=1, where bj(x

t) = Pj(x
t) is a context-specific Bayesian network.

In Bueno et al. [2017] it is assumed that the random vector Xt is composed of discrete

random variables. Therefore, the emission probabilities B can be seen as a list of matrices,

whose dimensions will depend on the complexity of the state-specific Bayesian network. The

simpler the context-specific Bayesian network (few arcs in the network), the smaller is the

matrix for the emission probabilities. This model can be seen as a dynamic Bayesian net-

work (Fig. 2.4), where the emission probabilities satisfy Eq. (2.55). In the figure, note that

depending on the value of the hidden variable Qt, the emission probability changes, given the

conditional dependencies present in the state-specific Bayesian network. When Qt = 1, the

variable Xt
2 depends on Xt

1; but, when Qt = 2, both variables Xt
1 and Xt

2 are independent.

Qt+1 Qt+2 Qt+3

b 1
(x
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1
)
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Figure 2.4: Graphical representation of an As-HMM model
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2.3.5.1 EM to learn As-HMMs

The assumptions about independence between observations and states are the traditional

ones. Therefore, the updating formulas for A and π are the same as in Eq. (2.44) and

Eq. (2.47). On the other hand, in Bueno et al. [2017] it is assumed that each variable

Xt
m has finite range and it has wm, m = 1, ...,M possible values. Also, from the defini-

tion of As-HMM, it is possible that each variable Xt
m, for each hidden state i ∈ R(Qt),

has a different set of parents. Let κim be the number of parent configurations for vari-

able Xt
m at the hidden state i. It is necessary to index the κim possible configurations

and let Pati(Xm)k be the k-th parent configuration for variable Xt
m at the hidden state i,

k = 1, ..., κim. Due to the previous comments, the following restrictions hold on the emission

probabilities:
∑wm

j=1 P (Xm = j|Pati(Xm)k) =
∑wm

j=1 θimjk = 1, i = 1, ..., N , m = 1, ...,M ,

k = 1, ..., κim. These restrictions must be taken into account in the Lagrangian function:

L(λ) = Q(λ|λ(s))+µ0(1−
N∑
i=1

πi)+
N∑
i=1

µi(1−
N∑
j=1

aij)+
N∑
i=1

M∑
m=1

κim∑
k=1

νimk(1−
wm∑
j=1

θimjk). (2.56)

However the emission probabilities have changed, i.e., bi(x
t) = Pi(x

t), and hence the auxiliary

function Q(λ|λ(s)) as well:

Q(λ|λ(s)) =
N∑
i=1

γ0(i) ln(πi) +
T−1∑
t=0

N∑
i,j=1

ξt(i, j) ln(ai,j) +
T∑
t=0

N∑
i=1

M∑
m=1

γt(i) ln(P (xtm|Pati(x
t
m))).

(2.57)

If Eq. (2.56) is derived respect to θimjk and set to zero, it follows that:

∂L
∂θimjk

=
T∑
t=0

γt(i)χ(xtm=j,Pati(x
t
m)k)

θimjk
− νimk = 0, (2.58)

The value of νimk must be found, to do so, note that
∑wm

j=1 θimjk = 1 and
∑wm

j=1 χ(xtm=j,Pai(xtm)k) =

χ(Pai(xtm)k) and therefore:

θimjk =

T∑
t=0

γt(i)χ(xtm=j,Pati(x
t
m)k)

νimk
,

wm∑
j=1

θimjk =

∑T
t=0

∑wm
j=1 γ

t(i)χ(xtm=j,Pati(x
t
m)k)

νimk
,

νimk =

T∑
t=0

γt(i)χ(Pati(x
t
m)k).

(2.59)

Thus, the updating formula for θimjk is:

θ
(s+1)
imjk =

∑T
t=0 γ

t(i)χ(xtm=j,Pati(x
t
m)k)∑T

t=0 γ
t(i)χ(Pati(x

t
m)k)

. (2.60)
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Remember that the parameter θimjk must be updated for i = 1, ..., N , m = 1, ...,M , j =

1, ..., wm and k = 1, ..., κim.

2.3.6 Feature saliency models

In real life problems, not all the measured features can be relevant to explain a target variable,

or an unsupervised behavior. Therefore, a feature subset selection (FSS)1 procedure must be

performed to choose the most relevant and non redundant features to learn a model. In this

manner, noise and unrelated behaviors are omitted from the model and future analysis. As

it will be seen in Section 3.2 and Section 3.4, there are different ways to perform (partially)

this task. In this section, it will be reviewed a methodology to select features in probabilistic

models in an embedded manner, i.e., the relevant features for the model are learned during

its learning phase. Assuming that a cluster or class variable C is present, traditionally, the

relevancy definition (Barddal et al. [2019]) is stated as follows:

Definition 2.9. A feature Xm ∈ Set(X1:M ) is strong relevant if and only if, for the

set Sm = Set(X1:M ) ∩ Set(X1:M )\{Xm} there exist some sm ∈ R(Sm), c ∈ R(C) and

xm ∈ R(Xm) such that P (xm, sm) > 0 and

P (c|xm, sm) 6= P (c|sm). (2.61)

However, for our case, since the class variable C is not present, but a cluster or hidden

variable H, the relevancy definition provided by Law et al. [2004] will be used:

Definition 2.10. A feature Xm ∈ Set(X1:M ) is relevant in an unsupervised problem

if there is xm ∈ R(Xm) and h ∈ R(H) such that:

0 < P (xm|H = h) 6= P (xm|H = h′), ∀h′ 6= h (2.62)

Under this notion of relevancy, feature saliency models are defined. The idea behind any

feature saliency model is to declare a set of binary variables, say {Zm}Mm=1, which will indicate

the feature relevancy. Each Zm variable follows a Bernoulli distribution with a parameter

ρm, which is called the feature saliency of the Xm variable. If ρm = 1, it implies that the

feature is relevant. If ρm = 0, it indicates that the variable is irrelevant. If ρm ∈ (0, 1), a

threshold ρ̄ can be imposed as a decision boundary to determine whether or not a variable is

relevant. For example, in the case of feature saliency HMMs, the feature saliency parameters

are added to the emission probabilities, see Adams et al. [2016]:

bi(X
t) =

M∏
m=1

(
ρmN (Xt

m|µim, σ2
im) + (1− ρm)N (Xt

m|εm, τ2
m)
)
. (2.63)

If ρm = 1, the pdf used for the variable Xt
m depends on the hidden state Qt, and the

variable is affected by changes in the context. This pdf will be referred to as the relevant

1See Saeys et al. [2007], for a review on FSS



2.4. NOVELTY DETECTION 31

component. Alternatively, if ρm = 0, the pdf does not depend on the hidden state Qt and

the variable Xt
m is considered as noise.

To learn the model parameters, different approaches can be used. In the case of Adams

et al. [2016], the EM and MAP algorithms were used; whereas, in the case of Nguyen et al.

[2015], the SVB method was applied. Further examples of feature saliency models are re-

viewed in Section 3.2.3.

2.4 Novelty detection

In real life problems, it is common to track the evolution of a variable over time and expect

it to be in a controlled level or behave as a stationary random variable with low variance, for

example, the magnitudes of vibration and temperature of a mechanical system, the amount

of contaminants in the air in a city, the level of sugar in blood and so on. It is of interest to

determine when there is statistical evidence to say that the observed variable has a different

statistical behavior and the stationary property is no longer valid. A concept drift arises when

data drifts from a statistical behavior to another one, or in other words, when there is evidence

that the data has changed in distribution over time. But, sometimes, the changes in data are

known and expected, and therefore the stationary property does not hold. For example, the

electric profile of a machine-tool during its routine time or the climate temperature during

a year. In such cases, it is interesting to determine when new trends in data appear and do

not correspond to any of the known drifts. This task is known as novelty detection. The

previous concepts can be put into a definition:

Definition 2.11. Let X0:T be a stochastic process which is described by a sequence of

distributions, densities or parameters θ0:T . Then:

1. X0:T is stationary if θt+1 = θt for t = 0, ..., T − 1

2. A concept drift at time t is characterized as θt 6= θt+1, and therefore X0:T is not

stationary.

3. A novel concept appears at t if θt 6= θl for l = 0, ..., t− 1.

As it is known, in the machine learning literature, usually, a class variable or a cluster

variable Ct needs to be studied, modeled and predicted. As consequence, three kinds of

concept drift can occur in the joint stochastic process: real drifts, virtual drifts and feature

drifts. A real drift can be understood as a change in the conditional probability distribution

of the class or clustering variables given the predictor variables. A virtual drift is seen as a

modification on the joint probability distribution of the predictor variables, see Oliveira et al.

[2021]. A feature drift can be understood as a change in the relevant features which define

the class or clustering variables distribution, see Barddal et al. [2019]. A formal definition of

these terms is provided below.

Definition 2.12. Let (X0:T ,C0:T ) be a supervised or unsupervised stochastic process, where

Ct is the class or cluster variable and Xt is the predictor random vector. Then:
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1. A virtual drift at time t happens when P (Xt|θt) 6= P (Xt|θt+1).

2. A real drift at time t happens when P (Ct|Xt,θt) 6= P (Ct|Xt,θt+1).

3. Let Dt ⊂ Set(Xt) be the best subset of relevant features related to Ct. A feature

drift at time t happens when Dt 6= Dt+1.

It is desirable to detect novel concepts and concept drifts in data. A näıve and natural

strategy would be to impose a set of thresholds for the predictor variables. If any of the

thresholds is violated, a concept drift is detected. However, there may be several false alarms

due to outliers, and to determine optimal values for the thresholds is not a straightforward

issue. A solution to these problems relies on the Page sequential test. Such test with the

Chernoff bounds are used to detect outliers in stochastic processes in a robust manner, i.e.,

a concept drift is declared only if the number of outliers is significant.

There are other techniques to detect concept drifts, see Gama et al. [2014], such as

multidimensional hypothesis testing. Nonetheless, they require labeled data and are high

time consuming, which may be unfeasible for some applications.

2.4.1 The Page sequential test

The Page sequential test (Page [1954]) is a tool to detect data deviation in time series. Assume

that a stochastic process X0:T is being observed and let st : R(X0:t)→ R be a function which

summarizes the observations x0:t. It is interesting to determine if xt is anomalous given the

previous data summaries values {sl(x0:l−1)}t−1
l=0 . For that, it is imposed that xt is anomalous

in an increasing manner if, given a threshold Γ > 0, the following condition is met for any

instant:

st(x0:t) ≥ sl(x0:l) + Γ, (2.64)

or more simply, if st(x0:t) deviates Γ units from any previous sl(x0:l), l = 0, ..., t − 1. Then

the observation xt is considered as an outlier. The previous equation can be expressed in a

more useful way:
st(x0:t)− min

l=0,...,t−1
sl(x0:l) ≥ Γ. (2.65)

The previous equation is the Page sequential test for increasing schemes. This implies that, if

the summary st(x0:t) decreases with respect to {sl(x0:l)}t−1
l=0 , it will not trigger the previous

equation. The Page sequential test for decreasing schemes can be stated in a similar manner:

max
l=0,...,t−1

sl(x0:l)− st(x0:t) ≥Γ (2.66)

In Page [1954], xt was considered as a one dimensional increasing time series and st(x0:t) =∑t
l=0 x

l; in other words, the test was checking if the accumulative values of xt increased

drastically over time. Another example of function st but for multivariate data can be found

in Diaz-Rozo et al. [2020] which is an adaptation of the Page-Hinkley test proposed by

Hinkley [1971]. A Gaussian mixture model was used to explain the data and the quality

of the model was measured with the BIC value. They proposed a st function based on
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the mean temporal deviation of the current BIC value from its current mean value, i.e.,

st(x0:t) = 1
t

∑t
l=0(BIC(xt) − 1

l

∑l
k=0 BIC(xk) + δ) with δ > 0. Despite its simplicity, the

Page test is a stronger and faster tool to deal and detect outliers in sequential data.

2.4.2 The Chernoff bounds

The identification of an anomaly can provoke false positive alarms. Therefore, it is necessary

to determine the amount of anomalies in order to generate an alarm of undesirable or unknown

behavior. The Chernoff bounds, see Chernoff [1952], can be used for this purpose, as in Diaz-

Rozo et al. [2020], applied to detect anomalous behavior in industrial environments. These

bounds can determine an estimation of the minimum amount of anomalies in a window time

to declare a change in the data trend. To determine the number of anomalies, recall the

sampling problem: given an error ε, a confidence γ and a target proportion p of anomalies,

the sample size n∗, such that the sampled proportion pn∗ fulfills pn∗ < p, must be estimated.

In probability terms, this problem can be stated as:

P (p− pn∗ < ε) ≥ 1− γ, (2.67)

The Markov inequality can be applied, and take an arbitrary l > 0 to obtain that:

P (n∗pn∗ > n∗(p− ε)) = P
(
eln
∗pn∗ > eln

∗(p−ε)
)

< E
[
elnpn∗

]
e−ln(ε−p)

≤ inf
l
E
[
elnpn∗

]
e−ln(p−ε),

(2.68)

It is required to compute inf lE
[
eln
∗pn∗

]
e−ln

∗(p−ε). Observe that E
[
eln
∗pn∗

]
is the moment-

generating function of a binomial distribution i.e., E
[
eln∗ pn∗

]
= (1 − p + pel)n

∗
. Define the

auxiliary function f(l) := ln
(
E
[
eln∗ pn∗

]
e− ln∗(p−ε)) = n∗ ln(1−p+pel)−ln∗(p−ε), its optimal

value is l∗ = ln
(

(p−ε)(1−p)
(1−p+ε)p

)
. Substituting l∗ in ef(l), it follows that:

inf
l
E
[
eln
∗pn∗

]
e−ln

∗(p−ε) =

((
1− p

1− p+ ε

)1−p+ε( p

p− ε

)p−ε)n∗
= e−DKL(p−ε||p)n∗ ,

(2.69)

where DKL(p−ε||p) is the divergence of Kullback-Leibler for two Bernoulli distributions with

parameters p− ε and p. Substituting this result in Eq. (2.67), the following inequality holds:

e−DKL(p−ε||p)n∗ ≥ 1− γ

n∗ ≥ − ln(1− γ)

DKL(p− ε||p)
(2.70)

The previous equation states that if a sample of at least − ln(1−γ)
DKL(p−ε||p) instances is taken, with

a confidence of γ and true proportion of anomalies p; then the estimated proportion pn∗ ,
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has an error of ε with respect to p. If the estimated proportion pn∗ overpasses p, there is

evidence that the real proportion of anomalies is greater than p and an alarm of unknown or

undesirable behavior must be generated, i.e., a concept drift.

2.5 Ball bearings

2.5.1 Ball bearing fundamental frequencies

One of the common practical application of this thesis is focused on determining the health

state of ball bearings. Therefore, it must be known what a ball bearing is and its fundamental

frequencies. A ball bearing is a machine component that is usually used to allow a shaft to

rotate in int longitudinal axis. A ball bearing is composed of many components; namely,

outer race, inner race, rollers and cage. Fig. 2.5 shows how a bearing looks like.

Pitch diameterBall diameter

Outer race

Inner race

Roller

Cage

+

ω

α

Figure 2.5: Bearings schematic figure. In this case the bearing is rotating counterclockwise at a
rotational speed of ω

If the geometry of the ball bearing is known, its fault frequencies can be computed (Graney

and Starry [2011]):

BPFO =
rω

2
(1− B

P
cos(α)),

BPFI =
rω

2
(1 +

B

P
cos(α)),

FTF =
ω

2
(1− B

P
cos(α)),

BSF =
Pω

2B
(1 + (

B

P
cos(α))2),

(2.71)

where BPFO stands for ball pass frequency outer race, BPFI is ball pass frequency inner
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race, FTF is fundamental train frequency, BSF is ball spin frequency, r is the number of

rollers, ω is the shaft frequency measured in Hz, B is the ball diameter and is measured in

mm, P is the pitch diameter and is measured in mm, and finally α is the contact angle of the

rollers with the races with respect to the perpendicular line. If the previous frequencies are

observed with a high magnitude in the taken samples, it is expected that these components

are not acting normally or are degrading.

2.5.2 Signal processing and feature extraction

It is known which frequencies must be monitored in ball bearing surveillance. However it

must be declared how to measure them. When a sensor (e.g., accelerometer, thermocouple)

is used to measure a physical event, the output is a signal that carries relevant information.

At first glance, this raw signal may not provide any insight about what is happening, and

therefore, features from the underlying physical phenomenon have to be extracted.

Suppose a signal f(t) with period T ∈ R has been measured. This signal is composed of

several frequency components that contain important information. However, those frequency

components are not explicit in f(t). The Fourier transform is commonly used to perform

the decomposition of the signal in frequency components. Eq. (2.72) defines the Fourier

transform f̂(z) of the signal2:

f̂(z) =

∫ T /2
−T /2

f(t)e−2πiztdt. (2.72)

Assume that f(t) satisfies the following condition
∫ T

2

−T
2

|f(t)|2dt < ∞. In such case,

f(t) belongs to a vector space called L2
[
−T2 ,

T
2

]
or the square-integrable functions in the

interval
[
−T2 ,

T
2

]
. This space has a “base” E = {e2πi nT t}n∈Z, which can generate any vector

g ∈ L2
[
−T2 ,

T
2

]
. Therefore, f(t) can be generated by means of linear combinations (see

Rudin [1976]) of complex numbers {cz}z∈Z:

f(t) =
∑
n∈Z

cne
2iπ nT t, . (2.73)

The righthand side of Eq. (2.73) is known as the Fourier series of f(t). On the other hand,

Euler’s formula indicates that eiθ = sin(θ) + i cos(θ), which implies that f(t) can be decom-

posed into periodic functions. The coefficients {cn}, n ∈ Z denote which periodic functions

or frequencies play a more important role in f(t). Observe also that the function f(t) can be

reconstructed if the coefficients {cn}n∈Z are known.

The space L2
[
−T2 ,

T
2

]
has an inner product which is3 〈f, g〉 = 1

T
∫ T /2
−T /2 f(t)ḡ(t)dt. Accord-

ing to this inner product, any two different vectors f, g ∈ E with f 6= g, have the following

properties: 〈f, g〉 = 0 and 〈f, f〉 = 1. It follows from the above properties that each coefficient

2i denotes the complex number that solves x2 + 1 = 0 or simply i =
√

( − 1)
3Here ḡ(t) represents the complex conjugation of g(t)
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cn can be expressed as:

cn = 〈f(t), e2iπ nT t〉 =
1

T

∫ T /2
−T /2

f(t)e−2iπ nT tdt. (2.74)

Note that cn can be computed as the Fourier transform of f(t) evaluated at n
T , i.e., cn =

1
T f̂( nT ). The magnitude of the frequency zn := n/T for the signal f(t) is the value |cn|.

Recall that a ball bearing is a rotating machine element. Any crack in a ball bearing

component will cause that the failure frequencies appear in the signal, namely FTF, BPFI,

BPFO, and BSF. The signal spectrum (the map zn 7→ |cn|) can be estimated with the use of

the Fourier transform. But, noise can be present in the sample. Therefore, the signal must

be filtered to extract the magnitude of the failure frequencies.

A naive way to filter the signal, such that the spectrum only lies between the frequencies

[z0, z1], is to multiply the spectrum by the function χ[z0,z1]. In this manner, only the spectral

magnitudes between [z0, z1] are preserved. However, if the inverse Fourier transform on

the filtered spectrum is used, it can be noted that an infinite impulse response in f(t) will

appear on all the time domain, which will generate inconsistent time behaviors into f(t). To

alleviate this issue, a better filter function on the spectrum domain must be selected, such

that it generates a finite impulse response in time in f(t). In Alexander and Sadiku [2007],

a deeper and more complete discussion about analogical and digital filtering can be found.

For this thesis a digital filter is designed with the use of spectral kurtosis. When a periodic

transient force is detected in a signal, the kurtosis value increases as observed by Antoni

[2007]. Then, it is desired to find the optimal filter which highlights the highest kurtosis.

Some traditional strategies like the fast kurtogram (see Antoni [2007]) can be used to design

this optimal filter. Other signal processes as Hilbert transform4 can be used additionally to

extract the envelope of the signals (Bechhoefer [2005]). The envelope is generally generated

by the ball bearing cracks.

In this thesis, to extract the magnitudes of the BPFO, BPFI, FTF and BSF, from the

signal spectrum, an optimal filter based on kurtosis and envelope extraction is used as in

Wang and Liang [2010].

2.5.3 Yule-Walker equations

The Yule-Walker equations Box and Jenkins [1976] is a methodology to determine the autore-

gressive (AR) order of a random variable. A linear AR process with k time lag coefficients

for a one-dimensional variable Xt can be described as:

Xt = φk1X
t−1 + · · ·+ φkkX

t−k + εt, (2.75)

where εt ∼ N (0, σ2) is an error term following a Gaussian distribution with mean zero

and variance σ2. The correlogram function ρk returns the correlation between Xt and Xt−k.

4The Hilbert transform can be stated as: H[f ](z) = 1
π

p.v
∫∞
−∞

f(t)
z−t dt, where p.v. is the Cauchy principal

value
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Define X̄t := Xt−µX where µX is the mean ofXt and ζk := E[X̄tX̄t−k], which is the expected

value of the product of both shifted variables. The correlogram function is computed as:

ρk :=
ζk
ζ0
.

The partial correlogram function Φ(k) encodes the correlation between variables Xt and

Xt−k once the effect from intermediary lags has been removed. To determine these partial

correlations, observe that for l ∈ {1, ..., k}:

X̄t =φk1X̄
t−1 + · · ·+ φkkX̄

t−k + εt

X̄tX̄t−l =φk1X̄
t−1X̄t−l + · · ·+ φkkX̄

t−kX̄t−l + εtX̄t−l

ρl =φk1ρl−1 + · · ·+ φkkρk−l

(2.76)

In the last line of Eq. (2.76), it was applied the expectation operator and divided by ζ0.

It was assumed that E[X̄t−lεt] = 0 for all t, which implies that Xt is not correlated with the

error term; a plausible hypothesis in real situations. Additionally, ρ0 = 1. Moreover, notice

that if these equations are computed for l = 1, ..., k, a system of linear equations is obtained,

which corresponds to the Yule-Walker equations:
ρ1

ρ2

...

ρk

 =


1 ρ1 ρ2 · · · ρk−1

ρ1 1 ρ1 · · · ρk−2

...
...

...
. . .

...

ρk−1 ρk−2 ρk−3 · · · 1



φk1

φk2

...

φkk

 .
The partial correlogram function returns Φ(k) := φkk. Note that if it desired to evaluate

up to k lags for the partial correlogram function, k linear systems must be constructed and

solved.

Assume that the sample is white noise. Then the parameter φkk is distributed approxi-

mately as N (0, 1/T ). With this information, it is possible to perform hypothesis testing to

determine the relevancy of each lag parameter. If Φ(p∗) is the higher time lag coefficient that

is significantly different from zero, then p∗ is considered the AR order of the model (Box and

Jenkins [1976]).
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Chapter 3
State of the art

In this chapter, traditional and recent articles regarding different areas related to HMMs are

reviewed. As stated in Chapter 1, this thesis makes contributions to HMMs in the following

topics:

1. As-HMMs with Gaussian and autoregressive (AR) properties in the observable vari-

ables.

2. Embedded feature selection in As-HMMs.

3. Online ball bearing prognosis using As-HMMs and machine learning.

4. Online dynamic embedded feature selection in As-HMMs.

5. KDE for non-Gaussian estimations in As-HMMs.

Therefore, the state of the art is divided into five sections. Section 3.1 is related mostly to

AR models with symmetric and asymmetric HMMs and machine learning models. Section 3.2

discusses FSS techniques related to HMMs and other machine learning models, making focus

on embedded strategies. Section 3.3 reviews articles related to online prognosis for industrial

assets. As discussed in Chapter 1, it is possible that the available datasets for prognosis

are imbalanced; then, the state of the art is separated into three categories: methodologies

which use previous run to failure (RTF) data to predict, which use RTF times to predict,

and which assume no previous RTF data or times. Section 3.4, reviews feature selection

methodologies for online analysis; the articles are separated into filter, wrapper and embedded

methodologies. Finally, Section 3.5 presents how Bayesian networks and HMMs have been

mixed with KDEs. From all the reviewed articles, some of them are selected to be compared

in the contributions part (Part II). The selected articles are mentioned in their corresponding

chapter.

39
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3.1 Offline models

The first step taken in this thesis was to make an exhaustive review of AR-HMMs and asym-

metric models, in order to determine if the proposed HMM extensions and algorithms have

not been previously introduced. In this section, several variants of HMMs are reviewed. As a

general observation, it was noted that most of the reviewed HMMs assumed fully dependent

or independent variables, which can provoke the introduction of several or few parameters,

which, at the same time, can cause overfitting or model under-specification, respectively.

Then, As-HMMs are an intermediate solution to tackle these issues. The reviewed articles

are tangled with the contributions in Chapter 4 and Chapter 5. The results obtained in these

sections can also be found in Puerto-Santana et al. [2018] and Puerto-Santana et al. [2022b].

In Table 3.1 the reviewed articles are listed.

3.1.1 Symmetric HMMS

3.1.1.1 Auto-regressive HMMs

One of the first combinations of HMMs and AR models attempted to process speech data was

introduced in Poritz [1982]. The author added autoregressive polynomials to the Gaussian

emission probabilities. The coefficients were determined via the Baum-Welch algorithm (Ra-

biner [1990]). Later, Juang and Rabiner [1985] introduced AR mixtures of Gaussian hidden

Markov models (AR-MoG-HMMs) where the emission probabilities were modelled as mix-

tures of Gaussians. Then, Kenny et al. [1990] proposed a vectorial AR multivariate Gaussian

HMM (VAR-MVGHMM). This model enabled variables to have temporal dependencies with

all the other variables. Again, the model was used for speech recognition. More recently,

Bryan and Levinson [2015] modified the emission probabilities such that they behaved as an

AR Gaussian but with an error coefficient given by the linear prediction residuals (Itakura

[1975]).

Others also considered variations of HMMs such as hidden semi-Markov models (HSMMs),

where the time duration of each hidden state can be modified to not always follow a geometric

distribution, or hierarchical hidden Markov models (HHMMs), where AR variables were

added. For instance, Nakamura et al. [2015] proposed an AR-HSMM, where AR variables

and non-AR variables could be considered in the same model depending on the modeler’s

decision. Malesevic et al. [2018] proposed a vector AR hierarchical hidden semi-Markov model

(VAR-HHSMM) to classify and determine hand movements.

Other approximations of HMMs with AR properties can be found in Hamilton [1989]

and Hamilton [1990]. The author proposed an edited log-likelihood function to represent the

AR behavior in data. As a result, Markov mean-switching AR models (MMSAR) and linear

Markov-switching AR model (LMSAR) were proposed and their parameters were calculated

with the EM algorithm. Next, Cheng [2016] proposed the transitional Markov switching

autoregressive (TMSAR) model as an extension of MMSAR and LMSAR models. In this

case, the emission probabilities depended on past values of the hidden process in order to
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Topic Name Cite

Symmetric Auto-regressive HMMs
HMMs AR polynomials Poritz [1982]

AR-MoG-HMM Juang and Rabiner [1985]
MMSAR Hamilton [1989]
VAR-MVGHMM Kenny et al. [1990]
LMSAR Hamilton [1990]
Linear error coefficient Bryan and Levinson [2015]
AR-HSMM Nakamura et al. [2015]
TMSAR Cheng [2016]
VAR-HHSMM Malesevic et al. [2018]
Modified hidden variables
Memoryless hidden variables Asahara et al. [2012]
AR-HO-HMM Seifert et al. [2014]
Missing data in HMMs:
Missing at random assumption Stanculescu et al. [2014]
Missing data as latent variables Dang et al. [2016]

Asymmetric Similarity networks Heckerman [1990]
models Bayesian multinets Geiger and Heckerman [1996]

Context-specific Bayesian networks Boutilier et al. [1996]
BMM Bilmes [2003]
Chow-Liu trees in HMMs Kirshner et al. [2004]
CEG Smith and Anderson [2008]
MRF-HMMs Stadler and Mukherjee [2013]
SGM Nyman et al. [2014]
Dynamic chain events graph Barclay et al. [2015]
As-HMM Bueno et al. [2017]
AsLG-HMM Puerto-Santana et al. [2018]
AR-AsLG-HMM Puerto-Santana et al. [2022b]

Table 3.1: Reviewed articles about asymmetric HMMs and auto-regressive HMMs

determine changes in the model mean and weights. The authors used maximum likelihood

methods with a Newton-Raphson strategy to estimate the model parameters.

3.1.1.2 HMMs that modify the hidden variables

In more recent works, new approaches have been proposed in which the assumptions about

the hidden variables that govern the process were modified, such as the model given by

Asahara et al. [2012], where the authors edited an AR hidden Markov model (AR-HMM)

by introducing a memoryless hidden variable. The Markovian hidden states had a prob-

abilistic dependency on this memoryless hidden variable. Later, AR higher-order HMMs

(AR-HO-HMMs) were introduced in Seifert et al. [2014]; the authors not only considered an

autoregressive property in the observations, but also a fixed order Markov assumption in the

hidden states specified by the user. They used mixtures of Gaussians with AR properties for

the emission probabilities.
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3.1.1.3 Missing data in HMMs

Other works focused on missing data. In Stanculescu et al. [2014], an AR-HMM with a

missing at random assumption was proposed to perform exact inference in such scenarios. In

Dang et al. [2016] the missing data was considered as latent variables; when the sampling rate

of a target signal was not high enough, hidden variables were added between observations.

Additionally, the authors proposed a modified forward-backward algorithm and updating

formulas for the Baum-Welch algorithm.

3.1.2 Asymmetric HMMs

Asymmetric models as defined in Section 2.3.5 can be viewed as probabilistic models where,

depending on the instance of a context variable, the probabilistic relationships among the

observable variables may change.

Regarded as asymmetric probabilistic graphical models, the Bayesian multinets intro-

duced in Geiger and Heckerman [1996] were used to describe different local graphical models

depending on the values of certain observed variables. Previously, in the area of decision

making, similarity networks introduced by Heckerman [1990], allowed the creation of inde-

pendent influence diagrams1. In parallel to these works, context-specific independence in

Bayesian networks in Boutilier et al. [1996] were introduced. The authors used tree struc-

tured conditional probability distributions with a D-separation-based algorithm to determine

statistical dependencies between variables according to contexts given by instantiations of

subsets of variables. Following these ideas, more recently in Nyman et al. [2014], stratified

graphical models (SGMs) were proposed, where the concept of stratum was introduced to

allow different factorizations for a probability distribution depending on the values of some

of the variables. The authors proposed a nonreversible Metropolis-Hastings algorithm to

calculate marginal likelihoods and learn decomposable SGMs. Other approximation was pro-

posed by Smith and Anderson [2008] who introduced chain events graphs (CEGs). A CEG

consists of a directed colored graph obtained from a staged tree2 by successive edge contrac-

tion operations. The obtained graphical model can represent conditional independence and

causal behavior that traditional Bayesian networks cannot show. Later, a dynamic version

was proposed (Barclay et al. [2015]).

Other authors have attempted to combine asymmetric models with HMMs. For example,

in Bilmes [2003] the buried Markov models (BMMs) were introduced. In this article, the

models of Kenny et al. [1990] were used, but the temporary dependencies could vary de-

pending on the hidden state. These context-specific dependencies were learned using mutual

information strategies. Kirshner et al. [2004] used Chow-Liu trees and conditional Chow-Liu

trees coupled with HMMs. The HMMs were used to model the dynamic behavior of a process,

1An influence diagram is a probabilistic graphical model used for decision problems, where random, decision
and value nodes are present (Shachter [1988])

2A staged tree is a probabilistic graphical model, where the graph is a tree and the nodes are random vari-
ables whose non leaf variables are identified with the same color if they have the same conditional probabilistic
relationships with their children nodes (Smith and Anderson [2008])



3.2. OFFLINE FEATURE SUBSET SELECTION 43

and the Chow-Liu trees were used to model the emission probabilities. A Chow-Liu tree or

conditional Chow-Liu tree was associated with each value of the hidden variable. The pa-

rameters of the model were computed with the EM algorithm; specifically, the tree structure

was determined in the maximization step. However, the model was specified only for discrete

variables. In Stadler and Mukherjee [2013], the authors proposed a learning algorithm based

on the EM algorithm to generate sparse precision matrices, i.e., each hidden state had its

own sparse precision matrix which could be interpreted as a Markov random field (MRF)3.

More recently, asymmetric hidden Markov models (As-HMMs) were proposed in Bueno et al.

[2017], where a local graphical model was associated with each value of the hidden variable,

and the graphical model was not restricted to Chow-Liu trees. However, again only mod-

els with discrete observable variables were allowed. Puerto-Santana et al. [2018] alleviated

this issue with the asymmetric linear Gaussian HMMs (AsLG-HMMs), where the emission

probabilities were modeled as conditional linear Gaussian Bayesian networks. This model

will be further explained in Chapter 4. Finally, the previous model was further generalized

in Puerto-Santana et al. [2022b], where an asymmetric HMM for continuous variables was

proposed, which was capable of determining the AR order for each variable depending on the

hidden state (AR-AsLG-HMMs). This model will be detailed in Chapter 5.

3.2 Offline feature subset selection

Regarding FSS, the state-of-the-art strategies are usually grouped into three categories: filter,

wrapper and embedded. The filter techniques try to determine the relevant features depend-

ing on intrinsic data characteristics such as entropy, variance, information, etc. The wrapper

techniques depend on a machine learning algorithm and its performance. Subsets of features

are generated and a model is learned for each subset. The subset with the best performance

is selected. Embedded unsupervised techniques determine the relevant features during the

learning procedure of the model. There are also dimensionality reduction strategies as in

Jolliffe [1986] or Chang et al. [2016]. In these articles, the features are projected into lower

dimensionality spaces where the information is concentrated and these new features are used

as predictors. Nevertheless, this kind of strategies are beyond the scope of this thesis, since

model interpretation is hard to handle. The reviewed articles in this section are the basis for

Chapter 6. The results of that chapter were exposed in Puerto-Santana et al. [2022c], where

an embedded FSS methodology for As-HMMs is proposed. In Table 3.2 the reviewed articles

are listed.

3.2.1 Filter techniques

3.2.1.1 Supervised

Among the traditional filter FSS techniques, the correlation based feature selection (CFS)

3A Markov random field is a probabilistic graphical model which represents a set of variables which follow
the Markov property. The graph must be undirected and may have cycles.
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Topic Name Cite

Filter Supervised
CFS Hall et al. [1999]
RELIEF Kira et al. [1992]
Markov blanket and HMM Zhou et al. [2017]
AdaBoost and HMM Lv and Nevatia [2006]
Ensemble of filters and HMM Momenzadeh et al. [2019]
Unsupervised
RELIEF for clustering Dash and Ong [2011]

Wrapper A greedy backward FSS with HMM classifier Yue et al. [2015]
PSO with HMM classifier Farag et al. [2016]

Embedded Supervised
Lasso regression Tibshirani [1996]
Penalized neural networks Setiono and Liu [1997]
Reinforcement learning in neural networks Mnih et al. [2014]
Clustering
GMM-FS Law et al. [2004], Zhu et al. [2012]
GMM-LFS Li et al. [2009]
Semi-supervised GMM-LFS Guerra et al. [2014]
VB-SMM-LFS Nguyen et al. [2015]
iGMM-LFS Song et al. [2021]
HMMs
FS-HMM Adams et al. [2016]
SHMM-LFS Zheng et al. [2018]
Discrete FS-HMM Adams and Beling [2020]
FS-AsHMM Puerto-Santana et al. [2022c]

Table 3.2: Table of reviewed articles for offline feature selection

(Hall et al. [1999]) is found. CFS was designed to search for a subset of features which

maximizes the feature relevancy with respect to a class variable and minimizes the redundancy

between them. RELIEF (Kira et al. [1992]) provided a relevancy score for each feature based

on distances between classes. Features whose relevancy overpassed a threshold were selected.

As regards filter algorithms with supervised data related to HMMs, the following articles

were found: Zhou et al. [2017] proposed a sequential data feature selection algorithm based

on Markov blankets. Their methodology gradually computed the Markov blanket of a target

or class variable using the HITON algorithm (Alifers et al. [2003]). The HITON algorithm

was fed with an HMM to learn the corresponding Markov blanket. The variables in the

Markov blanket of the class variable were used as predictor features of a classification model.

In Lv and Nevatia [2006], for each class value and variable, an HMM, which was used as a

classifier, was learned. Next, an AdaBoost algorithm was employed to select which HMMs

improved the accuracy of the prediction. Momenzadeh et al. [2019] coupled discrete HMMs

with different feature selection filtering scores. An HMM was created using the ranking

information obtained by the filters. The resultant emission probabilities were used as a

relevancy score.



3.2. OFFLINE FEATURE SUBSET SELECTION 45

3.2.1.2 Unsupervised

Only one filter strategy for variable selection was found in the case of unsupervised data. Dash

and Ong [2011] used the RELIEF algorithm (Kira et al. [1992]) to discriminate features.

The authors used the K-medoid algorithm to generate artificial class labels and execute

the RELIEF algorithm using them. This process was iterated as many times as the user

determined.

3.2.2 Wrapper techniques

In wrapper techniques, few works were found, all of which look for the best set of variables

to improve the score of a clustering model. For instance, Yue et al. [2015] used a greedy-

backward FSS algorithm to select the features for an adaptive variable duration mixture of

Gaussian HMMs. Farag et al. [2016] applied the particle swarm optimization (PSO) algorithm

(Reynolds [1987]) to maximize the HMM accuracy. In both cases, heuristic or meta-heuristic

methods were employed to find the best set of features for a HMM classifier.

3.2.3 Embedded techniques

3.2.3.1 Supervised

Some embedded techniques for supervised problems are reviewed. For example, the well-

known work of Tibshirani [1996], where the lasso regression was introduced. Setiono and Liu

[1997], added a regularization term was in the learning phase of neural networks in order

to determine relevant features. More recently, Mnih et al. [2014] introduced a convolutional

neural network capable of selecting image sections to be processed, but the classifier had to

be learned using reinforcement learning.

3.2.3.2 Clustering

In Law et al. [2004], the concept of feature saliency was introduced and applied to perform

model learning and feature selection simultaneously in clustering models. The feature salien-

cies were utilized to indicate the level of relevancy of each variable in a Gaussian mixture

model (GMM-FS). All the parameters were learned using the EM algorithm. In Zhu et al.

[2012], the GMM-FS was revisited and a SVB Bayesian algorithm was used to estimate the

model parameters. Li et al. [2009] proposed a localized feature saliency model for a mixture of

Gaussians (GMM-LFS), where depending on the mixture component, the set of relevant fea-

tures could change. The learning process was carried out using a SVB optimization. Guerra

et al. [2014] proposed a semi-supervised GMM-LFS to classify partially labeled data. The au-

thors added cluster-dependent feature saliencies to perform the feature selection procedure.

Next, Nguyen et al. [2015] developed a mixture model (VB-SMM-LFS), where depending

on the cluster, feature saliencies indicated which variables were relevant for the cluster. The

clusters were expressed with piecewise-t-Student distributions and the learning of parameters
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was performed using SVB methods. Finally, Song et al. [2021] coupled an infinite compo-

nents piece-wise Gaussian mixture model with localized feature saliencies (iGMM-LFS). The

learning phase was performed using a Bayesian method through a Markov chain Monte Carlo

algorithm.

3.2.3.3 FSS in HMMs

Concerning HMMs, inspired by the FS-GMMs, Adams et al. [2016] developed a feature

saliency HMM (FS-HMM), where a set of feature saliencies were added to the emission

probabilities to determine which variables were relevant for the model (as explained in Sec-

tion 2.3.6). The emission distribution assumed full independence between variables and a

maximum a posteriori approach was used to learn the parameter models. Additionally, the

model was extended to hidden semi-Markov models, where the sojourn times could be mod-

eled in order to not strictly follow a geometric distribution, as in any traditional HMM.

Later, Adams and Beling [2020] proposed an FS-HMM for discrete features in HMMs. It was

assumed that the relevant features followed a state-dependent Poisson distribution; whereas,

irrelevant features followed a state-independent Poisson distribution. The author provided an

EM algorithm to learn a discrete model. In another approach, Zheng et al. [2018] introduced

an HMM where the emission probabilities were modeled as mixtures of t-Student distribu-

tions (SHMM-LFS). Feature saliencies were added to the model at the component level such

that the model was capable of determining, depending on the hidden state and mixture com-

ponent, which features were noise or relevant. The learning procedure was performed with

SVBayesian methods.

3.3 Online modeling for prognosis

In this section, current methodologies concerning the diagnosis (estimate health status) and

prognosis (predict remaining useful life) of mechanical components are summarized. The

state of the art is divided into three types of methodologies: requires run to failure (RTF)

data, requires RTF times, and neither requires RTF data nor RTF times. The last type is

more robust and ideal for many real and industrial applications, since the failure data may be

non-existing, limited (such as imbalanced data), or expensive in time and money to obtain.

This review serves to understand the contributions in Chapter 7, which are also exposed in

Puerto-Santana et al. [2022a].

In Table. 3.3 a list of the reviewed literature is presented. The literature is compared

depending on:

(1.) Does it use HMMs?

(2.) Can it be used in online environments?

(3.) Does it not require RTF data?

(4.) Can it estimate the tool RUL?
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(5.) Can it update itself when new trends in data appear?

Reference (1.) (2.) (3.) (4.) (5.)

Requires RTF data
MHMM (Lee et al. [2010]) 3 3 - - 3

Online MoG-HMM (Tobon et al. [2012]) 3 3 - 3 -
HMM and NF (Soualhi et al. [2014]) 3 - - - -
HSMM (Cartella F. and H. [2015] 3) - - 3 -
HMM for TWM (Li and Liu [2019] 3) - - 3 -
HMM ensemble (Kumar et al. [2019]) 3 3 - 3 -
Neo Fuzzy (Soualhi et al. [2013]) - - - - -
FDFDA (Zhao and Gao [2017]) - 3 - - 3

ANN for TWM (Abdeljaber et al. [2019]) - - - - -
RNN with HI (Chen et al. [2020]) - - - 3 -
Fault effects (Lin et al. [2021]) - 3 - 3 -
LSTM-SVM (Chen et al. [2021]) - 3 - 3 -
LSTM with PF (Jiao et al. [2021]) - 3 - 3 -
BDNN-RF (Li et al. [2021]) - 3 - - -

Requires RTF times
Regression (Gebraeel et al. [2009]) - 3 - 3 3

EKM for TWM (Singleton et al. [2015]) - 3 - 3 3

Not RTF times or data are required
WPD-HMM (Ocak et al. [2007]) 3 3 3 - -
AHMM (Yu [2017]) 3 3 3 - 3

Trigger regression (Li et al. [2015]) - 3 3 3 3

APCMD (Wu et al. [2019]) - 3 3 3 3

HSIC (Mohammadi-Ghazi et al. [2020]) - 3 3 - 3

Random Forest (Liu et al. [2021]) - 3 3 - -
Genetic HMMs (Khan and Abuhasel [2021]) 3 3 3 - -
AMBi-GAN (Kong et al. [2021]) - 3 3 - 3

Online As-HMM (Puerto-Santana et al. [2022a]) 3 3 3 3 3

Table 3.3: State-of-the-art models for prognosis and diagnosis of dynamical systems

3.3.1 Requires run to failure data

Concerning HMMs, the following contributions were found: Lee et al. [2010] proposed an

adaptative modified HMM (MHMM) for online tool wear monitoring (TWM). The authors

used the forward-backward algorithm and the Hotteling multivariate control chart to detect

changes in bearing wear. An online learning algorithm based on the EM algorithm was

proposed to update the MHMM. Next, Tobon et al. [2012] proposed an online MoG-HMM

for bearings prognosis and RUL prediction. Using the Viterbi algorithm, the distribution of

the RUL for each hidden state in RTF data was learned. In the online phase, the learned

model and RUL distribution were used to predict the RUL. Later, Soualhi et al. [2014] used

HMMs and neuro-fuzzy algorithms (NF) to predict future bearing conditions. First, the data
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were clustered to determine different levels of degradation. For each learned cluster, an HMM

was learned; when new instances arrived, the most likely HMM was used with a neuro-fuzzy

algorithm to predict the future wear of bearings.

Cartella F. and H. [2015] proposed an HSMM for the RUL prediction of bearings. A

wrapper algorithm based on the Akaike information criterion was used to determine the best

model to predict from a set of models where the time duration distribution, number of com-

ponents, and number of hidden states change. More recently, Li and Liu [2019] proposed an

HMM to predict RUL for TWM. The HMM parameters were computed using a physical ball

bearing degradation model, whereas a multilayer perceptron was used to estimate the emis-

sion probabilities. The prognosis phase, or RUL prediction, was performed with a modified

forward variable. Finally, Kumar et al. [2019] used a MoG-HMMs to determine the RUL of

bearings. An initial HMM based on the first observations from all the signals was trained.

The log-likelihoods were computed for further observations with an already trained HMM

until the log-likelihood surpassed a certain threshold; then, another HMM was trained from

the not-well fitted data. RUL was predicted using a polynomial regression function of the

log-likelihoods of the learned HMMs.

All the approaches presented here vary their way to predict the degradation and RUL and

learn the HMM model. Nevertheless, the need for previous RTF data limits the application

of these models and in some cases it is critical for the learning phase as in Tobon et al. [2012],

where the distribution of the RUL must be computed for each failure mode and hidden state,

making it unfeasible in certain real industrial scenarios. It is also relevant to mention that

the prognosis in these methods is usually driven by the Viterbi algorithm and the forward-

backward algorithm, with the latter used as well to compute the log-likelihood of data.

Other methodologies not based on HMMs with the hypotheses of RTF data can be found

in the state of the art: Soualhi et al. [2013] proposed a long prediction scheme for bear-

ing condition prediction using a model based on fuzzy logic and a single neuron artificial

neuronal network (ANN) called neo-fuzzy neuron. Later, Zhao and Gao [2017] proposed

an online surveillance process called FDFDA to detect a failure in a dynamical process. A

Fisher discriminant analysis was performed to extract relevant components from the data.

A ratio of stability factors of faulty data to normal data was computed for each component.

Components that went over a certain threshold were eliminated from the analysis and used

in an autoregressive regression model to predict the degradation process. Next, Abdeljaber

et al. [2019] proposed two 1-dimensional convolution ANNs to determine bearing degrada-

tion. One convolutional neural network was used to detect outer ring failures and another

to detect inner ring failures. The online testing phase consisted of passing the vibrational

signals through both models and classify every instance as healthy or faulty. Chen et al.

[2020] used a recurrent neural network (RNN) to predict the RUL of bearings. Time and

frequency features were extracted to feed the RNN, and from its output, a linear regression

was used to build a health index and predict the bearing RUL. Chen et al. [2021] used a long

short time memory network (LSTM) and a support vector regression for RUL prediction of

aero-engine data. A risk-averse function was optimized to minimize RUL overestimation.
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Lin et al. [2021] proposed a methodology for RUL prediction of turbofan engines. For each

feature, a Wiener process was learned and a RUL distribution was estimated using a Bayesian

approach considering fault effects. A copula was used to generate a joint RUL distribution.

Jiao et al. [2021] used a LSTM network to extract features to determine a normalized health

index that predicted the RUL for rollers in hot rolling production. For the RUL estimation,

a state space model was used with a particle filtering algorithm for inference and prediction.

Whenever a new instance arrived, the state space model could self-update using all the his-

toric data. In spite of that, the LSTM network had to be trained with RTF data. Finally, Li

et al. [2021] used a binary deep neural network (BDNN) with random forest (RF) to classify

ball bearing faults. The BDNN-RF was designed to be used in edge devices to enable them

for online analysis. However, the training phase was performed in a cloud device.

In these non-HMM-based techniques, it was observed that a relevant portion of them used

ANN to classify the level of degradation; then, a health index was used to predict the degra-

dation level, and regression was later used to perform the RUL or degradation prediction.

Although the ANNs in the previous works were not so computationally demanding, the re-

quirement of previous RTF data can make such methodologies unfeasible in many industrial

scenarios.

3.3.2 Requires run to failure times

Sometimes, previous RTF data is not available; however, the records of RTF times are avail-

able and can be used for prognosis purposes. However, not many works under these circum-

stances were found. For instance, Gebraeel et al. [2009] proposed two bearing online prognosis

techniques based on exponential and linear regression. The methodology assumed that there

was at least prior knowledge of RTF times; from these times, the parameters of a prior Bern-

stein distribution were estimated using the maximum likelihood method. A threshold from

the standard normative was imposed in the magnitude of the ball bearing signals to indicate

the start of the failure phase. Later, the residual life distribution was computed, and the

RUL was extracted by computing the median of the resultant distribution. Singleton et al.

[2015] introduced a bearing online RUL prediction algorithm based on extended Kalman

filters (EKF). Whenever a new instance arrived, relevant features were computed and the

EKF were updated and used to extrapolate the current signal up to a failure threshold. For

determining the threshold, previous RTF times were required.

In these methodologies, the RTF times were used to compute the RUL distribution or

indicate the prognosis failure thresholds. However, the prognosis phases were done using

regression techniques. It must be recalled that these methodologies can be more flexible than

those described in the previous subsection since if RTF data are available, the RTF times are

also available; nevertheless, the opposite is not valid.
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3.3.3 Does not require RTF data nor RTF times

First, some techniques related to HMMs are summarized. For instance, Ocak et al. [2007]

proposed an online algorithm to determine the level of degradation of bearings based on the

wavelet packet decomposition (WPD) and HMMs. The methodology extracted its features

applying the WPD to the bearing vibrational signals. Then, from the early stages of the

bearing life, the signal measures were used to train an HMM. Next, the likelihood from

incoming vibrational signals was computed. If the likelihood went below a certain threshold,

the bearing behaviour was considered abnormal. Later, Yu [2017] used an online adaptative

HMM (AHMM) to determine machine tool wearing. The author used a progressive learning

algorithm and a split and merge operation for components in hidden states to update the

model whenever a new instance arrived. A Hotteling multivariate control chart was used to

detect outliers, and a threshold (set by trial and error) for consecutive out-of-chart instances

was imposed to determine when a new hidden state had to be added. Finally, a health index

based on the Cauchy-Schwarz correlation between the current HMM and the previous learned

HMM was proposed as a flag for degradation.

Second, for non-HMM-based techniques, much more developed work can be found, espe-

cially related to regression techniques and novelty detection in data streams. For instance,

Li et al. [2015] proposed a regression method for RUL prediction. The authors applied an

adaptive approach based on three standard deviation intervals to determine a time trigger to

launch an exponential regression model for RUL prediction. Next, Wu et al. [2019] proposed

an online prognosis technique for computing ball bearing RUL called APCMD. A principal

component Mahalanobis distance algorithm was used to reduce the feature dimensionality

and build a health index. The RUL prediction was divided into two phases; the first one built

local exponential regressions to represent the local degradation trajectory; in the second one,

an empirical Bayesian algorithm was built to predict a global RUL. In Mohammadi-Ghazi

et al. [2020], a dependence analysis was used to detect bending and deformations in steel

structures. In their model, the authors computed, for each pair of captured features, the nor-

malized Hilbert-Schmidt independence criterion to measure the level of dependency among

them. From these measures, a dependency graph was computed. Changes in the health state

of the steel structure were deduced from significant changes in the dependency graph.

More recently, Liu et al. [2021] used random forests and data compression to detect

abnormal behavior in industrial components. An abnormal bounded score was built from the

random forest to determine the level of abnormality of incoming data. In the case of Khan

and Abuhasel [2021], the authors used HMMs to detect abnormal signal behavior in several

industrial components. The authors used genetic algorithms to learn the HMM parameters

from random sub-sequences of normal behavior data. The last offspring generation of HMMs

was used to compute the fitness of incoming data. Abnormal behavior was detected by

observing changes in the log-likelihood fitness. Kong et al. [2021] proposed an ANN approach

to detect anomalies based on generative adversarial networks (GANs)4 and bi-directional

4Generative adversarial networks consist of two ANNs, called discriminator and generator. The idea of the
generator ANN is to maximize the classification error of the discriminator ANN, whereas the discriminator
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LSTM networks (AMBi-GAN). The model used the residuals of both networks to build a

global score to detect anomalies and update the model. As a final detail, since the model

was an LSTM, it worked and processed faster than other ANNs e.g., RNNs.

It is worth mentioning that when no-run-to failure data is assumed, fewer works using

ANN are observed (at least in our research) and more attention is given to detect and measure

changes in distribution or parameters within a data stream (novelty detection and concept

drifts). Additionally, in the reviewed articles, regression was the key for prognosis when no

RTF data is provided. Also, the signal processing phase plays a vital role in such method-

ologies, since it is needed to extract the relevant information to detect the above mentioned

changes in data distribution.

3.4 Online feature subset selection

In this section, articles related to FSS in streams are reviewed. There are two problems in

the literature: the FSS in feature streams and in data streams. The former refers to problems

where the number of instances is fixed but the number of features increases over time. The

latter has a fixed number of features, but the number of instances increases over time. In

both problems, it is desired to determine relevant and non-redundant features to explain the

incoming data, and hence its underlying generation mechanism. Although both issues will

be reviewed, special attention is put into feature selection in data streams for unsupervised

problems. Table 3.4 lists the reviewed articles. They serve as a background to make clear

the contributions in Chapter 8 and Chapter 9. In particular, the results from Chapter 8 were

published in Puerto-Santana et al. [2022d].

3.4.1 FSS in feature streams

When dealing with feature streams, rough sets were popular among the reviewed articles. For

example, Zhou et al. [2019a], Lv et al. [2020] adn Zhou et al. [2019b] used rough sets to select

features. In the first case the algorithm OFS-A3M was introduced, aiming at optimizing three

quantities: relevance, significance and dependency on the selected variables with respect to

the target variable. In the second case the algorithm OFSI was introduced, to minimize the

feature redundancy, maximize relevancy and discover feature interactions. In the third case,

OFS-density was proposed, where a distance based on density of neighbors was defined and

a fuzzy system was used to determine redundancy between selected features.

Other strategies not involving rough sets can be found. In Wang and Luan [2019], the

authors generated a set of rules to determine active and possible features to be used. Features

highly dependent on the class variable via the correlation are used as a regularization test

(COFS). Whenever a new feature arrived, the active and possible set of features was updated

applying the regularization test. Zhou et al. [2021] developed an algorithm to select features

in supervised feature streams called online group streaming feature selection with feature

ANN learns by minimizing the classification error obtained from the ouput generated by the generator ANN.
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Topic Name Reference

Feature streams: OFS-A3M Zhou et al. [2019a]
OFSI Lv et al. [2020]
OFS-density Zhou et al. [2019b]
COFS Wang and Luan [2019]
OGSFS-FI Zhou et al. [2021]
OCFSSF You et al. [2021]
UFSSF Almusallam et al. [2021]

Data streams: Supervised
DXMiner Masud et al. [2010]
DXMiner-FI Wang and Shen [2016]
DISCUSS Barddal et al. [2019]
HEFT-Stream Nguyen et al. [2012]
OFS-perceptron Hoi et al. [2012]
RAC Hoeltgebaum et al. [2021]
Unsupervised
OLFS-DMM Fan and Bouguila [2013]
sketching matrix Huang et al. [2015]
MV-FS Shao et al. [2016]
FS-K-means Wang et al. [2018]
DFM-MCFS Fahy and Yang [2019b]
FSMCP Ma et al. [2020]
Online FS-HMM Puerto-Santana et al. [2022d]
Online LFS-AsHMM This thesis

Table 3.4: Table of reviewed articles for online FSS in data streams and feature streams

interaction (OGSFS-FI). In the article, mutual information between variables was used to

compute the information gain when interaction between features are considered. An online

algorithm was provided to determine the strong relevancy, weak relevancy and redundancy

of incoming group of features, in order to update the set of selected features. You et al.

[2021] introduced the online causal feature selection with streaming features (OCFSSF). The

algorithm searched for the best Markov blanket for a class variable. The methodology adapted

parents, children and spouses of incoming features in the Markov blanket of the class variable.

The changes depended on scores such as strong relevancy, weak relevancy and redundancy.

Finally, Almusallam et al. [2021] proposed an unsupervised feature selection with feature

stream (UFSSF). The methodology assumed that the number of relevant features was fixed.

Whenever a new feature arrived, a similarity measure was used to determine the most related

feature to the one that arrived. The new feature replaced the most similar feature.

Observe that the majority of the reviewed methodologies were designed for supervised

problems. Also, univariate filter feature selection strategies were mostly used.
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3.4.2 FSS in data streams

3.4.2.1 Supervised

The earliest work found tackling the problem of feature selection in data streams is Masud

et al. [2010], where the DXMiner was introduced as a model to face infinite data stream

processes with concept drift, feature drift and concept evolution. DXMiner used a finite en-

semble of semi-supervised K-nearest neighbor (K-NN) classifiers that were updated whenever

a new chunk of data arrived. The feature selection algorithm was carried out with a univari-

ate filter feature selection algorithm over the incoming data. Later, Wang and Shen [2016]

changed the feature selection algorithm and used instead the multi-cluster feature selection

model, where interactions between features were taken into account for a better feature se-

lection procedure (DXMiner-FI). Another filter methodology was found in Barddal et al.

[2019]. The authors proposed the dynamic symmetrical uncertainty selection for streams

(DISCUSS). This methodology used a filter multivariate feature selection based also on the

symmetrical uncertainty score to select features. Whenever a new instance arrived, the score

of each feature was updated.

Some authors have tried to apply boosting or ANNs to learn feature relevancy. Regard-

ing boosting, Nguyen et al. [2012] proposed the heterogeneous ensemble with feature drift for

data stream algorithm (HEFT-Stream). The authors generated an ensemble of classifiers of

different types where each classifier had its own feature space which was generated or updated

when a feature drift was detected. The feature selection was conducted using a multivariate

filter methodology, where the features that optimized the symmetrical uncertainty were se-

lected. In the case of neural networks, the embedded methodology of Hoi et al. [2012] was

found. The authors proposed an online embedded feature selection algorithm based on the

perceptron model (OFS-perceptron). A truncation on the weights of the network was set

to select the most relevant features. The algorithm learned the weights using an online de-

scent gradient algorithm. Finally, another embedded methodology was found: Hoeltgebaum

et al. [2021] proposed the real-time adaptative component (RAC) based on streaming Lasso

regression for supervised data. In this case, the relevant features were determined with the

coefficients of the Lasso regression. Also, an online methodology was proposed to determine

dynamically the penalization parameter to select features and the forgetting factors.

3.4.2.2 Unsupervised

Since this is the main topic of this thesis, the reviewed articles are grouped depending on

whether a filter, embedded or wrapper methodology was used to select features. In the case

of embedded methodologies, Fan and Bouguila [2013] proposed an online Dirichlet mixture

model with localized feature saliencies (OLFS-DMM). The authors added a latent Bernoulli

variable to distinguish between relevant and irrelevant features. The learning process was

carried out using an online variational Bayesian method, which updated the model whenever

a new instance arrived. Other embedded methodologies used penalized regression strategies:

Huang et al. [2015] proposed an unsupervised feature selection algorithm based on matrix
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sketching. The algorithm used the singular value decomposition on a low rank representation

of the full dataset (matrix sketching) and a ranking of components to create a penalized

regression problem. From the regression, the obtained weights were used as a relevancy score

to filter the features. In Shao et al. [2016], it was assumed that several datasets could arrive

simultaneously or there are multiple views and the goal was to determine for each dataset,

their relevant features (MV-FS). A non-negative matrix factorization was carried out for each

dataset coming from each view using a penalized quadratic optimization problem. The output

of the optimization was a feature relevancy vector. Finally, Wang et al. [2018] proposed an

online K-means algorithm with a feature selection methodology (FS-K-Means). The authors

formulated the K-means optimization problem in terms of indicator matrices, cluster centroid

matrices and projection matrices. The projection matrix estimations from the learning phase

were used to determine the feature relevancy.

With respect to filter methodologies, Fahy and Yang [2019b] proposed a dynamic FSS

algorithm that could be used together with any model-based clustering (DFM-MCFS). Their

idea was to perform a cluster univariate feature selection for clustering once a buffer of data

was filled. The selected features were used to update a relevancy vector, which indicated

the pertinent features. The features that overpassed a threshold were used in the cluster

model. Finally, Ma et al. [2020] created an online feature selection algorithm based on multi-

cluster structure preservation (FSMCP). First, the methodology computed the membership

probabilities of arriving instances to current clusters. Then, a penalized Kullback-Leibler was

minimized in order to obtain a set of weights that were used as feature relevancy.

With respect to wrapper methodologies, no articles were found for the case of unsu-

pervised data in data stream environments. A possible reason behind this is that wrapper

methodologies require high computational effort and time which is not feasible in the case of

online problems, where the response times from algorithms must be fast.

3.5 Kernel density estimation

In Chapter 10, a new family of HMMs, where the emission probabilities are expressed with

KDEs and context-specific Bayesian networks is introduced. Thus, the relevant bibliography

related to KDEs with Bayesian networks and HMMs is firstly reviewed. We will note that, no

previous work merges KDEs, Bayesian networks and HMMs. Therefore, the proposed model,

KDE-AsHMM is capable of describing non-Gaussian distributions, taking into consideration

data interactions. In Table. 3.5

3.5.1 Bayesian networks and KDE

Hofmann and Tresp [1995] proposed a heuristic to learn Bayesian networks with kernel con-

ditional estimation (KCE). The networks were learned using leaving-one-out scores penalized

by the number of arcs in the model. In this model, each feature had its own bandwidth

parameter to be estimated. Pérez et al. [2009] introduced kernel-based Bayesian networks for
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classification, where the bandwidths were computed using rule of thumb formulas, see Sil-

verman [1986]. Through statistical testing they found that the tree augmented naive Bayes

obtained the minimum prediction error for supervised datasets. Finally, Atienza et al. [2022]

proposed a semi-parametric Bayesian networks where the dependencies between variables

were defined combining a linear Gaussian Bayesian network fashion and KCE. The authors

proposed a graph search algorithm based on the tabu meta-heuristic, see Glover [1986]; in the

graph search, each node could change its dependency model (linear Gaussian or kernel-based)

depending on how that improved the cross-validated log-likelihood.

Topic Summary Cite

Bayesian Introduced KCE in Bayesian Networks Hofmann and Tresp [1995]
networks KCE in Bayesian classifiers Pérez et al. [2009]

Context-specific LGBN in HMMs Puerto-Santana et al. [2022b]
LGBN and KCE for Bayesian Atienza et al. [2022]

networks structure

HMMs Markov process with KDE Rajarshi [1990]
Input-output KDE in HMMs Wang et al. [2003]
AR values as kernel centres Xu et al. [2005]

with KDE emission probabilities
KDE-HMMs treated as MoG-HMMs Piccardi and Perez [2007]
KDE in MoGs/HMMs with ANNs Do et al. [2014]
KDE in Markov random fields Qiao and Xi [2017]

with Gibbs sampling
AR-HMM conditional emission Henter et al. [2018]

distribution defined by KDE
KDE in transitions in HSMMs Luati and Novelli [2021]
KDE in the covariance in HMMs Jung and Park [2022]

with Gaussian processes
HMMs with KDE emissions This thesis

with context-specific Bayesian netwroks

Table 3.5: Reviewed articles about Bayesian networks, KDEs and HMMs

3.5.2 HMMs adn KDEs

Rajarshi [1990] proposed a bootstrap method based on KDE to estimate stationary Markov

processes. Although no hidden variable was used in this first work, these ideas were gen-

eralized to be adapted in HMMs, as it will be seen below. Wang et al. [2003] proposed an

HMM with input-output observations. The model assumed that in each hidden state, the

output variables would depend on the input variables in a manner described by a Bayesian

networks, and the conditional probabilities were estimated using KCE. The authors proposed

an EM algorithm with a Monte Carlo sampling phase in the M-step to reduce the number

of instances in the kernel and accelerate the training phase. Xu et al. [2005] proposed a

kernel-based HMM, where the emission probabilities were a KDE model whose kernel took

as arguments the current and last observations. The model learning procedure was modified



56 CHAPTER 3. STATE OF THE ART

to maximize the accuracy in a supervised problem. Another approach to join HMMs and

KDEs was proposed in Piccardi and Perez [2007], where an HMM with kernel-based emission

probability estimation was proposed, but, in this case, a pseudo-likelihood function was used

to run the EM algorithm. For the multivariate kernel, the bandwidths were defined with a

matrix in order to take into consideration feature interactions. Do et al. [2014] proposed a

kernel-based density HMM for classification in speech recognition. The emission probabilities

were based on KDEs; however, in this case, a global bandwidth parameter was used. Next,

an ANN was used to re-estimate the aposteriori probabilities of the cluster/class variable to

improve the accuracy of the speech recognition.

In more recent years, further work related to HMMs and KDEs can be found. Qiao and

Xi [2017] proposed a kernel-based hidden Markov random field model, where the emission

probabilities were modeled as KDEs; but the latent probabilities were modeled with a Gibbs

distribution. An EM algorithm was proposed to determine the model parameters, in par-

ticular, the bandwidth of the kernels depended on the hidden state. Henter et al. [2018]

proposed an AR-HMM where a KDE was used to define the conditional next-step emission

distributions. An extended EM algorithm was applied to learn the model parameters; also,

the bandwidths and kernel centers were dependent on each hidden state. This was subse-

quently extended to kernel conditional density estimation by De Gooijer et al. [2022]. In

Luati and Novelli [2021], the KDEs were used to estimate the sojourn times distributions

for explicit state duration in hidden semi-Markov models (HSMM). Finally, Jung and Park

[2022] proposed an HMM with Gaussian processes as emission probabilities. For the covari-

ance function, a spectral mixture kernel was applied, and the model parameters were learned

using variational Bayesian methods.
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Chapter 4
Asymmetric linear Gaussian HMMs

The model proposed in this chapter is an extension of that presented in Section 2.3.5. As-

HMMs were designed to work with discrete variables; therefore, if continuous variables are

being used, a discretization step must be done. Clearly, such step can add undesirable noise

to the model parameters. With the proposed model in this chapter, continuous variables can

be directly used to learn an As-HMM. This chapter is a summary of Puerto-Santana et al.

[2018].

The proposal uses LGBNs to model state-specific Bayesian networks; therefore, it is as-

sumed that the observable variables behave as a linear Gaussian distribution given the hidden

state. Thus, the model, as previously reviewed in Section 3.1.2, is called asymmetric linear

Gaussian HMM (AsLG-HMM). The model is only compared with MoG-HMMs. However,

in the next chapters, extensions of AsLG-HMMs will be compared with other HMMs. The

chapter organization is as follows: In Section 4.1 we define the new model. In Section 4.2,

we obtain the parameters updating formulas based on the EM algorithm. Section 4.3 de-

scribes the data and experimental results used for model validation. Section 4.4 provides the

corresponding conclusions and comments.

4.1 Model proposal

An AsLG-HMM over the continuous observable variables Xt = (Xt
1, ..., X

t
M ), and the hidden

discrete variableQt, t = 0, ..., T , is an As-HMM λ = (A,B,π), with the property that for each

q ∈ R(Qt) a state-specific linear Gaussian Bayesian network (θq,Bq) is associated. If the kqm

parents of the variable Xt
m for the state q are Paq(X

t
m) = (U tqm1, ..., U

t
qmkqm

), m = 1, ...,M ,

with U tqml ∈ Set(Xt), l = 1, ..., kqm, then the emission probabilities B = [bi(x
t)]Ni=1 have the

analytic form:

bi(x
t) =

M∏
m=1

N
(
xtm|βim0 + βim1u

t
im1 + · · ·+ βim,kimu

t
imkim

, σ2
im

)
, (4.1)
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if βim = (βim0, ..., βimkim)> and utim = (1, utim1, ..., u
t
imkim

); then, the previous equation can

be written in a more compact way:

bi(x
t) =

M∏
m=1

N
(
xtm|utimβim, σ2

im

)
, (4.2)

It is assumed the same hypotheses about transition probabilities between hidden states

and observable variables as in traditional HMMs. Therefore, no modification must be done

to the forward-backward algorithm or the Viterbi algorithm.

4.2 Learning AsLG-HMMs

4.2.1 Learning the parameters

Now that it is known how to represent the emission probabilities B for the case of AsLG-

HMMs, the corresponding EM parameter updating formulas are deduced. Assume the prior

λ(s) is known and the E step is executed as in Section 2.3.2. Therefore γt(i) and ξt(i, j),

i, j = 1, ..., N , t = 0, 1, ..., T are already calculated. For our model the auxiliary function

Q(λ|λ(s)) for the M step is:

Q(λ|λ(s)) =
N∑
i=1

γ0(i) ln(πi) +
T−1∑
t=0

N∑
j=1

N∑
i=1

ξt(i, j) ln(aij)+

T∑
t=0

N∑
i=1

M∑
m=1

γt(i) ln(N
(
xtm|utimβim, σ2

im

)
),

(4.3)

the Lagrangian function for this model is:

L(λ) = Q(λ|λ(s)) + µ0(1−
N∑
i=1

πi) +
N∑
i=1

µi(1−
N∑
j=1

aij). (4.4)

The updating formulas of the parameters βim0 are found. Hence Eq. (4.4) is derived with

respect to βim0 and equated to zero. Hence :

∂L(λ)

∂βim0
=

T∑
t=0

γt(i)
∂

∂βim0
ln(N

(
xtm|utimβim, σ2

im

)
)

T∑
t=0

−2
γt(i)

σ2
im

(utimβim − xtm) = 0,

T∑
t=0

γt(i)xtm =
T∑
t=0

γt(i)utimβim.

(4.5)

Now, if Eq. (4.4) is derived with respect to the coefficients βimk with k = 1, ..., kim as in
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Eq. (4.5), the following equations are obtained:
∑T

t=0 γ
t(i)xtmu

t
im1 =

∑T
t=0 γ

t(i)utim1u
t
imβim

...∑T
t=0 γ

t(i)xtmu
t
imkim

=
∑T

t=0 γ
t(i)utimkimu

t
imβim.

(4.6)

Eq. (4.5) and Eq. (4.6) form a linear system of kim + 1 unknowns with kim + 1 equations

which can be solved with methods such as Gauss-Jordan, LU decomposition or Cholesky

decomposition. Nevertheless, a closer look at the previous equation can provide a closed

formula for the parameter βim updating formula. If Γ0:T
i := Matrix([γ0(i), ...., γT (i)]), then

the updating formula of βim from the linear equation system from Eq. (4.5) and Eq. (4.6)

can be written as the LSE of a weighted regression:

(u0:T
im )>Γ0:T

i x0:T
m = (u0:T

im )>Γ0:T
i u0:T

im βim

β
(s+1)
im =

(
(u0:T

im )>Γ0:T
i u0:T

im

)−1
(u0:T

im )>Γ0:T
i x0:T

m

(4.7)

To obtain the updating formula of σ2
im, Eq. (4.4) is derived with respect to σ2

im and equate

to zero:

∂L
∂σ2

im

=
T∑
t=0

γt(i)
∂

∂σ2
im

ln(N
(
xtm|(utimβ

(s+1)
im , σ2

im

)
)

0 =
T∑
t=0

γt(i)

(
(xtm − utimβ

(s+1)
im )2

σ4
im

− 1

σ2
im

)

(σ2
im)(s+1) =

∑T
t=0 γ

t(i)
(
xtm − utimβ

(s+1)
im

)2

∑T
t=0 γ

t(i)
.

(4.8)

The complexity of computing the β = {βim}N,Mi=1,m=1 coefficients is discussed: assume that

the factorization for each state is the most complex i.e., every variable depends on the others.

This implies that |β| = N(1 + 2 + 3 + · · ·+M) = NM(M+1)
2 . It is known that the complexity

of solving a linear system of k variables is usually O(k3) (using for example the Gauss-Jordan

algorithm). Hence, for the worst case scenario the complexity of determining the coefficients

for a single state is O(
∑M

m=1m
3) = O

(
M2(M+1)2

4

)
. Therefore to compute the coefficients for

every state, the complexity is O(NM4). On the other hand, for the simplest factorization

i.e., every variable is independent of the others given the state, the complexity of determining

the coefficients is O(NM), since M divisions for N states must be done.

4.2.2 Learning the structure

The structure learning procedure in the framework of AsLG-HMM is done as in the Section

2.2.2. Recall that in the SEM algorithm, it must be found a model B(l+1) that maximizes
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Q(B,λ|B(l),λ(l,∗)). For the case of AsLG-HMMs, Q(B,λ|B(l),λ(l,∗)) is:

Q(B,λ|B(l),λ(l,∗)) =

N∑
i=1

γ0(i) ln(πi) +

T−1∑
t=0

N∑
i=1

N∑
j=1

ξt(i, j) ln(aij)+

+
T∑
t=0

N∑
i=1

M∑
m=1

γt(i) ln(N
(
xtm|utimβim, σ2

im

)
)− 0.5#(λ) ln(T + 1).

(4.9)

where B for AsLG-HMMs is the set B =
⋃N
i=1{Bi}, with Bi representing the state-specific

Bayesian network graph of state i. It can be noticed that each Bi is related with the expression

γt(i) ln(N
(
xtm|utimβim, σ2

im

)
)−0.5#(λ) ln(T ). Therefore, due to the linearity of the problem,

such expression can be used to find B(l+1) that maximizes Eq. (4.9). Then, the next scores

are introduced:

score(B,λ|B(l),λ(l,∗)) =

N∑
i=1

scorei(Bi,λ|B(l),λ(l,∗))

scorei(Bi,λ|B(l),λ(l,∗)) =

T∑
t=0

M∑
m=1

γt(i) ln(N
(
xtm|utimβim, σ2

im

)
)− 0.5#(Bi) ln(T + 1).

(4.10)

As consequence, instead of using Q(B,λ|B(l),λ(l,∗)) in the SEM algorithm, it can be used

score(B,λ|B(l),λ(l,∗)) to search for the best model structure. For this case study, the opti-

mization process is done with simulated annealing Kirkpatrick et al. [1983].

4.3 Experimental setup

4.3.1 Dataset characterization

The data used in this chapter and incoming chapters, come from ball bearing vibrational

information, see Qiu et al. [2006]. The data is filtered using the spectral kurtosis algorithms

and envelope techniques explained in Section 2.5. The ball bearing fundamental frequencies

and their harmonics are extracted: BPFO, BPFI, BSF and FTF. The mechanical set-up is

shown in Fig. 4.1.

In real life applications, ball bearings are fundamental components inside tool machines.

It is desirable to monitor their health state. However, the health state is a hidden variable;

hence, HMMs can be applied to estimate it. This first proposed model, as a first step, will

be compared to a more common model such as the MoG-HMM. A MoG-HMM can be seen

as a symmetric model, because its emission probabilities, depending on the modeler decision,

in their covariance matrices, must be diagonal or full for all the hidden states. In the former,

all the variables are independent, in the later, all the variables can depend on the others,

and the number of parameters can increase significantly. If AsLG-HMMs are used, it can

be discovered which frequencies affect directly others. Or in other words, it can be inferred

which components of the ball bearing are driving its mechanical modes and which others
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Figure 4.1: Graphical representation of the mechanical set-up. A rotomotor spins a shaft at a rota-
tional speed of 2000RPM coupled with four Rexnord ZA-2115 double row bearings with labels B1,
B2, B3 and B4. A constant radial load of 2721.554kg is applied to bearings 2 and 3. Vibrational data
is recorded until one of the bearings fails. A signal record of 0.1s is taken every twenty minutes. The
sampling rate is 20kHz.

are responding to these behaviors. Three signals datasets are available from this mechanical

set-up. Table. 4.1 shows a description of each signal.

Signal Number of records Defects found

S1 2156 bearing 3 BPFI and bearing 4 BSF
S2 984 bearing 1 BPFO
S3 4448 bearing 3 BPFO

Table 4.1: Information about the dataset and a description of the failures found in each signal record.
Each signal is divided in four signals, one for each bearing. As notation,Su Bv is the information from
the u signal dataset for the bearing Bv, u = 1, 2, 3 and v = 1, 2, 3, 4. Su Bv has information of the
fundamental frequencies and harmonics of Bv. Also, it is known that S1 B3, S1 B4, S2 B1, S3 B3 are
run to failure signals.

4.3.2 Experimental setup

The experiment consists of learning an AsLG-HMM and MoG-HMM for each signal and

ball bearing, and using all the signals for testing. Four hidden states are assumed for all

the models. And, models using 0 and 3 harmonics are learned. During the estimations, it

was found that the small amplitudes of the frequencies could generate numerical errors and

get probabilities larger than 1 or equal to zero; therefore, during the learning process, every

variable was scaled in the interval [0, 10], the scaling constant are used to scale the testing

variables. In total, 48 models are learned for this experimental set-up (24 from AsLG-HMM

and 24 from MoG-HMM).

In order to see the evolution of states of the failing bearings (S1 B3, S1 B4, S2 B1 and

S3 B3), the Viterbi algorithm is used. An ideal sequence of states is one where the healthy,

fair and failure states can be identified. However, the predicted states must be interpreted

from the model parameters to know what they represent, since they are not observable but

hidden. For that reason in each model the faulty and the healthy states must be deduced.
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4.3.3 Results

MoG-HMM AsLG-HMM

Test Bearing # LL BIC # LL BIC
S1 B1 92 -13751.94 -14102.85 44 -12174.38 -12324.90
S1 B2 92 -13413.10 -13764.01 44 -11484.06 -11634.58
S1 B3 92 -9108.65 -9459.56 44 -7202.71 -7353.23
S1 B4 92 -8026.09 -8377.00 44 -6446.02 -6596.55
S2 B1 92 -165936.05 -166248.14 44 -23150.37 -23280.93
S2 B2 92 -9234.61 -9546.69 44 -6437.78 -6568.34
S2 B3 92 -6851.84 -7163.93 44 -3936.90 -4067.46
S2 B4 92 -3281.82 -3593.91 44 -1908.85 -2039.41
S3 B1 92 -41907.36 -42309.22 44 -43653.76 -43828.32
S3 B2 92 -51109.17 -51511.04 44 -48086.59 -48261.15
S3 B3 92 -102036.99 -102438.86 44 -48625.15 -48799.71
S3 B4 92 -24644.64 -25046.51 44 -19073.07 -19247.64

Table 4.2: Likelihood and BIC results when S1 is used as training set with 0 harmonics.

Table. 4.2 shows the results obtained from MoG-HMMs and AsLG-HMMs, when signal

S1 is used for learning the model parameters and zero harmonics were considered. Observe

that the BIC score was always better for the case of AsLG-HMM except for one case. Also,

the number of parameters required by AsLG-HMM for all the cases is lower than in the case

of MoG-HMM. Regarding the sequences of hidden states for AsLG-HMMs, the are pictured

in Fig. 4.2. In literal (b), the sequence for AsLG-HMM for S1 B3 showed a clear evolution of

states, where state 0 is the initial or healthy state and state 3 is the faulty state. In (d) for S1

B4, a similar evolution of states up to failure was observed. In (f) for S2 B1, it was no longer

seen a step by step evolution of states but rather a shoot at the last days of life of the ball

bearing from state 0 to state 3. And in (h) for S3 B3, something similar happened as in (f)

. On the other hand, the sequences estimated by the MoG-HMM provided similar or worse

results. In (a) for S1 B3, the evolution of hidden states was clear, where 1 is the healthy

state, 0 and 2 intermediate states and 3 was the failure state. In (c) for S1 B4, the model did

not distinguish between state 1 and 0 as initial or healthy states which is undesirable, also

a shoot to state 3 occurred in the last days of life of the bearing, which implies that state

3 was the faulty one. In (e) for S2 B1, the initial state was 0 and failure state was 2 since

in its last days, the sequence placed in this state. In (g) for S3 B3, the model said that no

evolution occurred on the ball bearing, which is not true.

Table. 4.3 shows the results obtained from the MoG-HMM and AsLG-HMM when signal

S1 was used for learning the model parameters and three harmonics were considered. In this

case, all the BIC scores were better for the AsLG-HMMs. With respect to the number of

parameters, note that it was a constant high value (1100 parameters) for MoG-HMM for all

the ball bearings (since it is a symmetric model), and in the case of AsLG-HMM, such number

changed depending on the ball bearing, from 133 parameters to 560 (asymmetric behavior).

Regarding the Viterbi paths, Fig. 4.3 shows the resulting health state sequences for both

AsLG-HMMs and MoG-HMMs. In the case of the results obtained from MoG-HMMs, in (a),

(c), (e) and (g) the health state estimations are shown. It is observed that for most of the
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(c) MoG S1 B4 (d) AslG S1 B4
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(e) MoG S2 B1 (f) AsLG S2 B1
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(g) MoG S3 B3 (h) AsLG S3 B3

Figure 4.2: Sequences of states determined by the parameters learned from S1 with 0 harmonics. (a)
MoG-HMM sequence of states of S1 B3. (b) AslG-HMM sequence of states of S1 B3. (c) MoG-HMM
sequence of states of S1 B4. (d) AslG-HMM sequence of states of S1 B4. (e) MoG-HMM sequence of
states of S2 B1. (f) AslG-HMM sequence of states of S2 B1. (g) MoG-HMM sequence of states of S4
B3. (h) AslG-HMM sequence of states of S4 B3.

cases, but (g), the health states evolution was not clear and a noisy behavior was present

in the estimations. In the case of AsLG-HMMs, in (b), (d), (f) and (h), the Viterbi paths

are pictured. For (b) S1 B3 estimation and (d) S1 B4 , a noisy evolution of hidden states
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MoG-HMM AsLG-HMM

Test Bearing # LL BIC # LL BIC
S1 B1 1100 -54002.23 -58197.91 560 -48149.07 -50196.19
S1 B2 1100 -50993.39 -55189.07 560 -43337.75 -45384.87
S1 B3 1100 -37288.72 -41484.40 137 -32174.89 -32630.22
S1 B4 1100 -23903.19 -28098.87 133 -23468.56 -23908.84
S2 B1 1100 -291107.10 -294838.55 560 -48319.57 -50095.18
S2 B2 1100 -37168.59 -40900.04 560 -23117.11 -24892.72
S2 B3 1100 -25677.86 -29409.31 137 -16930.24 -17325.18
S2 B4 1100 -11094.17 -14825.62 133 -7751.82 -8133.70
S3 B1 1100 -161721.44 -166526.33 560 -162654.42 -165028.46
S3 B2 1100 -202135.82 -206940.72 560 -178040.19 -180414.23
S3 B3 1100 -349800.92 -354605.81 137 -270698.52 -271226.57
S3 B4 1100 -76990.41 -81795.30 133 -74495.96 -75006.56

Table 4.3: Likelihood and BIC results when S1 is used as training set with 3 harmonics.

were observed, where 0 was the healthy state and 3 was the faulty state; for the case of S2

B1 (f) and S3 B3 (h) the estimations were not clear and no conclusions could be drawn. In

comparison, when no harmonics were used, S1 with AsLG-HMMs could provide an estimation

of the time were the ball bearing failed in S2 and S3 (not training signals).

MoG-HMM AsLG-HMM

Test Bearing # LL BIC # LL BIC
S1 B1 92 -25320.08 -25671.00 39 -14815.86 -14947.57
S1 B2 92 -26790.53 -27141.44 44 -16107.71 -16258.23
S1 B3 92 -30186.46 -30537.37 44 -20666.38 -20816.9
S1 B4 92 -68835.30 -69186.21 44 -48431.78 -48582.3
S2 B1 92 -3549.33 -3861.41 39 -1677.26 -1791.5
S2 B2 92 -5949.62 -6261.71 44 -3483.04 -3613.60
S2 B3 92 -6255.21 -6567.29 44 -4875.81 -5006.37
S2 B4 92 -4587.89 -4899.97 44 -3144.30 -3274.86
S3 B1 92 -18229.13 -18630.99 39 -12740.61 -12893.35
S3 B2 92 -58430.15 -58832.02 44 -42388.86 -42563.42
S3 B3 92 -188725.90 -189127.76 44 nan nan
S3 B4 92 -37769.36 -38171.22 44 -28058.40 -28232.96

Table 4.4: Likelihood and BIC results when S2 is used as training set with 0 harmonics.

Table. 4.4 shows the results obtained from the MoG-HMM and AsLG-HMM when signal

S2 was used for learning the model parameters and zero harmonics were considered. In this

case, all the BIC scores were better for AsLG-HMMs; however, a numerical error raised when

the S3 B3 was tested. This was caused because the probability of the observations at the end

of the bearings life were near to zero for the distributions of hidden states. Regarding number

of parameters, it was observed that AsLG-HMMs used less parameters than MoG-HMMs and

could change depending on the ball bearing. Fig. 4.4 shows the health estimations obtained

for all the models. The Viterbi paths corresponding to AsLG-HMM can be seen in (b), (d),

(f) and (h). For the ball bearing S1 B3 (b) the sequences could not provide any information;

meanwhile for the ball bearing S1 B4 (d), an evolution of hidden states was observed, where

0 was a healthy sate and 3 was a failure state. For S2 B1 (f), the evolution of hidden states

says that 1 was a healthy state, 0 and 2 were two intermediate states and 3 was a failure



4.3. EXPERIMENTAL SETUP 67

0 5 10 15 20 25
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

0 5 10 15 20 25
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

(a) MoG S1 B3 (b) AsLG S1 B3

0 5 10 15 20 25
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

0 5 10 15 20 25
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

(c) MoG S1 B4 (d) AslG S1 B4

0 2 4 6 8
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

0 2 4 6 8
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

(e) MoG S2 B1 (f) AsLG S2 B1

0 10 20 30 40 50 60 70 80
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

0 20 40 60 80
days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e

(g) MoG S3 B3 (h) AsLG S3 B3

Figure 4.3: Sequences of states determined by the parameters learned from S1 with 3 harmonics. (a)
MoG-HMM sequence of states of S1 B3. (b) AslG-HMM sequence of states of S1 B3. (c) MoG-HMM
sequence of states of S1 B4. (d) AslG-HMM sequence of states of S1 B4. (e) MoG-HMM sequence of
states of S2 B1. (f) AslG-HMM sequence of states of S2 B1. (g) MoG-HMM sequence of states of S4
B3. (h) AslG-HMM sequence of states of S4 B3.

state. For S3 B3 (h), the model estimated a healthy state for most of the ball bearing life to

later run to failure state. Regarding the paths obtained by MoG-HMMs, they are drawn in

(a), (c), (e) and (g). For most of the ball bearings, but S2 B1 (c), noisy and non interpretable
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Figure 4.4: Sequences of states determined by the parameters learned from S2 with 0 harmonics. (a)
MoG-HMM sequence of states of S1 B3. (b) AslG-HMM sequence of states of S1 B3. (c) MoG-HMM
sequence of states of S1 B4. (d) AslG-HMM sequence of states of S1 B4. (e) MoG-HMM sequence of
states of S2 B1. (f) AslG-HMM sequence of states of S2 B1. (g) MoG-HMM sequence of states of S4
B3. (h) AslG-HMM sequence of states of S4 B3.

segmentations were obtained. For S2 B1(c), it can be said that 3 was a healthy state and 0

was failure state and no intermediate states were present.

Table. 4.5 shows the results obtained from the MoG-HMM and AsLG-HMM when signal
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MoG-HMM AsLG-HMM

Test Bearing # LL BIC # LL BIC
S1 B1 1100 -101705.60 -105901.29 132 -70241.38 -70677.90
S1 B2 1100 -79674.65 -83870.33 129 -61950.20 -62375.43
S1 B3 1100 -109246.54 -113442.23 560 -76428.53 -78475.65
S1 B4 1100 -562364.09 -566559.77 134 nan nan
S2 B1 1100 -16511.00 -20242.45 132 -9513.05 -9891.67
S2 B2 1100 -24369.24 -28100.69 129 -15488.07 -15856.90
S2 B3 1100 -25121.29 -28852.74 560 -19216.65 -20992.26
S2 B4 1100 -22605.34 -26336.79 134 -14049.49 -14434.64
S3 B1 1100 -85819.56 -90624.45 132 -69847.83 -70354.06
S3 B2 1100 -189836.81 -194641.70 129 -172699.36 -173192.49
S3 B3 1100 -621097.29 -625902.18 560 nan nan
S3 B4 1100 -172836.71 -177641.61 134 -127218.05 -127733.01

Table 4.5: Likelihood and BIC results when S2 is used as training set with 3 harmonics.

S2 was used for learning the model parameters and three harmonics were considered. For

this scenario, all the BIC scores were better for AsLG-HMM; however a numerical error

raised when S1 B4 and S3 B3 were tested. With respect to the number of parameters, it

was observed that in this case for AsLG-HMM, they had between 129 and 560 parameters,

which, is greatly fewer than the 1100 parameters required by MoG-HMM. Here, again, it

was observed the advantages of using asymmetric models: the number of parameters was

adapted depending the data and unnecessary parameters were not estimated nor considered.

Regarding the health estimations, they are drawn in Fig. 4.5. The health state sequence

estimations obtained from AsLG-HMMs can be seen in (b), (d), (f) and (h). For S1 B3

(b) and S1 B4 (d) the sequences were noisy and not clear. However, in S2 B1 (f), it was

observed an evolution of states where state 0 and 1 were almost equivalent and state 3 was

the faulty state. For S3 B3 (h), a jump from state 3 to 0 was observed, which implies that

the healthy state was 3 and the faulty state was 0. Meanwhile, the results obtained with

MoG-HMM can be seen in (a), (c), (e) and (g). For S1 B3(a), S1 B4 (c) and S3 B3 (e),

it is seen a noisy behavior which could not give any important information about the ball

bearings health state. In the case of S3 B3 (h), it was observed a jump from state 1 to state

2 at the end of the bearing life which could imply that the failure state was 2 and the healthy

state was 1.

Table. 4.6 shows the results obtained from MoG-HMM and AsLG-HMM when signal S3

was used for learning the models parameters and zero harmonics were considered. In this case

the AsLG-HMM did not get the best BIC score for all the cases, specially when signals 3 was

being tested. Regarding the number of parameters, the same behavior as in previous tests

was observed: AslG-HMMs used lesser parameters than MoG-HMMs. The viterbi paths or

health state estimations for this case, are pictured in Fig. 4.6. The state sequences obtained

by the AsLG-HMMs are shown in (b), (d), (f) and (h). For S1 B3 (b), a constant health state

was estimated, which is not true. For S1 B4 (d), a fast ball bearing health evolution was

observed, where the faulty state 3 was reached in a short time. For S2 B1 (f), a jump from

healthy state 0 to faulty state 3 was observed in the last part of the ball bearing operation

time. For S3 B3 (h), an evolutionary health state was seen from the healthy state 0 to a
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Figure 4.5: Sequences of states determined by the parameters learned from S2 with 3 harmonics. (a)
MoG-HMM sequence of states of S1 B3. (b) AslG-HMM sequence of states of S1 B3. (c) MoG-HMM
sequence of states of S1 B4. (d) AslG-HMM sequence of states of S1 B4. (e) MoG-HMM sequence of
states of S2 B1. (f) AslG-HMM sequence of states of S2 B1. (g) MoG-HMM sequence of states of S4
B3. (h) AslG-HMM sequence of states of S4 B3.

faulty state 3. In comparison, the sequences obtained by MoG-HMM are shown in (a), (c),

(e) and (g). For S1 B3 (a), a noisy and uninformative behavior was recorded. For S1 B4 (c)

and S2 B1 (e), it is observed that the state 2 was the healthy one and state 0 was the faulty
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MoG-HMM AsLG-HMM

Test Bearing # LL BIC # LL BIC
S1 B1 92 -33280.40 -33631.31 44 -12174.38 -12324.9
S1 B2 92 -13487.54 -13838.45 44 -11484.06 -11634.58
S1 B3 92 -24326.31 -24677.22 44 -7202.71 -7353.23
S1 B4 92 -32105.84 -32456.75 44 -6446.02 -6596.55
S2 B1 92 -35808.70 -36120.79 44 -23150.37 -23280.93
S2 B2 92 -4503.32 -4815.40 44 -6437.78 -6568.34
S2 B3 92 -7928.76 -8240.85 44 -3936.90 -4067.46
S2 B4 92 -2292.98 -2605.07 44 -1908.85 -2039.41
S3 B1 92 -31088.49 -31490.36 44 -43653.76 -43828.32
S3 B2 92 -22319.74 -22721.61 44 -48086.59 -48261.15
S3 B3 92 nan nan 44 -48625.15 -48799.71
S3 B4 92 -7777.07 -8178.93 44 -19073.07 -19247.64

Table 4.6: Likelihood and BIC results when S3 is used as training set with 0 harmonics.

one; however, the faulty state is visited repeatedly at the begin of the ball bearing operation

time, which is not true. For S3 B3 (g), an evolution from state 3 to state 0 was observed,

which implies that 3 was the healthy state and 0 was the faulty state.

MoG-HMM AsLG-HMM

Test Bearing # LL BIC # LL BIC
S1 B1 1100 -104929.29 -109124.98 560 -48149.07 -50196.19
S1 B2 1100 -60061.17 -64256.86 560 -43337.75 -45384.87
S1 B3 1100 -99926.12 -104121.81 137 -32174.89 -32630.22
S1 B4 1100 -224770.40 -228966.09 133 -23468.56 -23908.84
S2 B1 1100 -127055.72 -130787.18 560 -48319.57 -50095.18
S2 B2 1100 -22662.44 -26393.89 560 -23117.11 -24892.72
S2 B3 1100 -48570.38 -52301.83 137 -16930.24 -17325.18
S2 B4 1100 -14156.58 -17888.03 133 -7751.82 -8133.70
S3 B1 1100 -140846.75 -145651.65 560 -162654.42 -165028.46
S3 B2 1100 -125170.86 -129975.75 560 -178040.19 -180414.23
S3 B3 1100 -34370.69 -39175.58 137 -270698.52 -271226.57
S3 B4 1100 -77744.42 -82549.32 133 -74495.96 -75006.56

Table 4.7: Likelihood and BIC results when S3 is used as training set with 3 harmonics.

Table. 4.7 shows the results obtained for the MoG-HMM and AsLG-HMM when signal

S3 is used for learning the models parameters and three harmonics are considered. As in the

case with no harmonics, AsLG-HMMs did not get the best BIC score for all cases, specially

when S3 was being tested. The number of parameters for AsLG-HMM was always lower

when compared with MoG-HMM, and such number could change with the ball bearing,

giving insights of the dependency of the number of parameters with the data. Regarding

the Viterbi paths or health estimations, Fig. 4.7 draws them. The health state sequence

estimations obtained by the AsLG-HMM are pictured in (b), (d), (f) and (h) and the ones

from MoG-HMM can be seen in (a), (c), (e) and (g). For S1 B3 (b) and S1 B4 (d), AsLG-

HMM provided noisy estimations with little interpretation. For S2 B1 (f), a noisy behavior

between the states 0, 1 and 2 was observed, but later, the health estimation was constant

for state 3, which implies that states 0,1 and 2 were equivalent and state 3 was the faulty

one. For S3 B3 (h), a noisy evolution of hidden states was observed, where 0 was the healthy
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Figure 4.6: Sequences of states determined by the parameters learned from S3 with 0 harmonics. (a)
MoG-HMM sequence of states of S1 B3. (b) AslG-HMM sequence of states of S1 B3. (c) MoG-HMM
sequence of states of S1 B4. (d) AslG-HMM sequence of states of S1 B4. (e) MoG-HMM sequence of
states of S2 B1. (f) AslG-HMM sequence of states of S2 B1. (g) MoG-HMM sequence of states of S4
B3. (h) AslG-HMM sequence of states of S4 B3.

state and 3 was the faulty state, 1 and 2 were intermediate health states. For the case of

MoG-HMM, for all the literals, a noisy with little interpretation behavior was observed.

In Fig. 4.8, it can be seen some of the structures learned by the proposed model when 0
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Figure 4.7: Sequences of states determined by the parameters learned from S3 with 3 harmonics. (a)
MoG-HMM sequence of states of S1 B3. (b) AslG-HMM sequence of states of S1 B3. (c) MoG-HMM
sequence of states of S1 B4. (d) AslG-HMM sequence of states of S1 B4. (e) MoG-HMM sequence of
states of S2 B1. (f) AslG-HMM sequence of states of S2 B1. (g) MoG-HMM sequence of states of S4
B3. (h) AslG-HMM sequence of states of S4 B3.

harmonics were used. Only state 0 (healthy) and state 3 (faulty) are shown for the case of the

known faulty bearings. These structures give us light of the relationship between variables.

For example, (a) shows that for this state BPFI had no parents and all other variables were
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Figure 4.8: Structures learned for the case where 0 harmonics were used. (a) is the state 0 from S1
B3. (b) is the state 3 from S1 B3. (c) is the state 0 from S1 B4. (d) is the state 3 from S1 B4. (e) is
the state 0 from S2 B1. (f) is the state 3 from S2 B1.

dependent to it, therefore the frequential behaviour was due to this frequency for state 0.

On the other hand, (b) shows that for state 3, the BSF was responsible of the behaviour

of the other 3 frequencies. Note that BPFO nor BPFI had sons, which implies that they

were totally determined by BSF and FTF frequencies. It is possible to make this kind of

interpretations to the remaining models and understand which variables were determining or

not the dynamic behaviour of the tool.

It can said that in general, the signal S1 was better to model the dynamic behavior of the

ball bearings, specially when no harmonics were considered. When harmonics were taken into

consideration for the models, the health estimations were noisy and could lost interpretation.

In spite of this, in Chapter 6 and Chapter 9, offline and online models with feature selection

will be introduced in order to filter harmonics and extract additional insights from data.

4.4 Conclusions

In this chapter the AsLG-HMM has been introduced in order to deal with continuous vari-

ables in asymmetric HMMs. This model was proposed to overcome data overfitting and

discretization steps. Also, AsLG-HMMs are capable of providing useful interpretation of the

problem domain, since state-specific LGBNs are used. Additionally, since the number of pa-

rameters are reduced when compared to other models such as MoG-HMMs, inference tasks

are easier to perform.
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In the numerical experiments it was seen that AsLG-HMMs obtained in general better BIC

scores than those from MoG-HMMs. Also, the ball bearing health estimation sequences from

AsLG-HMMs were easier to interpret and were more informative than in the case of MoG-

HMMs. Finally, it was observed that when no harmonics were used, the model predictions

were more stable and less noisy, which was desirable for interpretation and data insights

extraction.

In spite of these first results, there are still some issues to solve such as the interpretability

of the Viterbi paths, which can be unreliable and hard to measure. The execution times of

the simulated annealing could be large, even for small datasets. Therefore, another search

method must be applied in order to have shorter training times and stable results. Finally, it is

interesting for industrial processes and for specifically, ball bearings, to determine the health

and which frequencies are relevant over their operation time in data streams environments.

Most issues will be addressed with the models introduced in the next chapters.
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Chapter 5
Autoregressive AsLG-HMMs

In this chapter, the AslG-HMM introduced in Chapter 4 is extended by introducing an

AR component to each variable. The AR order of each variable for each possible context

is determined by the SEM algorithm and the Yule-Walker equations when a score (to be

specified later on) is optimized. A greedy-forward heuristic algorithm is introduced to search

in the DAG space in order to obtain more stable and shorter training times. Also, a hidden

state labeling function is defined to ease the HMM interpretation and data insight extraction.

Furthermore, for the proposed model, the likelihood function is modified; therefore, the

forward-backward, Viterbi and EM algorithms have to be adapted. The main contents of this

is in Puerto-Santana et al. [2022b]. Synthetic and real data from air pollution and ball bearing

degration are used for validation. The proposed model is contrasted with several models based

on HMMs in order to prove the benefits from taking into consideration asymmetric and AR

behaviors.

The chapter is organized as follows: Section 5.1 introduces the new model based on AsLG-

HMMs. Section 5.2 explains how to adapt the traditional EM algorithm to the proposed

model. Section 5.3 adapts the forward-backward algorithm to the new model hypotheses.

Section 5.4 explains how to apply the adapted EM algorithm to learn the new model parame-

ters. Section 5.5 extends the traditional Viterbi algorithm to the proposed model. Section 5.6

indicates the new restrictions and considerations to apply the SEM algorithm and also a new

greedy forward algorithm is introduced for the graph search. Section 5.7 introduces a state

labeling function to identify magnitude changes in HMMs. Section 5.8 shows the results

of applying the proposed model for different synthetic and real-world datasets. Finally, in

Section 5.9 the conclusions and comments related to the results and innovations from the

chapter are provided.

5.1 Model proposal

Let p∗m be the AR order (time lag) determined by the Yule-Walker equations (see Sec-

tion 2.5.3) and the individual relevancy hypothesis tests for each variable Xt
m, m = 1, ...,M .

77
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Set p∗ = maxm p
∗
m. For our proposed mode, the following log-likelihood function is consid-

ered, which ensures that during the SEM algorithm the updated structures and AR orders

are comparable:

LL(λ) = lnP (xp
∗:T |x0:p∗−1,λ)

= ln
∑

R(Qp∗:T )

P (qp
∗:T ,xp

∗:T |x0:p∗−1,λ). (5.1)

For this proposed HMM model which is, as explained below, asymmetric autoregres-

sive with linear Gaussian emission probabilities (AR-AsLG-HMM), the emission probabili-

ties {bi(xt)}Ni=1 are modified such that they can be factorized into linear Gaussian Bayesian

networks with an asymmetric component, i.e., each variable Xm for each state i ∈ R(Q) is

associated with a set of parents Pati(Xm) = {U tim1, ..., U
t
imkim

} ⊂ {Xt
1, ..., X

t
M} of size kim

(apart from Q) which influences its mean in a linear form. Additionally, the emission prob-

abilities are now conditional probabilities given pim ≤ p∗ past values of the variables Xt
m,

m = 1, ...,M (AR terms) for each state i ∈ R(Q). More specifically, the emission probabilities

are:

bp
∗

i (xt) = P (xt|Qt = i,xt−p
∗:t−1,λ)

=

M∏
m=1

P (xtm|Qt = i, xt−pim:t−1
m ,Pai(Xm),λ)

=

M∏
m=1

N (xtm|utimβim + dtimηim, σ
2
im)

(5.2)

In Eq. (5.2), βim = (βim0, ..., βimkim)>, utim = (1, utim1, ..., u
t
imkim

), ηim = (ηim1, ..., ηimpim)>

and dtim = (xt−1
m , ..., xt−pimm ). Fig. 5.1 shows an example of an AR-AsLG-HMM. In this ex-

ample, when Qt = 1 (top), variable Xt
2 is dependent on Qt, Xt

1, Xt−1
2 and Xt−2

2 , but Xt
1

depends only on Qt and Xt−1
1 . However, when Qt = 2 (bottom), Xt

1 depends only on Qt and

Xt
2 is dependent on Xt−1

2 and Qt. In terms of the model, this can be expressed as p11 = 1,

p12 = 2 AR terms, k11 = 0 and k12 = 1 when Q = 1, and p21 = 0, p22 = 1 AR terms, k21 = 0

and k22 = 0 when Q = 2. From the model it can be seen that p∗ ≥ 2, because pim ≤ 2 for

i = 1, 2 and m = 1, 2.

Some comments on Eq. (5.2) follows: the set of parents Pati(Xm) of each variable Xm

for each state i ∈ R(Q) is related to a context-specific Bayesian network graph Bi. Fur-

thermore, depending on that hidden state, each variable Xm may have a different AR order,

namely pim, which is upper bounded by p∗. This model must estimate the parameters

{βim0, ..., βimkim , ηim1, ..., ηimpim , σ
2
im}

M,N
m=1,i=1. Additionally, because the first p∗ observations

are used as conditionals in Eq. (5.1), the π parameter is shifted to predict the initial dis-

tribution of the Qp
∗

hidden variable, i.e., {πi}Ni=1 = {P (Qp
∗

= i|λ)}Ni=1. Observe that the

complete information probability of an instance xp
∗:T of Xp∗:T and an instance qp

∗:T of Qp∗:T
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can be expressed as:

P (qp
∗:T ,xp

∗:T |x0:p∗−1,λ) = πqp∗
T−1∏
t=p∗

aqtqt+1

T∏
t=p∗

bp
∗

qt (x
t).
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Figure 5.1: Graphical representation of an AR-AsLG-HMM model

5.2 Feasibility of the EM algorithm in AR-AsLG-HMMs

To perform the parameter learning, the EM algorithm can be applied. However, it must be

defined an auxiliary function Q for the log-likelihood defined in Eq. (5.1). It is proposed

Qp∗(λ|λ(s)) as the auxiliary function for the EM algorithm, defined as:

Qp∗(λ|λ(s)) =
∑

R(Qp∗:T )

P (qp
∗:T |x0:T ,λ(s)) lnP (qp

∗:T ,xp
∗:T |x0:p∗−1,λ). (5.3)
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Note that Qp∗(λ|λ(s)) can be decomposed as:

Qp∗(λ|λ(s)) =
∑

R(Qp∗:T )

P (qp
∗:T |x0:T ,λ(s)) lnP (qp

∗:T |x0:T ,λ)

+ lnP (xp
∗:T |x0:p∗−1,λ)

∑
R(Qp∗:T )

P (qp
∗:T |x0:T ,λ′)

=
∑

R(Qp∗:T )

P (qp
∗:T |x0:T ,λ(s)) lnP (qp

∗:T |x0:T ,λ) + LL(λ)

(5.4)

If Hp∗(λ|λ(s)) is defined as the first summand of Eq. (5.4), i.e.,

Hp∗(λ|λ(s)) :=
∑

R(Qp∗:T )

P (qp
∗:T |x0:T ,λ(s)) lnP (qp

∗:T |x0:T ,λ) (5.5)

therefore: Qp∗(λ|λ(s)) = Hp∗(λ|λ(s)) + LL(λ), similar to Eq. (2.24). Below, it is shown

that if the EM algorithm is applied with Qp∗(λ|λ(s)), each iteration does not decrease the

log-likelihood as required. Or in other words, the EM algorithm in Dempster et al. [1977]

can be extended to the proposed likelihood function.

Lemma 5.1. Let λ(s) be the parameters at iteration s of the EM and λ(s+1) be the resulting

parameters after the next iteration of the EM. The following follows: Qp∗(λ(s+1)|λ(s)) ≥
Qp∗(λ(s)|λ(s)).

�

Lemma 5.2. Given two arbitrary models with respective parameters λ and λ′, the fol-

lowing follows Hp∗(λ|λ′) ≤ Hp∗(λ′|λ′), and the equality holds when P (qp
∗:T |x0:T ,λ) =

P (qp
∗:T |x0:T ,λ′).

�

Theorem 5.1. Let λ(s) be the parameters at an iteration s of the EM and λ(s+1) be the

resulting parameters after the next iteration of the EM. The following holds:

(a) LL(λ(s+1)) ≥ LL(λ(s)). In other words, the log-likelihood of the model cannot worsen

after an EM iteration.

(b) The sequence {LL(λ(s))}s∈N converges.

�

The proofs of the lemmas and theorems can be found in the Appendix A.

5.3 The forward-backward algorithm in AR-AsLG-HMMs

As the likelihood function of Eq. (5.1) and the emission probabilities given by Eq. (5.2) have

changed, the forward-backward algorithm must be adapted. In the E step, it is necessary to
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compute the probabilities γt(i) = P (Qt = i|x0:T ,λ) for t = 0, ..., T and i = 1, ..., N as the

initial point to fit the forward-backward algorithm. Note that γt(i) can be expressed as:

γt(i) =
P (Qt = i,xp

∗:T |x0:p∗−1,λ)

P (xp∗:T |x0:p∗−1,λ)

=
P (Qt = i,xp

∗:t,xt+1:T |x0:p∗−1,λ)

P (xp∗:T |x0:p∗−1,λ)

=
P (xt+1:T |Qt = i,x0:t,λ)P (Qt = i,xp

∗:t|x0:p∗−1,λ)

P (xp∗:T |x0:p∗−1,λ)

=
βtp∗(i)α

t
p∗(i)∑N

j=1 β
t
p∗(j)α

t
p∗(j)

(5.6)

From Eq. (5.6), the forward variable is αtp∗(i) := P (Qt = i,xp
∗:t|x0:p∗−1,λ) and the

backward variable is βtp∗(i) := P (xt+1:T |Qt = i,x0:t,λ). Observe that these equations only

make sense when t ≥ p∗ and differ slightly from those in Section 2.3.3. The next lemma

shows that the traditional forward-backward algorithm can be adapted to compute the αp∗

and βp∗ parameters of an AR-AsLG-HMM.

Lemma 5.3. αtp∗(i) and βtp∗(i) can be computed as:

αtp∗(i) =

N∑
j=1

bp
∗

i (xt)ajiα
t−1(j)

βtp∗(i) =
N∑
j=1

βt+1(j)bp
∗

j (xt+1)aij

(5.7)

for t = p∗, ..., T and i = 1, ..., N , with initial values αp
∗

p∗(i) = πib
p∗

i (xp
∗
) and βTp∗(i) = 1,

i = 1, ..., N .

�

5.4 Parameter learning in AR-AsLG-HMMs

To execute the EM algorithm, the E step and the M step must be iterated. For the E step

it can be used the adapted forward-backward algorithm of Section 5.3 to compute γt(i) and

ξt(i, j) for i, j = 1, ..., N and t = 0, ..., T :

γt(i) =
βtp∗(i)α

t
p∗(i)∑N

j=1 β
t
p∗(j)α

t
p∗(j)

ξt(i, j) =
αtp∗(i)aijb

p∗

j (xt+1)βt+1
p∗ (j)∑N

u,v=1 α
t
p∗(u)auvb

p∗
v (xt+1)βt+1

p∗ (v)

(5.8)
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Computing these quantities is enough for the E step because Qp∗(λ|λ(s)) can be expressed

as:

Qp∗(λ|λ(s)) =

N∑
i=1

γp
∗
(i) lnπi +

T−1∑
t=p∗

N∑
i=1

N∑
j=1

ξt(i, j) ln aij +

T∑
t=p∗

N∑
i=1

γt(i) ln bp
∗

i (xt). (5.9)

For the M step, the updating formulas for the parameters (A,B,π) must be deduced. In

the following theorem, it is provided the updating formulas for the proposed model.

Theorem 5.2. The M-step for an AR-AsLG-HMM model can be performed using the fol-

lowing updating formulas: parameter π = {πi}Ni=0 is updated as:

π
(s+1)
i = γp

∗
(i). (5.10)

The parameter A = {aij}Ni,j=1 is updated as:

a
(s+1)
ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (5.11)

If ϕtim := utimβim+dtimηim, the parameters {ηimr}pimr=1, {βimk}kimk=0 can be updated jointly,

solving the following linear system:

∑T
t=p∗ γ

t(i)xtm =
∑T

t=p∗ γ
t(i)ϕtim∑T

t=p∗ γ
t(i)xtmu

t
im1 =

∑T
t=p∗ γ

t(i)utim1ϕ
t
im

...
...

...∑T
t=p∗ γ

t(i)xtmu
t
imkim

=
∑T

t=p∗ γ
t(i)utimkimϕ

t
im∑T

t=p∗ γ
t(i)xtmx

t−1
m =

∑T
t=p∗ γ

t(i)xt−1
m ϕtim

...
...

...∑T
t=p∗ γ

t(i)xtmx
t−pim
m =

∑T
t=p∗ γ

t(i)xt−pimm ϕtim

(5.12)

if θim = (βim|ηim)>, otim = (utim|dtim), and Γp
∗:T
i := Matrix([γp

∗
(i), ...., γT (i)]) Then, the

previous linear system is solved as:

θ
(s+1)
im =

(
(op

∗:T
im )>Γp

∗:T
i op

∗:T
im

)−1
(op

∗:T
im )>Γp

∗:T
i xp

∗:T
m (5.13)

If ϕ̂tim := utimβ
(s+1)
im + dtimη

(s+1)
im , then, σ2

im can be updated as:

(σ2
im)(s+1) =

∑T
t=p∗ γ

t(i)(xtm − ϕ̂tim)2∑T
t=p∗ γ

t(i)
. (5.14)

This update must be done for every variable m = 1, ...,M and hidden state i = 1, ..., N .

�
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Eq. (5.12) forms a linear system of kim + pim + 1 unknowns with kim + pim + 1 equations.

If the resulting context-specific Bayesian model for every hidden state is a näıve Bayesian

network and pim = 0 for i = 1, ..., N and m = 1, ...,M , then it is only required to update the

parameters {βim0}N,Mi=1,m=1. Its updating formula is:

β
(s+1)
im0 =

∑T
t=p∗ γ

t(i)xtm∑T
t=p∗ γ

t(i)
.

Following the discussion in Section 4.2, the complexity of updating the parameters θ =

{θim}N,Mi=1,m=1 for the worst case scenario is O(NM(M3 + p∗
3
)). In such scenario, all the

possible arcs for a DAG are present and every variable has p∗ AR dependencies. This situation

is highly undesirable, since the computational cost can increase rapidly with the number of

variables and p∗. However, this kind of scenarios, again, can be avoided during the SEM due

to the penalization of structures with several parameters.

5.5 The Viterbi algorithm in AR-AsLG-HMMs

In the following lemma, it is shown that the traditional Viterbi algorithm can be adapted to

determine the most probable sequence of hidden states in AR-AsLG-HMMs.

Lemma 5.4. If δtp∗(i) = maxqp∗:t−1{P (xp
∗:t, qp

∗:t−1, Qt = i|x0:p∗−1,λ)} represents the most

probable sequence of hidden states up to time t − 1 for state i at time t, then δtp∗(i) can be

computed recursively.

δtp∗(i) = max
j=1,...,N

{δt−1
p∗ (j)aji}bp

∗

i (xt)

The Viterbi algorithm is initialized with δp
∗

p∗ (i) = πib
p∗

i (xp
∗
).

�

5.6 The SEM algorithm in AR-AsLG-HMMs

Regarding the structural optimization process, the SEM algorithm for AR-AsLG-HMMs must

also be modified. The proposed auxiliary function is:

Qp∗(B,λ|B(s),λ(s)) = EP (qp∗:T |x0:T ,B(s),λ(s)) lnP (xp
∗:T ,Qp∗:T |B,x0:p∗−1,λ)− 0.5#(B) ln(T ).

(5.15)

The steps for the adapted SEM algorithm are the same as in the general SEM. However,

it must considered that given a time slice t, the algorithm must not only look for the best

instantaneous structure at time t or the best structure with variables (Xt
1, ..., X

t
M ) but also

look for the best transition structure at time t or the relationships between (Xt
1, ..., X

t
M )

variables and their AR versions, i.e., (Xt−1
1 , Xt−2

1 , ..., Xt−p∗+1
M , Xt−p∗

M ), which implies that the

search space dimension increases. More specifically, it must be explored not only the space of

directed acyclic graphs (DAGs) for the best instantaneous structures, but also in the space
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Sp∗ = {0, 1, ..., p∗}N × {0, 1, ..., p∗}M , for the best transition structure. A component pim of

a matrix p ∈ Sp∗ indicates the number of lags for variable Xm in the hidden state i ∈ R(Q).

For instance, if pim = 2, Xt
m has incoming arcs from the variables Xt−2

m and Xt−1
m when

Qt = i.

It is pertinent to mention that in the SEM algorithm in the step of finding B(s) =

arg maxBQp
∗
(B,λ(s)|B(s−1),λ(s)) it is not necessary to use Eq. (5.15), since the initial distri-

bution and the transition matrix are kept unchanged. It is possible to take advantage of the

linearity of Eq. (5.15) to compare structures, i.e., if a dependency of Xm has been added or

deleted (AR or parent parameter) at the hidden state i, it is reasonable to use the following

score:

scoreim =
T∑

t=p∗

γt(i) ln(N (xtm|ϕtim, σ2
im))− 0.5#(Bi) ln(T + 1). (5.16)

If changes have been done to many variables in many hidden states, it is better to use

the following score:

score =
N∑
i=1

M∑
m=1

scoreim. (5.17)

To perform the structural optimization step, it is explored the space of structures. In this

chapter, a heuristic forward greedy algorithm is proposed to perform the structure optimiza-

tion. In this approach, all the structures are started as näıve Bayesian networks with no AR

parameters. During the optimization, each variable is visited for each hidden state and it is

added AR or parent dependencies as long as Eq. (5.16) improves. Its pseudocode is shown

in Fig. 5.1.

Other algorithms have been used to search in the graph space during the SEM algorithm,

e.g., Bueno et al. [2017] used a tabu search algorithm (see,Glover and Laguna [1997]), and

in Chapter 4, it was used a simulated annealing algorithm. In general, any meta-heuristic or

heuristic can be used to search in the space of DAGS.

5.7 Hidden state labelling

In practice, when HMMs are used, categorical labels are given to the hidden states for in-

terpretation purposes as done in Section 4.3.3. However, only after training the model, the

model parameters are manually checked to determine which categorical label corresponds

with each trained hidden state. Here, it is proposed an automatic numerical labelling for

trained models, where a numerical function is used to label a trained hidden state. Let

g : R(Q) → R be a function that maps each hidden state into a real number depending

on the models parameters. This function g not only helps us determine whether a change

in hidden states occurs but also the magnitude of the change. For example, if deviations

from known standards or desired values κ = {κ1, ..., κm} of X imply changes in state, the

following g functions described in Eq. (5.18) and Eq. (5.19) can be used to help in hidden
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Algorithm 5.1 Pseudo-code for the forward greedy algorithm

Input: A parameter λ(s), a prior structure B(s−1)

Return: A structure B(s)

Set B(s) := B(s−1)

** Optimization of AR structures **
For i = 1, ..., N do:

For m = 1, ...,M do:
Compute scoreim with B(s−1) and λ(s)

While pim ≤ p∗ do:
Define B̂ with p̂im := pim + 1 and estimate λ̂ = arg maxλQp

∗
(B̂,λ|B(s−1),λ(s))

Compute ̂scoreim with B̂ and λ̂
If ̂scoreim > scoreim then:

Update B(s) := B̂, λ(s) := λ̂ and scoreim := max{scoreim, ̂scoreim}
Else:

Break
** Optimization of instantaneous structures **
For i = 1, ..., N do:

For m = 1, ...,M do:
Compute Bim:= all the possible DAG graphs resulting by adding one arc to B(s)

in Bim, where Xm is a new children of any variable
If Bim is non-empty then:

Compute scoreim with B(s) and λ(s)

For B̂ in Bim
Estimate λ̂ = arg maxλQp

∗
(B̂,λ|B(s−1),λ(s))

Compute ̂scoreim with B̂ and λ̂
If ̂scoreim > scoreim do:

Update B(s) := B̂, λ(s) := λ̂ and scoreim := max{scoreim, ̂scoreim}

states labelling in AR-AsLG-HMMs:

g1(i) =

M∑
m=1

vm(νim − κm) (5.18)

g2(i) = max
m=1,...,M

{vm(νim − κm)} (5.19)

Where

νim =
βim0 + βim1νiuim1 + · · ·+ βimkimνiuimkim

1− (ηim1 + · · ·+ ηimpim)
. (5.20)

Observe that in Eq. (5.20), the value of νim depends on the ν value of the parents of variable

Xm in the context-specific graph related to the i state, so Eq. (5.18) and Eq. (5.19) must

be calculated recursively. The recursion begins with those variables that fulfil the following

condition: Pai(Xm) = ∅. Next, the recursion is computed for their descendants in the

context-specific graph, until no variables are left. In general, νim can be interpreted as the

mean of variable Xm at the hidden state i. Additionally, the vector v = (v1, ..., vM ) for
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m = 1, ..,M can be considered a feature relevance constant vector or a scaling constant

vector that can be tuned according to the nature of the problem.

Eq. (5.18) can be used in cases where the addition of errors determines the driven process.

For example, in the case of a country economy where the aggregation of economic variables can

determine if there is economic growth or not. Or in the case of bearings degradation, where

the aggregation of the amplitude of desired frequencies represents the presence of failure. On

the other hand, Eq. (5.19) can be used when high deviations from a single variable is enough

to determine the dynamical process. For example, consider a patient with a chronic disease

with many sensors that measure different biological variables. For each variable there is a

desirable value that determines good health. If only one variable drifts from the desirable

value, the health of the patient can be in danger. In conclusion, the experiment and context

of the problem may require a different g function to describe the hidden states.

5.8 Experimental setup

In this section, the proposed model (AR-AsLG-HMMs) is compared with AsLG-HMMs, LM-

SAR, AR-MoG-HMMs, MoG-HMMs, VAR-MVGHMMs, BMMs and a simple AR-AsLG-

HMM with näıve Bayes context-specific Bayesian networks that will be called näıve-HMMs

(this kind of models have been used in ?). See Table 3.1 to see the respective reference

for each model. In the case of LMSAR Hamilton [1990]1 and AR-MoG-HMM Juang and

Rabiner [1985], it was defined only for one variable. Therefore, in these experiments, it is

assumed that for these models every variable is independent. In particular, LMSAR is a

special case of an AR-AsLG-HMM, where only AR parameters are used in the mean, but the

number of them do not change with the hidden state, and the variance of the model does

not depend on the hidden state. In the case of AR-MoG-HMM, the model assumes that the

variances are unitary and do not depend on the hidden state; in spite of that it cannot be

expressed directly as an AR-AsLG-HMM. Also, both AR-AsLG-HMM and AsLG-HMM use

the forward-greedy algorithm in the SEM algorithm to ensure reproducibility. The aim is to

show the capabilities of the proposed model to change the number of AR parameters and the

context-specific Bayesian networks when they are needed.

Experiments with synthetic data are performed. The data are generated such that over

time, the AR process changes. Two dynamic processes are used with six variables. The

models are learned using only one time series, where three possible hidden states are present

and appear in time blocks. The aim is to determine for new data the most likely sequence

of hidden states. This sequence tells us the current probabilistic distribution of the data and

therefore which probabilistic relationships are relevant. Also, the number of parameters and

BIC score play an important role to identify which model is better as explained in Section 5.6.

Air quality data and real ball bearing degradation data are also used. The p∗ values are

computed using the Yule-Walker equations (see Section 2.5.3). They are used as well for AR-

MoG-HMM, BMM, VAR-MVGHMM and LMSAR to determine the maximum lag during the

1See page 57
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learning task. For the mixture models, two and three mixture components were used, and

the models with two mixture components had in general the highest BIC and log-likelihood.

Then, just two mixture components were used.

For both synthetic and real data, the models are initialized with a uniform transition

matrix A, specifically aij = 1/N ; for i, j = 1, ..., N ; the same for the initial distribution π,

specifically, πi = 1/N for i = 1, ..., N . In the case of the proposed AR-AsLG-HMM, the partial

correlation function is evaluated up to five AR values to prevent high computational times and

set pim = 0 for i = 1, ..., N and m = 1, ...,M ; this means that no AR relationships are assumed

a priori in the models. For both AR-AsLG-HMM and AsLG-HMM, all the context-specific

Bayesian networks are initialized as näıve Bayes networks. The emission probabilities for the

AR-AsLG-HMM and AsLG-HMM are initialized with βim0 = i(maxt x
t
m − mint x

t
m)/(N +

1) + mint x
t
m and σ2

im = 2(maxt x
t
m −mint x

t
m) for i = 1, ..N and m = 1, ...,M . The purpose

of this selection for βim0 is to initialize the mean of each variable for each hidden state in an

equally separated different point in the possible range of values given by the training dataset.

The selection of σ2
im, is to avoid infinite or nan values in the first iterations of the forward-

backward algorithm. For the mixture models, the distribution of the mixture coefficients is

uniform, and the mean coefficients for the mixtures models are initialized using a k -means

algorithm of clustering.

All the models were implemented in python 3 and the used libraries were numpy, mat-

plotlib, pandas, networkx, math, pickle and the k -means algorithm from the scikit-learn

library. No parallelization or own created external functions or libraries (like in C or C++)

to improve the performance were used.

5.8.1 Synthetic data

Two scenarios are considered with three known hidden states. One follows AR-AsLG-HMM

emission probabilities and another AR-MoG-HMM emission probabilities. Blocks of data for

each hidden state are generated. These blocks are mixed as indicated by Fig. 5.2 depending

on the scenario to create a signal and train every model with it. The data is simulated as in

real life applications where hidden states may not have a particular order of appearance i.e.,

any possible transition between hidden states is possible. The learned models are evaluated

with two different types of sequences of hidden states. These two sequences are generated

fifty times to be evaluated in the testing phase. From the fifty evaluations, the the mean

log-likelihood (LL), mean BIC, the standard deviation of the log-likelihoods (Std) and the

number of parameters in the model (#) are reported.

Both scenarios use six variables. From the parameters, in the case of AR-AsLG-HMM

emission probabilities, a hidden state with no structural complexity is observed (no-AR and

no-parent relationships in f tim), a second one with some structural complexity and the last

one with a complex structure (several AR and parent relationships in f tim). The parameters

in AR-AsLG-HMM are modified in such a way that the more complex the context-specific

Bayesian networks are, the greater amplitudes for the g1(i) (Eq. (5.18)) function are. The

parameters used for the hidden states for both AR-AsLG-HMM and AR-MoG-HMM can be
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Figure 5.2: Sequences of hidden states used to construct the training signals for scenario 1 (a) and
for scenario 2 (b)
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Figure 5.3: Sequences of hidden states used to construct the test signals. Sequence 1 (a) and Sequence
2 (b) are used for both scenarios

found in the Appendix A. The g1(i) function used for all the experiments has vm = 1 for

m = 1, ...,M and κm = 0, for m = 1, ...,M . The sequence of hidden states used to construct

the training signal for both scenarios can be seen in Fig. 5.2. The two sequences of hidden

states used to generate the testing signals (fifty testing signals are generated for each sequence

and each scenario) are illustrated in Fig. 5.3.

In Table 5.1 and Table 5.2, it can be observed the results for scenario 1 and 2 respectively,

for both sequences. Note that AR-AsLG-HMM obtained the best results in LL and BIC

score. The näıve-HMM, AsLG-HMM and AR-MoG-HMM obtained fair results. The mixture

models: MoG-HMM, VAR-MVGHMM and BMM obtained poor results in LL and BIC score.

In the case of BIC score, the penalization for mixture models was higher since a greater

number of parameters were needed for these models. In terms of standard deviation, MoG-

HMM and VAR-MVGHMM obtained the best results, nevertheless also they obtained the

worst results in BIC score. Next, observe that AR-MoG-HMM, AR-AsLG-HMM and LMSAR

obtained fair results in standard deviation with a good BIC score. Finally, AsLG-HMM and

näıve-HMM obtained the worst standard deviation values in spite of their BIC score. In terms

of the number of parameters, the näıve-HMM used the fewest number of parameters since

it has the simplest structure and VAR-MVGHMM used the highest number of parameters

since it considers cross-AR dependencies between variables. AR-AsLG-HMM and AsLG-
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Seq Model mean LL mean BIC Std #
1 AR-AsLG-HMM -25909.45 52432.48 86.19 64

AsLG-HMM -32817.77 66181.78 193.74 55
LMSAR -30389.47 61587.06 112.36 108
AR-MoG-HMM -28960.25 59357.17 25.02 192
MoG-HMM -68411.13 138124.24 1.67 174
Näıve-HMM -33251.80 66997.46 199.35 48
BMM -56348.00 113997.98 19.58 174
VAR-MVGHMM -68243.34 140415.08 0.84 525

2 AR-AsLG-HMM -41478.86 83608.50 87.76 64
AsLG-HMM -54167.33 108914.01 176.69 55
LMSAR -48356.20 97569.52 94.83 108
AR-MoG-HMM -45547.16 92618.09 32.21 192
MoG-HMM -107682.31 216745.54 1.72 174
Näıve-HMM -54395.72 109315.24 163.32 48
BMM -88693.42 178767.76 21.12 174
VAR-MVGHMM -107504.80 219176.15 1.50 525

Table 5.1: Results for each testing sequence of scenario 1

Seq Model mean LL mean BIC Std #
1 AR-AsLG-HMM -19822.87 40573.45 114.66 106

AsLG-HMM -20255.87 41304.78 118.92 88
LMSAR -26212.61 53233.23 112.16 108
AR-MoG-HMM -22990.46 47417.38 10.42 192
MoG-HMM -52213.44 105728.67 2.17 174
Näıve-HMM -23135.52 46764.83 138.46 48
BMM -40292.46 81886.72 23.05 174
VAR-MVGHMM -52069.19 108066.19 0.76 525

2 AR-AsLG-HMM -32883.36 66750.73 192.35 106
AsLG-HMM -33867.52 68576.21 236.21 88
LMSAR -44482.64 89822.32 226.24 108
AR-MoG-HMM -36504.69 74533.01 14.41 192
MoG-HMM -82248.49 165877.78 3.95 174
Näıve-HMM -38804.18 78132.11 241.70 48
BMM -63655.48 128691.74 39.42 174
VAR-MVGHMM -82064.02 168294.22 1.04 525

Table 5.2: Scores for each testing sequence of scenario 2

HMM used fewer parameters than mixture models, whereas mixture models used between

four to eleven times the number of parameters used by näıve-HMM. Note that LMSAR had

a fair number of parameters since it assumes independence between variables for all hidden

states, standard deviations independent of the hidden state and only AR parameters are

used. In the Appendix A an analysis of the obtained Viterbi paths for some sequences can

be found.

Model Times 1 (s) Times 2 (s)
AR-AsLG-HMM 6.842 55.098
AsLG-HMM 4.608 33.009
LMSAR 70.797 2.458
AR-MoG-HMM 189.114 223.762
MoG-HMM 110.749 190.766
Näıve-HMM 3.702 8.904
BMM 266.231 5762.679
VAR-MVGHMM 11.165 131.059

Table 5.3: Scenario 1 and 2 learning times



90 CHAPTER 5. AUTOREGRESSIVE ASLG-HMMS

For training the models, the maximum number of EM iterations are set to 200 and the

convergence threshold to 1 × 10−10. For the SEM, the number of iterations are set to 200

and the convergence threshold to 1 × 10−5. Table 5.3 shows the required times for learning

the models in each scenario. All the models converged with some exceptions. In scenario 1,

MoG-HMM and VAR-MVGHMM had to limit their number of EM iterations since singular-

covariance matrices raised in the parameters, in particular, MoG-HMM had to iterate 8 times

and VAR-MVGHMM iterated 26 times before singular covariance matrices appeared. In the

case of scenario 2, LMSAR and MoG-HMM had similar problems and MoG-HMM iterated

13 times and LMSAR just could iterate 1 time. Note that BMM is the most expensive in

time among all the models. This is due to the structure learning process that it does Bilmes

[2003], where several mutual information quantities must be computed to determine the best

AR-relationships. On the other hand, the fastest algorithm that converged was the näıve-

HMM, which was expected since it had the simplest structure of all the models. In spite

of that, observe that AR-AsLG-HMM and AsLG-HMM obtained the second best times for

training, and the remaining models had longer training times.

From these experiments it can be concluded that AR-AsLG-HMM is capable of being

simple enough to explain linear Gaussian autoregressive and mixture Gaussian processes and

prevent overfitting, but can be complex enough to detect relevant parameters that drive the

hidden states. AsLG-HMM has this property as well, but as can be seen from the obtained

BIC scores and standard deviations, the AR variables are pertinent. In terms of variance of

the predictions, AR-AsLG-HMM had decent results, which implies it is stable.

5.8.2 Air quality in Beijing

Here a dataset found in the UCI Machine Learning Repository named: ”Beijing Multi-Site

Air-Quality Data Data Set” Zhang et al. [2017] is used. The dataset consists of measure-

ments of air quality in different monitoring stations in Beijing. In particular, it is taken the

measurements from the file ”PRSA Data Aotizhongxin” which represent the name of the

monitoring station Aotizhongxin. This dataset has hourly measurements from March 2013

until February 2017. The data contains missing data (3.37% of the dataset for the selected

variables). The missing data is filled using the mean of the values of the five previous hours.

The hidden variable in this problem can be understood as the air quality. For this study,

the following variables are used: sulfur dioxide (SO2 in µg/m3), nitrogen dioxide (NO2 in

µg/m3), carbon monoxide (CO in µg/m3), ozone (O3 in µg/m3), coarse particulate matter

(PM10 in µg/m3) and fine particulate matter (PM2.5 in µg/m3). Bayesian networks and

HMM have been used before to determine air quality Vitolo et al. [2018], Vairo et al. [2019],

Yang et al. [2017], Sun et al. [2013], showing advantages in the generation of information and

discovery of relationships between variables.

The Chinese air quality limits for hourly, daily and monthly measurements are expressed in

the law GB 3095-2012. These limits are used to model the g function for this problem. In par-

ticular, κ = {500, 200, 10000, 200, 150, 75} and v = {1/500, 1/200, 1/10000, 1/200, 1/150, 1/75}.
The g function in this case uses Eq. (5.19). If g2(i) > 0 it means that one or many variables
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Model mean LL mean BIC Std #
AR-AsLG-HMM -167390.66 335516.71 1646.68 69
AsLG-HMM -221071.33 442778.17 3183.77 58
LMSAR -183257.57 366841.98 3034.64 36
AR-MoG-HMM -138174.57 277493.09 405.75 126
MoG-HMM -213999.24 429033.48 2692.62 114
Näıve-HMM -228682.23 457745.78 2126.03 30
BMM -214429.71 429894.41 2521.67 114
VAR-MVGHMM -162813.92 326826.25 1393.19 132

Table 5.4: Air quality scores when two hidden states are used

Model mean LL mean BIC Std #
AR-AsLG-HMM -161077.29 323525.48 3346.94 133
AsLG-HMM -214970.27 430930.13 3666.78 91
LMSAR -186458.75 373898.02 3702.09 108
AR-MoG-HMM -138001.78 277746.70 210.11 192
MoG-HMM -211794.34 425168.40 5376.60 174
Näıve-HMM -219751.80 440102.81 2570.88 48
BMM -211524.89 424629.51 4456.12 174
VAR-MVGHMM -155614.62 315995.65 2875.60 525

Table 5.5: Air quality scores when three hidden states are used

are above the permissible limit and the air quality is pretty bad. Great negative values are

desirable for g2 since it implies good air quality. The aim is to learn models to determine the

air quality when new observations arrive. The first year of data is used to train the models:

from march of 2013 to February of 2014. A first experiment with only two hidden states is

considered with p∗ = 1. This model is used to check if the model is capable of determining

in a binary manner the air quality using AR processes of order one. Later, another model

is trained where the number of hidden states is set using the näıve-HMM since this model

is the simplest one. The selection of the number of hidden states could be done with the

same AR-AsLG-HMM but for fairness, this strategy is used. Two to eleven hidden states

were considered, but with three hidden states, näıve-HMM obtained the best LL for the year

2013 and all the models could be trained. For each model it is predicted individually the air

quality of the three following years of data: from March of 2014 to February of 2017. As

above, the mean likelihoods, mean BICs, standard deviation of likelihoods and number of

parameters of each model are reported.

Table 5.4 and Table 5.5 show the scores obtained. Observe that AR-AsLG-HMM, VAR-

MVGHMM and AR-MoG-HMM attained the best results in the LL and BIC scores. The

remaining models got fair results. In terms of stability, AR-MoG-HMM has the lowest stan-

dard deviation, followed by BMM, näıve-HMM and AR-AsLG-HMM. In terms of the number

of parameters, näıve-HMM and AsLG-HMM have the fewest number of parameters. Followed

by these models, LMSAR and AR-AsLG-HMM achieved a fair number of parameters and

finally, mixture models, as expected, had to use a great amount of parameters.

Fig. 5.4 shows the predicted air quality for the first two weeks of 2016 for each model

using the Viterbi algorithm when two hidden states are used. Real readings are shown in

Fig. 5.4(i), where 1 expresses when any of the variables surpasses the law limits and -1 when

all the variables are under the law limits. From Fig. 5.4(i), there are four periods of time
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Figure 5.4: Viterbi paths for the air quality example during the first week of 2016 when two hidden
states are used
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Figure 5.5: Context-specific graphs learned by AR-AsLG-HMM. (a) shows a graph where the air
quality is good and (b), where the air quality is bad.

where pollution levels out of the legal levels are found: from 0 to 75 hours, from 115 to 120



5.8. EXPERIMENTAL SETUP 93

hours, from 186 to 219 hours and from 322 to 360 hours. Clearly Fig. 5.4(i) does not tell us

the severity of the pollution nor the closeness to an outlaw pollution level. The model with

the highest score (AR-MoG-HMM Fig. 5.4(d)) shows a horizontal line below zero, which

implies that the pollution level is always close to an outlaw level, which is not consistent

with what is shown in Fig. 5.4(i). The next model with the highest LL and BIC is VAR-

MVGHMM Fig. 5.4(h), which shows a noisy behaviour but always above zero, indicating a

persistent outlaw pollution level with changes in severity; however it does not match with

the reality observed in Fig. 5.4(i). In the case of LMSAR, there are transitions between legal

and illegal pollution levels; however, it reads as persistent high pollution levels which are

not consistent with Fig. 5.4(i). AR-AsLG-HMM shows a noisy prediction; however, in this

case there are variations between outlaw levels and legal levels of pollution. There are four

moments where the pollution levels are illegal in Fig. 5.4(a) as in Fig. 5.4(i); however, the

prediction is not so clear as in the case of AsLG-HMM Fig. 5.4(b), MoG-HMM Fig. 5.4(e),

näıve-HMM Fig. 5.4(f) and BMM Fig. 5.4(g), where more consistent predictions are found

with similar levels of the g2(i) function. Since the Viterbi paths achieved for three hidden

states are similar to those with two hidden states, they are shown in the Appendix A.

The noisy predictions can be explained using the learned transition matrices: in the

case of non-AR models, the transition probabilities were concentrated on the diagonal of

the transition matrix as in the case of AsLG-HMM in Eq. (5.21) with matrix A1; whereas

AR models learned more uniform transition matrices as in the case of AR-AsLG-HMM in

Eq. (5.21) with matrix A2.

A1 =

[
0.96 0.04

0.04 0.96

]
,A2 =

[
0.80 0.20

0.38 0.62

]
(5.21)

The latter causes more likely jumps between hidden states and noisy Viterbi paths can

be obtained. Nonetheless, from all the AR models, AR-AsLG-HMM was the only one closest

to the real scenario given by Fig. 5.4(i).

Fig. 5.5 shows two learned graphs when three hidden states were assumed. In the context-

specific Bayesian networks, AR variables are denoted as Xm AR r, where r is the number

of lags for the variable Xm. In Fig. 5.5(a) it is shown a graph when the air quality is good

and in Fig. 5.5(b) it is bad. In both graphs some interesting relationships similar to the

ones found in Vitolo et al. [2018] are found. For example, in Fig. 5.5(a) CO depends on

PM2.5 and PM10 and SO2 and NO2 are related to CO. These relationships come from the

process of combustion of gas and charcoal. Also NO2 is related to O3 which indicates the

photochemistry of NO2 for the production of O3. In Fig. 5.5(b) these relationships remain.

However, the dependences on previous values for each variable changes, which tells us the

level of impact of the past on the pollution levels.
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5.8.3 Ball bearings degradation

Ball bearings are used inside many mechanic tools as drills, rotors, etc. Ball bearings represent

critical components inside these machines. The failure or degradation of these components

can be translated to loses in time, money and assets for industries as explained in Chapter 1.

Monitoring ball bearings is crucial and relevant, and the use of HMM can give insight of the

bearing degradation process and therefore help in the development of maintenance policies

Larrañaga et al. [2018].

The benchmark used to validate the proposed model in this section comes from the same

ball bearing vibrational data from Section 4.3.1. In this case, the number of hidden states

was set depending on the scores obtained by näıve-HMM in the training data. Observe that

with seven hidden states, the scores of the näıve-HMM were optimized.

For this dataset, constantly it was obtained underflow problems due to the small ampli-

tudes of some frequencies. Therefore, for this case study, all the dataset were multiplied by

1000. The g function uses κ = {0, 0, 0, 0} and v = {1/1000, 1/1000, 1/1000, 1/1000}. There-

fore if Eq. (5.18) is used, g1 adds the magnitude of all the relevant frequencies. If there is a

degradation in any of the ball bearing components, the relevant frequencies will have greater

magnitudes and this will be perceived by g1. Therefore, predicting the hidden state in the

testing data can be seen as an approximation of the degradation of the ball bearing. The idea

here is to train models such that they can determine the degradation state of forthcoming ball

bearings. This can be accomplished with the Viterbi paths. In particular for this dataset the

ball bearing 3 is interesting in S1 and S3, since it fails in both signals. Nevertheless, a model

from S1 for all the ball bearings will be trained and it will be shown the scores obtained in

the testing signal S3. Additionally, the Viterbi paths of ball bearing 3 will be pictured to see

the respective degradation.

During the training time, the iterations of LMSAR and BMM had to be tuned to prevent

problems with the variances or covariance matrices. Additionally, for the BMM, no structural

optimization was performed, since it was unfeasible in time.

Table 5.6 shows the results obtained by the models for each ball bearing. Note that the

best results in BIC were achieved by different models, say: AR-AsLG-HMM, LMSAR and

VAR-MVGHMM. The worst results were attained generally by näıve-HMM and BMM. it is

observed as well that MoG-HMM and AsLG-HMM got fair results but always worse than

their AR counterparts (AR-MoG-HMM and AR-AsLG-HMM, respectively). In particular,

in the case of B3, observe that the use of AR parameters improved significantly the LL and

BIC scores. In terms of the number of parameters, see that näıve-HMM, AsLG-HMM and

AR-AsLG-HMM used the least amount of parameters for all the ball bearings. The remaining

models used two or three times the amount of parameters used by näıve-HMM. This implies

that AR-AsLG-HMM fulfils its purpose of being a model which uses a reasonable amount of

parameters with a good fit for new data.

Fig. 5.6 shows the paths for the testing B3. it can be observed that AR-AsLG-HMM,

AsLG-HMM, LMSAR and MoG-HMM exhibit the expected behaviour of the bearings degra-

dation, since they maintain low g1(i) values during most of the bearing signal and g1(i) grows
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B Model LL BIC #
B1 AR-AsLG-HMM -32095.06 64793.79 57

AsLG-HMM -33086.47 66662.88 44
LMSAR -43531.13 87727.18 76
AR-MoG-HMM -37134.66 75424.18 132
MoG-HMM -42949.20 86738.30 96
Näıve-HMM -47619.04 95658.03 36
BMM -41397.04 83633.98 96
VAR-MVGHMM -35093.25 72338.73 246

B2 AR-AsLG-HMM -38443.65 77438.49 51
AsLG-HMM -39527.63 79571.46 47
LMSAR -29191.95 59048.81 76
AR-MoG-HMM -31924.73 65004.32 132
MoG-HMM -37927.80 76695.49 96
Näıve-HMM -37296.65 75013.25 36
BMM -38705.65 78251.19 96
VAR-MVGHMM -35674.99 73502.21 246

B3 AR-AsLG-HMM -56375.55 113424.77 65
AsLG-HMM -103975.42 208510.78 52
LMSAR -44120.05 88800.04 64
AR-MoG-HMM -44835.74 90616.38 108
MoG-HMM -107638.87 216117.64 96
Näıve-HMM -119225.39 238870.73 36
BMM -154597.02 310033.95 96
VAR-MVGHMM -108390.68 218513.65 198

B4 AR-AsLG-HMM -32480.33 65748.06 78
AsLG-HMM -43628.14 87833.7 54
LMSAR -40498.35 81661.61 76
AR-MoG-HMM -38785.03 78724.91 132
MoG-HMM -42247.63 85335.15 96
Näıve-HMM -49034.67 98489.29 36
BMM -42300.06 85440.01 96
VAR-MVGHMM -31443.86 65039.97 246

Table 5.6: Model scores for ball bearing data

abruptly at the end of the bearing life. The models AR-MoG-HMM, Naive-HMM, BMM and

VAR-MVGHMM show pure noise or non consistent Viterbi paths, i.e., the g1(i) function

shows high values at the middle of the bearing signal and reduces its values at the end of the

bearing life. In the case of LMSAR, the desired behaviour is observed but the differences in

the g1(i) function between the end of the bearing life and the rest of the bearing signal are

not significant which affects the model predictive power.

A relevant part of the proposed model is the generation of context-specific Bayesian net-

works. In Fig. 5.7 it is observed two context-specific Bayesian networks. Fig. 5.7(a) represents

a good health state. In this graph observe that the cage frequencies (FTF) determine the

remaining variables. This implies that knowing the behaviour of the cage, determines the

behaviour of the ball bearing rollers and races. Fig. 5.7(b) represents a bad health state and

shows a more complex structure. In this context-specific Bayesian network AR values are

relevant and are taken into consideration. it can be noted again see the dominance of the ball

bearings cage (FTF) to determine the dynamical process of the model, but some frequencies

are not directly dependent on this variable e.g., the outer race frequencies (BPFO) depend on

the inner race frequencies (BPFI) and the roller frequencies (BSF) and these depend directly

on the cage frequency (FTF). In summary, these graphs are capable of explaining the ball

bearings dynamical process depending on its health.
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Figure 5.6: Sequence of hidden states by each model for B3

5.9 Conclusions

In this chapter, the development of asymmetric HMMs is extended to allow us to determine

and learn the optimal number of time lags depending on the value of the hidden state via

the SEM algorithm. Also, a greedy-forward heuristic is introduced to find the best structure

for the model. Additionally, it has been theoretically adapted the forward-backward, Viterbi

and EM algorithms to the proposed log-likelihood function. Furthermore, it was shown that

every iteration of the EM algorithm improves the log-likelihood of the model.

A numerical labelling function is introduced, which can be helpful in determining the

nature of the learned HMMs and to identify changes in the magnitude of the hidden variable.

Synthetic and real data were used to validate the proposed model, which was compared

with many other models. In general, the AR-AsLG-HMM obtained good results in scores and

predictions for synthetic and real data. it was showed the use of the learned context-specific

Bayesian networks to extract information about the nature of the problem being modeled

which is harder to obtain from traditional HMMs. Additionally, the number of parameters

learned by AR-AsLG-HMMs were usually in an intermediate point between the simplest
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Figure 5.7: Context-specific graphs learned by AR-AsLG-HMM. (a) shows a graph where the bearings
health is good and (b), where the bearings health is bad.

model (näıve-HMM) and the mixture models, which is helpful to prevent data overfitting.

In the following chapters, this model will be used for offline/online FSS models and online

health estimation of ball bearings, in order to meet the objectives of this thesis.



98 CHAPTER 5. AUTOREGRESSIVE ASLG-HMMS



Chapter 6
Feature saliencies in

AR-AsLG-HMMs

FSS has become an essential tool for data scientists to find relevant information within

large datasets and reduce data dimensionality. However, little effort has been put into the

case where no class variable is present. In this manner, many real unsupervised problems

are neglected and many clustering models are forced to work with undesirable or irrelevant

features. Recently, feature saliency (FS) models (Law et al. [2004]) have been proposed as

an option to overcome the FSS problem with unlabeled data. A review of such models was

presented in Section 3.2.3. HMMs with FS models are found in previous works ()Adams

et al. [2016], Zheng et al. [2018], Adams and Beling [2020]). However, the models assume

that all the variables are independent, which depletes their explanatory power. Consequently,

in this chapter an FS model based on asymmetric HMMs is introduced to alleviate this issue,

i.e., an HMM which is capable of simultaneously determining feature relevancy and giving

a probabilistic dependency graph containing only the relevant features. A learning method

is proposed based on the SEM algorithm. The proposed model is capable of performing

inference in testing data. Synthetic and real data, coming from ball bearings and grammar

facial videos, are used to validate the model. However, the model assumes some hypotheses

such as: (i.) Variables must follow a linear Gaussian distribution; (ii.) the hidden states

follow the Markov property; (iii.) the noise variables are Gaussian. Any dynamic process

which drifts abruptly from these conditions is not suitable to be interpreted with the proposed

model, since the data insights that the model would provide would be wrong.

The chapter organization is as follows: Section 6.1 introduces the new model based on

AR-AsLG-HMMs with feature saliencies. Section 6.2 provides EM and SEM algorithms to

update the parameters of the new feature saliency model. Section 6.3 provides a bound

in big O notation of the computational complexity of an iteration of the learning process.

Section 6.4 shows the results of applying the model to synthetic and real data. Section 6.5

gives the corresponding conclusions and comments related to the advantages and drawbacks

of applying the new model.
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6.1 Model proposal

In this contribution, assume that the emission probabilities are a mixture of Gaussian noise

and autoregressive asymmetric linear Gaussian Bayesian networks. Thus, depending on the

hidden state, the Bayesian network which describes the relevant distribution may change.

This model will be referred to as FS-AsHMM.

The embedded FSS process assumes that irrelevant features are not affected by changes

in hidden states, therefore a Bernoulli vector Zt = (Zt1, ..., Z
t
M ) is introduced in the model

and the irrelevant behavior is modeled for each variable with a Gaussian distribution with

parameters εm and τ2
m. The dependency of Xt given Zt and its at most p∗ past values is

modeled as:
bi(x

t|zt) := P (xt|xt−p∗:t−1, zt, Qt = i,λ)

=

M∏
m=1

fim(xtm)z
t
mgm(xtm)(1−ztm),

(6.1)

where fim(xtm) = N (xtm|utimβim + dtimηim, σ
2
im) is the relevant component, and gm(xtm) =

N (xtm|εm, τ2
m) is the noise term, utim = (1, utim1, ..., u

t
imkim

) and dtim = (xt−1
m , ..., xt−pimm ) are

vectors with the values of the kim parents of Xt
m in the Bayesian network graph and its

pim ≤ p∗ past values, with p∗ an AR order fixed upper-bound. To be clear, the mean of the

relevant term is the linear combination of the parameters βim = (βim0, βim1, ...βimkim)> and

ηim = (ηim1, ...ηimpim)> with utim and dtim respectively, and its variance is σ2
im. The noise

term for each variable Xm is a Gaussian distribution with mean εm and variance τ2
m which

does not depend on the hidden state.

Observe in Fig. 6.1 an example of the new model topology. In this example, a network

with two variables/features is presented. When Qt = 1, no probabilistic relationships appear

between Xt
1 and Xt

2, also Xt
2 depends on one AR value or Xt−1

2 . When Qt = 2, there is a

probabilistic dependency of Xt
2 from Xt

1, additionally, Xt
1 depends on one AR value, that is

Xt−1
1 and Xt

2 depends on two AR values or Xt−1
1 and Xt−2

1 . Finally, Xt on both contexts,

Qt = 1 and Qt = 2, depends on the binary random vector Zt.

The probability of Zt can be expressed as:

ζ(zt) := P (zt|λ) =

M∏
m=1

ρz
t
m
m (1− ρm)(1−ztm) (6.2)

ρm := P (Ztm = 1|λ) for m = 1, ...,M . Note that it is assumed that the Ztm Bernoulli variables

are independent between them and that the ρm parameters do not change with time. From
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Figure 6.1: Example of a structure of a global feature saliency asymmetric HMM (FS-AsHMM)

Eq. (6.1) and Eq. (6.2) the emission probabilities can be derived:

bi(x
t) := P (xt|xt−p∗:t−1, Qt = i,λ)

=
∑
R(Zt)

P (xt, zt|xt−p∗:t−1, Qt = i,λ)

=
∑
R(Zt)

bi(x
t|zt)ζ(zt)

=
M∏
m=1

ρmfim(xtm) + (1− ρm)gm(xtm),

(6.3)

and the full information probability can be written as follows:

P (qp
∗:T , zp

∗:T ,xp
∗:T |x0:p∗−1,λ) = πqp∗

T−1∏
t=p∗

aqtqt+1

T∏
t=p∗

ζ(zt)bqt(x
t|zt). (6.4)
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6.2 Model learning

6.2.1 E-step

The auxiliary function is defined as:

Qfs(λ|λ(s)) :=
∑

R(Qp∗:T )

∑
R(Zp∗:T )

P (qp
∗:T , zp

∗:T |x0:T ,λ(s)) lnP (qp
∗:T , zp

∗:T ,xp
∗:T |x0:p∗−1,λ)

(6.5)

From Eq. (6.5), the log-likelihood (LL) of the λ model is:

Qfs(λ|λ(s)) = Hfs(λ|λ(s)) + lnP (xp
∗:T |x0:p∗−1,λ)

= Hfs(λ|λ(s)) + LL(λ),
(6.6)

where

Hfs(λ|λ(s)) =
∑

R(Qp
∗:T )

∑
R(Zp

∗:T )

P (qp
∗:T , zp

∗:T |x0:T ,λ(s)) lnP (qp
∗:T , zp

∗:T |x0:T ,λ). (6.7)

By Eq. (6.6), Eq. (6.7) and the results in Section 5.2, it is known that each iteration of

the EM algorithm with Qfs(λ|λ(s)) implies improvements in the modified likelihood function

proposed in Eq. (5.1). Introducing Eq. (6.4) in Eq. (6.5), a tractable expression of Qfs(λ|λ(s))

is found, which will be useful to find the updating formulas of the model parameters:

Qfs(λ|λ(s)) =

N∑
i=1

γp
∗
(i) ln(πp

∗

i ) +

T−1∑
t=p∗

N∑
i=1

N∑
j=1

ξt(i, j) ln(aij)

+
T∑

t=p∗

N∑
i=1

M∑
m=1

ψtm(i) ln(ρmfim(xtm)) +
T∑

t=p∗

N∑
i=1

M∑
m=1

φtm(i) ln((1− ρm)gm(xtm)).

(6.8)

In Eq. (6.8), the latent a posteriori probabilities are:

γt(i) := P (Qt = i|x0:T ,λ(s)),

ξt(i, j) := P (Qt+1 = j,Qt = i|x0:T ,λ(s)),

ψtm(i) := P (Qt = i, Ztm = 1|x0:T ,λ(s)),

φtm(i) := P (Qt = i, Ztm = 0|x0:T ,λ(s)),

(6.9)
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for t = p∗, ..., T , i = 1, ..., N and m = 1, ...,M . The E-step consists of estimating these

quantities. In the case of ψtm(i):

ψtm(i) = P (Qt = i, Ztm = 1|x0:T ,λ(s))

= P (Ztm = 1|Qt = i,xt−p
∗:t

m ,λ(s))γt(i)

=
ρmfim(xtm)γt(i)

ρmfim(xtm) + (1− ρm)gm(xtm)
.

(6.10)

It is not hard to note that γt(i) = φtm(i) +ψtm(i) for m = 1, ...,M and i = 1, ..., N . Therefore

φtm(i) = γt(i)− ψtm(i) and:

φtm(i) =
(1− ρm)gm(xtm)γt(i)

ρmfim(xtm) + (1− ρm)gm(xtm)
. (6.11)

Then, γt(i) can be computed as:

γt(i) =
αtp∗(i)β

t
p∗(i)∑N

j=1 α
t
p∗(j)β

t
p∗(j)

. (6.12)

In the previous equation the forward variable is αtp∗(i) := P (Qt = i,xp
∗:t|x0:p∗−1,λ(s)) and the

backward variable is βtp∗(i) := P (xt+1:T |Qt = i,x0:t,λ(s)). The forward-backward algorithm

stated in Section 5.3 must be applied to estimate αtp∗(i) and βtp∗(i). Finally, ξt(i, j) can be

computed as:

ξt(i, j) =
αtp∗(i)aijbj(x

t+1)βt+1
p∗ (j)∑N

u=1

∑N
v=1 α

t
p∗(u)auvbv(xt+1)βt+1

p∗ (v)
. (6.13)

6.2.2 M-step

The M-step corresponds to optimizing Eq. (6.8) with respect to the model parameters. The

following theorem gives the updating formulas that result from the optimization.

Theorem 6.1. Assume there is a current model λ(s) such that the E-step has been computed

with it. From optimizing Eq. (6.8), the resulting parameter λ(s+1) can be obtained with the

following updating formulas.

The feature saliencies {ρ(s+1)
m }Mm=1 are updated as:

ρ(s+1)
m =

∑N
i=1

∑T
t=p∗ ψ

t
m(i)

T + 1− p∗
. (6.14)

The initial distribution π(s+1) = {π(s+1)
i }Ni=0 is updated as:

π
(s+1)
i = γp

∗
(i). (6.15)
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The transition matrix A(s+1) = {a(s+1)
ij }Ni,j=1 is updated as:

a
(s+1)
ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (6.16)

The mean and variance, {ε(s+1)
m }Mm=1 and {(τ2

m)(s+1)}Mm=1, from the noise component, are

updated as:

ε(s+1)
m =

∑T
t=p∗

∑N
i=1 φ

t
m(i)xtm∑T

t=p∗
∑N

i=1 φ
t
m(i)

(τ2
m)(s+1) =

∑T
t=p∗

∑N
i=1 φ

t
m(i)(xtm − εm)2∑T

t=p∗
∑N

i=1 φ
t
m(i)

.

(6.17)

Setting ϕtim := utimβim +dtimηim for m = 1, ...,M , t = p∗, ..., T and hidden state i = 1, ..., N ,

the parameters {η(s+1)
imr }

pim
r=1 and {β(s+1)

imk }
kim
k=0 can be updated jointly, solving the following

linear system: 

∑T
t=p∗ ψ

t
m(i)xtm =

∑T
t=p∗ ψ

t
m(i)ϕtim∑T

t=p∗ ψ
t
m(i)xtmu

t
im1 =

∑T
t=p∗ ψ

t
m(i)utim1ϕ

t
im

...
...

...∑T
t=p∗ ψ

t
m(i)xtmu

t
imkim

=
∑T

t=p∗ ψ
t
m(i)utimkimϕ

t
im∑T

t=p∗ ψ
t
m(i)xtmx

t−1
m =

∑T
t=p∗ ψ

t
m(i)xt−1

m ϕtim
...

...
...∑T

t=p∗ ψ
t
m(i)xtmx

t−pim
m =

∑T
t=p∗ ψ

t
m(i)xt−pimm ϕtim

(6.18)

if θim = (βim|ηim)>, otim = (utim|dtim), and Ψp∗:T
im := Matrix([ψp

∗
m (i), ...., ψTm(i)]). Then, the

previous linear system is solved as:

θ
(s+1)
im =

(
(op

∗:T
im )>Ψp∗:T

im op
∗:T
im

)−1
(op

∗:T
im )>Ψp∗:T

im xp
∗:T
m (6.19)

Setting ϕ̂tim := utimβ
(s+1)
im + dtimη

(s+1)
im ; then, {(σ2

im)(s+1)}N,Mi,m=1 can be updated as:

(σ2
im)(s+1) =

∑T
t=p∗ ψ

t
m(i)(xtm − ϕ̂tim)2∑T
t=p∗ ψ

t
m(i)

. (6.20)

The proof of this theorem is provided in the Appendix B. It is worth noting that, from

Eq. (6.18), for each variable m = 1, ...,M and hidden state i = 1, ..., N , the size of the

linear system will depend on the number of parents and AR values; the longer the list of

dependencies, the larger the linear system.
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6.2.3 The SEM algorithm

In this chapter, the greedy-forward algorithm proposed in Section 5.6 is used to search the

space of possible graphical models. However, in this model, it is plausible to think that if a

variable is noise, it should not be considered in any explanatory graphical model. Therefore,

a restriction during the search of structures is imposed, such that no noise variable is added

to any context-specific Bayesian network. The restriction consists of omitting any possible

arc coming to or from variables Xm which fulfills the following condition: ρm ≤ ρ̄, where

ρ̄ ∈ [0, 1) is a threshold that determines which variables are relevant. Observe that the

opposite of this assumption is not true, i.e., if a variable does not have any relationship with

any other variable in a context-specific Bayesian network, it does not mean that it is irrelevant

or noise under our relevance definition.

6.3 Computational complexity

Routine Complexity

Means O(NMT (M + p∗))
Probabilities O(TMN)
Forward-Backward O(TN3)
Viterbi O(NT (M(M + p∗) +N))
E-step O(TN(N2 +M))
M-step O(NM(M + p∗)2(M + p∗ + T ))
Graph scoring O(NM(M + p∗)((M + p∗)2 + T ))

Table 6.1: Computational complexity of different routines of the learning and inference algorithms

In Table 6.1, the computational complexity in big O notation is shown of the different

routines of the proposed algorithm. It is assumed that the learned networks are dense or that

several arcs appear in the context-specific Bayesian networks and that p∗ << T , or that the

maximum lag of the AR processes is small compared to the length of the data.

Given a prior or current model λ, the Means and Probabilities routines refer to com-

puting and storing the temporal means νtim and probabilities {bi(xt)}Ni=1, {fim(xtm)}N,Mi=1,m=1,

{gm(xtm)}Mm=1 for t = p∗, ..., T , which are required to perform the Forward-Backward, Viterbi

and E-step routines. The Forward-Backward routine refers to the computation of the forward

variable {αtp∗(i)}Ni=1 and backward variable {βtp∗(i)}Ni=1, t = p∗, ..., T in Eq. (6.12). These can

be used to compute log-likelihoods or perform the E-step in the EM algorithm. The E-step

consists of computing the latent probabilities in Eq. (6.9) and the M-step is to update the

parameters of λ using Theorem 1. Then, the Means and Probabilities routines are again

executed if another EM iteration is needed. Finally, the Graph-scoring routine refers to

the evaluation of a new set of graphs or context-specific Bayesian networks during the SEM

algorithm. It means using the Means, Probabilities routines and Eq. (6.18) and Eq. (6.20).
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6.4 Experimental setup

In this section, the proposed model will be compared with the models in Adams et al. [2016]

(FS-HMM) and Zheng et al. [2018] (SHMM-LFS). Since these models have been previously

compared in favor to clustering FS models such as Zhu et al. [2012], Li et al. [2009] and

Nguyen et al. [2015], they are omitted in the experiments. Additionally, the model AR-

AsLG-HMM will be compared to observe the advantages and disadvantages of using feature

saliency models. Synthetic data and real data from face grammatical videos and degradation

datasets of ball bearings are used for validation. In the case of Zheng et al. [2018], the number

of mixture components is fixed to 1 for the synthetic data; since the data is structured to

behave like that. In the case of real data, 2 components were only used since additional

components drastically increased the number of parameters to be estimated, as will be seen

later. Finally, for all the experiments, ρ̄ = 0.9. Recall that this value determines which

variables cannot be in the context-specific Bayesian networks. Further details are given in

the following subsections. For the sake of space, simply AsHMM will mean AR-AsLG-HMM.

6.4.1 Synthetic data

6.4.1.1 Data description

In this study, a synthetic data set with no physical interpretation is built. It contains noise

variables, partial noise variables and relevant variables. The noise variables are those which

follow a normal distribution with fixed mean and variance. Partial noise variables are those

whose parameters do not change for every drift in the hidden state in the full data. Relevant

variables follow a normal distribution whose mean and variance change with every drift in

the hidden state in the data set. Additionally, it is assumed that noise variables have no

probabilistic relationship with other variables. The data is built with probabilistic relation-

ships between variables and different AR values and is assumed to have four hidden states

and ten variables.

Three possible scenarios are analyzed, i.e., three sets of parameters are used. The set of

parameters are described in the Appendix B. In all the scenarios, the variables with index 3

and 10 are considered as noise. In scenarios 1 and 2, the variable with index 5 is also noise.

In scenario 3, the variables with index 5 and 7 are considered as partial noise variables. Now,

with respect to the dependency maps of each scenario: The first scenario assumes that all

the variables are independent. The second scenario assumes that probabilistic relationships

between relevant variables may appear. The third scenario is the most complex, due to the

presence of probabilistic relationships between variables and AR values, and some variables

are partial noise. This information is summarized in Table 6.2.

The training data is generated following the sequence of hidden states exposed in Fig. 6.2

(a). For the testing phase, a testing sequence of hidden states is used, which is pictured in

Fig. 6.2 (b). The testing sequence is generated fifty times for each scenario for population

evaluation purposes. To evaluate and compare the models, the mean LL (L̄L), BIC and the

standard deviation of LL (σLL) are used.
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S # Dep # AR Noise P. noise

1 0 0 X3, X5, X10 -
2 28 0 X3, X5, X10 -
3 17 17 X3, X10 X5, X7

Table 6.2: Synthetic data global description. S denotes the scenario case. # Dep stands for the
number of dependencies between variables. # AR represents the number of AR dependencies. Noise
denotes the noise variables. P. noise stands for the partial noise variables
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Figure 6.2: Signals used for training and testing. (a) is used for training and (b) is used for testing

6.4.1.2 Synthetic data results

S Model LL BIC σLL #
1 AsHMM -30527.66 61824.36 9.95 102

FS-HMM -30600.85 62181.84 9.93 130
FS-AsHMM -30537.76 62063.21 9.91 131
SHMM-LFS -48217.39 98696.64 18.02 300

2 AsHMM -30526.87 61815.24 9.57 101
FS-HMM -31816.89 64613.93 9.68 130
FS-AsHMM -31706.78 64431.40 9.52 135
SHMM-LFS -46062.65 94387.16 16.24 300

3 AsHMM -33855.63 68955.54 0.52 165
FS-HMM -43263.58 87507.51 17.57 130
FS-AsHMM -34531.54 70239.50 18.57 156
SHMM-LFS -702438.3 1407138.94 73.56 300

Table 6.3: Results for the test sequence for the different compared models

In Table 6.3 the obtained results for the different models in terms of LL and BIC are

shown. Additionally, Fig. 6.3 shows the critical difference diagrams Demšar [2006] with a

confidence of 90% for the obtained rankings in the testings datasets for LL and BIC scores,

respectively. In this case the Nemenyi test was used, which evaluates for all pairs of models

the hypothesis of no difference in the ranking position. The CD value indicates the minimum

distance in the rank to give evidence of statistical difference. In the graphs, models grouped

by the same bold-line are not statistically different in their rank. In our critical diagrams, 1

is the best rank and 4 is the worst rank.

From Fig. 6.3 it can be observed that the model with the best BIC in mean was AsHMM,
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Figure 6.3: Critical difference diagram with the Nemenyi hypothesis test for the ranking of BICs

Model Q ρ1 ρ2 ρ3 ρ4 ρ5
ρ6 ρ7 ρ8 ρ9 ρ10

FS-HMM 0.98 1.0 0.07 0.81 0.07
1.0 0.98 1.0 0.93 0.06

FS-AsHMM 0.98 0.99 0.08 0.82 0.1
1.0 0.98 1.0 0.93 0.11

SHMM-LFS 1 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0

4 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0

Table 6.4: ρ results in scenario 3 for the different models in the synthetic data

followed in order by FS-AsHMM, FS-HMM and SHMM-LFS. By the Nemenyi test, it can

be noted that all models were statistically different since no bold line paired pairs of models.

The same results were obtained for the rankings with LL.

In terms of standard deviations of the prediction scores, SHMM-LFS obtained the worst

results in all the scenarios. Next, FS-AsHMM obtained the best standard deviation in scenario

1 and 2, but it increased in scenario 3 were AsHMM obtained the best result.

For the number of parameters (last column in Table 6.3), AsHMM obtained the least

amount in scenarios 1 and 2 in spite of the fact that FS-HMM assumed full independence

between variables. However, in scenario 3, FS-HMM used the least number of parameters

since AsHMM increased drastically its number of parameters. It must be noted that in all

the scenarios, the number of parameters of the asymmetric models changed; this is due to

the different context-specific Bayesian networks that were found during the learning phase.

It is also noticeable that the SHMM-LFS model obtained the largest amount of parameters

in spite of the fact that this model also assumed full independence between variables. This

model in particular, in contradiction with the definition of irrelevant features Law et al.

[2004], assumes that the noise distribution also changes its parameters with the hidden state

and mixture component, which increases its number of parameters drastically.

It has been shown that AsHMM obtained good fitness and does not require a critical

amount of parameters. Nonetheless, the proposed models introduce feature saliencies which

are capable of estimating feature relevancy and provide more data insights. Following this

idea, in Table 6.4, the estimated relevancies by each model for scenario 3 are shown. Recall

from the synthetic data description that variables 3 and 10 are represented as noise, i.e.,

their parameters do not change with the hidden states; and variables 5 and 7 are represented
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as partial noise variables, i.e., their parameters do not change for all the hidden states.

Observe that FS-HMM and FS-AsHMM were capable of detecting the noise or irrelevant

variables since the relevancies of ρ3 and ρ10 are close to zero; while relevancies of partial noise

variables, ρ5 and ρ7, obtained mixed results. The remaining values have higher relevancy but

with contrasts, e.g., the relevancies ρ2, ρ6 and ρ8 are close to one (ρ > 0.9) but for relevancies

ρ4, it is not clear if they are totally relevant or not (0.5 < ρ < 0.9).

In the case of SHMM-LFS, the relevancies change with the hidden states. In Table 6.4

the column Q refers to each (numbered) hidden state. Regarding SHMM-LFS, the feature

saliencies are estimated at the component level in a mixture of Gaussians; however, as pre-

viously mentioned, for comparative purposes, mixture models with only one component are

considered in the synthetic data. In this case, observe that for SHMM-LFS all the features

are predicted as relevant, for all the hidden states and features.

Model t-S1 (s) t-S2 (s) t-S3 (s)

AsHMM 25.97 20.05 26.23
FS-HMM 53.99 144.30 22.79
FS-AsHMM 39.08 169.53 61.54
SHMM-LFS 14.61 14.64 14.21

Table 6.5: Seconds to learn a model by scenario in the synthetic data

Concerning the execution times of the tested algorithms, in Table 6.5, it is reported the

learning times of all the algorithms for each scenario. Note that, FS-AsHMM was the largest

time consumer in two out of the three scenarios. In scenario 1, FS-HMM was the slowest

model to learn. In this manner, it is observed that the additional information that was

provided by FS-AsHMM and FS-HMM (feature saliencies) had the cost of longer training

times. SHMM-LFS was the quickest in all the scenarios. However, as seen before, the data

insights obtained by this algorithm were poor. In an intermediate point, AsHMM can be

found. The algorithm is capable of giving context-specific Bayesian networks, but no feature

selection is performed.

6.4.2 Grammatical facial expression data

6.4.2.1 Data description

In this experiment, grammatical facial expression data is used. Facial gestures are relevant in

any sign language: given a hand signal sequence, facial gestures can change its grammatical

sense. The data by Freitas et al. [2014] was collected using a Kinect camera which recorded

fluent Brazilian sign language signalers. From the videos, spacial facial points were collected,

processed and used for classification and segmentation tasks. In each video, there was a

person repeating, with pauses, sentences with grammar content. The aim of the problem is

to determine in which frames the grammatical content is being performed. HMMs have been

used before to tackle this kind of problem. See for example Michael et al. [2009], Nguyen and

Ranganath [2012]. The possible grammar contents are:
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� Affirmative (Affir): used to make positive sentences;

� Conditional (Cond): used to create subjunctive clauses;

� Doubt question (DQ): used to indicate that new information is being added;

� Emphasis (Emp): used to highlight information;

� Negative (Neg): used to make negative sentences;

� Relative sentence (Rela): used to provide more information;

� Topic (Topic): used to change subject;

� WH-questions (WH ): used to create who, what, where... questions;

� Y/N-questions (YN ): used to create yes/no questions.

Later, another expert in Brazilian sign language labeled the video frames indicating when

the signaler is performing the sentence. Each video has a unique grammar content, where

five repetitions of five different sentences in which the face is not overshadowed by the hand

signals are recorded. Each dataset has spatial (x, y, z) coordinate information from 100 facial

points (300 raw features). However, by expert knowledge, the dataset can be reduced down

to 18 features which contain information about distances and angles between relevant face

sections in the (x, y) plane Freitas et al. [2014]. More details about the raw features can be

found in Fig. 6.4 and Table 6.6.

Figure 6.4: Raw face point locations

The idea is to select relevant points from relevant face parts. In Table. 6.7 the 18 ex-

tracted features are described, namely d1, ..., d11, which are distances between face points, and

a1, ..., a7, which are angles between face points, denoted as ||a−b|| =
√

(a[x]− b[x])2 + (a[y]− b[y])2

and ∠(a, b, c) = arccos (b−a)·(c−a)
||b−a||||c−a|| . Two people perform the same sentences for each gram-

matical context. Three of the five repetitions of the two signallers are taken as input for a

model for each grammar content. Later, the models are evaluated with the remaining two
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Point Face section Selected points
0− 7 Left eye 2
8− 15 Right eye 10
16− 25 Left eyebrow 17
26− 35 Right eyebrow 27
36− 47 Nose 39, 44
48− 67 Mouth 48, 51, 54, 57
68− 86 Face contour -
87 Left iris -
88 Right iris -
89 Nose tip 89
90− 94 Line above left eyebrow -
95− 99 Line above right eyebrow -

Table 6.6: Raw selected points

Expert knowledge reduced dataset
d1 d2 d3 d4

||2− 17|| ||17− 27|| ||27− 10|| ||10− 89||
d5 d6 d7 d8

||89− 2|| ||39− 89|| ||89− 44|| ||44− 57||
d9 d10 d11 a1

||57− 39|| ||57− 51|| ||48− 54|| ∠(10,17,2)
a2 a3 a4 a5

∠(2,27,10) ∠(89,48,54) ∠(48,89,51) ∠(54,81,51)
a6 a7

∠(48,51,57) ∠(54,51,57)

Table 6.7: Features construction

repetitions of both signallers for each grammar content (18 sequence tests). The mean LL and

BIC scores are reported (standard deviation is not reported, since only two test sequences are

available for each grammar content). From the supervised binary problem (grammar content

or not), the accuracy, recall and F-score from the classification task are provided.

6.4.2.2 Grammatical face data results

From the previous information, the models BICs and LLs for each grammar case are reported.

As the aim of this problem is to obtain a binary segmentation of the recorded videos, two

hidden states will be used. The accuracy, recall and F-score obtained by each model will also

be reported. Next, the model corresponding to the Topic grammar case is explored. From

it, its feature saliencies and learned Bayesian networks are presented and analyzed. In this

manner, the additional data insights that the proposed models can provide are highlighted.

In Table 6.8 the LLs, BIC scores and number of parameters obtained by the different

models for each grammatical scenario are shown. Additionally, Fig. 6.5(a) shows the critical

difference diagrams for the BIC score. A confidence level of 90% was used. The critical

difference diagram from LL score was omitted since it was the same as in the case of BIC.

Note that, AsHMM obtained the best BIC score and LL; followed in order by LFS-

AsHMM, FS-HMM and SHMM-LFS. From the hypothesis test it can be observed that FS-

AsHMM was statistically better than SHMM-LFS; but not enough evidence is available to

confirm that it performed better than FS-HMM nor worse than AsHMM.

In Fig. 6.5(b) the critical difference diagram for the number of parameters are drawn. FS-
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Grammar Model LL BIC #
Afir AsHMM -42403.96 85935.22 183

FS-HMM -51617.50 104048.14 132
FS-AsHMM -51182.32 103220.91 139
SHMM-LFS -351868.77 706879.23 510

Cond AsHMM -76062.93 154090.58 289
FS-HMM -97076.42 195050.22 132
FS-AsHMM -93579.59 188178.92 150
SHMM-LFS -670067.66 1343602.47 510

DQ AsHMM -66560.91 133622.67 78
FS-HMM -65544.13 131935.84 132
FS-AsHMM -63677.90 128267.58 142
SHMM-LFS -458428.4 920131.53 510

Emp AsHMM -40022.70 81753.47 275
FS-HMM -53869.89 108559.64 132
FS-AsHMM -53864.29 108548.44 132
SHMM-LFS -368888.71 740945.10 510

Neg AsHMM -59059.31 120344.83 349
FS-HMM -74477.48 149796.97 132
FS-AsHMM -75139.11 151196.76 144
SHMM-LFS -453618.42 910490.05 510

Rela AsHMM -77468.23 157457.23 363
FS-HMM -109543.42 220003.48 132
FS-AsHMM -107576.03 216110.36 138
SHMM-LFS -774777.30 1553096.18 510

Topic AsHMM -69567.09 140984.06 277
FS-HMM -85695.22 172271.97 132
FS-AsHMM -82010.55 165036.20 152
SHMM-LFS -588667.95 1180741.82 510

WH AsHMM -35070.70 72076.86 318
FS-HMM -47792.39 96388.17 132
FS-AsHMM -47804.90 96413.2 132
SHMM-LFS -327078.86 657261.75 510

YN AsHMM -52210.02 106155.85 270
FS-HMM -68438.54 137725.68 132
FS-AsHMM -67808.19 136477.85 134
SHMM-LFS -465458.38 934195.49 510

Table 6.8: Likelihood, BIC score and number of parameters obtained by the models for the testing
face grammar videos

AsHMM was better ranked (less parameters) than SHMM-LFS, but not significantly different

from FS-HMM and AsHMM. As a final comment, it is remarkable that SHMM-LFS obtained

the highest amount of parameters again, as in the synthetic data.

The proposed problem is to learn a model capable of predicting from a video whether or

not a signaler is performing a certain grammatical face expression. Therefore, a model for

each training set is learned and then the corresponding testing videos are evaluated. However,

as disclaimed, all the models are unsupervised, and they do not take into account the class

variable. It follows that the generated models may not be segmenting or clustering the actions

corresponding to the class variable.

The prediction phase is performed using the Viterbi algorithm. The Viterbi algorithm

in this case, as only two hidden states are considered, returns sequences of zeros and ones.

However, it is not clear what a zero or a one implies in this sequence; therefore, the confusion

matrix is computed for the two following possible assignments:

� 1 is a grammar expression, 0 is not
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Grammar Model Acuracy Recall F-score
Afir AsHMM 0.61 0.0 0.0

FS-HMM 0.70 0.79 0.67
FS-AsHMM 0.68 0.67 0.62
SHMM-LFS 0.62 0.0 0.0

Cond AsHMM 0.68 0.85 0.61
FS-HMM 0.81 0.77 0.70
FS-AsHMM 0.81 0.68 0.67
SHMM-LFS 0.72 0.0 0.0

DQ AsHMM 0.57 0.0 0.0
FS-HMM 0.56 0.52 0.50
FS-AsHMM 0.59 0.53 0.53
SHMM-LFS 0.58 0.0 0.0

Emp AsHMM 0.63 0.59 0.51
FS-HMM 0.89 0.91 0.84
FS-AsHMM 0.85 0.85 0.78
SHMM-LFS 0.67 0.0 0.0

Neg AsHMM 0.56 0.37 0.43
FS-HMM 0.58 0.41 0.47
FS-AsHMM 0.56 0.49 0.50
SHMM-LFS 0.55 0.0 0.0

Rela AsHMM 0.55 0.54 0.40
FS-HMM 0.86 0.95 0.79
FS-AsHMM 0.86 0.90 0.79
SHMM-LFS 0.72 0.0 0.0

Topic AsHMM 0.72 0.71 0.54
FS-HMM 0.86 0.91 0.75
FS-AsHMM 0.85 0.87 0.73
SHMM-LFS 0.77 0.0 0.0

WH AsHMM 0.56 0.36 0.42
FS-HMM 0.75 0.54 0.65
FS-AsHMM 0.77 0.74 0.74
SHMM-LFS 0.56 0.0 0.0

YN AsHMM 0.72 0.77 0.69
FS-HMM 0.73 0.66 0.66
FS-AsHMM 0.80 0.71 0.74
SHMM-LFS 0.60 0.0 0.0

Table 6.9: Prediction scores obtained by the models for the testing face grammar videos

Distance
M Q ρd1 ρd2 ρd3 ρd4 ρd5 ρd6 ρd7 ρd8 ρd9 ρd10 ρd11
1 0.47 0.44 0.9 0.93 0.09 0.5 0.56 0.26 0.5 0.91 0.98
2 0.29 0.31 1.0 0.96 0.02 0.44 0.66 0.11 0.22 0.99 0.96
3 1 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

2 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Angle
M Q ρa1 ρa2 ρa3 ρa4 ρa5 ρa6 ρa7
1 0.27 0.33 0.42 0.81 0.85 0.27 0.23
2 0.07 0.12 0.09 0.84 0.79 0.04 0.03
3 1 0.93 0.93 0.93 0.93 0.93 0.93 0.93

2 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Table 6.10: ρ relevancies for the case of the grammatical case of Topic. Column M refers to the model:
1 is FS-HMM model, 2 is FS-AsHMM and 3 is SHMM-LFS. Column Q refers to hidden states; it is
only used when a model has relevancies that depend on the hidden state (models 3 and 4)

� 0 is a grammar expression, 1 is not

From the confusion matrix of each assignment, the accuracy is computed and the assignment

with the greater accuracy is chosen as the model segmentation. Nevertheless, a better decision

rule could have been made if an expert in Brazilian sign language had reviewed the learned
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Figure 6.5: Critical difference diagram with the Nemenyi hypothesis test for the ranking of (a) BIC
scores, (b) number of parameters, (c) Accuracy, (d) Recall and (e) F-score

parameters.

In Table 6.9 the total accuracy, recall and F-score obtained from the testing videos from

signallers A and B are shown. Additionally, in Fig. 6.5(c), Fig. 6.5(d) and Fig. 6.5(e) the

corresponding critical difference diagrams are provided. For accuracy (Fig. 6.5(c)), it can

be observed that the best ranked models were FS-AsHMM and FS-HMM, followed in order

by SHMM-LFS and AsHMM. Statistically, two equivalence groups were found, the first one

consisted of FS-HMM and FS-AsHMM, and the second one contained AsHMM and SHMM-

LFS.

In terms of recall or true positive rate, Fig. 6.5(d) shows that the best ranked model was

FS-HMM, followed in order by FS-AsHMM, AsHMM and SHMM-LFS. In Table 6.9 it can

be observed that there are models with high recall score and low accuracy , and models with

zero recall but with a relevant accuracy. The main reason for this issue is that the output of

the Viterbi algorithms for some models and grammar cases is a constant line at 0 or 1. Thus,

this measure is not helpful to differentiate between the tested models. Therefore, the F-score

can be used to solve this issue and give another perspective of the model performance for

detecting grammar facial expressions.

Then, for the F-score, Fig. 6.5(e) shows that the best rank was obtained by FS-AsHMM,

followed in order by FS-HMM, AsHMM and SHMM-LFS. FS-AsHMM is statistically better

than AsHMM and SHMM-LFS but statistically equivalent to FS-HMM.

In conclusion, from the accuracy level and F-score, the most accurate and reliable models
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were FS-AsHMM and FS-HMM for classification of this kind of data. AsHMM obtained

intermediate or poor accuracy and F-score results.

It has been shown from the previous results that FS-AsHMM and FS-HMM can be good

unsupervised models to predict grammar facial expressions. But it is also relevant to check

their feature saliencies and observe which variables were relevant for the learning process. In

Table 6.10, the relevancies for each model in the grammar case of Topic are presented. Note

that, FS-HMM and FS-AsHMM (models 1 and 2) selected the same variables under the rule

ρi > ρ̄, i.e., the variables d3, d4, d10 and d11. The remaining variables are not relevant or lie

in an intermediate level. In any case, only the previous mentioned variables are considered in

the context-specific Bayesian network inside FS-AsHMM and are able to have probabilistic

relationships with other variables. Regarding SHMM-LFS (model 3), all the variables are

relevant for both hidden states, which is undesirable since no FSS procedure is performed.

Observe that from FS-AsHMM and FS-HMM, the set of relevant features is small, only

four from the eighteen variables are relevant. In this sense, it can be argued that AsHMM

learned noise and predicted noise during the testing phase. In comparison, FS-AsHMM and

FS-HMM also learned noise, but are capable of detecting the level of noise in the variables

and use it during the determination of context-specific Bayesian networks and the prediction

phase. This may explain why AsHMM obtained good scores in BIC and log-likelihood but

performed poorly when the class variable was considered.

d4

d3

d10

d11

d3_AR1

d4_AR1

d10_AR1

d11_AR1

Figure 6.6: Learned context-specific Bayesian networks from the FS-AsHMM model for the facial
grammar Topic

Finally, the learned context-specific Bayesian networks are interpreted. In Fig. 6.6, one of

the networks learned from the FS-AsHMM model is pictured, for the Topic grammar when

the grammar expression is being performed. In the graph, the nodes of the context-specific

Bayesian network are labeled as variable AR #order ; where AR #order is the AR order. If

it is 0, then this suffix is ignored for the label since it is the original variable. In this case, the
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four relevant distances interact between them. In particular, d11 is the distance that governs

the network since the remaining distances depend on this one. Also, it is remarkable that

one AR value is relevant for all the selected distances, which indicates that the previous (in

time) distances have an impact on the current ones. This kind of information can be useful

for domain experts to determine or validate how the different face sections interact between

them for the different grammar contents. Finally, note that these networks are only available

for asymmetric models. Models such as FS-HMM and SHMM-LFS are not capable of giving

this kind of insight.

Model t/T (s) σt/T (s)

AsHMM 0.0287 0.0073
FS-HMM 0.0126 0.0053
FS-AsHMM 0.0305 0.0277
SHMM-LFS 0.0058 0.0004

Table 6.11: Mean and standard deviation learning times per unit data for the grammatical facial
expression dataset

Regarding the computational cost of the tested algorithms in the grammatical facial

expression dataset, in Table 6.11 a brief summary of learning times is shown. As the

dataset for learning each model has a different length, the time per unit of data is used to

estimate the time performance of the four algorithms. Observe that, in mean and variance,

the most expensive algorithm was FS-AsHMM, followed by AsHMM, FS-HMM and SHMM-

LFS. In this dataset, the proposed algorithm was 2.42 times slower compared to its version

without context-specific Bayesian networks (FS-HMM) and 1.06 times slower compared with

its version without feature saliencies (AsHMM). Finally, in spite of the fast learning times

of SHMM-LFS, the learned models were not capable of extracting relevant information from

data.

6.4.3 Ball bearing degradation data

6.4.3.1 Data description

To validate the proposed models in the case of real ball bearings, the benchmark and data

provided in Section 4.3.1 is used. In this work, the raw vibrational signals is filtered using

spectral Kurtosis algorithms and extract relevant bearing fundamental frequency amplitudes

such as the BPFO, BPFI, BSF and FTF. From these four fundamental frequencies, three

harmonics are taken into account (a total of 16 variables). It is known that harmonic fre-

quency magnitudes become more relevant when a failure is present Jáuregui-Correa and

Lozano-Guzman [2020]. However, it is expected that some harmonic components can be

more relevant than others. Nonetheless, the idea of this study is to determine the level of

relevancy of the different harmonics when a failure is present. In the training dataset, signal

1 ball bearing 3 (S1 B3) fails due to its inner race and Bearing 4 (S1 B4) due to its rollers.

In the testing dataset, signal 3 ball bearing 3 (S3 B3) fails due to its outer race. Bearing
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3 is the most relevant mechanical component for this case studio, since it fails in both the

training and testing dataset.

6.4.3.2 Ball bearing data results

In Table 6.12 the results obtained in the test by each model are shown. Observe that for

all the cases, the model with the best fitness was AsHMM followed always in order by FS-

AsHMM, FS-HMM and SHMM-LFS. For B1 and B2, it can be observed that for all the

model, omitting SHMM-LFS, the maximum relative difference with respect to the best BIC

score was of 1.85% . Meanwhile, in B3, the differences are larger; in the case of FS-AsHMM,

the relative difference with respect to the best BIC score model was 10.28%, whereas FS-

HMM obtained a much higher difference of 42.52%. This can be explained because B3 is

the failing bearing. Due to its exponential behavior in the failing phase, AR parameters

and probabilistic dependencies between features can play an important role in explaining

this behavior Puerto-Santana et al. [2022b]; since FS-HMM assumes full independence, these

dependencies were ignored. In the case of B4, only FS-AsHMM was close to the best scoring

model with a relative difference of 3.93% and FS-HMM 16.47%.

B Model LL BIC #
B1 AsHMM -607437.06 1217153.25 261

FS-HMM -619005.39 1239722.32 196
FS-AsHMM -618342.31 1238518.40 210
SHMM-LFS -4587984.01 9183966.81 916

B2 AsHMM -616773.52 1236088.15 291
FS-HMM -618441.27 1238594.07 196
FS-AsHMM -618198.49 1238274.43 215
SHMM-LFS -4587984.01 9183966.81 916

B3 AsHMM -616748.69 1236710.86 368
FS-HMM -880412.04 1762535.61 196
FS-AsHMM -680386.46 1363811.76 348
SHMM-LFS -4587984.01 9183966.81 916

B4 AsHMM -470522.75 945918.13 558
FS-HMM -550028.31 1101768.14 196
FS-AsHMM -489337.82 983129.11 510
SHMM-LFS -4587984.01 9183966.81 916

Table 6.12: LLs, BICs and number of parameters of the models in the testing signals for all the
bearings B1, B2, B3 and B4

In terms of parameters, FS-HMM obtained the least amount of parameters in all cases.

Since this model assumes full independence variables, no further parameters are added as

opposed to the asymmetric model. On the other hand, for all the ball bearings SHMM-LFS

uses the highest amount of parameters. Observe that, for each ball bearing, the number of

parameters changes again for each asymmetric model in spite of the fact that all of them

are of the same kind. In particular, notice that in ball bearings B1 and B2, the amount of

parameters is much lower than in B3 and B4, this is because, in the training phase, B3 and

B4 fail.

Although the proposed feature saliency models in this case study did not obtain the best

results in BIC or LL when compared to AsHMM; note that the feature saliencies provided

by the proposed models can give further data insights which AsHMM is not able to provide.
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BPFO BPFI
Model Q ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8
FS-HMM 0.83 0.85 0.81 0.80 0.88 0.83 0.83 0.77
FS-AsHMM 1.0 0.99 0.99 0.96 1.0 1.0 1.0 0.98
SHMM-LFS 1 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

2 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
3 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
4 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

BSF FTF
M Q ρ9 ρ10 ρ11 ρ12 ρ13 ρ14 ρ15 ρ16
FS-HMM 0.80 0.82 0.8 0.86 0.90 0.82 0.82 0.78
FS-AsHMM 0.98 0.99 0.94 0.99 0.99 0.98 0.98 0.96
SHMM-LFS 1 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

2 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
3 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
4 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Table 6.13: Learned feature saliencies for each model in the case of B3. Column Q refers to hidden
state; it is only used when a model has relevancies that depend on the hidden state (models 3 and 4)
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Figure 6.7: Learned context-specific Bayesian structures from the FS-AsHMM model for the ball
bearing B3. (a) corresponds to the graph learned in a low degradation state, whereas (b) corresponds
to a high degraded state

From the dataset description, it is known that the training and testing ball bearing B3 fails.

Therefore, more attention to the feature saliencies from B3 is given. In Table 6.13 the learned

feature saliencies for each model are shown. The sixteen features are divided into four groups.

Features with index 1, 5, 9 and 13 correspond to the fundamental frequencies BPPFO, BPFI,

BSF anf FTF respectively. The next three indices for each fundamental frequency correspond

to its first, second and third harmonic. e.g., index 2, 3 and 4 are the first, second and third

BPFO harmonic.

From Table 6.13, observe that for FS-HMM the FTF fundamental frequency is the most

relevant feature with a relevancy of 0.9. This result is unexpected since in the training

phase, the whole degradation process is being observed and therefore more harmonics and

fundamental frequencies should be relevant. Yet, it is remarkable that the relevancy of some

fundamental frequencies, say BPFI and FTF, is higher than the relevancy of their harmonics.

Meanwhile for BPFO, only the first harmonic has a greater relevancy than the fundamental
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frequency; and in the case of BSF, the fundamental frequency has lower relevancy than its

harmonics, being the third harmonic the frequency with the largest relevancy among the BSF

frequencies.

In the case of FS-AsHMM, all the frequencies (fundamental and harmonics) are relevant

since their relevancy fulfills the condition ρi ≥ ρ̄, this can be explained because all the

degradation process of the ball bearing is being considered during the training phase. It

is worth mentioning that for the BPFO and FTF frequencies, the larger the harmonic, the

lower the relevancy. Also, as in the case of FS-HMM, BSF harmonics could obtain greater

relevancies when compared to the relevancy of the fundamental frequency. If the relevancy

threshold was tighter, for example ρ = 0.99, the relevant frequencies would have changed. In

this case the third harmonic of the BPFO and BPFI frequency, the fundamental and second

harmonic of the BSF frequency and the first, second and third harmonic of the FTF frequency

would be irrelevant. Additionally, for the FS-HMM model, no variable would be relevant.

As previously mentioned, the proposed models do not assume full probabilistic depen-

dency or independence between variables as other models do. Fig. 6.7 shows a pair of

context-specific Bayesian networks learned by the FS-AsHMM corresponding to low and

high degradation levels.

In the case of the Bayesian network in Fig. 6.7 (a), it represents a low degradation level.

Note that different probabilistic relationships appear. For instance, the FTF fundamental

frequency has the most amount of descendants: the BSF first harmonic and the BPFI fun-

damental, second and third harmonic. Additionally, the BSF fundamental depends on the

third FTF harmonic and the BPFO fundamental relies on the first BSF harmonic which also

depends on the FTF fundamental. From this kind of information, it is plausible to say that

in a low degradation state, for this bearing, the cage of the ball bearing is leading the dy-

namical system. Fig. 6.7 (b) shows another learned context-specific Bayesian network from

a more degraded ball bearing state. In this case, more variables and dependencies appear

in the graph, in particular, AR variables are considered. For example, three and four AR

values of the BPFI and FTF fundamental frequencies respectively appear and can be helpful

to describe late degradation stages of the ball bearing.

Model t-B1 (s) t-B2 (s) t-B3 (s) t-B4 (s)

AsHMM 551.57 127.48 144.31 220.75
FS-HMM 24.25 48.00 46.02 15.57
FS-AsHMM 27.64 57.28 108.91 78.19
SHMM-LFS 16.29 16.49 15.85 19.14

Table 6.14: Times to learn a model for each ball bearing in seconds

Regarding the learning times for this application, they are displayed in Table 6.14. In this

case, the slowest algorithm was AsHMM, followed by FS-AsHMM, FS-HMM and SHMM-

LFS. As in the previous datasets, SHMM-LFS was the fastest algorithm in most scenarios,

but it captured little relevant information from data. On the other hand, note that FS-AsMM

had big differences in the learning times when compared to FS-HMM. Recall that B3 and B4
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broke and therefore its dynamic behavior is more complex compared to B1 and B2. This is

evidenced by looking at Table 6.12 where B3 and B4 models for FS-AsHMM obtained more

parameters than B1 and B2 FS-AsHMM models.

6.5 Conclusions

In this chapter, a new model based on AR-AsLG-HMM was introduced to perform offline

FSS in an embedded manner. This new model is capable of estimating the relevant features

and locally-optimal context-specific Bayesian networks for the selected relevant features, all

during their learning phase. The parameter learning procedure for each model is detailed

and proved. Also, a restriction to the space of context-specific Bayesian networks is imposed

in order to consider only relevant features in the graph construction.

Experiments with synthetic and real data from grammar facial expressions and ball bear-

ing wearing data are considered. For the experiments other two other state-of-the-art models

were used for comparative purposes, namely FS-HMM (Adams et al. [2016]) and SHMM-LFS

(Zheng et al. [2018]). For the latter model, a theoretic argument was given to validate its

little usefulness to detect relevant features in the experiments. Additionally, these two models

consider that all variables are independent, which in many real case scenarios is not true.

From the experiments, it was observed that the proposed model can obtain fair results in

fitness. In the case of synthetic data, it was noted that it is capable of detecting irrelevant

features. When evaluating grammar facial expressions, FS-AsHMMs and FS-HMMs obtained

good results in accuracy and F-score, in spite of the fact that As-HMM obtained better results

in fitness. Additionally, the proposed model was capable of determining which variables were

noise and not useful for prediction.

From the algorithm complexity point of view, big O notation bounds were provided for

the different routines that the algorithm can perform. The learning times for the proposed

algorithm were among the highest for all the datasets. However, it was observed that the times

were shorter when the data was simpler (see the ball bearing case). This property caused high

variance in the obtained times which indicates that the model is capable of giving further

data insights when needed at the cost of higher computational times; otherwise, the times

are closer to those obtained by simpler models.

In conclusion, although models such as As-HMMs can obtain better results in BIC and

log-likelihood than the feature saliency models, when noise variables are present, the learning

and testing performance of As-HMM can be senseless: it is learning and predicting noise.

When feature saliencies are added to the model, these were capable of discriminating between

noise and relevant features. Additionally, it was proven that the proposed model was able to

generate context-specific Bayesian networks at the same time as the feature saliencies were

estimated. In this manner, the restriction of total independence in feature saliency models is

overcome.



Chapter 7
AR-AsLG-HMM for online

monitoring

In this chapter, the AR-AsLG-HMM model is adapted and applied to work online in data-

streams for ball bearing surveillance. The goal of this chapter is to estimate in an online

manner the health and ball bearing RUL. For the health estimation issue, a health index

function (HI) is proposed (an ad hoc hidden state labeling function as in Section 5.7), such

that it uses the model parameters to provide an estimation of the ball bearing degradation

level. Such HI is later used for the RUL estimation. For the elaboration of this chapter,

edge computing nodes were provided by Aingura IIoT, and code optimization techniques

were provided by the Barcelona Computer Center to execute and embed AR-AsLG-HMMs

into the edge device. Additionally, several issues regarding signal sampling, signal processing

times and computational learning times had to be addressed in order to ensure data in-

tegrity. Therefore, computational complexity and memory management analysis were taken

into consideration for this application. This chapter is a summary of the results obtained in

Puerto-Santana et al. [2022a]. As reviewed in Section 3.3 and in Table 3.3, Puerto-Santana

et al. [2022a] meets the five-point criteria that no other technique in the state of the art

attains, which are:

(1.) It uses HMMs

(2.) It can be used in online environments

(3.) It does not require RTF data

(4.) It estimates the tool RUL

(5.) it self-updates when new trends in data appear

In this chapter, the techniques reviewed in Section. 2.4 are used to detect concept drifts in

data. Real data is used from the FEMTO repository (Nectoux et al. [2012]) and a mechanical

setup at Aingura IIoT for ball bearings RUL estimation.

121
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The contents of this chapter are sorted as follows: Section 7.1 provides the steps and

details to apply AR-AsLG-HMMs into online environments for ball bearing health and RUL

estimation. Section 7.2 describes the real datasets used to validate the methodology. Sec-

tion 7.3 shows the ball bearing health and RUL estimations from the datasets considered.

Also, a memory consumption analysis of the algorithm inside the edge device is performed

to detect the weak and strong points of the current methodology implementation. Finally,

Section 7.4 provides the comments and conclusions to the proposed methodology.

7.1 Proposed methodology

In this section, no new model is introduced, but rather a set of steps to create an adaptive

model which evolves over time when novel concepts appear. Fig. 7.1 shows a flow diagram in-

dicating the proposed methodology workflow. In short, the methodology consists of repeating

the following steps as required:

1. Capture new data and process it using signal processing algorithms.

2. Compute the processed data fitness with the current As-HMM.

3. Use the Page test and Chernoff bounds to detect new trends in data.

4. Update the model and add new hidden states to the As-HMM if needed.

5. Use the Viterbi algorithm with the current As-HMM and compute the HI.

6. Use the HI historic to estimate the RUL.

Observe that in the diagram in Fig. 7.1 there are three shaded boxes, namely Novelty detec-

tion, Model update and RUL prediction. The Novelty detection box includes the algorithms of

BIC computation, the Page test (Section 7.1.2.1) and the Chernoff bounds (Section 7.1.2.2).

The Model update, it consists of the model online training that is explained in Section 7.1.1.

With respect to RUL prediction, a health index is proposed (Section 7.1.3.1) and a linear

regression is used to estimate the RUL (Section 7.1.3.2). For a good performance of the

proposed methodology, the following assumptions are taken:

1. The sensors are sensitive enough to capture the ball bearing degradation process to

failure and not only the bearing failure phase.

2. No health recoveries are observed by the sensors.

3. No control affects the dynamical behavior during the data acquisition.

The first assumption refers to data quality. The second assumption, as can be seen below,

ensures a proper RUL prediction, and the third assumption prevents the controlled behaviors

from being considered as degradation.

As this methodology is expected to be used in online environments, emission probabilities

such as mixtures or a multivariate normal Gaussian can compromise the model and data
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Get sample FE HMM∗

Get sampleFENovelty detection

Model update RUL prediction

t0

True
False

Figure 7.1: Flow diagram of the novelty detection and RUL prediction strategy. FE stands for feature
extraction. HMM∗ stands for training a new HMM. Novelty detection looks for new trends in data.
Model update updates the model and the baseline health. RUL prediction computes the proposed
health index and estimates the ball bearing RUL

acquisition integrity since they are slower to compute due to the use of unnecessary parameters

Puerto-Santana et al. [2022b]. Therefore, an AR-AsLG-HMM (which is called As-HMM for

the sake of space) is used for this methodology, since it uses less parameters to model data

and therefore, inference processes are more reliable and faster. In particular, the networks

are selected by their fitness computed via the BIC score; whereas the search method is based

on a greedy-forward explore scheme proposed in Section 5.6 which verifies that the networks

are directed acyclic graphs (DAGs).

7.1.1 Model update

The proposed methodology uses an As-HMM which evolves when a concept drift is detected.

For the initial HMM, the model is trained as explained in Section 5.2, with only one hidden

state. However, for online data, the learning process must be different, and the SEM batch

algorithm stated in Section 5.6, is manipulated to fit the proposed requirements. Additionally,

the number of hidden states is not fixed a priori and can change with the data-stream.

Assume that the novelty detection methodology (which will be explain in Section 7.1.2)

detects a novel concept at time t + L with L ∈ N and the current model is no longer

valid to explain the chunk of data xt:t+L. In such cases, it is proposed the addition of a

new hidden state to the current As-HMM. Suppose that the current model has parameter

λ0 = {A0,B0,π0} with N ∈ N hidden states. A new prior model is generated with parameter

λ1 = {A1,B1,π1} with N + 1 hidden states. The parameter π1 is built as:

π1 = [π0|0] (7.1)

or append a 0 at the right of the vector π0. For the prior of A1, the following matrix
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C = [cij ]
N+1
i,j=1 is built:

C =



0

0

A0
...

0

cN,N+1

1
N+1

1
N+1 · · · 1

N+1


(7.2)

The value cN,N+1 = 0.01 is chosen for the EM to be aware that there is a non-null probability

of transition among the current known hidden states to the latest discovered hidden state.

The prior transition matrix A1 = [a1
ij ]
N+1
i,j=1 for the new model is a1

ij = cij/
∑N+1

j=1 cij and

B1 = [B0|bN+1(xt)]. It is assumed a priori that bN+1(xt) is represented by a näıve-Bayes

graph with p(N+1)m = 0 for m = 1, ...,M . The prior parameters of the corresponding new

linear Gaussian Bayesian network are set as follows:

β(N+1)m0 =
1

L

t+L∑
j=t

xjm

σ2
(N+1)m = | max

j=t,...,t+L
{xjm} − min

j=t,...,t+L
{xjm}|

(7.3)

During the learning optimization phase of λ1, the optimization exposed in Section 5.2 is

restricted to the parameters {β(n+1)m}Mm=1, {a(N+1)j}N+1
j=1 and {aj(N+1)}N+1

j=1 . In this manner,

the information obtained in previous hidden states is saved and the model is updated to

explain the novel incoming data.

Although a renovation of the model is performed with the new data, the newly learned

parameter λ′ must be better than the current parameter λ0. Therefore, a condition in the

BIC score for a new model to be valid is imposed, i.e., if xt:t+L is the current data window,

then the new model or parameter is accepted if BIC(xt:t+L|λ′) < BIC(xt:t+L|λ).

Finally, whenever a new hidden state is added, the base health indexes need to be updated,

but that will be explained in Section 7.1.3.1.

7.1.2 Novelty detection

In Table. 7.1 the list of hyper-parameters used by this algorithm are mentioned. In the

following subsections, they are detailed and it is explained how to tune and interpret them.

In Appendix C a sensibility analysis is done over such hyper-parameters to observe their

effect on the health index and RUL.

7.1.2.1 Anomaly detection

Set L ∈ N a window size which defines chunks of data xt:t+L. Assume that such window is

sliced after 4L ∈ N data arrive. For the anomaly detection procedure, the Page sequential

detection scheme is used (see Section 2.4.1). Suppose that an As-HMM with parameter λ
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Parameter Set Value Description

L 128 Length of the processing window
∆L 10 Window slice
Φ 3 Maximum ratio of BIC difference
γ1 128 ln(3) Threshold in Page test to detect outliers
ε 1× 10−2 Maximum error of population percentage
p 0.1 Maximum enabled population of outliers
γ2 0.05 Reliability of the population estimation
ζ -2.5 Threshold for RUL prediction

Table 7.1: List of hyper-parameters used by the algorithm
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Figure 7.2: (a) Sensitivity of γ1, for different values of L and Φ. (b) Sensitivity of n∗ for different
values of p and ε for a fixed level of confidence of γ2

has been learned at time t. For this application, the Page-test funtion s is defined as follows:

slt(x
t:t+l4L+L) :=

1

l

l∑
j=0

BIC(xt+j4L:t+j4L+L|λ), (7.4)

In this scenario, l is the number of times the window has been sliced since the last model

update. Since the BIC score is decreasing monotonous with the penalized fitness, increasing

anomalous patterns are undesirable and must be recognized. Therefore, the increasing scheme

detection of Page is used, see Eq. (2.65). Given a decision parameter γ1 > 0, which indicates

the maximum permissible deterioration in BIC, the test for this case is formulated as follows:

rl =

1 if slt(x
t:t+l4L+L)−minj=0,...,l−1 s

j
t (x

t:t+j4L+L) > γ1

0 if slt(x
t:t+l4L+L)−minj=0,...,l−1 s

j
t (x

t:t+j4L+L) ≤ γ1

(7.5)

Notice that the log-likelihood of the model could be used instead of the BIC for the Page test.

Nevertheless, since the BIC is used during the training phase to determine the best set of

context-specific Bayesian networks, this score is also used for anomaly detection for the sake
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of consistency. The hyper-parameter γ1 is set as γ1 = L ln(Φ) where Φ can be seen as the

maximum permissible quotient of likelihood per testing observation over the likelihood per

training observation. Fig. 7.2 (a) shows the value of γ1 for different combinations of L (axis

X) and Φ (axis Y). The greater the value of γ1, the less the algorithm will declare deviated

data as abnormal; whereas a lower value of γ1 implies that little deviations in data will be

considered as abnormal. Finding an equilibrium in this threshold is crucial for concept-drift

detection. In Fig. 7.2 (a), it can be observed that after Φ > 1.8, the change in L has more

effect on the value of γ1, but not extreme values are obtained. Therefore, in this study, Φ = 3

is chosen as an intermediate point from the previous discussion. If rl = 1, the chunk of

data xt+l4L:t+l4L+L is considered an anomaly for the model. In this chapter, 4L = 10 and

L = 128 are fixed from previous experiments. The fitness and training speed of the models

were maximized when these parameters were acknowledged.

7.1.2.2 Novel concept drift detection criterion

The detection of a single anomaly is not enough to determine a novel trend in the data.

Nevertheless, if many outliers are seen in a time window, the possibility of observing a novel

trend is likely. Assume that the probability of observing anomalies in the last n∗ BICs is p, and

p̂n∗ is the estimation of such probability. To determine the length n∗, the sampling problem

is used, i.e., given an error ε ∈ (0, 1), a proportion p ∈ (0, 1) and a precision γ2 ∈ (0, 1), n∗

must be found such that:

P (|p̂n∗ − p| < ε) > 1− γ2. (7.6)

Assuming that for the current model the normal level of anomalies is p̂n∗ ≤ p, using the

Chernoff bounds as in Section 2.4.2, n∗ must be at least:

n∗ >
− ln(1− γ2)

DKL(p− ε||p)
. (7.7)

In Fig. 7.2 (b) the sensitivity of the bound n∗ given by the Chernoff bounds for a precision

level of γ2 = 0.05 for different levels of ε and p is shown. As can be seen, the shorter the value

of ε, the larger is n∗ to ensure the bound. It is also noticeable that the curves are symmetric

i.e., for a fixed ε and γ2, the value n∗ is the same for p and 1− p. Since the goal is to detect

novel trends as soon as possible, it is preferable to choose p closer to zero instead of one, and

also greater values for ε. Therefore, in this study p = 0.1, ε = 10−2 and γ2 = 0.05, in this

manner a window size of n∗ = 87 is obtained.

If R outliers are observed from the Page sequential test in a window of size n∗, p̂n∗ = R/n∗

is computed. If p̂n∗ > p, then the initial assumption is violated and a novel pattern is detected.

Hence, an updating process of the HMM is performed.
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7.1.3 RUL prediction

7.1.3.1 Proposed health index

It is plausible to think that the earlier the ball bearing is measured and the lower the vi-

bration amplitudes are, the healthier the ball bearing is. Therefore, the first learned HMM

from x0:L is taken as a healthy model, and its parameters are used as a base health index.

The first As-HMM is trained with only one hidden state, the emission probability b1(xt)

can be transformed from a linear Gaussian Bayesian network into a MVN distribution (see,

Section 2.1.3) with mean vector µ1 = (µ11, ..., µ1M ) and covariance matrix Σ1 = {Σ1jk}Mj,k=1.

Define µhm := µ1m and Σhm := Σ1mm as the base health parameters of the ball bearing,

compute qt or the estimated hidden state for the observation xt with the Viterbi algorithm;

the following set of health indexes are defined:

HI†m(xt) =

{
− log

(
µqtm
µhm

)
,− log

(
Σqtmm

Σhm

)}
m = 1, ...,M. (7.8)

Whenever a new hidden state is added (suppose it is the N + 1 hidden state), the following

base health assignment is performed:

µ(N+1)m → µhm if µhm > µ(N+1)m, m = 1, ...,M

Σ(N+1)mm → Σhm if Σhm > Σ(N+1)mm, m = 1, ...,M
(7.9)

The idea behind this health index assignment is that the higher the mean and variance of

fundamental-frequencies-amplitudes, the more evident the ball bearing wear. Finally, a global

health index is defined as:

HI†(xt) = min
M⋃
m=1

HI†m(xt). (7.10)

This global health index takes the worst health index obtained among all the features. Some

final considerations: the latest qt detected is saved in order to be used in further algorithms

such as Viterbi algorithm or forward-backward algorithm. The reason behind this is that

during the traditional forward-backward algorithm or Viterbi algorithm, the parameter π,

which indicates the participation of the initial distribution, is always used. Nevertheless,

since it is possible that further incoming chunks of data xt:t+L do not contain evidence of the

first learned hidden state, the parameters {aqti}Ni=1 must be used as initial distribution for

the algorithms. Finally, in order to obtain smoother health index curves, the health index

historic {HI†(xl)}tl=1 is passed through a moving average filter of order twenty.



128 CHAPTER 7. AR-ASLG-HMM FOR ONLINE MONITORING

7.1.3.2 RUL estimation

In this thesis, a time-dependent model is created to explain and predict the global health

index. A regression model is used after the first concept drift is detected:

HI†(t) := a0 + a1t+ a2t
2 + w(t), (7.11)

where w(t) is a zero mean normal error term. The parameters of the regression models are

estimated as in an ordinary least squares problem.

Once the regression has been estimated, RULt is determined as follows: find tf such that

HI†(tf ) = ζ, where 0 > ζ > −∞ is a maximum permissible magnitude order deviation from

the good health estimation. In this study, ζ = −2.5 or, in other words, a failure happens

for this health index when the global process trend is 2.5 orders of magnitude away from the

healthy trend. Nevertheless, depending on the mechanical application, the threshold may be

changed. In applications where little deviations from the normal states imply a malfunction,

the threshold must be closer to zero; otherwise, further away from zero. The RUL at time t

is computed as:

RULt = tf − t. (7.12)

If HI†(tf ) 6= ζ, ∀t, then RULt =∞ and this can be interpreted as a non-degradation in the

health of ball bearings.

7.1.4 Theoretical computational complexity

In Table 7.2 theoretical bounds using big O notation are given for an iteration of the proposed

algorithm. These bounds assume that the AR and context-specific Bayesian networks are

dense. For the sake of space K = p∗ + M . For the Novelty detection box, the complexity

lies in the BIC computation, whereas the Page sequential test and Chernoff bounds have

O(1) complexity. The Model update box complexity relies principally on the SEM algorithm.

Finally, for the RUL regression box, the complexity comes from the Viterbi algorithm and

the HI† computation.

The bound for the Model update box suggests that the algorithm is too complex to perform

in online environments. Therefore, this box is further analyzed in Section 7.3.3.1 to analyze

its behavior with real data.

Phase Complexity

Novelty detection O(LN(NK +N2))
Model update O(M2K2(K(L+K) +NL) + LN(N2 +MK))
RUL prediction O(T +N(MK +M2 + L))

Table 7.2: Computational complexity of one iteration of the proposed online algorithm
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7.2 Experimental setup

To evaluate and see the capabilities of the proposed methodology, two data-sets were used.

The first one comes from the online FEMTO repository which has ball bearing RTF data

Nectoux et al. [2012]. The second dataset comes from a mechanical setup by Aigura IIoT,

where ball bearings are run to failure. In this manner, the capabilities of the proposed method

for common data (FEMTO) and specific daily data (Aingura IIoT) are proven.

The models WPD-HMMOcak et al. [2007], AHMM Yu [2017] and APCMD Wu et al.

[2019], are used for comparison purposes in the case of the FEMTO dataset. AHMM is used

for comparison since it can be considered as a simple application of HMM for online analysis

where no novelty detection or model update is considered; WPD-HMM is an HMM where

the model is updated whenever a new instance arrives. However, in none of these, there is a

description or algorithm to compute the RUL. In particular, no HMM model with no RTF

data assumption for RUL prediction was found. For that reason, APCMD is used to compare

RUL prediction.

The previous methodologies use a different definition of HI, which hardens the compar-

ison task. In the case of WPD-HMM Ocak et al. [2007], the HI is the log-likelihood/BIC

of incoming data being evaluated by an HMM learned with normal or healthy data. The

closer the log-likelihood/BIC to zero, the better the model; if the log-likelihood/BIC de-

creases/increases, the model fitness is worse and abnormal data is being processed. AHMM

Yu [2017] proposed a HI given by the Cauchy-Schwarz correlation of the AHMM dynamic

evolution. Here a correlation of 100% implies no change in the current distribution or model

and 0% deduces a total drift from the current distribution or model. APCMD Wu et al.

[2019] proposed a HI based on the Mahalanobis distance of a reduced set of features after

being processed by a principal component analysis (PCA). In this case, a distance of 0 implies

no change in distribution, whereas a big distance suggests a drift from the normal data.

The proposed methodology will be compared as follows: In the case of WPD-HMM,

the BIC curve works as HI; then it is compared with the one obtained by the proposed

methodology. For AHMM, as their methodology uses a Cauchy-Schwarz correlation as health

index, it is compared with HI†. APCMD and the proposed methodology are the only ones

that can generate RUL predictions; therefore their results in HI and RUL are contrasted.

7.2.1 FEMTO dataset

The benchmark used to validate the model comes from the ”FEMTO Bearing Data Set”

Nectoux et al. [2012]1. This dataset consists of RTF bearings data under critical rotational

speed and load conditions. With these conditions, the bearings are forced to fail faster. The

idea is to estimate the ball bearing health state up to failure and its RUL. Table 7.3 shows a

description of the dataset. In this dataset, a ball bearing fails when the accelerometer records

are above 20 g, where g is the gravity acceleration at sea level (9.7805m
s2

).

1https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ online status on December
12, 2022
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Condition Label Purpose # Samples

1 Bearing1 1 Training 2803
1 Bearing1 2 Training 871
1 Bearing1 3 Testing 1802
1 Bearing1 4 Testing 1139
1 Bearing1 5 Testing 2302
1 Bearing1 6 Testing 2302
1 Bearing1 7 Testing 1502
2 Bearing2 1 Training 911
2 Bearing2 2 Training 797
2 Bearing2 3 Testing 1202
2 Bearing2 4 Testing 612
2 Bearing2 5 Testing 2002
2 Bearing2 6 Testing 572
2 Bearing2 7 Testing 172
3 Bearing3 1 Training 515
3 Bearing3 2 Training 1637
3 Bearing3 3 Testing 352

Table 7.3: Training and test data sets of the FEMTO dataset

Since our model assumes that a data stream is being received and no previous RTF data is

available, the training-testing specification is ignored and those datasets which show evidence

of degradation and not a sudden failure are used. Bearings with labels Bearing1 1, Bearing1 3,

Bearing2 1 and Bearing2 2 show degradation among the previous mentioned bearings. For

this thesis, the bearings Bearing1 1, Bearing1 3 and Bearing2 2 are used to test the proposed

methodology.

7.2.2 Mechanical setup dataset

The purpose of this ball bearing testing set-up is to monitor vibrations overtime during ball

bearing useful life. The experimental set-up is shown in Figure 7.3a. This testbed has a

Bosch IndraDyn MS2N synchronous servomotor 1 that guarantees required speed during

testing, a shaft 2 with different ball bearing clamping positions and an elastic coupling 3

to the servomotor.

The testbed has three ball bearing supports, one for the axial force actuator 4 and two

for support. The system is designed to affect the outside ball bearing 5 useful life applying

an axial force. The force actuator is a screw-based system fitted with a load sensor that

measures the applied force 6 . An IMI 607A61 accelerometer with a sensibility of 10.2 mV

and vibrational-signal detection range between 0.5-10 kHz. 7 is used to measure vibrations,

and a thermocouple 8 to monitor temperature and guarantee testbed integrity.

Figure 7.3b shows the data acquisition and pre-processing edge computing device called

Computing Module Aingura Insights (CMAI). The CMAI compute node is an embedded

system powered by a ZU3 Zynq® Ultrascale+� System on Chip (SoC) housing four cores
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(a) (b)

Figure 7.3: Experimental testbed: (a) Ball bearing RTF testbed details. (b) CMAI

0 100 200 300 400
time[h]

2000

2100

2200

2300

2400

fo
rc

e[
N]

Th
eo

ric
 R

UL
 ti

m
e

Ac
tu

al
 R

UL
 ti

m
e

Real force
Mean force

Figure 7.4: Observed force evolution given by the actuator

Cortex-A53 and a programmable logic. The node is customized with add-on modules col-

lecting data from different sensors, and it can be coupled with other nodes to improve its

computational capabilities.

For our experiments, four channels are implemented for accelerometer readings up to

19.5 kHz and sensor fusion capabilities to guarantee signal synchronization. Data collected

are stored in files as comma-separated values (CSV).

The CMAI is used to acquire, condition and pre-process the acceleration signal at a

sampling rate of 19.5 kHz with 0.5 ns of maximum jitter. In a production setup, the CMAI

has enabled processing capabilities to work online with the proposed technique. For validation

and complete control over the proposed pipeline, sensor data is stored into CSV files for offline

analysis, simulating the data-stream as in an online environment. The implementation of the

model has been written in C++, compiled with GCC 10.2, and executed using a single core

of the ZU3 SoC. Ball bearing data are collected and pre-processed by a single CMAI.

For our test, a radial force of 2.3-2.4 kN and a rotational speed of 3180 RPM (53 Hz)
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were selected from the traditional mechanical analysis theory Budynas et al. [2011] in order

to run an Eco 6004-2RS ball bearing to failure between 180 hours (assuming 2.3 kN) and 156

hours (assuming 2.4 kN). The force measured profile is shown in Fig. 7.4. The mean force

was around 2.3 kN which implies that the theoretical RUL was close to 180h. However, the

total testbed operation time was over 400 hours, meaning 2.25 times beyond the theoretical

useful life. As a safety measure, since the ball bearings operation time overpassed by several

hours the theoretical RUL predictions given by the provider, the acquisition was stopped

when audible signals of degradation were evident. Finally, a signal smoothing processing was

applied: a root-mean-square was computed every 50 samples from the FE box in Fig 7.1,

equivalent to collapsing 85 seconds of data to a single data instance.

The CMAI was configured to keep the amplitudes of fundamental frequencies and discard

the rest of vibrational data. Health index (HI†) and RUL predictions were stored.

7.3 Results

7.3.1 Time analysis

In this section a time consumption of the proposed algorithm is shown. Regarding the feature

extraction (FE) box of Fig. 7.1, the CMAI required at least 1.6 seconds of measurements for

a reasonable granularity in the signal spectrum in order to obtain the desired (BPFO, BPFI,

BSF, FTF) frequencies with precision. The signal processing and feature extraction follows

the methodology proposed by Bechhoefer [2005] (See 2.5). After the data acquisition, the

CMAI required 1.5 seconds to extract the desired features.

In Table. 7.4, the mean and standard deviation of the time execution algorithm of the

three boxes in Fig. 7.1, say: novelty detection, model update and RUL prediction are shown

for each tested data-set. Note that for the FEMTO data-sets, the maximum mean time

needed for the Novelty detection process it was 1.16ms, for the Model update was 6.03ms

and for RUL prediction it was 2.44ms. On the other hand, for the mechanical set-up, it is

observed that the mean times for the novelty detection were 8.73 times higher than in the

case of the FEMTO datasets, for the model update 15.1 times higher and for RUL prediction

it was 9.37 times higher. This can be explained due to the length of the data and the higher

number of hidden states. Finally, it is observed that the standard deviations of the times for

all the cases were lower than one second which gives evidence of relatively stable algorithms.

These time results show that the algorithm can achieve a fair time response for an online

data stream environment. Nonetheless a more detailed analysis is given in Section 7.3.3.1

7.3.2 FEMTO results

7.3.2.1 Bearing1 1 results

Fig. 7.5 summarizes the results obtained for the data-set Bearing1 1. The BIC score from

the WPD-HMM methodology is drawn in Fig. 7.5a which is used as a health index. It can

be observed that WPD-HMM obtains results different from those obtained by the online
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Dataset Phase t̄(ms) St(ms)

Bearing 11 Novelty detection 0.960 0.713
Model update 4.291 32.474
RUL prediction 2.188 1.429

Bearing 13 Novelty detection 1.160 1.005
Model update 6.025 39.298
RUL prediction 2.440 2.201

Bearing 22 Novelty detection 0.982 0.417
Model update 3.933 23.100
RUL prediction 1.610 0.746

Set-up Novelty detection 10.130 7.015
Model update 91.049 292.751
RUL prediction 22.884 16.450

Table 7.4: Execution times statistics of the different phases of the algorithm in the CMAI, for the
different datasets

As-HMM which are displayed in Fig. 7.5b. In particular, it can be noticed that, arriving

at the fourth operational hour, the BIC score in WPD-HMM had a discontinuity; later

it returned back to a lower BIC score, but followed by exponential growth. For the WPD-

HMM methodology, it can be argued that, before the fourth hour, an accelerated degradation

process to failure can be observed. On the other hand, the proposed methodology uses a novel

detection technique. When a novel trend was detected at time t, a vertical black line was

displayed in the plot. It can be said that whenever a novel trend was detected, the BIC

score was improved and drastic changes in BIC (as observed in the case of WPD-HMM) were

avoided. However, an essential controlled growth in BIC could be observed after the fourth

hour.

The health index in the case of AHMM, which can be seen in Fig. 7.5c, reveals a noisy

behavior at the beginning and at the end of the ball bearing life which is not informative at

all. In particular, the early decays to 0 would imply an early failure, which is not true. HI†

drawn on Fig. 7.5f remained unchanged until the first novel trend was detected. After that,

HI† decreased and showed evidence of degradation.

In this experimental set-up, the uncertainty of the RUL was exposed in Fig. 7.5h with

the standard deviation of the health index prediction. This uncertainty is the level of fidelity

of the health index regression; the higher this measure, the worse the fitness of the regression

for RUL prediction. Regarding Bearing1 1, the uncertainty appeared after the first concept

drift as expected. Note that the uncertainty or standard deviation was around 0.12 orders

of magnitude, far from half an order of magnitude, which indicated a fair regression for RUL

prediction. This can be visualized in the health index regression shaded curves in Fig. 7.5f

It is remarkable to say that the uncertainty varied with time, because the regression was

updated whenever a new HI† instance was computed.

The proposed methodology and APCMD are capable of prognosis. Both use a regression

process to predict the health index. However, in the case of APCMD, the health index is a
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Figure 7.5: Results of supervising Bearing1 1 with different methodologies: (a) shows the WPD BIC
score evolution, (b) draws the As-HMM online model BIC score evolution, (c) gives the AHMM health
index, (d) pictures the APCMD health index, (e) displays APCMD RUL prediction, (f) shows HI†

results, (g) is the obtained RUL curve from the proposed methodology, (h) is the standard deviation
of the proposed health index regression

Mahalanobis distance based on the PCA and, in the case of the proposed methodology, HI†

is based on logarithms of ratios. Both methodologies require a threshold on the health index

to determine the RUL. The threshold in the case of APCMD was set to 200; this value was

set after observing the evolution of the Mahalanobis distance exposed in Fig. 7.5d. In the

case of APCMD, a noisy RUL prediction during almost all the ball bearings life is drawn

in Fig. 7.5e. In particular, it can be observed that at early times the RUL was zero, which

would imply an early failure, which again was not true. Nevertheless, at the end of the

process, after the seventh hour the accuracy was improved, for the given threshold. In the

case of the proposed methodology, the RUL, pictured in Fig. 7.5g, was only computed after

the first concept drift; after that, the RUL went towards zero. It is worth noting that the

first predictions overestimated the RUL, and later, the regression gave better predictions.

From the point of view of applicability, a maintenance engineer will use the actionable

insight from the proposed methodology as a decision support element to plan ball bearing

maintenance. It is important that the actionable insight provided is relevant where the ball
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bearing is critical to operation, with a high risk of stopping the machine or production line

if an unexpected failure occurs. Therefore, if the engineer on charge observes a decrease in

HI†, the engineer should begin to plan a controlled maintenance stop with haste as indicated

by the indicator trend.
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Figure 7.6: Learned Bayesian networks from Bearing1 1

As stated before, the proposed methodology is capable of giving an explanatory model,

where temporal and instantaneous probabilistic relationships may appear. Fig. 7.6 displays

a pair of generated Bayesian networks from the learned hidden states. Fig. 7.6a shows the

Bayesian network generated from a low degradation state, whereas Fig. 7.6b draws a Bayesian

network from a degenerated state. Observe that, in a low level of degradation, in this case, few

probabilistic relationships appear, whereas in a degraded state, in this case, more relationships

appear. Each arc represents a probabilistic dependency; in the case of a degraded state, it can

be observed that the BPFI frequency-amplitude affects the BPFO and the FTF frequency-

amplitudes; or in other words, in this ball bearing, in a degraded state the ball bearing inner

ring behavior drives the ball bearing outer ring and cage. Following the structure of the

Bayesian network, it can also be observed that some AR dependencies appear e.g., the BPFI

frequency-amplitude is affected by two of its previous values.

7.3.2.2 Bearing1 3 results

Fig. 7.7 shows the results obtained for the dataset Bearing1 3. The BIC score from the

WPD-HMM methodology is pictured in Fig. 7.7a. In this case is is observed that after time

4 h, the BIC score grew abruptly, which indicates an accelerated degradation and failure.

If it is compared with the BIC score obtained from the proposed methodology Fig. 7.7b, a

concept drift appeared at the fourth operational time and the BIC grew from this point in a
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Figure 7.7: Results of supervising Bearing1 3 with different methodologies: (a) shows the WPD BIC
score evolution, (b) draws the As-HMM online model BIC score evolution, (c) gives the AHMM health
index, (d) pictures the APCMD health index, (e) displays APCMD RUL prediction, (f) shows HI†

results, (g) is the obtained RUL curve from the proposed methodology, (h) is the standard deviation
of the proposed health index regression

controlled manner with the appearance of more concept drifts. This difference evident that

our proposed methodology is capable of describing, in a refined manner, the ball bearing

degradation and failure states.

In the case of the AHMM health index, which is pictured in Fig. 7.7c, this time it shows

a noisy behavior during all the ball bearing operational time. Although the Cauchy-Schwarz

distribution correlation is easy to interpret (0% implies zero correlation between distributions

and 100% indicates perfect correlation), in this case, due to the noisy behavior and jumps

between 100% and 0%, no insights can be extracted from the health index. Meanwhile HI†

in Fig. 7.7f, remained unchanged until the first novel trend was detected as in the case of

Bearing1 1. After that, HI† decreased and showed evidence of degradation until it reached

the failure threshold.

Now, concerning RUL, APCMD as before obtained a noisy prediction, as shown in

Fig. 7.7e, of the ball bearings RUL. It indicates failure during the first hours of the bearing

operation, which is not true. Even during the last hours of the ball bearing operation, the



7.3. RESULTS 137

RUL prediction was highly inaccurate. On the other hand, the proposed model RUL predic-

tion (see Fig. 7.7g) showed predictions only after the first concept drift was detected. As in

the case of Bearing1 1, at the first prediction times, the RUL was overestimated; however, as

time went, the RUL prediction became more accurate until HI† passed the failure threshold.

Since the proposed methodology exposed a similar prediction as in the case of Bearing1 1,

the maintenance policies that can be generated for the Bearing1 1 are also valid for this ball

bearing (Bearing1 3).

In this case, it is observed that the uncertainty of the regression pictured in Fig. 7.7h used

for RUL prediction was different from that exposed in Bearing1 1. Observe that the level of

uncertainty did not pass over 0.15 orders of magnitude, which implies that the fidelity of the

RUL was fair.
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Figure 7.8: Learned Bayesian networks from Bearing1 3

For the sake of completeness, one of the learned Bayesian networks learned by the

asymmetric hidden Markov model is shown. Fig. 7.8 displays one Bayesian network from

an intermediate degraded state. For example, the FTF frequency-amplitude depends on

the BPFI and BPFO frequency-amplitudes, the BPFI frequency-amplitude depends on the

BSF frequency-amplitude, and the BPFO frequency-amplitude relies on the BPFI and BSF

frequency-amplitude. From this graph, it can be said that the ball bearing balls are the ones

leading the mechanical behavior of the ball bearing at an intermediate degradation level.

7.3.2.3 Bearing2 2 results

Fig. 7.9 shows the BIC score from the WPD-HMM methodology. It can be observed that,

during the first hour of operation, the BIC score grew in an important manner, which for

that methodology, implies an early fast degradation process in the ball bearing. On the other

hand, the proposed methodology observed a concept drift during the first hour of operation;

nevertheless, the evolution of the BIC score did not grow as uncontrolled as in the WPD-

HMM methodology. It can be said, as in the case of Bearing1 1, that whenever a novelty



138 CHAPTER 7. AR-ASLG-HMM FOR ONLINE MONITORING

0.5 1.0 1.5 2.0
Time [h]

1000000

2000000

3000000

4000000

5000000

6000000
BI

C

(a) WPD BIC score

0.5 1.0 1.5 2.0
Time [h]

2000

2500

3000

3500

4000

4500

5000

BI
C

(b) Proposed BIC score

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [h]

0

20

40

60

80

100

HI
(c

c)
 (%

)

(c) AHMM health index

0.0 0.5 1.0 1.5 2.0
Time [h]

0

200

400

600

800

PC
M

D

(d) APCMD health index

0.5 1.0 1.5 2.0
Time [h]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Lo
ca

l R
UL

[h
]

(e) APCMD RUL

0.0 0.5 1.0 1.5 2.0
Time [h]

2.5

2.0

1.5

1.0

0.5

0.0

H
I

Fitted  R2: 0.79
Health

(f) Proposed HI†

0.0 0.5 1.0 1.5 2.0
Time [h]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

RU
L[

h]

(g) Proposed RUL

0.0 0.5 1.0 1.5 2.0
Time [h]

0.00

0.05

0.10

0.15

0.20

H
I

(h) Regression uncertainty

Figure 7.9: Results of supervising Bearing2 2 with different methodologies: (a) shows the WPD BIC
score evolution, (b) draws the As-HMM online model BIC score evolution, (c) gives the AHMM health
index, (d) pictures the APCMD health index, (e) displays APCMD RUL prediction, (f) shows HI†

results, (g) is the proposed methodology RUL prediction, (h) is the standard deviation of the proposed
health index regression

detection occurred, the BIC score was improved and this adaptation prevented the model

from obtaining drastic changes in this score. However, in this case, a clear increasing trend

in BIC was not seen as in the case of Bearing1 1 or Bearing1 3; on the contrary, from the

first and a half hour to the second hour of operational time, a decrease in BIC was obtained.

The health index in the case of AHMM (Fig. 7.9c) reveals again a noisy behavior that does

not provide any relevant information if it is compared to any of the other methodologies. In

the case of APCMD, the health index (Fig. 7.9d) shows noisy growth indicating a worsening

in the ball bearing condition. Later, the health index decreased between the first hour and

a half to the second hour of operational time which implies improvement in the ball bearing

condition. However, since this health index lies in the PCA projected space it is hard to tell

if the improvement was significant or not. In the case of our methodology, the health index

HI† decreased after the first concept drift. Nonetheless, between the first hour and a half to

the second hour of operational time (as the WPD and APCMD methodologies also detect) a

slight (0.4 orders of magnitude) health improvement was observed; after that, HI† decreased
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again.

In terms of RUL curve, the APCMD obtained a noisy prediction during almost all the

ball bearing life as shown in Fig. 7.9e. In this case, the local RUL had to be used instead

of the global because it obtained poor results. Nevertheless, at the end of the process after

the second hour of operation the accuracy was improved. Fig. 7.9g shows the obtained RUL

curve from the proposed methodology. In this case, after the first novel detection flag, a

decreasing tendency was observed. But, as mentioned before, an improvement in health was

observed; this violates the second assumptions imposed in Section. 7.1. As a consequence of

this violation, the prediction curve sign convexity changed, which could be translated into

the increasing trend in the RUL curve. Although the RUL prediction was poor in this case,

thanks to HI†, there was statistical evidence of bearing degradation.

The uncertainty of the RUL prediction in this case is shown in Fig. 7.9h. In spite that

the RUL prediction in this case was worse when compared with the other datasets from

FEMTO, the standard deviation of the prediction obtained fair values below a quarter of

order of magnitude. However it is relevant to remark that the change in the sign of concavity

in the health index after the first hour and a half affected drastically and negatively to the

confidence of the prediction.

In this case, from the point of view of application, these actionable insights are also useful

to explore failure related to wrong installation procedure for the ball bearing. That is, early

problems could suggest that the ball bearing has problems with actual operating conditions

and must be reinstalled as soon as possible to avoid unexpected failures.
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Figure 7.10: Learned Bayesian networks from Bearing 2 2

As in the case of Bearing1 1 and Bearing1 3, for each learned hidden state, context-

specific Bayesian networks can be extracted. In Fig. 7.10 the resulting Bayesian networks

from a degraded state is drawn. In this scenario, the FTF frequency-amplitude dynamics

can be explained by the BPFI and BPFO frequency-amplitude. Also, the BPFO depends on

one previous value. In this case, the inner and outer race lead the dynamic behavior at a
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degraded state.

7.3.3 Mechanical setup results

In Fig. 7.11, the worn ball bearing inner ring is shown. Different degradation pieces of

evidence are detected, such as in Fig. 7.11a, where a rolling surface indentation is found,

usually started by small particles generated by the ball cage or the lateral seals. In Fig. 7.11b

and 7.11c, porosity has developed over the rolling surface, related to the lubrication issues

created by lateral seal failure and temperature. As shown in Fig. 7.12a, most of the time,

the temperature was between 40 and 45oC, which is not enough to damage the ball bearing.

However, this effect mixed with the failure of the seals can create lubrication problems in the

balls.

Fig. 7.12b pictures the smoothed evolution of the ball bearings fundamental frequencies

(BPFO, BPFI, BSF, FTF) extracted from the FE algorithm. From this picture, it can be

observed that there is evidence of ball bearing degradation since the ball bearing frequency-

amplitudes increase over time; in particular, the FTF frequency-amplitude exhibits a more

significant positive trend. Nevertheless, by just looking, it is not possible to extract a clear

health index or bearings RUL estimation. This enables the use of the proposed methodology.

(a) (b)

(c)

Figure 7.11: Test results: (a), (b), (c) show evidence of degradation in the inner ring

It is expected that the proposed methodology (Fig. 7.1) process data streams within

embedded electronics. However, to analyze its performance, the batch SEM algorithm of

the As-HMM Puerto-Santana et al. [2022b] is studied from the computational point of view

inside the CMAI module. In this way, memory and time constraints and opportunities can

be deduced for the model learning phase and can enable the model to be optimally employed

in an online data stream.
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Figure 7.12: a shows the Measured temperature evolution of the ball bearing. b shows the Evolution
of the ball bearings fundamental frequencies

7.3.3.1 Execution time and performance analysis

The As-HMM implementation has been evaluated using the following configuration: 25 vari-

ables, a window size of 5000 samples, and 3 hidden states. The C++ code makes use of

two external libraries, igraph v0.8.4 and openblas v0.3.13 and it has been compiled with

GCC v10.2. All computational measurements presented in this section have been gathered

on one CMAI.

The first step for evaluating the experimental setup has been to study the execution time

of our optimized implementation of the As-HMM algorithm. Fig. 7.13 shows the phases of the

algorithm: the color code represents the percentage of the execution time taken by each phase,

from green, corresponding to short execution time, to red, corresponding to steps taking up

to 35% of the total execution time. From Fig. 7.13, the reader can conclude that Update β

and η, Forward-Backward, Update Temporal Mean, Update σ are the phases taking more

time, summing up 87% of the total execution time.

Fig. 7.14 shows the execution time of the four phases on a single Cortex-A53 of the CMAI.

Using hardware counters, it has been possible to count different types of instructions,
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Figure 7.13: Steps of the As-HMM algorithm color coded depending on the relative execution time

Figure 7.14: Instruction mix of the four most time consuming phases of the As-HMM algorithm

which are also reported in Fig. 7.14. The classes of instructions identified are: memory

accesses (LOAD and STORE or LD and ST for short respectively); floating-point instructions

(FP as counting the scalar instructions and VEC as counting the instructions executed by the

single instruction multiple data (SIMD) unit of the core); branches and jumps (BRANCH);

integer operations and other instructions for the book keeping of the program (OTHERS).

From a first analysis of the type of instructions, it appears that the compiler was not able

to vectorize the code. There were, in fact, very few vector instructions (VEC) in all phases

so that they can be ignored in the rest of our study. Also, the phase Update σ had almost
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no store instructions: it had been verified that, indeed, the Update σ phase required loading

on average more than 300 data to update/store one value to the memory.

Table 7.5: Density of the different type of instructions in four phases of the As-HMM algorithm

To understand if there are types of instructions that are harming the performance of our

implementation, the density over time of each type of instruction has been computed. The

global density of all instructions is called Instructions per Clock-Cycle (IPC), and it has been

computed for each phase. The densities for all classes of instructions have also been computed:

memory accesses (load and store instructions are aggregated, LD + ST) per cycle, floating-

point (FP) per cycle, branch (BRANCH) per cycle, and other instructions (OTHERS) per

cycle. All values are reported in Table 7.5. Phases are sorted by the decreasing value of

the IPC, and the values of instruction densities have also been color-coded. Looking at

the color gradients, it can be detected that there is a direct correlation between the IPC

(yellow gradient) and all instruction densities (green gradients), except for the floating-point

instructions. This means that increasing the number of floating-point instructions per unit

of time implies a lower IPC resulting in performance degradation.

Table 7.5 highlights that there is a direct correlation between the IPC and the density of

memory accesses (LD + ST): this result is counterintuitive. Since the memory is the slowest

of the resources in a compute node, one would expect the opposite. For this reason, the

number of accesses to memory that were misses in the two-level of caches of the Cortex-A53

core have been studied. The measured number of misses per kilo-instructions (MPKI) are

between 1.56 and 7.63 in the L1 cache and between 0.01 and 0.09 in the L2 cache (that is

the last level cache of the Cortex-A53). This means that almost all the memory accesses of

our implementation are hit on cache, explaining the positive effect of memory instructions

on the global IPC.

This effect depends on the configuration of the model: this would probably become worse,

increasing the number of variables, hidden states, or the size of the window. Also, changing

the configuration of the model would change the data structures storing the graph used for

the model. The code is susceptible to changes in the data structures so that one can expect

cache effects in the case of changes in the initial configurations.

The data structures of the model are sparse and have an arithmetic intensity between

0.06 and 0.15 Floating Point Operations per Byte (FLOPs/Byte). These low values of the
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arithmetic intensity can be mitigated by reorganizing the data structures as adjacency lists.

This has the benefit that the code can operate with more dense objects and maximize the

cache reuse. As a price to pay, more integer instructions for pointer bookkeeping are needed.

This is visible in Fig. 7.14 with the fact that almost 30% of the instructions of all phases are

of type OTHERS.

7.3.3.2 Health states and RUL prediction

The weaknesses and strengths of the underlying model (As-HMM) of the proposed method-

ology have been explored and mentioned. The corresponding results from the methodology

using a ball bearing are now shown.
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Figure 7.15: Results of mechanical setup. (a) is the BIC evolution (b) is the health index HI†, (c) is
the online As-HMM RUL predictions, (d) is the standard deviation of the health index regression

Recall that no RTF data (i.e., training data) is used for this analysis, and the health index

and RUL are computed as the data arrives at the processor (i.e., the simulated data stream

processing). In Fig. 7.15a the evolution of the BIC score is highlighted. Although the model is

adapted, a clear increasing trend can be observed in the BIC score. At the end of the process,

21 hidden states were learned. On the other hand, the first concept drift was detected during

the first hours of operation. In Fig. 7.15b the health index HI† results are shown. In this

case, HI† shows a slow degradation process with some short health recovering phases, which
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violates the assumptions in Section. 7.1. When observing the corresponding RUL prediction

in Fig. 7.15c, it can be observed that the RUL went from being predictable to unpredictable

at different times. This behavior is caused by the observed health recoveries as in the case of

Bearing2 2. The health recoveries may cause a change in the sign convexity in the prediction

curve; in such cases, the RUL cannot be computed; in spite of that, as observed in the

latest RUL predictions, at the time 270 h, the RUL decreases and the regression predicts 170

hours of remaining useful life. As time goes, this prediction converges at 320 h as the time

when the failure threshold is overpassed. Although the assumptions made in Section ?? were

violated, the RUL predictions and HI† gave insights of a bearing that was evolving towards

a failure state. However, the extreme degradation from the beginning provides insights into

the bearing installation on the machine or quality issues of the brand-new ball bearing.

Regarding the uncertainty of the prediction for this data-set and mechanical set-up,

Fig. 7.15d shows the evolution of the health index regression. In this case, at the first

100 hours of operation, the uncertainty level was around 0.05 orders of magnitude. However,

since there was a change in the sign of the concavity of the health index, it caused an im-

portant increase in the uncertainty. At 200 hours, a change in the sign of the concavity in

the health index caused again an increase in the uncertainty of the health index regression,

reaching a maximum of 0.35 orders of magnitude. Notice that with this level of uncertainty,

the dispersion of the prediction can be important and affect the RUL prediction as observed

in the shaded curves in Fig. 7.15b, where the shaded area is bigger than in the FEMTO

data-sets. Therefore, the condition of no health recoveries is important to minimize the RUL

uncertainty.
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Figure 7.16: Learned Bayesian networks from the own testbench testbed

As previously, the model can estimate the possible probabilistic relationships between

variables. This step plays a pertinent role in the interpretation of the ball bearing degradation.

In particular, in this case, the resulting Bayesian network of the most degraded observable
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state in Fig. 7.16 is shown. A degradation in this ball bearing caused the BSF and FTF

frequency-amplitudes to depend on the PBFI frequency-amplitude. The BPFI frequency-

amplitude depended on the BPFO frequency-amplitude. In this way, it was interpreted that

the outer ring of the ball bearing drove the process, and the bearing rollers and cage depended

totally on the behavior of the inner and outer ring. Finally, all the frequencies had a certain

degree of dependency on the past, which is the BPFI frequency-amplitude, which required

more past values to be explained (3 auto-regressive past values). In contrast, the BPFO

frequency-amplitude had only one AR dependency.

7.4 Conclusions

This chapter presented a complete online predictive health assessment solution in terms of

an algorithm and its deployment, to monitor ball bearings in real IIoT environments. This

machine learning-based solution can work without previous ball bearing RTF data, which is

one of the main challenges in the industry. Specifically, the proposed methodology output

is the ball bearing health status, which is expressed in different orders of magnitude from a

healthy state, and hours for the RUL of the ball bearing.

As natural degradation is expected in real industrial environments, a concept drift de-

tection methodology was used to automatically update an adaptive asymmetric HMM when

novel trends appear.

As the new methodology works in embedded devices, from the computational point of

view, a performance analysis study of the code has been performed, highlighting that the

code is highly dependent on how data structures are stored in the memory of the edge device.

Also, the performance of the code is directly correlated with the density of floating-point

instructions. The obtained results gave us the fundamental insights to design the algorithm

parametrization strategy towards an optimum performance under limited computing power

environments.

Different real applications of ball bearings were tested under separate operating conditions

to test the proposed methodology, showcasing useful actionable insights that maintenance

practitioners can use.

The proposed methodology was compared with other state-of-the-art methodologies. Al-

though every methodology has its own definition of health index, when our health index was

compared to other health indexes such as Malahanobis distance from APCMDs, BIC score

from WPD or Cauchy-Schwarz divergence from AHMMs, it was observed that our health

measure was more informative and interpretable for all the time series and was robust to

noise and outliers. In terms of fitness, when compared to a non-adaptative methodology such

as WPD, it was observed that the fitness or BIC score of our methodology was more stable

and informative. Regarding RUL prediction, it was observed that under certain conditions,

it can be predicted; otherwise, the predictions are no longer accurate. Additionally, an opera-

tional threshold must be tuned depending on the application, influencing the RUL prediction.

In spite of these drawbacks, the ball bearing health reading alone can be a good indicator
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of performance. Finally, the asymmetric HMM was capable of learning, for each data series,

a set of Bayesian networks that are useful to give further insights into the evolution of the

dynamic process, probabilistic dependencies and degradation process.
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Chapter 8
A näıve-FSS online methodology

In recent years, the advances in electronics, data processing and storage have enabled indus-

tries to perform continuous surveillance of their assets using sensors. In the data processing

phase, several mechanical, thermal, electrical and other type of variables are measured. How-

ever, some of them may not be always relevant for the underlying dynamic process; therefore,

it is crucial to have a model or algorithm capable of determining the relevant variables de-

pending on the current state of the asset. As explained in Section 2.5, ball bearings can

be characterized by their fundamental frequencies. Thus, a straightforward question arises:

which frequencies and harmonics are relevant and when do they begin to be important?

In spite that several works can be found in FSS in data streams in supervised problems,

many fewer appear in unsupervised problems (?). A short review of those methodologies was

done in Section 3.4.

In this chapter a feature saliency model for online ball bearing FSS is proposed. In

particular, Zhu et al. [2012], Adams et al. [2016] and Zheng et al. [2018] developed variants of

HMMs, where a set of feature saliencies were used to determine which variables were relevant

to describe the data. In Zhu et al. [2012] and Zheng et al. [2018], a variational Bayesian

method was used to maximize the log-likelihood of the model and learn the parameters,

whereas in Adams et al. [2016] a maximum a posteriori approach was used to learn the

model parameters. The previous models were developed only for offline analysis.

In this chapter, a first approximation to solve the problem of FSS online in unsupervised

problems is proposed. The unsupervised model of Adams et al. [2016], denoted as FS-

HMM, is applied as the cornerstone for a data stream unsupervised FSS methodology with

an application to ball bearings surveillance. This model is chosen since it has a simple

formulation, interpretation and it is easy to implement. In this application, ball bearing

frequencies are recorded and the goal is to determine dynamically their relevancy. As it will

be shown, the proposed methodology updates the relevant features when needed and not

whenever a new instance or chunk of data arrives as in the previous mentioned articles. This

chapter is a short version of the results from Puerto-Santana et al. [2022d] and adapted to

match the thesis notation. The chapter is structured as follows: Section 8.1 explains the

proposed methodology. Section 8.2 describes the synthetic and real data used for validation.
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Then, Section 8.3 shows the obtained results. Finally, Section 8.4 rounds the chapter off with

the relevant conclusions.

In Chapter 9 the ideas and concepts proposed in this chapter will be extended, and a

more informative model based on As-HMMs is used for FSS in a data stream environment.

This is why this chapter is entitled Naive-FSS.

8.1 Proposed methodology

Start

Get sample FE FS-HMM0? FS-HMM∗

BIC/uPage testp̂n∗ > p ?FS-HMM∗

True

False

True

False

Figure 8.1: Flow diagram of the proposed methodology. The idea is to update the model and the
relevant features whenever a novel trend is detected.

Here, the proposed data-stream procedure to update the FS-HMM is introduced. During

the model update, the set of relevant features are also updated. Fig. 8.1 shows a flow diagram

of the proposed methodology. The first step is to obtain ball bearing frequential data from

sensors using the FE algorithm (see Section 2.5. Then, the first FS-HMM∗ is created if

no previous FS-HMM model is available (first iteration). Later, the Bayesian information

criterion per unit of observation (BIC/u) is computed using the current FS-HMM. These

steps are done with the boxes FS-HMM∗ and BIC/u. Whereas, the decision node FS-HMM0?

asks whether there exists a FS-HMM or not. Next, the BIC/u scores are used in the Page

sequential test (see Section 2.4.1) to indicate whether the current observations are outliers or

not. For this case, given a model λ, the s page function is:

st(x0:L+t4L) =
1

t

t∑
l=0

BIC(x0:L+l4L|λ)

l
(8.1)

Where L is an initial data window, and 4L is the increment of the data window. If the

percentage of outliers overpasses a percentage of permissible outliers in a window given by

the Chernoff bounds (see Section 2.4.2), then, a re-training process is performed and the

model is updated with the up to time collected data. The Page sequential test is done with

the box Page test and with the question node p̂n∗ > p? it is determined if updating the

model is required or not. The updating process is done in the box FS-HMM∗. Finally, the

methodology goes back to the captured data to continue the process of model learning and

updating.
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8.2 Experimental setup

The number of hidden states of the FS-HMM must be fixed beforehand. For synthetic data,

from the construction of the data, as it is shown below, the number of hidden states is three.

In the case of real data this is unknown and models with three, four and five hidden states were

tried. However, the best temporal BIC/u was obtained using three hidden states, i.e., lower

maximum and minimum BIC/u scores were attained with three hidden states. Additionally,

the length of the first window for training data was L = 256; later, the window was increased

by 4L = 10 data points. The decision rule to detect anomalies with the Page test in this

case is:

rt =

1 if st(x0:L+t4L)−minl=0,...,t−1 s
l(x0:L+l4L) > γ

0 if st(x0:L+t4L)−minl=0,...,t−1 s
l(x0:L+l4L) ≤ γ

(8.2)

Where γ = ln(Φ), here Φ, as in Section 7.1.2, can be seen as the maximum permissible

quotient of likelihood per testing observation over the likelihood per training observation. In

this case study Φ = 3. From the Chernoff bounds, the window to determine anomalies was

of size n∗ = 87 and p = 10%.

8.2.1 Synthetic data

It is assumed that there are eight variables which may change their dynamical behavior over

time. The goal is to determine when a variable is totally irrelevant or it changes to be

relevant. Also, it is assumed that the process is described by normal Gaussian distributions

N (µ, σ2). The parameters used for this experiment are provided in Table. 8.1.

X1 X2 X3 X4

µ σ t µ σ t µ σ t µ σ t
-3.0 1.5 [0, 1500] -2.0 2.5 [0, 1500] 2.3 2.1 [0, 1500] 0.0 1.2 [0, 3000]
4.0 1.2 (1500, 3000] 6.0 1.2 (1500, 3000] 2.8 1.1 (1500, 8000] -2.6 2.5 (3000, 6000]
10.0 2.1 (3000, 6000] 4.0 1.2 (3000, 6000] 3.1 0.8 (6000, 8000]
-3.0 1.5 (6000, 8000] -2 2.5 (6000, 8000]

X5 X6 X7 X8

µ σ t µ σ t µ σ t µ σ t
-3.2 1.5 [0, 8000] 2.7 2.5 [0, 8000] -5.3 1.4 [0, 8000] 1.6 1.2 [0, 1500]

7.8 1.0 (1500, 3000]
-6.5 2.0 (3000, 6000]
1.6 1.2 (6000, 8000]

Table 8.1: Parameters used to generate the synthetic data

The parameters are chosen such that variables X1, X2 and X8 are relevant variables.

On the other hand, variables X5, X6 and X7 are irrelevant since they are Gaussian noise.

Variable X4 is at first sight irrelevant but becomes relevant with the progression of periods.

Variable X3 becomes irrelevant over time.
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8.2.2 Real data

The purpose of this ball bearing testing set up is to monitor vibrations over time during

ball bearing useful life. In this case, the set-up and signals from the Aingura testbed from

Section 7.2 are used. Recall that inside the CMAI, the FE procedure is performed and the

fundamental frequency amplitudes and up to four harmonics are computed and stored (20

variables). An Eco 6004-2RS ball bearing is tested at a radial force of 2.41 kN at 3180 RPM

(53 Hz). The ball bearing runs during T=400 hours or equivalently 2.5 times its theoretical

operation life.

8.3 Results

8.3.1 Synthetic data
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Figure 8.2: Evolution of the relevancy level for the different variables. Whenever a dotted vertical
line is observed, it implies that an updating model procedure was done.

In Fig. 8.2 the results obtained from the synthetic data are drawn. Vertical dotted lines

are used to indicate novel concept drift detection. In (a) the BIC/u evolution is shown.

Note that, after an important growth in BIC/u, the model was re-trained and the BIC/u

trend decreased and the model fitness becomes stable. In particular, three updating processes

were performed at times close to t = 1500, 3000, 6000 related to the variable definitions in

Table. 8.1. The delay in the updating process was caused by the Chernoff bounds; however,

these Chernoff bounds are necessary to prevent unnecessary model updating due to outliers.

In (b) the evolution of relevancies of the variables X1 to X8 are drawn. Before the first novel

detection, only one feature had a relevancy ρ greater than 0.9, this is reasonable since before

t = 1500 all the features behaved like noise. After t = 1500 variables X1, X2 and X8 had a

high relevancy level (close to 1); however variables X3, X4, X5, X6 and X7 had a low relevancy

value. Nevertheless, the variable X4 obtained more relevancy with each re-updating process

since its dynamical behavior becomes more clear. On the other hand, variables X5, X6 and

X7 which were built as noise, kept a low level of relevancy after all the re-updating processes.

From this experiment, it can be determined that the model can discriminate between noise
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and relevant features dynamically, and the model was updated only when needed.

8.3.2 Real data

Fig. 8.3 (a) shows the evolution of the amplitude of the fundamental frequencies. Note

that, the FTF amplitude is the frequency which shows the greater values and changes. In

comparison, the BPFI and BPFO amplitudes show the lowest values and the dynamical

changes are less evident.
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Figure 8.3: (a) recorded fundamental frequencies amplitudes. (b) evolution of BIC/u. (c), (d), (e)
and (f) show the progressions of the relevancy levels for different features. Dotted vertical lines imply
that an updating model procedure was done.

Observe in Fig. 8.3 (b) that the BIC/u score was always going up in spite of the several

novel concept drifts detected. However, at the end of the process, the data was stable and

fewer re-updates were needed.

Set A i f A as the (i − 1)-harmonic of the f frequency (being the 0-harmonic the fun-

damental f frequency). (c) corresponds to the progression of the relevancy for the BPFO

and its harmonics. It is noticeable that the level of relevancy of the fundamental frequency

was high for the whole process, whereas its harmonics were less relevant. In particular, the

fourth harmonic showed the greatest decay in relevancy to become irrelevant. As for the

BPFO case, the fundamental frequency for BPFI in (d) was always relevant, whereas its

harmonics were less important In particular, the first harmonic showed low to intermediate

levels of relevancy, but at later periods it increased its relevancy. In the case of BSF in (e),

the fundamental frequency and its first harmonic were the most relevant features. It is also

remarkable that the remaining harmonics had times of high or low relevancy. In (f), the

harmonics of FTF sometimes were more relevant than the fundamental frequency during the

ball bearing evolution.
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Figure 8.4: FTF amplitude segmented by (a) the most relevant feature and (b) the least relevant
feature. (c) shows the temporal difference ∆BIC/u

Since the FTF was the fundamental frequency with the more evident dynamic changes, a

deeper analysis of this feature is carried out. In Fig. 8.4 (a) the FTF amplitude progression

was segmented by the most relevant harmonic. In particular, during the first important

change at time t = 60, the fundamental frequency was the most relevant feature; however,

after that, it did not appear again. On the other hand, the first harmonic was the most

relevant feature for a large time period at t ∈ [180, 360]. In (b), the evolution of the least

relevant harmonic is shown; in particular, the first harmonic, was the least relevant at the

early stages of the data stream to later become the most relevant harmonic. Also, it is

remarkable that there were times where the fundamental frequency was the least relevant;

which implies that information would be lost if the harmonics are omitted from the analysis.

Therefore, some harmonics played a relevant role in describing the dynamical data and the

role changes over time. Accordingly, monitoring frequency/harmonics is of crucial interest.

Finally, in (c) wit was computed ∆BIC/u = (BIC/u)̈ı − (BIC/u)FS where (BIC/u)FS is

the BIC/u by using a FS-HMM model and (BIC/u)̈ı using a näıve-HMM ?. The mean of (c)

was ∆BIC/u = 0.74 > 0, i.e., (BIC/u)̈ı > (BIC/u)FS which suggests that for this study, the

use of FS-HMM improved the performance.
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8.4 Conclusions

This chapter adapted an offline unsupervised machine learning model to an online dynamic

FSS methodology based on novel concept drift detection in data streams. To demonstrate its

applicability within real-world scenarios, the approach has been used to determine relevant

frequency amplitudes of a ball bearing. The methodology was capable of changing the subset

of relevant features when needed in both synthetic and real data instead of computing the

relevancy whenever a new instance or chunk of data arrived, as it was done in previous

methodologies (Huang et al. [2015], Shao et al. [2016], Fahy and Yang [2019a]). Moreover,

the algorithm could capture the evolution of relevancy for fundamental frequencies and their

harmonics. For real data and depending on the ball bearing part, for its corresponding

frequency amplitude, some harmonics may be more or equally relevant as the fundamental

frequency; also, this relevancy could change over time. Nevertheless, the change in relevancy

was only obtained when a novel drift is detected and not when a concept drift arise. Also,

since the FS-HMM is being used, all the variables were assumed to be independent which,

as seen before in Chapters 4, is not always the case for the whole ball bearing operational

life. These issues are addressed in the next chapter, where a new kind of asymmetric FS-

HMM is introduced, which is capable of detecting feature drifts. Finally, no complexity or

computational study was performed in this case since this methodology was designed as a

proof of concept to determine the viability to use embedded feature selection algorithms in

data streams.
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Chapter 9
Online FSS with As-HMMs

FSS is an issue that has been largely reviewed and studied in the literature. The benefits from

performing a correct feature selection are well-known, such as, improving model learning and

prediction, model simplification, accelerating the computational speed, reducing data storage

and others. Nevertheless, when working with data-streams, selecting features is a harder

issue: relevant and non-redundant features may change over time. With the development

and popularity of paradigms such as the 4IR or the internet of things, the urge to extract

and detect relevant information in data streams is increasing. Hence, this chapter tries to

face this problem and provides a solution.

Recalling from Section 2.4, three kinds of concept drift in the data stream distribution

can occur: real drift, virtual drift and feature drift. The proposed model in this chapter, and

its updating scheme for data streams, deal mainly with virtual and feature drifts. The real

drift issue is acknowledged as a consequence of a virtual or feature drift: whenever a virtual

or feature drift arises, a new distribution on the class/cluster variable given those features

appears (real drift).

The chapter is structured as follows: Section 9.1 explains the proposed model with its

learning algorithm and its adaption to work on online data-stream environments. Section 9.2

describes the synthetic and real data used for validation, and the corresponding results.

Finally, Section 9.3 rounds the chapter off with the relevant conclusions and future work.

9.1 Model proposal

In this chapter a batch and online locally feature saliency asymmetric HMM is introduced.

The model of this chapter is an extension of the model proposed in Chapter 6 where the

feature saliencies depend on the hidden state. In spite that the batch learning algorithm

based on the EM algorithm is presented here for the sake of theoretic completeness, the focus

will be on an online version for IIoT applications. In the case of the data stream, the localized

feature saliencies will let us identify feature drifts, and the relevant features will be able to

change with the hidden state.
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For the proposed algorithm, the Viterbi and forward-backward algorithm from Chapter 5

can be used to perform partially the E-step and estimate the most likely sequences of hidden

states and also the sequence of relevancies or feature drifts.

9.1.1 Local feature saliency asymmetric HMMs for batch analysis

In this contribution it is assume that the emission probabilities are a mixture of Gaussian noise

and AR-AsLG-HMM. Thus, depending on the hidden state, the Bayesian network and the

relevant features may change. This highly flexible model will be referred to as LFS-AsHMM.
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Figure 9.1: Example of an LFS-AsHMM pictured as a dynamic Bayesian network

The embedded FSS process assumes that irrelevant features are not affected by changes

in hidden states, therefore a Bernoulli vector Zt = (Zt1, ..., Z
t
M ) is introduced in the model

with probability:

ζi(z
t) := P (zt|Qt = i,λ) =

M∏
m=1

ρ
ztm
im(1− ρim)(1−ztm), (9.1)

where ρim := P (Ztm = 1|Qt = i,λ) for m = 1, ...,M . Note that is is assumed that the Ztm
Bernoulli variables are conditional independent between them and that the ρim parameters

change with the hidden state. On the other hand, the irrelevant behavior is modeled for

each variable with a Gaussian distribution with parameters εm for the mean and τ2
m for the
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variance. The dependency of Xt given Zt and p∗ AR past values is modeled as:

bi(x
t|zt) := P (xt|xt−p∗:t−1, zt, Qt = i,λ) =

M∏
m=1

fim(xtm)z
t
mgm(xtm)(1−ztm), (9.2)

Where fim(xtm) = N (xtm|utimβim + dtimηim, σ
2
im) is the probability density function for the

relevant component, whereas gm(xtm) = N (xtm|εm, τ2
m) is the noise term. Also, utim =

(1, utim1, ..., u
t
imkim

) and dtim = (xt−1
m , ..., xt−pimm ) are vectors with the values of the kim par-

ents of Xt
m in the Bayesian network graph and its pim ≤ p∗ past values. Whereas βim =

[βim0, ..., βimkim ]> and ηim = [ηim1, ..., ηimpim ]> are their corresponding. weights.

Observe in Fig. 9.1 an example of the new model topology, with two variables/features.

When Qt = 1, no probabilistic relationships appear between Xt
1 and Xt

2, also Xt
2 depends

on one AR value or (Xt−1
2 ). When Qt = 2, there is a probabilistic dependency of (Xt

2) from

(Xt
1), additionally, Xt

1 depends on one AR value. Xt−1
1 and Xt

2 depends on two AR values

(Xt−1
2 and Xt−2

2 ). Finally, Xt on both contexts, Qt = 1 and Qt = 2, depends on the binary

vector Zt.

From Eq. (9.1) and Eq. (9.2) the emission probabilities can be derived:

bi(x
t) := P (xt|xt−p∗:t−1, Qt = i,λ) =

M∏
m=1

ρimfim(xtm) + (1− ρim)gm(xtm), (9.3)

and the full information probability can be written as follows:

P (qp
∗:T , zp

∗:T ,xp
∗:T |x0:p∗−1,λ) = πqp∗

T−1∏
t=p∗

aqtqt+1

T∏
t=p∗

ζqt(z
t)bqt(x

t|zt). (9.4)

9.1.1.1 E-step

As in previous chapters, the first step to derive the EM updating equations is to define the

auxiliary function. Given a current model λ(s), the auxiliary function is defined as:

Q(λ|λ(s)) :=
∑

R(Qp∗:T )

∑
R(Zp∗:T )

P (qp
∗:T , zp

∗:T |x0:T ,λ(s)) lnP (qp
∗:T , zp

∗:T ,xp
∗:T |x0:p∗−1,λ)

(9.5)

From Eq. (9.5),the log-likelihood (LL) from Section 5.2 for the λ model can be computed:

Q(λ|λ(s)) = H(λ|λ(s)) + lnP (xp
∗:T |x0:p∗−1,λ) = H(λ|λ(s)) + LL(λ), (9.6)

where

H(λ|λ(s)) =
∑

R(Qp∗:T )

∑
R(Zp∗:T )

P (qp
∗:T , zp

∗:T |x0:T ,λ(s)) lnP (qp
∗:T , zp

∗:T |x0:T ,λ). (9.7)
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By Eq. (9.6), Eq. (9.7) and Section 5.2, it is known that each iteration of the EM algorithm

with Q(λ|λ(s)) implies improvements in the likelihood function.

Introducing Eq. (9.4) in Eq. (9.5) a tractable expression of Q(λ|λ(s)) is obtained. It will

be useful to find the updating formulas of the model parameters:

Q(λ|λ(s)) =
N∑
i=1

γp
∗
(i) ln(πp

∗

i ) +
T−1∑
t=p∗

N∑
i=1

N∑
j=1

ξt(i, j) ln(aij)

+
T∑

t=p∗

N∑
i=1

M∑
m=1

ψtm(i) ln(ρimfim(xtm)) +
T∑

t=p∗

N∑
i=1

M∑
m=1

φtm(i) ln((1− ρim)gm(xtm)).

(9.8)

In Eq. (9.8), the latent a posteriori probabilities are:

γt(i) := P (Qt = i|x0:T ,λ(s)), ξt(i, j) := P (Qt+1 = j,Qt = i|x0:T ,λ(s)),

ψtm(i) := P (Qt = i, Ztm = 1|x0:T ,λ(s)), φtm(i) := P (Qt = i, Ztm = 0|x0:T ,λ(s)),
(9.9)

for t = p∗, ..., T , i = 1, ..., N and m = 1, ...,M . The E-step consists of estimating these

quantities. In the case of ψtm(i):

ψtm(i) = P (Qt = i, Ztm = 1|x0:T ,λ(s))

= P (Ztm = 1|Qt = i,x0:T ,λ(s))P (Qt = i|x0:T ,λ(s))

=
P (xtm, Z

t
m = 1|xt−p

∗:t−1
m , Qt = i,λ(s))γt(i)

P (xtm|x
t−p∗:t−1
m , Qt = i,λ(s))

=
ρimfim(xtm)γt(i)

ρimfim(xtm) + (1− ρim)gm(xtm)
.

(9.10)

It is not hard to note that γt(i) = φtm(i) +ψtm(i) for m = 1, ...,M and i = 1, ..., N . Therefore

φtm(i) = γt(i)− ψtm(i) and:

φtm(i) =
(1− ρim)gm(xtm)γt(i)

ρimfim(xtm) + (1− ρim)gm(xtm)
. (9.11)

Now, γt(i) is estimated as follows:

γt(i) = P (Qt = i|x0:T ,λ′) =
αtp∗(i)β

t
p∗(i)∑N

j=1 α
t
p∗(j)β

t
p∗(j)

. (9.12)

In the previous equation the forward variable is αtp∗(i) := P (Qt = i,xp
∗:t|x0:p∗−1,λ(s)) and the

backward variable is βtp∗(i) := P (xt+1:T |Qt = i,x0:t,λ(s)). The forward-backward algorithm

stated in Section 5.3 must be applied to estimate αtp∗(i) and βtp∗(i). Finally, ξt(i, j) can be

computed as:

ξt(i, j) =
αtp∗(i)aijbj(x

t+1)βt+1
p∗ (j)∑N

u=1

∑N
v=1 α

t
p∗(u)auvbv(xt+1)βt+1

p∗ (v)
. (9.13)
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9.1.1.2 M-step

The M-step corresponds to optimizing Eq. (9.8) with respect to the model parameters. The

following theorem gives the updating formulas that result from the optimization.

Theorem 9.1. Assume there is a current model λ(s) from which the E-step has been com-

puted in the formulas Eq. (9.9). By maximizing Eq. (9.8), the resulting parameter λ(s+1) can

be obtained with the following updating formulas.

The feature saliencies {ρ(s+1)
im }Mm=1 are updated as:

ρ
(s+1)
im =

∑T
t=p∗ ψ

t
m(i)∑T

t=p∗ γ
t(i)

. (9.14)

The initial distribution π(s+1) = {π(s+1)
i }Ni=0 is updated as:

π
(s+1)
i = γp

∗
(i). (9.15)

The transition matrix A(s+1) = {a(s+1)
ij }Ni,j=1 is updated as:

a
(s+1)
ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (9.16)

The mean and variance, {ε(s+1)
m }Mm=1 and {(τ2

m)(s+1)}Mm=1, from the noise component, are

updated as:

ε(s+1)
m =

∑T
t=p∗

∑N
i=1 φ

t
m(i)xtm∑T

t=p∗
∑N

i=1 φ
t
m(i)

(τ2
m)(s+1) =

∑T
t=p∗

∑N
i=1 φ

t
m(i)(xtm − εm)2∑T

t=p∗
∑N

i=1 φ
t
m(i)

.

(9.17)

Denoting ϕtim := utimβim+dtimηim form = 1, ...,M , t = p∗, ..., T and hidden state i = 1, ..., N ,

the relevance parameters ηim = {ηimr}pimr=1, βim = {βimk}kimk=0 can be updated jointly, solving

the following linear equation system:

∑T
t=p∗ ψ

t
m(i)xtm =

∑T
t=p∗ ψ

t
m(i)ϕtim∑T

t=p∗ ψ
t
m(i)xtmu

t
im1 =

∑T
t=p∗ ψ

t
m(i)utim1ϕ

t
im

...
...

...∑T
t=p∗ ψ

t
m(i)xtmu

t
imkim

=
∑T

t=p∗ ψ
t
m(i)utimkimϕ

t
im∑T

t=p∗ ψ
t
m(i)xtmx

t−1
m =

∑T
t=p∗ ψ

t
m(i)xt−1

m ϕtim
...

...
...∑T

t=p∗ ψ
t
m(i)xtmx

t−pim
m =

∑T
t=p∗ ψ

t
m(i)xt−pimm ϕtim

(9.18)

if θim = [βim|ηim]>, otim = [utim|dtim], and Ψp∗:T
im := Matrix([ψp

∗
m (i), ...., ψTm(i)]). Then, the
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previous linear system is solved as:

θ
(s+1)
im =

(
(op

∗:T
im )>Ψp∗:T

im op
∗:T
im

)−1
(op

∗:T
im )>Ψp∗:T

im xp
∗:T
m (9.19)

Setting ϕ̂tim := utimβ
(s+1)
im + dtimη

(s+1)
im ; then, {(σ2

im)(s+1)}N,Mi,m=1 can be updated as:

(σ2
im)(s+1) =

∑T
t=p∗ ψ

t
m(i)(xtm − ν̂tim)2∑T
t=p∗ ψ

t(i)
. (9.20)

The proof of this theorem is provided in the Appendix D. Observe that the updating

equations of the M step for this algorithm are the same as the ones from the FS-AsHMM (see

Section 6.2.2), but ρim parameters are computed differently. Regarding the computational

complexity of the linear equations in Eq. (9.18), the same comments made in Section 5.4 are

valid for this case.

9.1.1.3 Structural EM (SEM)

In this chapter the greedy-forward algorithm proposed in Section 5.6 is used to search the

space of possible graphical models. Also, the noise definition given in Section 2.3.6 is used to

describe relevancy. Therefore, a restriction is imposed during the search of structures such

that no noise variable is added to any context-specific Bayesian network. The restriction

consists of omitting any possible arc coming into or from variables Xm which fulfill the

following condition: ρim ≤ ρ̄, where ρ̄ ∈ [0, 1) is a threshold that determines which variables

are relevant. Recall that the opposite of this assumption is not true, i.e., if a variable does

not have any relationship with any other variable in a context-specific Bayesian network, it

does not mean that it is irrelevant or noise under our relevance definition.

9.1.2 Localized feature saliencies asymmetric HMM for online analysis

In our first approximation for FSS in online environments, the methodology introduced in

Chapter 8 performed feature drifts whenever a novel concept was discovered. Such strategy,

also assumed that all variables were independent. In this section, an online learning mech-

anism is provided to use the LFS-HMMs in data-streams to perform FSS and overcome the

previous issues.

It will be assumed here that at the beginning of the data stream, there is only one concept

and therefore only one hidden state will be learned. The idea is to increase the number of

hidden states whenever a novel concept is detected in the data stream. As in the methodology

in Chapter 7, the number of hidden states will evolve over time. Also, due to the flexibility of

context-specific feature saliencies, the feature saliencies learned for each hidden states are not

lost and the relevancy of each feature can be tracked during the online analysis. Additionally,

the online learning phase must be adjusted to meet the previous requirements.
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9.1.2.1 Online processing

The online processing consists of an updating scheme whenever a concept drift is detected.

The updating scheme that is presented here is a modification of the model update proposed

in Section 7.1.1. However, since local feature saliencies are added to the model, the online

scheme must be adapted.

At the beginning of any data-stream, a LFS-AsHMM with only one hidden state is learned

from L instances and its BIC/u score per unit data is saved for the Page test. The window

of data is increased in 4L data units. Here the Page-test and Chernoff bounds are applied

as in Section 8.1 to detect novel trends. If a novel concept appears, a new hidden state is

added to the model and the SEM algorithm is executed only for the parameters related to

the new added hidden state.

Suppose that the current model λ = {A,B,π} has N hidden states. Assume that at

the instance xt a concept drift is detected and the model is updated. A new prior model

λ′ = {A′,B′,π′} is used to update the known information form the data stream.

To add a new hidden state in the transition matrix, the augmented matrixC is introduced:

C =


| y0

A |
...

| y0

− − − − −
1

N+1 · · · 1
N+1 | 1

N+1

 , (9.21)

where y0 must be a positive small number, in this study y0 = 1 × 10−6. C will be used to

generate a new prior transition matrix A′ which enables the new model to determine the

probabilistic transitions between the new observed hidden state and the previous learned

hidden states. Set a′ij =
cij∑N+1
j=1 cij

. To address the problem that the new learned matrix A′

may not be a Markov chain matrix, the rows of A are normalized.

For the prior values of ηN+1,m, βN+1,m and σ2
N+1,m, it is assumed that the new hidden

state in its relevant component can be represented as a näıve Bayes network with no AR

components. More precisely:

fN+1,m(xt) = N (xt|βN+1,m0, σ
2
N+1,m)

βN+1,m0 =
1

L

L∑
i=1

xt−im ,

σ2
N+1,m =

1

L

L∑
i=1

(xt−im − βN+1,m)2,

(9.22)

It is expected that if a variable is actually noise to a process, then its parameters will be fixed

for all the data stream. Therefore, the parameters εm and τ2
m are set for all the data stream
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as follows:

εm =

L∑
i=1

xim
L
, τ2

m =

L∑
i=1

(xim − εm)2

L
. (9.23)

These parameters are never updated. Finally, the parameter π′ is updated as follows:

π′ = [π|0] (9.24)

Or the concatenation with a zero to right. Once the prior model λ′ is generated, the SEM

algorithm is executed only on the parameters {Aj,N+1}Nj=1, {AN+1,j}Nj=1, βN+1, ηN+1 and

σ2
N+1.

In many cases, the data streams may seem “infinite” and it is not possible to store all the

captured data; hence a maximum window size Lmax is imposed such that the learning and

inference process do not require more than Lmax instances. Once a new instance arrives and

the buffer of size Lmax is already filled, the oldest instance is forgotten and the new instance

is added to the processing buffer.

9.2 Experimental setup

The experiments are focused on an online analysis, where the model must learn the parameters

as the data arrives and determine the feature relevancies.

It is well known that a linear Gaussian Bayesian network can be expressed as a multivariate

Gaussian distribution Koller and Friedman [2009]. Let µi = {µim}Mm=1 be the mean vector

corresponding to the i-linear Gaussian Bayesian network in the context Q = i. For these

experiments, the labeling g equation ( see Section 5.7) is defined as:

g(i) =

M∑
m=1

|µim|χ{ρim≥ρ̄} +

M∑
m=1

|εm|χ{ρim<ρ̄}, (9.25)

where χδ is the indicator function. It is one if the condition δ is met and zero otherwise.

This g function adds the true information from all the features, the greater the g value, the

greater the magnitude of the observed data.

The proposed methodology from this section is compared with the strategies DFM-MCFS

proposed in Fahy and Yang [2019b] and FSMCP exposed in Ma et al. [2020] (see Section 3.2).

These methodologies are selected since they are the most recent ones regarding feature selec-

tion in data streams in unsupervised problems. In the first case, the methodology updates

the relevant features whenever a buffer of data is filled. Additionally, as stated in Fahy and

Yang [2019b], the methodology is compatible with any clustering model. Hence, the Gaussian

mixture model is used, which has been previously used for online clustering Diaz-Rozo et al.

[2020]. In the second case, the features are updated whenever a new data point arrives. For

the proposed methodology in this chapter, the model and the feature relevancies are updated

when needed.
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Figure 9.2: Sequence of hidden states to generate synthetic data

9.2.1 Synthetic data

9.2.1.1 Description

The synthetic data consists of M = 10 variables. Seven are relevant, two are noise, namely

X6 and X9, one X3 is initially noise but it becomes relevant for certain time instances. It is

assumed that the data contain N = 5 hidden states. The parameters of the synthetic data

re exposed in the Appendix D.

To simulate the data, a sequence of hidden states is required. For this study, the sequence

pictured in Fig. 9.2 is used. Two datasets are generated from this sequence, a time series for

training and another for testing. All the models do an online training phase and then, their

current parameters are tested. The learned feature relevancies are discussed. In the case

of the proposed online methodology, the g(i) evolution in the data stream is exhibited and

some of the learned context-specific Bayesian networks are drawn to gain insights. The value

of the initial window size is L = 128 with a maximum of Lmax = 4096, and every 10 new

instances, the BIC score is computed. Additionally ¯rho = 0.9, is used to select the features

that are relevant and are used to created context-specific Bayesian networks.

9.2.1.2 Results

Fig. 9.3 shows the results in the testing phase of LFS-AsHMM. From the training data,

six hidden states were discovered or inferred from the data. During the testing phase, one

additional hidden states was found. The time where the hidden state was found is marked

with a vertical dotted line. Note from the figure that variables X6 and X9 had a low relevancy

as expected, since they behaved as noise during all the dynamical process (they have a

constant value of 1). Variable X3 had some moments of high relevancy due that its parameters

differed from the noise level for some hidden states. The remaining variables showed an
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Figure 9.3: Feature saliencies and drifts discovered during the testing phase by the proposed model
LFS-AsHMM. The changes in feature relevancies are computed using the Viterbi algorithm.

expected behavior, since their relevancies were close to one most of the time. Nonetheless, it

is relevant to observe that for some time instances, the relevancy of all variables went close

to zero. The reason behind this behavior is that the initial state (where all the variables

are considered as noise) was again present in the data-stream. This implies that the noise

component represented better the data and the relevancies in such cases had to be close to

zero.

Table 9.1 shows the feature saliencies (ρim) during the training phase (with 6 hidden

states) and the testing phase (where Q = 7 is added). Notice that indeed, X6 and X9 were

noise variables, since for all the discovered hidden states, their relevancy was close to zero.

Variable X3 was irrelevant for most of the hidden states, but relevant in two of them Q = 5, 6.

The remaining variables had a high relevant value for most of the hidden states as expected.

Recall that it is assumed that at the first hidden state Q = 1, all the variables are noise,

since no other concept is known. However, whenever a novel concept is discovered and the

model is updated, the features may change their status.

In Fig. 9.4 (a), the results of DFM-MCFS are presented. Observe that the relevancies had

a greater variance than in the case of four proposed methodology. In particular, variables X6

and X9 had time periods where their relevancy was high, which is not true by the construction

of the dataset. Furthermore, relevant variables such as X4 and X10 had a low relevancy for all
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Q\ M X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0.01 0.11 0.2 0.05 0.01 0.01 0.11 0.17 0.01 0.01
2 1.0 1.0 0.11 1.0 1.0 0.02 1.0 1.0 0.13 0.94
3 1.0 1.0 0.05 1.0 1.0 0.01 0.98 1.0 0.01 1.0
4 1.0 1.0 0.03 1.0 1.0 0.07 1.0 1.0 0.03 1.0
5 1.0 1.0 1.0 1.0 1.0 0.1 1.0 1.0 0.08 1.0
6 1.0 1.0 0.99 0.99 1.0 0.01 0.99 0.99 0.01 0.99
7 0.51 1.0 0.12 0.51 1.0 0.01 1.0 1.0 0.01 0.51

Table 9.1: Feature saliencies discovered for all the discovered hidden states during the learning and
testing phase

the dynamical process, which is again, incorrect. Additionally, it is observed that the features

changed their relevancy whenever the buffer of data was filled. In our case, the relevancy was

unchanged unless an actual concept drift in data appeared.
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Figure 9.4: Feature drifts discovered during the testing phase by (a) the DFM-MCFS and (b) FSMPC
models

In Fig. 9.4 (b), the results of FSMPC are pictured. Observe that the relevancies had

an even higher variance over the time. Relevant features such as X4, X5 and X10 had time

instants where their relevancies were high as expected. However, there were also times where

they were incorrectly low. Regarding the noisy variables X6 and X9, their relevancy level

was highly fluctuanting. There were time points where it was one or close to one which

is incorrect. Recall that this methodology updates the feature relevancies whenever a new

instance arrives which explains the high variability. Nevertheless, the results were not as

expected.

To contrast the learning and testing phases of the proposed algorithm, in Fig. 9.5 the BIC

score per unit data is plotted. In the training phase, the BIC score per unit of data had time

periods where it increased abruptly until a novel concept appeared and a model retraining
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Figure 9.5: BIC per unit data comparison between training and testing phases
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Figure 9.6: Sequence of hidden states inferred during the testing phase thanks to the g function

was performed Such events are highlighted with vertical dotted black lines. In the testing

data, the BIC score per unit data was more stable and only one novel concept was found.

This implies that the learned model in the training phase was not representative enough to

explain all the testing phase.

Regarding the model inference, Fig. 9.6 includes the online clustering and its interpreta-

tion given by the Viterbi algorithm and the g(i) function. Observe that, if the Viterbi path

is compared to the real hidden state sequence plotted in Fig. 9.2, the prediction fits fairly

the ground truth with some outliers at the state transitions. In this sense, it is observed that

the model can be useful to learn and discover the intrinsic states and features drifts in data.

Recall that this is a methodology for unsupervised data, and therefore, the models must

discover patterns in data. Proof of this is the difference between the true number of hidden

states (five from the data description) and the estimated number of hidden states (seven in

this case); but, in spite of that, the model could provide data insights which were helpful to

understand and analyze the time series.
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9.2.2 Real data

9.2.2.1 Ball bearing degradation

Ball bearings are relevant mechanical components inside industrial and non-industrial ma-

chines. It is known that due to the application of mechanical loads such as high forces or

temperatures, ball bearings suffer degradation and breakage. In industrial applications, the

damage of one ball bearing can compromise the productivity of manufacturing lines and

induce losses in time and money Larrañaga et al. [2018].

For this application, the dataset described in Section 4.3.1 is used. As in Chapter 6, har-

monics are used for the analysis, however, in this chapter, it is online estimated the relevancy

of each feature for each time instance and not in a global offline manner. Nevertheless, at

early stages of the ball bearing life, harmonics and fundamental frequencies can be seen as

noise and be irrelevant for the ball bearing health estimation. In this study, the aim is to

determine dynamically the features that are relevant and those which are not.

For this application, again, the focus will be the ball bearing B3, since it fails in S1 and

S3. The signals S1 and S2 will be used to train the online model, which will be used to

analyze the signal S3. In the training signals, ball bearing B3 failed in its inner race. In the

testing signal, ball bearing B3 failed due to its outer race.

The fundamental frequencies and three harmonics as variables are used, hence sixteen

features are used. The learned baseline model from the learning phase, will be used in the

testing phase to detect feature drifts. In the case of a novel concept due to an unknown

concept or feature drift, it will be added to the model.

9.2.2.2 Ball bearings results

Table 9.2 shows the obtained relevancies during the training phase. The variables with index

1, refer to the fundamental frequency; index i refers to the i − 1 harmonic i > 1. the

most relevant result is that at the latest discovered trend, all the frequencies are relevant

as expected. Nonetheless, for certain discovered trends, specially Q = 2, it is observed that

some variables do not overpass the threshold ρim > ρ as FTF1 and BSF1, BPFO3, BSF3,

BPFI4 and BSF4. However, at the end of the process, the relevancies tended to increase

with some exceptions.

In the online testing phase, the recorded evolution of relevancies is observed in Fig 9.7. For

most of the ball bearing life, all the features behaved as noise. Nonetheless, some hours before

the ball bearing breakage (t = 1000h), all the features drifted to a relevant level, with some

exception, where noisy drifts were observed, namely in BSF1, BPFO2, BSF3, FTF2 and

BPFI3 the relevacies oscillated between different levels. In spite of that noisy end behavior,

the model was capable of detecting the moment where the model was running to failure. It is

noticeable that some relevancies were not used (see for example, BSF1 relevancies at Q = 2).

This may indicate that in the training phase, more concepts were observed during the ball

bearing breaking process, and such were not observed in the testing phase. Additionally, it

is remarkable that in the testing phase, no novel trends were detected and the model never
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Q\ m BPFO1 BPFI1 BSF1 FTF1 BPFO2 BPFI2 BSF2 FTF2

1 0.2 0.04 0.01 0.02 0.02 0.21 0.24 0.03
2 0.99 0.97 0.44 0.86 1.0 1.0 1.0 1.0
3 1.0 0.94 1.0 0.66 0.99 1.0 1.0 1.0
4 1.0 1.0 0.85 0.98 0.85 1.0 1.0 0.76
5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97

Q\ m BPFO3 BPFI3 BSF3 FTF3 BPFO4 BPFI4 BSF4 FTF4

1 0.21 0.24 0.16 0.05 0.03 0.15 0.26 0.03
2 0.84 0.91 0.26 1.0 1.0 0.86 0.81 1.0
3 1.0 1.0 0.94 0.97 1.0 1.0 0.85 0.01
4 1.0 0.89 0.67 1.0 1.0 0.97 1.0 0.99
5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 9.2: Feature relevancies ρim from the proposed model for the different frequency magnitudes
found in the B3 learning and testing phases

had to self update. In this sense, the learned model could be representative enough for the

testing data.
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Figure 9.7: Feature drifts discovered during the testing phase by the our model LFS-AsHMM

Fig 9.8 shows the relevancy results for the other two methodologies. In (a), the FDM-

MCFS methodology plots a periodic behavior in all feature relevancies. However, none of

them reached an important level of relevancy for all the ball bearing life as it was observed
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(a) DFM-MCFS (b) FSMPC

Figure 9.8: Feature drifts discovered during the testing phase by (a) the DFM-MCFS and (b) FSMPC
models

with our model. Nonetheless, the low relevancies were also latent during the ball bearing

failure times, which is not desired since the methodology could not provide insights into the

ball bearing degradation. In (b), the FSMPC strategy shows a noisy behavior for all the ball

bearing life which is not helpful, since it did not provide any kind of feature insight or process

understanding.

Fig 9.9 exhibits the evolution of hidden states (Viterbi path with the g function) during

the testing phase. This sequence shows that the summed magnitudes of the ball bearing

were statistically constant during most of the ball bearing life. However, as in the case of

the feature relevancies, the magnitudes increase drastically in the ball bearing final hours,

indicating, as before, a worsening of the ball bearing health.
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Figure 9.9: Sequence of hidden states inferred by LFS-AsHMM during the testing phase of the ball
bearing

Finally, as stated in the introduction, the model is capable of learning context-specific

graphical models. These models can be used as an explanatory tool to understand and give

further data insights. Recall that the space of possible graphical models is determined by



172 CHAPTER 9. ONLINE FSS WITH AS-HMMS

FTF4

BPFO1

BPFO2

BSF2

FTF2

BPFI3

BPFO4

FTF3

BPFI1

BPFO1

BPFI2

BSF2

BSF1FTF2

FTF1

FTF4

BPFO2

BPFO3

BSF3

FTF3

BPFO4 BPFI4
BPFI3

BSF4

BPFO4 : AR1

(a) (b)

Figure 9.10: A couple of context-specific Bayesian networks learned by LFS-AsHMM from the degra-
dation of the ball bearing

the features which fulfill the condition ρim > ρ. Fig. 9.10 (a), is a graph when the ball

bearing was not in an advanced degradation state in the training phase. Observe that the

BPFO and the FTF harmonic and fundamental frequencies were related, or in other words,

the behavior of the ball bearing outer ring and jail were dynamically dependent. Also, note

that the BSF first harmonic depended on harmonics of the BPFI, BPFO and FTF, which

indicated that the ball bearing rollers depended on the behavior of the other ball bearing

components. The graph of Fig. 9.10 (b) corresponds with a state where the ball bearing was

heavily damaged in the training phase. In this scenario, several dependencies between the

ball bearing frequencies are observed, an evidence that the dynamical system was completely

coupled and all the ball bearing parts were relevant for the degradation process. Additionally,

an autoregressive behavior in the third harmonic of the BPFO (BPFO4 : AR1) is observed,

which means that also the past values of the ball bearing were relevant to explain the current

level of degradation.

In short, the proposed methodology does not only detect relevant features drifts but also

provides data insights. In addition, it is indeed capable of detecting the number of hidden

states or concepts of a process, and it is capable of self updating in testing data if required.

9.3 Conclusions

In this chapter, a new methodology to detect and learn feature drifts in continuous un-

supervised data was proposed. The proposed methodology used a new embedded feature

selection algorithm based on As-HMMs. The model has the property of “local feature rele-

vancy”, which enables it to change the relevancy level of the features depending on the hidden

states/concepts discovered in data. The methodology allows the model to self determine its

number of hidden states as the data arrives in a data stream. Once a model is learned, it can

be used in testing data to detect concept drifts using the Viterbi algorithm. In each concept

a set of relevant features is selected and a context-specific Bayesian network is used to explain

the data. These context-specific Bayesian networks with the localized feature relevancies, can
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provide deeper data understanding. Finally, a hidden state labelling function was proposed

to determine the magnitude of changes in concepts or hidden states taking into account the

relevant and irrelevant features of each context.

The model was validated using synthetic and real data to degradation of ball bearings. It

was compared to other techniques of the state of the art which determine dynamically the rel-

evance of features in unsupervised problems. It was observed that the proposed methodology

obtained the most consistent results, and not only could provide feature relevancies dynami-

cally but also useful data insights. In spite of the previous results, the proposed model is still

not embedded into the CMAI module. As future work, it is pertinent to determine the time

cost of the LFS-AsHMM in order to ensure data integrity and feasible processing times.
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Chapter 10
Kernel Density estimation on

As-HMMs

In real data, hypotheses such as homoscedasticity (constant variance) or independence be-

tween input variables do not hold, and traditional models for continuous data, such as AR

or moving average (MA) linear regression (or combinations of these), are often unsuitable.

As seen in this thesis, dynamic probabilistic graphical models such as HMMs can alleviate

such issues and be used to provide further data insights, compute likelihoods, perform data

segmentation or classification. However, traditional and the extended HMMs, are usually

based on the Gaussian distribution with linear functions in the mean which limits their mod-

eling capabilities to Gaussian data. To overcome this issue, MoG-HMMs have been proposed;

nonetheless, due to numerical issues as underflow/overflow when computing inverses of covari-

ance matrices, such models have to assume diagonal covariance matrices, i.e., independence

among the model features. More recently, as exposed in Chapter 4, As-HMMs have been

proposed to model variable dependencies in a more stable computational manner and using

fewer parameters than in the case of MoG-HMMs, via the use of context-specific Bayesian

networks. However, such models also assume Gaussian data with linear functions in the

mean.

In this chapter, we propose a new kind of As-HMMs, where non-Gaussian or non linear

in mean dynamic data is modeled using KDE estimations. By adding context-specific de-

pendencies between variables to the model. These new models are referred to kernel density

estimation in asymmetric hidden Markov models or KDE-AsHMMs.

The new model is validated with synthetic and real data from ambient sound and from

CNC drilling machines. The model is compared in terms of classification accuracy and

log-likelihood to previous HMM-based models. Additionally, theoretical bounds on computa-

tional time complexity of the learning and inference (log-likelihood computation) algorithms

are provided.

In short, this chapter provides the following contributions to the state of the art related

to HMMs:

175
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1. A new kind of asymmetric HMMs is introduced to model non-linear data based on

KDEs and context-specific Bayesian networks.

2. All the parameters are interpretable and can provide further data insights.

3. A learning algorithm, based on the EM and structural EM algorithms, is given to learn

KDE-AsHMMs.

4. Complexity bounds on computation time are derived for further model understanding.

The chapter is organized as follows. Section 10.1 presents KDE-AsHMMs, their learning

algorithm and theoretical time complexity upper bounds. Section 10.2 describes the valida-

tion and relevant comparisons with synthetic and real data. Finally, Section 10.3 rounds the

article off with the conclusions and considerations based on the model validation findings.

10.1 Model proposal

10.1.1 Definition
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Figure 10.1: Example of a KDE-AsHMM pictured as a dynamic Bayesian networks

The core idea behind this new model is to describe and identify non-Gaussian and non-

stationary dynamic processes by combining HMMs and KDEs. The proposed model, denoted

KDE-AsHMM, can be described as a dynamic Bayesian networks, see Figure 10.1. In the

figure, the added latent variables W t follow a categorical distribution, which depends on the

latent variables Qt. The latent variable W t is used to determine the most representative
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instances to be used in the kernel density estimation for each hidden state. The observable

variables Xt, can depend statistically on each other through a directed acyclic graph struc-

ture, as well autoregressive dependences on their most recent prior values, up to a maximum

order P∗. This value p∗ can be chosen by the experimenter or calculated using the Yule-

Walker equations, see Box and Jenkins [1976]. Nevertheless, these relationships may change

depending on the hidden state as pictured in Figure 10.1: when Qt = 1, Xt
2 depends on

Xt
1, but when Qt = 2, the relationship changes and Xt

1 instead depends on Xt−1
1 , whereas

Xt
2 depends on Xt−1

2 and Xt−2
2 . In this manner, the complexity of the emission probability

distributions can increase as the data requires.

The different conditional dependencies provided by Figure 10.1 are defined as follows.

Assume that N hidden states, M variables are being modeled and the length of the training

data is L+ 1 and the length of the test data is T + 1. Regarding the transition probabilities:

P (Qt = qt|Qt−1 = qt−1;λ) = aqt−1qt , with
N∑
j=1

aqt−1j = 1. (10.1)

With respect to the latent variable W t = {W t
p∗ ,W

t
p∗+1, ...,W

t
L}, which determines the rele-

vant training samples for each hidden state, its conditional probabilities are defined as:

P (W t|Qt;λ) =
L∏

l=p∗

(ωQt,l)
W t
l ,

L∑
l=p∗

ωQtl = 1,
L∑

l=p∗

W t
l = 1, W t

l ∈ {0, 1}. (10.2)

Assume that the training data is y0:L, during the training phase T = L, and, as will

be argued below, it is necessary that W l
l = 0 for l = 0, ..., L; in this manner, issues with

degenerate likelihoods and infinitely narrow kernels are avoided, see Piccardi and Perez [2007].

Let Set(Xt) := {Xt
1, ..., X

t
M} the set of features of the model. We denote the κqtm parents

of Xt
m at qt ∈ R(Qt) as {V t

qtmk}
κqtm
k=1 ⊂ Set(Xt). With this notation, the conditional densities

of the observable variables in this article are defined as:

fXt|W t,Qt(X
t|W t, Qt;λ) =

M∏
m=1

fXt
m|W t,Qt,U t

Qt,m
(Xt

m|W t, Qt,U t
Qt,m;λ), (10.3)

where each U t
Qtm = (V t

Qtm1, ..., V
t
imκQtm

, Xt−1
m , ..., X

t−pQtm
m ) is a context-specific random vec-

tor, which contains the κQtm parents and pQtm AR dependencies of the variables Xt
m. In

order to have an interpretable and well defined model, for every qt ∈ R(Qt), the set of tu-

ples
⋃M
m=1U

t
qtm ×{Xm}, must describe the edges of an directed acyclic graph (DAG), i.e., a

context-specific Bayesian networks1.

To analytically describe, the dependencies in the context-specific Bayesian networks, de-

fine vlQtm as the instantiation of the random vector U t
Qt,m by y0:L, and define MQt,m as a

context-specific matrix of size (κQtm + pQtm)× (κQtm + pQtm) which determines the weights

1Here, × represents the Cartesian product
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of the kernel dependencies, and set:

µtl,Qt,m := ylm +MQt,m(U t
Qt,m − v

l
Qt,m)>. (10.4)

We rewrite each factor in Eq. (10.3) in terms of a kernel function K, bandwidth hQt,m and

centers µtl,Qt,m:

fXt
m|W t,Qt,U t

Qt,m
(Xt

m|W t, Qt,U t
Qt,m;λ) :=

L∏
l=p∗

(
1

hQt,m
K

(
Xt
m − µtl,Qt,m
hQt,m

))W t
l

. (10.5)

The previous equations omit the dependencies on y0:L and Xt−p∗:t−1 to simplify notation.

Note additionally that the bandwidths are allowed to vary for each variable for each hidden

state. In this manner, the deviations on parents and AR values can be used to correct the

kernel as the data requires. Notice that every component of the KDE for each hidden state

can be obtained using Eq. (10.2)–(10.4) as follows:

fXt,W t
l =1|Qt=i(X

t,W t
l = 1|Qt = i;λ) = ωil

M∏
m=1

1

him
K

(
Xt
m − µtlim
him

)
. (10.6)

This is useful to determine the emission probabilities for this model:

bi(X
t) =

∑
R(W t)

fXt,W t|Qt=i(X
t,W t|Qt = i;λ)

=
T∑

l=p∗

fXt,W t
l =1|Qt=i(X

t,W t
l = 1|Qt = i;λ)

=

T∑
l=p∗

ωil

M∏
m=1

1

him
K

(
Xt
m − µtlim
him

)
.

(10.7)

The full information would be:

fXp∗:T ,Qp∗:T ,W p∗:T (xp
∗:T , qp

∗:T ,wp∗:T ;λ) =

πqp∗
T−1∏
t=p∗

aqt,qt+1

T∏
t=p∗

L∏
l=p∗

(
ωqt,l

M∏
m=1

1

hqt,m
K

(
Xt
m − µtl,qt,m
hqt,m

))wtl (10.8)

In log form

ln(f) = ln(πqp∗ ) +
T−1∑
t=p∗

ln(aqt,qt+1)+

T∑
t=p∗

T∑
l=p∗

wtl

(
ln(ωqt,l) +

M∑
m=1

ln

(
1

hqt,m
K

(
Xt
m − µtl,qt,m
hqt,m

))) (10.9)
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As summary, the proposed model λ consists of the set of parameters λ := {π,A,h :=

{him}N,Mi=1,m=1,ω := {ωil}N,Li=1,l=p∗ ,M := {Mim}N,Mi=1,m=1}, where Mim represents the κim de-

pendencies of Xm from other variables and its pim ≤ p∗ AR dependencies. From the indexing,

the dependencies can vary with Xm and the hidden state i ∈ R(Qt). Also, the dependencies

must follow a Bayesian network, and therefore DAG structures must be employed.

10.1.2 Learning algorithm

For this model, the EM algorithm will be applied to learn the models parameters, assume

that a model λ(s) has been computed or provided. The auxiliary function for this model is:

Q(λ|λ(s)) =

EP (Qp∗:T ,W p∗:T |X0:T ;λ(s))[ln fXp∗:T ,Qp∗:T ,W p∗:T (xp
∗:T ,Qp∗:T ,W p∗:T ;λ)]

(10.10)

Recall that for the training phase x0:T = y0:L and W l
l = 0, and thence Eq. (10.10) can be

expressed analytically as:

Q(λ|λ(s)) =

N∑
i=1

γ0(i) ln(πi) +

T−1∑
t=p∗

N∑
i=1

N∑
j=1

ζt(i, j) ln(aij)+

T∑
t=p∗

T∑
l 6=t

N∑
i=1

ψtl (i)

(
ln(ωil) +

M∑
m=1

ln

(
1

him
K

(
xtm − µtlim

him

))) (10.11)

From the previous equation, the following latent variables appear:

γt(i) = P (Qt = i|x0:T ;λ(s))

ζt(i, j) = P (Qt = i, Qt+1 = j|x0:T ;λ(s))

ψtl (i) = P (Qt = i,W t
l = 1|x0:T ;λ(s))

(10.12)

In particular, ψtl (i) can be computed as follows:

ψtl (i) = P (W t
l = 1|Qt = i,x0:T ;λ(s))P (Qt = i|x0:T ;λ(s))

= P (W t
l = 1|Qt = i,xt;λ(s))γt(i)

=
P (W t

l = 1,xt|Qt = i;λ(s))∑T
k 6=t P (W t

k = 1,xt|Qt = i;λ(s))
γt(i)

=
ωil
∏M
m=1K

(
xtm−µtlim
him

)
∑T

k 6=t ωik
∏M
m=1K

(
xtm−µtkim

him

)γt(i).
(10.13)

On the other hand, γt(i) and ζt(i, j) can be computed using the well known forward-backward

algorithm. Let us assume that we have a Gaussian kernel:

K(x) =
1√
2π
e−

x2

2 (10.14)
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Set utiml := (utim − vlim) and xtml := (xtm − ylm). For the M step, the updating formulas

for the parameters Mim are deduced as:

∂Q(λ|λ(s))

∂Mim
=

T∑
t=p∗

T∑
l 6=t

ψtl (i)
∂

∂Mim

(
ln

(
K

(
xtm − µtlim

him

)))
= 0 (10.15)

T∑
t=p∗

T∑
l 6=t

ψtl (i)
∂

∂Mim

(
−
(
xtml −Mim(utiml)

>)2
2h2

im

)
= 0 (10.16)

T∑
t=p∗

T∑
l 6=t

ψtl (i)

(
(utiml)

>
(

(xtml −Mim(utiml)
>
)>)

= 0 (10.17)

 T∑
t=p∗

T∑
l 6=t

ψtl (i)(u
t
iml)

>utiml

M>
im =

T∑
t=p∗

T∑
l 6=t

ψtl (i)(u
t
iml)

>xtml (10.18)

(M>
im)(s+1) =

 T∑
t=p∗

T∑
l 6=t

ψtl (i)(u
t
iml)

>utiml

−1 T∑
t=p∗

T∑
l 6=t

ψtl (i)(u
t
iml)

>xtml

 (10.19)

In practice, the linear system in Eq. (10.18) is solved without computing inverse matrices,

in this manner, computational problems such as numerical underflow/overflow are avoided.

To see that the previous update formula corresponds to a local-maximum, note that the

second derivative of Eq. (10.11) with respect to Mim is:

∂2Q(λ|λ(s))

∂M2
im

= −

 T∑
t=p∗

T∑
l 6=t

ψtl (i)(u
t
iml)

>utiml

 (10.20)

Which is a weighed sum of covariance matrices, which, due to the negative sign, results in a

negative-semidefinite matrix, and therefore a local-maximum. If µ̂tlim = xlm+M
(s+1)
im (utiml)

>,

the updating formula for him is:

∂Q(λ|λ(s))

∂him
=

T∑
t=p∗

T∑
l 6=t

ψtl (i)
∂

∂him

(
ln

(
1

him
K

(
xtm − µ̂tlim

him

)))
= 0 (10.21)

T∑
t=p∗

T∑
l 6=t

ψtl (i)
∂

∂him

(
−
(
xtm − µ̂tlim

)2
2h2

im

− ln(him)

)
= 0 (10.22)

T∑
t=p∗

T∑
l 6=t

ψtl (i)

((
xtm − µ̂tlim

)2
h3
im

− 1

him

)
= 0 (10.23)

T∑
t=p∗

γt(i)
1

him
=

T∑
t=p∗

T∑
l 6=t

ψtl (i)

(
xtm − µ̂tlim

)2
h3
im

(10.24)
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h
(s+1)
im =

(∑T
t=p∗

∑T
l 6=t ψ

t
l (i)(x

t
m − µ̂tlim)2∑T

t=p∗ γ
t(i)

) 1
2

(10.25)

In the Eq. (10.24), we have used that γt(i) =
∑T

l 6=t ψ
t
l (i). To see whether the previous

parameter estimate corresponds to a local maximum, the second derivative is computed:

∂2Q(λ|λ(s))

∂h2
im

= −
T∑

t=p∗

T∑
l 6=t

ψtl (i)

h2
im

(
3
(
xtm − µ̂tlim

)2
h2
im

− 1

)
. (10.26)

In this case, the second derivative is not always negative or non positive. To ensure that

the second derivative is negative observe that:

−
T∑

t=p∗

T∑
l 6=t

ψtl (i)

h2
im

(
3
(
xtm − µ̂tlim

)2
h2
im

− 1

)
< 0 (10.27)

T∑
t=p∗

T∑
l 6=t

ψtl (i)

h2
im

<
T∑

t=p∗

T∑
l 6=t

ψtl (i)

(
3
(
xtm − µ̂tlim

)2
h4
im

)
(10.28)

h2
im <

T∑
t=p∗

T∑
l 6=t

ψtl (i)
(

3
(
xtm − µ̂tlim

)2)
(10.29)

him <

3

T∑
t=p∗

T∑
l 6=t

ψtl (i)
(
xtm − µ̂tlim

)2 1
2

(10.30)

In Eq. (10.30) it is observed that him corresponds to a local-maximum, if and only if it

is lower than the root of the weighted mean of the squares of the data deviations from the

kernel centers (scaled by
√

3). It is relevant to mention that the weights are given by the

aposterioris ψtl (i). Finally, using the constraint that
∑T

l 6=t ωil = 1 and adding a Lagrange

multiplier νi, the update formula for ωil is:

∂Q(λ|λ′)
∂ωil

=
∂

∂ωil

 T∑
t=p∗

ψtl (i) ln(ωil) + νi(1−
T∑
l 6=t

ωil)

 = 0

T∑
t=p∗

ψtl (i)
1

ωil
− νi = 0⇒ νi =

T∑
t=p∗

γt(i)

T∑
t=p∗

ψtl (i)
1

ωil
=

T∑
t=p∗

γt(i)

ω
(s+1)
il =

∑T
t=p∗ ψ

t
l (i)∑T

t=p∗ γ
t(i)

(10.31)

To prove that this solution correspond to a local-maximum, observe that the second derivative
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is less or equal to zero:

∂2Q(λ|λ(s))

∂ω2
il

= −
T∑

t=p∗

ψtl (i)
1

ω2
il

≤ 0. (10.32)

The previous results can be summarized in the following lemma:

Lemma 10.1. Let W l
l = 0 for l = 0, ..., L, and assume that during the (s) iteration of the EM

algorithm, him <
(

3
∑T

t=p∗
∑T

l 6=t ψ
t
l (i)

(
xtm − µ̂tlim

)2) 1
2

holds. The previous conditions are

necessary and sufficient for the update equations in Eq. (10.19), Eq. (10.25) and Eq. (10.31)

to be local-maximum parameters of Eq. (10.11), during an EM iteration.

Since the probabilistic conditions for the hidden variable Qt are not modified from the

traditional HMM, the update formulas for parameters A and π are the same as those found

in standard traditional articles such as Rabiner [1990].

10.1.3 Learning the context-specific Bayesian networks

For the SEM algorithm, we are required to optimize the following criterion

Q(B,λ|B(s),λ(s)) =

EP(Qp∗:T ,WPp∗:T |X0:T ;B(s),λ(s))[ln fXp∗:T ,Qp∗:T ,W p∗:T (xp
∗:T ,Qp∗:T ,wp∗:T ;B,λ)]

− 0.5#(B) ln(T ).

(10.33)

In this manner complex structures are penalized to prevent overfitting issues and and

overly dense Bayesian networks. Due to the linear nature of Eq. (10.11), only the score in

Eq. (10.34) is affected by structure modification (for a given state Qt = i and value for Xm,

with the other terms remaining unaffected.

scoreim =

T∑
t=p∗

T∑
l 6=t

ψtl (i) ln

(
K

(
xtm − µtlim

him

))
− 1

2
(κim + pim + T + 1− p∗) ln(T ). (10.34)

For the SEM algorithm, during the search for new structures, the score in Eq. (10.34) is then

used with the greedy-forward algorithm described in Section 5.6. However, we emphasize

that any other heuristic or meta-heuristic can used for the model search, such as the tabu

search in Bueno et al. [2017].

10.1.4 Theoretical computation time complexity

It is well known that the methods based on kernel density estimation can be time demanding.

This section therefore provides upper-bounds from the running time of each learning algo-

rithm in terms of big O notation. For these bounds, two scenarios are considered: One where

the Bayesian Networks are dense such that no additional arc can be put into the networks,



10.1. MODEL PROPOSAL 183

and other where all the context-specific Bayesian networks are näıve (i.e., they contain zero

arcs). We refer to the latter bound as the light computational upper bound.

Learning algorithm step Upper-bound Light upper-bound

1. Compute bi(x
t) O(T 2NMS) O(NT 2M)

2. Estimate γt(i), ψtl (i) O(TN(N2 + T )) O(TN(N2 + T ))
3. Update A and π O(NT ) O(NT )
4. Update ω O(NT 2) O(NT 2)
5. Update M O(NS2(T 2 +MS)) O(0)
6. Update h O(NMT 2) O(NMT 2)

Table 10.1: Computational upper bounds. In the upper-bound column, it is assumed that the context-
specific Bayesian networks are dense. In the light upper-bound column, it is assumed that the context-
specific Bayesian networks are näıve-Bayesian networks. S = p∗ +M

Table 10.1 reports the bounds, where for the sake of space, S := p∗+M . The bounds are

arranged in the same order as the respective steps in the learning algorithm. It is noticeable

that the presence of Bayesian networks in the model only affects the computation of emission

probabilities and the updates M . Nevertheless, the computational effort needed to update

M can be high in the case of dense networks, since it is quadratic in the training input length

and fourth-power in the number of variables. The fourth-power dependency in the number

of variables comes from the solution of linear systems and the loop through all the variables

to solve their corresponding system. In this sense, it is desirable to keep the number of

dependencies as low as possible; otherwise, the computational time required to train a model

can be prohibitive.

The log-likelihood of test data can be evaluated using steps 1 and 2 from Table 10.1.

Step 2 implicitly uses the forward-backward algorithm for the computation of γt(i), which is

traditionally used to compute log-likelihoods (specifically, the forward part).

10.1.5 Model initialization

As seen in the previous section, the more complex the context-specific Bayesian networks

are, the greater the computational complexity of the learning and inference algorithms.

At the start of training it is therefore assumed that all the Bayesian networks are näıve

Bayesian networks, i.e., κim = 0 and pim = 0 for all variables and hidden states. The pa-

rameters {him}N,Mi=1,m=1 are set following the rule of thumb provided by Silverman [1986]:

him = (4σ̂5
m/(3T ))

1
5 , i = 1, ..., N , where σ̂m is the sample standard deviation of variable Xm.

Each parameter {ωil}N,Ti=1,l=p∗ is initialized using random draws from a uniform distribution on

[0.4, 0.6], followed by normalization to satisfy the constraint
∑T

l=p∗ ωil = 1. The π parameter

is initially assumed to be a uniform categorical distribution, whereas the parameter A is set

as a matrix whose diagonal is filled with value arbitrary far from 1 (in our case 999), and the

remaining values are 1/N . The matrix is then normalized to be an actual transition matrix.

This matrix can clearly be modified as needed in case of left-to-right transition matrices or

uniform ones. The initialization described here is used to condition the model to look for



184 CHAPTER 10. KERNEL DENSITY ESTIMATION ON AS-HMMS

stable patterns.

10.2 Experimental setup

For the experiments, synthetic data and real stochastic data from ambient audio and CNC

machines was used to demonstrate the abilities of the proposed model. Our model was

compared against a traditional HMM, where all the variables are assumed to be independent

Gaussians. Since the proposed model can be seen as a KDE extension of the AR-AsLG-HMM

model in Puerto-Santana et al. [2022b], that model was also included in the comparisons.

In Puerto-Santana et al. [2022b], AR-AsLG-HMM showed similar or better results when

compared with MoG-HMMs, even when synthetic MoG data was considered. Therefore,

MoG-HMMs was not included in the experiments.

If structural optimization is not performed, our KDE-AsHMM model can be seen as a

multivariate version of the Piccardi and Perez [2007] model when all variables are indepen-

dent, therefore this model, in the case of assuming independent multivariate data, was also

compared. We denote this model KDE-HMM. Finally, ablations of the proposed model were

also considered for the synthetic data: KDE-BNHMM is the model where Bayesian networks

were built with no AR structural optimization, while KDE-ARHMM is the model where only

AR structural optimization was performed. Also, a model called KDE-AsHMM* was com-

pared. This model was provided with the ground truth about AR and non-AR dependency

structure, and thus represents performance that might not be attainable in practice when the

structure is unknown. The differences between the models are stated in Table 10.2.

Model Kernel-based AR Non-AR Ground-truth

HMM - - - -
AR-AsLG-HMM - X X -
KDE-HMM X - - -
KDE-AsHMM X X X -
KDE-ARHMM X X - -
KDE-BNHMM X - X -
KDE-AsHMM* X X X X

Table 10.2: Differences in the models used for validation

10.2.1 Synthetic data

10.2.1.1 Data description

For the synthetic data, seven variables were used. It was assumed that the data jumps between

three hidden states, and each hidden state having its own context-specific Bayesian network

representation as pictured in Figure 10.2. One of the states was assumed to be associated with

a näıve Bayes model, hence its graph is not pictured. The names of the variables go from 0 to

6; however, X5 and X6 were assumed to be Gaussian noise which turned them independent
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of the hidden state variable Qt, and therefore, they were not related to any variable for any

hidden state. We use m : ARr to denote an arbitrary variable in the network:, is the r AR

order of the variable Xt
m or Xt−r

m . It was assumed that each variable Xm had the following

0

1

1 : AR1

2

3 : AR1

3

4

0 : AR1

0

1
1 : AR1

1 : AR2

2

2 : AR1

3 : AR1

3
3 : AR2

4

4 : AR1

(a) (b)

Figure 10.2: The context specific graphs corresponding to the synthetic data. (a) is a simpler version
of the Bayesian network pictured in (b)

distribution:

Xt
m|Qt = i ∼ N

(
κim∑
k=1

cimk((V
t
imk)

2 − eim) +

pim∑
r=1

dimrX
t−r
m , σ2

im

)
(10.35)

The coefficients {{cimk}κimk=1, {dimr}
pim
r=1, eim, σim}

N,M
i=1,m=1 are provided in the complementary

material. The data was generated from a pre-defined sequence of hidden states which is

pictured in Figure 10.3. For the training process, in order to observe how T ,the amount of

training data, affects model performance, the previous sequences was expanded as needed to

obtain datasets of length T ∈ {350, 700, 1050, 1400, 1750, 2100, 2450}. For each T , a single

time series of that length was sampled and used as training data. Later, one hundred samples

with Ttest = 1400 were generated and used as test dataset. To compare the models, the mean

log-likelihood per unit datum and its standard deviation on the testing data were reported.

10.2.1.2 Results

Table 10.3 reports the mean and standard deviation of the log-likelihood per unit datum on

the testing data. Note that, when the length of the training data was small (T = 350), lin-

ear Gaussian models as the AR-AsLG-HMM and HMM could outperform the log-likelihoods

reached by the corresponding KDE models such as KDE-AsHMM and KDE-HMM. Nonethe-

less, when the length of the training data sequence increased to T = 2450, it was observed

that all the kernel models obtained a better mean log-likelihood per unit data than the linear

Gaussian models, with the exception of the KDE-HMM. This shows that the introduction of

context-specific Bayesian networks into the kernel models is beneficial to improve how their

fitness scales to longer sequences. Regarding the standard deviation of such log-likelihoods
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Figure 10.3: Sequence of hidden states used to generate training and testing data. The length of this
sequence is expanded proportionally as needed for the training data, maintaining the pattern

per unit data, it was observed that AR-AsLG-HMM and HMM obtained the lowest values,

indicating that their fitness values were more stable than those obtained by kernel-based

HMMs.

T = 350 T = 2450

Model µ σ s µ σ s

HMM -10.52 0.16 0.24 -10.36 0.10 2.07
AR-AsLG-HMM -9.05 0.11 3.64 -8.82 0.09 9.98
KDE-HMM -12.07 0.70 1.81 -9.79 0.11 367.15
KDE-AsHMM -9.68 0.24 33.60 -8.11 0.24 3351.38
KDE-ARHMM -9.74 0.40 17.69 -8.17 0.25 2229.66
KDE-BNHMM -9.95 0.47 62.53 -8.17 0.26 5160.31
KDE-AsHMM* -9.52 0.39 7.46 -8.13 0.31 827.93

Table 10.3: Mean log-likelihood per unit datum and its standard deviation on the testing data. T
refers to the size of the length of the training data. Onlyresults for the shortest and longest training
sequences. “s” is for seconds.

With respect to the training times, it can be seen that the Gaussian parametric mod-

els were faster than their kernel counterparts. However, the simplest KDE-HMM even in

the large datasets, was not excessively high-time demanding. Their asymmetric counter-

parts, KDE-AsHMMs, KDE-BNHMMs and KDE-ARHMMs required up to 60 times more

computation time. In the case of KDE-AsHMM*, as the network is already given, the struc-

tural optimization was omitted and the training times were up to 4 times greater than the

KDE-HMM. Observe that KDE-AsHMM* obtained results close to those obtained by KDE-

AsHMM with less computational effort. In this sense, using expert knowledge to build pos-

sible dependency graphs is recommended, such that competitive likelihoods can be attained

with less computational cost.

To take into account the effects of variance in the likelihoods and to provide a statistical
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(a) Nemenyi test T = 350 (b) Nemenyi test T = 2450

Figure 10.4: Nemenyi ranking test when (a) the training data length is T = 350, and (b) the training
data length is T = 2450. Rankings closer to 0 imply a better fit to testing data

analysis of the model ranking, the Friedman and the post-hoc Nemenyi hypothesis test was

used, see Demšar [2006]. The Friedman test checks the hypothesis of global no difference in

rankings. If the hypothesis is rejected the post-hoc Nemenyi test is applied. For all pairs

of models, the method subsequently tests the hypothesis of no difference in mean ranking in

terms of the mean log-likelihood per datum. A critical difference (CD) value is computed to

indicate the minimum distance in the rank needed to declare evidence of statistical difference.

The Friedman test when T = 350 provided a test statistics of 712.53 which corresponds

to a virtual p-value of 0.0. Therefore, the null hypothesis of no difference in ranking between

the methods was rejected. When T = 2450, the test statistics was 663.63 which again gave

a p-value of 0.0. Since null hypothesis was rejected in both cases, we proceeded with the

Nemenyi post-hoc tests.

The results of the Nemenyi tests are provided in Figure 10.4. In (a), the test was applied

when the training data length was T = 350, and it was observed that the top ranked models

were AR-AsLG-HMM and KDE-AsHMM*, and the worst were KDE-HMM and HMM. Note

that there is no statistical evidence to claim that KDE-AsHMM and KDE-ARHMM were

different in the ranking position. Nevertheless, in (b), when T = 2450, the best ranked models

were KDE-AsHMM and KDE-AsHMM*, and the worst were again HMM and KDE-HMM.

However, there was no statistical evidence to claim that KDE-AsHMM and KDE-AsHMM*

differed in their ranking. On the other hand, the HMM and KDE-HMM models presented

clear evidence of differences in their ranking position.

Figure 10.5 expands on the previous results in mean and standard deviation of log-

likelihood per unit datum. In this case, the results when the training data length T ∈
{350, 700, 1050, 1400, 1750, 2100, 2450} are reported in plot (a) and (b), where (a) shows the

evolution of the mean log-likelihood per unit datum and (b) pictures its standard deviation.

In (a), it was observed that AR-AsLG-HMM was capable of obtaining the best results in

terms of likelihood when the training data was small. However, it is also evident from the

plot how the performance of the non-parametric kernel models kept improving as more train-

ing data became available, unlike the parametric models (HMM and AR-AsLG-HMM). It is

worthy to note that, regarding kernel models, which of KDE-AsHMM* and KDE-AsHMM

that obtained the best log-likelihood differed for different T values. Regarding (b), Gaussian

parametric models, in spite of not getting benefits in likelihood with increases in training

data, they did have lower standard deviation, but the variance reductions were not substan-
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Figure 10.5: In (a) the mean log-likelihoods per datum when the size T of training data changes and
in (b) the corresponding standard deviation

tial. On the other hand, KDE-HMM greatly reduced variance when T increased, but this

did not translate into relevant improvements in terms of log-likelihood, at least, enough to

outperform AR-AsLG-HMM. The proposed model KDE-AsHMM and its ablations, showed

slightly reduced variance with increasing T , but we do not have statistical evidence to claim

that this trend is statistically significant.

To summarize the results on synthetic data, the kernel models in the HMM framework

(with the exception of KDE-HMM) all were able to take advantage of the increase in the

training dataset size, and the addition of context-specific Bayesian networks improved model

performance, but longer training times and greater variance in fitness could be observed as

well.

10.2.2 Real data from environmental sound classification

10.2.2.1 Data description

For these experiments, the Environmental Sound Classification 50 2 dataset was used. The

dataset consists of environmental sounds of fifty different sources as cats, dogs, keyboards,

snoring, mouse click, etc. Each sound is measured at a sample rate of 16kHz during 5

seconds. From the raw audio files, 5 mel frequency spectrum coefficients (MFCC), see Davis

and Mermelstein [1980], were extracted. The time window had a range of 0.1 seconds or

1600 time instances and the window was sliced every 0.05 seconds or 800 time instances.

The dataset was divided into 5 folds, where each fold had eight recordings for each class.

Therefore, for the model validation, a 5-fold cross-validation was performed. In this use case,

we are concerned with identifying which model, among the ones considered, obtains the best

results in terms of accuracy. Therefore, for each fold, for each type model and for each class,

a model was learned. The prediction in testing phase was done by selecting the class of the

model which maximized the log-likelihood of the data. In the case of the KDE-AsHMM, to

2https://www.kaggle.com/datasets/mmoreaux/environmental-sound-classification-50
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prevent long computational times, the SEM algorithm was iterated only once and p∗ was

fixed as p∗ = 1.

10.2.2.2 Results

Model F1(%) F2(%) F3(%) F4(%) F5(%) mean(%)

HMM 22.3 18.3 18.8 26.3 18.5 20.8
AR-AsLG-HMM 28.0 29.3 29.8 30.3 31.8 29.8
KDE-HMM 13.5 15.8 17.0 18.5 13.3 15.6
KDE-AsHMM 32.3 35.3 36.3 41.8 32.3 35.6

Table 10.4: Fold and mean accuracy for the 50 ambient sounds classification problem

In this case only 4 models were compared due to the computational cost: they were HMM,

AR-AsLG-HMM, KDE-HMM and KDE-AsHMM. The ablations were omitted, since in the

synthetic data was observed that such models can have the equal or worse performance than

KDE-AsHMM. Since for each fold a model must be learned, and there are 50 classes, for the

classification task, 1000 models had to be learned in total. All models assumed that there are

three hidden states within the MFCC training data. A random classification of the testing

files, would obtain in mean an accuracy of 2%. Therefore, this can be seen as the lowest

tolerable or baseline accuracy for a classifier. In Table 10.4, the results of classification from

each model for each fold are provided. As it can be seen, for all the folds, the model with

the highest accuracy was the proposed model KDE-AsHMM, followed by AR-AsLG-HMM,

HMM and KDE-HMM. The latter had the lowest accuracy, which implies that the addition

of kernel corrections and information sharing via Bayesian networks can be helpful to have

more accuracy in this classification problem. Finally, in spite that the accuracies were not

over 50%, they were at least 5 times higher than the baseline accuracy and at most 20 times

higher, which indicates that the models perform fairly better than random prediction.

MFCC1

MFCC0

MFCC0 : AR1MFCC1 : AR1

MFCC2 : AR1

MFCC2

MFCC3 : AR1

MFCC3 MFCC4

MFCC4 : AR1

MFCC1

MFCC0

MFCC2MFCC0 : AR1

MFCC3

MFCC1 : AR1

MFCC4

MFCC2 : AR1 MFCC3 : AR1

MFCC4 : AR1

(a) (b)

Figure 10.6: Bayesian networks obtained from the pig class at fold 1 from KDE-AsHMM. (a) and (b)
represent two different hidden states

Recall that the proposed model introduces context-specific Bayesian networks into KDE-
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HMMs, which are used to provide kernel corrections, based on the information from AR values

and within variables dependencies. In Figure 10.6, two context-specific Bayesian networks

from the pig audio KDE-AsHMM are pictured. In (a), AR values were present to explain the

MFCC amplitudes and some dependencies as the 4th MFCC depending on the 0th MFCC.

In (b), it can be seen that most of the previous relationships hold but further relationships

appear, for example, the 2nd MFCC depends on the 4th and 3rd MFCC. These relationships

can provide further insights from the learned audio and the sound generation for the class

instance, in this case, a pig.

10.2.3 Real data from CNC mill tool

10.2.3.1 Data description

In this case, the CNC mill tool wear dataset3 dataset was used. A series of machining

experiments were run on 5.08cm×5.08cm×3.81cm wax blocks in a CNC milling machine in the

System-level Manufacturing and Automation Research Testbed (SMART) at the University of

Michigan. Machining data was collected from a CNC machine for variations of tool condition,

feed rate, and clamping pressure. Each experiment produced a finished wax part with an

“S” shape carved into the top face. The data contains samples where the extracted S shaped

part had a desired quality and others where such quality was not reached. The quality of a

part was determined by eye-quality-controls.
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Figure 10.7: Scatter plots for all pairs of selected features. In the X-Y actual position plane, the
S-shape extracted piece from the wax block is observed. In the remaining plots, non linear data is
observed as in the case of X-spindle actual position plane or Y-spindle plane

In Table 10.5 a brief description of the 18 experiments is provided. Since it is observed that

a worn tool can provide an accepted S-piece, this study will focus on determining the fitness of

3https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill
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the models to describe accepted pieces and non-accepted pieces. The dataset has 44 features

related to each axis of the part: its position, velocity, acceleration, current, voltage and

power; whereas from the spindle, its position, velocity, acceleration, current, voltage, power

and inertia were also recorded. However, during the experiments, it was seen from scatter

plots that the variables which showed the most complex data form came from the features

related to the position of the spindle and the piece, the remaining variables were constant

or more related to Gaussian behavior. Therefore, only 4 variables were used, namely: actual

X-axis position of the part, actual Y-axis position of the part, actual Z-axis position of the

part and actual position of the spindle. Figure 10.7 shows all the scatter plots regarding all

pairs of used variables. Note how, in the X-Y actual position plane, the S-shape figure is

observed.

Essay Tool condition Experiment ended? Accepted? Length

1 unworn yes yes 1055
2 unworn yes yes 1668
3 unworn yes yes 1521
4 unworn no no 532
5 unworn no no 462
6 worn yes no 1296
7 worn no no 565
8 worn yes no 605
9 worn yes no 740
10 worn yes no 1301
11 unworn yes yes 2314
12 unworn yes yes 2276
13 worn yes yes 2233
14 worn yes yes 2332
15 worn yes yes 1381
16 worn no no 602
17 unworn yes yes 2150
18 worn yes yes 2253

Table 10.5: Description for CNC mill tool wear dataset

Observe that the essays 1, 2, 3, 11, 12, 13, 14, 15, 17 and 18 were successful, from these

10 samples, 5 folds were created. Namely, Fold 1 uses essays 1 and 13, Fold 2 uses 2 and 14,

Fold 3 uses 3 and 15, Fold 4 uses 11 and 17, Fold 5 uses 12 and 18. From the samples in

each fold, a model of HMM, AR-AsLG-HMM, KDE-HMM and KDE-AsHMM was trained.

The instances of the other four folds were used for testing. In this manner, the fitness of the

models with respect to accepted pieces was tested. On the other hand, the essays 4, 5, 6, 7,

8, 9, 10 and 16 obtained non-accepted pieces. All these instances were evaluated for all the

folds and models, so that, fitness of non-accepted pieces can be compared. For fitness, the

log-likelihood per unit data was used and reported. In this case again p∗ = 1 and the SEM is

also iterate only once. In each dataset, every time instance is labeled with a processing state.

From those, only the states regarding the phases: ’Layer 1 Down’,’Layer 1 Up’, ’Layer 2 Up’,
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’Layer 2 Down’, ’Layer 3 Down’, ’Layer 3 Up’ and’Repositioning’. As there are 7 states, 7

hidden states are used in each model. This information is used to determine the initial values

of the ω parameters. Assume that a matching between hidden states and machining states is

created. Then, set ωil = 1 if the machining state of the l instance correspond to the i state,

otherwise, set ωill = 1e− 5. Next, normalize ω in order to obtain a valid parameter.

10.2.3.2 Results

Fold 1 Fold 2

Model Good Bad Quot. Good Bad Quot.
HMM -161.19 -314.15 1.95 -18.22 -23.2 1.27
AR-AsLG-HMM -213.01 -182.85 0.86 -361.99 -1544.22 4.27
KDE-HMM -220.58 -234.55 1.06 -85.12 -196.60 2.31
KDE-AsHMM -30.75 -22.29 0.72 -24.14 -47.92 1.99

Fold 3 Fold 4

Model Good Bad Quot. Good Bad Quot.
HMM -16.26 -21.17 1.3 -130.77 -255.94 1.96
AR-AsLG-HMM -8.83 -18.91 2.14 -142.98 -103.05 0.72
KDE-HMM -55.37 -128.6 2.32 -230.99 -259.58 1.12
KDE-AsHMM -21.44 -46.46 2.17 -40.61 -39.80 0.98

Fold 5 Mean

Model Good Bad Quot. Good Bad Quot.
HMM -24.71 -48.84 1.98 -70.23 -132.66 1.69
AR-AsLG-HMM -121.97 -87.76 0.72 -169.75 -387.36 1.74
KDE-HMM -81.82 -157.51 1.93 -134.78 -195.37 1.75
KDE-AsHMM -19.83 -21.05 1.06 -27.35 -35.50 1.38

Table 10.6: Log-likelihood per unit data for each model and fold. The columns corresponding to
Good,(bad) refer to the mean fitness of the models regarding accepted (non-accepted) pieces. The
columns corresponding to Quot., refer to the quotient Bad/Good. For the set of results in Mean, the
mean values across the folds are averaged

In Table 10.6 the obtained results regarding log-likelihood per unit data for each fold are

shown. For each fold three columns are displayed, namely: Good which refers to the mean

fitness obtained from other folds on accepted-pieces time series, Bad which refers to the mean

fitness obtained when evaluating the non-accepted-pieces time series, and Quot. that is the

result of dividing Bad by Good. This last column can be interpreted as a measure of the

quality of the model to differentiate between accepted pieces and non accepted pieces. Thus,

values above one, implies that the model is able to determine a non-acceptable piece. The

column Mean, has the mean results for all the columns for all the folds, and therefore its

Quot. column is not the quotient of its Bad and Good columns.

From the results, it is observed that our proposed model obtained the best likelihood

explaining and modeling processes that lead to accepted pieces in all the folds. Regarding

the quotient results, or the ability of the models to differentiate between processes that lead to
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accepted parts and unaccepted parts, it is observed that for most of the folds, all the models

are capable of differentiating between acceptable and non-acceptable pieces, unless in Fold 1

and Fold 5, where AR-AsLG-HMM obtained results lower than one. And in Fold 1 where

KDE-AsHMM obtained a quotient lower than one. In the mean column, it is observed that in

overall, the KDE-AsHMM obtained the best results in terms of fitness followed by HMM and

KDE-HMM. Regarding the quotients, the highest mean quotient was also obtained by KDE-

HMM and followed by AR-AsLG-HMM and HMM. This implies that our model was the best

to model the data. However, it was robust enough to understand data from non-accepted

pieces, but not enough to provide a quotient lower to one.

0 1 2 3 4

KDE-AsHMM
HMM AR-AsLG-HMM

KDE-HMM

CD

Figure 10.8: Nemenyi hypothesis testing for ranking positions regarding fitness over accepted-pieces
signals. The closer to zero, the better the fitness obtained by the model.

To test for statistically significant differences in ranking positions for the four models

the Friedman test was applied. The log-likelihoods per unit data obtained by each model

across all the folds and accepted-pieces testing signals were ranked in order to perform the

test. In this case the test statistic value is 151.29, which leads to a p-value of 0.0. Then, the

null-hypothesis can be rejected and the Nemenyi post-hoc test was applied. The results of

such test are pictured in Figure 10.8, where it is observed that KDE-AsHMM obtained in

mean the best ranking, followed by HMM, AR-AsLG-HMM and KDE-HMM. From the tests,

the only models that were not found be statistically different in their rankings were HMM

and AR-AsLG-HMM. Therefore, with this test, it can be claimed that the proposed model

KDE-AsHMM was the best in terms of fitness.

As summary, the KDE-AsHMM was the best to explain processes that lead to accepted

pieces, followed by HMM. Additionally, KDE-AsHMM was also useful to detect or determine

if a piece should not be accepted, since in mean a non-accepted piece would increase the

fitness the largest when compared with the fitness obtained for an accepted piece.

Finally, recall that our proposed model is capable of providing Bayesian networks that

can be used to understand and generate further data insights. In this case, the obtained

Bayesian networks for fold 3 are represented in Figure 10.9. In spite that there are 7 hidden

states, for the sake of space, only 2 of them are pictured. In (a) we find a Bayesian networks

where all the axes rely on their AR values, whereas the spindle axis is only related to the Z

axis. Also, the Z, X and Y axes are related. Meanwhile in (b), it is observed that in this

case the Spindle, X and Z axes depend on AR values. The spindle axis is not statistically

related to any other axis position. Nonetheless, the Z axis is statistically related to the X

and Y axes. This implies that depending on the hidden state some axes may be independent
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Figure 10.9: Bayesian networks obtained from the CNC mill tool wear dattaset

of others and AR values can be relevant to explain the current behavior. It is worthy to note

that (a) appeared in 3 out of the 7 hidden states. Therefore, it can be said that this behavior

is common and expected for different machining processes.

10.3 Conclusions

In this chapter a new kind of asymmetric HMMs has been proposed. The model introduces

kernel corrections via conditional dependencies represented using context-specific Bayesian

networks. Its learning procedure is based on the EM and SEM algorithms. Additionally,

theoretic computational bounds for the learning and inference algorithms in term of big O

notation are given, both in the case of dense networks and in the case of näıve Bayes.

Experiments with synthetic and real data and showed how the proposed models got bene-

fits from using more data in the training phase. It was observed that Gaussian linear Gaussian

models can outperform traditional kernel based models in the synthetic data; nonetheless,

the proposed model, thanks to the flexibility provided by the kernel corrections, was capable

of overpassing Gaussian linear models in terms of log-likelihood per unit data. It was also

noted that the computational time can increase drastically during the search of structures for

the model, using the kernel correction mechanism. As a consequence, it is advised to provide

a set of context-specific Bayesian networks for the models to reduce the computational cost

when possible.

For the real life data applications, data from ambient sounds for classification was used

to see the performance of the model in terms of accuracy. The baseline accuracy was 2%

(50 classes) and it was observed that the proposed model could achieve accuracies up to

45%, which outperformed other tested HMMs. It was also observed that for some cases,

Gaussian linear models could perform better than a kernel-based model. In this sense, it was

demonstrated again the relevancy of enabling information sharing among the features for

a model, (in this case, the information is shared using context-specific Bayesian networks).

Finally, data from a CNC machine was studied, where a spindle extracted a S-shape piece
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from a wax block. The proposed model obtained the best results in terms of log-likelihood

per unit data and was also useful to detect non-acceptable pieces. Also, the learned Bayesian

networks could provide further data insights in the form of axes statistical dependencies

during machining processes.

In other works such as Atienza et al. [2022], it was observed that in the Bayesian network

structure, the nodes were allowed to change from Gaussian linear models to KDE models. In

this sense, it would be relevant to check how these transformations can fit in our proposal and

how it can be beneficial to reduce the computational time burdens. Additionally, we believe

that the current implementation can be improved in order to minimize training times. Also,

in traditional KDE, measures as the mean integrated square error (MISE) (see Section 2.1.4)

are used to determine the estimation quality (in our case, the likelihood serves as estimation

quality). Therefore, a more theoretic research must be done to determine if there is coherence

between the MISE score and the EM algorithm.
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Chapter 11
Conclusions

11.1 Answer to the main thesis question

Recall the thesis question: Is it possible to generate, create or define an adaptive

model or methodology based on HMMs capable to work online to estimate ball

bearings health and RUL?. From the state of the art in Section 3.3, it was cleared that

such model was already developed, e.g., in Ocak et al. [2007] or Yu [2017]. Nonetheless, it

was observed that such models lacked explainability in their proposed health indexes and

were sensitive to outliers and small changes in data distribution, which could be related to

false alarms, as observed in Chapter 7. Hence, a new methodology based on asymmetric

HMMs was proposed. Asymmetric HMMs to work with continuous variables was introduced

in Chapters 4 and Chapter 5. They were adapted to work in data-stream environments

where no run to failure data was assumed. By the results obtained in Chapter 7, the pro-

posed methodology could provide in a continuous way a more informative health index than

others in the state-of-the-art, and it was also capable of providing a remaining useful life es-

timation. Nonetheless, such methodology lacked a dynamic FSS procedure. As consequence,

the model in Chapter 6 was proposed, where the As-HMMs were endowed with the capacity

of performing an embedded FSS. Such FSS was done in an offline manner. As a consequence,

in Chapter 8 and Chapter 9, As-HMMs with embedded FSS were adapted to work in data

streams. Finally, in Chapter 10, the ideas proposes in Chapter 5 were mixed with KDE

models to overcome the restriction of Gaussian data. Regarding the functional requirements

in Chapter 1, the following can be said:

A. The model must be fast in its learning and inference phases

The first version of the main model used for the solution of the question was introduced

in Chapter 4 and improved in Chapter 5. In the latter model, bounds for the learning

and inference algorithms were obtained and execution times for different data lengths were

provided. It was observed that the times were fair with clear improvements in terms of

log-likelihood and the BIC score. Nonetheless, such bounds and time results had to be

recomputed in Chapter 7, since the number of hidden states changed in the data-stream. In

such chapter, a deeper view of the algorithm and its implementation in terms of time and

199
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memory usage was done. From this analysis, it was observed the weak and strong points of

the model implementations. Additionally, recommendations and warnings were declared to

ensure that the model can work in data streams.

B. The model or methodology must be able to detect novel concepts in data

stream and adapt to them

The novelty detection techniques described in Section 2.4 were applied to work with the

proposed models. Chapters 7, 8 and 9, describe how HMMs can be used to detect novel

concepts and adapt to them. It was observed that the novelty detection strategies could

detect changes in distribution or feature saliencies. Also, the methodologies were robust

enough to prevent jumps due to outliers. Nevertheless, this caused lags in the model update,

i.e., the model parameters were updated several time instants after the true change had

already happened. However, the models were more informative and useful when compared

to others in the state of the art.

C. The model or methodology must be able to estimate the industrial asset

health and remaining useful life

D. The model or methodology must work in unsupervised environments, since

not enough failure labeled data is available

In the next paragraphs, literal C. and D. are answered. The methodology proposed in

Chapter 7 assumes that no previous RTF data is available. Hence, unsupervised data was

processed in a data stream fashion. In spite of that, the model was capable of estimating

the ball bearing health and its RUL. Regarding the health index, it was useful for giving an

approximation of the ball bearing state and it was interpretable, i.e., it measures the amount

of orders of magnitude of difference between the current state and an initial healthy state.

Also, due to the Page test and the Chernoff bounds, the health index was robust to outliers.

Regarding the RUL estimation, it was seen that even when no previous failure data was

available, the model was capable of performing fair predictions under some mechanical and

sensor conditions. If any of those assumptions was violated, the RUL predictions were poor

and non informative. In general, the methodology showed good results in the health index

estimation when compared to other state of the art methodologies, but improvements are

required to provide more accurate RUL estimations.

E. The model or methodology must determine the most relevant features in

an online manner

The methodology used in Chapters 5 and 7 provided a solution to the thesis question.

Nevertheless, the solution lacks the FSS phase. To address such issue, the Chapters 6,

8 and 9, introduced models and methodologies to perform an embedded FSS, or let the

models themselves determine the most relevant features in an online manner in data stream

environments. Chapter 6 enabled the model from Chapter 5 to do an embedded FSS by adding

hidden feature saliency variables. Chapter 8 proposed a methodology to use a simpler version

of the model from Chapter 6 to perform a FSS in data stream environments. In this case, the

set of relevant features changed over time. Chapter 9 introduced an extension of the model

proposed in Chapter 6 as in Chapter 7, where the set of relevant variables changed depending
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on the hidden state. This allows the model remember the set of previous relevant features

after the detection of a novel concept in the data stream. In the experiments, synthetic

and real data from ball bearings was used. Irrelevant or noisy variables were detected, and

variables which did not provide information were ignored. In spite of the results, the models

could not be embedded, during the writing of this thesis, into edge devices for evaluation and

testing.

F. The model or methodology must be interpretable

All the proposed models in this thesis aimed to use probabilistic and statistics foundations.

Every parameter can be interpreted, and decisions can be justified by means of log-likelihood

or BIC. For instance, in the last Chapter 10, context-specific Bayesian networks were em-

bedded into KDE models. In that case, the parameters given by the Bayesian networks were

understood as kernel corrections and had an influence in the density mode locations for data

recognition and generation. This kind of interpretations can be done for every parameter

of all the proposed models, and therefore, any decision made by the models can be inferred

from the parameters.

11.2 List of publications

During the development of this thesis, the following publications and submissions were pro-

duced:

JCR articles:

� C. Puerto-Santana, P. Larrañaga and C. Bielza, ”Autoregressive Asymmetric Linear

Gaussian Hidden Markov Models,” in IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 44, no. 9, pp. 4642-4658, 1 Sept. 2022,.

� C. Puerto-Santana et al., ”Asymmetric HMMs for Online Ball-Bearing Health Assess-

ments,” in IEEE Internet of Things Journal, vol. 9, no. 20, pp. 20160-20177, 15 Oct.15,

2022,

� C. Puerto-Santana, P. Larrañaga and C. Bielza, ”Feature Saliencies in Asymmetric Hid-

den Markov Models,” in IEEE Transactions on Neural Networks and Learning Systems,

2022,

� C. Puerto-Santana, P. Larrañaga and C. Bielza, ”Feature Subset Selection in Data-

Stream Environments Using Asymmetric Hidden Markov Models and Novelty Detec-

tion,” in Neurocomputing, Submitted

� C. Puerto-Santana, P. Larrañaga, C. Bielza and G.E Henter, ”Context-specific kernel-

based hidden Markov model for time series analysis,” in ArXiv, Submitted

Proceedings
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� Puerto-Santana, C., Bielza, C., Larrañaga, P. (2018). Asymmetric Hidden Markov

Models with Continuous Variables. In: , et al. Advances in Artificial Intelligence.

CAEPIA 2018. Lecture Notes in Computer Science, vol 11160. Springer, Cham.

� Puerto-Santana, C., Larrañaga, P., Diaz-Rozo, J., Bielza, C. (2022). An Online Fea-

ture Selection Methodology for Ball-Bearing Harmonic Frequencies Based on HMMs.

In 16th International Conference on Soft Computing Models in Industrial and Environ-

mental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and

Computing, vol 1401. Springer, Cham.

11.3 Future research lines

The current thesis has provided tools and models to enhance the problem of processing and

analyzing stochastic dynamical data, with a paramount focus on industrial assets such as

ball bearings. Nevertheless, even if determining the health and RUL of the ball bearing

issues were handled, several further extensions can be made to the current models in order to

be applicable in other industrial problems. For instance, in some industrial applications, the

data is registered in uneven time-steps and therefore, the Markovian property of the proposed

models may not hold. In such cases, continuous time Markov models can be used to model

such data in a more proper way. Also, the proposed KDE-AsHMM was only proposed for

offline analysis. The corresponding data stream version of KDE-AsHMM must be generated

and adapted to work properly in data-streams, taking into consideration computational issues

and time consumption restrictions.

The prediction of RUL might be improved in many directions. One is related to memory

allocation. The current model requires the whole history of health indexes to make predic-

tions and a strategy should be found to reduce or collapse data instances ensuring minimal

information loss. Other direction concerns model prediction design, since a more robust

regression method for prediction is required. The current regression is sensitive to health

recoveries or sensor problems.

Finally, in spite that kernel density models were explored to model non-Gaussian data,

newer models such a normalizing flows (?) and denoising diffusion models (Ho et al. [2020])

are gaining attention due to their flexibility and high accuracy to model arbitrary multidimen-

sional distributions. Then, it would be interesting to explore normalizing flows or denoising

diffusion models with asymmetric HMMs in an explainable manner towards solutions for

industrial applications.
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Appendix A
Supplementary material for

AR-AsLG-HMMs

A.1 Parameters used in the synthetic data

The parameters of the two scenarios for the synthetic data can be seen in Table A.1 and

Table A.2. In particular, in Table A.1 and Table A.2 the parameters for the AR-AsLG-HMM

and AR-MoG-HMM emission probabilities are written respectively.

Par Value Par Value Par Value

ϕt11 1.5 f t21 1.5 + 0.2xt−1
1 ϕt31 1.5 + .999xt−1

1

ϕt12 2.5 f t22 2.5xt3 ϕt32 2.5 + 5.0xt1 + 8.0xt4 + .888xt−1
2 + .111xt−2

2

ϕt13 4.5. f t23 3.0xt5 + .99xt−1
3 ϕt33 4.5 + 1.5xt1 + .999xt−1

3

ϕt14 3.5 f t24 1.5 + 9.5xt1 ϕt34 3.5 + 1.5xt1 + 2.0xt3 + .1xt−1
4

ϕt15 6.5 f t25 6.5 + .99xt−1
5 ϕt35 5.0xt3

ϕt16 1.5 f t26 .5 + 6.8xt5 ϕt36 1 + 3.5xt3 − 4.5xt5 + .8xt−1
6

σ11 1.5 σ21 3.5 σ31 3
σ12 2.0 σ22 2 σ32 3.5
σ13 3.0 σ23 4 σ33 4.0
σ14 8.0 σ24 2 σ34 6.5
σ15 6.0 σ25 5.5 σ35 5.5
σ16 .5 σ26 2 σ36 7.0

Table A.1: Scenario 1 parameters of AR-AsLG-HMM distribution

Let D and L be the matrices:

D =


5 0 0 0 0 0

0 3 0 0 0 0

0 0 4 0 0 0

0 0 0 6 0 0

0 0 0 0 3 0

0 0 0 0 0 2

 , L =


0 0 0 0 0 0

0.1 0 0 0 0 0

0.2 0.3 0 0 0 0

−0.3 0.1 0.2 0 0 0

0.6 0.1 0.2 −0.3 0 0

0.1 −0.2 0.4 0.5 0.3 0


217
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Par Value Par Value Par Value

µt111 1 + .2xt−1
1 µt121 1 + .8xt−1

1 µt211 3 + .8xt−1
1 + .1xt−2

1

µt112 3 + .9xt−1
2 µt122 3 + .1xt−1

2 µt212 6 + .3xt−1
2 + .1xt−2

2

µt113 1 + .1xt−1
3 µt123 1 + .5xt−1

3 + .2xt−2
3 µt213 4 + .6xt−1

3

µt114 4− .1xt−1
4 µt124 4− .9xt−1

4 + .3xt−2
4 µt214 6 + .2xt−1

4

µt115 1 µt125 1 + .9xt−1
5 µt215 4 + .1xt−1

5

µt116 1 + .9xt−1
6 µt126 1 + .2xt−1

6 µt216 3 + .8xt−1
6

Σ11 .2D + .2(L+L′) Σ12 .4D + .3(L+L′) Σ21 .2D + .2(L+L′)

µt221 3 + 0.1xt−1
1 µt311 10 + .6xt−1

1 + 0.2xt−2
1 µt321 10 + .1xt−1

1 + .3xt−2
1

µt222 6 + .6xt−1
2 + .3xt−2

2 µt312 9 + .99xt−1
2 µt322 9.3 + .99xt−1

2

µt223 4 + .8xt−1
3 + .1xt−2

3 µt313 12 + .1xt−1
3 µt323 12 + .6xt−1

3 + .1xt−2
3

µt224 6 + .5xt−1
4 + .2xt−2

4 µt314 13 + .1xt−1
4 µt324 13 + .8xt−1

4

µt225 4 + .6xt−1
5 µt315 5 + .999xt−1

5 µt325 5 + .999xt−1
5

µt226 3 + .2xt−1
6 µt316 15 + .8xt−1

6 + 0.05xt−2
6 µt326 15 + .2xt−1

6 + .1xt−2
6

Σ22 .3D − .3(L+L′) Σ31 .2D − .2(L+L′) Σ32 .5D − .3(L+L′)

Table A.2: Scenario 2 parameters of AR-MoG-HMM distribution

Σ = aD + b(L + L′) is a Hermitian matrix with strict dominant diagonal where L′ is

the transpose of L, |a| > |b| > 0 and |b| < 1. The parameters a, b ∈ R are tuned to obtain

matrices with positive eigenvalues and therefore definite positive matrices. For all the hidden

states, the mixtures have weights w1 = 0.7 and w2 = 0.3. In Table A.2, parameter µijk stands

for the mean of the k-variable at the j-mixture component of the i-hidden state and Σij is

the covariance matrix of the j-mixture component of the i-hidden state.

A.2 Viterbi paths for synthetic data
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(a) Sequence 1 (b) Sequence 2

Figure A.1: Sequences of hidden states used to construct the test signals. Sequence 1 (a) and sequence
2 (b) are used for both scenarios

Fig. A.2 and Fig. A.3 show the Viterbi paths in log scale obtained for sequences 1 and 2 for

scenario 1. These paths are interesting since they convey the changes in the dynamics of the

data for every time instance (smoothing). When new instances arrive, the Viterbi algorithm

can be used to determine the hidden state to which the new instance belongs (filtering) and

make decisions or analyses of the observed process. In this case, observe that AR-AsLG-

HMM obtained a good Viterbi paths that follow the pattern described by Fig. 5.3 (a) and

(b). On the other hand, AR-MoG-HMM, AsLG-HMM and näıve-HMM obtained fair Viterbi
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(d) AR-MoG-HMM (e) MoG-HMM (f) Näıve-HMM
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Figure A.2: Viterbi paths for scenario 1 and sequence 1

path, since the transitions are correct but wrong in magnitude. LMSAR obtained a fair

result for sequence 1 but the transitions are wrongly predicted. It is relevant to observe that

AsLG-HMM and näıve-HMM obtained similar results but far different from those obtained

by AR-AsLG-HMM. This indicates the relevance of assuming AR parameters when relevant

AR parameters are present in the data. The remaining models obtained poor results.

Fig. A.4 and Fig. A.5 show the Viterbi paths obtained for sequences 1 and 2 for scenario

2. The Viterbi paths obtained by asymmetric models and näıve-HMM were good, since they

follow correctly the pattern of the hidden state sequences shown in Fig. 5.3. The possible

reason behind this is that the autoregressive processes in this case were not relevant for the

data generation. This can be seen clearer when observing the similar g1(i) values among some

models, e.g., for AR-AsLG-HMM, for both sequences, the biggest g1(i) value was 400.98, for

AsLG-HMM was 398.71 and for näıve-HMM was 406.037. On the other hand, AR-MoG-

HMM and BMM obtained fair results since they follow the state transitions but with wrong

amplitude. In particular, in spite that AR-MoG-HMM and BMM obtain similar results, it

must be noticed the differences in amplitude in their predictions: AR-MoG-HMM records

amplitudes of 6 units in g1(i) and BMM shows amplitudes of 4000 units in g1(i). Meanwhile,

VAR-MVGHMM had problems with the state durations. Finally, note that the remaining

models obtained not well-defined readings of the evolution of hidden states proposed by

Fig. 5.3.
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Figure A.3: Viterbi paths for scenario 1 and sequence 2
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Figure A.4: Viterbi paths for scenario 2 and sequence 1

A.3 Viterbi path for air quality when three hidden states are

used
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Figure A.6: Viterbi paths for the air quality example during the first week of 2016 when three hidden
states are used
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Figure A.5: Viterbi paths for scenario 2 and sequence 2

Fig. A.6 shows the predicted air quality for the first two weeks of 2016 for each model using

the Viterbi algorithm when three hidden states are assumed. In this scenario, it is still

observable the same details when two hidden states are assumed. Nevertheless, in the BIC

and LL scores, the models obtained better results.

A.4 Proofs to lemmas and theorems

Lemma A.1. Let λ(s) be the parameters at iteration s of the EM and λ(s+1) be the resulting

parameters after the next iteration of the EM. The following follows: Qp∗(λ(s+1)|λ(s)) ≥
Qp∗(λ(s)|λ(s)).

�

Proof. From the maximization step Qp∗(λ|λ(s)) = maxλ′ Qp
∗
(λ′|λ(s)) ≥ Qp∗(λ(s)|λ(s)).

Lemma A.2. Given two arbitrary models with respective parameters λ and λ′, the fol-

lowing follows Hp∗(λ|λ′) ≤ Hp∗(λ′|λ′), and the equality holds when P (qp
∗:T |x0:T ,λ) =

P (qp
∗:T |x0:T ,λ′).

�
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Proof. Notice that:

Hp∗(λ|λ′)−Hp∗(λ′|λ′) =
∑

R(Qp∗:T )

P (qp
∗:T |x0:T ,λ′) ln

P (qp
∗:T |x0:T ,λ)

P (qp∗:T |x0:T ,λ′)
. (A.1)

Observe that if P (qp
∗:T |x0:T ,λ) = P (qp

∗:T |x0:T ,λ′), then the logarithm in Eq. (??) is zero

and Hp∗(λ|λ′) = Hp∗(λ′|λ′). However, if the Jensen’s inequality is applied for concave

functions to Eq. (A.1). It holds:

Hp∗(λ|λ′)−Hp∗(λ′|λ′) ≤ ln
∑

R(Qp∗:T )

P (qp
∗:T |x0:T ,λ′)

P (qp
∗:T |x0:T ,λ)

P (qp∗:T |x0:T ,λ′)

= ln
∑

R(Qp∗:T )

P (qp
∗:T |x0:T ,λ).

However ln
∑

R(Qp
∗:T ) P (qp

∗:T |x0:T ,λ) ≤ 0, and therefore Hp∗(λ|λ′) ≤ Hp∗(λ′|λ′) as desired.

Theorem A.1. Let λ(s) be the parameters at an iteration s of the EM and λ(s+1) be the

resulting parameters after the next iteration of the EM. The following holds:

(a) LL(λ(s+1)) ≥ LL(λ(s)). In other words, the log-likelihood of the model cannot worsen

after an EM iteration.

(b) The sequence {LL(λ(s))}s∈N converges.

�

Proof. To prove (a), the following identity follows: LL(λ(s+1))) = Qp∗(λ(s+1)|λ(s))−Hp∗(λ(s+1)|λ(s)).

Note that:

LL(λ(s+1))−LL(λ(s)) = Qp∗(λ(s+1)|λ(s))−Qp∗(λ(s)|λ(s))+Hp∗(λ(s)|λ(s))−Hp∗(λ(s+1)|λ(s)).

From Lemma 1, it holds: Qp∗(λ(s+1)|λ(s)) − Qp∗(λ(s)|λ(s)) ≥ 0 and from Lemma 2, then,

Hp∗(λ(s)|λ(s))−Hp∗(λ(s+1)|λ(s)) ≥ 0. Therefore LL(λ(s+1))− LL(λ(s)) ≥ 0 and the desired

results are obtained.

To prove (b), from (a) it is known that the sequence {LL(λ(s))}s∈Z+ does not decrease

and is also upper bounded by zero. Therefore, {LL(λ(s))}s converges to a certain real finite

number LL∗ with LL∗ ≤ 0.

Lemma A.3. αtp∗(i) and βtp∗(i) can be computed as:

αtp∗(i) =
N∑
j=1

bp
∗

i (xt)ajiα
t−1(j)

βtp∗(i) =

N∑
j=1

βt+1(j)bp
∗

j (xt+1)aij

(A.2)
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for t = p∗, ..., T and i = 1, ..., N , with initial values αp
∗

p∗(i) = πib
p∗

i (xp
∗
) and βTp∗(i) = 1,

i = 1, ..., N .

�

Proof. For the forward variable, for t = p∗ + 1, ..., T and i = 1, ..., N :

αtp∗(i) =

N∑
j=1

P (Qt = i, Qt−1 = j,xp
∗:t|x0:p∗−1,λ)

=
N∑
j=1

P (xt|Qt = i,xt−p
∗:t−1,λ)P (Qt = i, Qt−1 = j,xp

∗:t−1|x0:p∗−1,λ)

=

N∑
j=1

bp
∗

i (xt)P (Qt = i|Qt−1 = j,λ)P (Qt−1 = j,xp
∗:t−1|x0:p∗−1,λ)

=
N∑
j=1

bp
∗

i (xt)ajiα
t−1
p∗ (j).

(A.3)

In the second equality of Eq. (A.3), note that Xt is D-separated from Qt−1 given Qt and

Xt−p∗:t−1. In the third equality, observe that Qt is D-separated from X0:t−1 given Qt−1.

D-separation implies conditional independence in Bayesian networks. Therefore, the forward

variable can be computed iteratively as in the traditional HMM. Additionally, the forward

variable is initialized with αp
∗

p∗(i) = πib
p∗

i (xp
∗
), i = 1, ..., N .

In the case of the backward variable, for t = T − 1, ..., p∗ and i = 1, ..., N :

βtp∗(i) =
N∑
j=1

P (xt+1:T , Qt+1 = j|Qt = i,x0:t,λ)

=

N∑
j=1

P (xt+2:T |Qt+1 = j,x0:t+1,λ)P (xt+1, Qt+1 = j|Qt = i,x0:t,λ)

=
N∑
j=1

βt+1
p∗ (j)P (xt+1|Qt+1 = j,xt+1−p∗:t,λ)P (Qt+1 = j|Qt = i,λ)

=
N∑
j=1

βt+1
p∗ (j)bp

∗

j (xt+1)aij .

(A.4)

In the second equality of Eq. (A.4), the D-separation is again applied, specifically Xt+2:T

is D-separated from Qt given Qt+1 and X0:t+1. In the third equality, Xt+1 is D-separated

from Qt given Qt+1 and X0:t. Additionally, Qt+1 is D-separated from X0:t given Qt; also,

Xt+1 is D-separated of X0:t−p∗ given Xt+1−p∗:t because each Xt is dependent on maximum

p∗ lags. Hence, the backward variable can be computed iteratively as in the traditional HMM.

Finally, the backward variable is initialized with βTp∗(i) = 1, i = 1, ..., N .

Theorem A.2. The M-step for an AR-AsLG-HMM model can be performed using the
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following updating formulas: parameter π = {πi}Ni=0 is updated as:

π
(s+1)
i = γp

∗
(i). (A.5)

The parameter A = {aij}Ni,j=1 is updated as:

a
(s+1)
ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (A.6)

If ϕtim := utimβim+dtimηim, the parameters {ηimr}pimr=1, {βimk}kimk=0 can be updated jointly,

solving the following linear system:

∑T
t=p∗ γ

t(i)xtm =
∑T

t=p∗ γ
t(i)ϕtim∑T

t=p∗ γ
t(i)xtmu

t
im1 =

∑T
t=p∗ γ

t(i)utim1ϕ
t
im

...
...

...∑T
t=p∗ γ

t(i)xtmu
t
imkim

=
∑T

t=p∗ γ
t(i)utimkimϕ

t
im∑T

t=p∗ γ
t(i)xtmx

t−1
m =

∑T
t=p∗ γ

t(i)xt−1
m ϕtim

...
...

...∑T
t=p∗ γ

t(i)xtmx
t−pim
m =

∑T
t=p∗ γ

t(i)xt−pimm ϕtim

(A.7)

if θim = (βim|ηim)>, otim = (utim|dtim), and Γp
∗:T
i := Matrix([γp

∗
(i), ...., γT (i)]) Then, the

previous linear system is solved as:

θ
(s+1)
im =

(
(op

∗:T
im )>Γp

∗:T
i op

∗:T
im

)−1
(op

∗:T
im )>Γp

∗:T
i xp

∗:T
m (A.8)

If ϕ̂tim := utimβ
(s+1)
im + dtimη

(s+1)
im , then, σ2

im can be updated as:

(σ2
im)(s+1) =

∑T
t=p∗ γ

t(i)(xtm − ϕ̂tim)2∑T
t=p∗ γ

t(i)
. (A.9)

This update must be done for every variable m = 1, ...,M and hidden state i = 1, ..., N .

�

Proof. The Lagrange multipliers are applied with the restrictions
∑N

i=1 πi = 1 and
∑N

j=1 aij =

1 for i = 1, ..., N . The corresponding Lagrangian function is:

L(λ, τ0, τ1, ..., τN ) = Qp∗(λ|λ′) + τ0(1−
N∑
i=1

πi) +

N∑
i=1

τi(1−
N∑
j=1

aij). (A.10)

The derivative of L in Eq. (A.10) with respect to πi and equalized to zero gives as result:
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∂L
∂πi

=
γp
∗
(i)

πi
− τ0 = 0. (A.11)

Then, πi = γp
∗

(i)
τ0

, and
∑N

i=1 πi =
∑N
i=1 γ

p∗ (i)
τ0

. Hence, τ0 = 1. Therefore, the updating formula

for πi, for i = 1, ..., N , is:

π
(s+1)
i = γp

∗
(i). (A.12)

Similarly, with respect to aij :

∂L
∂aij

=

T−1∑
t=p∗

ξt(i, j)

aij
− τi = 0. (A.13)

Then, aij =

∑T−1
t=p∗ ξ

t(i,j)

τi
, adding over all the hidden states values, it holds that:

N∑
j=1

aij =

∑T−1
t=p∗

∑N
j=1 ξ

t(i, j)

τi
=

∑T−1
t=p∗ γ

t(i)

τi
= 1. (A.14)

From the previous equation, τi =
∑T−1

t=p∗ γ
t(i). And the updating formula for aij for i, j =

1, ..., N is:

a
(s+1)
ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (A.15)

Now, the derivative of L in Eq. (A.10) are computed, with respect to the parameters ηimp,

βimk and σ2
im. For the derivative with respect to βim0:

∂L
∂βim0

=
T∑

t=p∗

γt(i)
∂

∂βim0
ln(N (xtm|ϕtim, σ2

im)). (A.16)

Thus,

0 =
T∑

t=p∗

γt(i)

σ2
im

(ϕtim − xtm).

Then,
T∑

t=p∗

γt(i)xtm =

T∑
t=p∗

γt(i)ϕtim. (A.17)

Now, if L in Eq. (A.10) is derived with respect to βimk, with k = 1, ..., kim, and with respect
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to ηimr with r = 1, ..., pim as in Eq. (A.16), the following equations are obtained:

T∑
t=p∗

γt(i)xtmu
t
im1 =

T∑
t=p∗

γt(i)utim1ϕ
t
im

T∑
t=p∗

γt(i)xtmu
t
im2 =

T∑
t=p∗

γt(i)utim2ϕ
t
im

...
...

...

T∑
t=p∗

γt(i)xtmu
t
imkim

=
T∑

t=p∗

γt(i)utimkimϕ
t
im

T∑
t=p∗

γt(i)xtmx
t−1
m =

T∑
t=p∗

γt(i)xt−1
m ϕtim

...
...

...

T∑
t=p∗

γt(i)xtmx
t−pim
m =

T∑
t=p∗

γt(i)xt−pimm ϕtim

(A.18)

The previous linear system can be written and solved as:

(op
∗:T
im )>Γp

∗:T
i xp

∗:T
m = (op

∗:T
im )>Γp

∗:T
i op

∗:T
im θim

θ
(s+1)
im =

(
(op

∗:T
im )>Γp

∗:T
i op

∗:T
im

)−1
(op

∗:T
im )>Γp

∗:T
i xp

∗:T
m

(A.19)

The solution to this system of equations returns the coefficients {β(s+1)
imk , η

(s+1)
iml }

kim,pim
k=0,l=1, for

each variable Xm, m = 1, 2, ...,M and hidden state i ∈ R(Q). Once these parameters are

known, the mean ϕ̂tim := utimβ
(s+1)
im + dtimη

(s+1)
im can be computed. To update σ2

im, the

derivative of L in Eq. (A.10) with respect to σ2
im is computed and equalize to zero:

∂L
∂σ2

im

=

T∑
t=p∗

γt(i)
∂

∂σ2
im

ln(N
(
xtm|ϕ̂tim, σ2

im

)
).

Thus

0 =

T∑
t=p∗

γt(i)
((xtm − ϕ̂tim)2

σ4
im

− 1

σ2
im

)
.

Hence,

(σ2
im)(s+1) =

∑T
t=p∗ γ

t(i)(xtm − ϕ̂tim)2∑T
t=p∗ γ

t(i)
. (A.20)
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Lemma A.4. If δtp∗(i) = maxqp∗:t−1{P (xp
∗:t, qp

∗:t−1, Qt = i|x0:p∗−1,λ)} represents the most

probable sequence of hidden states up to time t − 1 for state i at time t, then δtp∗(i) can be

computed recursively.

δtp∗(i) = max
j=1,...,N

{δt−1
p∗ (j)aji}bp

∗

i (xt)

The Viterbi algorithm is initialized with δp
∗

p∗ (i) = πib
p∗

i (xp
∗
).

�

Proof. Observe that:

δtp∗(i) = max
qp∗:t−1

{P (xt|xt−p∗:t−1, Qt = i,λ)P (xp
∗:t−1, qp

∗:t−1, Qt = i|x0:p∗−1,λ)}

= max
qp∗:t−1

{bp
∗

i (xt)P (Qt = i|qt−1,λ)P (xp
∗:t−1, qp

∗:t−1|x0:p∗−1,λ)}

= max
qp∗:t−1

{bp
∗

i (xt)aqt−1iδ
t−1
p∗ (qt−1)}

= max
j=1,...,N

{δt−1
p∗ (j)aji}bp

∗

i (xt).

(A.21)

For the first equality of Eq. (A.21), notice that Xt is D-separated of Qp
∗:t−1 given Qt and

Xt−p∗:t−1. In the second equality, as Qt is being D-separated from X0:t−1 and Qp∗:t−2 given

Qt−1. In the third equality, the dynamic programming principle Forney [1973], Omura [1969]

is applied in δt−1
p∗ . Note that, δtp∗(i) can be computed iteratively as in its traditional version.

The Viterbi algorithm is initialized with δp
∗

p∗ (i) = πib
p∗

i (xp
∗
) for i = 1, ..., N .



Appendix B
Supplementary material for

FS-AsHMM

B.1 Parameters used in the synthetic data

i m ϕim σim i m ϕim σim i m ϕim σim i m ϕim σim
1 1 1.0 1.2 2 1 2.0 1.5 3 1 3.0 1.4 4 1 4.0 0.8
1 2 2.0 1.3 2 2 4.0 1.7 3 2 6.0 2.2 4 2 8.0 1.1
1 3 1.5 1.0 2 3 1.5 1.0 3 3 1.5 1.0 4 3 1.5 1.0
1 4 0.5 1.3 2 4 1.0 1.2 3 4 1.5 1.7 4 4 2.0 0.9
1 5 4.5 2.2 2 5 4.5 2.2 3 5 4.5 2.2 4 5 4.5 2.2
1 6 1.0 1.4 2 6 3.0 0.7 3 6 6.0 1.6 4 6 9.0 1.3
1 7 2.0 1.3 2 7 3.5 1.3 3 7 4.0 1.3 4 7 6.0 1.3
1 8 0.0 1.0 2 8 1.5 1.8 3 8 4.0 0.5 4 8 7.0 1.4
1 9 1.2 1.5 2 9 2.0 2.0 3 9 2.6 0.8 4 9 3.4 1.2
1 10 3.0 0.6 2 10 3.0 0.6 3 10 3.0 0.6 4 10 3.0 0.6

Table B.1: Scenario1 parameters for the synthetic data

The parameters of the means and standard deviations of the three scenarios for the

synthetic data used in Chapter 6 are shown in Table B.1, Table B.2 and Table B.3. Recall that

ϕim = utimβim + dtimηim refers to the mean function of the variable Xm at the hidden state

Qt = i. Note that Table B.1 has the data with the less complexity regarding probabilistic

relationships between variables; whereas Table B.3 exhibits the most complex dynamical

probabilistic behavior among the three possible scenarios. Also, it can be seen that some

variables change their parameters for all the hidden states, in such case, the variables are

assumed to be relevant. Whereas for others is not the case, and they have constant parameters

for all the hidden states, in such cases, the variables are irrelevant or noise. Finally, variables

whose parameters change for some hidden states but not all, are considered partially relevant

variables.

229
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i m ϕim σim i m ϕim σim
1 1 1.0 1.2 2 1 1.5 1.5
1 2 1.3 + 2.6xt1 1.3 2 2 3.3 + 3.1xt1 1.7
1 3 1.5 1.0 2 3 1.5 1.0
1 4 0.0 1.3 2 4 1.0 + 3.2xt2 1.2
1 5 1.5 2.2 2 5 1.5 2.2
1 6 0.1 + 3.8xt4 1.4 2 6 0.2 + 3.2xt4 0.7
1 7 0.6 + 2.7xt8 1.3 2 7 1.0 + 2.3xt6 1.3
1 8 0.7 1.0 2 8 3.0 + 1.2xt9 1.8
1 9 0.2 + 1.2xt1 1.5 2 9 1.0 + 2.0xt1 2.0
1 10 1.0 0.6 2 10 1.0 0.6
3 1 2.0 1.4 3 1 3.0 0.8
3 2 5.6 2.2 3 2 6.3 1.1
3 3 1.5 1.0 3 3 1.5 1.0
3 4 4.2 1.7 3 4 6.3 0.9
3 5 1.5 2.2 3 5 1.5 2.2
3 6 0.3 + 7.2xt2 + 5.2xt4 1.6 3 6 0.4 + 11.2xt1 + 15.2xt2 + 9.2xt4 1.3
3 7 2.5 + 3.2xt6 + 5.6xt8 1.3 3 7 6.2 + 10.1xt1 + 12.4xt2 + 14.5xt4 1.3
3 8 5.0 + 2.2xt1 + 3.4xt9 0.5 3 8 6.0 + 6.8xt1 + 9.1xt2 + 5.8xt4 1.4
3 9 2.0 0.8 3 9 4.5 + 6.2xt1 + 7.4xt2 + 2.5xt4 1.2
3 10 1.0 0.6 3 10 1.0 0.6

Table B.2: Scenario2 parameters for the synthetic data

i m ϕim σim i m ϕim σim
1 1 0.1 1.2 2 1 0.3 + 0.7xt−1

1 1.5

1 2 0.5 1.3 2 2 2.1 + 0.9xt−1
2 1.7

1 3 1.5 1.0 2 3 1.5 1.0
1 4 0.0 1.3 2 4 1.2 + 4xt2 1.2
1 5 4.5 2.2 2 5 6.5 2.2
1 6 0.1 1.4 2 6 0.2 0.7
1 7 1.0 1.3 2 7 0.5 1.3

1 8 1.2 1.0 2 8 3.6 + 2xt6 + 0.6xt−1
8 1.8

1 9 0.3 1.5 2 9 1.2 + 2xt1 2.0
1 10 3.0 0.6 2 10 3.0 0.6
3 1 0.5 1.4 3 1 1.2 + 12.2xt6 + 8.2xt8 + 6.2xt9 0.8

3 2 3.6 + 0.4xt−1
2 + 0.6xt−2

2 2.2 3 2 7.7 + 4.2xt6 + 2.8xt8 + 9.2xt9 1.1
3 3 1.5 1.0 3 3 1.5 1.0

3 4 4.3 + 5.0xt2 + 3.0xt6 + 0.5xt−1
4 1.7 3 4 6.6 + 12.3xt6 + 6.2xt8 + 9.9xt9 0.9

3 5 4.5 2.2 3 5 6.5 2.2

3 6 0.3 + 8.0xt9 + 0.8xt−1
6 + 0.19xt−2

6 1.6 3 6 0.4 + 0.1xt−1
6 + 0.3xt−2

6 + 0.599xt−3
6 1.3

3 7 0.5 1.3 3 7 1.0 1.3

3 8 9.8 + 5.0xt9 + 0.9xt−1
8 0.5 3 8 12.2 + 0.6xt−1

8 + 0.499xt−2
8 1.4

3 9 2.5 + 3xt1 0.8 3 9 6.9 + 0.2xt−1
9 + 0.4xt−2

9 + 0.399xt−3
9 1.2

3 10 3.0 0.6 3 10 3.0 0.6

Table B.3: Scenario3 parameters for the synthetic data means and variances

B.2 Proofs

Since there is no change regarding the probabilistic relationships for the A and π parame-

ters, the updating equations for these parameters stated in Appendix A.4 holds. Therefore,

the focus is on determining the updating formulas od the relevancies, means and standard

deviations for the relevant and irrelevant components.

Theorem B.1. Assume there is a current model λ(s) such that the E-step has been computed

with it. From optimizing Eq. (6.8), the resulting parameter λ(s+1) can be obtained with the

following updating formulas.
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The feature saliencies {ρ(s+1)
m }Mm=1 are updated as:

ρ(s+1)
m =

∑N
i=1

∑T
t=p∗ ψ

t
m(i)

T + 1− p∗
. (B.1)

The initial distribution π(s+1) = {π(s+1)
i }Ni=0 is updated as:

π
(s+1)
i = γp

∗
(i). (B.2)

The transition matrix A(s+1) = {a(s+1)
ij }Ni,j=1 is updated as:

a
(s+1)
ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (B.3)

The mean and variance, {ε(s+1)
m }Mm=1 and {(τ2

m)(s+1)}Mm=1, from the noise component, are

updated as:

ε(s+1)
m =

∑T
t=p∗

∑N
i=1 φ

t
m(i)xtm∑T

t=p∗
∑N

i=1 φ
t
m(i)

(τ2
m)(s+1) =

∑T
t=p∗

∑N
i=1 φ

t
m(i)(xtm − εm)2∑T

t=p∗
∑N

i=1 φ
t
m(i)

.

(B.4)

Setting ϕtim := utimβim +dtimηim for m = 1, ...,M , t = p∗, ..., T and hidden state i = 1, ..., N ,

the parameters {η(s+1)
imr }

pim
r=1 and {β(s+1)

imk }
kim
k=0 can be updated jointly, solving the following

linear system: 

∑T
t=p∗ ψ

t
m(i)xtm =

∑T
t=p∗ ψ

t
m(i)ϕtim∑T

t=p∗ ψ
t
m(i)xtmu

t
im1 =

∑T
t=p∗ ψ

t
m(i)utim1ϕ

t
im

...
...

...∑T
t=p∗ ψ

t
m(i)xtmu

t
imkim

=
∑T

t=p∗ ψ
t
m(i)utimkimϕ

t
im∑T

t=p∗ ψ
t
m(i)xtmx

t−1
m =

∑T
t=p∗ ψ

t
m(i)xt−1

m ϕtim
...

...
...∑T

t=p∗ ψ
t
m(i)xtmx

t−pim
m =

∑T
t=p∗ ψ

t
m(i)xt−pimm ϕtim

(B.5)

if θim = (βim|ηim)>, otim = (utim|dtim), and Ψp∗:T
im := Matrix([ψp

∗
m (i), ...., ψTm(i)]). Then, the

previous linear system is solved as:

θ
(s+1)
im =

(
(op

∗:T
im )>Ψp∗:T

im op
∗:T
im

)−1
(op

∗:T
im )>Ψp∗:T

im xp
∗:T
m (B.6)

Setting ϕ̂tim := utimβ
(s+1)
im + dtimη

(s+1)
im ; then, {(σ2

im)(s+1)}N,Mi,m=1 can be updated as:

(σ2
im)(s+1) =

∑T
t=p∗ ψ

t
m(i)(xtm − ϕ̂tim)2∑T
t=p∗ ψ

t
m(i)

. (B.7)
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Proof. In the previous section, the proof of the updating formulas for A and π was done;

therefore they are omitted here and the proof of formulas for the remaining parameters is

done. In the case of {ρm}Mm=1, compute the derivative of Q(λ(s+1)|λ(s)) with respect to ρm

and equate to zero:

∂Q

∂ρm
=

T∑
t=p∗

N∑
i=1

ψtm(i)

ρm
− φtm(i)

(1− ρm)
= 0

(1− ρm)
T∑

t=p∗

N∑
i=1

ψtm(i) = ρm

T∑
t=p∗

N∑
i=1

φtm(i)

ρm =

∑T
t=p∗

∑N
i=1 ψ

t
m(i)∑T

t=p∗
∑N

i=1 ψ
t
m(i) + φtm(i)

ρ(s+1)
m =

∑T
t=p∗

∑N
i=1 ψ

t
m(i)

T + 1− p∗

(B.8)

For the mean {ε(s+1)
m }Mm=1 from the noise component follows that:

∂Q
∂εm

=

T∑
t=p∗

N∑
i=1

φtm(i)
(xtm − εm)

τ2
m

= 0

T∑
t=p∗

N∑
i=1

φtm(i)εm =
T∑

t=p∗

N∑
i=1

φtm(i)xtm

ε(s+1)
m =

∑T
t=p∗

∑N
i=1 φ

t
m(i)xtm∑T

t=p∗
∑N

i=1 φ
t
m(i)

(B.9)

Regarding the variance {(τ2
m)(s+1)}Mm=1 of the noise component:

∂Q
∂τ2

m

=

T∑
t=p∗

N∑
i=1

φtm(i)

(
(xtm − εm)2

2τ4
m

− 1

2τ2
m

)
= 0

T∑
t=p∗

N∑
i=1

φtm(i)τ4
m =

T∑
t=p∗

N∑
i=1

φtm(i)(xtm − εm)2τ2
m

(τ2
m)(s+1) =

∑T
t=p∗

∑N
i=1 φ

t
m(i)(xtm − εm)2∑T

t=p∗
∑N

i=1 φ
t
m(i)

(B.10)

For the case of the relevant component, fix the variable Xm and the hidden state i and look

for the optimum of βim0:

∂Q
∂βim0

=
T∑

t=p∗

ψtm(i)
(xtm − f tim)

σ2
im

= 0

T∑
t=p∗

ψtm(i)xtm =
T∑

t=p∗

ψtm(i)f tim

(B.11)
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For k = 1, ..., kim, it follows that:

∂Q
∂βimk

=
T∑

t=p∗

ψtm(i)utimk
(xtm − f tim)

σ2
im

= 0

T∑
t=p∗

ψtm(i)xtmu
t
imk =

T∑
t=p∗

ψtm(i)f timu
t
imk

(B.12)

As f tim also depends on the parameters{ηimr}pimr=1, it holds:

∂Q
∂ηimr

=

T∑
t=p∗

ψtm(i)xt−rm

(xtm − f tim)

σ2
im

= 0

T∑
t=p∗

ψtm(i)xtmx
t−r
m =

T∑
t=p∗

ψtm(i)f timx
t−r
m

(B.13)

Joining the results from Eq. (B.11), Eq. (B.12) and Eq. (B.13), a linear system of equations of

size (1+kim+pim)×(1+kim+pim) is obtained, and its solution returns the parameters β
(s+1)
im

and η
(s+1)
im . This must be done for m = 1, ...,M and i = 1, ..., N . Finally, the parameters

{σ2
im}

N,M
i,m=1 are maximized as:

∂Q
∂σ2

im

=
T∑

t=p∗

ψtm(i)

(
(xtm − f̂ tim)2

2σ4
im

− 1

2σ2
im

)
= 0

T∑
t=p∗

ψtm(i)σ4
im =

T∑
t=p∗

ψtm(i)(xtm − f̂ tim)σ2
im

(σ2
im)(s+1) =

∑T
t=p∗ ψ

t
m(i)(xtm − f̂ tim)σ2

im∑T
t=p∗ ψ

t
m(i)

(B.14)
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Appendix C
Sensitivity analysis for online

ball-bearing prognosis

In this section a sensibility analysis with the hyper-parameters of the model will be performed.

In the Table. C.1 different values are used for the data-stream. To be clear, 8 experiments

will be performed changing each parameter and setting the others as in its reference value.

These values will be used for the dataset Bearing1 1. From the experiment, the BIC, health

index and RUL curves will be provided and discussed.

Parameter Reference Value 1 Value 2

Φ 3 2 100
p 0.1 0.5 0.9
γ2 0.05 0.015 0.1
ζ -2.5 -2 -3

Table C.1: Different values that are used for the sensibility analysis. In the column reference is stated
the value used in the main text.

C.1 Variations of Φ
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Figure C.1: Different result in RUL, BIC and HI when Φ = 2

In Fig. C.1 it is observed the results when the parameter Φ = 2. In this case, the obtained

results are similar to the ones obtained when Φ = 3. Nevertheless, in the case of the main
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Figure C.2: Different result in RUL, BIC and HI when Φ = 10

text, the process made 5 concept rifts, in this case, since the threshold for the test page is

lower i.e. γ1, it is easier to perform a concept drift and 6 concept drifts were performed.

Additionally, in the main text, when Φ = 3, the first concept drift was detected at the fifth

hour, whereas in this case, the first concept drift was detected at the end of the fourth hour.

In spite of these differences, the results in health index and RUL prediction were similar.

Therefore, it is concluded that when Φ = 2 there are redundant hidden states and additional

computation steps are required to perform a model update or data inference, as consequence,

Φ = 3 is preferred.

In Fig. C.2 it is observed the results when Φ = 10. Hence, the value of γ1 is higher and

the algorithm is lesser sensible to noise or to variations in data, this implies that it is less

likely to perform or detect a concept drift. This is observed when counting the number of

concept drift performed, in this case, only 3 concept drifts were performed and the health

index and RUL prediction differ highly from the ones exposed in the main text. In this case,

the first concept drift was detected almost at the sixth hour, the health index only got to 1.5

orders of magnitude (2 in the main text) and since the RUL began to be computed at this

point, the actionable insights could be limited which is undesirable.

C.2 Variations of p
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Figure C.3: Different result in RUL, BIC and HI when p = 0.5

Recall that p is the minimum population portion of anomalies in a sample to claim that

there is a change in concept in the data in the Chernoff bounds. A change in this value will

have consequences on the size of the sample, and therefore in the ability of the algorithm
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Figure C.4: Different result in RUL, BIC and HI when p = 0.9

to detect anomalies as exposed in Fig.3b of the main article. In the main text, this value

is set to p = 0.1. In Fig. C.3 the results of the process are observed when p = 0.5, in this

case, the sample size increases drastically and more data is required to take the decision to

perform a concept drift. As consequence, as observed in (a), (b) and (c) no concept drifts

were performed and no degradation was perceived. Since no degradation was detected, the

health index was always constant and no RUL was computed.

In Fig. C.4 this value is set to p = 0.9, in this case the sample size is the same to the

case when p = 0.1 but less to the case of p = 0.5 as depicted in Fig.3b of the main article.

In this case, 90% of the instances in the window must be anomalies to perform a concept

drift. For this scenario, only one concept drift was performed at the end of the life of the

bearing and hence the RUL prediction was poor since it began to be predicted at that point.

As consequence of this issues, the actionable insights were poor and this scenario is also

undesirable.

C.3 Variations of γ2
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Figure C.5: Different result in RUL, BIC and HI when γ2 = 0.1

Recall that γ2 is the level of confidence of the sample size problem for the Chernoff

bounds. The smaller this value the greater the confidence of the bounds. In Fig. C.5 it is

observed the results of the algorithm when γ2 = 0.1. With this configuration, it is noticed

that only 3 concept drifts were performed instead of 5 as in the main text, in spite of that,

the first concept drift was performed close to the fifth operation hour as in the main article.

Additionally, the health index and RUL predictions showed actionable insights similar to the
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Figure C.6: Different result in RUL, BIC and HI when γ2 = 0.015

ones obtained in the main text, with the exception that the health index in this configuration

said that the bearing ended its life with better health.

In Fig. C.6 it is pictured the results when γ2 = 0.015. In this case the number of concept

drifts increased, there were 7 concept drifts instead of 5 as in the main text. Nonetheless,

the first concept drift was performed at the fifth hour as in the reference case. On the

other hand, the results of health index and RUL prediction were similar to the case when

γ2 = 0.05. However, since in this case more hidden states were added to the HMM, the

number of operations during the inference or model update part were increased; hence, the

reference hyper-parameters configuration is preferred.

C.4 Variations of ζ
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Figure C.7: Different result in RUL, BIC and HI when ζ = −2
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Figure C.8: Different result in RUL, BIC and HI when ζ = −3



C.4. VARIATIONS OF ζ 239

The ζ parameter is used to determine the maximum enabled orders of magnitude of

degradation of a bearing. In our approach, when a ball-bearing reaches this limit it is said that

it failed. In the configuration of the main article ζ = −2.5, in Fig. C.7 it is shown the results

when ζ = −2. In this case, no changes have been observed in the concept drift detection or

health index behavior, but in the RUL prediction and health index interpretation. Since the

threshold is closer to zero, in this case the algorithm predicts the failure some minutes earlier

to the actual failure.

In Fig. C.8 it is observed when ζ = −3. in this case, more degradation is allowed before

a failure is declared. In spite that the health index and novelty detection are the same as

in the main text, it is observed in this case that the RUL prediction determined that the

ball-bearing still had extra minutes of life when it was not true.

As a final comment, as stated in the main article, depending on the application, this

threshold can be tuned depending on the ball-bearing application. It must be taken into

account that ζ represents the maximum allowed orders of magnitude of difference of the used

features compared to a normal or custom behavior.
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Appendix D
Supplementary material for online

LFS-HMMs

D.1 Proofs

Theorem D.1. Assume there is a current model λ(s) from which the E-step has been com-

puted in the formulas Eq. (9.9). By maximizing Eq. (9.8), the resulting parameter λ(s+1) can

be obtained with the following updating formulas.

The feature saliencies {ρ(s+1)
im }Mm=1 are updated as:

ρ
(s+1)
im =

∑T
t=p∗ ψ

t
m(i)∑T

t=p∗ γ
t(i)

. (D.1)

The initial distribution π(s+1) = {π(s+1)
i }Ni=0 is updated as:

π
(s+1)
i = γp

∗
(i). (D.2)

The transition matrix A(s+1) = {a(s+1)
ij }Ni,j=1 is updated as:

a
(s+1)
ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (D.3)

The mean and variance, {ε(s+1)
m }Mm=1 and {(τ2

m)(s+1)}Mm=1, from the noise component, are

updated as:

ε(s+1)
m =

∑T
t=p∗

∑N
i=1 φ

t
m(i)xtm∑T

t=p∗
∑N

i=1 φ
t
m(i)

(τ2
m)(s+1) =

∑T
t=p∗

∑N
i=1 φ

t
m(i)(xtm − εm)2∑T

t=p∗
∑N

i=1 φ
t
m(i)

.

(D.4)

Denoting ϕtim := utimβim+dtimηim form = 1, ...,M , t = p∗, ..., T and hidden state i = 1, ..., N ,

241
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the relevance parameters ηim = {ηimr}pimr=1, βim = {βimk}kimk=0 can be updated jointly, solving

the following linear equation system:

∑T
t=p∗ ψ

t
m(i)xtm =

∑T
t=p∗ ψ

t
m(i)ϕtim∑T

t=p∗ ψ
t
m(i)xtmu

t
im1 =

∑T
t=p∗ ψ

t
m(i)utim1ϕ

t
im

...
...

...∑T
t=p∗ ψ

t
m(i)xtmu

t
imkim

=
∑T

t=p∗ ψ
t
m(i)utimkimϕ

t
im∑T

t=p∗ ψ
t
m(i)xtmx

t−1
m =

∑T
t=p∗ ψ

t
m(i)xt−1

m ϕtim
...

...
...∑T

t=p∗ ψ
t
m(i)xtmx

t−pim
m =

∑T
t=p∗ ψ

t
m(i)xt−pimm ϕtim

(D.5)

if θim = [βim|ηim]>, otim = [utim|dtim], and Ψp∗:T
im := Matrix([ψp

∗
m (i), ...., ψTm(i)]). Then, the

previous linear system is solved as:

θ
(s+1)
im =

(
(op

∗:T
im )>Ψp∗:T

im op
∗:T
im

)−1
(op

∗:T
im )>Ψp∗:T

im xp
∗:T
m (D.6)

Setting ϕ̂tim := utimβ
(s+1)
im + dtimη

(s+1)
im ; then, {(σ2

im)(s+1)}N,Mi,m=1 can be updated as:

(σ2
im)(s+1) =

∑T
t=p∗ ψ

t
m(i)(xtm − ν̂tim)2∑T
t=p∗ ψ

t(i)
. (D.7)

Proof. Deriving Q2(λ(s+1)|λ(s)) with respect to ρim:

∂Q2

∂ρim
=

T∑
t=p∗

ψtm(i)

ρim
− φtm(i)

(1− ρim)
= 0

(1− ρim)
T∑

t=p∗

ψtm(i) = ρim

T∑
t=p∗

φtm(i)

ρim

 T∑
t=p∗

ψtm(i) + φtm(i)

 =
T∑

t=p∗

ψtm(i)

ρim =

∑T
t=p∗ ψ

t
m(i)∑T

t=p∗ ψ
t
m(i) + φtm(i)

ρ
(s+1)
im =

∑T
t=p∗ ψ

t
m(i)∑T

t=p∗ γ
t(i)

(D.8)
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D.2 Synthetic data parameters

The parameters of mean and variance are exposed in Table D.1. Note that, the dependencies

of some variables change for every hidden states. Meanwhile, the parameters of the noise

variables are the same for all the hidden states.

i m ϕim σim i m ϕim σim
1 1 1.0 0.2 2 1 3.0 0.9
1 2 1.0 0.3 2 2 4.0 + 0.2Xt

1 0.8
1 3 1.0 1.0 2 3 1.0 1.0
1 4 1.0 0.6 2 4 2.0 0.7
1 5 1.0 0.2 2 5 2.0 + 0.4Xt

4 0.5
1 6 1.0 1.0 2 6 1.0 1.0
1 7 1.0 0.4 2 7 2.0 0.6
1 8 1.0 0.5 2 8 3.0 + 0.4Xt

7 0.7
1 9 1.0 1.0 2 9 1.0 1.0
1 10 1.0 1.0 2 10 2.0 1.1

3 1 3.0 1.0 4 1 2.0 + 0.5Xt−1
1 1.2

3 2 2.0 + 0.3Xt
1 + 0.4Xt

4 + 0.5Xt−1
2 0.9 4 2 3.0 + 0.2Xt

1 + 0.3Xt
4 + 0.3Xt−1

2 1.0
3 3 1.0 1.0 4 3 4.0 1.2

3 4 2.3 + 0.6Xt−1
4 0.8 4 4 2.5 + 0.3Xt

10 + 0.5Xt−1
4 0.9

3 5 2.5 + 0.4Xt
4 + 0.3Xt

7 0.5 4 5 3.0 + 0.4Xt
4 + 0.3Xt

7 0.7
3 6 1.0 1.0 4 6 1.0 1.0
3 7 3.0 0.8 4 7 2.6 + 0.5Xt

10 0.8

3 8 3.5 + 0.4Xt
7 0.8 4 8 3.0 + 0.4Xt

7 + 0.5Xt−1
8 0.9

3 9 1.0 1.0 4 9 1.0 1.0

3 10 3.0 + 0.7Xt−1
10 0.9 4 10 6.0 0.7

5 1 2.0 + 0.5Xt−1
1 + 0.2Xt−2

1 0.6

5 2 1.0 + 0.2Xt
1 + 0.3Xt

4 + 0.4Xt−1
2 + 0.1Xt−2

2 0.6
5 3 6.0 1.5

5 4 2.8 + 0.3Xt
10 + 0.6Xt−1

4 + 0.2Xt−2
4 0.7

5 5 3.5 + 0.1Xt
2 + 0.3Xt

4 + 0.2Xt
7 + 0.3Xt−1

5 0.9
5 6 1.0 1.0

5 7 2.8 + 0.3Xt
10 + 0.2Xt−1

7 0.5

5 8 3.0 + 0.1Xt
5 + 0.2Xt

7 + 0.3Xt−1
8 + 0.1Xt−2

8 0.4
5 9 1.0 1.0

5 10 6.0 + 0.6Xt−1
10 0.6

Table D.1: Used parameters for synthetic data



244 APPENDIX D. SUPPLEMENTARY MATERIAL FOR ONLINE LFS-HMMS



Appendix E
Supplementary material for

KDE-AsHMMs

E.1 Parameters to generate synthetic data

Here, the parameters used to generate the synthetic data are exposed, isntead of describing

the values {{cimk}κimk=1, {dimr}
pim
r=1, eim, σim}

N,M
i=1,m=1, the mean formulas and variances for each

variable and for each hidden state are provided.

Par Value Par Value Par Value

µt1,0 0.0 µt2,0 2.0 µt3,0 −2.0 + 0.4xt−1
0

µt1,1 −10.0 µt2,1 −1.0 + 1.5(xt0 − 2.0)2 + 0.5xt−1
1 µt3,1 2.0− 0.9(xt0 + 2.0)2 + 0.4xt−1

1 + 0.4xt−2
1

µt1,2 20.0 µt2,2 3.0− 0.9(xt0 − 2.0)2 µt3,2 −3.0 + 1.5(xt0 + 2.0)2 + 0.4xt−1
2

µt1,3 0.0 µt2,3 2.0 + 0.6xt−1
3 µt3,3 −2.0− 0.5xt−1

3 − 0.3xt−2
3

µt1,4 8.0 µt2,4 2.0 + 2.0(xt3 − 2.0)2 µt3,4 −2.0− 2.0(xt3 + 2.0)2 + 0.6xt−1
4

µt1,5 1.0 µt2,5 1.0 µt3,5 1.0

µt1,6 2.0 µt2,6 2.0 µt3,6 2.0

σ1,0 0.1 σ2,0 1.0 σ3,0 2.0
σ1,1 0.3 σ2,1 0.7 σ3,1 0.5
σ1,2 0.5 σ2,2 0.2 σ3,2 0.6
σ1,3 0.2 σ2,3 1.2 σ3,3 1.3
σ1,4 1.8 σ2,4 1.4 σ3,4 0.2
σ1,5 0.5 σ2,5 0.5 σ3,5 0.5
σ1,6 0.6 σ2,6 0.6 σ3,6 0.6

Table E.1: Synthetic parameters to generate KDE-AsHMM data
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