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and Concha Bielza2

1 Aingura IIoT, San Sebastian, Spain
epuerto@ainguraiiot.com
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Abstract. Much attention has been given to supervised feature subset
selection methodologies in data streams. However, less attention has been
given to data streams produced by sensors in industrial environments,
where labels are difficult to obtain. Feature subset selection is critical in
online analysis since it can accelerate and improve the performance of any
model inference and reduce data storage issues especially when no cloud
is available. In this work we propose an online feature subset selection
methodology based on hidden Markov models (HMM) for unsupervised
data streams of ball-bearings in order to determine which fundamental
and harmonic frequencies are relevant during operation. A validation of
the proposed methodology is done with synthetic data and ball-bearing
real data in a controlled data stream ambient.

Keywords: Hidden Markov models · Feature selection ·
Ball-bearings · Frequency analysis · Data stream

1 Introduction

In recent years, the advances in electronics, data processing and storage have
enabled industries to perform continuous surveillance of their assets using sen-
sors. In the data processing phase, several mechanical, thermal, electrical and
other type of variables are measured. However, some of them may not be always
relevant for the underlying dynamic process; therefore, it is crucial to have a
model or algorithm capable of determining the relevant variables depending on
the current state of the asset. As it will be explained below, ball-bearings can be
characterized by their fundamental frequencies able to describe their behavior
[1]. Thus, a straightforward question arises: which frequencies and harmonics are
relevant and when do they begin to be important?

In spite that several works can be found in feature subset selection (FSS) in
data streams in supervised problems, many fewer appear in unsupervised prob-
lems [2]. As instance, [3] developed an FSS methodology for data streams based
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on matrix sketching1 from the up-to-time data, and a ridge regression2. The
coefficients of the regression are used as a relevancy score. [4] assumed that sev-
eral datasets could arrive simultaneously and the goal was to determine jointly
for each dataset their relevant features. A penalized non-negative matrix factor-
ization was carried out for each dataset coming from each view to extract the
feature relevancy vectors. [5] proposed a dynamic FSS algorithm that could be
used together with any model based clustering. Their idea was to perform a clus-
ter feature selection once a buffer of data was filled. The selected features were
used to update a relevancy score vector which indicated the pertinent features.
The features which overpassed a threshold were used in the cluster model. In all
the mentioned methodologies, the FSS is performed whenever a new instance or
chunk of data arrives.

Feature saliency methodologies can be viewed as embedded FSS techniques
capable of determining the relevancy of certain variables during the learning
phase of a clustering model. In particular, [6,7] and [8] developed variants of
hidden Markov model (HMM), where a set of feature saliencies were used to
determine which variables were relevant to describe the data. In [6] and [8],
a variational Bayesian method was used to maximize the log-likelihood of the
model and learn the parameters, whereas in [7] a maximum a posteriori approach
was used to learn the model parameters. The previous models were developed
only for offline analysis.

In this work the unsupervised model of [7], that we denote as FS-HMM, is
applied as the cornerstone for a data stream unsupervised FSS methodology
with an application to ball-bearings surveillance. This model is chosen since it
has a simple formulation, interpretation and it is easy to implement. In this
application, ball-bearing frequencies are recorded and the goal is to determine
dynamically their relevancy. As it will be shown, the proposed methodology
updates the relevant features when needed and not whenever a new instance or
chunk of data arrives as in the previous reviewed articles. The article is struc-
tured as follows: Sect. 2 introduces the main concepts of hidden Markov models
to understand the methodology. Section 3 explains the proposed methodology.
Later, Sect. 4 describes the synthetic and real data used for validation. Then,
Sect. 5 shows the obtained results from the real and synthetic data. Finally,
Sect. 6 rounds off the article with the relevant conclusions.

2 Theoretical Framework

2.1 Hidden Markov Models

An HMM can be seen as a double-chain stochastic model, where one chain is
observed, namely X0:T = (X0, ...,XT ), where Xt = (Xt

1, ...,X
t
M ) ∈ RM and

the other chain is hidden, namely Q0:T = (Q0, ..., QT ). Here, T + 1 is the length

1 Using singular value decomposition (SVD), a lower rank matrix is extracted from a
matrix.

2 The regression target is the right matrix of the SVD of the sketch matrix.



548 C. Puerto-Santana et al.

of the data. It is assumed that the range R of the hidden variable is finite, i.e.,
R(Qt) = {1, 2, ..., N} for t = 0, 1, ..., T . The usual approach for HMMs [9] is to
assume that the hidden process has the first-order Markovian property, that is,
P (Qt|Q0:t−1) = P (Qt|Qt−1). It is assumed that the observable process depends
on the hidden process, more specifically bQt(Xt) := P (Xt|X0:t−1,Q0:t) =
P (Xt|Qt).

All the previous HMM specifications can be summarized with the parameter
λ = (A,B,π) ∈ Ω, where Ω denotes the space of all possible parameters, A is
a matrix representing the transition probabilities between hidden states, B is a
vector representing the emission probability of the observations given the hidden
state and π is the initial probability distribution of the hidden states.

2.2 Feature Relevancy Model

The idea behind any feature saliency model is to declare a set of binary variables,
say {Zm}M

m=1 which will indicate the feature relevancy. Each Zm variable follows
a Bernoulli distribution with a parameter ρm which is called the feature saliency
of variable Xm. If ρm = 1, it implies that the feature is always relevant, whereas
if ρm = 0, the variable is never relevant. These variables are added into the
model to determine if an observed variable is relevant or not. For example, in
the case of HMMs [7], the feature saliency parameters are added to the emission
probabilities: bQt(Xt) =

∏M
m=1 ρmN (Xt

m|μQtm, σ2
Qtm)+(1−ρm)N (Xt

m|εm, τ2
m),

where N is the probability density function (pdf) of a normal distribution with
mean μ and variance σ2. Observe that when ρm = 1, the pdf used for variable
Xm depends on the hidden state Qt. However, if ρm = 0 the pdf does not depend
on the hidden state Qt and variable Xm is considered as drifted Gaussian noise
with mean ε and variance τ2. As ρm ∈ [0, 1], it is plausible that some variables
relevancies lie in gray levels. In this article we assume that a feature is relevant
if ρ > 0.9. Further details on optimization of parameters and inference for these
type of models can be found in [7].

2.3 Novel Trend Detection

Since the aim of this article is to work with data flows, it is expected that the
underlying parameters that drive the data evolve with time. Given a model,
when a change in the relevancy of the underlying parameters has occurred it is
not expected that the model will predict and explain correctly the new data.
These changes in the intrinsic data parameters are called a gradual or abrupt
‘concept drift’. A novel concept drift can appear gradually or rapidly in data.
Any model which tries to describe and predict the data stream must be capable
to adapt when necessary. Traditionally, three strategies had been used to deter-
mine the appearance of novel concept drifts. The first one consists of control
charts, as in [10]. The second one of sequential analysis, as in [11]. The third
one are hypotheses tests about distribution similarities, as in [12]. In practice,
sequential tests are deemed to be robust and fast enough to be used in data
stream environments.
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The use of sequential tests can be used with Chernoff bounds to detect con-
cept drifts with more confidence [13]. The Chernoff bounds are used to give a
threshold in the amount of drifting data in the sequential test before a novel
concept drift is detected. Once a new concept drift is found, the current model
is updated to fit the new trends in the data. The updating process can vary
depending on the application. However, in this work, the updating process con-
sists of retraining the model with the up-to-time data. This is necessary since
the model requires to discriminate between Gaussian noise and time-changing
variables. If there are memory limitations, a large-size buffer can store the data
and retrain the model when a novel concept drift is detected. However, in this
work we assume that there are no memory problems.

2.4 Ball-Bearing Fundamental Frequencies

Ball-bearings are an important component inside several mechanical-tool
machines. These mechanical components are under force and thermal charges
which may degrade their structural integrity and therefore cause failures inside
larger mechanical-tool machines. The ball-bearings consist of four parts: inner
ring, outer ring, balls and cage train. Depending on the geometry of the ball-
bearing, each part can be characterized with a frequential component, say: ball
pass frequency outer (BPFO) related to the ball-bearing outer ring, ball pass fre-
quency inner (BPFI) related to the ball-bearing inner ring, ball spin frequency
(BSF) related to the ball-bearing balls and fundamental train frequency (FTF)
related to the ball-bearing train. Using a spectral feature extraction (SFE) algo-
rithm based on spectral kurtosis and envelope demodulation [14], the previous
frequencies and their harmonics are extracted from the ball-bearing acceleration
signal and used as inputs for the FSS algorithm.

3 Proposed Methodology

Start

Get sample SFE FS-HMM0? FS-HMM∗

BIC/uPage testp̂n∗ > p ?FS-HMM∗

True

False

True

False

Fig. 1. Flow diagram of the proposed methodology. The idea is to update the model
and the relevant features whenever a novel trend is detected.

Here we expose the proposed data-stream procedure to update the FS-HMM,
such that the set of relevant features are changed only when needed. Figure 1
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shows a flow diagram of the proposed methodology. The first step is to obtain
ball-bearing frequential data from sensors using the SFE algorithm (Get Sample
and SFE ). Then, the first FS-HMM∗ is created if no previous FS-HMM model
is available (first iteration). Later, the Bayesian information criterion per unit
of observation (BIC/u) is computed using the current FS-HMM. The BIC/u is
the BIC score [15] divided by the length of the data. These steps are done with
the boxes FS-HMM∗ and BIC/ut. Whereas, the decision node FS-HMM0? asks
whether there exists a FS-HMM or not. Next, the BIC/u scores are used in the
Page sequential test to indicate whether the current observations are outliers or
not. If the percentage of outliers overpasses a percentage of permissible outliers in
a window given by the Chernoff bounds, then, a re-training process is performed
and the model is updated with the up to time collected data. The Page sequential
test is done with the box Page test and with the question node p̂n∗ > p? it is
determined if updating the model is required or not. The updating process is
done in the box FS-HMM∗. Finally, the methodology goes back to the captured
data to continue the process of model learning and updating.

4 Experimental Set up

4.1 Synthetic Data Description

It is assumed that there are eight variables which may change their dynamical
behavior over time. The goal is to determine when a variable is totally irrelevant
or it changes to be relevant. Also, it is assumed that the process is described by
normal Gaussian distributions N (μ, σ2). The parameters used for this experi-
ment are provided in Table 1.

Table 1. Parameters used to generate the synthetic data

X1 X2 X3 X4

μ σ t μ σ t μ σ t μ σ t

–3 1.5 [0, 1500] –2 2.5 [0, 1500] 2.3 2.1 [0, 1500] 0.0 1.2 [0, 3000]

4 1.2 (1500, 3000] 6 1.2 (1500, 3000] 2.8 1.1 (1500, 8000] –2.6 2.5 (3000, 6000]

10 2.1 (3000, 6000] 4 1.2 (3000, 6000] 3.1 0.8 (6000, 8000]

–3 1.5 (6000, 8000] –2 2.5 (6000, 8000]

X5 X6 X7 X8

μ σ t μ σ t μ σ t μ σ t

–3.2 1.5 [0, 8000] 2.7 2.5 [0, 8000] –5.3 1.4 [0, 8000] 1.6 1.2 [0, 1500]

7.8 1.0 (1500, 3000]

–6.5 2.0 (3000, 6000]

1.6 1.2 (6000, 8000]

The parameters are chosen such that variables X1, X2 and X8 are relevant
variables. On the other hand, variables X5, X6 and X7 are irrelevant since they
are Gaussian noise. Variable X4 is at first sight irrelevant but becomes relevant
with the progression of periods. Variable X3 becomes irrelevant over time.
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4.2 Real Data Description

The purpose of this ball-bearing testing set up is to monitor vibrations over
time during ball-bearing useful life. The experimental set up is shown in Fig. 2
(a). This testbed has a Bosch IndraDyn MS2N synchronous servomotor 1 that
guarantees the required speed during testing, a shaft 2 with different ball-
bearing clamping positions and an elastic coupling 3 to the servomotor. The
testbed has three ball-bearing supports, one for the axial force actuator 4
and two for support. The system is designed to affect the outside ball-bearing
5 useful life when axial force is applied. A screw-based force actuator system

together with a load sensor 6 . An IMI 607A61 accelerometer 7 is used to
measure vibrations and a thermocouple 8 for monitoring temperature.

Fig. 2. Experimental testbed: (a) Ball-bearing testbed details, (b) Aingura Insights
computing module

Figure 2(b) shows the data acquisition and pre-processing computing module
called Aingura Insights (CMAI). The CMAI has an embedded system with a
Zynq R© Ultrascale+TM MPSoC, four channels for accelerometer readings up to
19.5 kHz. Inside the CMAI, the SFE procedure is performed and the fundamental
frequency amplitudes and up to four harmonics are computed and stored (20
variables). An Eco 6004-2RS ball-bearing is tested at a radial force of 2.41 kN
at 3180 RPM (53 Hz). The ball-bearing runs during T = 400 h or equivalently 2.5
times its theoretical operation life.

5 Results

The number of hidden states of the FS-HMM must be fixed beforehand. For
synthetic data, from the construction of the data, the number of hidden states is
three. In the case of real data this is unknown and models with three, four and
five hidden states were tried. However, the best temporal BIC/u was obtained
using three hidden states, i.e., lower maximum and minimum BIC/u scores were
attained with three hidden states. Additionally, the length of the first window for
training data was 256; later, the window was increased by 10 data points. From
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the Chernoff bounds, the window to determine anomalies was of size n∗ = 87
and p = 10%. These parameters were selected after a sensibility study.

5.1 Results from Synthetic Data

)b()a(

Fig. 3. Evolution of the relevancy level for the different variables. Whenever a dotted
vertical line is observed, it implies that an updating model procedure was done.

In Fig. 3 the results obtained from the synthetic data are drawn. Vertical dotted
lines are used to indicate novel concept drift detection. In (a) the BIC/u evolution
is shown. Note that, after an important growth in BIC/u, the model is re-trained
and the BIC/u trend decreases and the model fitness becomes stable. In particu-
lar, three updating processes are performed at times close to t = 1500, 3000, 6000
related to the variable definitions in Table 1. The delay in the updating process
is caused by the Chernoff bounds; however, these Chernoff bounds are necessary
to prevent unnecessary model updating due to outliers. In (b) the evolution of
relevancies of the variables X1 to X8 are drawn. Before the first novel detection,
only one feature has a relevancy ρ greater than 0.9, this is reasonable since before
t = 1500 all the features behaved like noise. After t = 1500 variables X1, X2 and
X8 have a high relevancy level (close to 1); however variables X3, X4, X5, X6

and X7 have a low relevancy value. Nevertheless, the variable X4 obtains more
relevancy with each re-updating process since its dynamical behavior becomes
more clear. On the other hand, variables X5, X6 and X7 which were built as
noise, keep a low level of relevancy after all the re-updating processes. From this
experiment, it can be determined that the model can discriminate between noise
and relevant features dynamically, and the model is updated only when needed.

5.2 Results from Real Data

Figure 4(a) shows the evolution of the amplitude of the fundamental frequencies.
Note that, the FTF amplitude is the frequency which shows the greater values
and changes. In comparison, the BPFI and BPFO amplitudes show the lowest
values and the dynamical changes are less evident.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) recorded fundamental frequencies amplitudes. (b) evolution of BIC/u. (c),
(d), (e) and (f) show the progressions of the relevancy levels for different features.
Dotted vertical lines imply that an updating model procedure was done.

Observe in Fig. 4(b) that the BIC/u score is always going up in spite of the
several novel concept drifts detected. However, at the end of the process, the
data is stable and fewer re-updates were needed.

We write A i f A as the (i − 1)-harmonic of the f frequency (being the 0-
harmonic the fundamental f frequency). (c) corresponds to the progression of
the relevancy for the BPFO and its harmonics. It is noticeable that the level of
relevancy of the fundamental frequency is high for the whole process, whereas
its harmonics can be less relevant. In particular, the fourth harmonic shows the
greatest decay in relevancy to become irrelevant. As for the BPFO case, the
fundamental frequency for BPFI in (d) is always relevant, whereas its harmonics
are less relevant. In particular, the first harmonic showed low to intermediate
levels of relevancy, but at later periods it increased its relevancy. In the case
of BSF in (e), the fundamental frequency and its first harmonic are the most
relevant features. It is also remarkable that the remaining harmonics have times
of high or low relevancy. In (f), the harmonics of FTF sometimes are more
relevant than the fundamental frequency during the ball-bearing evolution.

Since the FTF was the fundamental frequency with the more evident dynamic
changes, a deeper analysis of this feature is carried out. In Fig. 5(a) the FTF
amplitude progression is segmented by the most relevant harmonic. In particular,
during the first important change at time t = 60, the fundamental frequency is
the most relevant feature; however, after that, it does not appear again. On
the other hand, the first harmonic is the most relevant feature for a large time
period at t ∈ [180, 360]. In (b), the evolution of the least relevant harmonic
is shown; in particular, the first harmonic, is the least relevant at the early
stages of the data stream to later become the most relevant harmonic. Also,
it is remarkable that there are times where the fundamental frequency is the
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(a) (b) (c)

Fig. 5. FTF amplitude segmented by (a) the most relevant feature and (b) the least
relevant feature. (c) shows the temporal difference ΔBIC/u

least relevant; which implies that information would be lost if the harmonics
are omitted from the analysis. Therefore, some harmonics play a relevant role
in describing the dynamical data and the role changes over time. Accordingly,
monitoring frequency/harmonics is of crucial interest.

Finally, in (c) we compute ΔBIC/u = (BIC/u)̈ı − (BIC/u)FS where
(BIC/u)FS is the BIC/u by using a FS-HMM model and (BIC/u)̈ı using a näıve-
HMM [16]. The mean of (c) is ΔBIC/u = 0.74 > 0, i.e., (BIC/u)̈ı > (BIC/u)FS
which suggests that for this study, the use of FS-HMM improves the perfor-
mance.

6 Conclusion

The approach presented in this paper showcases a key enabler towards Indus-
trial Internet of Things/Industry 4.0, where communications infrastructure and
deployed machine learning applications can benefit in terms of reduction of data
traffic and improved performance respectively due to the feature subset selection.
Specifically, this paper adapts an offline unsupervised machine learning model to
an online dynamic feature subset selection methodology based on novel concept
drift detection in data stream. To demonstrate its applicability within real-world
scenarios, the approach has been used to determine relevant frequency ampli-
tudes of a ball-bearing. The methodology was capable of changing the subset of
relevant features when needed in both synthetic and real data instead of com-
puting the relevancy whenever a new instance or chunk of data arrived as it is
done in previous methodologies [3–5]. Moreover, the algorithm could capture the
evolution of relevancy for fundamental frequencies and their harmonics. For real
data and depending on the ball-bearing part, for its corresponding frequency
amplitude, some harmonics may be more or equally relevant as the fundamental
frequency; also, this relevancy could change over time.
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