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Abstract

Nowadays, with the ongoing and rapid evolution of information technology and computing

devices, large volumes of data are continuously collected and stored in different domains

and through various real-world applications. Extracting useful knowledge from such a huge

amount of data usually cannot be performed manually, and requires the use of adequate

machine learning and data mining techniques.

Classification is one of the most important techniques that has been successfully applied

to several areas. Roughly speaking, classification consists of two main steps: first, learn a

classification model or classifier from an available training data, and secondly, classify the new

incoming unseen data instances using the learned classifier. Classification is supervised when

the whole class values are present in the training data (i.e., fully labeled data), semi-supervised

when only some class values are known (i.e., partially labeled data), and unsupervised when

the whole class values are missing in the training data (i.e., unlabeled data). In addition,

besides this taxonomy, the classification problem can be categorized into uni-dimensional or

multi-dimensional depending on the number of class variables, one or more, respectively; or

can be also categorized into stationary or streaming depending on the characteristics of the

data and the rate of change underlying it.

Through this thesis, we deal with the classification problem under three different set-

tings, namely, supervised multi-dimensional stationary classification, semi-supervised uni-

dimensional streaming classification, and supervised multi-dimensional streaming classifica-

tion. To accomplish this task, we basically used Bayesian network classifiers as models.

The first contribution, addressing the supervised multi-dimensional stationary classifica-

tion problem, consists of two new methods for learning multi-dimensional Bayesian network

classifiers from stationary data. They are proposed from two different points of view. The first

method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the

second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets.

Both methods are applied to two important real-world problems, namely, the prediction of the

human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors,

and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item

Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons

of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as

well as against commonly used methods for solving the Parkinson’s disease prediction problem,

namely, multinomial logistic regression, ordinary least squares, and censored least absolute

deviations. For both considered case studies, results are promising in terms of classification



accuracy as well as regarding the analysis of the learned MBC graphical structures identifying

known and novel interactions among variables.

The second contribution, addressing the semi-supervised uni-dimensional streaming clas-

sification problem, consists of a novel method (CPL-DS) for classifying partially labeled data

streams. Data streams differ from the stationary data sets by their highly rapid genera-

tion process and their concept-drifting aspect. That is, the learned concepts and/or the

underlying distribution are likely changing and evolving over time, which makes the current

classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler

divergence and bootstrapping method to quantify and detect three possible kinds of drift:

feature, conditional or dual. Then, if any occurs, a new classification model is learned using

the expectation-maximization algorithm; otherwise, the current classification model is kept

unchanged. CPL-DS is general as it can be applied to several classification models. Using two

different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with

synthetic data streams and applied to the real-world problem of malware detection, where the

new received files should be continuously classified into malware or goodware. Experimental

results show that our approach is effective for detecting different kinds of drift from partially

labeled data streams, as well as having a good classification performance.

Finally, the third contribution, addressing the supervised multi-dimensional streaming

classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC

(LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the con-

cept drift over time using the average log-likelihood score and the Page-Hinkley test. Then,

if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network clas-

sifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional

Bayesian network classifier from scratch. Experimental study carried out using synthetic

multi-dimensional data streams shows the merits of both proposed adaptive methods.



Resumen

Hoy en d́ıa, con la evolución continua y rápida de las tecnoloǵıas de la información y los

dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de

datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción

de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente

de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de

mineŕıa de datos.

La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito

a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer

lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de

entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasi-

ficador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes

en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada

cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y

no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es

decir, datos no etiquetados). Además, aparte de esta taxonomı́a, el problema de clasificación

se puede categorizar en unidimensional o multidimensional en función del número de vari-

ables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o

cambiante con el tiempo en función de las caracteŕısticas de los datos y de la tasa de cambio

subyacente.

A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas

diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semi-

supervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimen-

sional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los

clasificadores Bayesianos como modelos.

La primera contribución, dirigiéndose al problema de clasificación supervisada multi-

dimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores

Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen

desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una

estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el

segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación

basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos

problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa

inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia

humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a



partir de los cuestionarios de la enfermedad de Parkinson con 39 ı́tems (PDQ-39). El estudio

experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte

de la clasificación multidimensional, aśı como con métodos comúnmente utilizados para re-

solver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión loǵıstica

multinomial, mı́nimos cuadrados ordinarios, y mı́nimas desviaciones absolutas censuradas.

En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de

la clasificación, aśı como en relación al análisis de las estructuras gráficas que identifican

interacciones conocidas y novedosas entre las variables.

La segunda contribución, referida al problema de clasificación semi-supervisada unidimen-

sional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos

de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos

estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto.

Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cam-

biando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea

obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método

de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras,

en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo

modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación

actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios

modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la re-

gresión loǵıstica, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado

al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos

deben ser continuamente clasificados en malware o goodware. Los resultados experimentales

muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a

partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de

la clasificación.

Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multi-

dimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally

Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos

monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud me-

dia como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto,

LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor

de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano

multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multi-

dimensionales indica los méritos de los métodos adaptativos propuestos.



Résumé

De nos jours, avec l’évolution continue et rapide de la technologie de l’information et des

dispositifs informatiques, de grandes quantités de données sont continuellement collectées et

stockées dans plusieurs domaines et à travers diverses applications réelles. Généralement,

l’extraction de connaissances utiles à partir d’une quantité si énorme de données ne peut

pas être réalisée manuellement, et exige l’utilisation de techniques adéquates d’apprentissage

automatique et de fouille de données.

La classification est l’une des techniques les plus importantes qui a été appliquée avec

succès à plusieurs domaines. En général, la classification se compose de deux étapes prin-

cipales : premièrement, apprendre un modèle de classification ou classifieur à partir des

données d’apprentissage disponibles, et deuxièmement, classifier les nouvelles instances reçues

en utilisant le classifieur obtenu. La classification est supervisée quand toutes les étiquettes

sont présentes dans les données d’apprentissage (c’est-à-dire, données totalement étiquetées),

semi-supervisée quand seulement quelques étiquettes sont connues (c’est-à-dire, données par-

tiellement étiquetées), et non-supervisée quand toutes les étiquettes sont absentes dans les

données de d’apprentissage (c’est-à-dire, données totalement non-étiquetées). En outre, en

plus de cette taxonomie, le problème de classification peut être catégorisé en unidimensionnel

ou multidimensionnel selon le nombre de variables classe, un ou plusieurs, respectivement; ou

peut être également catégorisé en stationnaire ou non-stationnaire selon les caractéristiques

des données et le taux de changement sous-jacent.

A travers cette thèse, nous abordons le problème de classification à partir de trois perspec-

tives différentes, à savoir, classification supervisée multidimensionnelle stationnaire, classifi-

cation semi-supervisée unidimensionnelle non-stationnaire, et classification supervisée multi-

dimensionnelle non-stationnaire. Pour atteindre ce but, nous avons utilisé fondamentalement

les classifieurs Bayésiens comme modèles.

La première contribution, traitant le problème de classification supervisée multidimen-

sionnelle stationnaire, consiste en deux méthodes nouvelles pour l’apprentissage des classi-

fieurs Bayésiens multidimensionnels à partir de données stationnaires. Ces méthodes sont

proposées selon deux points de vue différents. La première méthode, nommée CB-MBC, est

basée sur une approche gloutonne wrapper avec sélection incrémentale, alors que la seconde,

nommée MB-MBC, est une approche filter d’apprentissage sous contraintes basé sur les cou-

vertures de Markov. Les deux méthodes sont appliquées à deux problèmes réels importants,

à savoir, la prédiction des inhibiteurs de la transcriptase inverse et de la protéase du virus

de l’immunodéficience humaine de type 1 (HIV-1), et la prédiction du score Européen de

Qualité de vie en 5 dimensions (EQ-5D) à partir du questionnaire d’évaluation de la mal-



adie de Parkinson avec 39 items (PDQ-39). L’étude expérimentale inclut des comparaisons

de CB-MBC et MB-MBC avec des méthodes de l’état de l’art de la classification multidimen-

sionnelle, ainsi qu’avec des méthodes communément utilisées pour la résolution du problème

de la prédiction de la maladie de Parkinson, à savoir, la régression logistique multinomiale,

les moindres carrés ordinaires, et les moindres déviations absolues censurées. Pour les deux

études de cas considérées, les résultats sont prometteurs en termes d’exactitude de classifica-

tion ainsi que par rapport à l’analyse des structures graphiques qui permettent l’identification

d’interactions connues et nouvelles entre les variables.

La deuxième contribution, traitant le problème de classification semi-supervisée unidimen-

sionnelle non-stationnaire, consiste en une nouvelle méthode (CPL-DS) pour classifier les flux

de données partiellement étiquetés. Les flux de données diffèrent des bases de données station-

naires par leur processus de génération très rapide et leur aspect de changement de concept.

C’est-à-dire, les concepts appris et/ou la distribution sous-jacente changent et évoluent avec

le temps, ce qui fait que le modèle de classification actuel devient obsolète et doit être mis à

jour. CPL-DS utilise la divergence de Kullback-Leibler et la méthode de bootstrapping à fin

de quantifier et détecter trois types possibles de changement : changement de la distribution

des attributs, changement de la distribution conditionnelle de la classe, ou les deux. Ensuite,

si un changement quelconque se produit, un nouveau modèle de classification est appris en

utilisant l’algorithme EM; si non, le modèle de classification actuel est maintenu sans modi-

fications. CPL-DS est général et peut être appliqué à plusieurs modèles de classification. En

utilisant deux modèles différents, à savoir, le classifieur Bayésien näıf et la régression logis-

tique, CPL-DS est testé avec des flux de données synthétiques et appliqué aussi au problème

réel de la détection de malware, où les nouveaux dossiers reçus doivent être continuellement

classifiés en malware ou goodware. Les résultats expérimentaux prouvent que notre approche

est efficace pour la détection de différents types de changement à partir de flux de données

partiellement étiquetés, et dispose aussi d’une bonne exactitude de classification.

Finalement, la troisième contribution, se référant au problème de classification supervisée

multidimensionnelle non-stationnaire, se compose de deux méthodes adaptatives, à savoir

Locally Adaptive-MB-MBC (LA-MB-MBC) et Globally Adaptive-MB-MBC (GA-MB-MBC). Les

deux méthodes contrôlent le changement de concept au fil du temps en utilisant la log-

vraisemblance moyenne et le test de Page-Hinkley. Ensuite, si un changement de concept est

détecté, LA-MB-MBC adapte le classifieur Bayésien multidimensionnel actuel localement autour

de chaque nœud changé, tandis que GA-MB-MBC apprend un nouveau classifieur Bayésien mul-

tidimensionnel. L’étude expérimentale effectuée avec des flux de données multidimensionnels

synthétiques montre les apports des deux méthodes adaptatives proposées.
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Chapter 1
Introduction

This dissertation aims to contribute to the state-of-the-art of both multi-dimensional classi-

fication and data stream mining. It provides new algorithms for learning multi-dimensional

Bayesian network classifiers from stationary data, and deals with mining data streams in

both uni-dimensional and multi-dimensional classification settings. In the following sections,

we briefly present the main contributions as well as the full thesis overview pointing to the

chapters where each contribution is introduced and discussed.

1.1 Contributions of the dissertation

The main contributions of this dissertation are presented in two parts. The first part discusses

the contributions related to learning multi-dimensional Bayesian network classifiers from sta-

tionary data, whereas the second part is dedicated to mining uni- and multi-dimensional

concept-drifting data streams.

1.1.1 Learning multi-dimensional Bayesian network classifiers from sta-

tionary data set

Multi-dimensional classification is defined as an extension of the classical uni-dimensional

classification where each instance is associated with not only one class variable but with a

set of class variables. The aim is to learn a classifier from the available multi-dimensional

stationary data set, then use it subsequently to predict the set of class variables for each unseen

instance. In the case where all class variables are binary, the multi-dimensional classification

problem is also known in the literature as multi-label classification.

3



4 Chapter 1. Introduction

The state-of-the-art approaches dealing with multi-dimensional classification are gener-

ally categorized into two main categories: problem transformation and algorithm adaptation.

Problem transformation methods are algorithm independent and proceed by transforming

the multi-dimensional classification task into one or more uni-dimensional classification tasks,

whereas algorithm adaptation methods extend specific uni-dimensional learning algorithms

in order to handle directly the multi-dimensional data sets.

For Bayesian networks, problem transformation methods can either opt for: (a) building a

compound class variable that models all possible combinations of the class variables and then

applying any existing uni-dimensional Bayesian network classifier; or (b) learning multiple

uni-dimensional Bayesian network classifiers, one for each individual class variable as if all

of them were independent. In the former case, the class variable can easily ends up with a

huge number of values which may weakness the predictive performance of such a classifier.

However, in the latter case, by building multiple classifiers, the interactions among the various

class variables and their simultaneous interactions with feature variables cannot be detected,

which does not represent accurately the multi-dimensional classification problem.

In order to deal properly with this problem, the so-called multi-dimensional Bayesian net-

works classifiers (MBCs) have been recently proposed and defined as an algorithm adaptation

method that extends the general Bayesian networks to the multi-dimensional classification

problem [222]. An MBC is a Bayesian network that includes one or more class variables

and one or more feature variables. It models the probabilistic (in)dependence relationships

between the variables through its graphical structure, partitioning the set of class and feature

variables into three different subgraphs: class subgraph representing the dependence rela-

tionships between class variables, bridge subgraph representing the dependence relationships

between class and feature variables, and feature subgraph representing the dependence rela-

tionships between feature variables; and through its second component, the parameters, it

defines the conditional probability distribution of each variable given the set of its parents in

the graphical structure [13, 222].

As Bayesian networks, the learning problem from stationary data sets consists of finding

an MBC that best fits the available data. Various MBC learning methods have been recently

defined [13, 61, 177, 188, 222, 237, 238] either based on filter, wrapper or hybrid approaches.

Moreover, some of these proposed MBC learning methods include restrictions on the structure

of the class and feature subgraphs, while others allow any kind of structure.

Our aim in this part is to tackle some shortcomings of the existing works found in the

literature such as those related to the most probable explanation computational burden or the

structure learning strategy, including, as mentioned above, the restrictions on the structure
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of the class and feature subgraphs. Basically, we propose in this part two novel and different

algorithms for learning MBCs from stationary data sets:

� The first one, named class-bridge decomposable multi-dimensional Bayesian network

classifiers (CB-MBC), is based on a wrapper greedy forward selection approach, optimizing

at each step the accuracy of the model given the training data set. CB-MBC firstly learns

an initial bridge subgraph with a number of maximal connected components equal to

the number of class variables, then it induces an initial feature subgraph. Next, as long

as the number of maximal connected components is greater than one and there is an

accuracy improvement, it iteratively and sequentially merges together two components

and updates the bridge and feature subgraphs accordingly.

� The second algorithm, named Markov blanket-based multi-dimensional Bayesian net-

work classifiers (MB-MBC), is a filter constraint-based approach and is motivated by the

fact that the classification is unaffected by parts of the structure that lie outside the

Markov blankets of the class variables. MB-MBC builds MBCs by firstly identifying the

Markov blanket around each class variable using the HITON algorithm [4, 5], then

specifying the directionality over the MBC subgraphs.

Both algorithms are compared against the state-of-the-art MBC learning methods using

both synthetic and real-world stationary data sets. Specifically, both algorithms are applied

to two important real-world multi-dimensional problems, namely:

� The prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcrip-

tase and protease inhibitors: this application is supported by the Dynamo project

(FONCICYT, European Union and México) and has as objective the prediction of

antiretroviral combination therapies given an input set of resistance mutations, that a

HIV-1 patient carries, to treat the HIV-1 infection. The analyzed multi-dimensional

data consists of both reverse transcriptase and protease inhibitor data sets obtained

from the Stanford HIV-1 database [185].

� The prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item

Parkinson’s Disease Questionnaire (PDQ-39): this application is carried out in a col-

laboration with Abbott Products Operations AG and CIEN Foundation. Basically, the

aim is to use MBCs to predict the EQ-5D five class values from the 39-item Parkinson’s

disease questionnaire, and determine thereby the general health state of Parkinson’s

disease patients. The analyzed multi-dimensional Parkinson’s disease data set was ob-



6 Chapter 1. Introduction

tained from an international multipurpose database collected by the National Center of

Epidemiology, Carlos III Institute of Health, Madrid.

1.1.2 Mining uni- and multi-dimensional evolving data streams

A data stream environment has different characteristics from the stationary setting discussed

in the previous section. In the traditional stationary classification problem, the whole stored

training data set is used to induce a classifier or a decision model that will never be revised and

will be valid to classify all the new incoming instances over time. The rationale behind this

is that the distribution underlying the stationary data is assumed to be stable and does not

change over time. However, the data stream classification problem presents more challenges

due to its infinite length and evolving nature. In fact, the data is generally collected over an

extended period of time, its underlying distribution is likely to change, and thus the decision

models should be able to detect and adapt to such a change.

In recent years, the field of mining evolving data streams has received an increasing at-

tention and a plethora of approaches have been developed and applied to a wide range of

real-world applications [1, 14, 86, 130, 220, 231, 244]. However, most of these approaches are

based on mining fully labeled uni-dimensional data streams. In fact, they assume that the true

labels are entirely available in the data streams and they are limited to the uni-dimensional

setting where only a single class variable needs to be predicted.

In this part of the thesis, the aim is to deal with these two limitations. On the one

hand, a novel algorithm (CPL-DS) for classifying partially labeled uni-dimensional evolving

data streams is proposed for the case where the assumption of entirely labeled data streams

availability is violated and labels are either scarce and/or not readily available. On the other

hand, streaming multi-dimensional classification is studied and new adaptive MBC learning

algorithms are presented in order to deal with the case where more than one class variable

are available in the data streams. Specifically:

� Classifying partially labeled uni-dimensional data streams:

We propose here a new semi-supervised approach, named CPL-DS, for handling concept-

drifting evolving data streams containing both labeled and unlabeled instances. First,

contrary to most of the proposals found in the literature, CPL-DS monitors three pos-

sible kinds of drift: feature, conditional or dual drift. Drift detection is based on a

hypothesis test comparing Kullback-Leibler divergence between old and recent data,

whose distribution under the null hypothesis of coming from the same distribution is

approximated via a bootstrap method. Then, if any drift occurs, a new classifier is
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learned from the recent data using the expectation-maximization algorithm; otherwise,

the current classifier is left unchanged.

CPL-DS is then applied to the real-world malware detection problem, where received files

should be continuously classified into malware (e.g. viruses, spyware, trojans, phishing,

spam, etc.) or goodware to ensure that users are protected against malicious code.

This application is supported by Panda Security company. In the analyzed malware

detection data, only a few true labels (i.e., malware or goodware) are available, mainly

due to the time consuming and costly labeling process. Moreover, the malware detection

data is imbalanced since the number of malware instances is generally much higher than

goodware instances. Hence, in order to tackle both problems, i.e., partially labeled data

and imbalanced data, CPL-DS is applied jointly with two approaches for mining skewed

data streams, namely clustering-sampling [228] and SERA [39].

� Mining multi-dimensional data streams using MBCs:

As commented above, most of the work within the field of mining data streams has

focused on uni-dimensional data streams. However, the problem of mining multi-

dimensional data streams has received less attention, and only few works have been

recently proposed [131, 178, 181, 233]. To deal with this problem, we present two

novel adaptive algorithms for mining multi-dimensional data streams based on Bayesian

network classifiers. Basically, the so-called Globally Adaptive-MB-MBC (GA-MB-MBC)

and Locally Adaptive-MB-MBC (LA-MB-MBC) extend our previous MB-MBC algorithm to

data streams. GA-MB-MBC uses the Page-Hinkley test to monitor the average global

log-likelihood over time and detect the concept drift, then, in the case that a drift is

detected, it learns a new MBC from scratch. LA-MB-MBC proceeds similarly but locally

at the level of each node in the MBC network, i.e., it monitors the average local log-

likelihood of each node over time, then, whenever a drift is detected, it learns a new

local structure for each changed node.

1.2 Overview of the dissertation

The rest of this dissertation is divided into eight chapters, which are organized into four parts.

� Part II: Background

This part consists of three chapters and is devoted to the introduction of the Bayesian

network concepts used throughout the dissertation, the presentation of the different
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types of classification with more focus on the multi-dimensional classification task, the

exploration of the related state-of-the-art, as well as a brief review on data streams:

– Chapter 2 reviews the basic concepts relevant to Bayesian networks and to the

learning problem of these models from stationary data.

– Chapter 3 firstly presents the uni-dimensional classification task and reviews some

of the widely used uni-dimensional Bayesian network classifiers. Then, it focuses on

the multi-dimensional classification problem, introduces multi-dimensional Bayesian

network classifiers, and explores the state-of-the-art on existing multi-dimensional

learning methods. Finally, it describes some performance metrics and estimation

methods used for the evaluation of classifiers.

– Chapter 4 briefly defines data streams, explains concept drift and its categorization,

and reviews several state-of-the-art methods for data stream mining.

� Part III: Multi-dimensional Bayesian network classifiers for stationary data

This part consists of two chapters and is dedicated to the presentation of two novel

MBC learning methods for stationary data:

– Chapter 5 introduces CB-MBC, a new algorithm for learning class-bridge decompos-

able MBCs based on a wrapper greedy forward selection approach.

– Chapter 6 presents MB-MBC, a new Markov blanket-based algorithm for MBC learn-

ing, and discusses its application to two real-world problems, namely the prediction

of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and pro-

tease inhibitors and the prediction of the European Quality of Life-5 Dimensions

(EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39).

� Part IV: Mining uni- and multi-dimensional evolving streaming data

This part consists of two chapters and deals with mining evolving concept-drifting data

streams. It tackles two main problems: First, the presence of some unlabeled instances

in the uni-dimensional data streams, and second, the adaptive learning of MBCs from

multi-dimensional data streams:

– Chapter 7 proposes CPL-DS, a new method for classifying partially labeled data

streams, then presents its application to the real-world malware detection problem

where the data is imbalanced and only a few labels are available.
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– Chapter 8 addresses the problem of learning MBCs from evolving multi-dimensional

streaming data, and proposes two new methods, namely, LA-MB-MBC and GA-MB-MBC

for local and global adaptive MBC learning, respectively. Both methods monitor

the concept drift over time using the Page-Hinkley test. If a drift is detected,

LA-MB-MBC adapts the current MBC locally around each changed node, whereas

GA-MB-MBC learns a new MBC from scratch.

� Part V: Conclusions

The last part summarizes and concludes the dissertation:

– Chapter 9 states the most important conclusions obtained throughout the disser-

tation and describes some open research lines for future work.
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Chapter 2
Bayesian networks

2.1 Introduction

Over the last years, probabilistic graphical models (PGMs) [34, 120, 144, 230] have become

powerful tools for knowledge discovery and reasoning under uncertainty, and have gained

considerable attention from artificial intelligence and machine learning communities. Different

types of models have been studied within the PGM framework including Bayesian networks,

undirected models, discrete and continuous models, temporal models, etc.

Roughly speaking, PGMs are composed of two main components: a graphical structure

and parameters. The graphical structure represents the conditional (in)dependence relation-

ships among the variables through several possible types of graphs such as directed, undi-

rected, and chains; while the parameters describe the strength of the dependence relationships

revealed by the graphical structure using marginal and/or conditional probabilities.

In this dissertation, we focus on Bayesian networks [118, 129, 145, 168], well-known PGMs

that have been successfully applied in a wide range of fields and domains including medical

diagnostics, bioinformatics, fraud detection, financial and marketing data analysis, pattern

recognition, fault diagnosis, and many more [44, 53, 82, 105, 161, 167, 175, 194]. Two im-

portant issues can be identified when using Bayesian networks: The first is Bayesian network

learning that aims to discover the set of probabilistic dependence relationships among the

variables of interest. This modeling process can be either achieved by experts (by means

of knowledge elicitation), or via learning algorithms applied to available data sets with or

without the experts’ assistance. The second issue is probabilistic inference that arises when

a Bayesian network model is already built and deployed in a given application. Probabilistic

inference [54, 118, 168] consists of estimating the posterior probability of a subset of query

13
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variables given both the learned Bayesian network and the observed values taken by certain

other variables (also called evidence).

Chapter outline

In Section 2.2, we introduce some notations and definitions. Then, in Section 2.3, we present

Bayesian network models and their basic concepts in more detail. Section 2.4 provides a

brief overview of the state-of-the-art approaches dealing with Bayesian network structure

and parameter learning, and finally, Section 2.5 concisely describes probabilistic inference in

Bayesian networks.

2.2 Notation and definitions

Notation

Throughout this dissertation the following syntactical conventions are used: U = {X1, . . . , Xn}
denotes the universe defined as a finite set of n discrete random variables. A variable is de-

noted by an upper case letter (e.g. X, Y , Xi) and its state or value is denoted by the same

lower-case letter (e.g. x, y, xi). Moreover, a set of variables is denoted by a bold-face capi-

talized letter (e.g. X, Y, C) and the corresponding bold-face lower-case letter (e.g. x, y, c)

denotes an assignment for each variable in that given set.

Definitions

To begin, we present in what follows some preliminary definitions:

� A directed acyclic graph (DAG) is a pair (V,A) where V is a non-empty finite set

of variables, called vertices or nodes, and A is a set of pairs of nodes (X,Y ), X,Y ∈ V,

called edges. Note that “variables”, “nodes”, and “vertices”will be used interchangeably

throughout the dissertation.

There is a directed edge or arc between two nodes X and Y , denoted X → Y , if

(X,Y ) ∈ A and (Y,X) ̸∈ A. However, if both (X,Y ) ∈ A and (Y,X) ∈ A, the edge is

called undirected.

A directed acyclic graph contains only directed edges and has no cycles.

� Two nodes linked by an edge are said to be adjacent.

� A path is a sequence of edges from one node to another.
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� A directed path from X1 to Xn is a sequence of directed edges

X1 → X2 → . . .→ Xn, with n > 1.

� A directed path is called a cycle if it begins and ends at the same variable.

� The following sets correspond to any node Xi ∈ V: the descendants of Xi, Desc(Xi),

representing the set of nodes reachable by a directed path from Xi, the ancestors of Xi,

Ancs(Xi), representing the set of nodes that can reach Xi by a directed path of length

one or more. The set of nodes Ch(Xi) reachable by a single direct edge from Xi are

called children of Xi, and the set of nodes Pa(Xi) that can reach Xi by a single direct

edge pointing into Xi are called parents of Xi.

� A v-structure in a DAG G is defined as an ordered triple of nodes (X1, X3, X2) such

that X1 and X2 are parents of X3, and X1 and X2 are not adjacent in G, i.e., we have

X1 → X3 ← X2.

� A tree is a directed acyclic graph where each node has only one parent, except for the

root node which has no parents.

� A polytree is a directed acyclic graph with the property that ignoring the directions

of arcs yields a graph with no undirected cycles. In other words, there exists only one

undirected path connecting any two nodes in the graph.

Example 2.1. To illustrate these definitions, let us consider the directed acyclic graph shown

in Figure 2.1(a). We have, the set of nodes V = {X1, X2, X3, X4, X5, X6} and the set of

edges A = {(X1, X2), (X1, X3), (X2, X4), (X2, X5), (X3, X5), (X3, X6), (X5, X6)}.

X4

X6

X1

X2

X5

X3

X4

X6

X1

X2

X5

X3

X4

X6

X1

X2

X5

X3

(a) (b) (c)

Figure 2.1: Examples of (a) a DAG, (b) a tree, and (c) a polytree.
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The set of the descendants of node X1 is Desc(X1) = {X2, X3, X4, X5, X6}, whereas the set

of its children is Ch(X1) = {X2, X3}. X1 has no parents.

The set of the ancestors of node X6 is Ancs(X6) = {X1, X2, X3, X5}, whereas the set of its

parents is Pa(X6) = {X3, X5}. X6 has no children.

Moreover, we have a unique v-structure (X2, X5, X3), where X2 and X3 are parents of X5,

and X2 and X3 are not adjacent.

Figures 2.1(b) and 2.1(c) illustrate examples of a tree and a polytree, respectively.

2.3 Bayesian networks

A Bayesian network (BN) [129, 168] is a PGM that encodes probabilistic (in)dependence

relationships among variables based on directed acyclic graphs and probabilities. Formally, a

BN B = (G,Θ) defined over a set of n discrete random variables consists of two components:

� The graphical structure G: (a.k.a. the qualitative or graphical component) is a DAG

that represents a set of conditional (in)dependence relationships among variables. The

set of nodes represents the variables, and the set of arcs corresponds to dependence

relationships between these variables. In fact, the presence of an arc between two nodes

X and Y represents the existence of a dependence relationship between these variables.

However, the absence of arcs between two nodes X and Y can be related to conditional

independence relationships between these variables.

� The set of parameters Θ: (a.k.a. the quantitative or numerical component) specifies the

set of conditional probability distributions. It represents the strength of the dependence

relationships revealed by the graphical structure G. That is, the set of parameters

Θ = {Θ1, . . . ,Θi, . . . ,Θn} such that each Θi = P (xi | pa(xi)) denotes the conditional

probability distribution of each nodeXi given the values of its set of parentsPa(Xi). Let

ri be the number of distinct states of Xi and qi be the number of different configurations

of Pa(Xi), then Θi = {θijk, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri} such that θijk = P (xi = k |
pa(xi) = j) denotes the conditional probability of the ith variable Xi being in its

kth state, given that its parents Pa(Xi) are in their jth configuration. All θijk must

verify the normalization constraint:
∑ri

k=1 θijk = 1, ∀ i, j, and k. The conditional

probability distributions are organized in tables, referred to as conditional probability

tables (CPTs).

A Bayesian network B represents a joint probability distribution over U factorized according

to structure G as follows:
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P (x1, . . . , xn) =

n∏
i=1

P (xi | pa(xi)) (2.1)

Example 2.2. Figure 2.2 shows a simple example of a Bayesian network including five binary

variables, i.e., each variable has two possible values either 0 or 1. A conditional probability

table is associated to each node in the network describing its conditional probability distribution

given the set of its parents. For instance, node X4 has two nodes X2 and X3 as parents, and

hence, its probability distribution is conditioned only on the values of X2 and X3.

The joint probability distribution corresponding to this BN can then be computed as follows:

P (x1, x2, x3, x4, x5) = P (x1) · P (x2 | x1) · P (x3 | x1) · P (x4 | x2, x3) · P (x5 | x3).

X5

X1

X2

X4

X3

P(X1=0) P(X1=1)

0.45 0.55

X3 P(X5=0|X3) P(X5=1|X3)

0 0.40 0.60

1 0.85 0.15

X2 X3 P(X4=0|X2, X3) P(X4=1|X2, X3)

0 0 0.43 0.57

0 1 0.65 0.35

1 0 0.80 0.20

1 1 0.25 0.75

X1 P(X2=0|X1) P(X2=1|X1)

0 0.15 0.85

1 0.35 0.65

X1 P(X3=0|X1) P(X3=1|X1)

0 0.10 0.90

1 0.48 0.52

Figure 2.2: Example of a Bayesian network.

In addition, the conditional independence property entailed by a probability distribution

P over a Bayesian network B is defined as follows:

Definition 2.1. Conditional independence [168]:

Two set of variables X and Z are conditionally independent given some set of variables Y,

denoted as I(X,Z | Y), iff P (X = x | Z = z,Y = y) = P (X = x | Y = y) for any assignment

of values x,y, z of X,Y,Z, respectively, such that P (Y = y) > 0.
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2.3.1 D-separation criterion

The intuition behind the d-separation criterion [168] is as follows. Let us consider three

disjoint variables X, Y , and Z. To test whether X and Z are d-separated by Y in a DAG G,
we need to test whether every path between X and Z is blocked by Y . Blocked means here

that the flow of information is stopped between these variables connected by such paths.

To further define the d-separation criterion, we first present the three basic patterns of

connection in Bayesian networks, namely:

1. Serial connection: In this case, information may be transmitted through the connection

between X and Z unless the state of Y is known. In other words, the path between X

and Z is blocked only if there is an evidence about Y (see Figure 2.3(a)).

2. Diverging connection: In this case, X and Z have a common parent Y , and information

may be transmitted through the connection between X and Z unless the state of Y

is known. In other words, the path between X and Z is blocked only if there is an

evidence about Y (see Figure 2.3(b)).

3. Converging connection: In this case, Y has X and Z as parents, and information may

be transmitted through the connection only if information about the state of Y or one

of its descendants is available. In other words, any evidence about Y or one of its

descendants results in not blocking the path between X and Z (see Figure 2.3(c)).

X Y X Z

Y

(a) (b)

X

Y

Z

Z

(c)

Figure 2.3: The (a) serial, (b) diverging and (c) converging connections.

Therefore, the d-separation criterion can be defined as follows:

Definition 2.2. D-separation [168]:

i) Let G = (V,A) be a DAG and let X, Y and Z be three distinct variables in V. Then,

X and Z are said to be d-separated by Y , if for all paths between X and Z, there is an

intermediate variable Y such that either:
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1. the connection is serial or diverging and the state of Y is known, or

2. the connection is converging and neither the state of Y , nor any of its descendants, are

known.

ii) Let G = (V,A) be a DAG and let X, Y and Z be three disjoint subsets of V. Then, X

and Z are said to be d-separated by Y, if for every variable Xi ∈ X and Zi ∈ Z, Xi and Zi

are d-separated by any variable in Y.

Using the d-separation criterion, one can gather graphically the conditional independencies

in a Bayesian network as established in the following theorem [169].

Theorem 2.1. If two sets of variables X and Z are d-separated by Y in a DAG G, then X

and Z are conditionally independent given Y.

2.3.2 Markov blanket

An additional important and basic concept of Bayesian networks is the Markov blanket. The

Markov blanket of a variableX is the smallest set containing all variables carrying information

about X, and which cannot be obtained from any other variable.

Definition 2.3. Markov blanket [168]:

A Markov blanket of a variable X, denoted as MB(X), is a minimal set of variables with the

following property: I(X,S | MB(X)) holds for every variable subset S with no variables in

MB(X) ∪X.

In other words, MB(X) is the minimal set of variables conditioned by which X is condi-

tionally independent of all subsets of the remaining variables.

Faithfulness

The faithfulness of a probability distribution is a well-known condition that guarantees the

existence of a DAG G such that there is a one-to-one mapping between the graphical d-

separation criterion and the probabilistic conditional independencies in the data set. Formally,

Definition 2.4. Faithfulness [97, 205]:

A DAG G is faithful to a joint probability distribution P over a set of variables V iff every

independence present in P is entailed by G. A probability distribution P is faithful iff there

exists a DAG G such that G is faithful to P .
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Under the faithfulness condition, the Markov blanket MB(X) consists of the union of the

set of parents, children, and parents of children (i.e., spouses) of X [171]. For instance, in

Figure 2.2, the Markov blanket of variable X2 includes its parent X1, its child X4, and its

spouse X3; that is, MB(X2) = {X1, X4, X3}.

2.4 Bayesian network learning

The learning process of Bayesian networks involves two phases: first, learning the graphical

structure, then quantifying this structure via learning the parameters. Nevertheless, some-

times the structure can be provided by domain experts that determine the set of conditional

(in)dependence relationships between variables. In this case, only the parameters have to be

induced, and they can also be derived from various sources: they can be either obtained by

interviewing domain experts to elicit their subjective probabilities, gathered from published

statistical studies, or they can be learned directly from data.

When the structure is unknown, especially because domain experts are unwilling or un-

available, or the number of variables is large enough, the most appropriate solution is to resort

to structure learning from data. This issue is considered as one of the most challenging tasks

in dealing with Bayesian networks, since although having accurate parameters is important,

they are completely useless if the structure is of bad quality [47, 79]. Note that, the work

presented in this dissertation is focused on BN structure learning from data.

Let D be a complete data set of N independent and identically distributed (i.i.d.) obser-

vations containing a value assignment for each variable X1, . . . , Xn, i.e., D = {x(1), . . . ,x(N)}.
Each instance x(l) = (x

(l)
1 , . . . , x

(l)
i , . . . , x

(l)
n ), such that 1 ≤ i ≤ n and 1 ≤ l ≤ N , where x

(l)
i

represents the value of Xi in instance x(l). Table 2.1 shows a classical disposition of D.
Given the data set D, the BN learning problem aims to determine the BN that best fits D.

This problem has received and receives until now much attention since its enormous usefulness

for building high quality models required for developing better end-user applications.

Notice that, the learning process of BNs depends on whether data set D is complete

or incomplete, that is, whether all values of each variable are available, or there are some

missing values or hidden variables. Since this dissertation has more emphasis on learning BNs

from complete data, we limit this section to present a brief review on principled approaches

for learning BNs from complete data. Several methods for learning BN parameters from

incomplete data can be consulted in [65, 95, 106, 179, 192], and additional methods dealing

more specifically with inducing the BN graphical structure in the presence of missing values

and hidden variables can be found in [20, 71, 79, 80, 202].
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Table 2.1: Data matrix of a general BN learning task.

X1 X2 . . . Xi . . . Xn

1 x
(1)
1 x

(1)
2 . . . x

(1)
i . . . x

(1)
n

...
...

...
. . .

...
. . .

...

l x
(l)
1 x

(l)
2 . . . x

(l)
i . . . x

(l)
n

...
...

...
. . .

...
. . .

...

N x
(N)
1 x

(N)
2 . . . x

(N)
i . . . x

(N)
n

2.4.1 Parameter learning

Parameter learning aims to estimate the values of the conditional probability distribution

P (xi | pa(xi)) of each variable Xi given any value of its parent set Pa(Xi). In this section,

we describe two well-known approaches for parameter learning from complete data, namely,

the maximum likelihood estimation (MLE) and the maximum a posteriori (MAP) estimation.

2.4.1.1 Maximum likelihood estimation

The maximum likelihood estimation (MLE) is a frequentist approach [74] that assesses the

probabilities of variables from data without assuming any prior knowledge. It is based on the

frequency of occurrences of variables in the data set, and selects the parameter configuration

for a Bayesian network model, Θ̂, that maximizes the probability of the data set given the

model structure G (a.k.a. likelihood):

Θ̂ = arg max
Θ

P (D | G,Θ) (2.2)

where P (D | G,Θ) represents the likelihood function computed as:

P (D | G,Θ) =

N∏
l=1

P (x(l) | G,Θ) (2.3)

where x(l) denotes the value of X given by the lth instance in D. Then, by maximizing the

likelihood function, the maximum likelihood estimators can be computed as follows [145]:

θ̂ijk =
Nijk

Nij
(2.4)
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with Nijk being the number of data instances in D where Xi takes its k
th value and Pa(Xi)

takes its jth configuration, and Nij =
∑ri

k=1Nijk ∀ i, j, and k.

2.4.1.2 Maximum a posteriori estimation

Maximum a posteriori (MAP) estimation is based on the Bayesian approach [104, 115]. It

selects the parameter configuration for a Bayesian network model, Θ̂, that maximizes the

posterior probability of the parameters given the data set D:

Θ̂ = arg max
Θ

P (Θ | D) (2.5)

Three assumptions are generally required for the MAP computation: 1) the data is com-

plete, 2) parameter independence, i.e., P (Θ) =
∏n

i=1

∏qi
j=1 P (Θij), with Θij =

∑ri
k=1 θijk ∀ i, j,

and k, and 3) the prior distribution over the parameters is Dirichlet [94, 204] as expressed by

the following formula:

P (Θij) ∼ Dir(Θij | αij1, αij2, . . . , αijri) = Γ(αij)

ri∏
k=1

θ
αijk−1
ijk

Γ(αijk)
(2.6)

where Γ(.) is the gamma function, (αij1, αij2, . . . , αijri) are the hyperparameters of the Dirich-

let distribution, and αij =
∑ri

k=1 αijk ∀ i, j, and k. Hence, under the three above assumptions,

the MAP calculation is given by:

θ̂ijk =
Nijk + αijk

Nij + αij
(2.7)

2.4.2 Structure learning

Two main approaches can be distinguished in the literature when dealing with BN structure

learning: score-based and constraint-based. Score-based approaches [51, 106, 138] use a scor-

ing function that evaluates how well the structure matches the data set and search for the

structure that maximizes this function, whereas constraint-based approaches [169, 170, 205]

perform statistical tests to determine the conditional (in)dependence relationships among the

variables in the given data set.
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2.4.2.1 Score-based approaches

Score-based approaches typically require the specification of three components [45]: 1) the

search space, that defines the states of the search and the set of operators, 2) the scoring

function, that evaluates the quality of the network with respect to the data, and 3) the search

algorithm, that aims to find the BN that has the best scoring function.

Search space

The simplest and most used search space is the Bayesian network search space. The states

of the search are individual Bayesian networks, represented by DAGs, and the operators are

defined to be local changes applied to those DAGs. Basically, for any pair of nodes X and Y ,

if X and Y are adjacent, the arc connecting them can be either deleted or reversed. If X and

Y are not adjacent, an arc can be inserted in either direction. All these operators are subject

to the constraint that a cycle cannot be formed.

Other search spaces are also defined in the literature to mainly reduce the complexity of

the Bayesian network search space, such as the ones imposing a total ordering among variables

[33, 51, 210], restricting the number of parents for each node [58, 83], or operating on the

space of equivalence classes of Bayesian networks [10, 45, 160].

Scoring function

Several scoring functions are developed to assess the goodness-of-fit of a particular BN struc-

ture and guide the learning process. In what follows, we review some of the most used ones.

� Bayesian score (BS)

Roughly speaking, the Bayesian score [51, 106] evaluates the probability of the data D
given the structure G, i.e., the likelihood P (D | G,Θ). Under the complete data and pa-

rameter independence assumptions, and given that the prior probability distribution over the

parameters is a Dirichlet distribution, the Bayesian score can be calculated in closed form as

follows:

BS(B,D) =
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
(2.8)

where Γ(.) is the gamma function, (αij1, αij2, . . . , αijri) are the hyperparameters of the Dirich-

let distribution, and αij =
∑ri

k=1 αijk ∀ i, j, and k.
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� Minimal Description Length (MDL)

The MDL score [138, 187] is based on the idea that the best model to represent a data

set is the one that minimizes the sum of the encoding lengths of the model and the data set

given the model, both of which are measured in bits. The MDL score is defined as follows:

MDL(B,D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− logN

2
Dim(G) (2.9)

where logN
2 Dim(G) is the length needed to encode the model, such that Dim(G) represents

the dimension of the BN calculated as the number of parameters needed to specify it, i.e.,

Dim(G) =
∑n

i=1 qi(ri− 1), and
∑n

i=1

∑qi
j=1

∑ri
k=1Nijk log

Nijk

Nij
is the description length of the

data set given the model.

Many other scoring functions have also been defined in the literature, namely, the Akaike’s

information criterion (AIC) based on a penalized log-likelihood score [3], the entropy [93, 108],

or the mutual information [48].

Search algorithm

It aims to find the BN with the best score. The most commonly used algorithm is the

greedy search (GS) algorithm [51] applied to the Bayesian network search space. It starts

with a candidate structure, which may be empty or provided by some expert as a starting

point. Then, at each iteration, it considers three possible operations: arc insertion, deletion

or reversal. Next, the score is computed for every resulting candidate, and the candidate

presenting the best score is selected and becomes the current candidate. This search process

is iterated until there is no more score improvement.

Another greedy searching method operating instead in the equivalence class space of

Bayesian networks is the greedy equivalence search (GES) algorithm [45].

Moreover, the literature includes various works where heuristic searching methods have

been applied to learn the structure of Bayesian network models, such as simulated annealing

[46], tabu search [28], best-first search [132], genetic algorithms [142], estimation of distribu-

tion algorithms [18], and ant colony optimization [59].

2.4.2.2 Constraint-based approaches

The general idea of constraint-based approaches is the use of statistical independence tests in

order to learn a directed acyclic graph that represents the set of conditional (in)dependence
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relationships captured in the data set.

A prominent example for constraint-based approaches is the Predictive Causation (PC)

algorithm [205]. The PC algorithm starts from a complete undirected graph, then performs

recursive conditional independence tests for deleting edges. The result is a skeleton in which

all edges are still undirected and should be transformed into arcs using edge orientation rules.

These rules consist first of detecting the v-structures, then orienting inductively the remaining

edges without introducing directed cycles nor new v-structures.

Additional prevalent works on constraint-based approaches can be also consulted in [40,

169, 170, 235].

2.5 Inference in Bayesian networks

Given the learned BN model, one of the most fundamental mechanisms for reasoning under

uncertainty is to compute the conditional distributions of one or a few variables. This task

is usually referred to as probabilistic inference. In fact, the BN model is able to provide

specific information about the probability distributions of variables of interest in the presence

of information about the values of some other variables (called evidence).

Through marginalization it is possible to compute conditionals, posteriors, and make

predictions. The process of exact probabilistic inference is proved to be NP-Hard [50]. The

literature includes plenty of works providing different approaches to perform inference, and

the textbooks by Koller and Friedman [129] and Darwiche [54] present an extensive discussion

on this topic describing the most popular used exact and approximate inference methods, such

as variable elimination, clique trees, loopy belief propagation, and Markov chain Monte Carlo

methods. Several interesting references can be found as well in [29, 57, 66, 145, 196, 232].
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Chapter 3
Multi-dimensional classification

3.1 Introduction

One of the main reasons for using Bayesian networks is to perform classification. Roughly

speaking, in the machine learning community, classification refers to the ability to identify to

which category (or class) a new observation belongs, on the basis of a given input data set

(also called training data set).

Depending on the nature of the training data set, the classification problem can be cate-

gorized into three subtypes, namely supervised, semi-supervised and unsupervised.

In supervised classification [17, 68], all observations in the training data set are labeled

beforehand, i.e., their category membership is known. We say that the training data set is

fully labeled, and the supervised classification task consists of learning a model or a classifier

from this data set, then using it to classify or predict the category (also known as class or

label) of the incoming unseen data observations.

In semi-supervised classification [36, 174, 243], only some of the observations in the train-

ing data set (usually a small percentage) are labeled beforehand. In this case, the training

data set is referred to as partially labeled data, and the semi-supervised classification task

firstly aims to learn a model from both labeled and unlabeled observations. The rationale

behind is that unlabeled data may contribute with valuable information and enhance the

quality of the classification. Therefore, the built model using both labeled and unlabeled

observations is better than the one built using only the limited amount of labeled data. Next,

similar to supervised classification task, the second phase is to use the built model to classify

the future unseen data observations.

In unsupervised classification [73, 114, 234], also known as clustering problem, all the

27
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observations in the training data set are unlabeled, i.e., there is no knowledge about their

category membership. In this case, the objective is to discover the different data categories

(also known as groups or clusters) that permit to explain and describe the characteristics of

the given unlabeled data set.

In addition to the above taxonomy, the classification problem can be also divided into

uni-dimensional or multi-dimensional depending on whether the observations are assigned to

only one class variable or to multiple class variables at the same time.

In fact, in the traditional and more popular task of uni-dimensional classification, each

observation in the training data set is associated with a single class variable. An example

would be classifying movies at the online internet movie database (IMDb). In this case, a

given movie has to be associated with only one category, for instance drama.

However, in many real-world applications, more than one class variable may be required.

That is, each observation in the training data set has to be associated with a set of many

different class variables at the same time. For example, at IMDb, a movie may be classified

simultaneously into three different categories: action, crime and drama. Additional examples

may include a patient suffering from multiple diseases, a text document belonging to several

topics, a gene associated with multiple functional classes, etc. Intuitively, multi-dimensional

classification can be viewed as a generalization of the uni-dimensional classification problem

where simultaneous prediction of a set of class variables is needed.

Note that, all the contributions in this thesis belong to the supervised multi-dimensional

classification domain, except for Chapter 7 that deals with a semi-supervised uni-dimensional

classification problem. Therefore, we opt to devote the current chapter mainly to present

the supervised multi-dimensional classification task, and include more details about semi-

supervised classification later in Chapter 7. Unsupervised classification is out of the scope of

this thesis; some interesting works on this topic can be consulted in [73, 76, 99, 114, 234].

Chapter outline

For simplicity’s sake, from now on, we merely use the term classification to refer to super-

vised classification. In Section 3.2, we start by presenting the traditional uni-dimensional

classification task, as well as commonly used uni-dimensional classification methods based

on Bayesian networks, called uni-dimensional Bayesian network classifiers. In Section 3.3,

we define the multi-dimensional classification problem and briefly review the related work

on multi-dimensional classification. Then, in Section 3.4, we introduce multi-dimensional

Bayesian network classifiers (MBCs) and discuss the specific topics and related works on

learning MBCs. Finally, in Section 3.5, we present some performance metrics and their esti-
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mation methods used for evaluating the goodness of classifiers.

3.2 Uni-dimensional classification

We first present a formal definition of the uni-dimensional classification task. Let the training

data set D = {(x(1), c(1)), . . . , (x(N), c(N))} be a set of labeled observations or instances, such

that each instance (x(l), c(l)) is characterized by a pair of a vector of m features or predictive

variables x(l) = (x
(l)
1 , . . . , x

(l)
i , . . . , x

(l)
m ) and a class variable label c(l), with 1 ≤ l ≤ N and

1 ≤ i ≤ m. Table 3.1 shows a disposition of such complete training data D. A classification

algorithm aims to learn a classifier from D, which will be then used to assign class values to

future instances {x(N+1), . . . ,x(N+T )}, also known as a testing data set.

Table 3.1: Data matrix of a uni-dimensional supervised classification task.

X1 X2 . . . Xi . . . Xm C

1 x
(1)
1 x

(1)
2 . . . x

(1)
i . . . x

(1)
m c(1)

...
...

...
. . .

...
. . .

...
...

l x
(l)
1 x

(l)
2 . . . x

(l)
i . . . x

(l)
m c(l)

...
...

...
. . .

...
. . .

...
...

N x
(N)
1 x

(N)
2 . . . x

(N)
i . . . x

(N)
m c(N)

The uni-dimensional classification problem consists of finding a function f that predicts

for each input instance x a class value c:

f : ΩX1 × . . .× ΩXm −→ ΩC = {1, . . . , rC}

x = (x1, . . . , xm) 7−→ c

where ΩC = {1, . . . , rC} denotes the sample space of the class variable C, and ΩXi denotes

the sample space of each feature variable Xi, for all i = 1, . . . ,m. In our case, we consider

that the class variable as well as all the feature variables are discrete random variables such

that their respective cardinalities |ΩC | and |ΩXi | are greater than 1.

Several methods and algorithms have been developed in the past years to perform uni-

dimensional classification including, among many others, classification trees [31], k-nearest

neighbor (k-NN) classifiers [52], neural networks [155], support vector machines [223], and

logistic regression [110]. However, in this section, we focus on Bayesian network classifiers,

which are Bayesian network models used for classification purposes.
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Notice that Bayesian networks, also known as general Bayesian networks or unrestricted

Bayesian networks, can be readily used to solve the uni-dimensional classification problem.

However, as demonstrated by Friedman et al. [81], they usually exhibit a poor performance

because they do not take into account the specific characteristics of the classification problem.

Therefore, to deal appropriately with this problem, several Bayesian network classifiers have

been proposed, mainly imposing restrictions on the general Bayesian network structure. In

what follows, we briefly present some of the widely used uni-dimensional Bayesian network

classifiers, namely, naive Bayes classifier, selective naive Bayes, tree augmented naive Bayes,

and k-dependence Bayesian classifier.

Naive Bayes classifier

The simplest and most known Bayesian network classifier is naive Bayes (NB) [158]. It is

based on the Bayes rule and on a strong independence assumption: all the feature variables

Xi, 1 ≤ i ≤ m, are conditionally independent given the class variable C. An example of the

graphical representation of a naive Bayes structure with m = 4 feature variables is depicted

in Figure 3.1(a). As observed, NB has a simple structure where the class variable C is the

root, i.e., Pa(C) = ∅, and each feature variable has the class variable C as its unique parent,

i.e., Pa(Xi) = {C}, ∀ i, 1 ≤ i ≤ m.

Selective naive Bayes

The selective naive Bayes (SNB) [140] is a variant of NB classifier. In its standard version,

SNB selects only a subset of feature variables to make predictions based on a wrapper greedy

forward search technique. That is, it starts with an empty set of feature variables, selects at

each iteration the feature variable providing the best accuracy, and ends when no additional

feature variable brings more accuracy improvement. Figure 3.1(b) shows an example of a

selective naive Bayes structure, where from m = 4 feature variables, only three are selected

to make predictions.

In addition, filter versions of SNB have been also proposed in the literature using feature

selection criteria which are independent of the classification model such as mutual information,

entropy, Euclidean distance, and Kullback-Leibler divergence [19, 113].

Tree augmented naive Bayes

The tree augmented naive Bayes (TAN) [81] is an extension of the NB classifier. It aims

to dispense with the NB strong independence assumption by augmenting its structure with
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X4X2

C

X3

(a) Naive Bayes (b) Selective naive Bayes 

(c) Tree augmented naive Bayes (d)  k-dependence Bayesian classifier 

X1 X4X2

C

X1

X4X2

C

X3X1 X4X2

C

X3X1

Figure 3.1: Example of structures of uni-dimensional Bayesian network classifiers including a single
class variable and four predictive variables.

dependence relationships among the feature variables. In its standard version, these depen-

dence relationships are captured using a maximal weighted spanning tree learned with the

well-known Chow and Liu algorithm [48]. Thus, the number of parents of each feature vari-

able is restricted to two: the class variable and an additional feature variable. Figure 3.1(c)

shows an example of a TAN structure with m = 4 feature variables, where, compared with

NB structure, additional arcs are inserted between the feature variables.

A wrapper greedy approach for building TAN structure has been also proposed in [123].

It starts with a naive Bayes, then iteratively adds the arcs which agree with TAN structural

restrictions and improve the most the classification accuracy.

k-dependence Bayesian classifier

The k-dependence Bayesian classifier (kDB) [193] is a generalization of both NB and TAN,

where k is an input parameter fixing the maximum number of feature parents allowed for each

feature variable. In fact, NB can be viewed as a kDB with k = 0, whereas TAN corresponds

to a kDB with k = 1. The inclusion of dependence relationships among feature variables is

based on the calculation of mutual information and conditional mutual information statistics.

An example of a kDB structure with m = 4 feature variables and k = 2 is depicted in Figure

3.1(d). As it can be seen, the parent set of each feature variable includes the class parent C

and a maximum of two additional feature parents.
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For all the presented uni-dimensional Bayesian network classifiers, and under a 0-1 loss

function, the classification task consists of determining the maximum a posteriori class value

c∗ given an evidence about the input vector of feature variables x = (x1, . . . , xm), that is,

c∗ = arg max
c

P (c | x1, . . . , xm)

= arg max
c

P (c) ·
m∏
i=1

P (xi | pa(xi))

= arg max
c

P (c) ·
m∏
i=1

P (xi | c,paVX
(xi)) (3.1)

where the parent set Pa(Xi) of the feature variable Xi includes the class parent C and the

feature parents PaVX
(Xi) of Xi in the graphical structure G of the considered Bayesian

network classifier. Obviously, for NB and SNB, PaVX
(Xi) = ∅; for TAN, |PaVX

(Xi)| = 1

except the root of the tree; and for kDB, |PaVX
(Xi)| ≤ k.

3.3 Multi-dimensional classification

As commented above, the multi-dimensional classification problem is an extension of the

classical uni-dimensional classification problem, where we have to deal with multiple output

class variables rather than a single output class variable [215, 222]. To formally define the

multi-dimensional classification problem, let us first consider the training data set D of N

instances containing a value assignment for each variable X1, . . . , Xm, C1, . . . , Cd, i.e., D =

{(x(1), c(1)), . . . , (x(N), c(N))}. In this case, each instance (x(l), c(l)) is characterized by a

vector of m features or predictive variables x(l) = (x
(l)
1 , . . . , x

(l)
i , . . . , x

(l)
m ) and a vector of d

class variables c(l) = (c
(l)
1 , . . . , c

(l)
j , . . . , c

(l)
d ), with 1 ≤ l ≤ N , 1 ≤ i ≤ m, and 1 ≤ j ≤ d. Table

3.2 shows a disposition of such training data D. Therefore, a multi-dimensional classification

algorithm aims to learn a multi-dimensional classifier from D, which will be then used to

predict the d-dimensional vectors of class values for incoming instances {x(N+1), . . . ,x(N+T )}.
Formally, the multi-dimensional classification problem consists of finding a function h that

predicts for each input instance given by a vector of m features x = (x1, . . . , xm), a vector of

d class values c = (c1, . . . , cd), that is,

h : ΩX1 × . . .× ΩXm −→ ΩC1 × . . .× ΩCd

x = (x1, . . . , xm) 7−→ c = (c1, . . . , cd)
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Table 3.2: Data matrix of a multi-dimensional classification task.

X1 X2 . . . Xi . . . Xm C1 C2 . . . Cj . . . Cd

1 x
(1)
1 x

(1)
2 . . . x

(1)
i . . . x

(1)
m c

(1)
1 c

(1)
2 . . . c

(1)
j . . . c

(1)
d

...
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...

l x
(l)
1 x

(l)
2 . . . x

(l)
i . . . x

(l)
m c

(l)
1 c

(l)
2 . . . c

(l)
j . . . c

(l)
d

...
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...

N x
(N)
1 x

(N)
2 . . . x

(N)
i . . . x

(N)
m c

(N)
1 c

(N)
2 . . . c

(N)
j . . . c

(N)
d

where ΩXi and ΩCj denote the sample spaces of each feature variableXi, for all i ∈ {1, . . . ,m},
and each class variable Cj , for all j ∈ {1, . . . , d}, respectively. Note that, as before, we consider

that all class and feature variables are discrete random variables such that |ΩXj | and |ΩCj |
are greater than 1, and the data is complete, i.e., there is no missing values in D.

When |ΩCj | = 2 for all j ∈ {1, . . . , d}, i.e., all class variables are binary, the multi-

dimensional classification problem is known as a multi-label classification problem [149, 215].

In general, a multi-label classification problem can be easily modeled as a multi-dimensional

classification problem where each label corresponds to a binary class variable. However,

modeling a multi-dimensional classification problem, that possibly includes non-binary class

variables, as a multi-label classification problem may require a transformation over the data

set to meet multi-label framework requirements. Note that, since our contributions in this

dissertation are general and can be applied to classification problems where class variables are

not necessarily binary, we opt to use, unless mentioned otherwise, the term multi-dimensional

classification as a more general concept.

Most of the work in the literature deals with the multi-label classification problem.

Overviews are given in [60, 215, 217]. Basically, the proposed methods are divided into

two main categories: problem transformation and algorithm adaptation.

Problem transformation methods in multi-label classification

Methods in this category are algorithm independent and proceed by transforming the multi-

label classification task into one or more single-label classification tasks.

One of the most widely used transformation method is binary relevance (BR) [98]. It is

based on the idea of decomposing the multi-label learning problem into d independent binary

classification problems, such that each binary classification problem aims to predict a single

label value. Classifier chains method [183] overcomes the BR label independence assumption

by transforming the multi-label learning problem into a chain of binary classification problems,
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such that the prediction of each binary classifier takes into account the predictions of all

binary classifiers preceding it in the chain. Ranking via single-label method [98] transforms

the multi-label data set into a single label data set by either ignoring multi-label instances,

selecting the least frequent label, selecting the most frequent label, selecting randomly one

label, or assigning a weight to each label. Other examples also include pairwise methods such

as ranking by pairwise comparison (RPC) [111] which learns d(d−1)
2 binary models, one for

each pair of labels; and calibrated label ranking [84] which extends RPC by introducing an

additional artificial calibration label to the original label set separating the relevant labels

from the irrelevant ones.

Some other transformation methods are based on label combinations like label powerset

(LP) [30] which transforms each unique subset (distinct label set) of labels that exists in a

given multi-label data set into a single label; pruned sets (PS) [182] which improves LP by

pruning away infrequent label sets based on a user-defined threshold; ensemble of pruned

sets [182] which employs PS in an ensemble framework to further enhance the predictive

performance; and random k-label sets [218] which builds an ensemble of LP classifiers, such

that each LP classifier is trained using a different small random label subset of the original

label set. Additional proposed methods are based on the identification of label dependencies

such as correlation-based pruning of stacked binary relevance models [214]; Chi-square tests

used to discover and join together pairs of most dependent labels [209]; and hierarchy of

multi-label classifiers where each classifier in the hierarchy deals with a much smaller set of

labels identified via a balance clustering algorithm [216].

Algorithm adaptation methods in multi-label classification

Algorithm adaptation methods extend specific single-label learning algorithms in order to

handle directly the multi-label data sets.

Several adaptation methods have been proposed, including decision trees [224] which ex-

tend the popular C4.5 decision tree algorithm to deal with multi-label data based on the

definition of multi-label entropy; support vector machines [72] which aim to minimize a rank-

ing loss function while maintaining a large margin; neural networks [239] which adapt the error

function of the popular back-propagation algorithm to take multiple labels into account; and

k-nearest neighbors [240] which extend the k-nearest neighbor lazy algorithm for multi-label

classification and use the maximum a posteriori principle to predict the label set.

Other examples include the combination of logistic regression and k-nearest neighbors

coping with multiple labels [41]; generative parametric mixture model applied to multi-label

text categorization [221]; and boosting [198] which presents a multi-label adaptation of the
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traditional AdaBoost learning algorithm.

Table 3.3 summarizes the presented problem transformation and algorithm adaptation

methods in multi-label classification.

Table 3.3: Summary of multi-label classification methods.

Binary relevance (BR) [98]

Classifier chains [183]

Ranking via single-label learning [98]

Ranking by pairwise comparison [111]

Problem Calibrated label ranking [84]

transformation Label powerset (LP) [30]

methods Pruned sets (PS) [182]

Ensemble of pruned sets [182]

Random k-label sets [218]

Correlation-based pruning of stacked BR [214]

Chi-square tests [209]

Multi-label Hierarchy of multi-label classifiers [216]

classification Decision trees [224]

Support vector machines [72]

Algorithm Neural networks [239]

adaptation k-nearest neighbors [240]

methods Logistic regression + k-nearest neighbors [41]

Generative parametric mixture model [221]

Boosting [198]

For Bayesian networks, problem transformation methods can either opt for: (a) building

a compound class variable that models all possible combinations of the class variables and

then applying any existing uni-dimensional Bayesian network classifier (such as NB, SNB,

TAN or kDB) following an LP strategy; or (b) learning multiple uni-dimensional Bayesian

network classifiers, one for each individual class variable as if all of them were independent

following a BR strategy. In the former case, the class variable can easily end up with a huge

number of values which may weakness the predictive performance of such a classifier. In the

latter case, by building multiple classifiers, the interactions among the various class variables

and their simultaneous interactions with feature variables cannot be detected, which does not

represent accurately the multi-dimensional classification problem.

Hence, to deal properly with this problem, the so-called multi-dimensional Bayesian net-

works classifiers (MBCs) have been recently proposed and defined as an algorithm adaptation
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method that extends the general Bayesian networks to the multi-dimensional classification

problem. MBCs as well as works more closely related to our contributions, dealing with

learning MBCs from stationary data, are presented in the next section.

3.4 Multi-dimensional Bayesian network classifiers

MBCs extend the uni-dimensional Bayesian network classifiers and provide an accurate mod-

eling of the probabilistic dependence relationships among all variables, the class variables

included [222]. As Bayesian networks, the first component of the MBCs is the graphical struc-

ture. It partitions the set of class and feature variables into three different subgraphs: class

subgraph representing the dependence relationships between class variables, bridge subgraph

representing the dependence relationships between class and feature variables, and feature

subgraph representing the dependence relationships between feature variables. The second

component consists of the parameters that define the conditional probability distribution of

each variable given the set of its parents in the graphical structure.

Definition 3.1. A multi-dimensional Bayesian network classifier (MBC) [222] is a Bayesian

network B = (G,Θ) where the structure G = (V,A) has a restricted topology. The set of n

vertices V is partitioned into two subsets: VC = {C1, . . . , Cd}, d ≥ 1, of class variables and

VX = {X1, . . . , Xm},m ≥ 1, of feature variables (d+m = n). The set of arcs A is partitioned

into three subsets AC , AX and ACX , such that:

� AC ⊆ VC ×VC is composed of the arcs between the class variables having a subgraph

GC = (VC ,AC) -class subgraph- of G induced by VC .

� AX ⊆ VX×VX is composed of the arcs between the feature variables having a subgraph

GX = (VX ,AX) -feature subgraph- of G induced by VX .

� ACX ⊆ VC×VX is composed of the arcs from the class variables to the feature variables

having a subgraph GCX = (V,ACX) -bridge subgraph- of G induced by V [13].

Note that depending on the graphical structures of the class and feature subgraphs we

can differentiate between several families of MBCs. Such families can be denoted as class

subgraph structure-feature subgraph structure MBCs, where the possible structures

of each subgraph are: empty, tree, polytree, or DAG. MBC families used in the literature

include tree-tree MBC [222], polytree-polytree MBC [61], DAG-empty MBC [177], and

DAG-DAG MBC [188]. Throughout this dissertation, we do not consider any restrictions on the
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learned MBC structures, i.e., any possible structure type is allowed for either class or feature

subgraphs.

Classification with an MBC under a 0-1 loss function is equivalent to solving the most

probable explanation (MPE) problem which consists of finding the most likely instantiation

of the vector of class variables c∗ = (c∗1, . . . , c
∗
d) given an evidence about the input vector of

feature variables x = (x1, . . . , xm). More formally, for a given observed evidence x, we have

to determine

c∗ = (c∗1, . . . , c
∗
d)

= arg max
c1,...,cd

P (c1, . . . , cd | x1, . . . , xm)

= arg max
c1,...,cd

d∏
j=1

P (cj | paVC
(cj)) ·

m∏
i=1

P (xi | paVC
(xi),paVX

(xi)) (3.2)

where PaVC
(Cj) denotes the class parents of class variable Cj in the MBC graphical structure

G, and PaVC
(Xi), PaVX

(Xi) denote respectively the class parents and feature parents of the

feature variable Xi in G. Obviously, we have PaVX
(Cj) = ∅, ∀j ∈ {1, . . . , d}, since arcs from

feature variables to class variables are not allowed.

Example 3.1. An example of an MBC structure is shown in Figure 3.2. VC contains d = 4

classes, VX includes m = 7 features, and the structure G is equal to GC ∪GX ∪GCX . We have

c∗ = arg max
c1,...,c4

P (c1, . . . , c4 | x1, . . . , x7)

= arg max
c1,...,c4

P (c1 | c2, c3)P (c2)P (c3)P (c4)

· P (x1 | c2, x4)P (x2 | c1, c2)P (x3 | c4)P (x4 | c1)

· P (x5 | x2)P (x6 | c3, x3, x7)P (x7 | c4)

In recent years, several methods have been proposed to learn MBCs from data. Basically,

this learning problem aims to find an MBC that best fits the available multi-dimensional

training data set D, and ensures afterwards an accurate and efficient classification for the

future instances. In what follows, we briefly review the existing MBC learning methods.

Van der Gaag and de Waal [222] decompose the learning problem of tree-tree MBCs into

two separate optimization problems: first learning the class subgraph using Chow and Liu’s

algorithm [48], then, given a fixed bridge subgraph, learning the feature subgraph using also

Chow and Liu’s algorithm. The bridge subgraph is greedily selected from an empty graph
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Class subgraph:

Bridge subgraph: 

Feature subgraph:

X5X1
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X2
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C2 C3C1 C4
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C2

X2
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X3 X6X4 X7

X5X1 X2 X3 X6X4 X7

Figure 3.2: Example of an MBC structure with its class, bridge and feature subgraphs.

using a wrapper approach guaranteeing a high classifier accuracy. Later, the same authors [61]

present a theoretical approach for learning polytree-polytreeMBCs where class and feature

subgraphs are separately learnt based on Rebane and Pearl’s algorithm [184]. Nevertheless,

the induction of the bridge subgraph was not specified.

Moreover, Qazi et al. [177] learn DAG-empty MBCs where the class subgraph is induced by

standard Bayesian network procedures, the bridge subgraph is learnt by adding dependence

relationships from each class variable to a subset of selected and non-overlapping features,

and the feature subgraph is kept empty.

Rodŕıguez and Lozano [188] use a multi-objective evolutionary approach to learn DAG-DAG

MBCs. By using a genetic algorithm, each permitted MBC structure is coded as an individual

with three substrings, one per subgraph. Based on different classification measures, joint and

marginal, they define the objective functions as k-fold cross-validated estimators of each class

classification error. The aim is to find non-dominated structures according to the objective

functions.

Bielza et al. [13] propose different learning algorithms, namely, pure filter (guided by

any filter algorithm based on a fixed ordering among the variables), pure wrapper (guided

by the classification accuracy) and a hybrid algorithm (a combination of pure filter and pure

wrapper). None of these three algorithms places any constraints on the subgraph structures

of the generated MBCs.
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More recently, Zaragoza et al. [237] propose a two-step method to also learn polytree-

polytree MBCs. First, they build class and feature subgraphs using Chow and Liu’s algo-

rithm [48] and generate an initial bridge subgraph based on mutual information. Then, in

a second step, they refine the bridge subgraph by adding more arcs to improve the MBC

accuracy. Later, Zaragoza et al. [238] present a two-step method for learning Bayesian chain

classifiers for multi-dimensional classification. In the first step, a tree-based Bayesian network

that represents the dependency relations between the class variables is learned. In the second

step, several chain classifiers are built using selective naive Bayes models, such that the order

of the class variables in the chain is consistent with the class tree subgraph. At the end, the

results of the different generated orders are combined in a final ensemble model.

3.5 Classifier evaluation

Once the learning phase ends, the obtained classifiers should be evaluated (or validated).

This evaluation process is in fact crucial in order to assess the behavior of a classifier when

applied to unseen data set, and thereby assess the learning method used for the induction of

that classifier. This process also allows the comparison of various classifiers on a same data

set and the analysis of whether one classifier is superior to another or not.

To carry out this evaluation, two parts should be considered, namely, the performance

evaluation metrics and the used methodology for estimating the classifier performance.

3.5.1 Performance evaluation metrics

A commonly and widely used performance evaluation metric is the classification accuracy,

which is defined as the probability of correctly classifying a new instance x. The accuracy

computation depends on the type of the classification problem, i.e., uni-dimensional or multi-

dimensional.

3.5.1.1 Uni-dimensional classification

In this case, we have only one class variable C and the accuracy estimation is expressed as:

Acc =
1

N

N∑
l=1

δ(ĉl, cl) (3.3)

whereN is the size of the testing data set, ĉl is the class value predicted by the uni-dimensional
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classifier for instance l, and cl is its corresponding true value. δ(ĉl, cl) = 1 if the predicted

and true class values are equal, i.e., ĉl = cl, and δ(ĉl, cl) = 0 otherwise.

3.5.1.2 Multi-dimensional classification

In this case, we have a set of class variables C = (C1, . . . , Cd) and the accuracy estimation

metrics, that extend the uni-dimensional one, can be computed in two different ways [13],

namely:

� The mean accuracy over the d class variables. It is defined as a class-based measure

where the accuracy is calculated separately for each class variable, then averaged across

all the class variables:

Accm =
1

d

d∑
j=1

1

N

N∑
l=1

δ(ĉlj , clj) (3.4)

where N is the size of the testing data set, ĉlj denotes the Cj class value predicted

by the multi-dimensional classifier for sample l, and clj denotes its corresponding true

value. δ(ĉlj , clj) = 1 if the predicted and true class values are equal, i.e., ĉlj = clj , and

δ(ĉlj , clj) = 0 otherwise.

� The global accuracy over the d-dimensional class variable (also known as exact match

[181]). It is considered as an instance-based measure where the accuracy is calculated

separately for each instance in the testing data set, then averaged across all the instances:

Accg =
1

N

N∑
l=1

δ(ĉl, cl) (3.5)

In this more strict case, the (d-dimensional) vector of predicted classes ĉl is compared

to the vector of true classes cl, so that we have δ(ĉl, cl) = 1 if both vectors are equal in

all their components, i.e., ĉl = cl, and δ(ĉl, cl) = 0 otherwise.

Moreover, if all the class variables are binary, i.e., we have a multi-label classification

problem, the so-called subset accuracy has been proposed by Ghamrawi and McCallum [96]

as a trade-off between the mean accuracy (which tends to be overly lenient) and the global

accuracy (which tends to be overly strict):
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� The subset accuracy : This is an instance-based measure that alleviate the very strict

global accuracy measure by taking into account the partial correctness of the predicted

class values. The subset accuracy is computed as

Accsubset =
1

N

N∑
l=1

|ĉl ∩ cl|
|ĉl ∪ cl|

(3.6)

Note that, in this special case of multi-label classification, plenty of performance metrics

have also been defined, such as precision, recall, micro and macro averaged F-measures, log-

loss, as well as ranking-based metrics like one-error and ranking loss. The reader can find

more details about the multi-label evaluation metrics in [180].

3.5.2 Performance metric estimation methods

Several methodologies have been proposed to estimate the performance metrics of a classifier.

We present here four commonly used ones:

� Hold-out estimation [143]: In this case, the available data set is split into two disjoint

sets: training (typically 2/3) and testing (the remaining 1/3). The training data set is

then used to learn the classifier, while the testing data set is used to evaluate it and

estimate its performance.

� K-fold cross-validation [206]: In this estimation method, the data set is split into K

mutually exclusive folds. These folds are typically balanced, i.e., they include approx-

imately the same number of instances in each fold. The training and testing processes

are then repeated K times, such that, at each iteration, K − 1 folds are used to learn

the classifier and the remaining fold is used to evaluate it. The final estimated classifier

performance is then calculated by averaging over the K iterations usually providing

the mean and the standard deviation. The number of folds depends on the size of the

available data set. Nevertheless, the commonly used values are K = 5 and K = 10.

� Leave-one-out cross-validation [137]: This estimation method can be seen as a particular

case of K-fold cross-validation where the number of folds is equal to the number of

instances, i.e., K = N . Therefore, in this case, the learning process is repeated N

times, such that, at each iteration, the classifier is learned using N − 1 instances, and

evaluated on a single instance. At the end, the averaged value over the N iterations

and its standard deviation are reported.



42 Chapter 3. Multi-dimensional classification

� Bootstrap [69]: Given a data set of size N , this estimation method is based on creating

a new data set by sampling uniformly with replacement N instances from the original

data set. The obtained new data set is called a bootstrap sample. Since the sampling

process is performed with replacement, the probability of any given instance not being

selected after N samples is equal to (1− 1
N )N ≈ e−1 ≈ 0.368, whereas its probability of

being selected is approximately 0.632. That is why, this estimation method is commonly

known in the literature as the 0.632 bootstrap. The bootstrap sample is then used for

training and the non selected instances are used for testing, i.e., the training and testing

data sets will contain on average 63.2% and 36.8% of the instances, respectively. The

accuracy is estimated by combining accuracies measured on both testing and training

data sets as: Acc = 0.632×AccTesting+0.368×AccTraining. This process is generally

repeated over B bootstrap samples, B being a parameter of the method, and the final

accuracy estimate is calculated by averaging over all B samples.



Chapter 4
Data streams

4.1 Introduction

Throughout Chapter 3 we have presented multi-dimensional Bayesian network classifiers as

well as the state-of-the-art approaches for learning those classifiers from stationary data. In

this stationary environment, the whole stored training data set is used to induce a classifier

that will never be revised and will be valid to classify all the new incoming instances over

time. The rationale behind this is that the distribution underlying the data is assumed to be

stable and does not change over time.

However, this assumption is often violated and the data distribution is more likely to

change, especially when data is collected over an extended period of time. Nowadays, with

the rapid growth of information technology, this non-stationary setting is more noticeable,

and generally,“infinite”flows of records are generated daily from a wide range of real-world

applications, such as network monitoring, social networks, information filtering, fraud and

intrusion detection, telecommunications data management, etc. These flows are named data

streams.

Contrary to finite stationary data sets, data streams are characterized by their concept-

drifting aspect, which means that the learned concepts and/or the underlying data distribu-

tion are not stable and may change over time. Moreover, data streams pose many challenges

to computing systems due to limited memory resources (i.e., the stream could not be fully

stored in memory), and time (i.e., the stream should be continuously processed and the

learned classification model should be ready at any time to be used for prediction).

In recent years, the field of mining evolving concept-drifting data streams has received

an increasing attention and a plethora of approaches have been developed and deployed in
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several applications [1, 2, 85, 86, 87]. All proposed approaches have a main objective consisting

of coping with concept drift and maintaining the classification model up-to-date along the

continuous flows of data. They are usually composed of a detection method to monitor the

concept drift and an adaptation method used for updating the classification model over time.

Similar to the stationary classification problem, the streaming classification problem can

be categorized into supervised, semi-supervised, or unsupervised depending on the availability

of labeled instances, as well as into uni-dimensional or multi-dimensional depending on the

number of class variables, one or more, respectively.

This chapter is restricted to the presentation of a brief overview of the state-of-the-art

approaches dealing with supervised uni-dimensional streaming classification. Semi-supervised

uni-dimensional and supervised multi-dimensional streaming classification problems will be

discussed later in Chapter 7 and Chapter 8, respectively.

Chapter outline

Section 4.2 defines the concept drift problem and different types of drift. Next, Section 4.3

overviews the most prevalent change detection methods used for monitoring and signalling

concept drifts. Finally, Section 4.4 presents a brief survey on state-of-the-art adaptation

methods addressing different issues on how to update the classification model over time.

4.2 Concept drift

In dynamic environments, the characteristic properties of data streams are often not stable

but change over time. This is known as the concept drift problem [231]. According to Tsymbal

[219], there are two possible types of concept drift: real concept drift, defined as a change of

the target concept that the classification model is trying to predict, and virtual concept drift,

defined as a change of the underlying data distribution.

From a probabilistic point of view, and given a uni-dimensional supervised classification

setting, concept drift can be defined as the change in the joint probability distribution P (x, c),

where c is the class label of a feature vector x. P (x, c) is the product of the class posterior

distribution P (c | x) and the feature distribution P (x). According to Gao et al. [92], there

are three possible sources of concept drifts:

� Conditional change: In this case, a change occurs in P (c | x), that is, the class labels

change given the feature vectors. For instance, a conditional change may occur in an

information filtering domain consisting of classifying a stream of documents, denoted
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by x, as relevant or irrelevant, denoted by c, if the relevance of some documents changes

over time, that is, their class labels change from relevant to irrelevant or vice versa. With

respect to Tsymbal’s concept drift categorization, a conditional change corresponds to

a real concept drift.

� Feature change: In this case, a change occurs in P (x). Intuitively, some previously

infrequent feature vectors may become more frequent or vice versa. For instance, the

relative frequency of some documents in information filtering domain changes over time

regardless of their relevance, which may remain constant over a long period of time.

With respect to Tsymbal’s concept drift categorization, a feature change represents a

virtual concept drift.

� Dual change: In this case, changes occur in both P (x) and P (c | x). According to the

information filtering example, changes in both the relative frequency and the relevance

of some documents are observed, i.e., a virtual and a real concept drift both occur

together.

A similar categorization is proposed by Zhang et al. [241]. It is also based on the decom-

position of P (x, c) into two parts, as P (x, c) = P (c | x) · P (x). In fact, they define rigorous

concept drifting for changes in both P (c | x) and P (x), and loose concept drifting for changes

in P (x) only.

Moreover, depending on the rate (also known as the extent or the speed) of change,

concept drift can be also categorized into either abrupt or gradual. An abrupt concept drift

occurs at a specific time point by suddenly switching from one concept to another. On the

contrary, in a gradual concept drift, a new concept is slowly introduced over an extended time

period. Usually, the detection of abrupt drifts is easier and requires few instances to signal

the change. Gradual changes, however, are more difficult to detect, since at least during the

initial phases of change, the perturbations in the data stream can be seen as noise by the drift

detection algorithm, and therefore, more instances are often required to distinguish gradual

change from noise [88].

An additional important categorization is based on whether the concept drift is local

or global. A concept drift is said to be local when it only occurs in some regions of the

instance space (sub-spaces), and besides, when the type and the rate of changes also depend

on specific locations in the instance space [220]. In contrast, a global concept drift refers to a

change occurring in the whole instance space. As pointed out by Tsymbal [220], most gradual

concept drifts may be considered as local if most regions of the data remain stable, while most
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abrupt concept drifts are not local, unless substantial sub-areas remain stable between the

two changing concepts.

Concept drifts may be characterized as reoccurring concepts if previously seen concepts

reappear (generally at irregular time intervals) over time. Seasonal changes present an exam-

ple of reoccurring concepts that reappear periodically and regularly (each season) [89].

Concept drifts may be also characterized as novelties when some new class variables, some

new feature variables, or some of their respective states appear or disappear over time.

A recent categorization for concept drift was also proposed by Minku et al. [156] char-

acterizing concept drifts according to different additional criteria, namely, severity (severe if

no instance maintains its target class in the new concept, or intersected otherwise), frequency

(periodic or non-periodic) and predictability (predictable or random).

Figure 4.1 summarizes the different presented concept drift categorizations. It is important

to note that these types of drift are not exhaustive and the categorizations discussed here

are not mutually exclusive. In fact, to describe a concept drift, several categorizations may

be considered at the same time. For instance, a given concept drift may be simultaneously

characterized as real, abrupt, and reoccurring.

Finally, in spite of the above categorizations, some existing approaches dealing with the

concept drift problem do not distinguish between the different types of drifts. In fact, these

methods consider that in all cases and in the presence of any kind of concept drift, the current

model needs to be updated [219].

Concept 
drift 

Conditional change (real)
or

Feature change (virtual)
or

Dual change

Abrupt 
or

Gradual

Rigorous concept drifting
or

Loose concept drifting

Local 
or

Global
Reoccurring

Novelties Severe 
or

Intersected

Periodic 
or 

Non-periodic

Predictable
or

Random

Figure 4.1: Concept drift categorizations.
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4.3 Change detection methods

Detecting concept drift is a challenging task due to the diversity and instability of changes

occurring over time. Moreover, another difficult issue in handling change in data streams is

differentiating between a true concept drift and noise [219, 231]. Some detection methods may

overreact to noise, erroneously interpreting it as change, while others may be highly robust

to noise, adjusting to change too slowly. Hence, an effective change detection method should

be robust to noise and resilient to false alarms, i.e., it should signal a concept drift only when

it occurs and always when it occurs. Moreover, it is important for a detection method to be

able to not only detect the change, but also to provide more useful information about its type

and/or rate.

In recent years, various detection methods have been developed. In general, they either

monitor the evolution of performance indicators over time or compare the distributions on two

different data samples belonging to different time intervals (called time windows or merely

windows). In what follows, we briefly review the main existing change detection methods.

4.3.1 Monitoring the evolution of performance indicators

In general, the classification accuracy represents one of the most used performance indicators

for monitoring the concept drift. Roughly speaking, it is assumed that whenever there is a

significant drop in the predictive accuracy, a drift should be signaled.

A relevant work in this category is the FLORA family of algorithms proposed by Widmer

and Kubat [231]. To detect concept drifts, the accuracy and the coverage of the current

learner are monitored over time and compared to user-defined thresholds, and the window

size is adjusted accordingly (i.e., decreased when a concept drift is suspected, or increased

otherwise). Klinkenberg and Renz [127] monitor the values of three performance indicators

over time: accuracy, recall and precision, defining a window adjustment heuristic for text

categorization problems.

Lanquillon [141] employs statistical quality control to detect concept drifts in the context

of an adaptive information filtering system. Two different control charts are used to monitor

the drift: a variant of the Shewhart control chart and the cumulative sum control chart.

A control chart is defined as a plot of a certain characteristic value taken sequentially in

time. By means of the control charts, Lanquillon monitors three performance indicators over

time, namely, the sample error rate (a weighted average of the error rates measured on recent

windows), the expected error rate (measuring the average uncertainty of a set of classification

decisions), and the virtual rejects (corresponding to the fraction of classification decisions
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which should be rejected due to uncertainty). A similar approach is also proposed by Castillo

[35] where a Shewhart P-Chart is used to monitor the classification error rate over time.

Furthermore, the drift detection method (DDM) proposed by Gama et al. [90] is based

on the idea of monitoring the online error rate of a learning algorithm looking for significant

deviations. In accordance with the probability approximately correct (PAC) learning model

[159], it is assumed that, as time advances and more instances are processed, the error rate

of the learning algorithm will decrease if the target concept is stationary. Nevertheless, any

significant increase of the error rate suggests that the concept is changing. DDM performs

well but has difficulties when the changes are gradual and very slow.

Baena-Garćıa et al. [12] develop then the early drift detection method (EDDM) in order

to improve DDM and ensure the detection in presence of slow gradual concept drift. The

basic idea is to monitor the distance between two consecutive classification error rates instead

of monitoring only the online error rate.

Nishida and Yamauchi [163] propose a detection method (STEPD) that uses a statistical

test of equal proportions to track various types of concept drift. The key idea is to consider

two accuracies: the recent one and the overall one. They assume that the accuracy of the

algorithm on the recent instances will be equal to the overall accuracy from the beginning of

the learning process if the target concept is stationary, whereas a significant decrease of the

recent accuracy informs that there is a concept drift.

Moreover, more recently, Ross et al. [190] propose a new method called ECDD (EWMA

for concept drift detection) that uses an exponentially weighted moving average (EWMA)

chart to monitor the error rate of a streaming classifier. When a concept drift is detected, the

current classifier is relearned using the incoming recent data. ECDD is evaluated using two

different base classifiers: the linear discriminant analysis classifier and k-nearest neighbors.

4.3.2 Comparing the distributions on two windows

An alternative approach for detecting concept drift is to compare the distributions on two

different windows: a reference window usually containing the past information of old instances

and a current window containing the most recent data instances. The windows can have

either equal or different sizes. In general, it is assumed that as long as the distribution of old

instances is similar to the distribution of recent ones, no concept drift occurred. On the other

hand, a distribution difference indicates a concept drift.

An example of this approach is proposed by Kifer et al. [124]. Their change detection

algorithm uses non-parametric statistical tests based on Chernoff bound to compare the data

distribution in some reference window to the data distribution in a current window, and decide



4.3. Change detection methods 49

about the presence of a concept drift. Both windows contain a fixed number of successive data

points. The current window slides forward with each incoming data point, and the reference

window is only updated when a change is detected.

Vorburger and Bernstein [226] present an entropy-based metric to measure the distribu-

tion inequality between two sliding windows including respectively older and more recent

instances. If the distributions are equal, the entropy measure results in a value of 1, and if

they are absolutely different the measure will result in a value of 0. The entropy measure is

continuously monitored over time, and a concept drift is signaled when the entropy measure

decreases below a given fixed user-defined threshold.

Additional examples include the change detection methods proposed by Dasu et al. [55]

and Sebastião and Gama [200]. Both use the Kullback-Leibler (KL) divergence to measure

the distance between the probability distributions of two different windows (old and recent) to

detect possible changes. They empirically prove the efficiency of Kullback-Leibler divergence

in detecting changes and its resilience to false alarms when there are no drifts in the data.

Finally, a prominent change detector is also presented by Bifet and Gavaldà [15]. Their

adaptive sliding window method (ADWIN) automatically grows the window when no change

is apparent, and shrinks it when data changes. More precisely, ADWIN keeps a sliding

window W with the most recently received instances and compares the distribution on two

sub-windows of W by means of a statistical test. Whenever the two subwindows exhibit dis-

tinct enough averages, a change is signaled and the older portion of the window is dropped.

Table 4.1 summarizes the different presented change detection methods.

Table 4.1: Summary of change detection methods.

Accuracy + coverage [231]

Accuracy + recall + precision [127]

Monitoring the evolution Control charts [35, 141]

of performance indicators Online error rate [90]

Distance between error rates [12]

Change Recent and overall accuracy [163]

detection EWMA chart [190]

methods Statistical tests [124]

Comparing the distributions Entropy-based method [226]

on two windows KL divergence-based methods [55, 200]

ADWIN [15]
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4.4 Model adaptation methods

Different model adaptation methods have been proposed to handle concept-drifting data

streams and maintain the classification model up-to-date. As pointed out in [88], model

adaptation methods can be classified into two main groups: blind methods and informed

methods. This taxonomy depends on whether a change detection method is employed or

not. In fact, blind adaptation methods (also known as evolving methods) achieve adaptation

without the use of a change detection method. That is, they continuously repeat, at regular

time intervals, specific actions to update the classification model and keep it consistent with

the new incoming data. On the contrary, informed adaptation methods are always used in

conjunction with a change detection method and they only update the classification model

after a change is signaled.

Clearly, informed adaptation methods present a more efficient way in coping with concept

drifts since they avoid the uncontrolled updating of the current model, and may also provide

meaningful information about the generating data (when and where the change occurs) as

well as the type of change and its rate.

4.4.1 Blind adaptation methods

Basically, three major groups of blind adaptation methods can be distinguished, namely,

methods based on windows of fixed size, methods continuously weighting the instances in the

stream, and methods managing an evolving ensemble of classifiers.

Windows of fixed size

Methods using windows of fixed size [134, 195, 231] are based on the simple idea that the

classification model is learned, at each step, only from a fixed number of the most recent

instances. These windows are similar to first in, first out (FIFO) data structures [87]. When-

ever a new instance (or set of instances) is received and inserted into the window, another old

instance (or set of old instances) is discarded, such that the window keeps always a fixed size.

In this case, the main difficulty is the choice of an appropriate window size that trades off fast

adaptation in phases with concept drifts against good generalization in stable phases without

concept drifts. In fact, a small window can ensure a fast adaptability in phases with drifts,

but in more stable phases, it can affect the classifier performance. However, a large window

would produce good and stable classification results in stable phases, but usually cannot react

quickly to concept drifts and this may delay the classifier adaptation [88].
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Instance weighting

In this case, old instances are not discarded but they remain always stored in memory, with

a continuous decrease of their importance over time. Roughly speaking, instance weighting

methods (also known as gradual aging or gradual forgetting methods) proceed by assigning

lower weights to old instances according to their age and/or their relevance or competence

with respect to the current concept. The basic objective here is to focus more on recent

instances incorporating the new concepts, and be able in this way to keep the classification

model up-to-date. Examples of these methods can be found in [126, 133, 241].

Ensemble methods

The general technique applied by the evolving ensemble methods consists of dividing the

data stream into sequential blocks of fixed size, then using each of these blocks to learn

an individual classifier. Afterwards, the ensemble is continuously refined by adding a new

classifier, removing the oldest or the weakest classifier, or through increasing or decreasing

the classifier weights using some criteria which are usually based on their current performance.

Typically, the global prediction of the ensemble is obtained through either the combination

of all classifier predictions using a form of voting or the selection of the best one among them.

Ensemble methods have received a lot of attention during the last years. Several works

have been proposed investigating different ways of managing and updating the ensemble

over time and discussing various combination and selection rules. Examples include the

streaming ensemble algorithm [207], the accuracy weighted ensembles [227], the dynamic

weighted majority algorithm [130], the incremental classification ensemble algorithm [236],

and the ensemble integration techniques, namely, dynamic selection, dynamic voting, and

dynamic voting with selection [220].

4.4.2 Informed adaptation methods

Contrary to blind adaptation methods, informed adaptation methods make use of a detection

method to firstly check if a drift has occurred, then update, if necessary, the classification

model. In general, informed adaptation methods are either based on adaptive windows or

ensembles used jointly with a detection method, called adaptive ensembles.

Adaptive windows

The main idea behind these methods is to adjust dynamically the window size over time

according to the potential changes in the data stream. An adaptive window method is nec-
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essarily equipped with a detection method, that determines the change point at which the

concept drift occurs. Therefore, the window size is only adjusted when a concept drift is

detected. As a general and commonly used rule, if a concept drift is detected, the window

size is reduced to discard out-of-date instances; otherwise, the window size is increased to

include more recent instances. Afterwards, the classification model is updated accordingly

with the resulting window. Prevalent methods based on adaptive windows can be found in

[15, 90, 136, 163, 231].

Adaptive ensembles

Adaptive ensembles are basically introduced to improve the blind ensemble methods that

keep updating continuously the ensemble without detecting if a drift has occurred or not.

Specifically, adaptive ensembles incorporate a detection method at an ensemble level allowing

a more efficient adaptation process. For instance, an online bagging method [165] is extended

with the ADWIN detection algorithm in [16], a meta-learner composed of a set of models and

equipped with a drift detection method is also proposed in [89], and a data stream classifica-

tion framework that dynamically updates an ensemble of incremental classifiers is presented

in [122]. Moreover, a new ensemble learning method called diversity for dealing with drifts

(DDD) is recently presented in [157] ensuring a study on the diversity and the behavior of

ensemble learning methods under different types of concept drifts.

Finally, note that the list of all discussed model adaptation methods, summarized in

Figure 4.2, is not meant to be exhaustive, as we just focused on prevalent methods pertaining

to each group.

Model adaptation methods

Adaptive 
windows

[15, 90, 136,  
163, 231]

Adaptive 
ensembles

[16, 89, 122, 
157]

Ensemble 
methods

[130, 207, 220, 
227, 236]

Blind Informed

Windows of 
fixed size 

[134, 195, 231]

Instance 
weighting

[126, 133, 241]

Figure 4.2: Summary of model adaptation methods.
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Chapter 5
Learning CB-decomposable MBCs

5.1 Introduction

As commented in Chapter 3, multi-dimensional classification using MBCs involves the com-

putation of the most probable explanation (MPE), which consists of finding the most likely

instantiation of the class variables given an evidence about the feature variables. MPE is

NP-hard and is considered as one of the most challenging problems when dealing with MBCs.

In this chapter, in order to alleviate the MPE computational burden, we consider the

family of class-bridge decomposable MBCs (CB-decomposable MBCs) introduced by Bielza

et al. [13]. In fact, by decomposing class and bridge subgraphs of an MBC graphical structure

into w maximal connected components, the maximization problem for MPE computation

can be transformed into w maximization problems operating in lower dimensional spaces.

Moreover, using CB-decomposable MBCs may provide more insight about the domain and

better interpretability of learned structures than large and complex MBCs which have no

explicit representation for domain decomposability.

However, CB-decomposable MBCs merits have been only discussed and proved theoret-

ically in [13], and no learning approach nor an experimental study have been presented to

empirically demonstrate the usefulness of this new family of MBCs.

For these reasons, and in order to tackle the above shortcomings, we propose through this

chapter a novel algorithm for learning CB-decomposable MBCs based on a wrapper greedy

forward selection approach. Broadly speaking, in a first phase our algorithm, named CB-MBC,

learns a CB-decomposable MBC with a number of maximal connected components equal to

the number of class variables. This is carried out by learning a selective naive Bayes [140] for

each class variable C, then, removing their possible common children to have an initial bridge
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subgraph and an initial corresponding CB-decomposable MBC. In a second phase, a feature

subgraph defining dependence relationships between the set of feature variables is learned.

Finally, in a third phase, while the number of maximal connected components is greater

than one and there is an accuracy improvement, the algorithm iteratively and sequentially

merges together the components, then updates the bridge and feature subgraphs. By learning

CB-decomposable MBCs, it has been proven that the computations of MPE are alleviated

comparing to general MBCs. This work appears in the published paper [21].

Chapter outline

Section 5.2 defines CB-decomposable MBCs. Then, Section 5.3 describes our proposed al-

gorithm for learning CB-decomposable MBCs from stationary data, and Section 5.4 covers

the experimental study and discusses the obtained results. Finally, Section 5.5 rounds off the

chapter with some conclusions.

5.2 Class-bridge decomposable MBCs

Definition 5.1. A class-bridge decomposable multi-dimensional Bayesian network classifier

(CB-decomposable MBC) is an MBC B = (G,Θ) where the class subgraph GC and bridge

subgraph GCX are decomposed into w maximal connected components, such that

1. GC ∪ GCX =
∪w

j=1(GCj ∪ G(CX)j ), where GCj ∪ G(CX)j , with j = 1, . . . , w, are its w

maximal connected components, and

2. Ch(VCj ) ∩Ch(VCk
) = ∅, with j, k = 1, . . . , w and j ̸= v, where Ch(VCj ) denotes the

children of all the variables in VCj , the subset of class variables in GCj (non-shared

children property).

Bielza et al. [13] proved that the MPE computation can be alleviated thanks to MBC

class-bridge decomposability. In fact, maximizing over the set of all class variables amounts to

maximizing over each class variable subset of the identified maximal connected components,

i.e., maximizing over lower dimensional subspaces than originally.

Theorem 5.1. Given a CB-decomposable MBC where Ij =
∏

C∈VCj
ΩC represents the sample

space associated with VCj , then
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max
c1,...,cd

p(c1, . . . , cd | x1, . . . , xm)

∝
w∏

j=1

max
c
↓VCj ∈Ij

( ∏
C∈VCj

P
(
c | paVC

(c)
)
·

∏
X∈Ch(VCj

)

P
(
x | paVC

(x),paVX
(x)
))

(5.1)

where c
↓VCj represents the projection of vector c to the coordinates found in VCj . PaVC

(X)

and PaVX
(X) denote, respectively, the class parents and feature parents of X in G. PaVC

(C)

denotes the class parents of C in G, and obviously, for any class variable C, PaVX
(C) = ∅.

Given x, each expression to be maximized in Equation (5.1) will be denoted as ϕx
j (c

↓VCj ),

j = 1, . . . , w, i.e.,

ϕx
j (c

↓VCj ) =
∏

C∈VCj

P
(
c | paVC

(c)
)
·

∏
X∈Ch(VCj

)

P
(
x | paVC

(x),paVX
(x)
)

It holds that ϕx
j (c

↓VCj ) ∝ P
(
C

↓VCj = c
↓VCj | x

)
.

Example 5.1. Let us consider the MBC shown in Figure 5.1(a). It is a CB-decomposable

MBC with w = 3. Its three maximal connected components are depicted in Figure 5.1(b):

� the first one is GC1 ∪ G(CX)1 with VC1 = {C1, C2} and Ch(VC1) = {X1, X2},

� the second is GC2 ∪ G(CX)2 with VC2 = {C3} and Ch(VC2) = {X3, X4, X6}, and

� the third is GC3 ∪ G(CX)3 with VC3 = {C4} and Ch(VC3) = {X5}.

Note that Ch(VC1) ∩ Ch(VC2) = Ch(VC1) ∩ Ch(VC3) = Ch(VC2) ∩ Ch(VC3) = ∅, as

required. As a maximization problem we get:

max
c1,...,c4

P (C1 = c1, . . . , C4 = c4 | x) = max
c1,c2

P (c1)P (c2 | c1)P (x1 | c1, x2)P (x2 | c1, c2)

· max
c3

P (c3)P (x3 | c3)P (x4 | c3)P (x6 | c3, x3)

· max
c3

P (c4)P (x5 | c4, x1, x6)

= max
c1,c2

ϕx
1(c1, c2) ·max

c3
ϕx
2(c3) ·max

c4
ϕx
3(c4)
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Figure 5.1: Example of (a) a class-bridge decomposable MBC and (b) its three maximal connected
components.

5.3 CB-MBC Algorithm

In this section, we introduce a new algorithm for learning CB-decomposable MBCs from

stationary data based on a wrapper greedy forward selection approach.

Our learning algorithm consists of three main phases, outlined by Algorithm 5.1, and

detailed in what follows. Note that, in the different phases, the classifier accuracy is denoted

Acc, which is equal to Accm (see Equation (3.4)) or Accg (see Equation (3.5)) depending on

using the mean or the global accuracy, respectively.

5.3.1 Phase I: Learn bridge subgraph

Starting from an empty graphical structure, the first step in this phase is learning a selective

naive Bayes (SNB) [140] for each class variable Cj , j = 1, . . . , d (step 3). The initial state

of each selective naive Bayes is an empty set of features. Using a wrapper greedy search

technique, the algorithm iteratively associates with each class the feature providing the best

accuracy, and ends when no feature improves more the accuracy.

The d resulting selective naive Bayes models represent w = d maximal connected com-

ponents that may have common children. Thus, the next step is to check the non-shared

children property in order to induce an initial CB-decomposable MBC. This is accomplished

by removing, if necessary, all common children, based on two criteria, namely, the feature

insertion rank and the accuracy (steps 4 to 17).
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Let rankji denotes the insertion rank of feature Xi in the selective naive Bayes SNBj for

Cj , and rankki denotes the insertion rank of feature Xi in the selective naive Bayes SNBk for

Ck. rankji < rankki means that Xi is firstly selected by SNBj . Hence, in this case, Xi will

be kept in SNBj and removed from SNBk. Otherwise, and in case that rankji = rankki , we

proceed to compare the accuracies Accj and Acck, denoting respectively the accuracy of SNBj

and SNBk when Xi was included in, then keep Xi in the SNB presenting the best accuracy

and remove it from the other.

The result of this first phase is a simple CB-decomposable MBC, denoted CB-MBC b
w,

where only the bridge subgraph is defined and the class and feature subgraphs are still empty

(step 18).

5.3.2 Phase II: Learn feature subgraph

This phase consists of learning the feature subgraph by introducing the dependence relation-

ships between the feature variables. Since it may be impractical to consider all possible arc

additions between the feature variables, especially if the number of features m is large, we

will fix a parameter T as a maximum number of iterations (steps 20 to 25).

In each iteration, an arc is selected at random between a pair of feature variables. If there

is an accuracy improvement, the arc is added to GX , otherwise it is discarded and will not

be considered in subsequent iterations. This phase ends when T is reached, and the induced

MBC is denoted as CB-MBC bf
w (step 26).

Note that, thanks to MBC decomposability, the classification accuracy associated with the

arc addition in each iteration can be evaluated in a straightforward and local way. In fact,

after adding an arc from Xi to Xk, only the term corresponding to variable Xk changes, that

is, only the MPE computation of the maximal connected component to which Xk pertains,

changes and needs to be reevaluated. The MPE computation over all remaining maximal

connected components remains unchanged, which considerably reduces the computational

burden.

5.3.3 Phase III: Merge maximal connected components

Taking as input the CB-decomposable MBC found in the previous phase, having w maximal

connected components and a corresponding accuracy denoted Accw, the third phase consists

of learning the class subgraph, which leads to merging the maximal connected components of

the current CB-decomposable MBC, then updating the bridge and feature subgraphs.

As a first step, all possible arc additions between the class variables pertaining to differ-

ent maximal connected components are evaluated (steps 30 to 32). If there is an accuracy
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improvement, i.e., Accw−1 > Accw, the subgraph GC is updated by adding the arc improving

the accuracy the most, and w is reduced to w − 1 maximal connected components (steps 33

to 38).

Subsequently, a bridge update step is performed inside the new induced maximal con-

nected component. Dependence relationships that may be added from class to feature vari-

ables of the corresponding component are greedily evaluated, and only when there is an

accuracy improvement, the best one is added (steps 39 to 41).

Note that, once again, the MBC decomposability plays a key role in alleviating the com-

plexity of MPE computation since each possible arc addition between class variables or from

class to feature variables is evaluated locally. Moreover, for bridge updating step, the MPE

is only recomputed for the new merged component, which alleviates more the complexity.

The last step in this phase consists of updating the feature subgraph by inserting, one by

one, additional arcs between feature variables while this improves the accuracy (steps 42 to

44).

This phase iterates over these three steps, and terminates when no more component

merging can improve the accuracy or until the condition w = 1 is reached. Finally, a CB-

decomposable MBC denoted as CB-MBC bfc
w is returned at step 49.

5.4 Experimental study

In order to evaluate our CB-MBC learning algorithm, we firstly perform experiments with a

synthetic data set. We randomly generate an MBC, containing 6 class and 10 feature binary

variables, decomposed into 3 maximal connected components. Then, we randomly sample

a data set of size 1000 using the probabilistic logic sampling method [107]. We apply our

algorithm denoted as CB-MBC, and other four MBC learning algorithms, namely, Tree-Tree

[222], Polytree-Polytree [61], Pure Filter [13] and Pure Wrapper [13], all starting from

an empty structure.

We consider both the mean (see Equation (3.4)) and the global accuracy (see Equation

(3.5)) to learn and then evaluate the performance of the classifiers. Furthermore, in order to

test the ability of the classifiers to recover the initial MBC structure, we compare each learned

structure (LS) to the initial one (IS) using the following structural evaluation metrics:

� M1: percentage of arcs in LS that are present in IS, i.e., percentage of correctly-found

arcs.

� M2: percentage of arcs in LS that are absent in IS, i.e., percentage of superfluous arcs.
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� M3: percentage of arcs in IS that are oriented in an opposite direction in LS, i.e.,

percentage of badly-oriented arcs.

� M4: percentage of arcs in IS that are absent in LS, i.e., percentage of missing arcs.

Five-fold cross-validation experiments are run for each MBC learning method. Table 5.1

shows the average results over these runs.

Table 5.1: Experimental results over the synthetic data set.

Mean accuracy

Method Accm M1 M2 M3 M4

CB-MBC 0.7182 26.66 37.55 11.88 61.44

Tree-Tree 0.7129 30.55 49.44 5.55 63.89

Polytree-Polytree 0.6330 30.10 15.10 6.21 63.66

Pure Filter 0.5351 7.55 14.66 8.88 83.55

Pure Wrapper 0.7098 22.22 42.88 17.77 60.00

Global accuracy

Method Accg M1 M2 M3 M4

CB-MBC 0.2877 11.55 14.66 1.33 87.10

Tree-Tree 0.2838 25.00 53.88 8.33 66.66

Polytree-Polytree 0.2845 28.99 15.10 5.44 65.55

Pure Filter 0.2160 7.99 15.55 7.54 84.44

Pure Wrapper 0.2800 16.00 48.44 14.22 69.77

Our algorithm outperforms the state-of-the-art algorithms in terms of mean and global

accuracy. For structural evaluation, Tree-Tree and Polytree-Polytree present the best per-

centages of correctly-found arcs (M1) while Pure Filter has the lowest one. Tree-Tree and

Pure Wrapper induce the highest percentages of superfluous arcs (M2), and Pure Wrapper

also induces a high percentage of badly-oriented arcs (M3) comparing to the rest of the al-

gorithms. Moreover, we may observe that, with global accuracy, the learned structures are

sparser, leading to more important percentages of missing arcs (M4) for all MBC learning

algorithms.

As additional experiments, we consider the real data set Emotions [212]. It is about a

multi-dimensional classification of music into emotions. It contains 72 music features for 593

songs categorized into one or more out of 6 classes of emotions: amazed-surprised, happy-

pleased, relaxing-calm, quiet-still, sad-lonely, and angry-aggressive.

As previously, the accuracies of the considered learning algorithms are computed using

five-fold cross-validation. The results are summarized in Table 5.2. Note that, with this real

data set, we do not have an initial MBC structure, so the structural evaluation is omitted in
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this set of experiments.

Table 5.2: Experimental results over Emotions data set.

Method Accm Accg
CB-MBC 0.8326 0.3639

Tree-Tree 0.8135 0.2977

Polytree-Polytree 0.8052 0.3422

Pure Filter 0.6733 0.2690

Pure Wrapper 0.8293 0.3650

From Table 5.2, we may conclude that our algorithm performs well. In fact, with the mean

accuracy, CB-MBC presents the best accuracy, while with the global accuracy, Pure Wrapper

slightly outperforms CB-MBC.

Finally, in Figure 5.2, we plot the computation learning time of the various learning

algorithms, using the mean and global accuracy, for both synthetic and Emotions data sets.

Clearly, the algorithms using a filter approach require less computation than those using a

wrapper approach. Moreover, the computation time of our algorithm is lower than the other

wrapper approaches, mainly over the synthetic data set, which is basically due to the MBC

CB-decomposability and the alleviation of MPE computation. Note also that the computation

time with global accuracy is lower, since it is more difficult to improve the learned models,

so that the algorithm ends in earlier iterations.

0

10

20

30

40

50

60

70

80

90

L
e
a
rn

in
g
 t

im
e
 i
n
 m

in
u
te

s

 

 

       
    C

B-MBC

       
 Tree-Tree

Polytree-Polytree

      P
ure Filter

     P
ure Wrapper

(a) Synthetic data set

0

5

10

15

20

25

30

35

L
e
a
rn

in
g
 t

im
e
 i
n
 m

in
u
te

s

 

 

       
    C

B-MBC

       
 Tree-Tree

Polytree-Polytree

      P
ure Filter

     P
ure Wrapper

(b) Emotions data set

Mean
Global

Mean
Global

Figure 5.2: Computation learning times over (a) synthetic and (b) Emotions data sets.



5.5. Conclusion 63

5.5 Conclusion

A novel algorithm for learning CB-decomposable MBCs from data based on a wrapper forward

selection approach has been presented in this chapter. Indeed, CB-decomposability allows the

alleviation of MPE computations. Experimental results with both synthetic and real-world

data sets show that our algorithm performs well and requires less computation time than the

state-of-the-art wrapper learning algorithms.

Various possible improvements of algorithm CB-MBC could be investigated and carried out.

For instance, we may intend to test the alternation between forward and backward wrapper

selection techniques, instead of only relying on a forward selection approach. Furthermore,

it would be interesting to study the use of a filter approach mainly for the feature subgraph

learning step in order to avoid the random arc additions between features.
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Algorithm 5.1: CB-MBC algortihm
1. Initialization: GC = ∅; GCX = ∅; GX = ∅; w = d.
2. [Phase I: Learn bridge subgraph]
3. Learn selective naive Bayes SNBj , j = 1, . . . , w.
4. for Each SNBj , SNBk having a common feature Xi do

5. if rankji < rankki then
6. Remove Xi from SNBk

7. else
8. if rankji = rankki then
9. if Accj > Acck then
10. Remove Xi from SNBk

11. else
12. Remove Xi from SNBj

13. end if
14. end if
15. Remove Xi from SNBj

16. end if
17. end for
18. Obtain GCX =

∪w
j=1(SNBj), that is, CB-MBC b

w

19. [Phase II: Learn feature subgraph]
20. for TrialNumber = 1 : T do
21. Add randomly one arc to GX
22. if No accuracy improvement then
23. Discard the arc and do not consider it in subsequent iterations
24. end if
25. end for
26. Obtain CB-MBC bf

w

27. [Phase III: Merge maximal connected components]
28. CB-MBC bfc

w ←− CB-MBC bf
w ; Stop = False.

29. while w > 1 and not Stop do
30. for Each Cj , Ck pertaining to two different maximal connected components do
31. Evaluate the arc insertion from Cj to Ck

32. end for
33. Select the arc with the best accuracy Accw−1

34. if Accw−1 > Accw then
35. Update GC
36. Accw = Accw−1

37. CB-MBC bfc
w ←− CB-MBC bfc

w−1

38. w = w − 1
39. while Accuracy improvement do
40. Update GCX : add an arc from a class to a feature of the new merged component
41. end while
42. while Accuracy improvement do
43. Update GX : add an arc between feature variables
44. end while
45. else
46. Stop = True
47. end if
48. end while
49. return CB-MBC bfc

w



Chapter 6
Learning MBCs using Markov

blankets

6.1 Introduction

The main motivation for this contribution is to tackle the shortcomings of our previous CB-MBC

learning method presented in Chapter 5, mainly its computational cost, by taking advantage

of the merits of a filter constraint-based approach. This should considerably lighten the

computational burden, especially when the data set includes a large number of class and

feature variables, while guaranteeing good performance.

Additionally, applying our previous learning method may not always lead to an accurate

MBC structure, since arcs between features are selected at random in the feature subgraph

learning steps. In fact, in each feature subgraph learning step, CB-MBC iteratively selects a

random arc between features, then adds it if it improves the accuracy. This means that, in

each iteration, no exhaustive search is performed to add the arc that improves the most the

accuracy. Such exhaustive search is avoided since, as pointed out in Section 5.3, it may be

impractical and very time-consuming. In other words, these random arcs added to the feature

subgraph, though they improve in each iteration the accuracy, they may not lead to the MBC

structure with the best accuracy. Therefore, this may affect the overall quality of the learned

MBC structure and consequently lead to misinterpretations.

To deal with this issue, and motivated by the fact that the classification is unaffected by

parts of the structure that lie outside the Markov blankets of the class variables, we introduce

in this chapter a novel MBC learning algorithm based on Markov blankets.

In recent years, several specialized Markov blanket learning methods have been proposed

65
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in the literature, such as GS, TPDA, IAMB and its variants, MMHC, MMMB and HITON (see

[4, 5] and their references for reviews). In this chapter, we only consider and adapt the HITON

algorithm [4, 5, 7] extended to the context of multi-dimensional Bayesian network classifiers.

In fact, the HITON algorithm was empirically proven to outperform most of the state-of-

the-art Markov blanket discovery algorithms in terms of both classification performance and

feature set parsimony [4].

Our approach, named Markov blanket MBC (MB-MBC), firstly consists of determining the

Markov blanket around each class variable using the HITON algorithm and then specifying

the directionality over all three MBC subgraphs. MB-MBC is applied to two different and

important real-world multi-dimensional problems. The first one deals with predicting human

immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given

an input set of corresponding resistance mutations that an HIV patient carries, and the

second consists of predicting the European Quality of Life-5 Dimensions (EQ-5D) from the

39-item Parkinson’s Disease Questionnaire (PDQ-39). Both applications will be discussed

and presented in more details throughout this chapter. This work appears in the published

papers [22] and [24], and the submitted paper [23].

Chapter outline

The remainder of this chapter is organized as follows. The MB-MBC learning approach is de-

scribed in Section 6.2. Then, the first case study in the data sets of HIV-1 reverse transcriptase

and protease inhibitor prediction is presented in Section 6.3, while the second case study in

the prediction of EQ-5D from PDQ-39 is introduced in Section 6.4. Finally, a summary and

some conclusions of the chapter can be found in Section 6.5.

6.2 MB-MBC Algorithm

In this section, we describe our new MB-MBC algorithm for learning MBCs from stationary

data based on Markov blanket discovery. As far as we know, this is the first MBC learning

algorithm relying exclusively on a constraint-based approach.

The idea of MB-MBC learning algorithm is simple and consists of applying the HITON

algorithm to each class variable and then specifying directionality over the MBC subgraphs.

HITON identifies the Markov blanket of each class variable in a two-phase scheme, HITON-

MB and HITON-PC, outlined respectively in Algorithms 6.1 and 6.2.

Step 1 of HITON-MB identifies the parents and children of each class variable Ci, denoted

PC(Ci), by calling the HITON-PC algorithm. Then, it determines the parents-children set
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for every member T of PC(Ci) (steps 2 to 4). The Markov blanket set MB(Ci) is initialized

with PC(Ci) (step 5) and the set S includes potential spouses of Ci (step 6). From steps 7

to 14, HITON-MB loops over all members of S to identify correct spouses of Ci. MB(Ci) is

finally returned in step 15.

Algorithm 6.1: HITON-MB(Ci)

1. PC(Ci)← HITON-PC(Ci)
2. for every variable T ∈ PC(Ci) do
3. PC(T )← HITON-PC(T )
4. end for
5. MB(Ci)← PC(Ci)
6. S← {

∪
T∈PC(Ci)

PC(T )} \ {PC(Ci) ∪ Ci}
7. for every variable X ∈ S do
8. Retrieve a subset Z s.t. I(X,Ci | Z)
9. for every variable T ∈ PC(Ci) s.t. X ∈ PC(T ) do
10. if ¬I(X,Ci | Z ∪ {T}) then
11. Insert X into MB(Ci)
12. end if
13. end for
14. end for
15. return MB(Ci)

HITON-PC starts with an empty set of candidates PC(T ), ranks the variablesX in OPEN

by priority of inclusion according to I(X,T ) and discards variables having I(X,T ) = 0. Then,

for every new variable inserted into PC(T ), it checks if there is any variable inside PC(T )

that is independent of T given some subset Z. In this case, this variable will be removed from

PC(T ) (steps 6 to 11). These steps are iterated until there are no more variables in OPEN.

Finally, PC(T ) is filtered using the symmetry criterion (steps 13 to 17). In fact, for every

X ∈ PC(T ), the symmetrical relation holds iff T ∈ PC(X). Otherwise, i.e., if T /∈ PC(X),

X will be removed from PC(T ). At the end of this step, we obtain PC(T ).

Note that the complexity of both algorithms could be controlled using a parameter maxCS

restricting the maximum number of elements in the conditioning sets Z [4]. In our experiments

with HIV-1 reverse transcriptase and protease inhibitor data sets, we use the G2 statistical

test to evaluate the conditional independencies between variables with a threshold significance

level of α = 0.05, and we consider different values of maxCS = 1, 2, 3, 4, 5.

Unlike the HITON algorithm that only determines the Markov blanket of a single target

variable for solving the variable selection problem, our algorithm considers many target vari-
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Algorithm 6.2: HITON-PC(T )

1. PC(T )← ∅
2. OPEN ← U \ {T ∪ PC(T )}
3. Sort the variables X in OPEN in descending order according to I(X,T )
4. Remove from OPEN variables X having I(X,T ) = 0
5. repeat
6. Insert at end of PC(T ) the first variable in OPEN and remove it from OPEN
7. for every variable X ∈ PC(T ) do
8. if ∃ Z ⊆ PC(T ) \ {X}, s.t. I(X,T | Z) then
9. Remove X from PC(T ).
10. end if
11. end for
12. until OPEN = ∅
13. for every variable X ∈ PC(T ) do
14. if T /∈ PC(X) then
15. Remove X from PC(T )
16. end if
17. end for
18. return PC(T ).

ables, then induces the MBC graphical structure. Given the MBC definition, direct parents

of any class variable Ci, i = 1, ..., d, can only be among the remaining class variables, whereas

direct children or spouses of Ci can include either class or feature variables. We can then

easily deduce the different MBC subgraphs based on the results of the HITON algorithm:

� Class subgraph: we firstly insert an edge between each class variable Ci and any class

variable belonging to its corresponding parents-children set PC(Ci). Then, we direct

all these edges using the PC algorithm’s edge orientation rules [205].

� Bridge subgraph: this is built by inserting an arc from each class variable Ci to every

feature variable belonging to PC(Ci).

� Feature subgraph: for every feature X in the set MB(Ci)\PC(Ci), i.e., for every spouse

X, we insert an arc from X to the corresponding common child given by PC(X) ∩
PC(Ci).

Example 6.1. Let us assume that we apply HITON algorithm to a data set coming out of

the MBC structure of Figure 6.1. By the end of HITON-PC and HITON-MB algorithms, we

identify, respectively, the parents-children and the Markov blanket sets of each class variable:
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� PC(C1) = {C2, C3, X2, X4}; MB(C1) = PC(C1)

� PC(C2) = {C1, X1, X2}; MB(C2) = {C1, C3, X1, X2, X4}

� PC(C3) = {C1, X6}; MB(C3) = {C1, C2, X6, X3, X7}

� PC(C4) = {X3, X7}; MB(C4) = PC(C4)

X5X1

C2

X2

C3C1 C4

X3 X6X4 X7

Figure 6.1: Example of an MBC structure.

Next, we specify the three MBC subgraphs as follows:

� Class subgraph: edges are inserted between the class variables C1, C2 and C3. Then,

using the PC algorithm’s edge orientation rules, these edges are directed from C2 and

C3 to C1.

� Bridge subgraph: arcs are inserted from C1 to X2 and X4; from C2 to X1 and X2; from

C3 to X6; and from C4 to X3, X5 and X7.

� Feature subgraph: given that MB(C2) \PC(C2) = {X4}, an arc is inserted from spouse

X4 to the common child X1 determined by PC(X4) ∩PC(C2) = {X1}. Similarly, given

that MB(C3) \ PC(C3) = {X3, X7} and PC(X3) ∩ PC(C3) = PC(X7) ∩ PC(C3) =

{X6}, arcs are inserted from X3 and X7 to X6.

6.3 Case study in predicting HIV-1 RTIs and PIs

Commonly used therapies for human immunodeficiency virus type 1 (HIV-1) consists of com-

binations or cocktails of antiretroviral drugs, that should be repeatedly administered for each

patient to treat the HIV infection. Typically, these drugs may belong to one or more different

drug groups that target different stages of the viral HIV-1 life cycle.

We applied MB-MBC algorithm to the problem of predicting HIV-1 reverse transcriptase

inhibitors (RTIs) and protease inhibitors (PIs) given an input set of corresponding resistance
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mutations that an HIV-1 patient carries. The objective here is not to build only an MBC

with a high predictive power but also to discover the resistance pathways of each HIV-1 drug

by means of the learned MBC graphical structure.

We analyzed both reverse transcriptase and protease data sets obtained from the online

Stanford HIV-1 database [185]. In the reverse transcriptase data set (respectively protease

data set), the class variables are ten reverse transcriptase inhibitors (respectively eight pro-

tease inhibitors) and the feature variables are 38 predefined mutations [119] associated with

resistance to reverse transcriptase inhibitors (respectively 74 predefined mutations [119] as-

sociated with resistance to protease inhibitors).

The section continues in the two next subsections with presenting more details about the

used HIV-1 data sets. Then, in Subsection 6.3.3, the experimental design and the obtained

results are shown and discussed for reverse transcriptase and protease inhibitors, respectively.

6.3.1 Reverse transcriptase inhibitors (RTIs)

RTIs consist of two groups of antiretroviral drugs preventing HIV-1 replication, namely nu-

cleoside and nucleotide reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse

transcriptase inhibitors (NNRTIs). NRTIs inhibit reverse transcription by being incorpo-

rated into the newly synthesized viral deoxyribonucleic acid (DNA) and preventing its fur-

ther elongation [8]. We study seven drugs in this group: Abacavir (ABC), Didanosine (DDI),

Emtricitabine (FTC), Lamivudine (3TC), Stavudine (D4T), Tenofovir (TDF), and Zidovudine

(AZT). NNRTIs inhibit reverse transcriptase directly by binding to the enzyme, restricting

its mobility and making it unable to function [8]. We consider three drugs in this group:

Efavirenz (EFV), Nevirapine (NVP), and Delavirdine (DLV).

We studied a data set obtained from the Stanford HIV-1 reverse transcriptase database

[185] containing treatment histories from 2855 patients that received either NRTIs, NNRTIs

or both. These treatment histories were collected from previously published studies and all

belonged to subtype B. There may be one or multiple isolates for the same patient. Each

isolate corresponds to a sample in the data set, including a list of resistance mutations and

a combination of RTIs administered to a patient at a specified time point during his or her

course of RTI treatment. Only samples where no drug was administered were discarded.

Accordingly, the final data set contained a total of 4884 samples. Note that the number of

RTIs in the administered combinations varies from 1 to 8 drugs, such that the highest number

of samples comprise 5 RTIs (1852 samples) and 6 RTIs (1600 samples). There are only 698

samples including 4 RTIs, 483 samples including 7 RTIs, 157 samples including 3 RTIs, 56

samples including 8 RTIs, and finally, we have only 17 and 25 samples, respectively for 1 and
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2 RTIs.

Additionally, we considered a total of 38 mutations associated with resistance to RTIs and

defined in the latest International AIDS Society-USA resistance mutation list [119]. There

are no common resistance mutations between the two RTI groups; in fact, 22 mutations are

associated with NNRTs and 16 mutations are associated with NNRTIs.

6.3.2 Protease inhibitors (PIs)

PIs represent the third group of antiretroviral drugs. They bind to the protein cleavage site,

and therefore prevent the enzyme from releasing the individual core proteins and virus parti-

cles from subsequently maturing as infections [225]. We considered eight PI drugs: Atazanavir

(ATV), Darunavir (DRV), Fosamprenavir (FPV), Indinavir (IDV), Lopinavir (LPV), Nelfi-

navir (NFV), Saquinavir (SQV) and Tipranavir (TPV), and we analyzed a data set obtained

from the Stanford HIV-1 protease database [185] containing antiretroviral PI treatment his-

tories from 1255 patients. As with the RTI data set, the treatment histories were collected

from previously published studies. There may be one or more patient instances in the data

set such that each instance includes a list of resistance mutations and a set of administered

PIs drugs. Only samples where no drug was administered were discarded.

The final data set contained a total of 4341 samples belonging mainly to subtype B

(subtype B: 92%, subtype C: 3%, and other subtypes (A, D, F, G, H, J, K, CRF01 AE,

CRF02 AG): 5%). Note also that the number of PI combinations is not evenly represented;

in fact, there are 3256 samples including only 1 PI, 862 samples including 2 PIs, 213 samples

including 3 PIs and only 10 samples containing 4 PIs.

Using the International AIDS Society-USA resistance mutation list [119], we also con-

sidered a set of established PI resistance mutations. The total number of mutations in the

protease gene associated with resistance to PIs is 74, where 23 are classified as major and the

remainder as minor mutations. Major mutations are defined as mutations selected first in the

presence of the drug or mutations substantially reducing drug susceptibility, whereas minor

mutations generally emerge later than major mutations and, by themselves, do not have a

substantial effect [119].

In both the RTI and PI data sets, drug combinations (respectively resistance mutations)

were represented using binary vectors such that every value indicates either the presence, 1, or

absence, 0, of an individual drug (respectively an individual resistance mutation) in the cor-

responding sample of each data set. Using two multi-dimensional Bayesian network classifiers

learned separately from each data set, we were able to predict the antiretroviral combination
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of RTI and PI therapies given sets of corresponding input resistance mutations. Thanks to

the graphical structure of the learned MBCs, we were also able to investigate dependencies

among classes (i.e., RTI or PI drugs), features (i.e., RTI or PI resistance mutations) and

between classes and features (i.e., interactions between RTI or PI drugs and their respective

resistance mutations).

6.3.3 Experimental design

We compare MB-MBC algorithm with what is defined as a independent classifiers method

(called binary relevance in the literature on multi-label classification) where each classifier

with one class variable is learned independently using the same HITON algorithm [4, 5].

In what follows, we denote independent classifiers method as IndepMBs. Addition-

ally, we compare MB-MBC with five other MBC learning algorithms, namely, Tree-Tree [222],

Polytree-Polytree [61], Pure Filter [13], Pure Wrapper [13], and class-bridge decompos-

able MBC (CB-MBC) presented in Chapter 5.

As non Bayesian network-based approaches, we consider for comparison three different

methods: multi-label k-nearest neighbors (ML-kNN) [240], back propagation for multi-label

learning (BP-MLL) [239], and multinomial logistic regression (MNL) [101]. ML-kNN extends the

k-nearest neighbors lazy algorithm to a multi-label version and uses the maximum a poste-

riori principle to predict the label set; BP-MLL is derived from the popular back propagation

algorithm by modifying its error function with a new function that takes into account the

characteristics of multi-label learning; and MNL uses the multinomial logistic regression on an

input set of feature variables, and returns the class value with the highest posterior probabil-

ity. Similar to IndepMBs, MNL is applied independently to each class variable, and the results

are then concatenated to obtain the predicted class vector.

All methods were run in Matlab R2010b on a laptop 2.2 GHz with 6 GB RAM using Win-

dows operating system. The HITON algorithm was run using Causal Explorer Toolkit [6]

provided as compiled Matlab functions, and G2 statistical test was used to evaluate the condi-

tional independencies between variables with a significance level α = 0.05. ML-kNN and BP-MLL

were run using the Matlab packages from http://lamda.nju.edu.cn/datacode/MLkNN.htm

and http://lamda.nju.edu.cn/datacode/BPMLL.htm, respectively. For the ML-kNN algo-

rithm, the number of clusters was to set to 4 for both RTI and PI data sets, and for BP-MLL

the number of training epochs was set to 20, and the number of hidden neurons was set to 7

for the RTI data set and 14 for the PI data set. For the remaining MBC learning approaches

and CB-MBC, Matlab implementations from [13] and [21] were used, respectively.

Five 10-fold cross-validation experiments were run for each learning algorithm for both
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RTI and PI data sets. Bayesian network-based methods all start from an empty structure.

For MB-MBC and IndepMBs methods, the five 10-fold cross-validation experiments were run

with five different conditioning set size values, i.e., with maxCS = 1, 2, 3, 4, 5. As metrics, we

consider both the mean (see Equation (3.4)) and the global accuracy (see Equation (3.5)) to

evaluate the predictive performance of the learned classifiers.

6.3.4 RTIs analysis results

Table 6.1 shows the prediction results for the RTI data set with mean values and stan-

dard deviations for each metric and each learning method. The best result of each metric

is written in bold. ML-kNN presents the best mean accuracy (73%), whereas MB-MBC out-

performs the remaining approaches in the global accuracy with 11%. Note that the best

results for the MB-MBC algorithm are obtained with maxCS = 1, and as maxCS grows, the

overall mean and global accuracies decrease. We performed a multiple comparison of all al-

gorithm performances using the Friedman test followed by the Tukey-Kramer post-hoc test

with a significance level of α = 0.05. For the mean accuracy, it turns out that (1) ML-kNN

and MNL are significantly better than MB-MBC with maxCS = 4, MB-MBC with maxCS = 5,

Tree-Tree, and Polytree-Polytree; (2) IndepMBs with maxCS = 2 are significantly better

than MB-MBC with maxCS = 4, MB-MBC with maxCS = 5, and Tree-Tree; and (3) IndepMBs

with maxCS = 1 is only significantly better than Tree-Tree. For the global accuracy, it turns

out that MB-MBC with maxCS = 1 is significantly better than IndepMBs with maxCS = 5,

Tree-Tree, Polytree-Polytree, Pure Filter, and Pure Wrapper. For all remaining algo-

rithms, the differences in classification performance are not statistically significant.

Using the learned graphical structure of the most accurate MBC, shown in Figure 6.2, we

identified and analyzed the different interactions in the RTI data set between drugs belonging

to both the NRTI and NNRTI groups and established resistance mutations.

Firstly, the class subgraph (red arcs) in the RTI network shows associations between the

following NRTI drugs: AZT, ABC, 3TC, TDF and DDI, which may reveal the extent of

cross-resistance between each related pair of these drugs. The NRTI drug D4T has a unique

association with the NRTI drug AZT, and two associations with the NNRTI drugs EFV and

NVP. Note that these identified dependence relationships are partially consistent with the

previous work by Deforche et al. [63] that proved the existence of direct influences between

the NRTI drugs AZT, 3TC, ABC, DDI, and D4T, as well as direct influences between the

NNRTI drugs EFV and NVP and D4T. Deforche et al. also used Bayesian networks to

discover interactions between drugs and resistance mutations within and between NRTIs

and NNRTIs; however, contrary to our approach, they do not deal with the HIV treatment
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Table 6.1: Estimated accuracies (mean ± std. dev.) over RTI data set.

Method Mean accuracy Global accuracy

maxCS = 1 0.7108± 0.0221 0.1151± 0.0466

maxCS = 2 0.7062± 0.0191 0.0881± 0.0403

MB-MBC maxCS = 3 0.7019± 0.0153 0.0780± 0.0363

maxCS = 4 0.6995± 0.0145 0.0701± 0.0336

maxCS = 5 0.6978± 0.0106 0.0646± 0.0241

maxCS = 1 0.7331± 0.0178 0.0561± 0.0199

maxCS = 2 0.7344± 0.0143 0.0484± 0.0142

IndepMBs maxCS = 3 0.7314± 0.0141 0.0398± 0.0101

maxCS = 4 0.7316± 0.0141 0.0380± 0.0098

maxCS = 5 0.7315± 0.0141 0.0377± 0.0099

Tree-Tree 0.6968± 0.0163 0.0364± 0.0101

Polytree-Polytree 0.6999± 0.0147 0.0299± 0.0062

Pure Filter 0.7074± 0.0063 0.0240± 0.0066

Pure Wrapper 0.7095± 0.0040 0.0291± 0.0008

CB-MBC 0.7261± 0.0113 0.0382± 0.0105

ML-kNN 0.7373± 0.0180 0.0729± 0.0259

BP-MLL 0.7189± 0.0095 0.0428± 0.0165

MNL 0.7365± 0.0159 0.0595± 0.0203

prediction problem and they learned just two Bayesian networks separately for two NNRTI

drugs, namely EFV and NVP, to investigate resistance pathways [63].

The unique NRTI drug that has no dependency relationships with the other drugs is FTC.

This can be attributed either to the fact that there is not enough data on this drug since it

appears in only 205 samples, or to their being no influence between FTC and all other drugs

in this data set.

In the class subgraph, we also find that no dependency relationships are detected within

the NNRTI group, that is, there is no dependency relationships between the three NNRTI

drugs: NVP, EFV and DLV. In fact, NVP only has associations with two NRTI drugs D4T

and DDI, EFV has a unique association with the NRTI drug D4T, whereas DLV has no

associations with any other drugs. The same finding as for FTC may also apply to DLV.

However, the second hypothesis, i.e., absence of influence between DLV and all other drugs,

is more likely since there is a greater frequency of appearance of DLV in the data set (1990

samples) than FTC.

Secondly, the bridge subgraph (blue arcs) reveals dependency relationships between RTI

drugs and resistance mutations. For the first group of NRTIs, we find that each NRTI drug,
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except TDF, was directly related to at least one of its established resistance mutations, which

confirms the current knowledge on the role of these mutations in relation to corresponding

NRTI drugs [119]. For instance, ABC was associated with mutations L74V and Y115F; D4T

was associated with mutations M41L and D67N; FTC was associated with mutations K70R

and T215F/Y; and DDI was associated with mutation L74V. Additionally, AZT and 3TC

were directly connected to mutations K70R and 184V, respectively. This result was also

confirmed in recent work by Theys et al. [211], where the K70R and 184V mutations were

identified as two major resistance mutations to the combination of AZT and 3TC.

In general, two basic types of NRTI-resistance mechanism are known for HIV-1. The

first resistance mechanism is exclusion and involves enhanced discrimination at the time the

NRTI is incorporated. One example is the M184-V/I mutation that reduces the incorporation

of 3TC and FTC by steric hindrance. The second mechanism is excision and involves the

selective removal of NRTI from the end of the viral DNA after it has been incorporated by

RT. This is, for instance, the excision mechanism involved in AZT resistance and is achieved

through the accumulation of a specific set of mutations including M41L, D67N, K70R, L210W,

T215F, and K219E/Q. Interestingly, the same set of mutations is also selected in viruses from

patients under D4T therapy and are commonly designated as TAMs (i.e., thymidine analogue

resistance mutations) [197]. Cross-resistance due to the presence of TAMs affects all NRTI

drugs to some extent [119, 229].

Dependency relationships identified for NNRTI group are also consistent with current

knowledge [63, 119] as EFV and DLV were directly associated with the established resistance

mutation K103N, and NVP was associated with G190A.

The bridge subgraph indicated that all NRTI drugs were directly associated with some

NNRTI resistance mutations, such as K103N (associated with AZT, FTC, DDI and TDF),

Y181C (associated with AZT and FTC), P225H (associated with D4T and 3TC), V108I,

V179D and G190S (associated respectively with ABC, AZT and FTC). Similarly, all NNRTI

drugs were directly associated with some NRTI resistance mutations, such as M41L, D67N,

T69D and F77L (associated with EFV), K70R and M184V (associated with NVP), and L74V

(associated with DLV). This certainly reveals the extent of inter-group interactions between

NRTIs and NNRTIs.

Finally, the feature subgraph (green arcs) allowed us to identify interactions between NRTI

and NNRTI resistance mutations. The mutations with the greatest number of dependence

relationships were mutations D67N (4 connections: M41L, T69D, A98G, K219Q), T69D (4

connections: M41L, D67N, A98G, T215F), K70R (4 connections: L74V, M184V, T215F,

K219Q) and K103N (4 connections: V179D, M184V, Y188H, G190G). Notice that there are
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Figure 6.2: MBC graphical structure learnt by MB-MBC for the RTI data set.
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13 resistance mutations (at the bottom) that do not interact with drugs or features. A possible

explanation is the lack of instances of such mutations and/or their low interactions with the

other variables in the data set.

For structural comparison we have considered only two additional MBC graphical struc-

tures, because the discussion of all dependence relationships recovered by all remaining MBC

learning algorithms is complicated, requires at least one more page for each of the six MBC

networks, and may also become confusing and long to read. The two selected structures are

those induced by the MBC learning algorithms presenting the second best global accuracies

(MB-MBC was the best for both RTI and PI data sets). Our selection is based on the global

accuracy because it is the metric that reflects more appropriately the main objective of the

multi-dimensional classification, namely, predicting simultaneously all the class values. Ac-

cording to Table 6.1, it turns out that the second best MBC learning algorithms are IndepMBs

with maxCS = 1 and CB-MBC.

We have depicted in Figures 6.3 to 6.12 the ten Markov blanket-based Bayesian network

classifiers, learnt independently by IndepMBs for each RTI class variable. Being based on

the same HITON algorithm, IndepMBs discovers similar dependence relationships between

RTI drugs and resistance mutations, as MB-MBC does, augmented with additional dependence

relationships.

For instance, in the graphical structure learnt by MB-MBC (Figure 6.2), ABC is associated

with mutations L74V, V108I, and Y115F; however, in Figure 6.3, ABC is associated with

mutations K70R, L74V, K103N, V108I, Y115F, F116Y, T215Y. This structural difference

is expected and is related to the independent learning strategy of IndepMBs. In fact, the

additional mutations detected by IndepMBs are relevant to ABC class variable, but they

become weakly relevant or irrelevant when the remaining RTI class variables are considered

during the MB-MBC learning process. In the graphical structure learnt by MB-MBC, K103N, for

example, becomes weakly relevant to ABC as it does not pertain anymore to the Markov

blanket of ABC, but there is an undirected path from K103N to ABC; however, F116Y

becomes irrelevant to ABC because no undirected path exists between F116Y and ABC.

The same is observed for the bridge subgraphs learnt by IndepMBs for the remaining

RTI class variables, as well as the corresponding feature subgraphs. For instance, in both

MBC graphical structures learnt by IndepMBs (Figure 6.3) and MB-MBC (Figure 6.2), the

following associations between the pair of mutations V75I/Y115F, Q151M/ Y155F, M184V/

K103N, and M184V/K70R are identified. However, several other associations are added to

the IndepMBs graphical structure that do not exist in the MB-MBC graphical structure. As

previously explained, this is mainly due to the non-consideration of the remaining RTI class
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Figure 6.3: MBC graphical structure learnt by IndepMBs for the RTI class ABC.
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Figure 6.4: MBC graphical structure learnt by IndepMBs for the RTI class DDI.
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Figure 6.5: MBC graphical structure learnt by IndepMBs for the RTI class FTC.
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Figure 6.6: MBC graphical structure learnt by IndepMBs for the RTI class 3TC.
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Figure 6.7: MBC graphical structure learnt by IndepMBs for the RTI class D4T.
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Figure 6.8: MBC graphical structure learnt by IndepMBs for the RTI class TDF.

variables when building the Markov blanket of each RTI class variable.

Note also that, as it can be observed in Figures 6.3 to 6.12, the main drawback of IndepMBs
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Figure 6.9: MBC graphical structure learnt by IndepMBs for the RTI class AZT.
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Figure 6.10: MBC graphical structure learnt by IndepMBs for the RTI class EFV.
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Figure 6.11: MBC graphical structure learnt by IndepMBs for the RTI class NVP.

approach is its inability to detect the dependence relationships between the different RTI drugs

and their simultaneous interactions with resistance mutations.

Moreover, we have depicted in Figure 6.13, the MBC graphical structure learnt by CB-MBC
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Figure 6.12: MBC graphical structure learnt by IndepMBs for the RTI class DLV.

for RTI data set (which allows dependencies between class variables). For the class subgraph,

CB-MBC only detects a direct dependence relationship among the RTI class variables ABC

and DDI (red arc), which has been also detected in the MBC graphical structure learnt by

MB-MBC. All the remaining RTI class variables are kept independent. For the bridge subgraph

(blue arcs), and similar to MB-MBC, the following dependence relationships are detected: ABC

is associated with L74V and Y115F; DDI is associated with L74V, K103N, and M184V; 3TC

is associated with P225H; AZT is associated with K70R and Y188C; and D4T is associated

with M41L and Q151M. Additional dependence relationships are also discovered in the bridge

subgraph learnt by CB-MBC between the RTI class variables ABC, DDI, AZT, D4T and other

resistance mutations; however, contrary to MB-MBC graphical structure, no mutations are

associated with the RTI class variables FTC, EFV, NVP, and DLV. These variables are

kept independent and do not interact with the rest of variables. For the feature subgraph

(green arcs), the only dependence relationships are detected between the pair of mutations

K70R/G190E, Y181V/K219E, M184V/P225H and M184V/F77L, and none of them have

been detected in the MB-MBC graphical structure.

Overall, the graphical structure learnt by CB-MBC is less dense than the one learnt by

MB-MBC and this is mainly due to the CB-MBC learning strategy which is based on a wrapper

approach. In fact, in CB-MBC, arcs are inserted only if there is an improvement in the global

accuracy. So that, after the first phase of CB-MBC consisting of building independently a

selective naive Bayes for each class variable, it becomes more difficult to improve the global

accuracy. In other words, this means that after the first phase of CB-MBC, it becomes more

difficult to merge the maximal connected components (i.e., adding arcs between the class

variables) and update the bridge and feature subgraphs. As in our case, this generally may

lead to more independent class variables and less dense bridge and feature subgraphs.
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Figure 6.13: MBC graphical structure learnt by CB-MBC for the RTI data set.

6.3.5 PIs analysis results

Table 6.2 presents the prediction results for the PI data set with mean values and standard

deviations for each metric and each learning method. The best result of each metric is

written in bold. MNL presents the best mean accuracy (86%), whereas MB-MBC induces the

best global accuracy (31%). As with the RTI data set, we ran a multiple comparison of all
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algorithm performances using the Friedman test followed by the Tukey-Kramer post-hoc test

with a significance level of α = 0.05. For the mean accuracy, it turns out that (1) MNL is

significantly better than MB-MBC with maxCS = 3, MB-MBC with maxCS = 4, MB-MBC with

maxCS = 5, Tree-Tree, Polytree-Polytree and BP-MLL; (2) ML-kNN and IndepMBs with

maxCS = 5 are significantly better than MB-MBC with maxCS = 4, MB-MBC maxCS = 5,

Tree-Tree and BP-MLL; and (3) IndepMBs with maxCS = 3 and IndepMBs with maxCS = 4

are only significantly better than BP-MLL. For the global accuracy, it turns out that (1) MB-MBC

with maxCS = 1, MB-MBC maxCS = 2, and MB-MBC with maxCS = 3 are significantly better

than Polytree-Polytree, Pure Filter, Pure Wrapper, and BP-MLL; and (2) MB-MBC with

maxCS = 4 and MB-MBC with maxCS = 5 are only significantly better than Pure Filter and

Pure Wrapper. For all remaining algorithms, the differences in classification performance are

not statistically significant.

Note finally that the performance results are better over the PI than the RTI data set;

this can be explained by the fact that the number of classes (8 in PI and 10 in RTI) and the

number of possible class combinations (256 in PI and 1024 in RTI) are lower in PI than in

the RTI data set.

Table 6.2: Estimated accuracies (mean ± std. dev.) over PI data set.

Method Mean accuracy Global accuracy

maxCS = 1 0.8476± 0.0072 0.3187± 0.0304

maxCS = 2 0.8463± 0.0086 0.3123± 0.0412

MB-MBC maxCS = 3 0.8449± 0.0070 0.3035± 0.0298

maxCS = 4 0.8408± 0.0072 0.2886± 0.0329

maxCS = 5 0.8407± 0.0069 0.2904± 0.0333

maxCS = 1 0.8518± 0.0051 0.2726± 0.0256

maxCS = 2 0.8563± 0.0054 0.2231± 0.0134

IndepMBs maxCS = 3 0.8594± 0.0036 0.2010± 0.0047

maxCS = 4 0.8593± 0.0038 0.1896± 0.0099

maxCS = 5 0.8610± 0.0021 0.1912± 0.0060

Tree-Tree 0.8399± 0.0019 0.1931± 0.0256

Polytree-Polytree 0.8432± 0.0050 0.1509± 0.0220

Pure Filter 0.8527± 0.0030 0.0966± 0.0157

Pure Wrapper 0.8530± 0.0006 0.0998± 0.0038

CB-MBC 0.8552± 0.0037 0.2224± 0.0232

ML-kNN 0.8612± 0.0069 0.2279± 0.0364

BP-MLL 0.8080± 0.0283 0.1473± 0.0328

MNL 0.8682± 0.0051 0.2551± 0.0174
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In addition, we examined the graphical structure of the most accurate learned MBC,

shown in Figure 6.14, in order to evaluate the usefulness of the proposed learning algorithm

for identifying the different interactions between drugs and mutations in the HIV-1 protease

data set.

Firstly, the learned network, specifically the class subgraph (red arcs), shows dependency

relationships between the following drugs IDV, ATV, NFV, LPV and SQV, which may reveal

the extent of cross-resistance between each related pair of these drugs. Notice that, for IDV,

which has associations with LPV, ATV and NFV, Rhee et al. [186] recently proved in their

PI cross-resistance study that IDV and LPV are among the most strongly correlated PIs. In

fact, these two drugs had a correlation coefficient value equal to 0.57 [186]. Similarly, based

on their study, IDV and ATV, ATV and NFV as well as NFV and IDV had high correlation

coefficients. Nevertheless, correlation coefficients between LPV and both drugs NFV and

SQV were lower, equal to 0.14 and 0.05, respectively. This goes to confirm then that the

dependency relationships among the above PI drugs identified in the network are consistent

with Rhee et al.’s study [186].

However, our results were less conclusive for other drugs (FPV, DRV and TPV) since

we did not find any associations between these three drugs and between these and the other

drugs. A possible explanation is the lack of available data, as there were fewer than 30

samples for each of these drugs. This may be due to the fact that DRV and TPV, considered

as new-generation PI drugs, have different profiles to the other PI drugs, and hence they are

mainly used in rescue therapies for PI-experienced patients displaying failure on previous PI

drugs [139, 150]. On this ground, we would require a larger and more diverse data set for

future analyses in order to investigate possible interactions between these drugs and the other

network variables.

Concerning relationships between PI drugs and mutations, visualized by the bridge sub-

graph (blue arcs), let us first discuss the two possible types of mutations, major and minor,

and then how their associations with PI drugs have been previously interpreted in the liter-

ature in the Bayesian network context. As Defroche et al. [62, 64] found, a major mutation

actually plays a key role in drug resistance, and thus should have an unconditional depen-

dency on the drug. This is indicated in the network graphical structure by the presence of an

arc between the major mutation and the drug.

In contrast, a minor mutation further increases drug resistance mostly only in the presence

of major mutations. Thus, it is expected to be conditionally independent of the drug but

dependent on other major resistance mutations. This is indicated in the network by the

presence of an arc between major or minor mutations instead of an arc between the minor
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Figure 6.14: MBC graphical structure learnt by MB-MBC for the PI data set.
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mutation and the drug node. Even so, as claimed by Defroche et al. [64], a minor mutation

may still be connected to the drug.

Notice that the conditional independencies revealed in our bridge subgraph in Figure

6.14 are largely consistent with the above definitions, since most of the major mutations

are directly connected to one or more drug nodes. For instance, on the left, D30N (which is

defined in [119] as a major mutation of NFV) was not only associated with NFV but also with

IDV, LPV and SQV, again attesting to the extent of cross-resistance between these drugs.

Similarly, on the right, L76V (which is defined in [119] as a major mutation of LPV) was

directly associated with LPV, SQV and NFV. At the center bottom of the network, G48V

(major mutation of SQV [119]) was directly associated with SQV and NFV. L90M (another

major mutation of SQV [119]) was also directly associated with SQV. I47A, I50L, V82A,

V82L, defined in [119] as major mutations of LPV, ATV, IDV and TPV, respectively, were

directly associated with the right drugs in the MBC graphical structure.

A good number of minor mutations were also directly connected to drug nodes. L10I and

L33F seem to be the main minor mutations: they have the highest number of connections

(3) with PI drugs, followed by the minor mutations L10F and I54V. L10I was associated with

IDV, NFV and SQV; L33F with LPV, IDV and NFV; L10F with ATV and IDV, and I54V

with LPV and NFV. Additionally, consistently with the latest knowledge reported in [119],

more minor mutations, namely V82A/T, I84V, N88D/S, were associated directly with NFV.

Also in agreement with [119], the minor mutation K20R was associated with LPV, and the

minor mutation I84V was associated with SQV.

From the feature subgraph (green arcs) of the learned MBC, we were able to identify

interactions among different protease mutations. The mutations with the greatest number of

dependency relationships were L10I (21 connections: L10F, L10R, K20R, D30N, M46L, M46I,

K43T, G48V, I50V, F53L , I54A, I54T, I62V, A71I, A71V, G73S, V82A, I84V, I85V, L90M,

I93L), L10F (15 connections: L10I, L10V, V11I, K20T, L33F, M46I, G48V, I54L, I54V, L63P,

I84V, I85V, N88D, L89V, L90M), M46I (8 connections: L10F, L10I, K20I, V32I, M46L, I64L,

V77I, N88S), and 7 connections for L33F(L10F, K43T, M46L, I50V, I54L, A71L, V82L) and

G48V (L10F, L10I, L24I, D30N, I54A, I54S, V77I).

Note that, only three of the 19 mutations that present no interactions with other drugs

or features (at the bottom), are major ones, namely T74P, V82F and N83D. As with RTIs,

a possible explanation is the low number of occurrences of these mutations and/or their low

interactions with the other variables in the data set.

Similar to RTI data sets, we have considered only two additional MBC graphical structures

for structural comparison. Our selection is also based on the global accuracy because it
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is the metric that reflects more appropriately the main objective of the multi-dimensional

classification, namely, predicting simultaneously all the class values. According to Table 6.2,

it turns out that the second best MBC learning algorithms are IndepMBs with maxCS = 1

and CB-MBC.

We have depicted in Figures 6.15 to 6.21 the graphical structures learnt independently

by IndepMBs for respectively, the PI class variables ATV, DRV, IDV, LPV, NFV, SQV, and

TPV. No graphical structure is available for the FPV class variable because no associations

are detected between FPV and the remaining variables. Note also that, in all the figures, the

features that do not present any interactions with the corresponding PI class variable or the

rest of features are omitted (because the PI data set contains a larger number of features,

equal to 74, comparing to the previous RTI data set containing only 38 feature variables).

ATV

L10F I50L

I54V G73S

N88D

Figure 6.15: MBC graphical structure learnt by IndepMBs for the PI class ATV.

DRV

V32I

Figure 6.16: MBC graphical structure learnt by IndepMBs for the PI class DRV.

IDV

L10I L10R

L10V

V11I

K20I

K20R D30NL33F M36L

K43T

K45R M46I
G48V

I50VI54L I54M

I54V A71V

V82A V82SI84V I93L

Figure 6.17: MBC graphical structure learnt by IndepMBs for the PI class IDV.
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LPV

L10F

K20I

K20R D30N L33F M46I I47AI47V

G48VF53Y

I54V Q58E

I62V
L63P

H69K A71L L76VN88SL89V

Figure 6.18: MBC graphical structure learnt by IndepMBs for the PI class LPV.

NFV

L10F L10I

L10V

K20MK20R

L24I

D30N

V32I

L33F E34Q

M36I

M36L

K43T

I47V G48VI50VI54M I54V I62V

L63P

I64V A71TA71V G73SL76V V82A V82LV82SV82T I84V I85V N88DN88S L90M

Figure 6.19: MBC graphical structure learnt by IndepMBs for the PI class NFV.

SQV

L10F

L10I

V11I
K20R

L24I

D30N

V32I

L33F

E34Q

M46I

I47V G48VI50V F53L A71IL76V V82L I84V L90M

Figure 6.20: MBC graphical structure learnt by IndepMBs for the PI class SQV.

TPV
L10F

V11I

K20I

K20R D30N

V32I

L33F L33VM36IM46I I47V

G48V
F53L

I54AI54SI54V I62VL63P

I64V

A71VV82L V82TI84V

I93L

Figure 6.21: MBC graphical structure learnt by IndepMBs for the PI class TPV.
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IndepMBs graphical structures in Figures 6.15 to 6.21 are compared with the MBC graph-

ical structure learnt by MB-MBC (Figure 6.14), and similar conclusions to the ones discussed

with RTI data set are drawn. Basically, IndepMBs discovers similar dependence relationships

among each PI drug and the resistance mutations, as MB-MBC does, augmented with additional

dependence relationships. For instance, in Figure 6.15, ATV is associated with L10F, I50L

(which are also detected in the MB-MBC graphical structure), and with N88D (which becomes

weakly relevant to ATV in the MB-MBC graphical structure).

Similar conclusions are also drawn for the bridge subgraphs, and the inability of IndepMBs

to detect the dependence relationships between the different PI drugs and their simultaneous

interactions with the major and minor resistance mutations.

Finally, we have depicted in Figure 6.22 the MBC graphical structure learnt by CB-MBC for

PI data set. For the class subgraph, CB-MBC only detects a dependence relationship among

the PI class variables IDV and NFV (red arc), which has been also detected in the MBC

graphical structure learnt by MB-MBC (Figure 6.14). All remaining RTI class variables are

kept independent.

For the bridge subgraph (blue arcs), and similar to MB-MBC, the following dependence

relationships are detected: ATV is associated with I50L; IDV is associated with L10I, L10R,

V11I, I54L and V82F; LPV is associated with I47A and L76V; NFV is associated with D30N,

I84V and N88S; and SQV is associated with G48V, I50V and F53L. Additional dependence

relationships are also discovered in the bridge subgraph, learnt by CB-MBC, between the PI

class variables IDV, LPV, NFV, SQV and other resistance mutations.

For the feature subgraph (green arcs), the only dependence relationships are detected be-

tween the pair of mutations L10I/V82F, V11I/K20V, I50L/K45R, I54A/K45R, K20R/K45R,

V82A/K45R and T74P/I50V, and none of them have been detected in the MB-MBC graphical

structure. Note also that, in MB-MBC graphical structure, only 3 out of the 19 mutations

that do not present any interactions with other drugs or features are major ones; however, in

CB-MBC graphical structure, there are 34 mutations that do not present any interactions with

the rest of variables, where 9 of them are major, namely, M46L/M, I54V, Q58E, V82I/L/T,

N83D and L90M.

Similar to the RTI data set, we can conclude that CB-MBC produces a less dense MBC

graphical structure than MB-MBC, since it is based on a wrapper approach.

In summary, for both RTI and PI data sets, the identified dependence relationships were

proved to be consistent with the current knowledge, and were also verified by the medical doc-

tor Carlos Toro, who is a specialist in the HIV problem. However, for the variables (inhibitors



90 Chapter 6. Learning MBCs using Markov blankets

AT
V

DR
V

FP
V

ID
V

LP
V

NF
V

SQ
V

TP
V

L1
0C

L1
0F

L1
0I

L1
0R

L1
0V

V1
1I

G1
6E

K2
0I

K2
0M

K2
0R

K2
0T

K2
0V

L2
4I

D3
0N

V3
2I

L3
3F

L3
3I

L3
3V

E3
4Q

M3
6I

M3
6L

M3
6V

K4
3TK4

5R

M4
6I

M4
6L

I4
7A

I4
7V

G4
8V

I5
0L

I5
0V

F5
3L

F5
3Y

I5
4A

I5
4L

I5
4MI5

4S

I5
4T

I5
4V

Q5
8E

D6
0E

I6
2V

L6
3P

I6
4L

I6
4M

I6
4V

H6
9KH6

9R

A7
1I

A7
1L

A7
1T

A7
1V

G7
3A

G7
3C

G7
3S

G7
3T

T7
4P

L7
6V

V7
7I

V8
2A

V8
2F

V8
2I

V8
2L

V8
2S

V8
2T

N8
3D

I8
4V

I8
5V

N8
8D

N8
8S

L8
9V

L9
0M

I9
3L

I9
3M

Figure 6.22: MBC graphical structure learnt by CB-MBC for PI data set.

or resistance mutations) that do not present any interactions with the rest of variables, larger

and more diverse RTI and PI data sets need to be considered, and additional analyses need
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to be performed to thoroughly prove the current findings.

Finally, the computation times consumed by each algorithm on RTI and PI data sets

are plotted in Figures 6.23 and 6.24, respectively. As observed, ML-kNN is always the fastest,

followed by MNL and the filter approaches, namely, Pure Filter and Polytree-Polytree. For

RTI data set, IndepMBs is also quite efficient and requires less computation time than MB-MBC.

However, for PI data set, including a larger number of variables (82 variables instead of 48

variables in RTI data set), IndepMBs with maxCS = 1 takes a similar computation time than

MB-MBC with maxCS = 1, but more computation times than MB-MBC for maxCS = {2, 3, 4, 5}.
Note here that, for both MB-MBC and IndepMBs, the consumed computation times increase

as maxCS grows, because the number of executed statistical independence tests increases

as maxCS grows. This is mainly noticed over PI data set that contains a larger number of

variables. Moreover, as pointed out by Aliferis et al. [5], as maxCS grows, the overall power

decreases. This is also verified in our case, especially for the global accuracy values in Tables

6.1 and 6.2, that drop for both MB-MBC and IndepMBs as maxCS grows. Therefore, using

smaller maxCS avoids excessive computations while producing better predictive performance.

In addition, as shown in Figures 6.23 and 6.24, BP-MLL consumes more computation

times than ML-kNN, MNL and the filter approaches mainly due to its complex error function

which needs to be optimized through an iterative learning process [239]. CB-MBC, Tree-Tree

and Pure Wrapper take always the longest computation times comparing to the rest of the

methods since they are all based on wrapper approaches that involve time-consuming MPE

computations.

Tree-Tree is the slowest over RTI data set, whereas CB-MBC is the slowest over PI data

set; and this can be explained by the different learning strategies behind both algorithms. In

fact, the learning process of the bridge subgraph for Tree-Tree algorithm requires, in each

iteration, an evaluation of the global accuracy of each possible MBC candidate using MPE

computations. These computations mainly depend on the number of class variables and their

value combinations; so that, as the number of class variables grows, Tree-Tree running time

increases. In our case, PI data set contains 8 binary class variables, i.e., 256 class value

combinations, however, RTI data set contains 10 binary class variables, i.e., 1024 class value

combinations, which increases considerably Tree-Tree computation time over the RTI data

set. The same observation applies as well for Pure Wrapper that iteratively evaluates and

selects the MBC candidates using MPE computations.

CB-MBC is based on a different learning wrapper strategy. It first learns an initial bridge

subgraph by building a selective naive Bayes for each class variable, defines the feature sub-
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Figure 6.23: Computation learning times over RTI data set.
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Figure 6.24: Computation learning times over PI data set.

graph by randomly selecting arcs between features and adding them if they improve the

accuracy, then iteratively updates MBC subgraphs as long as the number of maximal con-

nected components is greater than one and there is an accuracy improvement. The first step

in CB-MBC depends on the number of class and feature variables, and may require the longest
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computation time during CB-MBC learning process. In fact, for each class variable, it iterates

over all feature variables to select, in each iteration, the feature that improves the accuracy

the most. This, indeed, explains the highest computation time consumed by CB-MBC over PI

data set (including 82 variables) compared to the one consumed over RTI data set (including

only 48 variables).

Note finally that, being defined as a filter constraint-based approach, MB-MBC requires less

computational time than all existing wrapper algorithms, since its learning process is based on

statistical independence tests instead of accuracy metrics. Generally speaking, MNL, ML-kNN

and the filter approaches require shorter computation times, whereas the wrapper approaches

always take longer.

6.4 Case study in predicting EQ-5D from PDQ-39

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor manifesta-

tions (bradykinesia, rest tremor and balance impairment) and non-motor symptoms (depres-

sion, psychosis and sleep disturbance) [37, 148]. In PD, the symptoms, the complications,

and the subsequent disability are progressive over time and cause an increasing deterioration

of the patients’ quality of life [121, 151, 153, 203].

Health-related quality of life (HRQoL) is a patient-reported outcome reflecting the impact

of the disease on the physical, mental, functional, and social aspects of life which are important

for the individual. There is no a universal definition for HRQoL, but in pragmatic terms it

may be considered as the perception and evaluation, by patients themselves, of the impact

caused on their lives by the disease and its consequences [151].

HRQoL measures can be categorized into generic and specific. Generic measures are

usable in general populations and in any disorder as they compile information about the

most relevant health domains. The European Quality of Life-5 Dimensions (EQ-5D) is

considered a valid generic instrument and is recommended for evaluation of HRQoL in PD

[42, 102, 152, 199]. EQ-5D contains five items: mobility, self-care, usual activities,

pain/discomfort, and anxiety/depression, each has three options of response: no prob-

lems, some problems and severe problems. Hence, the number of all possible EQ-5D item

value combinations is 243. Each possible combination corresponds to a health state, which

can be then quantified using a utility score, a.k.a. utility index. Based on the UK scoring

system [103], this corresponding utility score may range from −0.594 (i.e., worse health state

where all EQ-5D items report severe problems) to 1 (i.e., best health state where all EQ-5D

items report no problems) [32, 147].
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On the contrary, specific measures are usable only in the population for which they were

designed and cover the most important areas of interest in that setting. The 39-item Parkin-

son’s Disease Questionnaires are specific HRQoL instruments widely used in PD and they

are also recommended for use in this disorder [152]. It contains 39 questions, represented in

Table 6.3, each scoring on a five-point scale: never, occasionally, sometimes, often and always

[116, 117, 172, 173].

In clinical studies, PDQ-39 could be used in detriment of EQ-5D due to the excessive

burden for the respondents to assess two questionnaires simultaneously, or the lack of resources

and time. This also may be due to the lack of the clinical interest in generic measures, and

the relative difficulty for the calculation of EQ-5D utility index and the interpretation of its

outcomes. Nevertheless, PDQ-39 can not be directly applied in cost-effectiveness analyses

which require generic measures and quantitative utility scores, such as EQ-5D. To deal with

this problem, a commonly used solution is the prediction of EQ-5D from disease-specific

measures. For instance, several studies have been proposed to map the EQ-5D utility score

from the Health Surveys SF-12 [78, 146, 147, 208] and SF-36 [191]. Moreover, in a more

related work, Cheung et al. [43] developed several functions for generating the EQ-5D utility

index from PDQ-8, the short version of PDQ-39.

Notice that, most of these studies were mainly based on ordinary least squares (OLS)

or censored least absolute deviation (CLAD) regression methods. Nevertheless, Le and Doctor

[147] recently discussed certain limitations of these regression methods (such as predictive val-

ues that are outside the range of the EQ-5D utility scores and ceiling/floor effects, i.e., when

predictive values can be better/worse than the best/lowest score in the range of EQ-5D scores)

and proposed a probabilistic mapping of Health Surveys SF-12 into EQ-5D using Bayesian net-

works. Specifically, Le and Doctor proved that Bayesian networks consistently outperformed

the commonly used regression methods and pointed out the merits of the Bayesian network

graphical component, which may be useful for researchers in further investigating the corre-

lational relationships of health dimensions among and/or between generic preference-based

measures and specific health-profile measures.

In this study, we apply MB-MBC to predict EQ-5D from PDQ-39. Contrary to Le et and

Doctor’s method [147] that learns an independent Bayesian network for each EQ-5D item, our

approach builds a single MBC identifying interactions among all variables involved in EQ-5D.

In fact, taking into account the dependence relationships among EQ-5D items is crucial here

for both better prediction performance and graphical structure interpretation.

In what follows, we firstly introduce the used Parkinson’s data set, then present the

experimental study and the results for predicting EQ-5D from PDQ-39.
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Table 6.3: The Parkinson’s disease questionnaire PDQ-39 items.
Mobility
pdq1 Had difficulty doing the leisure activities you would like to do
pdq2 Had difficulty after your home e.g. DIY, housework, cooking
pdq3 Had difficulty carrying bags of shopping
pdq4 Had problems walking half a mile
pdq5 Had problems walking 100 yards
pdq6 Had problems getting around the house as easily as you would like
pdq7 Had problems getting around in public
pdq8 Needed someone else to accompany you when you went out
pdq9 Felt frightened or worried about falling over in public
pdq10 Been confined to the house more than you would like

Activities of daily living
pdq11 Had difficulty washing yourself
pdq12 Had difficulty dressing yourself
pdq13 Had problems doing up buttons or shoe laces
pdq14 Had problems writing clearly
pdq15 Had difficulty cutting up your food
pdq16 Had difficulty holding a drink without spilling it

Emotional well-being
pdq17 Felt depressed
pdq18 Felt isolated and lonely
pdq19 Felt weepy or tearful
pdq20 Felt angry or bitter
pdq21 Felt anxious
pdq22 Felt worried about your future

Stigma
pdq23 Felt you had to conceal you Parkinson’s from people
pdq24 Avoided situations which involve eating or drinking in public
pdq25 Felt embarrassed in public due to having Parkinson’s disease
pdq26 Felt worried by other people’s reaction to you

Social support
pdq27 Had problems with your close personal relationships
pdq28 Lacked support in the ways you need from your spouse or partner
pdq29 Lacked support in the ways you need from your family or close friends

Cognitions
pdq30 Unexpectedly fallen asleep during the day
pdq31 Had problems with your concentration, e.g. when reading or watching TV
pdq32 Felt your memory was bad
pdq33 Had distressing dreams or hallucinations

Communication
pdq34 Had difficulty with your speech
pdq35 Felt unable to communicate with people properly
pdq36 Felt ignored by people

Bodily discomfort
pdq37 Had painful muscle cramps or spasms
pdq38 Had aches and pains in your joints or body
pdq39 Felt unpleasantly hot or cold
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6.4.1 Parkinson’s disease data set

The used Parkinson’s disease data set was obtained from an international multipurpose

database collected by the National Center of Epidemiology, Carlos III Institute of Health,

Madrid. Patients with diagnosis of Parkinson’s disease by neurologists with expertise in

movement disorders, and according to internationally recognized diagnostic criteria [148],

were followed up in movement disorder clinics. Patients in all stages of PD (Hoehn and Yahr

1 to 5) were included.

In total, the analyzed data set contains N = 488 patients, where 59.43% are male and

40.57% are female, and the average age for all patients is 65 years old (minimum = 30,

maximum = 89). For each patient, we have information about the PDQ-39 items, represented

in Table 6.3, with values ranging from 0 (never) to 4 (always); and the corresponding EQ-5D

with values ranging from 1 (no problems) to 3 (severe problems).

Table 6.4 presents the frequencies (%) of the different EQ-5D item values in the data set.

It can be clearly observed that the number of patients with severe problems are limited for

all class variables as in most real cohorts, especially for mobility where only 7 instances are

available.

Table 6.4: EQ-5D items distribution in PD data set including 488 patients.

Item No problems Some problems Severe problems

Mobility 192(39.34%) 289(59.22%) 7(1.43%)

Self-care 255(52.25%) 201(41.19%) 32(6.56%)

Usual activities 177(36.27%) 263(53.89%) 48(9.84%)

Pain/discomfort 175(35.86%) 247(50.61%) 66(13.52%)

Anxiety/depression 233(47.75%) 216(44.26%) 39(7.99%)

The objective is to simultaneously predict the 5 class values of EQ-5D from PDQ-39 using

MB-MBC algorithm. Given the EQ-5D values, to complement them, the corresponding utility

score utility index could also be induced using the UK general scoring system [103].

For instance, let’s assume that we obtain an EQ-5D equal to c = (1, 1, 2, 2, 3) indicating that

the considered patient has no problems with mobility and self-care; some problems with

usual activities and pain/discomfort; and severe problems with anxiety/depression.

Based on UK scoring system [103], EQ-5D utility index is 1 - 0.081 - 0.036 - 0.123 - 0.236 -

0.269 = 0.255.
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6.4.2 Experimental design

We applied MB-MBC on the Parkinson’s disease data set and we compared it as previously

against CB-MBC and IndepMBs algorithms. We also considered, as additional Bayesian network-

based approach, the IndepPC-BNs algorithm recently proposed in [147] to predict EQ-5D from

Health Surveys SF-12. Moreover, we compared MB-MBC against three additional state-of-the-

art approaches, namely, MNL, OLS and CLAD, the last two being based on the utility score. In

what follows, we briefly present more details for each of these new considered approaches:

� Independent PC Bayesian networks (IndepPC-BNs): PC algorithm [205] is a constraint-

based approach for learning Bayesian networks from data. It starts with a fully con-

nected DAG, then sequentially removes edges between nodes based on statistical inde-

pendence tests. Similar to Le and Doctor [147] that recently applied this approach to

predict EQ-5D utility index from Health Surveys SF-12, we used the PC algorithm to

learn independently a Bayesian network for each class variable in EQ-5D.

� Multinomial logistic regression (MNL) [100, 147]: Using the multinomial logistic regres-

sion on an input set of feature variables, this approach returns the estimated posterior

probabilities of each class value; then the class value with the highest probability is

selected. Similar to IndepMBs and IndepPC-BNs, MNL is applied independently to each

class variable, and the results are aggregated to obtain the predicted class vector.

� Ordinary least squares (OLS): is one of the mostly used methods for mapping specific

HRQoL instruments such as Health Surveys SF-12 and PDQ-8 into a generic utility

index [43, 78, 147]. In the OLS model, the EQ-5D utility index is directly regressed on

the PDQ-39 items. In other words, OLS does not provide the 5 estimated class values

of EQ-5D, but only returns the estimated EQ-5D utility index.

� Censored least absolute deviation (CLAD) [176]: is a generalization of the least absolute

deviations method. Similar to OLS, CLAD is widely used to convert specific HRQoL

instruments into a generic utility index [43, 147, 208], and it only estimates EQ-5D

utility index without predicting the 5 class values of EQ-5D.

All methods were run in Matlab R2010b on a laptop 2.2 GHz with 6 GB RAM using

Windows operating system. The HITON and PC algorithms were run using Causal Explorer

Toolkit [6] provided as compiled Matlab functions. G2 statistical test was used to evaluate

the conditional independencies between variables with a significance level α = 0.01, and

experiments are performed only with the conditioning set size value maxCS = 1. Figure 6.25

summarizes the approaches used for predicting EQ-5D from PDQ-39.
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Figure 6.25: Approached used for predicting EQ-5D from PDQ-39.

Note finally that we applied MB-MBC and IndepMBs with a restriction of the Markov blanket

set of each class variable MB(Ci) to the set of its parents-children PC(Ci). This restriction

was introduced based upon the theoretical discussion introduced by Aliferis et al. in [5] and

the empirical observation that including more spouses leads to a less accurate MBC classifier.

In fact, Aliferis et al. [5] discussed in Section 4.6 five plausible scenarios explaining the

better performance of substituting the parents-children set in place of the Markov blanket

set. The third scenario applies in our case, where the spouses have connecting paths to

the class variables that cannot be blocked due to the small sample size, i.e., the conditional

independencies between the spouses and the class variables could not be established due to

the small number of instances in the PD data set (including only 488 instances).

As performance evaluation metrics, we considered the mean (see Equation (3.4)) and the

global accuracy (see Equation (3.5)). In addition, we used the following metrics, commonly

used in comparison with MNL, OLS and CLAD methods [147]:

� The mean squared error (MSE) between the true and predicted EQ-5D utility scores.

� The mean absolute error (MAE) between the true and predicted EQ-5D utility scores.

� The square of the Pearson product-moment correlation (R2) between the true and pre-

dicted EQ-5D utility scores.

� The absolute difference (AbsDiff) between the true and predicted EQ-5D utility mean

scores, i.e. the absolute difference is computed between the mean of all true EQ-5D

utility scores and the mean of all predicted EQ-5D utility scores.
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6.4.3 Experimental results

Table 6.5 shows the classification performance results for the 5-fold cross-validation experi-

ments performed on PD data set with mean values and standard deviations for each metric

and each method. Recall that OLS and CLAD only return the utility index; thus, in order

to compute the mean and global accuracies for OLS and CLAD, we proceeded by retrieving

the EQ-5D class values as follows: first, we look for the utility index from the UK scoring

list [103] closest to the one returned by OLS and CLAD, then we determine the EQ-5D vector

corresponding to that index.

In Table 6.5, MB-MBC presents the best mean accuracy (71%), whereas surprisingly IndepMBs

outperforms in the global accuracy the remaining approaches with 20%. We ran a multiple

comparison test of all method performance using the Friedman test followed by the Tuckey-

Karmer post-hoc test with a significance level equal to 0.05. It turns out that, for both mean

and global accuracy, MB-MBC and IndepMBs results are only significantly better than OLS and

CLAD methods.

Table 6.5: Estimated accuracies (mean ± std. dev.) over PD data set.

Method Mean accuracy Global accuracy

MB-MBC 0.7119± 0.0338 0.2030± 0.0718

CB-MBC 0.6807± 0.0285 0.1865± 0.0429

IndepMBs 0.7009± 0.0427 0.2051± 0.0835

IndepPC-BNs 0.6587± 0.0636 0.1867± 0.0937

MNL 0.6926± 0.0430 0.1802± 0.0713

OLS 0.4201± 0.0252 0.0123± 0.0046

CLAD 0.4254± 0.0488 0.0143± 0.0171

In addition, Table 6.6 presents results for MSE, MAE, R2 and AbsDiff metrics. The best

result for each metric is written in bold. Once again, MB-MBC outperforms other predictive

approaches in terms of MSE and MAE. IndepMBs presents the best R2 and MNL produces the

best AbsDiff.

Note that, both OLS and CLAD methods performed poorly for all the performance metrics

in Tables 6.5 and 6.6. As pointed out by Le and Doctor [147], this may be due to certain

limitations of these regression methods such as predictive values that are outside the domain

of the preference-based target, ceiling/floor effects, and assignment to health states that are

not defined in the UK scoring list. Previous studies testing OLS and CLAD for predicting the

EQ-5D utility index from the Health Surveys SF-12 [147, 208], or from PDQ-8, the short

version of PDQ-39 [43], proved that OLS and CLAD methods induce very similar results with a



100 Chapter 6. Learning MBCs using Markov blankets

possible better performance of the simple OLS over the more theoretically justifiable CLAD. In

our case, OLS method resulted in a slightly better MSE, MAE and R2 than CLAD, but for the

absolute difference between the true and the predicted EQ-5D mean scores, CLAD performed

better.

MNL performed quite well compared to OLS and CLAD as well as compared to the Bayesian

network-based approaches. For instance, it had better results for mean accuracy, MSE, MAE,

and R2 than IndepPC-BNs and CB-MBC; it also resulted in the best AbsDiff compared to all

the remaining approaches. However, MNL presented a lower global accuracy compared to

all Bayesian network-based approaches. This can be explained by the fact that taking into

account the probabilistic dependence relationships among class and feature variables ensures

a better predictive performance, and in this context, MB-MBC and IndepMBs performed better

than CB-MBC and IndepPC-BNs through determining the Markov blanket around each class

variable.

Table 6.6: MSE, MAE, R2 and AbsDiff (mean ± std. dev.) over PD data set.

Method MSE MAE R2 AbsDiff

MB-MBC 0.0650± 0.0156 0.1737± 0.0316 0.5996± 0.0683 0.0659± 0.0373

CB-MBC 0.0905± 0.0167 0.1973± 0.0298 0.4094± 0.0860 0.0790± 0.0541

IndepMBs 0.0699± 0.0188 0.1784± 0.0328 0.6026± 0.0653 0.0737± 0.0315

IndepPC-BNs 0.0909± 0.0909 0.2026± 0.0391 0.4602± 0.1379 0.0863± 0.0670

MNL 0.0759± 0.0152 0.1922± 0.0284 0.4935± 0.0961 0.0503± 0.0331

OLS 0.1832± 0.0373 0.3502± 0.0422 0.0186± 0.0177 0.0943± 0.0388

CLAD 0.1962± 0.0360 0.3583± 0.0395 0.0165± 0.0155 0.0779± 0.0278

Moreover, contrary to MNL, OLS and CLAD, Bayesian network-based approaches present

also the merit of representing the relationships between all variables through their graphical

structure component. In our study, in order to investigate the dependence relationships

among EQ-5D and PDQ-39 variables, we first examine in Figure 6.26 the graphical structure

of the MBC network learnt by the MB-MBC algorithm from the full PD data set, then compare

it to the graphical structures learnt by CB-MBC, IndepMBs and IndepPC-BNs. The medical

significance of the obtained graphical structures was verified by the medical doctor Pablo

Mart́ınez-Mart́ın, who is a neurologist specialist in Parkinson’s disease.

Firstly, the class subgraph in Figure 6.26 (red arcs) shows associations between the three

class variables mobility, self-care and usual activities which may reveal the strong

relevance between these classes. Pain/discomfort is not directly related to any other class

variable, but its Markov blanket includes the class usual activities which proves as well
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Figure 6.26: MBC graphical structure learnt by MB-MBC for Parkinson’s disease data set.

the strong relevance between both classes. Anxiety/depression has no direct connections

with the remaining classes. This can be explained by the fact that anxiety/depression is

more related to emotional problems rather than physical health problems (i.e., mobility,

self-care, usual activities and pain/discomfort).

Secondly, the bridge subgraph (blue arcs) reveals direct dependence relationships between

EQ-5D classes and PDQ-39 features. Table 6.3 lists the PDQ-39 features grouped into 8

domains: Mobility, activities of daily living, emotional well-being, stigma, social support,

cognitions, communication and bodily discomfort. Each domain is depicted in Figure 6.26

with a different color. We have the following probabilistic dependence relationships from

EQ-5D to PDQ-39:

� Mobility is directly associated with pdq1, pdq4, pdq6, and pdq7.

� Self-care is directly associated with pdq12.

� Usual activities is directly associated with pdq1, pdq2, pdq3, pdq5, pdq6, pdq8,

pdq10, pdq12 and pdq15.

� Pain/discomfort is directly associated with pdq2, pdq3, pdq38.

� Anxiety/depression is directly associated with pdq17, pdq18.
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Note that the detected associations are very appropriate and clearly related to mobility,

self-care and usual activities. The selected pdq variables associated with these three class

variables exclusively pertain to mobility and activities of daily living domains, which cover

the main information about PD. In fact, PD is a neurodegenerative disorder characterized

by motor manifestations (bradykinesia, rest tremor and balance impairment) and non-motor

symptoms (depression, psychosis and sleep disturbance) [148]; and for the huge majority of PD

patients, from earliest to most advanced stages, the common perceived health problems are

reflected as limitations for mobility and activities of daily living, whereas the most prevalent

non-motor symptoms are associated with the impact on patients’ health status perception

(pain and depression, for example).

For pain/discomfort, the associations are well explained, as a whole, from the point of

view of bone and joint disorders (pdq38), mainly. There are other types of pain in PD, more

difficult to associate with these findings. Perhaps, pain due to dystonia in off state can also

be related, in some way, with those selected PDQ-39 items. Distinction between the types of

pain that may be present in PD is not easy.

For anxiety/depression, it seems that depression is quite well represented by the de-

tected pdq items, but not the anxiety. In fact, there are PDQ-39 items about anxiety (pdq21

about feeling anxious, pdq22 about feeling worried about the future), but they do not appear

in association with the EQ-5D class variable anxiety/depression. This can be explained by

the well-known close relationship between depression and anxiety. A useful representation of

this connection is made evident with the Hospital Anxiety and Depression scale, a measure

furnishing scores for rating anxiety and depression separately but also usable as a unique

score of emotional distress [77, 189].

Taking the previous arguments into account, the findings in this study have sense from

a clinical point of view. Moreover, EQ-5D is more restricted in content than the PDQ-39,

explaining why several components of the PDQ-39, in addition to the most immediately

relatable (for example, pain), can converge on a domain of the EQ-5D. Therefore, we may

conclude that the combination of the selected variables in the network properly represents

the relationships between the generic (EQ-5D) and specific (PDQ-39) instruments, and covers

both motor and non-motor symptoms of PD.

The feature subgraph is empty due to the restriction of the Markov blanket set of each

class variable MB(Ci) to the set of its parents children PC(Ci), that is, no feature spouses are

allowed and thereby the parents of each feature variable can be only among class variables.

Finally, notice that several features are also not present in Figure 6.26 since no associations

were detected between them and the EQ-5D class variables. These features are considered
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irrelevant and this may be due to the lack of instances of these features and/or their low

interactions with the other variables in the analyzed data set.

For structural comparison, we depict in Figures 6.27, 6.28 and 6.29, the graphical struc-

tures learnt by CB-MBC, IndepMBs and IndepPC-BNs from the full PD data set, respectively.

As shown in Figure 6.27, CB-MBC fails to detect any direct dependence relationship among the

EQ-5D class variables, i.e., the class subgraph is empty. For the bridge subgraph, and similar

to MB-MBC, the following dependence relationships are detected: mobility is associated with

pdq4 and pdq7, self-care with pdq12, usual activities with pdq2, pain/discomfort

with pdq3 and pdq38, and anxiety/depression with pdq17. Moreover, additional arcs are

discovered in the bridge subgraph between the EQ-5D class variables and pdq9, pdq21, pdq23,

pdq25, pdq28, pdq30, pdq32 and pdq39. Regarding the feature subgraph (green arcs), only

three arcs were added between pdq11 and pdq23, pdq12 and pdq28, and pdq21 and pdq27.

Figure 6.27: MBC graphical structure learnt by CB-MBC for Parkinson’s disease data set.

Figure 6.28 shows the five Markov blanket-based Bayesian network classifiers learnt in-

dependently for each EQ-5D class variable by IndepMBs. Being based on the same HITON

algorithm [4, 5], IndepMBs discovered similar dependence relationships between the EQ-5D

and the pdq items, as MB-MBC does. However, as it can be observed, the main drawback of

IndepMBs is its inability to detect the dependence relationships between the different EQ-5D

class variables and their simultaneous interactions with the pdq items.

Additionally, Figure 6.29 presents the graphical structure of the Bayesian network learnt

by IndepPC-BNs for the mobility class variable. Many dependence relationships are added

between the pdq items, and as determined by MB-MBC and Indep-MBs, mobility is only di-



104 Chapter 6. Learning MBCs using Markov blankets

rectly associated with pdq1, pdq4, pdq6 and pdq7. Similar conclusions are obtained for

the Bayesian network graphical structures learnt by IndepPC-BNs for the class variables

self-care, usual activities, pain/discomfort, and anxiety/depression (details and

graphs not shown). As in IndepMBs, the main drawback of IndepPC-BNs is that each network

is learnt independently for each class variable, and thus interactions between class variables

could not be detected.

Figure 6.28: Graphical structures learnt by IndepMBs for Parkinson’s disease data set.

Figure 6.29: Bayesian network graphical structure learnt by IndepPC-BNs for EQ-5D mobility class
and PDQ-39 variables.

Finally, the computation times consumed by each method on PD data set are reported
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in Table 6.7 measured in seconds. OLS is the fastest. MB-MBC is quite efficient and requires

less time than IndepMBs and IndepPC-BNs. IndepPC-BNs may take more time since it builds

a full Bayesian network for each class variable whereas MB-MBC and IndepMBs only locally

determine the Markov blanket around each class variable. CB-MBC takes always the longest

computation time since it is based on a wrapper approach. Thus, we may conclude that

regression and filter approaches require less computation, whereas the wrapper approach

requires more computation.

Table 6.7: Computation learning times over PD data set.

Method Time (seconds)

MB-MBC 13.38± 0.72

CB-MBC 757.51± 47.91

IndepMBs 34.98± 1.57

IndepPC-BNs 23.40± 0.38

MNL 10.56± 4.06

OLS 0.72± 0.08

CLAD 0.75± 0.21

6.5 Conclusion

In this chapter, we have presented a novel MBC learning approach using Markov blankets

jointly with its application to two important real-world problems dealing with predicting the

HIV-1 reverse transcriptase and protease inhibitors, and predicting the European Quality of

Life-5 Dimensions EQ-5D from the Parkinson PDQ-39 items.

Experimental results on both considered case studies were promising compared with state-

of-the-art learning algorithms. As a constraint-based approach, MB-MBC ensured, through the

induced MBC graphical structures, an accurate identification of the probabilistic dependence

relationships among class and feature variables. The analysis of learned MBC graphical

structures allowed us to gain insight into both known and novel interactions among RTI and

PI drugs and their corresponding resistance mutations for the HIV-1 application, as well as

among EQ-5D and PDQ-39 for the Parkinson’s disease application. Moreover, thanks to this

filter and a local approach to MBC learning, we can lighten the computational burden of

MBC learning process of wrapper algorithms and provide accurate MBC structures.

Note, however, that our approach has two main limitations. First, it cannot deal directly

with continuous variables and requires a discretization pre-processing step before its applica-

tion to continuous data. So, in the future, it will be an interesting issue to extend MB-MBC
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to allow the combination of both discrete and continuous predictor variables. Second, our

approach cannot handle instances with missing values. To overcome this limitation, we have

to perform missing values imputation before using MB-MBC, or adapt for example the more

sophisticated EM algorithm [65] to enable parameter estimations or structure learning from

incomplete data [80].

Finally, since the class distributions in both analyzed data sets were imbalanced, an-

other line for future research is to extend our approach to deal with the challenging task of

imbalanced multi-dimensional data sets. This in fact might improve the learning and the

classification performance results.
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Mining uni- and multi-dimensional
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Chapter 7
Mining uni-dimensional data

streams with partially labeled

instances

7.1 Introduction

As commented in Chapter 4, the field of mining uni-dimensional concept-drifting data streams

has received an increasing attention and has been intensively researched in recent years.

Several approaches have been proposed and applied to a wide range of real-world applications

[1, 86]. However, most of these approaches are based on supervised classification algorithms

assuming the availability of labeled data for accurate learning. In general, they continuously

monitor classification performance and detect a concept drift if there is a significant fall over

time. Unfortunately, the assumption of entirely labeled data streams availability is often

violated in real-world problems, as labels may be scarce and not readily available.

For instance, for the malware detection problem, only a few true labels (i.e., malware

or goodware) may be available immediately after the classification process, and therefore

we may have to wait for a quite long time until all the instances are labeled. This leads

a traditional stream classification algorithm to choose between updating the classifier with

just a few labeled data, which usually results in a poor classifier, or waiting longer to get all

labeled data. This can also affect the quality of the classifier since most of the data will be

outdated.

Semi-supervised learning methods have proved to be useful in such cases since they com-

bine both labeled and unlabeled data to enhance the performance of classification algorithms

109
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[243]. However, they mainly assume that data is generated according to some stationary

distribution, which is not true when learning from evolving data streams, where changes may

occur over time.

In this chapter, we propose a new approach (CPL-DS) for classifying partially labeled

uni-dimensional data streams. Our aim is to take advantage of unlabeled data to detect

possible concept drifts and, if necessary, update the classifier over time even if only a few

labeled data are available. To this end, inspired by earlier work by Dasu et al. [55], we use

the Kullback-Leibler (KL) divergence [135] to measure distribution differences between data

stream batches. Then, based on a bootstrapping method [70], we determine whether or not

the KL measures are statistically significant, i.e., whether or not a drift occurs. However, our

approach differs from Dasu et al.’s work on three key points. First, we do not only detect

whether or not a drift occurs, but we further distinguish and monitor three possible kinds

of drift: feature, conditional or dual drift (see Section 4.2). Second, we do not assume that

the available data streams are entirely labeled. Indeed, we detect possible drifts using both

labeled and unlabeled instances. Moreover, we propose a general approach for learning from

all these instances. In fact, when any of the three possible kinds of drift is detected, a new

classifier is learned using the expectation-maximization (EM) algorithm [65]. EM has been

widely used in semi-supervised learning where it has been found to improve classification

accuracy, especially when there is a small number of labeled data [162]. Otherwise, i.e., when

no drift is detected, the current classifier is left unchanged.

Our approach is then informed since it only adapts the classifier when a concept drift

is detected. It is also general so that it can be applied with different classification learn-

ing algorithms. In this chapter, we consider two classifiers, namely naive Bayes and logistic

regression. We perform experiments on a synthetic and a real data set using different per-

centages of labeled instances. Moreover, we evaluate our approach using a real-world malware

detection data set, where we deal with the additional problem of imbalanced data streams

and make use of two recently proposed approaches for mining skewed data streams, namely

clustering-sampling [228] and SERA [39]. The results show that our approach performs well

even using limited amounts of labeled data.

This chapter is based on the published papers [25, 26].

Chapter outline

The remainder of this chapter is organized as follows. Section 7.2 briefly reviews existing

approaches for learning from uni-dimensional data streams containing partially labeled ins-

tances. Section 7.3 introduces our new CPL-DS approach. Sections 7.4 and 7.5 present the
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used data sets and the experimental results, respectively. Finally, Section 7.6 rounds the

chapter off with some conclusions.

7.2 Related work

Semi-supervised classification is useful when only a limited amount of labeled data is available.

A semi-supervised learning literature surveys are presented in [38, 174, 243] where several

semi-supervised classification methods are discussed, such as self-training, co-training, graph-

based methods, and expectation-maximization algorithm. However, they mainly assume that

data is generated according to some stationary distribution, which is not true when learning

from evolving data streams, where changes may occur over time.

Moreover, as commented above, most of previously proposed works for mining data

streams assume that true labels are entirely available in data streams. To the best of our

knowledge, only two adaptive semi-supervised learning methods have been proposed to ad-

dress the problem of scarceness of labeled instances in concept-drifting data streams.

The first, proposed by Klinkenberg [125], is based on transductive support vector machines

and it maintains two separate adaptive windows on labeled and unlabeled data in order to

monitor, respectively, the probabilities P (c | x) captured by labeled data and P (x) underlying

both labeled and unlabeled data. This was justified by the fact that P (c | x) and P (x) may

change at different rates. However, although theoretically well-founded, this method has

never been evaluated.

The second work was recently proposed by Masud et al. [154]. It is based on an ensemble

approach where each model in the ensemble is built as micro-clusters using a semi-supervised

clustering technique. In fact, the learning step of each model starts by choosing kc points

from the labeled data of class C to initialize kc centroids. Then, the EM algorithm is applied

by iterating the following two steps until convergence: The E-step assigns each unlabeled data

point x to a cluster such that its contribution to a cluster-impurity function is minimized,

and the M-step recomputes each cluster centroid by averaging all the points in that cluster.

Finally, a summary of the statistics of the instances belonging to each built cluster is saved

as a micro-cluster. These micro-clusters serve as a classification model.

To cope with stream evolution, Masud et al. [154] keep an ensemble of L models. When-

ever a new model is built from a new data chunk, they update the ensemble by choosing the

best L models from L + 1 models (previous L models and the new model), based on their

individual accuracies on the labeled instances of the new data chunk. Besides, they refine the

existing models in the ensemble whenever a new class of data evolves in the stream.
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7.3 CPL-DS: Classifying partially labeled uni-dimensional data

streams

In this section, we will first present a background on EM algorithm, then introduce the two

considered classifiers, namely naive Bayes and logistic regression, learnt from both labeled

and unlabeled instances. Afterwards, we will present the drift detection method.

7.3.1 Background on EM algorithm

Let D denote the uni-dimensional data stream that arrives over time in batches. Let Ds

denotes the batch at step s. Ds consists of the union of two disjoint subsets Ds
ul and Ds

fl.

Ds
ul denotes a set of N s

ul unlabeled instances (x), whereas Ds
fl denotes a set of N s

fl fully

labeled instances (x, c), s.t. x represents an n-dimensional feature vector (x1, ..., xn) and

c ∈ ΩC = {c1, c2, ..., c|C|} represents the corresponding class value for labeled instances.

N s = N s
ul +N s

fl denotes the total size of Ds.

Learning a classifier from the Ds data corresponds to maximizing the likelihood of Ds

given the parameters Θs. Assuming that instances are independent, this likelihood is the

product of all (labeled and unlabeled) instance probabilities expressed as follows [162]:

P (Ds | Θs) =

Ns
fl∏

l=1

P (c
(l)
j | x

(l);Θs) P (x(l) | Θs)

·
Ns

ul∏
l=1

|C|∑
j=1

P (c
(l)
j | x

(l);Θs) P (x(l) | Θs) (7.1)

where the first term is derived from fully labeled instances, and the second one is based on

unlabeled data where the sum expresses the fact that the unknown class value can be any of

the existing values. Then, considering log P (Ds | Θs) = LL(Ds | Θs), we have:

LL(Ds | Θs) =

Ns
fl∑

l=1

log (P (c
(l)
j | x

(l);Θs) P (x(l) | Θs))

+

Ns
ul∑

l=1

log

|C|∑
j=1

P (c
(l)
j | x

(l);Θs) P (x(l) | Θs) (7.2)

Notice that this equation contains a log of sums for the unlabeled data, which makes a
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maximization by partial derivatives with respect to Θs analytically intractable.

Consider that we can have access to the class labels of all the instances, represented using

a matrix of binary indicator variables z, where rows correspond to different instances and

columns to different classes, so that an entry is zlj = 1 iff c
(l)
j is the class of the feature vector

x(l), and zlj = 0 otherwise. Thus, Equation (7.2) can be rewritten as follows without a log of

sums, because only one term inside the sum would be non-zero:

LL(Ds | Θs; z) =
Ns∑
l=1

|C|∑
j=1

zlj log
(
P (c

(l)
j | x

(l);Θs) P (x(l) | Θs)
)

(7.3)

We use the EM algorithm [65] to find the maximum Θ̂s of Equation (7.3). Let ẑt and

Θ̂s
t denote the estimates for z and Θs at iteration t. EM starts with an initial estimate of

classifier parameters Θ̂s
1 from only the labeled data in Ds

fl. Then, it iterates over the E- and

M-steps:

� The E-step uses the current classifier parameters to probabilistically assign labels to the

unlabeled instances in Ds
ul. Formally, it computes the expected value of

ẑt+1 = E[z | Ds; Θ̂s
t ] (7.4)

Clearly, for labeled data, zlj is easily determined since classes are already known. For

unlabeled data, zlj should be estimated as follows:

E[zlj | Ds; Θ̂s
t ] =

{
1 if c

(l)
j = arg max

c
P (c | x(l); Θ̂s

t )

0 otherwise
(7.5)

� The M-step re-estimates the classifier for all the data in Ds, i.e., using all instances (the

originally labeled and the newly labeled by the E-step). In fact, this step consists of

computing new parameters Θ̂s
t+1 using the current expected value of ẑ. Formally, we

have

Θ̂s
t+1 = arg max

Θs
LL(Ds | Θs; ẑt+1) (7.6)

These two steps are iterated until convergence as proved by Dempster et al. [65]. At

convergence, EM finds Θ̂s that locally maximizes the log-likelihood with respect to both

labeled and unlabeled data.
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7.3.2 Used classifiers

Naive Bayes (NB)

Naive Bayes [158] is a generative classifier that optimizes the joint log-likelihood of the data.

Based on the assumption that the features are all conditionally independent of one another

given the class variable C, parameters Θs denote the probability table of C, i.e., P (C), as

well as the conditional probability tables of each feature Xi given C, i.e., P (Xi | C), with

i ∈ {1, . . . , n}.
To classify a given instance, the posterior probability of each possible class value cj is

computed, and then, the most probable class c∗ is selected. More formally,

c∗ = arg max
cj

P (cj)
n∏

i=1

P (xi | cj) (7.7)

Logistic regression (LR)

Logistic regression [110] is a discriminative classifier that maximizes the conditional log-

likelihood instead of the log-likelihood. Hence, in this case, instead of (7.3), EM algorithm

maximizes the following formula:

LL(Ds | Θs; z) =

Ns∑
l=1

|C|∑
j=1

zlj logP (c
(l)
j | x

(l);Θs) (7.8)

where parameters Θs are represented by the vector (Θs
j0,Θ

s
j1, ..,Θ

s
jn)

T for j = 1, ..., |C|.
To classify a given instance, the posterior probability of each possible class value cj is

computed as follows:

P (C = cj | x;Θs) =


exp(Θs

j0+
∑n

i=1 Θ
s
jixi)

1+
∑|C|−1

p=1 exp(Θs
p0+

∑n
i=1 Θ

s
pixi)

∀j < |C|

1

1+
∑|C|−1

p=1 exp(Θs
p0+

∑n
i=1 Θ

s
pixi)

for j = |C|
(7.9)

Then, the cj value with the maximum probability is assigned as a label.

7.3.3 Detecting a concept drift

Given a new batch of uni-dimensional data stream Ds+1, the objective is to detect changes

whenever they occur and adapt the current classifier if necessary. In general, it is assumed
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that as long as the joint probability distribution of Ds+1 is similar to the distribution of Ds,

no concept drift occurs. Otherwise, a concept drift should be indicated.

In order to detect possible changes, we use the KL divergence [135], also known as the

relative entropy, to measure differences between the empirical distributions of Ds+1 and Ds.

Note that the KL divergence has two fundamental properties, namely, non-negativity, being

0 iff the two compared distributions are the same, and asymmetry. Moreover, a higher KL

value indicates a higher dissimilarity between distributions, and so, a pronounced drift.

First, in order to monitor the conditional change, we proceed to measure the KL divergence

klcc between the class posterior distributions of Ds+1 and Ds using only their corresponding

labeled instances. klcc is computed as a sum of KL divergences, each of which measuring

the divergence between the conditional distributions of the class given feature instantiation,

expressed as follows:

klcc =
∑
x

KL
(
P̂Ds+1

fl
(C | x)||P̂Ds

fl
(C | x)

)

=
∑
x

|C|∑
j=1

P̂Ds+1
fl

(cj | x) log2
P̂Ds+1

fl
(cj | x)

P̂Ds
fl
(cj | x)

(7.10)

In addition, to monitor the feature change, we measure the KL divergence klfc between

the feature distributions of Ds+1 and Ds using all the labeled and unlabeled instances except

the class variable:

klfc = KL
(
P̂Ds+1(x)||P̂Ds(x)

)
=
∑
x

P̂Ds+1(x) log2
P̂Ds+1(x)

P̂Ds(x)
(7.11)

In order to determine whether or not the computed KL measures are statistically sig-

nificant, we use the bootstrapping method [70] following previous work reported in [55].

Intuitively, this method allows us to determine, by repeated sampling with replacement from

the data, whether or not a specific measurement on the data is significant.

Specifically, to decide whether or not the resulting klcc value is significant, we consider

the null hypothesis

H0cc : PDs+1
fl

(C | X) = PDs
fl
(C | X),

denoting that no conditional change has occurred. So, our objective is to determine the
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probability of observing the value klcc if H0cc is true.

To this end, given the empirical distribution P̂Ds
fl
(C | x), we sample k data sets denoted

Sb, b = 1, ..., k, each of size 2N s
fl. Then, we consider the first N s

fl instances Sb1 as coming

from the distribution P̂Ds
fl
(C | x), and the remaining N s

fl instances Sb2 = Sb \ Sb1 as coming

from the other distribution P̂Ds+1
l

(C | x); and we compute the bootstrap estimates k̂lccb =∑
xKL

(
P̂Sb2

(C | x)||P̂Sb1
(C | x)

)
between each two samples Sb2 and Sb1, b = 1, ..., k. The

obtained estimates form an empirical distribution from which we construct a critical region

[k̂l
α

cc,∞), where k̂l
α

cc represents the (1 − α)-percentile of the bootstrap estimates, and α is a

desired significance level.

Finally, if we observe that klcc falls into the critical region, i.e., klcc > k̂l
α

cc, we conclude

that it is statistically significant and invalidates H0cc . In other words, we conclude that a

conditional change is detected.

Similarly, in order to decide whether or not the resulting klfc value is significant, we

consider the null hypothesis

H0fc : PDs+1(x) = PDs(x),

and apply the same process to determine the critical region [k̂l
α

fc;∞) and decide about a

feature change. Note that, if either a feature or conditional change is detected, we proceed

to learn a new classifier. Otherwise, the current classifier is left unchanged.

To recapitulate, Algorithm 7.1 outlines the whole proposed CPL-DS approach. First, KL

divergence and the bootstrapping method are used to monitor possible conditional and fea-

ture changes (steps 3 to 6). If any change is detected, a new classifier is learned using the

expectation maximization algorithm (step 8): an initial estimate of classifier parameters Θ̂s+1
1

is induced using only the labeled instances of the new data set Ds+1 (step 9), then EM iterates

over the E- and M-steps until convergence (steps 10 to 13). In case that no change occurred,

the classifier is left unchanged (step 16).

7.4 Experimental design

We tested our approach on the following synthetic and real data sets.

7.4.1 Rotating hyperplane data set

The rotating hyperplane data set is considered as a benchmark synthetic data set and has

been widely used to simulate the concept drift problem [92, 112, 220, 227]. In fact, this
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Algorithm 7.1: CPL-DS algorithm

1. Input : Ds,Θs,Ds+1, k, α
2. Output : Θs+1

3. Compute klcc
4. Compute the bootstrap estimates k̂lccb, b = 1, ..., k, and critical region [k̂l

α

cc,∞)
5. Compute klfc
6. Compute the bootstrap estimates k̂lfcb, b = 1, ..., k, and critical region [k̂l

α

fc,∞)

7. if klcc > k̂l
α

cc or klfc > k̂l
α

fc then
8. A change is detected, learn a new classifier from Ds+1

9. Θ̂s+1
1 ← initial parameters induced only from labeled data Ds+1

fl

10. while no convergence do
11. E-step: compute the expected labels for all unlabeled instances using (7.4)
12. M-step: update classifier parameters using (7.6) obtaining Θ̂s+1

13. end while
14. Θs+1 ←− Θ̂s+1

15. else
16. No change is detected: Θs+1 ←− Θs

17. end if
18. return Θs+1

synthetic data set allows us to carry out experiments with different types of drift, as well

as different percentages of labeled data and, hence, to investigate the performance of our

approach under controlled conditions.

A hyperplane in an n-dimensional space is denoted by
∑n

i=1wixi = w0, where w =

(w1, ..., wn)
T is the weight vector. Instances for which

∑n
i=1wixi ≥ w0 are labeled positive,

and instances for which
∑n

i=1wixi < w0 are labeled negative. Weights wi are initialized by

random values in the range of [0, 1], and w0 values are determined so that w0 =
1
2

∑n
i=1wi.

We generated xi from a Gaussian distribution with mean µi and variance σ2
i . The feature

change is simulated by changing the mean, i.e., µi is changed to µisi(1+t), and the conditional

change is simulated by the change of weights wi to wisi(1+ t). Parameter t ∈ [0, 1] represents

the magnitude of the changes, and parameter si ∈ {−1, 1} specifies the direction of the

changes which could be reversed with a probability of 0.1. We generated a data stream of 10

dimensions (n = 10) with 80000 instances, using different magnitudes of change t respectively

set to 0.1, 0.2, 0.5, 1 for each 20000 instances. Then, we split the whole data stream into sets

of blocks of size 2000, and from each block we considered equal training and testing subsets

of size 1000, such that every training set is followed by a testing set.
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7.4.2 Mushroom data set

The mushroom data set, from the UCI repository [11], is regarded as having virtual concept

drift (i.e., feature changes) but no real concept drift (i.e., conditional changes) [130]. The

mushroom data set contains 22 variables and 8124 instances. We split it into 6 blocks, and

used 1000 instances from each block for training and 354 instances for testing.

7.4.3 Malware detection data set

The malware detection data set represents the important problem of continuously classifying

received files into malware (e.g. viruses, spyware, trojans, phishing, spam, etc.) or goodware

to ensure that users are protected against malicious code. This data set has been provided by

Panda Security company and consists of 40000 records. It contains 5398 features and a single

binary class variable taking either the malware or goodware value. Due to the confidentiality

of the data, we omit the detailed description of the features.

Contrary to experiments with the previous data, we do not know whether or not changes

occur in this real data set; and if so, we do not know when and which kind of changes occur.

Moreover, we do not fix the percentage of labeled data in each block. Instead, we use all the

available labeled data, the number may vary from one data block to another.

We also deal with two additional issues to process this malware detection data set. The

first is feature selection, which aims to select a small subset of relevant features in order to

avoid features dependency and redundancy and enhance classifier performance. In this work,

we use the conditional mutual information maximization criterion (CMIM) [75]. It iteratively

picks features that maximize their mutual information with the class variable, conditionally

upon the response of the already picked features. In this way, CMIM ensures weak dependency

and no redundancy as it does not select a feature similar to any that have already been picked

even if it is individually powerful.

In our case, feature selection is applied each time we learn a new classifier, i.e., each time

we detect changes. Hence, a new and more informative subset of features is selected given

new incoming data. In fact, some old selected features may be removed and new different

features may be selected. This, consequently, allows us to build more efficient classifiers.

The second issue is imbalanced data since the number of malware instances is much higher

than goodware instances. This leads to an important problem since the learned classifier may

be biased towards the malware class, and therefore its predictive accuracy may be very poor

on the goodware class. We apply two recent approaches to balance the class distribution:

� The clustering-sampling approach proposed by Wang et al. [228] makes use of the k-
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means clustering algorithm to select negative instances for representing the negative

class (i.e., malware class in our case). Firstly, the number of clusters nc is set to the

size of positive instances (i.e., goodware instances). Then, the negative instances are

clustered into nc clusters and the centroid of each cluster is used as as negative instance

for representing the negative class.

� The selectively recursive approach (SERA) proposed by Chen and He [39] makes use

of the previous data blocks knowledge to balance the current data block. In fact,

it consistently collects the positive instances from the previous data blocks. Then,

it applies the Mahalanobis distance to measure the similarity between each instance

and the current positive instances, and includes a subset of the most similar previous

positive instances of a size proportional to the size of the current negative set only.

This is justified by the fact that only the previous positive instances not including the

drifting concepts are actually helpful for the learning process.

The malware detection data set is divided into sets of blocks of size 4000, and from each

block, the first 2000 instances are used for training while the remaining instances are used for

testing. For feature selection, we select 50 of the 5398 features.

To summarize, the details of the three considered data sets are given in Table 7.1. Note

finally that, for bootstrap parameters, we use the significance level α = 0.05 and samples

number k = 500 in all experiments. Our choice is based on Dasu et al.’s work [55] where

they prove that the number of samples does not significantly affect the quality of the results

and suggest that k = 500 is a reasonable number of samples. They also point out that lower

α values make the null hypothesis harder to reject, leading to a lower change detectability.

According to our experiments, α = 0.05 works well and is considered as an appropriate value.

Table 7.1: Data set descriptions.

Data set Number of Total number Number of Number of

features of instances blocks instances in a block

Rotating hyperplane 10 80000 40 2000

Mushroom 22 8124 6 1354

Malware detection 50 40000 10 4000
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7.5 Experimental results

7.5.1 Rotating hyperplane data set analysis results

Table 7.2 represents the results for the drift detection proposal. The first column represents

the block numbers of the training sets. For instance, 1 − 2 denotes that the current data is

the training set of the first block, while the new data corresponds to the training set of the

second block. Then, in columns 2 and 3, we show the klfc and k̂l
α

fc values. These values are

the same for all experiments irrespective of the different percentages of labeled data, since

they only use the feature values. Finally, columns 4 to 9 report klcc and k̂l
α

cc respectively, for

2%, 5% and 10% of labeled data.

As expected, a feature change is only detected between blocks 10 and 11 where the mag-

nitude of change t goes from 0.1 to 0.2, blocks 20 and 21 where t goes from 0.2 to 0.5, and

blocks 30 and 31 where the t goes from 0.5 to 1. The larger the modification of t values,

the higher the klfc values are, showing a more significant drift in the feature distributions

between the data blocks.

The same applies to the conditional distributions monitored by klcc values for both 5%

and 10% of labeled data, where higher klcc values are obtained for higher t values. However,

in the case of 2% of labeled data, no conditional changes are detected. This can be explained

by the fact that the true conditional distribution cannot be accurately approximated with

very few labeled instances. In their experiments studying the effect of window size on the

performance of the change detection scheme, Dasu et al. [55] come to the same conclusion,

i.e., a larger window size gives better approximation of the true underlying distribution and

results in a better detection of changes.

Furthermore, Figure 7.1 presents accuracy curves for NB and LR. For each curve, the

X-axis represents the block number, and the Y-axis represents the classification accuracy.

Obviously, the performance of both NB and LR is much better when higher percentages of

labeled data are considered. Note also that in this data set LR always outperforms NB, which

is mainly due to the small percentages of labeled data. In fact, as also pointed out in [9], the

presence of only few labeled data may lead to poor estimates of the generative approach.

7.5.2 Mushroom data set analysis results

According to the results in Table 7.3, feature changes are only detected between blocks 1

and 2, and blocks 4 and 5. However, no conditional changes are detected for any of the

percentages of labeled data as expected. This proves that our detection method is resilient

to false alarms.
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Table 7.2: Drift detection results for rotating hyperplane data set.
Feature change Conditional change

2% labeled 5% labeled 10% labeled

blocks klfc k̂l
α

fc klcc k̂l
α

cc klcc k̂l
α

cc klcc k̂l
α

cc

1− 2 0.0962 0.1386 0.4807 3.1025 0.1168 0.5257 0.0222 0.4989
2− 3 0.1353 0.1801 0.8112 3.9845 0.0862 1.7670 0.0514 0.6499
3− 4 0.1214 0.1364 0.0637 5.7233 0.3874 0.1958 0.1013 0.7847
4− 5 0.1245 0.1381 0.0158 6.1474 0.4248 1.4025 0.2139 0.5257
5− 6 0.1069 0.1404 0.3166 2.6613 0.2985 1.4885 0.3100 0.7380
6− 7 0.1008 0.1378 1.4039 6.9068 0.7706 1.3782 0.5962 0.8997
7− 8 0.1013 0.1381 1.2359 5.6246 0.6927 1.3755 0.1665 0.3234
8− 9 0.1304 0.1388 0.9124 6.2563 0.5369 1.6424 0.1990 0.2339
9− 10 0.1017 0.1398 1.2339 4.2875 0.2925 1.3847 0.2180 0.6060
10− 11 0.1434 0.1405 3.2875 6.4493 1.3862 1.2369 0.9812 0.6499
11− 12 0.1249 0.1402 1.2026 6.2875 0.2534 1.7670 0.1355 0.5428
12− 13 0.1154 0.1390 1.9967 7.3604 0.4209 1.5021 0.1544 0.3575
13− 14 0.0882 0.1398 1.8104 8.2256 1.0638 1.7860 0.1419 0.7648
14− 15 0.0956 0.1378 2.4464 6.4493 0.5212 1.3369 0.2552 0.6499
15− 16 0.1344 0.1369 2.3008 6.3567 0.8237 1.6660 0.1580 0.6694
16− 17 0.1373 0.1866 0.7418 6.2875 1.6932 1.8060 0.1862 0.3013
17− 18 0.1374 0.1444 1.0548 5.1297 0.7915 1.9310 0.1273 0.6499
18− 19 0.1316 0.1400 2.3245 6.5493 1.3169 1.8142 0.1355 0.5005
19− 20 0.0932 0.1392 1.4075 6.3649 0.5472 1.3725 0.3919 0.7842
20− 21 0.1544 0.1408 4.1283 6.4512 1.3821 1.2364 1.0118 0.8162
21− 22 0.1378 0.1538 0.0637 6.4502 0.4669 1.7670 0.0456 0.5257
22− 23 0.1141 0.1387 0.9158 5.8614 0.3925 1.6927 0.1153 0.2978
23− 24 0.1296 0.1366 1.4257 6.5915 0.4248 1.2849 0.1030 0.1375
24− 25 0.0851 0.1370 1.1079 6.1807 0.3472 0.5288 0.0168 0.2311
25− 26 0.0849 0.1382 1.0042 6.4346 0.2812 1.2745 0.0953 0.2110
26− 27 0.0653 0.1342 1.4721 6.3684 0.5004 1.3369 0.3651 0.5147
27− 28 0.0880 0.1373 1.2339 6.6503 0.5257 1.1575 0.2120 0.6499
28− 29 0.1139 0.1434 1.9099 6.5288 0.6927 1.7670 0.3275 0.5005
29− 30 0.1383 0.1521 1.7233 6.8027 0.0818 1.7495 0.1094 0.4257
30− 31 0.1767 0.1466 4.7233 6.4346 1.9310 1.3660 1.3369 0.7648
31− 32 0.1011 0.1373 1.4792 6.2875 0.1613 0.2534 0.0375 0.3409
32− 33 0.1332 0.1394 0.6748 6.7841 0.4838 1.7897 0.1978 0.4885
33− 34 0.1360 0.1565 0.9099 5.1964 0.6927 1.0546 0.3248 0.7648
34− 35 0.1171 0.1395 0.8475 3.5168 0.4354 0.4999 0.1279 0.5694
35− 36 0.0951 0.1376 1.2339 6.4593 0.9211 1.3369 0.1947 0.6348
36− 37 0.0957 0.1395 0.9213 4.8143 0.3234 1.7495 0.1456 0.5257
37− 38 0.1056 0.1367 0.6014 6.3684 0.2648 0.6364 0.1898 0.2339
38− 39 0.1264 0.1625 0.9078 6.3125 0.1763 0.4376 0.1504 0.4342
39− 40 0.1378 0.1367 0.3478 5.6177 0.4517 1.6849 0.3973 0.5389

Moreover, according to Figure 7.2, using more labeled data improves the predictive ac-

curacies of both NB and LR. Nevertheless, the improvement is negligible for LR from 5% to



122 Chapter 7. Mining uni-dimensional data streams with partially labeled instances
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Figure 7.1: Classification results for rotating hyperplane data set.

Table 7.3: Drift detection results for mushroom data set.
Feature change Conditional change

2% labeled 5% labeled 10% labeled

blocks klfc k̂l
α

fc klcc k̂l
α

cc klcc k̂l
α

cc klcc k̂l
α

cc

1− 2 0.2251 0.0450 0.0003 0.1430 0.0001 0.0035 0.0079 0.0176

2− 3 0.0365 0.0755 0.0019 0.0156 0.0005 0.0030 0.0003 0.0009

3− 4 0.1184 0.1536 0.0031 0.0049 0.0054 0.0057 0.0002 0.0181

4− 5 1.2973 0.2373 0.0043 0.1347 0.0002 0.0063 0.0013 0.0030

5− 6 0.0007 0.0814 0.0028 0.0105 0.0018 0.0092 0.0001 0.0053

10% of labeled data and the corresponding curves are almost superimposed. Notice also that

LR always outperforms NB and has a more stable behavior especially when more labeled data

are used.

7.5.3 Malware detection data set analysis results

Table 7.4 presents drift detection results for the malware detection data set. The first column

reports as previously the block numbers, while the second column represents the percentage

of labeled instances in each considered block. Then, columns 3 to 8 show respectively klfc,

k̂l
α

fc, klcc and k̂l
α

cc values. We observe that feature and conditional changes occur together
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Figure 7.2: Classification results for mushroom data set.

and are detected between blocks 3 and 4, and again between blocks 8 and 9.

Table 7.4: Drift detection results for malware detection data set.
blocks % labeled instances klfc k̂l

α

fc klcc k̂l
α

cc

1− 2 70.00− 80.45 0.1304 0.2049 0.0797 0.9180

2− 3 80.45− 69.30 0.1057 0.1553 0.1609 0.2062

3− 4 69.30− 67.10 0.3892 0.1408 0.4330 0.2717

4− 5 67.10− 78.35 0.1272 0.1939 0.2975 0.3473

5− 6 78.35− 71.25 0.1095 0.3717 0.0190 0.1652

6− 7 71.25− 74.85 0.0665 0.2760 0.5373 0.6614

7− 8 74.85− 76.05 0.0967 0.1434 0.5028 0.5484

8− 9 76.05− 83.80 1.0006 0.2445 0.7558 0.6033

9− 10 83.80− 78.85 0.1221 0.9668 0.3390 0.4493

To evaluate classifier performance, we previously used only the overall classification accu-

racy. However, when dealing with imbalanced data sets, this metric is often insufficient, as it

does not distinguish between the number of correctly classified instances of different classes.

Using balancing methods mainly aims to improve the classifier performance over the pos-

itive class, i.e., reduce the number of false positives. In order to appropriately monitor the

behavior of NB and LR classifiers on the positive class in this case, then, we also calculate

the precision, recall, F1 and G-mean metrics based on the confusion matrix analysis.

The results of the NB and LR classifiers for the first balancing approach SERA are de-

scribed in Table 7.5. We observe that, in most cases, LR accuracies are slightly higher than

for NB.

Furthermore, both NB and LR provide high precision values for all testing blocks, where

all values are greater than 95%, and yield good results in terms of F1 and G-mean values,

which is indicative of a good performance predicting the positive instances.



124 Chapter 7. Mining uni-dimensional data streams with partially labeled instances

Table 7.5: Classification results for malware detection data set using SERA balancing approach.

blocks Algo. Accuracy Recall Precision F1 G-mean

1 NB 0.7063 0.6392 0.9792 0.7735 0.7795

LR 0.7211 0.6483 0.9942 0.7848 0.7996

2 NB 0.7995 0.7701 0.9613 0.8551 0.8312

LR 0.7212 0.6696 0.9537 0.7868 0.7729

3 NB 0.7540 0.7354 0.9838 0.8417 0.8148

LR 0.7951 0.7788 0.9883 0.8711 0.8491

4 NB 0.7970 0.7375 0.9656 0.8363 0.8316

LR 0.8328 0.7846 0.9722 0.8684 0.8620

5 NB 0.7668 0.7330 0.9818 0.8393 0.8270

LR 0.7787 0.7409 0.9904 0.8477 0.8455

6 NB 0.7462 0.7289 0.9781 0.8353 0.7995

LR 0.8051 0.7906 0.9858 0.8775 0.8503

7 NB 0.7488 0.7019 0.9890 0.8211 0.8227

LR 0.7576 0.7111 0.9911 0.8281 0.8308

8 NB 0.8385 0.8334 0.9993 0.9089 0.9058

LR 0.8006 0.7964 0.9966 0.8853 0.8568

9 NB 0.7625 0.7551 0.9746 0.8509 0.7907

LR 0.7339 0.7182 0.9799 0.8289 0.7909

10 NB 0.8044 0.7878 1.0000 0.8813 0.8876

LR 0.8011 0.7884 0.9947 0.8797 0.8658

For the clustering-sampling balancing approach, as shown in Table 7.6, LR outperforms

NB, except on the last two testing sets, where NB shows better accuracies, as well as better

recall and F1 values.

Finally, note that the results of the two applied balancing approaches are comparable, with

a slightly better performance of the clustering-sampling approach in terms of overall accuracy,

recall and F1 metrics. In most cases, though, SERA provides slightly better precision with

both NB and LR classifiers.

7.6 Conclusion

We have addressed through this chapter a more realistic and important problem in uni-

dimensional data stream mining that most existing research has failed to deal with, assuming

data streams to be entirely labeled.

In our proposed CPL-DS approach, both labeled and unlabeled instances are used to not

only assert the presence or absence of drift, but also to efficiently determine which kind of

drift has occurred –feature, conditional or dual– by means of Kullback-Leibler divergence
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Table 7.6: Classification results for malware detection data set using clustering-sampling balancing
approach.

blocks Algo. Accuracy Recall Precision F1 G-mean

1 NB 0.6992 0.6279 0.9823 0.7661 0.7759

LR 0.7087 0.6347 0.9906 0.7737 0.7879

2 NB 0.7546 0.7226 0.9447 0.8188 0.7884

LR 0.8455 0.8344 0.9592 0.8925 0.8581

3 NB 0.7793 0.7696 0.9774 0.8611 0.8122

LR 0.8381 0.8314 0.9840 0.9013 0.8609

4 NB 0.7508 0.7042 0.9231 0.7989 0.7787

LR 0.8078 0.7745 0.9418 0.8500 0.8287

5 NB 0.7936 0.7645 0.9834 0.8602 0.8462

LR 0.8590 0.8389 0.9899 0.9082 0.8964

6 NB 0.8014 0.7949 0.9756 0.8760 0.8221

LR 0.8753 0.7837 0.9832 0.9252 0.8807

7 NB 0.8403 0.8240 0.9781 0.8945 0.8684

LR 0.9359 0.9304 0.9909 0.9597 0.9456

8 NB 0.8795 0.8966 0.9769 0.9350 0.5918

LR 0.9195 0.9238 0.9924 0.9569 0.8580

9 NB 0.8457 0.8735 0.9506 0.9104 0.7253

LR 0.8264 0.8435 0.9582 0.8972 0.7559

10 NB 0.9038 0.9142 0.9802 0.9460 0.8453

LR 0.8648 0.8623 0.9897 0.9217 0.8782

and a bootstrapping method. Then, if required, the classifier is updated using the EM

algorithm. Experimental results carried out on both synthetic and real-world data sets,

with naive Bayes and logistic regression classifiers, showed that our approach is effective for

detecting different kinds of changes from partially labeled data, as well as having a good

classification performance.

In the future, it would be interesting to investigate and compare the performance of other

classifiers with our results. Furthermore, note that in this work we assume that labeled and

unlabeled data come from the same distribution. This usually leads to a better classification

accuracy. An interesting future line of research would be to consider the scenario where

labeled and unlabeled data possibly come from different distributions, inspect the impact of

unlabeled data, and study the possibility of refining the change detection proposal.
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Chapter 8
Mining multi-dimensional data

streams using MBCs

8.1 Introduction

Most of the work within the field of mining data streams has focused on uni-dimensional data

streams where only a single output class variable is available. As reviewed in Chapter 4, a

plethora of approaches have been proposed to deal with this problem, and several issues have

been intensively addressed including, among many others, concept drift detection and model

adaptation [1, 86, 87].

Nevertheless, the recent problem of mining multi-dimensional data streams has received

less attention, and only few works have been proposed [131, 178, 181, 233]. Contrary to uni-

dimensional data streams, multiple output class variables are available in multi-dimensional

data streams, i.e., each input instance in the stream has to be simultaneously associated with

more than one class variable.

In this chapter, we present new adaptive informed methods for mining multi-dimensional

data streams based on multi-dimensional Bayesian network classifiers (MBCs). The so-called

Globally Adaptive-MB-MBC (GA-MB-MBC) and Locally Adaptive-MB-MBC (LA-MB-MBC) ex-

tend our previous MB-MBC algorithm, presented in Chapter 6, to cope with concept-drifting

evolving data streams. Basically, both GA-MB-MBC and LA-MB-MBC monitor the concept drift

over time using the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the

current MBC network locally around each changed node, whereas GA-MB-MBC learns a new

MBC network from scratch.

This work can be also considered as an extension of our CPL-DS method presented in

127
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Chapter 7. CPL-DS is uni-dimensional, i.e., it can be only applied with a single class variable,

and its main objective is to take advantage of the unlabeled instances for both monitoring

concept drifts and updating the current classification model. Basically, its drift detection

method is based on using the Kullback-Leibler divergence to measure distribution differences

between old and recent data stream batches. Then, based on a bootstrapping method, it

determines whether the Kullback-Leibler measures are statistically significant or not, to decide

accordingly whether a drift has occurred or not.

The CPL-DS change detection method can be easily extended to multi-dimensional setting;

however, its main shortcoming is that it does not permit a local detection of the drift, and thus,

if any drift is detected, a new MBC classifier should be learned from scratch from the recent

data. To overcome this shortcoming, we opt in this work to propose two different detection

methods from two different points of view: global and local, and study their behaviors under

different settings. Similar to CPL-DS, a concept drift signaled by the global detection method

GA-MB-MBC leads to learn the MBC network from scratch. Nevertheless, a concept drift

signaled by the local adaptive method LA-MB-MBC only updates the local structures of the

detected changed nodes.

Note finally that, with CPL-DS we differentiated between feature, conditional or dual drift,

and this was basically motivated by the presence of unlabeled instances that only incorporate

feature drifts. However, in this chapter, since all the available instances are assumed to be

fully labeled, we do not distinguish between different types of drifts. We rather focus on the

local and global aspects of the concept drifts.

This chapter is based on the submitted paper [27].

Chapter outline

Section 8.2 defines the multi-dimensional concept drift problem, and Section 8.3 briefly reviews

the related work on mining multi-dimensional data streams. Next, Section 8.4 introduces the

proposed change detection method as well as the local and global MBC adaptation methods.

Sections 8.5 and 8.6 cover the experimental study presenting the used data, the evaluation

metrics, and a discussion on the obtained results. Finally, Section 8.7 rounds the chapter off

with some conclusions.

8.2 Multi-dimensional concept drift

The same categorization of uni-dimensional concept drift into feature, conditional and dual

changes (presented in Section 4.2) can be applied in the context of multi-dimensional data
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streams. In fact, the feature change involving only a change in P (x) is exactly the same;

whereas, for the conditional change, we have now a vector of d class variablesC = (C1, . . . , Cd)

instead of a single class variable C, i.e., the conditional change may occur in the distribution

P (c | x). Moreover, as previously, the change is called dual when both feature and condi-

tional changes occur together. As we commented above, in this work, we do not take this

categorization into account and we consider that the presence of any kind of change requires

the adaption of the current MBC network.

Furthermore, similar to the uni-dimensional concept drift, the multi-dimensional concept

drift can be categorized into abrupt or gradual depending on the rate of change, and into

local or global depending on whether it occurs in some regions of the instance space or in the

whole instance space, respectively.

Consequently, the main differences between the uni-dimensional and the multi-dimensional

concept drifts consist mainly in the changes that may occur in the distribution and the

dependence relationships between the class variables, as well as the distribution and the

dependence relationships between each class variable and the set of feature variables.

Besides these categorizations, and in the context of multi-label streaming classification,

Read et al. [181] discuss that concept drift may also involve a change in the label cardinality,

that is, a change in the average number of labels associated with each instance computed as

LCard = 1
N

∑N
l=1

∑d
j=1 c

(l)
j with c

(l)
j ∈ {0, 1}, where N denotes the total number of instances

and d the number of labels (or binary class variables).

In addition, Xioufis et al. [233] consider that a multi-label data stream contains separate

multiple targets (concepts) and each concept is likely to exhibit independently its own drift

pattern. This assumption allows to track the drift of each concept separately using binary

relevance and pre-defined uni-dimensional detection approaches; however, its main drawback

is its inability to deal with the correlations that concepts may have with each other and which

may drift over time.

8.3 Related work

In this section, we briefly review the existing related works. They have been all developed

under the streaming multi-label classification setting, and they can be considered as extension

of stationary multi-label methods (see Section 3.3) to concept-drifting data streams.

Qu et al. [178] propose an ensemble of improved binary relevance (MBR) taking into account

the dependency among labels. The basic idea is to add each classified label vector as a new

feature participating in the classification of the other related labels. Moreover, in order to
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cope with concept drifts, Qu et al. use a dynamic classifier ensemble jointly with a weighted

majority voting strategy. No drift detection method is employed in MBR. In fact, the ensemble

keeps a fixed number K of base classifiers, and is updated continuously over time by adding

new classifiers, trained on the recent data blocks, and discarding the oldest ones. Naive Bayes,

C4.5 decision tree algorithm, and support vector machines (SVM) are used as different base

classifiers to test the MBR method.

Xioufis et al. [233] tackle a special problem when dealing with multi-label data streams,

namely class imbalance, i.e., the skewness in the distribution of positive and negative instances

for all or some labels. In fact, each label in the stream may have more negative than positive

instances, and some labels may have much more positive instances than others. To deal with

this problem, the authors propose a multiple windows classifier (MWC) that maintains two

windows of fixed size for each label: one for positive instances and one for negative ones.

The size Np of the positive windows is a parameter of the approach and the size Nn of the

negative windows is determined using the formula Nn =
Np

r , where r is another parameter

of the approach, called distribution ratio. r has the role of balancing the distribution of

positive and negative instances in the union of the two windows. The authors assume an

independent concept drift for each label, and use a binary relevance method with k-nearest

neighbors (kNN) as base classifier. No drift detection method is employed in MWC. Positive

and negative windows of each label are updated continuously over time by including new

incoming instances and removing older ones.

Moreover, Kong and Yu [131] propose also an ensemble-based method for multi-label

stream classification. The idea is to use an ensemble of multiple random decision trees [242]

where tree nodes are built by means of random selected testing variables and cutting values.

The so-called streaming multi-label random trees (SMART) does not include a change detection

method. In fact, to handle concept drifts in the stream, the authors simply use a fading

function on each tree node to gradually reduce the influence of historical data over time.

The fading function consists of assigning to each old instance with time stamp ti a weight

W (t) = 2−(t−ti)/λ, where t is the current time, and λ is a parameter of the approach, called

fading factor, indicating the speed of the fading effects. The higher the value of λ, the slower

the weight of each instance will decay.

Finally, Read et al. [181] present a framework for generating synthetic multi-label data

streams along with a novel multi-label streaming classification ensemble method based on

Hoeffding trees. Their method, named EaHTPS , extends the single-label incremental Hoeffding

tree (HT) classifier [67] by using a multi-label definition of entropy and by training multi-

label pruned sets (PS) at each leaf node of the tree. To handle concept drifts in the stream,
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they use the ADWIN Bagging method [16] which consists of an online bagging method [165]

extended with ADWIN algorithm as a change detector. When a concept drift is detected, the

worst performing classifier of the ensemble of classifiers is replaced with a new classifier.

In addition, Read et al. introduce BRa, EaBR, EaPS, HTa methods, that extend respectively

binary relevance (BR) [98], ensembles of BR (EBR) [183], ensembles of PS (EPS) [182], and multi-

label Hoeffding trees (HT) [49, 181] methods by including the ADWIN algorithm (denoted by

the letter a) to detect concept drifts.

Table 8.1 summarizes the existing streaming multi-label algorithms in the literature.

Table 8.1: Summary of streaming multi-label classification methods.

Reference Method Base classifier Adaptation strategy

Qu et al. [178] Ensemble of improved Naive Bayes, Evolving ensemble.

binary relevance (MBR) C4.5, SVM No detection

Xioufis et al. [233] Multiple windows kNN Two windows of fixed

classifier (MWC) size for each label.

No detection

Kong and Yu [131] Streaming multi-label Random tree Fading function.

random trees (SMART) No detection

Read et al. [181] Ensemble of Multi-label Hoeffding tree Evolving ensemble.

Hoeffding trees with PS Detection using the

at the leaves (EaHTPS), ADWIN algorithm

as well as BRa, EaBR,

EaPS, and HTa methods

Contrary to existing approaches, which are all based on a multi-label setting, requiring all

the class variables to be binary, our proposed adaptive methods have no constraints on the

cardinalities of the class variables.

Moreover, as commented above, the existing streaming multi-label approaches either do

not present any drift detection method (for instance, MBR [178], MWC [233] and SMART [131]

approaches) or they use a drift detection method and keep updating an ensemble of classifiers

over time by replacing the worst performing classifier with a new one when a drift is detected

(such as the ensemble of multi-label Hoeffding trees EaHTPS [181] using ADWIN algorithm

as a change detector). In both cases, the concept drift cannot be detected locally, and the

adaptation process is basically based on ensemble updating. In our case, we only use a single

model (i.e., MBC) and our proposed drift detection method can be either performed locally

or globally: it is based on monitoring either the average local log-likelihood of each node or

the average global log-likelihood of the whole MBC network using the Page-Hinkley test.

Being based on MBCs, our adaptive methods also present the merit of explicitly modeling
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the dependence relationships among all variables through the graphical structure component.

8.4 Adaptive-MB-MBC methods

Before providing more details about the proposed approach, let us introduce the following

notations. Let D = {D1,D2, . . . ,Ds, . . .} denote a multi-dimensional data stream that arrives

over time in batches, such that Ds = {(x(1), c(1)), . . . , (x(Ns), c(N
s))} denotes the multi-

dimensional batch stream received at step s, and containing N s instances. For each instance

in the stream, the input vector x = (x1, . . . , xm) of m feature values is associated with an

output vector c = (c1, . . . , cd) of d class values. For the sake of simplicity, and regardless of

being class or feature variable, we denote by Vi each variable in the MBC, i = 1, . . . , n, such

that n represents the total number of variables, i.e., n = d+m. Given an MBC learned from

Ds, denoted MBCs, and a new coming batch stream Ds+1, the adaptive learning problem

consists first of detecting possible concept drifts, then, if required, updating the current

MBCs to best fit the new distribution of Ds+1.

In what follows, we start by presenting the proposed drift detection method in Section

8.4.1, next we introduce the MBC adaptation methods in Section 8.4.2.

8.4.1 Drift detection method

The objective here is to continuously process the batches of data streams and detect the

concept drift when it occurs. Our proposed detection method is based on the average log-

likelihood score and the Page-Hinkley test, and can be applied either globally, i.e., to the

whole MBC network, or locally, i.e., to each variable in the MBC network.

8.4.1.1 The average log-likelihood score

The likelihood measures the probability of a data set Ds given the current multi-dimensional

Bayesian network classifier. For convenience in the calculations, the logarithm of the likelihood

LL(Ds | θs), simply denoted here LLs, is usually used:

LLs = log P (Ds | θs) (8.1)

= log

Ns∏
l=1

n∏
i=1

P (v
(l)
i | pa(vi)

(l),θs)

=

n∑
i=1

qi∑
j=1

ri∑
k=1

log(θsijk)
Ns

ijk
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where v
(l)
i ,pa(vi)

(l) are respectively the values of variable Vi and its parent set Pa(Vi) in the

lth instance in Ds. ri denotes the number of possible states of Vi, and qi denotes the number

of possible configurations that the parent set Pa(Vi) can take. N s
ijk is the number of instances

in Ds where variable Vi takes its k
th value and Pa(Vi) takes its j

th configuration.

In this work, we use the average log-likelihood score per instance, which is equal to the

original log-likelihood score LLs divided by the total number of instances N s. This in fact will

allow us to compare the likelihood of an MBC network based on different batch streams that

may present different numbers of instances. Hence, using the maximum likelihood estimation

for the parameters θ̂s, the average global log-likelihood can be expressed as follows:

LL
s
=

1

N s

n∑
i=1

qi∑
j=1

ri∑
k=1

N s
ijklog

N s
ijk

N s
ij

(8.2)

=
n∑

i=1

1

N s

qi∑
j=1

ri∑
k=1

N s
ijklog

N s
ijk

N s
ij

=

n∑
i=1

llsi

where ll
s
i = 1

Ns

∑qi
j=1

∑ri
k=1N

s
ijklog

Ns
ijk

Ns
ij

is the average local log-likelihood of each variable Vi

in the MBC network, and N s
ij =

∑ri
k=1N

s
ijk for every i, j and k.

8.4.1.2 Change point detection

In order to detect the change point, i.e., the point at which the concept drift occurs, we make

use of the Page-Hinkley (PH) test [109, 166]. The PH test is a sequential analysis technique

commonly used for change detection in signal processing, and is considered to be one of the

most appropriated algorithms to detect concept drifts in data streams [201].

In this work, we apply the PH test in order to determine whether a sequence of average

log-likelihood values can be attributed to a single statistical law (null hypothesis); or it

demonstrates a change in the statistical law underlying these values (change point). Let

LL
1
, ..., LL

s
denote the global average log-likelihood values computed with Equation (8.2)

using the first batch stream D1 till the last received one Ds, respectively. To test the above

hypothesis, the PH test considers first a cumulative variable CUM s, defined as the cumulated

difference between the obtained average log-likelihood values and their mean till the current

moment (i.e., the last batch Ds):
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CUM s =

s∑
t=1

(LL
t −mean

LL
t − δ) (8.3)

where mean
LL

t = 1
t

∑t
h=1 LL

h
denotes the mean of LL

1
, ..., LL

s
values, and δ is a tolerance

parameter corresponding to the magnitude of changes which are allowed. The maximum

value MAXs of variable CUM t for t = 1, ..., s, is then computed:

MAXs = max
{
CUM t, t = 1, ..., s

}
(8.4)

Next, the PH value is computed as the difference between MAXs and CUM s:

PHs = MAXs − CUM s (8.5)

When this difference is greater than a given threshold λ (i.e., PHs > λ), the null hypothesis

is rejected and the PH test alarms a change, otherwise, no change is signaled. Specifically,

depending on the result of this test, two states can be distinguished:

� If PHs ≤ λ then there is no concept drift: the distribution of the average log-likelihood

values is stable. The new batch Ds is deemed to come from the same distribution as

the previous instances. In this case, the MBC network is left unchanged.

� If PHs > λ then a concept drift occurred: the distribution of the average log-likelihood

values is drifting. The new batch Ds is deemed to come from a different distribution

than the previous instances, and in this case, the MBC network should be adapted.

Note that, the threshold λ is a parameter allowing to control the rate of false alarms. In

general, small λ values may increase the number of false alarms, whereas higher λ values may

lead to a fewer false alarms but may rise at the same time the risk of missing some concept

drifts.

Similarly, the PH test can also be applied to the local average log-likelihood values ll
s
i of

each variable Vi in the network, instead of the global average log-likelihood LL
s
of the whole

MBC network. In this case, each local PH test value, denoted PHs
i , allows us to check if a

drift occurs or not at each considered variable Vi. This in fact will locally specify where (i.e.,

for which set of variables) the concept drift occurs. Afterwards, the challenge is to locally

update the MBC structure, i.e., update only the parts that are in conflict with the new data

stream Ds without re-learning the whole MBC from scratch.



8.4. Adaptive-MB-MBC methods 135

8.4.2 MBC adaptation

As discussed above, if a new batch stream comes from the same distribution as the previous

one, then no change should be detected by the PH test and the current MBC structure is

maintained. Otherwise, we conclude that the new batch stream has a different distribution,

and the current MBC network may be updated in two different possible ways depending

respectively on whether the drift has been detected globally or locally:

� Global MBC adaptation: In this case, if a change is detected, then the whole MBCs

network is learned from scratch.

� Local MBC adaptation: In this case, if a change is detected, then only the changed

parts of the current MBCs network are locally adapted.

8.4.2.1 Global MBC Adaptation

The proposed method for global MBC adaptation is outlined in Algorithm 8.1. Globally

Adaptive-MB-MBC takes as input the current network MBCs, the new data stream Ds+1,

and the PH test parameters δ and λ. It starts by computing the average global log-likelihood

LL
s+1

(step 2), and the PH test value PHs+1 (step 3). Next, if PHs+1 is higher than λ,

then a new network MBCs+1 is learned from Ds+1 using the MB-MBC algorithm [24] (step 5).

Otherwise, i.e., PHs ≤ λ, the MBC network is kept unchanged (step 7).

Algorithm 8.1: Globally Adaptive-MB-MBC

1. Input : Current MBCs, new multi-dimensional data stream Ds+1, δ, λ

2. Compute the global average log-likelihood LL
s+1

3. Compute PHs+1

4. if PHs+1 > λ then
5. Learn a new network MBCs+1 from Ds+1 using the MB-MBC algorithm.
6. else
7. MBCs+1 ←MBCs, i.e., no change is detected
8. end if
9. return MBCs+1

8.4.2.2 Local MBC Adaptation

Contrary to the global adaptation, the objective in this case is to locally update the MBC

network over time, so that if a concept drift occurs, only the changed parts in the current
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MBC are re-learned from the new data stream and not the whole network. This in fact

presents two main challenges: First, how to locally detect the changes, and second how to

update the current MBC.

To deal with these challenges, we propose the Locally Adaptive-MB-MBC method, out-

lined by Algorithm 8.2. Given the current network MBCs, the new data stream Ds+1, and

the PH test parameters δ and λ, the local change detection firstly computes the average log-

likelihood ll
s+1
i of each variable Vi using the new data stream Ds+1 (step 4), then computes

the corresponding value PHs+1
i (step 5). Next, if this PHs+1

i value is higher than λ, then

variable Vi is added to the set of changed nodes (steps 6 to 8). Subsequently, whenever the

resulting set of ChangedNodes is not empty, i.e., a drift is detected, then the UpdateMBC

function, outlined by Algorithm 3, is invoked to locally update the current MBCs network

(step 11); otherwise, we conclude that no drift is detected and the MBC network is kept

unchanged (step 13).

Algorithm 8.2: Locally Adaptive-MB-MBC

1. Input : Current MBCs, new multi-dimensional data stream Ds+1, δ, λ
2. ChangedNodes = ∅
3. for every variable Vi do

4. Compute the average local log-likelihood ll
s+1
i

5. Compute the local PH test PHs+1
i

6. if PHs+1
i > λ then

7. ChangedNodes← ChangedNodes ∪ {Vi}
8. end if
9. end for
10. if ChangedNodes ̸= ∅ then
11. MBCs+1 ← UpdateMBC(ChangedNodes,MBCs, Ds+1, PCs,MBs)
12. else
13. MBCs+1 ←MBCs, i.e., no drift is detected
14. end if
15. return MBCs+1

Before introducing the UpdateMBC algorithm, note that since the local log-likelihood

computes the probability of each variable Vi given the set of its parents in the MBC structure,

then a detected change for a variable Vi informs that the set of parents of the variable Vi has

changed due to either the removal of some existing parents or the inclusion of new parents:

� The removal of an existing parent means that this parent was strongly relevant to Vi

given Ds, and becomes either weakly relevant or irrelevant to Vi given Ds+1. In other
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words, this parent was a member of the parent set, or more broadly a member of the

parents-children set of Vi, but with respect to Ds+1, it does not pertain to the parents-

children set of Vi.

� The inclusion of a new parent means that this parent was either weakly relevant or

irrelevant to Vi given Ds, and becomes strongly relevant to Vi given Ds+1. In other

words, this parent was not a member of the parents-children set of Vi, but with respect

to Ds+1, it should be added as a new member of the parents-children set of Vi.

Recall that, variables are defined to be strongly relevant if they contain information about

Vi not found in all other remaining variables. That is, the strongly relevant variables are

the members of the Markov blanket of Vi, and thereby, all the members in the parents-

children set of Vi are also strongly relevant to Vi. On the other hand, variables are said to

be weakly relevant if they are informative but redundant, i.e., they consist of all the variables

with an undirected path to Vi which are not themselves members of the Markov blanket

nor the parents-children set of Vi. Finally, variables are defined as irrelevant if they are not

informative, and in this case, they consist of variables with no undirected path to Vi [4, 128].

Therefore, the intuition behind UpdateMBC algorithm, outlined by Algorithm 8.3, is

basically to firstly learn with Ds+1 the new parents-children set of each changed node using

the HITON-PC algorithm [4, 5], determine the sets of its old and new adjacent nodes, and

then locally update the MBC structure.

In fact, UpdateMBC takes as input the set of changed nodes, the current network MBCs,

the new data stream Ds+1, the parents-children sets of all variables PCs, and the Markov

blanket sets of all class variables MBs. For each variable Vi in the set of changed nodes,

UpdateMBC firstly learns from Ds+1 the new parents-children set of Vi PC(Vi)
s+1 using

HITON-PC algorithm (step 3). Then, it determines the set of its old adjacent nodes, i.e.,{
PC(Vi)

s\PC(Vi)
s+1
}
(step 4). The variables included in this set are variables that pertained

to PC(Vi)
s but do not pertain anymore to PC(Vi)

s+1, which means that they represent the

set of variables that were strongly relevant to Vi and have become either weakly relevant or

irrelevant to Vi. In this case, for each variable OldAdj belonging to this set, the arc between

it and Vi is removed from MBCs+1 (step 5), then, the parents-children and Markov blanket

sets are updated accordingly. Specifically, the following rules are performed:

� Remove Vi from the parents-children set of OldAdj (step 6): since the arc between Vi

and OldAdj was removed, Vi does not pertain anymore to the parents-children set of

OldAdj.
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Algorithm 8.3: UpdateMBC(ChangedNodes,MBCs, Ds+1, PCs,MBs)

1. Initialization: MBCs+1 ←MBCs; PCs+1 ← PCs; MBs+1 ←MBs

2. for every variable Vi ∈ ChangedNodes do
3. Learn PC(Vi)

s+1 ← HITON-PC(Vi)
%Determine the set of the old adjacent nodes of the changed node Vi

4. for every variable OldAdj ∈
{
PC(Vi)

s \ PC(Vi)
s+1
}
do

5. Remove the arc between OldAdj and Vi from MBCs+1

6. PC(OldAdj)s+1 ← PC(OldAdj)s+1 \ {Vi}
7. if OldAdj ∈ C then
8. MB(OldAdj)s+1 ←MB(OldAdj)s+1 \

{
Vi ∪ {Pa(Vi)

s+1\
PC(OldAdj)s+1}

}
9. end if
10. if Vi ∈ C then
11. MB(Vi)

s+1 ←MB(Vi)
s+1 \

{
OldAdj ∪ {Pa(OldAdj)s+1\

PC(Vi)
s+1}

}
12. end if
13. for every class H ∈

{
Pa(Vi)

s+1 \ PC(OldAdj)s+1
}
do

14. MB(H)s+1 ←MB(H)s+1 \ {OldAdj}
15. end for
16. end for

%Determine the set of the old adjacent nodes of the changed node Vi

17. for every variable NewAdj ∈
{
PC(Vi)

s+1 \ PC(Vi)
s
}
do

18. Insert an arc from NewAdj to Vi in MBCs+1

19. PC(NewAdj)s+1 ← PC(NewAdj)s+1 ∪ {Vi}
20. if NewAdj ∈ C then
21. MB(NewAdj)s+1 ←MB(NewAdj)s+1 ∪ {Vi ∪Pa(Vi)

s+1}
22. end if
23. if Vi ∈ C then
24. MB(Vi)

s+1 ←MB(Vi)
s+1 ∪ {NewAdj ∪Pa(NewAdj)s+1}

25. end if
26. for every class H ∈

{
Pa(Vi)

s+1 \ {NewAdj ∪ PC(NewAdj)s+1}
}
do

27. MB(H)s+1 ←MB(H)s+1 ∪ {NewAdj}
28. end for
29. end for
30. end for
31. Lean from Ds+1 new CPTs for nodes that have got a new parent set in MBCs+1

32. return MBCs+1; PCs+1; MBs+1

� If the old adjacent node OldAdj is a class variable, then update its Markov blanket

MB(OldAdj)s+1 by removing from it the changed node Vi and its parents that do not

belong to the parents-children set PC(OldAdj)s+1 of OldAdj (steps 7 to 9).
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� If the changed node Vi is a class variable, then update its Markov blanket MB(Vi)
s+1

by removing from it the old adjacent node OldAdj and its parents that do not belong

to the parents-children set of Vi, PC(Vi)
s+1 (steps 10 to 12).

� Update the Markov blanket of each class variable that belongs to the parent set of Vi,

without being a parent nor a child of OldAdj, by removing from it the old adjacent

node OldAdj (steps 13 to 15).

Subsequently, UpdateMBC determines the set of the new adjacent nodes of the changed

node Vi, denoted as
{
PC(Vi)

s+1 \ PC(Vi)
s
}
(step 17). The variables included in this set are

variables that belong to PC(Vi)
s+1 but they were not previously in PC(Vi)

s, which means that

they represent the set of variables that were weakly relevant or irrelevant to Vi and become

strongly relevant to Vi. Hence, new dependence relationships should be inserted between

those variables and Vi verifying at each insertion that no direct cycles are introduced. In this

case, a new arc is inserted from each new adjacent node NewAdj to Vi (step 18), then the

parents-children and Markov blanket sets are updated accordingly. The following rules are

performed:

� Add Vi to the parents-children set of NewAdj (step 19): since an arc was inserted

between Vi and NewAdj, Vi becomes a member of the parents-children set of NewAdj.

� If the new adjacent node NewAdj is a class variable, then update its Markov blanket

MB(NewAdj)s+1 by adding to it the changed node Vi as well as its parent set Pa(Vi)

(steps 20 to 22).

� If the changed node Vi is a class, then update its Markov blanket MB(Vi)
s+1 by adding

to it NewAdj and its parent set Pa(NewAdj) (steps 23 to 25).

� Update the Markov blanket of each class variable that belongs to the parent set of Vi,

without being a parent nor a child NewAdj, by adding to it the new adjacent node

NewAdj (steps 26 to 28).

Finally, new conditional probability tables (CPTs) are learnt from Ds+1 for all the nodes

that have got a new parent set in MBCs+1 (step 31), and then the updated MBC network

MBCs+1, the sets PCs+1 and MBs+1 are returned in step 32.

Note here that, all variables that belong to both PC(Vi)
s and PC(Vi)

s+1 of a changed

node Vi do not trigger any kind of change. In fact, these variables were strongly relevant to

Vi and still strongly relevant to Vi, so that the dependence relationships between them and
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Vi remain the same. Moreover, the order of processing the changed nodes does not affect

the final result, that is, independently of the order, the updated MBC network MBCs+1

and the sets PCs+1 and MBs+1 will be the same by the end of the UpdateMBC algorithm.

This is guaranteed because the identification of the old and new adjacent nodes is performed

independently for each changed node, and thereby, it is not affected by the order nor by the

results of other nodes. The updating process of PC and MB sets is also ensured via simple

operations such as removing or adding variables, and hence, the order of variable removal or

addition will not affect the final sets.

Example 8.1. To illustrate the Locally Adaptive-MB-MBC algorithm, let us consider in

Figure 8.1 an example of an MBCs structure learnt from a batch stream Ds, and assume

that we receive afterwards a new batch stream Ds+1 generated from the MBCs+1 structure

shown in Figure 8.2. Given both MBCs and Ds+1, the Locally Adaptive-MB-MBC algorithm

starts by computing the average log-likelihood and the PH test for each variable in MBCs.

Then, a change should be signaled for variables C1, C4, X2, and X5, i.e., ChangedNodes =

{C1, C4, X2, X5}. Then, the MBC network should be locally updated via the UpdateMBC

algorithm.

The UpdateMBC algorithm updates the local structure around each changed node, then

updates accordingly the parents-children and Markov blanket sets. Note that UpdateMBC

takes as input the current network MBCs, the set of ChangedNodes, the new data stream

Ds+1, as well as the current parents-children sets of all the variables PCs, and the current

Markov blankets sets of all the class variables MBs represented in Table 8.2.

X5X1

C2

X2

C3C1 C4

X3 X6X4 X7 X8

Figure 8.1: Example of an initial MBC structure.

In what follows, we present a trace of UpdateMBC algorithm for each variable in the

ChangedNodes set:

� The changed node C1 (see Figure 8.3): The first step is to determine the new parents-

children set of C1 given Ds+1 and using the HITON-PC algorithm. We assume that
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Table 8.2: PCs and MBs sets for the MBC structure shown in Figure 8.1.

PCs MBs

PC(C1)
s = {C2, C3, X2, X4} MB(C1)

s = {C2, C3, X2, X4, X5}
PC(C2)

s = {C1, X1, X2} MB(C2)
s = {C1, C3, X1, X2, X4, X5}

PC(C3)
s = {C1, X6} MB(C3)

s = {C1, C2, X6}
PC(C4)

s = {X3, X7, X8} MB(C4)
s = {X3, X7, X8, X6}

PC(X1)
s = {C2, X4}

PC(X2)
s = {C1, C2, X5}

PC(X3)
s = {C4}

PC(X4)
s = {C1, X1}

PC(X5)
s = {X2}

PC(X6)
s = {C3, X8}

PC(X7)
s = {C4}

PC(X8)
s = {C4, X6}

X5X1

C2

X2

C3C1 C4

X3 X6X4 X7 X8

Figure 8.2: Example of an MBC structure including structural changes in comparison with the initial
MBC structure in Figure 8.1. Nodes C1, C4, X2, and X5, represented in dashed line, are characterized
as changed nodes.

HITON-PC detects the new parents-children set of C1 correctly, so we should have

PC(C1)
s+1 = {C2, X2, X4}. Next step is to determine the set of old and new adjacent

nodes for C1. For the old adjacent nodes we have PC(C1)
s \PC(C1)

s+1 = {C3}. Thus,

we remove the arc between C1 and C3, update PC(C3)
s+1 = PC(C3)

s+1 \ {C1} =

{X6}, and update MB(C3)
s+1 = MB(C3)

s+1 \
{
C1∪{Pa(C1)

s+1 \PC(C3)
s+1}

}
. Here

we have Pa(C1)
s+1 = {C2} and since {C2} does not pertain to PC(C3)

s+1, then it

should be removed from the Markov blanket of C3, that is MB(C3)
s+1 = MB(C3)

s+1 \
{C1, C2} = {X6}. Moreover, we update MB(C1)

s+1 = MB(C1)
s+1\

{
C3∪{Pa(C3)

s+1\
PC(C1)

s+1}
}
= {C2, X2, X4, X5}. Finally, we update the Markov blanket set of each

class parent of C1. In our case, we have only C2 as parent of C1, which does not

pertain to PC(C3), thus C3 should be removed from the Markov blanket of C2, that is

MB(C2)
s+1 = MB(C2)

s+1 \ {C3} = {C1, X1, X2, X4, X5}.
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For the new adjacent nodes, we have PC(C1)
s+1 \ PC(C1)

s = ∅. Thus, no new depen-

dence relationships must be added for C1.

X5

C2

X2

C3C1

X4

C2

X2

C1

X4 X7

(a) (b)

Figure 8.3: Markov blanket of node C1 (a) before and (b) after change.

� The changed node C4 (see Figure 8.4): The first step is to determine the new parents-

children set of C4 given Ds+1 and using the HITON-PC algorithm. As previously,

we assume that HITON-PC detects the new parents-children set of C4 correctly, so we

should have PC(C4)
s+1 = {C3, X3, X7, X8}. Next, we determine the set of old adjacent

nodes, which in our case is empty, i.e, PC(C4)
s \ PC(C4)

s+1 = ∅, and the set of new

adjacent nodes which is equal to PC(C4)
s+1 \ PC(C4)

s = {C3}. Consequently, we

insert an arc from C3 to C4, we update PC(C3)
s+1 = PC(C3)

s+1 ∪ {C4} = {C4, X6},
and MB(C3)

s+1 = MB(C3)
s+1 ∪ {C4 ∪ Pa(C4)

s+1} = {C4, X6}. Similarly, update

MB(C4)
s+1 = MB(C4)

s+1 ∪ {C3 ∪ Pa(C3)
s+1} = {C3, X3, X7, X8, X6}. C4 has no

more parents except C3, so steps 26-28 in the UpdateMBC algorithm are not applied

in this case.

C4

X3 X6 X7 X8

C3 C4

X3 X6 X7 X8

(a) (b)

Figure 8.4: Markov blanket of node C4 (a) before and (b) after change.

� The changed node X2 (see Figure 8.5): As previously, the first step is to determine the

new parents-children set of X2 given Ds+1 and using the HITON-PC algorithm. As-

suming that HITON-PC detects the new parents-children set of X2 correctly, we should

have PC(X2)
s+1 = {C1, X7}. Next, given that PC(X2)

s = {C1, C2, X5}, the set of old

adjacent nodes is determined as PC(X2)
s \ PC(X2)

s+1 = {C2, X5}.
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For the first old adjacent variable C2, we remove the arc between C2 and X2, we

update PC(C2)
s+1 = PC(C2)

s+1 \ {X2} = {C1, X1}, and we update MB(C2)
s+1 =

MB(C2)
s+1 \ {X2 ∪ {Pa(X2)

s+1 \ PC(C2)
s+1}}. Here X2 has two parents namely C1

and X5 (in fact X5 is not removed yet from the set of parents of X2 because we start

by processing the old adjacent variable C2), and since C1 pertains to PC(C2)
s+1, the

only variables to be removed from MB(C2)
s+1 are then X2 and X5, i.e., MB(C2)

s+1 =

{C1, X1, X4}.

For the second old adjacent variable X5, we remove the arc between X5 and X2, we

update PC(X5)
s+1 = PC(X5)

s+1 \ {X2} = ∅, then update the Markov blanket set for

every class variable of X2 that does not pertain to PC(X5)
s+1. In our case, X2 has only

C1 as a class parent (because both C2 and X5 have been already removed), so its Markov

blanket is modified as follows MB(C1)
s+1 = MB(C1)

s+1 \ {X5} = {C2, X2, X4}.

For the new adjacent nodes, we have PC(X2)
s+1\PC(X2)

s = {X7}. Thus, we insert an
arc from X7 to X2, update PC(X7)

s+1 = PC(X7)
s+1∪{X2} = {C4, X2}, then update the

Markov blanket set for every class variable of X2 that does not pertain to PC(X7)
s+1. In

our case, X2 has only C1 as a class parent, which is different from X7 and not pertaining

to PC(X7), so its Markov blanket is modified as follows MB(C1)
s+1 = MB(C1)

s+1 ∪
{X7} = {C2, X2, X4, X7}.

X5

C2

X2

C1

X2

C1

X7

(a) (b)

Figure 8.5: Parents-children set of node X2 (a) before and (b) after change.

� The changed node X5 (see Figure 8.6): The first step is to determine the new parents-

children set of X5 given Ds+1 and using the HITON-PC algorithm. Assuming that

HITON-PC detects the new parents-children set of X5 correctly, we obtain PC(X5)
s+1 =

{C3}. Then, given that PC(X5)
s = {X2}, we determine first the set of old adjacent

nodes PC(X5)
s \PC(X5)

s+1 = {X2}. Since the changed variable X2 has been processed

before the changed node X5, we can see that the arc between these two variables has been

already removed during the previous phase. Moreover, X5 has been already removed from

PC(X2)
s+1, so there is no change for PC(X2)

s+1 = {C1, X7}. X5 at this step has no
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class parents, so steps 13-15 in UpdateMBC algorithm are not applied in this case.

For the new adjacent nodes, we have PC(X5)
s+1 \ PC(X5)

s = {C3}. Thus, we insert

an arc from C3 to X5, update PC(C3)
s+1 = PC(C3)

s+1 ∪ {X5} = {C4, X5, X6}, and
update its Markov blanket set MB(C3)

s+1 = MB(C3)
s+1∪{X5} = {C4, X5, X6}. X5 is

not a class variable and has no more class parents except C3, so no more changes have

to be considered.

X5X2 X5

C3

(a) (b)

Figure 8.6: Parents-children set of node X5 (a) before and (b) after change.

Note finally that, the changes performed on the local structure of each changed node lead as

well to the changes of the PC and MB sets of some adjacent nodes such as, in our case, those

of the variables C2, C3 and X7. However, some other variables do not present any change and

their PC sets are kept the same, namely, X1, X3, X4, X6, and X8. In addition, the order of

processing the changed variables affects the order of the execution of some operations, however

it does not affect the final result.

8.5 Experimental design

8.5.1 Data sets

� Synthetic multi-dimensional data streams: We randomly generated a sequence of five

MBC networks, such that the first MBC network is randomly defined on a set of d = 6

class variables and m = 14 feature variables. Then, each subsequent MBC network

is obtained by randomly changing the dependence relationships around a percentage p

of nodes with respect to the preceding MBC network in the sequence. Depending on

parameter p, we set three different configurations to test different rates of concept drift:

– Configuration 1: no concept drift (p = 0%). In this case, the same MBC network

is used to sample the total number of instances in the sequence. This aims to
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generate a stationary data stream and allows us to verify the resilience of the

proposed algorithm to false alarms.

– Configuration 2: gradual concept drift (p = 20%). The percentage of changed

nodes between each consecutive MBC networks is equal to p = 20%. For each

selected changed node, its parent set is modified by removing the existing parents

and randomly adding new ones. For the parameters, new CPTs are randomly

generated for the set of changed nodes presenting new parent sets, whereas the

CPTs of the non-changed are kept the same as the preceding MBC.

– Configuration 3: abrupt concept drift (p = 50%). Similar to configuration 2, but

we fixed the percentage of changed nodes between each consecutive MBC networks

to p = 50%.

Afterwards, for each configuration, 10000 instances are randomly sampled from each

MBC network in the sequence, using the probabilistic logic sampling method [107],

then concatenated to form a data stream of 50000 instances.

� SynT-drift data stream provided by Read et al. [181]: In order to compare our approach

against existing multi-label stream classification methods, namely, BRa, EaBR, EaHTPS ,

EaPS, HTa, MBR, and MWC, we test our Locally and Globally Adaptive-MB-MBC methods

on SynT-drift.

SynT-drift is a multi-label synthetic data stream including 1000000 instances with d = 8

binary class variables and m = 30 binary feature variables. It is sampled using the

random tree generator proposed by Domingos and Hulten [67], that constructs a decision

tree by choosing attributes at random to split, and assigning a random class label to

each leaf. Once the tree is built, new examples are generated by assigning uniformly

random values to attributes which then determine the class label via the tree.

Read et al. [181] included three concept drifts in SynT-drift of varying type, magnitude

and extent. In the first drift, they changed only 10% of label dependencies. In the

second drift, the underlying concept changes and more labels are associated on average

with each instance (i.e., the label cardinality LCard changes from 1.8 to 3.0), and in

the third drift, 20% of label dependencies change.

8.5.2 Evaluation metrics

The synthetic data streams are processed by windows of size 1000 instances, and the prequen-

tial setting [56, 91] is used to evaluate the predictive performance of the MBC network on
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each window. In this setting, each incoming window is used for testing the MBC network be-

fore it is used for training, in such a way that the MBC network is always tested on instances

that have not been seen before.

As evaluation metrics, we considered the mean (see Equation (3.4)) and the global accu-

racy (see Equation (3.5)) to assess the predictive performance of the learned classifiers (higher

is better). In addition, we used the following two metrics, to mainly evaluate the quality of

the learned MBC networks:

� Kullback-Leibler Divergence (KLDiv) [135]: It measures the divergence between

the learned MBC networks and the original ones. The lower the KLDiv values, the

better the quality of learning algorithm.

� Structural Hamming Distance (SHD) [213]: It compares the structure of the

learned and the original MBC networks, and is defined as the number of operations

required to make two completed partially DAGs (CPDAGs) match. The operations

are add or delete an undirected edge, and add, delete, or reverse the orientation of an

edge. Each of these operations is penalized with the same strength by increasing the

SHD by 1. In our case, since all learned and original MBCs are DAGs, we build first

the CPDAGs of both learned and original MBC DAGs using the DAG-to-CPDAG al-

gorithm [45], then we compute the SHD metric. The lower the resulting SHD value is,

the better the algorithm performed.

� Running time: It reports the cumulative learning plus testing times in seconds.

Note that for experiments on SynT-drift data stream, the KLDiv and SHD evaluation are

omitted since we do not have an original MBC network for this data. Moreover, as reported

in [181], we compute the subset accuracy (see Equation (3.6)) instead of the mean accuracy.

8.6 Experimental results

For the first set of experiments, performed using 20 variables (6 class variables and 14

feature variables), we sampled randomly five different data streams for each configuration

(i.e., for each p=0%, p=20% and p=50%) and we applied both Locally Adaptive-MB-MBC

(LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC) using four different values of λ,

namely λ = 1, 2.5, 5, 10. This allows us to study the sensitivity of both algorithms with

respect to the input parameter λ.
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Tables 8.3, 8.4 and 8.5 show the estimated performance results as mean values and stan-

dard deviations for each metric and each method over the five randomly generated data

streams. The best result for each metric is written in bold. In Table 8.3, presenting the

results with p = 0% (i.e., stationary data streams), we can first notice the very low sensitivity

of both algorithms with respect to λ values. In fact, even if the best result for the mean

accuracy is obtained with LA-MB-MBC with λ = 5, and the best result for the global accu-

racy is obtained with LA-MB-MBC with λ = 10, both algorithms LA-MB-MBC and GA-MB-MBC

present similar predictive performance for the remaining λ values. Moreover, LA-MB-MBC and

GA-MB-MBC show similar results for KLDiv, SHD and running time with, generally, a slightly

better performance for LA-MB-MBC.

Table 8.3: Experimental results (mean ± std. dev.) over synthetic data with p = 0%.

LA-MB-MBC GA-MB-MBC

λ = 1

Mean accuracy 0.739± 0.075 0.737± 0.078

Global accuracy 0.253± 0.158 0.255± 0.156

SHD 34.492± 5.796 33.700± 4.568

KLDiv 0.826± 0.156 0.926± 0.321

Running time 906.750± 98.484 908.154± 122.792

λ = 2.5

Mean accuracy 0.739± 0.075 0.737± 0.077

Global accuracy 0.255± 0.154 0.252± 0.152

SHD 33.084± 5.056 32.564± 5.633

KLDiv 0.827± 0.170 0.921± 0.367

Running time 886.900± 82.758 887.384± 105.939

λ = 5

Mean accuracy 0.740± 0.075 0.737± 0.075

Global accuracy 0.255± 0.155 0.250± 0.150

SHD 33.156± 6.922 35.120± 7.108

KLDiv 0.839± 0.186 0.856± 0.156

Running time 861.600± 68.628 864.948± 92.517

λ = 10

Mean accuracy 0.739± 0.074 0.739± 0.074

Global accuracy 0.256± 0.156 0.251± 0.151

SHD 32.056± 7.508 32.960± 7.327

KLDiv 0.843± 0.176 0.813± 0.184

Running time 846.212± 84.929 886.285± 92.033

In Table 8.4, presenting the experimental results with a drift rate p = 20%, LA-MB-MBC is
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performing the best with λ = 1 for the mean accuracy, global accuracy and KLDiv. However,

the best SHD result is obtained with LA-MB-MBC with λ = 2.5. In addition, contrary to

results in Table 8.3 (p = 0%), we can observe that under a higher drift rate (p = 20%), both

algorithms become more sensitive to the value of λ. For both LA-MB-MBC and GA-MB-MBC

algorithms, the best accuracies are obtained with λ = 1, and as long as λ increases, the mean

and global accuracies decrease whereas the SHD and KLDiv values increase. In fact, using

higher λ values, some concept drifts cannot be detected and consequently the model cannot

be updated correctly; which may affect its performance over time. In this case, we can see

that GA-MB-MBC is more sensitive since missing the detection of a drift affects the whole MBC

network.

Table 8.4: Experimental results (mean ± std. dev.) over synthetic data with p = 20%.

LA-MB-MBC GA-MB-MBC

λ = 1

Mean accuracy 0.701± 0.038 0.695± 0.046

Global accuracy 0.181± 0.072 0.173± 0.075

SHD 32.592± 7.728 32.152± 5.249

KLDiv 0.868± 0.142 1.222± 0.361

Running time 956.983± 88.816 926.456± 81.923

λ = 2.5

Mean accuracy 0.695± 0.040 0.682± 0.042

Global accuracy 0.177± 0.069 0.157± 0.074

SHD 31.540± 8.708 33.516± 5.793

KLDiv 0.959± 0.196 1.498± 0.490

Running time 882.608± 71.498 931.117± 130.663

λ = 5

Mean accuracy 0.689± 0.040 0.686± 0.050

Global accuracy 0.166± 0.067 0.167± 0.076

SHD 33.916± 8.403 33.208± 5.187

KLDiv 1.076± 0.178 1.363± 0.384

Running time 899.575± 80.939 964.248± 96.363

λ = 10

Mean accuracy 0.688± 0.045 0.668± 0.056

Global accuracy 0.166± 0.070 0.147± 0.080

SHD 35.576± 7.539 34.840± 5.030

KLDiv 1.141± 0.180 1.825± 0.579

Running time 894.720± 80.057 915.479± 95.438

Table 8.5 shows the experimental results with a drift rate p = 50%. Similar to results
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in Table 8.4, we may conclude that for both algorithms, the best accuracies were obtained

with λ = 1, and as long as λ increases, all the performance measures get worse. GA-MB-MBC

outperforms LA-MB-MBC in mean and global accuracies with λ = 1, however, for all remain-

ing λ values, LA-MB-MBC presents better predictive performance. The better performance of

GA-MB-MBC compared to LA-MB-MBC can be explained by the fact that having 50% of drift

affects a larger instance space (i.e., it can be viewed as a global change), and consequently it

might be better to re-build all the MBC network rather than updating it locally.

Table 8.5: Experimental results (mean ± std. dev.) over synthetic data with p = 50%.

LA-MB-MBC GA-MB-MBC

λ = 1

Mean accuracy 0.723± 0.037 0.724± 0.047

Global accuracy 0.190± 0.056 0.197± 0.071

SHD 33.760± 5.586 28.460± 2.539

KLDiv 0.822± 0.260 0.945± 0.259

Running time 985.971± 66.058 895.399± 44.161

λ = 2.5

Mean accuracy 0.712± 0.043 0.709± 0.057

Global accuracy 0.184± 0.060 0.178± 0.078

SHD 35.040± 3.581 30.504± 3.846

KLDiv 0.971± 0.281 1.286± 0.495

Running time 996.916± 87.938 892.666± 39.651

λ = 5

Mean accuracy 0.709± 0.046 0.699± 0.042

Global accuracy 0.174± 0.061 0.160± 0.049

SHD 34.380± 2.675 31.068± 3.911

KLDiv 0.966± 0.196 1.622± 0.567

Running time 973.825± 70.961 865.943± 35.643

λ = 10

Mean accuracy 0.704± 0.046 0.688± 0.037

Global accuracy 0.164± 0.064 0.146± 0.039

SHD 38.068± 2.297 31.83± 4.083

KLDiv 1.202± 0.354 1.776± 0.819

Learning time 947.876± 75.133 884.797± 48.339

In addition, we plot in Figures 8.7, 8.8 and 8.9 the mean and global accuracy curves

for LA-MB-MBC and GA-MB-MBC algorithms, with λ = 1 and with p equal to 0%, 20% and

50%, respectively. For each curve, the X-axis represents the block number, and the Y-axis

represents the classification accuracy.
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Figure 8.7: Classification results with the drift rate p = 0% and λ = 1.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Block number

A
cc

ur
ac

y

 

 

LA-MB-MBC MeanAcc.

LA-MB-MBC GlobalAcc.
GA-MB-MBC MeanAcc.

GA-MB-MBC GlobalAcc.

Figure 8.8: Classification results with the drift rate p = 20% and λ = 1.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Block number

A
c
c
u
ra

c
y

 

 

LA-MB-MBC MeanAcc.

LA-MB-MBC GlobalAcc.
GA-MB-MBC MeanAcc.

GA-MB-MBC GlobalAcc.

Figure 8.9: Classification results with the drift rate p = 50% and λ = 1.
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In Figure 8.7, we can observe that LA-MB-MBC and GA-MB-MBC curves are almost superposed

showing the similar performance of both algorithms, as well as their resilience to false alarms.

In Figures 8.8 and 8.9, we can first notice that both algorithms perform well in detecting

the change at blocks 10, 20, 30 and 40. With p = 20% (Figure 8.8) the change is more gradual,

whereas, in Figure 8.9 with p = 50%, the change is abrupt and more important fluctuations in

predictive performance are present. We can also see that in Figure 8.8, between blocks 30 and

50, LA-MB-MBC clearly outperforms GA-MB-MBC in updating the MBC network and recuperating

more quickly its performance. Nevertheless, with higher drift rate, i.e., p = 50%, GA-MB-MBC

presents a slightly better performance than LA-MB-MBC.

In the second set of experiments with SynT-drift data streams, we compare LA-MB-MBC and

GA-MB-MBC algorithms against seven multi-label classification methods. Five of them, i.e.,

BRa, EaBR, EaHTPS , EaPS and HTa were proposed by Read et al. [181], whereas MBR and MWC

were proposed respectively in [178] and [233]. Similarly, as Read et al. [181], we divide the

stream into 20 windows and we report the average of subset and global accuracies across the

data windows, as well as the cumulative running time in seconds. Note that both LA-MB-MBC

and GA-MB-MBC are performed using λ = 1. The obtained results are reported in Table 8.6.

Table 8.6: Experimental results over SynT-drift data.

Subset accuracy Global accuracy Running time

BRa 0.196 0.018 62

EaBR 0.195 0.015 375

EaHTPS 0.221 0.026 34

EaPS 0.184 0.030 628

HTa 0.164 0.046 14

MBR 0.199 0.020 678

MWC 0.159 0.014 1869

LA-MB-MBC 0.173 0.040 3714

GA-MB-MBC 0.198 0.038 3097

For the subset accuracy, GA-MB-MBC performs better than LA-MB-MBC, and also better

than any other method except MBR and EaHTPS . For the global accuracy, LA-MB-MBC per-

forms better than all remaining methods except HTa. Although not the best, LA-MB-MBC

and GA-MB-MBC both present a good performance especially because SynT-drift is generated

based on tree models, and as expected methods based on Hoeffding trees (i.e., EaHTPS and

HTa) provide the best accuracy results. Nevertheless, the main shortcoming of our adaptive

algorithms is the running time which is slower than all remaining methods, and this is mainly

due to the testing part that involves the computation of the most probable explanation.
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8.7 Conclusion

In this chapter, we have presented two new methods for mining multi-dimensional data

streams, namely, GA-MB-MBC and LA-MB-MBC. Basically, GA-MB-MBC uses the Page-Hinkley

test to monitor the average global log-likelihood over time and detect the concept drift, then,

whenever a concept drift is detected, it learns a new MBC from scratch. On the other hand,

LA-MB-MBC proceeds locally at the level of each node in the MBC network, that is, it monitors

the average local log-likelihood of each node over time, then, whenever a concept drift is

detected, it learns a new local structure for each changed node.

Experimental results on synthetic data streams including different rates of change were

promising. Specifically, GA-MB-MBC and LA-MB-MBC are shown to be resilient to false alarms,

and also efficient in detecting the change points and adapting the MBC networks. Moreover,

both methods show similar predictive performance and exhibit competitive accuracy results

when compared with existing multi-label classification methods.

In the future, we intend to carry out a more extensive experimental study using additional

synthetic and real data streams. Furthermore, it will be interesting to investigate the use of

different exact or approximate inference methods in order to alleviate the computational

burden when calculating the most probable explanation.
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Chapter 9
Conclusions and future work

This concluding chapter is organized in three sections: first, Section 9.1 summarizes the main

contributions and conclusions provided in this dissertation; then, Section 9.2 includes the

publications and submissions produced during this research; and finally, Section 9.3 discusses

open issues and main lines of future work.

9.1 Summary of contributions

So far, we have introduced through this dissertation several contributions consisting of novel

classification methods with applications to different real-world problems.

In particular, in the first part, we tackled the problem of learning multi-dimensional

Bayesian network classifiers from stationary data and we proposed two novel algorithms,

namely, CB-MBC and MB-MBC, in Chapter 5 and Chapter 6, respectively. CB-MBC is based on

a wrapper greedy forward selection approach optimizing at each step the accuracy of the

classifier, while MB-MBC is a filter approach based on the identification of the Markov blanket

around each class variable.

We applied CB-MBC and MB-MBC to two real-world multi-dimensional problems: 1) the

prediction of the human immunodeficiency virus type 1 reverse transcriptase and protease

inhibitors, and 2) the prediction of the European Quality of Life-5 Dimensions from 39-item

Parkinson’s Disease Questionnaire. Experimental results were promising: CB-MBC and MB-MBC

outperformed the state-of-the-art multi-dimensional classification methods and allowed us to

gain insight into both known and novel interactions among the studied variables.

In the second part of the dissertation, we dealt with streaming classification problems that

present more challenges in detecting concept drifts and adapting the classification model over
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time, and we proposed through Chapters 7 and 8 new different approaches.

Specifically, in Chapter 7, the semi-supervised CPL-DS approach addressed the problem of

classifying partially labeled uni-dimensional data streams. CPL-DS handles three kinds of drift

(feature, conditional or dual drift) using Kullback-Leibler divergence and a bootstrap method,

and re-learns from scratch the classifier, when a drift is detected, using the expectation-

maximization algorithm. CPL-DS was tested with synthetic data streams and applied to the

real-world problem of malware detection. Experimental results showed the good performance

of CPL-DS in terms of classification accuracy as well as the detection of different kinds of drift.

In Chapter 8, Globally Adaptive-MB-MBC (GA-MB-MBC) and Locally Adaptive-MB-MBC

(LA-MB-MBC) algorithms were introduced to deal with mining multi-dimensional concept-

drifting data streams. Both methods handle concept drifts over time using the average

log-likelihood score and the Page-Hinkley test. When a drift is detected, LA-MB-MBC adapts

the current multi-dimensional Bayesian network classifier locally around each changed node,

whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch.

Experimental results with synthetic multi-dimensional data streams were encouraging and

proved the merits of both proposed adaptive methods.

9.2 List of publications

The work presented through this dissertation has produced the following list of publications

and submissions:

A. Refereed journals

� H. Borchani, P. Larrañaga, and C. Bielza. Classifying evolving data streams with

partially labeled data. Intelligent Data Analysis, 15(5):655–670, 2011. Impact factor

(2011): 0.448.

� H. Borchani, C. Bielza, P. Mart́ınez-Mart́ın, and P. Larrañaga. Markov blanket-based

approach for learning multi-dimensional Bayesian network classifiers: An application to

predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkin-

son’s Disease Questionnaire (PDQ-39). Journal of Biomedical Informatics 45:1175–

1184, 2012. Impact factor (2011): 1.792.

� H. Borchani, C. Bielza, P. Larrañaga, and C. Toro. Learning multi-dimensional Bayesian

network classifiers using Markov blankets: A case study in the prediction of HIV-1
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reverse transcriptase and protease inhibitors. Artificial Intelligence in Medicine (in

press) doi: 10.1016/j.artmed.2012.12.005, 2013. Impact factor (2011): 1.345.

� H. Borchani, P. Larrañaga, J. Gama, and C. Bielza. Mining multi-dimensional concept-

drifting data streams using Bayesian network classifiers. Data Mining and Knowledge

Discovery, 2012, Submitted. Impact factor (2011): 1.545.

B. Conference and workshop communications

� H. Borchani, P. Larrañaga, and C. Bielza. Mining concept-drifting data streams contain-

ing labeled and unlabeled instances. In Proceedings of the Twenty-third International

Conference on Industrial, Engineering and Other Applications of Applied Intelligent

Systems, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, pages

531–540, 2010.

� H. Borchani, C. Bielza, and P. Larrañaga. Learning CB-decomposable multi-dimensional

Bayesian network classifiers. In Proceedings of the Fifth European Workshop on Proba-

bilistic Graphical Models, pages 25–32, 2010.

� H. Borchani, C. Bielza, and P. Larrañaga. Learning multi-dimensional Bayesian net-

work classifiers using Markov blankets: A case study in the prediction of HIV protease

inhibitors. In AIME’11 Workshop on Probabilistic Problem Solving in Biomedicine,

pages 29–40, 2011.

9.3 Future work

This section summarizes and emphasizes the most relevant future lines and open issues that

have been already enumerated through the specific conclusion section of each chapter.

Firstly, since our contributions were all based on discrete variables, they cannot be applied

directly to continuous variables and necessarily require a discretization pre-processing step to

convert each continuous variable in the data into a discrete variable. Hence, an interesting

direction for future work is to generalize our methods in order to allow the combination of

both discrete and continuous variables.

Secondly, for both stationary and streaming multi-dimensional methods, we assumed that

there are no missing values in the data. This assumption is not always verified especially when

dealing with real-world applications, where class assignments are usually incomplete [164].

In this case, as another line for future research, our multi-dimensional methods might be

extended either with the use of missing values imputation methods or with the adaptation of
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the expectation-maximization algorithm to enable parameter estimations or structure learning

from incomplete data.

Furthermore, for the proposed multi-dimensional methods, it would be also interesting to

investigate the use of different exact or approximate inference methods in order to alleviate

the computational burden when calculating the most probable explanation.

Finally, an important and crucial problem related to our work is learning from imbalanced

data. With CPL-DS approach, we used two existing approaches, namely, clustering-sampling

and SERA to deal with uni-dimensional imbalanced data streams. In the future, we intend

to carry out more investigation on this topic especially with respect to the streaming multi-

dimensional setting.
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[12] M. Baena-Garćıa, J. del Campo-Avila, R. Fidalgo, A. Bifet, and R. Gavaldà. Early drift
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dimensional Bayesian network classifiers. In Proceedings of the Fifth European Workshop

on Probabilistic Graphical Models, pages 25–32, 2010.
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