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Abstract. Multi-dimensional Bayesian network classifiers (MBCs) are
Bayesian network classifiers especially designed to solve multi-dimensional
classification problems, where each instance in the data set has to be as-
signed to one or more class variables. In this paper, we introduce a new
method for learning MBCs from data basically based on determining
the Markov blanket around each class variable using the HITON al-
gorithm. Our method is applied to the human immunodeficiency virus
(HIV) protease inhibitor prediction problem. The experimental study
showed promising results in terms of classification accuracy, and we
gained insight from the learned MBC structure into the different pos-
sible interactions among protease inhibitors and resistance mutations.

1 Introduction

Multi-dimensional classification is an extension of the classical one-dimensional
classification, where each instance given by a vector ofm features x = (x1, ..., xm)
is associated with a vector of d class values c = (c1, ..., cd) rather than a single
class value [16]. Recently, the concept of multi-dimensionality has been intro-
duced in Bayesian network classifiers providing an accurate modelling of this
emerging problem and ensuring interactions among all variables [4, 5, 9, 16–18].
In these probabilistic graphical models, known as multi-dimensional Bayesian
network classifiers (MBCs), the graphical structure partitions the set of class and
feature variables into three different subgraphs: class subgraph, feature subgraph
and bridge subgraph, and the parameter set defines the conditional probability
distribution of each variable given its parents.

In this paper, we introduce a novel MBC learning algorithm based on Markov
blankets. Motivated by the fact that the classification is unaffected by parts of
the structure that lie outside the Markov blankets of the class variables, we
first build the Markov blanket around each class variable using the well-known
HITON algorithm [1–3], and then we determine edge directionality over all three
MBC subgraphs. Thanks to this filter and local approach to MBC learning, we
can lighten the computational burden of MBC learning using wrapper algorithms
[4, 5, 16] and provide more accurate MBC structures.



We finally apply our Markov blanket MBC (MB-MBC) algorithm to the
problem of predicting human immunodeficiency virus (HIV) protease inhibitors
(PIs) given an input set of resistance mutations that an HIV patient carries. In
general, a combination of several antiretroviral PI drugs should be repeatedly
administered for each patient in order to prevent and treat the HIV infection.
We analyze a data set obtained from the Stanford HIV protease database [13].
The class variables are eight protease inhibitor drugs (i.e., d=8) and the feature
variables are 74 predefined mutations [10] associated with resistance to protease
inhibitors (i.e., m=74). Experimental results were promising in terms of classifi-
cation accuracy as well as of the identification of interactions among drugs and
resistance mutations, which were either consistent with the current knowledge
or not previously mentioned in the literature.

The remainder of this paper is organized as follows. Section 2 introduces
Bayesian networks. Section 3 presents MBCs and briefly reviews state-of-the-art
MBC learning algorithms. Section 4 describes our new MBC learning approach.
Section 5 presents the experimental study on the HIV protease inhibitor data
set. Finally, Section 6 sums up the paper with some conclusions.

2 Background

A Bayesian network over a set of discrete random variables U = {X1, ..., Xn},
n ≥ 1, is a pair B = (G,Θ). G = (V,A) is a directed acyclic graph (DAG) whose
vertices V correspond to variables in U and whose arcs A represent direct depen-
dencies between the vertices. Θ is a set of conditional probability distributions
such that θxi|pa(xi) = p(xi | pa(xi)) defines the conditional probability of each
possible value xi of Xi given a set value pa(xi) of Pa(Xi), where Pa(Xi) denotes
the set of parents of Xi in G.

A Bayesian network B represents a joint probability distribution over U

factorized according to structure G as follows:

p(X1, ..., Xn) =

n∏

i=1

p(Xi | Pa(Xi))· (1)

Definition 1. Conditional Independence. Two variables X and Y are condition-

ally independent given Z, denoted as I(X,Y | Z), iff P (X | Y,Z) = P (X | Z)
for all values x, y, z of X,Y,Z, respectively, such that P (Z = z) > 0.

Definition 2. A Markov blanket of a variable X, denoted as MB(X), is a mini-

mal set of variables with the following property: I(X,S | MB(X)) holds for every
variable subset S with no variables in MB(X) ∪X.

In other words, MB(X) is a minimal set of variables conditioned by which X
is conditionally independent of all the remaining variables. Under the faithfulness
assumption, MB(X) consists of the union of the set of parents, children, and
parents of children (i.e., spouses) of X [11].



3 Multi-dimensional Bayesian Network Classifiers

In this section we present MBCs, then briefly review the state-of-the-art methods
for learning these models from data.

Definition 3. A multi-dimensional Bayesian network classifier is a Bayesian

network B = (G,Θ) where the structure G = (V,A) has a restricted topology.

The set of n vertices V is partitioned into two sets: VC = {C1, ..., Cd}, d ≥ 1, of
class variables and VX = {X1, ..., Xm},m ≥ 1, of feature variables (d+m = n).
The set of arcs A is partitioned into three sets AC , AX and ACX , such that:

– AC ⊆ VC × VC is composed of the arcs between the class variables having a

subgraph GC = (VC , AC) -class subgraph- of G induced by VC .

– AX ⊆ VX × VX is composed of the arcs between the feature variables having

a subgraph GX = (VX , AX) -feature subgraph- of G induced by VX .

– ACX ⊆ VC × VX is composed of the arcs from the class variables to the

feature variables having a subgraph GCX = (V,ACX) -bridge subgraph- of G
connecting class and feature variables.

Depending on the graphical structures of the class and feature subgraphs
MBCs can be divided into several families. These families can be denoted as
class subgraph structure-feature subgraph structure MBCs, where the
possible structures of each subgraph are: empty, tree, polytree, or DAG [4].

Classification with an MBC under a 0-1 loss function is equivalent to solv-
ing the most probable explanation (MPE) problem, i.e., for a given fact x =
(x1, ..., xm) we have to obtain

c∗ = (c∗1, ..., c
∗
d)

= arg max
c1,...,cd

p(C1 = c1, ..., Cd = cd | x)· (2)

Example 1. An example of an MBC structure is shown in Figure 1. VC contains
four classes, VX includes seven features, and the structure G is equal to GC ∪
GX ∪ GCX . We have

max
c1,...,c4

p(C1 = c1, ..., C4 = c4 | x) ∝ max
c1,...,c4

p(c1 | c2, c3)p(c2)p(c3)p(c4)

· p(x1 | c2, x4)p(x2 | c1, c2)p(x3 | c4)p(x4 | c1)

· p(x5 | c4)p(x6 | c3, x3, x7)p(x7 | c4, x3) ·

Several approaches have recently been proposed to learn MBCs from data.
In [16], Van der Gaag and de Waal use Chow and Liu’s algorithm [6] to learn the
class and feature subgraphs of a tree-tree MBC, then they greedily select the
bridge subgraph, using a wrapper method, aiming to induce the most accurate
classifier. De Waal and Van der Gaag later presented a theoretical approach for
learning polytree-polytreeMBCs in [9]. Class and feature subgraphs are sepa-
rately generated using Rebane and Pearl’s algorithm [12]; however, the induction
of the bridge subgraph was not specified.
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Fig. 1. An example of an MBC structure.

More recently, a two-step method was proposed by Zaragoza et al. [17] to also
learn polytree-polytree MBCs. First, they build class and feature subgraphs
using Chow and Liu’s algorithm [6] and generate an initial bridge subgraph based
on mutual information. Then, in a second step, they refine the bridge subgraph
by adding more arcs to improve MBC accuracy.

Bielza et al. [4] propose three MBC learning algorithms: pure filter (guided by
any filter algorithm based on a fixed ordering among the variables), pure wrapper
(guided by the classification accuracy) and a hybrid algorithm (a combination
of pure filter and pure wrapper). Note that none of these algorithms places any
constraints on the subgraph structures of the generated MBCs.

In [5], we propose a learning algorithm for class-bridge decomposable MBCs,
instead of general MBCs, based on a greedy forward selection wrapper approach.
Class or feature subgraphs can have any type of structure. Compared with prior
algorithms in [4, 9, 16], our method performs better and requires less computa-
tional time than the existing wrapper algorithms.

Moreover, Zaragoza et al. present a two-step method in [18]. In the first phase,
a tree-based Bayesian network that represents the dependency relations between
the class variables is learned. In the second phase, several chain classifiers are
built using selective naive Bayes models, such that the order of the class variables
in the chain is consistent with the class subgraph. At the end, the results of the
different generated orders are combined in a final ensemble model.

4 Learning Multi-Dimensional Bayesian Network

Classifiers Using Markov Blankets

In this section we describe a new algorithm for learning MBCs from data based
on Markov blanket discovery. Our objective is to tackle the shortcomings of
our previous learning method [5], mainly its high computational cost, by taking
advantage of the merits of a filter approach. This should considerably lighten
the computational burden, especially when the data set includes a large number
of class and feature variables, while guaranteeing good performance.

Additionally, this work is motivated by its application to the HIV drug re-
sistance problem, where it is not only important to build an MBC with a high
predictive power but also to discover the resistance pathways of each HIV drug
by analyzing the MBC structure. Applying our previous learning method [5]
may not always lead to an accurate MBC structure, since arcs between features



are selected at random in the feature subgraph learning steps. This may af-
fect the overall quality of the learned MBC structure and lead consequently to
misinterpretations.

To deal with this issue, we make use of Markov blankets. In recent years, sev-
eral specialized Markov blanket learning methods have been proposed in the liter-
ature, such as GS, TPDA, IAMB and its variants, MMHC, MMMB and HITON
(see [2, 3] and their references for reviews). In this paper, we only consider and
apply the HITON algorithm [1–3] in the context of multi-dimensional Bayesian
network classifiers. In fact, the HITON algorithm was empirically proven to
outperform most of the state-of-the-art Markov blanket discovery algorithms in
terms of combined classification performance and feature set parsimony [2].

The idea of our Markov blanket MBC (MB-MBC) learning algorithm is sim-
ple and consists of applying the HITON algorithm to each class variable and
then specifying directionality over the MBC subgraphs. HITON identifies the
Markov blanket of each class variable in a two-phase scheme, HITON-MB and
HITON-PC, outlined respectively in Algorithms 1 and 2.

Step 1 of HITON-MB identifies the parents and children of each class variable
Ci, denoted PC(Ci), by calling the HITON-PC algorithm. Then, it determines
the PC set for every member T of PC(Ci) (steps 2 to 4). The Markov blanket set
MB(Ci) is initialized with PC(Ci) (step 5) and set S includes potential spouses
of Ci (step 6). From steps 7 to 14, HITON-MB loops over all members of S to
identify correct spouses of Ci. MB(Ci) is finally returned in step 15.

Algorithm 1 HITON-MB(Ci)

1. PC(Ci)← HITON-PC(Ci)
2. for every variable T ∈ PC(Ci) do
3. PC(T )← HITON-PC(T )
4. end for

5. MB(Ci)← PC(Ci)
6. S← {

⋃
T∈PC(Ci)

PC(T )} \ {PC(Ci) ∪ Ci}

7. for every variable X ∈ S do

8. Retrieve a subset Z s.t. I(X,Ci | Z)
9. for every variable T ∈ PC(Ci) s.t. X ∈ PC(T ) do
10. if ¬I(X,Ci | Z ∪ {T}) then
11. Insert X into MB(Ci)
12. end if

13. end for

14. end for

15. return MB(Ci)

HITON-PC starts with an empty set of candidates PC(T ), ranks the variables
X in OPEN by priority of inclusion according to I(X,T ) and discards variables
having I(X,T ) = 0. Then, for every new variable inserted into PC(T ), it checks
if there is any variable inside PC(T ) that is independent of T given some subset
Z. In this case, this variable will be removed from PC(T ) (steps 6 to 11). These
steps are iterated until there are no more variables in OPEN. Finally, PC(T )
is filtered using the symmetry criterion (steps 13 to 17). In fact, for every X ∈



PC(T ), the symmetrical relation holds iff T ∈ PC(X). Otherwise, i.e., if T /∈
PC(X), X will be removed from PC(T ). At the end of this step, we obtain
PC(T ) [2] .

Algorithm 2 HITON-PC(T )

1. PC(T )← ∅
2. OPEN ← U \ {T ∪ PC(T )}
3. Sort the variables X in OPEN in descending order according to I(X,T )
4. Remove from OPEN variables X having I(X,T ) = 0
5. repeat

6. Insert at end of PC(T ) the first variable in OPEN and remove it from OPEN
7. for every variable X ∈ PC(T ) do
8. if ∃ Z ⊆ PC(T ) \ {X}, s.t. I(X,T | Z) then
9. Remove X from PC(T ).
10. end if

11. end for

12. until OPEN = ∅
13. for every variable X ∈ PC(T ) do
14. if T /∈ PC(X) then
15. Remove X from PC(T )
16. end if

17. end for

18. return PC(T ).

Note that the complexity of both algorithms could be controlled using a pa-
rametermaxCS restricting the maximum number of elements in the conditioning
sets Z [2]. In our experiments, we use the G2 statistical test to evaluate the con-
ditional independencies between variables with a threshold significance level of
α = 0.05, and we consider different values of maxCS = 1, 2, 3, 4, 5.

Unlike the HITON algorithm that only determines the Markov blanket of a
single target variable for solving the variable selection problem, our algorithm
considers many target variables, then induces the MBC graphical structure.
Given the MBC definition, direct parents of any class variable Ci, i = 1, ..., d, can
only be among the remaining class variables, whereas direct children or spouses
of Ci can include either class or feature variables. We can then easily deduce the
different MBC subgraphs based on the results of the HITON algorithm:
– Class subgraph: we firstly insert an edge between each class variable Ci

and any class variable belonging to its corresponding parents-children set
PC(Ci). Then, we direct all these edges using the PC algorithm [15].

– Bridge subgraph: this is built by inserting an arc from each class variable Ci

to every feature variable belonging to PC(Ci).
– Feature subgraph: for every feature X in the set MB(Ci)\ PC(Ci), i.e., for

every spouse X , we insert an arc from X to the corresponding common child
given by PC(X) ∩ PC(Ci). Moreover, more arcs can be added especially to
discover additional dependency relationships among features. In fact, for
every feature X , child of Ci, we determine the set Y = PC(X) \ ({Ci} ∪
{MB(Ci) ∩ PC(X)}). If Y 6= ∅, we insert an arc from X to every feature
variable in Y.



5 Experimental Study

5.1 Data set

Treatments for human immunodeficiency virus (HIV) mostly involve 18 an-
tiretroviral drugs grouped into three classes: nucleoside and nucleotide reverse
transcriptase inhibitors (NRTIs) including seven drugs, non-nucleoside reverse
transcriptase inhibitors (NNRTIs) including three drugs, and protease inhibitors
(PIs) containing eight drugs. In this paper, we studied PIs only, but we plan to
extend our study to both NRTIs and NNRTIs in the future.

We analyzed a data set obtained from the Stanford HIV protease database
[13] containing antiretroviral PI treatment histories from 1255 patients. These
treatment histories were collected from previously published studies. Eight PI
drugs (i.e., d=8) are considered: Atazanavir (ATV), Darunavir (DRV), Fosam-
prenavir (FPV), Indinavir (IDV), Lopinavir (LPV), Nelfinavir (NFV), Saquinavir
(SQV) and Tipranavir (TPV). There may be one or multiple isolates for the same
patient. Each isolate corresponds to a sample in the data set, including a list
of resistance mutations and a combination of PIs administered to a patient at
a specified time point during his or her course of PI treatment. Only samples
where no drug was administered were discarded. Accordingly, the final data set
contained a total of 4341 samples. However, the number of PI combinations
is not evenly represented; in fact, there are 3256 samples including only 1 PI,
862 samples including 2 PIs, 213 samples including 3 PIs and only 10 samples
containing 4 PIs.

Moreover, we considered established drug resistance mutations that were
defined in the last International AIDS Society-USA resistance mutation list [10].
The total number of mutations in the protease gene associated with resistance
to PIs is 74 (i.e., m=74), where 23 are classified as major and the remaining
as minor mutations. Major mutations are defined as mutations selected first in
the presence of the drug or mutations substantially reducing drug susceptibility.
Minor mutations generally emerge later than major mutations and by themselves
do not have a substantial effect [10].

PI drug combinations (respectively resistance mutations) were represented
using binary vectors such that every value indicates either the presence, 1, or
absence, 0, of an individual PI drug (respectively an individual resistance mu-
tation) in the corresponding sample of the data set. Using a multi-dimensional
Bayesian network classifier learned from this data we were able to predict an-
tiretroviral combination PI therapies given sets of input mutations. Thanks to its
graphical structure, we were also able to investigate dependencies among classes
(i.e., PI drugs), features (i.e., mutations) and between classes and features (i.e.,
interactions between PI drugs and mutations).

5.2 Experimental Results

We compare our MB-MBC algorithm with what is defined as a multiple classifier
method, where each classifier is learned independently (sometimes called binary
relevance in the literature on multi-label classification) using the same HITON



approach with just a single class variable. In order to evaluate the performance
of the learned MBCs, five 10-fold cross-validation experiments are run for each
classifier and each conditioning set size value, i.e., with maxCS = 1, 2, 3, 4, 5. We
use two performance metrics [4], namely:

– The mean accuracy over the d class variables:

Accm =
1

d

d∑

i=1

1

N

N∑

l=1

δ(c′li, cli), (3)

where N is the size of the test set, c′li is the Ci class value predicted by the
MBC for sample l, and cli denotes its corresponding real value. δ(c′li, cli) = 1
if the predicted and real class values are equal, i.e., c′li = cli, and 0 otherwise.

– The global accuracy over the d-dimensional class variable:

Accg =
1

N

N∑

l=1

δ(c′l, cl)· (4)

In this case, the vector of predicted classes c′l is compared to the vector of
real classes cl, so that we have δ(c′l, cl) = 1 if there is a complete equality
between both vectors, i.e., c′l = cl, and 0 otherwise.

Table 1 shows the prediction results with mean values and standard devia-
tions for each metric and each method. Note that the best results are obtained
with maxCS = 1 (94% mean accuracy and 71% global accuracy), and as maxCS

grows, the overall mean and global accuracies decrease. As expected, without
exception, MB-MBC outperforms the independent classifier model notably with
respect to global accuracy.

Table 1. Estimated performance metrics (mean ± standard deviation).

MB-MBC Independent classifiers

maxCS Mean accuracy Global accuracy Mean accuracy Global accuracy

1 0.9416 ± 0.0049 0.7188 ± 0.0250 0.9339 ± 0.0019 0.7035 ± 0.0054

2 0.9330 ± 0.0033 0.6868 ± 0.0075 0.9247 ± 0.0017 0.5994 ± 0.0185

3 0.9193 ± 0.0031 0.6338 ± 0.0083 0.9156 ± 0.0039 0.4960 ± 0.0153

4 0.8890 ± 0.0108 0.5153 ± 0.0321 0.8775 ± 0.0091 0.4071 ± 0.0296

5 0.8641 ± 0.0201 0.4266 ± 0.0568 0.8438 ± 0.0107 0.3551 ± 0.0328

In addition, we examined the graphical structure of the most accurate learned
MBC, shown in Figure 2, in order to evaluate the usefulness of the proposed
learning algorithm in identifying the different interactions between drugs and
mutations in the HIV protease data set.

Firstly, the learned network, specifically the class subgraph (red arcs), shows
dependency relationships between the following drugs IDV, ATV, NFV, LPV
and SQV, which may reveal the extent of cross-resistance between each related
pair of these drugs. Notice that, for IDV, which has associations with LPV, ATV



and NFV, Rhee et al. [14] recently proved in their PIs cross-resistance study that
IDV and LPV are among the most strongly correlated PIs. In fact, these two
drugs had a correlation coefficient value equal to 0.57 [14]. Similarly, based on
their study, IDV and ATV, ATV and NFV as well as NFV and IDV had high
correlation coefficients. Nevertheless, correlation coefficients between LPV and
both drugs NFV and SQV were lower, equal to 0.14 and 0.05 respectively. This
goes to confirm then that the dependency relationships identified in the network
among the above PI drugs are consistent with Rhee et al.’s study [14].

However, our results were less conclusive for other drugs (DRV, FPV and
TPV) since no associations are detected between them or between them and the
other drugs. A possible explanation is the lack of available data, as there were
fewer than 30 samples for each of these drugs. On this ground, we would require a
larger and diverse data set for our future analysis in order to investigate possible
interactions between these drugs and the other variables in the network.

Concerning relationships between PI drugs and mutations, visualized by the
bridge subgraph (blue arcs), let us first discuss the two possible types of muta-
tions, major and minor, and then how their associations with PI drugs have been
previously interpreted in the literature in the context of Bayesian networks. As
Defroche et al. found [7, 8], a major mutation actually plays a key role in drug
resistance, and thus, should have an unconditional dependency on the drug, and
this is indicated in the network graphical structure by the presence of an arc
between the major mutation and the drug.

In contrast, a minor mutation further increases drug resistance mostly only
in the presence of major mutations. Thus, it is expected to be conditionally
independent of the drug but dependent on other major resistance mutations.
This is indicated in the network by the presence of an arc between major or
minor mutations instead of an arc between the minor mutation and the drug
node. Even so, as claimed by Defroche et al. [7], a minor mutation may still be
connected to the drug.

Notice that the conditional independencies revealed in our bridge subgraph
in Figure 2 are largely consistent with the above definitions, since most of the
major mutations are directly connected to one or more drug nodes. For instance,
on the left, D30N (which is defined in [10] as a major mutation of NFV) was
not only associated with NFV but also with IDV, LPV and SQV, proving again
the extent of cross-resistance between these drugs. Similarly, on the right, L76V
(which is defined in [10] as a major mutation of LPV) was directly associated
with LPV, SQV and NFV. At the center bottom of the network, G48V (ma-
jor mutation of SQV [10]) was directly associated with SQV and NFV. L90M
(another major mutation of SQV [10]) was also directly associated with SQV.
I47A, I50L, V82A, V82L, defined in [10] as major mutations of LPV, ATV, IDV
and TPV, respectively, were directly associated with the right drugs in the MBC
graphical structure.

An important number of minor mutations were also directly connected to
drug nodes. L10I and L33F seem to be the main minor mutations: they have
the highest number of connections (3) with PI drugs, followed by the minor



mutations L10F and I54V. L10I was associated with IDV, NFV and SQV; L33F
with LPV, IDV and NFV; L10F with ATV and IDV, and I54V with LPV and
NFV. Additionally, consistently with the latest knowledge in [10], more minor
mutations, namely V82A/T, I84V, N88D/S, were associated directly with NFV.
Also in agreement with [10], the minor mutation K20R was associated with LPV
and the minor mutation I84V was associated with SQV.

From the feature subgraph (green arcs) of the learned MBC we were able to
identify interactions among different protease mutations. The mutations with the
greatest number of dependency relationships were L10I (21 connections: L10F,
L10R, K20R, D30N, M46L, M46I, K43T, G48V, I50V, F53L , I54A, I54T, I62V,
A71I, A71V, G73S, V82A, I84V, I85V, L90M, I93L), L10F (15 connections: L10I,
L10V, V11I, K20T, L33F, M46I, G48V, I54L, I54V, L63P, I84V, I85V, N88D,
L89V, L90M), M46I (8 connections: L10F, L10I, K20I, V32I, M46L, I64L, V77I,
N88S), and 7 connections for L33F(L10F, K43T,M46L, I50V, I54L, A71L, V82L)
and G48V (L10F, L10I, L24I, D30N, I54A, I54S, V77I).

Finally, of the 19 mutations that present no interactions with other drugs or
features (at the bottom), only three are major ones, namely T74P, V82F and
N83D. As they have no dependency relationships with any drug, these mutations
are completely irrelevant.

6 Conclusion

This paper proposed a novel MBC learning approach using Markov blankets,
then presented its application to the HIV protease inhibitors prediction problem.
A preliminary experimental analysis showed that our approach performed well
and confirmed current knowledge about different interactions among PI drugs
and their resistance mutations.

In the near future, we intend to carry out a more extensive experimental study
including the comparison of our approach with state-of-the-art MBC learning
algorithms, using additional synthetic and real data sets in order to prove the
merits of our approach. As regards the HIV drug prediction problem, we plan
to apply our approach to the other two HIV drug groups: NRTI and NNRTI.
Similarly, two MBCs could be learned separately for each group. However, it
would be more interesting to build a single MBC including all the drugs in the
PI, NRTI and NNRTI categories. This way, we will be able not only to investigate
interactions among drugs and resistance mutations belonging to the same group
but also to identify the potential inter-group interactions.
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Fig. 2. The learned multi-dimensional Bayesian network classifier.


