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Influence diagrams have become a popular tool for representing and solving complex decision-making
problems under uncertainty. In this paper, we focus on the task of building probability models from expert
knowledge, and also on the challenging and less known task of constructing utility models in influence
diagrams. Our goal is to review the state of the art and list some challenges. Similarly to probability
models, which are embedded in influence diagrams as a Bayesian network, preferential/utility
independence conditions can be used to factor the joint utility function into small factors and reduce
the number of parameters needed to fully define the joint function. A number of graphical models have
been recently proposed to factor the joint utility function, including the generalized additive
independence networks, ceteris paribus networks, utility ceteris paribus networks, expected utility
networks, and utility diagrams. Similarly to probability models, utility models can also be engineered from
a domain expert or induced from data.
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1. Introduction

Decision-making problems based on uncertain information are
composed of four different elements: (1) a sequence of decisions to be
made; (2) a set of uncertain variables described by a probability
model; (3) decision maker's preferences for the possible outcomes
described by a utility model; and (4) some information constraints on
what uncertainties can and cannot be observed before a decision has
to be made. All of these elements can be graphically represented by
influence diagrams (IDs), see [48]. Nowadays, IDs have become a
popular and standardmodeling tool for decision-making problems. As
pointed out in a recent special issue of the journal Decision Analysis
devoted to IDs, these models “command a unique position in the
history of graphical models” [77].

IDs are directed acyclic graphs with three types of nodes: (1) deci-
sion nodes (rectangular) representing decisions to bemade; (2) chance
nodes (oval or elliptical) representing uncertainties modeled by
probability distributions; and (3) value nodes (diamond-shaped)
without children (direct successors), representing the (expected)
utilities that model decision-maker's preferences. The arcs have
different meanings depending upon which node they are directed
to: the arcs to chance nodes or the value nodes indicate probabilistic
dependence and functional dependence, respectively, while the arcs
pointing at a decision node indicate the information known at the time
of making that decision. The former are called conditional arcs while
the latter are called informational arcs. Informational arcs are related to
the information constraints mentioned above.

Therefore we can distinguish two levels in an ID: qualitative
and quantitative. The qualitative (or graphical) level has a require-
ment: there must be a directed path comprising all decision nodes.
This ensures the definition of a temporal sequence (total order)
of decisions and it is called sequencing constraint. As a consequence,
IDs have the “no-forgetting” property: the decision maker remem-
bers the past observations and decisions. At the quantitative level,
an ID specifies the domains of all decision and chance nodes.
A conditional probability table is attached to each chance node
consisting of conditional probability distributions, one for each
state of its parents (direct predecessors). The utility functions (real-
valued functions) quantify the decision maker's preferences for
outcomes and will be attached to value nodes. They are defined
over the states of the value node's parents. If several value nodes
are present, then each represents an additive factor of the joint
utility function.

Fig. 1 shows an example of the graphical part of an ID. D1 and D2

are decision nodes; A, C and R are chance nodes; and υ1, υ2, and υ3 are
value nodes. υ1 is a function of the states of D1, υ2 is a function of the
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Fig. 1. An influence diagram.
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states of D2 and A, and υ3 is a function of the states of D2 and C. The
joint utility function is the pointwise sum of υ1, υ2 and υ3. As in a
Bayesian network, the arcs directed to chance nodes like R mean
that the conditional probability attached to R is given by P(R|D1, A).
Finally, since there are no informational arcs directed to D1, nothing is
known when a decision at D1 has to be made. The informational arcs
(D1, D2) and (R, D2) directed to D2 mean that at the time a decision at
D2 has to be made, we know the outcome of R and the decision made
at D1. The informational arc (D1, D2) is also called a no-forgetting arc,
and it can be deduced from the fact that there is a directed path
from D1 to D2.

Evaluating an ID means computing a strategy with the maximum
expected utility. This strategy consists of a policy for each decision
node. A policy for decision nodeDi is a function δDi

that associates each
state of Di's parents with a state dj of Di, that results in the maximum
expected utility:

δDi
: xpa Dið Þ→dj ð1Þ

The evaluation algorithms take advantage of the independencies
among the ID variables. The dependencies and independencies appear
naturally during the construction of the model and are represented by
arcs and absence of arcs respectively. The absence of an arc among
two variables represents their mutual independence. Therefore the
removal of a link in order to simplify the model may lead to a wrong
picture of the decision problem under examination. As it happens
while building any model, a tradeoff between simplicity and
expressivity is needed.

Olmsted [70] described a method to solve IDs. Shachter [83]
published the first ID evaluation algorithm. After that, several
algorithms based on variable elimination strategies or on clique-
trees approaches may be now used to solve IDs [22,50,62,85,86,94].
Computational issues related to ID evaluation are beyond the scope of
this paper. Some critical difficulties and their solutions are discussed
and exemplified in [4,37], where a large ID, called IctNeo, models
neonatal jaundice management for an important public hospital in
Madrid.

IDs have an enormous potential as a tool for modeling uncertain
knowledge. The process of building an ID itself provides a deep
understanding of the problem, and ID outputs are remarkably
valuable. Given a specific configuration of variables, an ID yields the
best course of action. But ID responses are not limited to providing
optimal strategies for the decision-making problem. Inferred posterior
distributions may be employed to generate diagnosis outputs
(probabilities of each cause). IDs may also automatically generate
explanations of their proposals as a way to justify their reasoning [30].

The domain expert may formulate a more difficult query, without
specifying all the variables required to determine the optimal
decision, leading to imprecise responses that should be refined if we
want the decision maker to be satisfied [29]. Reasoning in the reverse
direction, assuming that the final results of the decisions are known,
the ID can be used to generate probabilistic profiles that fit these final
results (answering questions like “which kind of patients receive this
specific treatment?”). Also, the computation of the expected value of
information have shown to play a vital role in assessing the different
sources of uncertainty [84].

The aforementioned special issue of Decision Analysis devoted to
IDs is a sign of the lively interest in IDs. Boutilier [10] discusses the
profound impact that IDs have had on artificial intelligence. As a
professional decision analyst, Buede [15] reports on the value of IDs
for tackling challenging real decision problems and considers IDs
almost as indispensable as a laptop computer. Pearl [77] recognizes
the significant relevance of IDs but he underscores some limitations.
First, due to their initial conception with emphasis on subjective
assessment of parameters, econometricians and social scientists
continued using traditional path diagrams where parameters were
inferred from the data itself. Second, artificial intelligence researchers,
with little interaction with decision analysis researchers at that time
(early 1980s), established conditional independence semantics
through the d-separation criterion developing competitive computa-
tional tools. Thus, although IDs are informal precursors to Bayesian
networks, the former had a milder influence on automated reasoning
research than the latter. Finally, Pauker and Wong [75] consider that
IDs have disseminated slowly in the medical literature ([74] and [66]
are two papers analyzing the use of IDs for structuring medical
decision problems), compared to the dominating model of decision
trees, the reasons remaining unclear.

In a separate paper, we concentrate on the qualitative graphical
structure of a decision problem including information constraints
[5]. Here, we concentrate on the construction of a utility model and
review some lesser known issues about constructing probability
models. In constructing a probability model, we need to identify the
relevant chance variables, the qualitative structure of conditional
independencies between the chance variables, and the quantitative
parameters of the joint probability distribution of all chance variables
that respects the conditional independence relations among the
variables. This part of an ID is also called a Bayesian network (BN).
When we have a large set of variables, constructing a BN model of the
uncertainties can be a challenge.

One way to construct a BN model is by knowledge engineering
using a domain expert. The domain expert can identify the relevant
uncertainties, the structure of conditional independencies among the
variables, and finally the numerical parameters of the joint distribu-
tion. To facilitate the knowledge engineering, we describe the SRI
protocol developed by the Decision Analysis group at Stanford
University. We also describe some methods for reducing the number
of parameters needed to fully describe a joint probability distribution.
If the conditional distribution of a binary chance variables has n
parents, say with 2 states each, then the number of parameters
needed is 2n. However, if there are no interactions among the n
parents, we can reduce the number of parameters of the conditional
distribution to o(n). We describe some techniques such as divorcing
parents and noisy-OR models that have been proposed in the
literature.

Another way to induce a BN model is from data. In the last two
decades, there has been an explosion of techniques in the machine
learning community to learn BN models from data and these
techniques are rather well-known and will not be reviewed here. In
practice, a combination of expert knowledge and data are used to
construct a BN model.

Construction of a utility model is as challenging as constructing a
probabilitymodel, if not more. Again, this can be donewith the help of
a domain expert or from a data set, assuming one is available. The task
consists of describing the objectives in terms of a hierarchy of sub-
objectives, defining a measurement scale for each sub-objective, and
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seeking a structure using preferential/utility independence conditions
to minimize the number of parameters of a joint utility function. In
recent years, a number of graphical models have been proposed to
factor the joint utility function into small factors. These include the
generalized additive independence (GAI) networks, ceteris paribus
(CP) networks, utility ceteris paribus (UCP) networks, expected utility
networks (EUNs), and utility diagrams.

Pairwise-comparison is another way to elicit expert judgments
(both probabilities or preferences). However, this technique is not of
practical use when assessing a high number of parameters. This will
be explained in the sections devoted to constructing probability
and utility models.

The paper is organized as follows. Section 2 reviews lesser known
techniques for constructing probability models using expert knowl-
edge. Section 3 reviews techniques for constructing utilitymodels.We
focus on standard techniques (Section 3.1), factorization techniques
based on a graphical utility model (Section 3.2), and data-driven
techniques (Section 3.3). Finally, in Section 4, we conclude with a
summary and a discussion of issues not discussed in this paper.
2. Probability model construction using expert knowledge

The process of building a BN involves three closely related tasks:
identifying the relevant variables for the domain under analysis,
determining the relationships between these variables, and assessing
the conditional probabilities in order to quantify the relationships.
These three tasks are not organized as a single sequential procedure.
Instead, work on any one of them may lead to a reconsideration of
previous decisions of the others. Therefore, incremental prototyping is
usually considered as the ideal development model to follow for
building BNs (and IDs) [58]. Prototypes are refined step by step as long
as more knowledge and time are available. A main guideline for this
iterative process is the trade-off between the desire for a rich and
complex model on one hand and the effort and costs of development,
maintenance, and evaluation on the other [26].

The task of determining the relevant variables and their relations
from domain experts are comparable to some extent to knowledge
engineering for other artificial intelligence representations. Although
it requires a lot of effort, it is not themain difficulty. IDs and BNs offer a
clean graphical representation to experts making them easy to reason
about the domain problem, by adding new variables or changing
relations, as long as the model gets more refined and detailed.
However, obtaining numerical probabilities and preferences is a more
difficult task, see [26]. Data about the domain (literature, databases,
etc.) do not usually include all the required information. When
available, it is not directly amenable for quantifying the parameters of
the probabilistic and preference relations. Therefore, a substantial part
of the work is based on the knowledge and experience of human
experts. But the assessment of numerical parameters from experts is
considered a difficult and unreliable task as well.

With this in mind there are two scenarios to be considered in
probability assignment: without enough data about the problem,
where the model construction must be done manually with the help
of human experts; and if a comprehensive data collection is available,
where the construction of the ID (both qualitative and quantitative
levels) can be performed automatically. These two scenarios are two
extreme situations. In real-world problems, both of them – knowledge
engineering and data – can be combined to some extent: part of the
structure (or parameters) may be learned from data, and the rest
added with the aid of human experts. Here we will only focus on
constructing models using domain experts since model construction
from data is well known and documented in many textbooks, see, e.g.,
[51].

The problems encountered when directly eliciting probabilities
from experts are revealed with the help of well-documented
experiments [53]. These experiments have shown that subjective
probability judgement is driven by several heuristics:

• Availability of information: the ease with which experts can think
about previous occurrences of the event. As certain events may be
easier to recall than others, the use of this heuristic introduces a bias
in the assessments.

• Representativeness: people usually focus the attention on specific
details ignoring background information. For example, people
judge the sequence of coin tosses HTHTTHTH as more likely than
HTHTHTHT, while both of them are equally probable.

• Anchoring the adjustment: a natural starting point is selected as a
first approximation to the value of the quantity being estimated and
then this value is adjusted when more information is available. It
has been shown that the adjustment is insufficient and the final
result tends to be biased to the first approximation.

Also, these sources of biases do not depend on the technical skill or
the level of expertise [90]. They are directly related to psychological
mechanisms used while assessing probabilities of events. Therefore,
rather than directly providing probabilities, several techniques have
been employed for the elicitation of probabilities from experts [65],
and are as follows.

• Avoiding direct assessment and using indirect methods, in which
the decision maker chooses between bets without an explicit
mention of probabilities. This method was initially designed for
utility elicitation [81]. When the method is used for probability
elicitation the expert is asked to compare each pair of events
indicating the relative likelihood of both of them using a set of
predefined scores (like both events are equally likely, the first is
weakly more likely than the second, etc). With this method the
experts are not required to explicitly state probabilities, but as a
consequence the number of comparisons to perform exceeds, by far,
the number of parameters to assess. For assessing the probability
distribution of a variable with n states, n−1 parameters are required
(for every configuration of the parent variables, in the case of a
conditional probability distribution). However, when comparing
pairs of events, n(n−1)/2 comparisons must be done for each state
of the parent variables.

• Conceptualizing and assessing probabilities, using visual devices
like urns with colored balls, and probability wheels, have been
widely used in practical elicitation processes.

• Expressing probabilities qualitatively using words and phrases such
as very possible and almost impossible just because most people find
it easier to express probabilities qualitatively. However, there is
evidence that different people associate different numerical prob-
abilities to these labels even when focused on the same domain
context. Despite this drawback, this approach has been effectively
used for the development of real-world models, see [32,33].

• Asking the experts for intervals of probabilities instead of single
values [31]. Although this simplifies the assessment phase,
computing optimal policies with imprecise probabilities becomes
a more complex task.

All of these techniques reveal the difficulty of this task, especially
for the development of decision support systems for real-world
problems. This has promoted the design of formal protocols focused
on giving assistance and guidelines to such a complex process.
Another strategy is to reduce the number of parameters to be
assessed. And this can be achieved with several techniques. One of
them is to apply certain refinements that result in models with fewer
parameters. Another is to state constraints between the variables of
themodel. Such constraints are clearly defined with qualitative terms,
and can help in reducing the number of parameters. All of these issues
will be examined in the subsequent sections.
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2.1. SRI protocol

The objective of a protocol is to avoid biases induced in subjective
judgements using unsuitable heuristics. The protocol offers guidelines
to perform interviews with experts and recommends a formal
procedure. Although there are several protocols, the Stanford
Research Institute (SRI) protocol [44], is the most influential one. It
was developed by the Decision Analysis group in the Department of
Engineering and Economic Systems at Stanford University. The
protocol recommends organizing the interviews through five phases:

• The motivation phase is focused on developing some initial rapport
with the expert, discussing the reasons for the elicitation. In this
stage it must be considered whether experts have any motivation to
provide assessments that do not reflect their true beliefs.

• Structuring the uncertain quantity to be elicited, establishing a clear
and unambiguous definition stated in a form in which the experts
will most likely be able to provide reliable judgements.

• Conditioning the experts in order to get them focused on thinking
about their judgements and to avoid cognitive biases.

• Encoding of expert probabilistic judgements.
• Verifying the quantitative judgements to check if it correctly
reflects their beliefs. This can be done by visualizing the obtained
distribution, or testing the answers with the aid of bets.

If this protocol is followed, the time required can be as much as
thirty minutes per parameter [25]. This is unfeasible for models with a
big number of parameters, and networks typically comprise of
hundreds of variables and thousands of parameters. Therefore,
alternative techniquesmust be employed for quantifying probabilistic
relations.

2.2. Model refinements

The number of parameters required for quantifying a probabilistic
relation depends on the number of variables involved in it. Simpler
relations will lead to smaller sets of parameters. Sometimes an
important simplification can be obtained by divorcing the parents of a
given variable. For a concrete example, consider a medical problem
with several phases of treatments. The ECost variable represents the
total cost of a certain treatment. It consists of the sum of the partial
costs due to each treatment stage, see Fig. 2. The set of states for ECost
is {very low, low, medium, high, very high}.

With the structure in Fig. 2 there is a conditional probability
distribution involving 6 nodes: the global economical cost and the five
treatment decisions. Suppose that each treatment decision has three
possible states. Then, the number of parameters to be assessed is 972
(=35×(5−1)). But this model can be refined in order to reduce this
number assuming there are no interactions among the cost of the five
treatments. The sum can be done stepwise adding one treatment in
each step, creating new variables for the partial sums, and separating
the treatments. The new structure is shown in Fig. 3.
Fig. 2. Initial model: direct
This refinedmodel introduces three new variables for representing
the costs after each step. Now we need to obtain the parameters for
the following probability distributions:

• P(ECost12|Treatment1,Treatment2), quantifying the costs due to the
first two stages: it requires 36(=32×(5−1)) parameters.

• P(ECost123|ECost12,Treatment3), adding the cost of the third stage:
60(=3×5×(5−1)) parameters.

• P(ECost1234|ECost123,Treatment4): 60 parameters.
• P(ECost|ECost1234,Treatment5), global cost: 60 parameters.

This alternative structure needs only 216 parameters, which is a
big reduction from the initial number of parameters (972).

2.3. Exploiting constraints

When there are constraints that exclude certain states of a
variable, the number of assessments can be reduced. To illustrate
this, consider the refined model shown in Fig. 3. Since this model
represents a situation where costs from the five treatments are
added, assuming that the costs are always positive, the cost at step i
cannot decrease at step i+1. That is, once a certain level of cost is
reached, then lower levels are not allowed for later steps. This obvious
constraint can be used to reduce the number of parameters to
assess. This is illustrated in Fig. 4 where each cell represents a
combination of values for ECosti and ECosti+1. Only 15 out of the
25 possible combinations need be considered (allowed combinations
are shown as non-shaded cells). For example, when assessing the
distribution P(ECost123|Treatment3,Ecost12) the experts will not be
asked about the parameters for constrained configurations.

Therefore the last three variables, ECost123, ECost1234 and ECost, will
be completely defined with the assessment of only 30(=(15−5)×3)
parameters. This results in a final overall requirement of 126
parameters. Constraints can also be used during the evaluation stage
to make the solution of an ID more efficient by avoiding computations
of impossible scenarios.

In problems representing a sequence of decisions use to be
constraints between the available alternatives at each stage. Suppose
a typical sequence of treatments as the one included in Fig. 3. Maybe
the first decision contains alternatives which determine the available
choices for posterior decisions. If the first decision considers the
admission to the hospital (yes, no), the value no restricts the possible
states for posterior decision variables. This knowledge must be
employed in order to reduce the number of parameters to assess as
much as possible.

In fact there are several kinds of qualitative information about a
relationship. In the example above, we have some constraints on the
set of states of the variables. But we could also have constraints on
the kinds of interactions between the variables. For example, when a
variable is considered as an effect and their parents as the causes, the
causal mechanism can be constrained to, e.g., noisy-OR, noisy-AND
and their generalizations, see [24,41,42,76,78,87]. The number of
parameters needed to be assessed is substantially reduced with these
accumulation of costs.



Fig. 3. Refined model: partial accumulation of costs.
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models and the rest can be easily derived using some rules. For
example, the noisy-OR model for binary-valued variables [42]
assumes that each cause has an activation probability pi of producing
the effect X in the absence of all other causes, and the probability of
each cause being sufficient is independent of the presence of other
causes. The only probabilities required to be assessed are pi, i.e., the
probability of X given that all but one cause i are absent. From these
assessments, it is easy to derive the probability of X given any
combination of values for X's parents. This has been applied to
several real-world applications related to medical problems where
the cause-effect relation is very common. Several examples can be
found in [8,37,71,72]. In this last reference, we applied all the
mechanisms explained in this section for a neonatal jaundice
problem achieving a substantial reduction in the number of
probabilities to be assessed (97.83% for one of the distributions
and a global reduction of 77.27% for the whole set of probabilistic
parameters).

3. Utility model construction

Following the construction of a probability model, the acquisition
of quantitative information for an ID is complete after assessing the
utility function that represents the decision maker's preferences for
the outcomes. Probability assignment in BNs relies on the multipli-
cative decomposition of the joint probability distribution function
into small factors. By contrast, utility elicitation is innately harder and
thereby an obstacle to the deployment of decision-support and
Fig. 4. Cells in white contain the admitted values for ECosti+1 given ECosti.
decision-automation systems. Many approaches still try to work with
a subclass of utility functions that also decompose into components
defined over smaller sets of variables. However, many difficulties
arise:

• very different results when elicitation techniques are applied to the
same person

• inconsistent answers to the elicitation questions
• the need to be trained before starting to answer these (often hard)
questions

• a very large outcome space in real-life decision problems

As mentioned for probability model construction, the pairwise
comparison method cannot be used in these problems. For example,
the utility function for the decision problem described in [37] needs
5400 parameters to be assessed. With a pairwise comparison method,
5;400

2

� �
= 14;577;300 comparisons would need to be done.

Similar to probability assignment, utility assignment methods can
also be categorized as manual or as learned-from-data types or as a
mix of both. However, we present here a more detailed categorization
through the following subsections.

3.1. Standard methods

Manual methods involve human domain experts who start a
standard elicitation protocol in multi-attribute utility theory by
describing the objectives hierarchy with the attributes and their
respective measurement scales [57]. The overall objective is located at
the root of the hierarchy. By subdividing the objectives into more
detailed lower-level objectives, the intended meaning of the overall
objective is clarified.

Objectives are repeatedly tested for importance before inclusion in
the hierarchy, asking the experts if they feel the best course of action
could be altered if that objective was excluded. The objectives tree is
checked according to suitability criteria. An objectives hierarchy
for the jaundice problem is shown in Fig. 5, where both doctors
and parents took part in its construction [37]. The process is a crea-
tive task, although several aids, like information gathering, are of
significant help in articulating objectives.

For each of the lowest-level objectives, an attribute and a
measurement scale are then identified to indicate the extent to
which objectives are achieved. Some advice for this task may be
found in [56]. Scales may be objective (as money for X1 in Fig. 5) or
subjective (as an ad hoc scale for X2). The attributes are sub-value
nodes to be added to the ID pointing to the overall super-value
node.

Next, a utility function u(x1, x2, …, xn) over the n attributes has to
be assessed, where xi designates a specific level of Xi. A direct
assessment of u has major practical shortcomings because too many
parameters are required. Therefore, typically various sets of



Fig. 5. An objectives hierarchy for the jaundice management problem.

Fig. 6. (a) A CP-net and (b) a UCP-net.
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independence assumptions about decision maker attitudes to risk are
investigated, to derive a functional form of the multi-attribute utility
function consistent with these assumptions. These assumptions
are mainly preferential independence and utility independence condi-
tions. This is checked in a dialogue process with the experts, asking
them questions related to preference order for lotteries involving
changes in the attribute levels. Typical forms for u are additive and
multiplicative. Finally, the component utility functions and their
scaling constants have to be assessed. This is carried out by standard
procedures like the probability or certainty equivalence method
for utilities [27], and the trade-off method for the constants [57].

Obviously, this elicitation process may lead to biases (in the sense
of violations of the expected utility axioms) and inconsistencies, see
e.g., [35,43,49,52,63,82]. This has generated much research contrib-
uting to defining the expected utility theory as a prospective
model [54], rather than as descriptive or normative, which is beyond
the scope of this paper. The use of several methods to ask the expert,
finally reaching a consensus from all the answers is recommended.
Alternative ideas include uncertainty about the decision-maker's
preferences, which leads to a class of utility functions [6]. Nonetheless,
this approximation based on a functional form of the multi-attribute
utility offers a satisfactory solution in regard to the size of the out-
come space, facilitating the overall elicitation which is broken into
smaller pieces of information.

3.2. Separable utilities

The independence assumptions frommulti-attribute utility theory
help preferences be specified in a concise way, whenever these
exhibit sufficient structure. A separable structure of the utility function
may be directly represented in an ID through multiple value nodes
that are aggregated as sum or products into super-value nodes [89].
These make the elicitation easier and simplify computations during
the evaluation phase. However, the sums/products structures of [89]
should only be used after verifying that the corresponding indepen-
dence conditions hold.

Other graphical models exist to exploit the structure for utilities.
First, Bacchus and Grove [2,3] propose an undirected graph that
captures conditional additive utility independencies. Assuming
these conditions, the underlying utility function u is additive, i.e. u
is a sum of factors defined over sets of variables that are not
necessarily disjoint. These models are called generalized additive
independence (GAI) models, and are effective for dominance testing,
i.e., for determining whether a possible outcome (a configuration of
the variables) has higher utility than another. A general algorithm for
eliciting GAI-models is found in [38]. They introduce GAI-networks,
which are similar to the junction graphs in BNs.

Second, CP-nets of Boutilier et al. [12] are a directed acyclic graph
that captures conditional preferential independence statements.
These are qualitative preference orderings under a ceteris paribus
(all else being equal) assumption. A conditional preference table is
associated with each node X. It specifies a preference order over X's
values given each instantiation of its parents pa(X), and given pa(X),
X has to be conditionally preferentially independent of the rest of
variables. Therefore, parents of a node X are those variables that
affect decision maker's preference over the values of X. For example,
Fig. 6(a) shows a CP-net defined over binary variables. The table for
C specifies that c is preferred to c ̄ when a and b hold ceteris paribus,
i.e., abcd⪰ ab�cd⇔abc��

d N ab�c �d, where ⪰ is a total preorder over the
set of outcomes. Such statements do not require complex introspec-
tion nor a quantitative assessment. CP-nets are effective for outcome
optimization queries, i.e., for determining what outcome has
maximum utility given some partial assignment.

Third, UCP-nets of Boutilier et al. [11] are an extension of CP-nets
that represent quantitative conditional utility information rather
than simple preference orderings. The utility function is decomposed
as a GAI-model where each factor is defined over each variable and its
parents. Therefore, UCP-nets take the advantages of both GAI-models
and CP-nets. Fig. 6(b) is a UCP-net that extends the CP-net on the left
with utility information.We interpret that u(A,B,C,D)= f1(A)+ f2(B)+
f3(A,B,C)+ f4(C,D). This is added to the (now quantitative) conditional
preference tables of each node to provide a full specification of the
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utility function. For example, we have that u(a,b,c, d̄)= f1(a)+ f2(b)+
f3(a,b,c)+ f4(c, d̄)=4+6+.6+.7=11.3. f3 specifies the utility of C
given A and B. Utility assessment is simplified because each node is
isolated from the rest of the network given the values of its parents. To
compute the optimal action, we can construct an ID by adding one
value node for each factor fi in the UCP-net, with parents both i and
the parents of i in the UCP-net. Then, variable elimination may be used
to find the optimal action, see [11].

CP-nets have stimulated other research in several directions. For
example, the recent tradeoff-enhanced CP-nets or TCP-nets, [14],
extend CP-nets by introducing conditional relative importance
statements between pairs of variables. These have the form: “A better
assignment for X is more important than a better assignment for Y
given that Z=z0”. The authors put this example: “The length of the
journey is more important to me than the choice of airline if I need to
give a talk the following day. Otherwise, the choice of airline is more
important”. Other extensions are [13,64,92].

Expected utility networks (EUNs) [60] are directed (or undirect-
ed) graphs with two types of arcs representing probability and
utility dependencies, respectively. The probability layer is a
Bayesian (or Markov) network. For utilities, a novel notion of con-
ditional expected utility independence is defined. Node separation
with respect to the utility subgraph implies this new notion of
independence. An example of an EUN for a second price (“Vickrey”)
auction from the perspective of Agent 1 is shown in Fig. 7 (adapted
from [60]). In this figure, V1 and V2 are the values of the good for
Agents 1 and 2, respectively, B1 and B2 are the bid values of Agents
1 and 2, respectively, and A is the final allocation, which is a pair
a=(g,m) denoting who gets the good (g=1,2) and how much
must be paid for it (m). The probability layer is represented as a
Bayesian network shown using solid arcs, and the utility layer is
shown using a dashed arc. The functional form for Agent 1's utility
is as follows:

u a jv1ð Þ =
1 + v1
1 + v2

if g = 1

1 otherwise

8><
>:

Other more recent approaches [1] focus on a class of multi-
attribute utility functions called attribute dominance utility. Thus, a
two-attribute dominance utility function ud(x, y) satisfy mutual
Fig. 7. An expected utility network for the second price auction with two bidders from
the perspective of Agent 1.
preferential independence and also is a minimum (least preferred)
if either of the attributes is a minimum:

ud xmin; yminð Þ = ud xmin; yð Þ = ud x; yminð Þ = 0;

∀x∈ xmin; xmax½ �; y∈ ymin; ymax½ �

((xmin, ymin) and (xmax, ymax) are the least and the most preferred
consequences, respectively). Therefore, any attribute set at a
minimum dominates the remaining attributes and sets the multi-
attribute utility function to a minimum. This attribute is called a
utility–dominant attribute. The last requirement appears in many
applications of decision analysis practice, for example, decisions
involving life-and-death situations where any of the attributes (i.e.
health state) when set below a certain minimum will result in a not
desirable consequence that pushes the utility function to a minimum.

The class of attribute dominance utility functions shares similar
mathematical properties as those of joint cumulative probability
distributions. For this class, the marginal utility function over a single
attribute X is defined as the utility function when all other attributes
are set at their maximum values, i.e. uXd(x)=ud(x,ymax), which is itself
an attribute dominance utility function. A conditional utility function
for attribute dominance utility functions is defined as the normalized
utility function for one attribute when we are guaranteed a fixed

amount of the other attribute, i.e. ud
Y jx yð Þ = ud x; yð Þ

ud
X xð Þ ; x≠xmin. Utility

independence of two utility–dominant attributes x and y are defined
accordingly: uX|y

d (x)=uX
d(x), and similarly, conditional utility inde-

pendence. These definitions, extended to several attributes, allow to
derive analogs of chain and Bayes' rules for attribute dominance
utility functions. For example, the “Bayes' rule” for utility inference is

ud
X jy xð Þ = ud

Y jx yð Þud
X xð Þ

ud
Y yð Þ ; y≠ymin, that expresses that our state of prefer-

ence can change if we receive information (e.g. we realize that an
attribute can be harmful), or a new degree of other attribute (a new
wealth can change our risk aversion for money). The chain rule allows
constructing these utility functions using marginal–conditional utility
assessments analogous to the approach followed for joint probability
distributions. Copula methods [67], that uses marginal functions, can
also be used. This way of constructing the multi-attribute utility
function avoids making explicit trade-offs between attributes, which
may be difficult especially in medical decision-making or life-and-
death situations.

Abbas and Howard [1] propose a directed acyclic graph called
utility diagram to compactly represent the utility dependence
relations between utility–dominant attributes. Fig. 8 shows a simple
example for two attributes, adapted from [1]. The arrow represents
the possibility of utility dependence between them given our current
state of preferences.

Y is the health state of a patient undergoing a cancer treatment
and deciding whether to have chemotherapy or radiotherapy. X is the
consumption levels (wealth). Both scales for Y and X, measured by the
quality of life and millions of dollars, respectively, are normalized
from 0 to 1. When any of these attributes has a minimum value, the
patient preferences indicate that the resulting consequence is the
Fig. 8. Utility diagram with dependence of two utility-dominant attributes.
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least preferred. Thus, the multi-attribute utility function is attribute
dominance. Now we can start by assessing the marginal utility
function for wealth, that is assumed to be risk neutral: uX

d(x)=x,
x∈ [0,1]. Then we assess the conditional utility function for quality of
life given wealth, that is assumed to be risk averse depending on the

value of wealth, given by: ud
Y jx yð Þ = 1−e

−
1

0:3 + x
y

1−e
−

1
0:3 + x

; x; y∈ 0;1½ �. The

multi-attribute utility function is derived by multiplying both

functions:

ud x; yð Þ = ud
X xð Þud

Y jx yð Þ =
x 1−e

−
1

0:3 + x
y

 !

1−e
−

1
0:3 + x

; x; y∈ 0;1½ �:

Utility independence relations may be derived graphically with
utility diagrams and it greatly simplifies the elicitation process.
Conditional utility independence is represented in the same manner
than for probability functions. Arc reversals can also be used to change
the assessment order into one that is more comfortable to the decision
maker. Utility diagrams help us think our utility values, change the
order of utility assignments and verify the assessments and utility
independence assumptions made.

These easier-to-elicit functions should encourage us to reformu-
late the attributes, whenever possible, to generate attribute domi-
nance utility functions. Although sometimes attribute dominance
conditions may not exist for all the attributes, Abbas and Howard
[1] discuss extensions to have more general utility functions with
at least one non-utility–dominant attribute. These functions will
require the mutual preferential independence assumptions but
will not require the assumption of utility independence between
attributes. Moreover, any multi-attribute utility function with
preferential independence can be decomposed into smaller struc-
tures with the same mathematical properties as attribute dominance
utility functions.

All these graphs try to provide factored representations of decision
makers' preferences with the final aim of supporting preference
elicitation and reasoning. The main advantage of using separable
utilities is the reduction in the number of parameters to be assessed. It
also helps in having a simpler andmodulated picture of preferences to
work with. The rest of difficulties would still be present: different
results for the same expert, inconsistent answers to the elicitation
questions and the need of previous training before facing the
elicitation process. They are inherent to a process that is driven
by the decision maker, a human being, as opposed to data-driven
methods.

3.3. Data-driven methods

Learn-from-data methods belong to data-driven modeling and
leave computers to automatically discover the underlying elements of
decision models through data mining. This avoids the tiresome and
lengthy process developed manually by the designers with their skill
and experience. However, since data usually come from experts, these
methods could be considered as semi-automatic learning. In this
subsection, we describe how the objectives hierarchy and the utility
function can be learnt from data.

Suppose we have a data set of labeled decision examples. That is,
each example is described by a set of attributes and its utility. Data may
come from an existing database of past decisions or may be provided
explicitly by the domain expert. From these unstructured data, it is
interesting to develop a hierarchical structure like that of Fig. 5,
identifying how the attributes (terminal nodes, given in the data set)
arrange in meaningful concepts or aggregate attributes (new internal
nodes). These conceptswill be described through small sets of examples
and the hierarchy will be able to generalize well to other cases not
included in theoriginal data set. This is carried out in [9] usingamachine
learning method called function decomposition. When human interac-
tion is also included, the quality of the hierarchy and accuracy of the
model are shown to be improved.

The method is restricted to nominal attribute values and nominal
utilities, although a possible extension for continuous values is
suggested. Therefore, valid examples for discovering the tree of Fig. 5
would be, e.g., (cheap, low, low, medium, low, low, high), where ‘high’
corresponds with a high utility of a case given by the other six values
‘cheap’,…, ‘low’ for X1, …, X6, respectively. Other examples may be
found in records of customer purchases, actions of aweb-site's users or
routine medical decisions.

Regarding the learning of a utility function, there are several
possible approaches. A first group learns the utility function based on
a database of already elicited utility functions. In [40], examples may
be pairwise comparisons, numeric ratings and answers to standard
lottery questions provided by the expert. Assumptions about
preferences, such as preferential independence, dominance, attitudes
toward risk, are represented as propositional Horn clauses that are
then used to build a knowledge-based artificial neural network that
represents decision maker's preferences. An approximate utility
function can be constructed from the network. This is a preliminary
work with some limitations in ID modeling.

Chajewska et al. [17] assume that quite often there are only a few
qualitatively different classes of utility functions in the population of
decision makers. The authors start with a database of fully-specified
utility functions, i.e. vectors of values with one value for each
possible outcome (complete sequence of events). From these data,
the clusters of utility functions are identified to minimize differences
in expected utility between strategies based on true utility functions
and strategies based on a cluster's prototype. Then a decision tree
is built for classifying the utility functions into these clusters found.
This is done in such a way that given a new decision maker, the
elicitation of his utility function is avoided, since the tree contains
splits (nodes) with many fewer and simpler assessment questions
than the usual full utility elicitation. At the leaves of the tree, a
suitable cluster associated to the decision maker's utility function is
found. The best strategy for this cluster's prototype was already
computed and makes up a nearly-optimal strategy for the decision
maker. This methodology only fits small IDs since all kind of
modularity is lost: the possible strategies and sequences of observ-
able variables are enumerated and it does not take advantage of any
utility function decomposition. However, these ideas are promising if
the availability of this kind of databases of decision maker's utility
functions grows, not only in the medical community as in [59], but
also in other domains.

Chajewska and Koller [18] postulate that the population of
decision makers is grouped into several disjoint subpopulations
where we assume that the utility functions are decomposed in the
same (unknown and additive) way. There is a distribution over
utilities assumed to be a mixture of Gaussians. We are given a
standard database of utility functions (partially) elicited from the
population. Data come from the utilities of a number of outcomes
assessed in an interview. Bayesian statistical density estimation
techniques are used to learn the distribution over factored utility
functions that fits the data well. Given a new decision maker, we
compute the most probable factored utility function. Outliers can be
identified and interpreted as some source of noise that interferedwith
the elicitation process (perhaps fatigue).

In fact, it would be interesting to limit the number of elicitation
questions before fatigue starts. Thus, a second group of approaches
iteratively refines the current utility function of the decision maker.
The main idea is that the relevance of an elicitation question for a
given decision problem should be measured to determine which
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question is the following to ask and to minimize the number of
them. This is proposed in [20], who measure the relevance of a
question using its expected value of information and iterate the
process until the expected utility loss resulting from this recom-
mendation fall below a pre-specified threshold. Expectation is taken
with respect to the current distribution over utility functions,
estimated as in [18].

Finally, a third group of approaches learns the utility function
based on a database of observed behavioral patterns (or observation-
decision sequences). They assume that the “true” utility function is
reflected in the observed behavior. The observations are used to
formulate a set of constraints on the space of possible utility functions.
Standard learning algorithms [19,88] also assume that the decision
maker is behavioral consistent, i.e. given a decisionmodel, there exists
a utility function which can account for all the observed behavior.
Recent learning algorithms [69] relax this consistency assumption,
rarely valid in real-world problems, interpreting inconsistent behav-
ior as random deviations from an underlying true utility function. The
latter algorithms may accommodate situations where the decision
maker's preferences change over time.

Regards the four main difficulties mentioned above, data-driven
methods solve some of them. If the database of already elicited utility
functions has been obtained from an expert, then the drawbacks of
having different results for the same expert and inconsistent answers
are inherited in the database. Therefore, the database should be
“cleaned” from this effect before launching a data-driven method.
However, themethods that avoid the elicitation of the utility function,
which is classified into clusters/subpopulations from a few questions
or learnt from observed behavioral patterns and constraints, do not
suffer from those disadvantages. Also, obviously, the automatic
computation of the parameters allows to deal with large outcome
spaces whenever enough data are available.

4. Discussion

Knowledge acquisition in IDs is a necessary but difficult step when
specifying the quantitative part of the model. This involves both
probabilities and utilities. Available methods rely on eliciting the
numerical parameters and their relationships from domain experts or
on estimating them from data using statistics.

In this paper we have reviewed the main methods, obstacles and
challenges found within this context. First, when consulting a domain
expert, special care must be directed to follow a formal protocol to
overcome biases and poor calibration. For eliciting probabilities, we
have analyzed the SRI protocol. For utilities, the construction of the
objectives hierarchy and the use of multi-attribute utility theory based
on different forms of independence is the usual procedure.

Reducing the amount of parameters is always sought, where the
outstanding techniques are: for probabilities, divorcing parents and
using causal models such as noisy-OR and noisy-AND; for utilities,
networks that exploit different preferential or utility independencies
like GAI-, CP-, UCP-nets and utility diagrams. This area is still open to
advances.

Second, when learning utilities from data, fewer developments are
found. Themainbarrier here is the requirementof special databases that
fit the knowledge to be learnt. Thus, to learn an objectives hierarchy we
require a different data structure than what is required to learn a utility
function. To learn a utility function, the proposals usually start from
some assumptions hard to be checked: only a few classes of utility
functions exist in the population of decision makers, there is a
distribution over utilities with certain parametric form, the decision
maker is behavioral consistent, etc. Moreover, these kinds of data are
provided by the domain expert thereby having theproblemsmentioned
above. This is perhaps the field that offers more challenges.

More issues not detailed here but deserving attention to establish
otherpromisingdirections andgoals for further researchare listedbelow.
• Software tools may help in the probability and utility elicitation.
Wang and Druzdzel [91] propose graphical user interfaces that aid
navigation in very large conditional probability tables. This is based
on a hierarchical visual representation that is shrinkable as desired.
The same ideas might be extended to utilities.

• Instead of probability distributions, some paper proposes fuzzy IDs
that use possibility distributions at chance and value nodes [55].
They seem to be suitable when incomplete knowledge or linguistic
vagueness is present. Garcia and Sabbadin [34] introduce possibi-
listic IDs that also use possibility distributions and the possibilistic
counterpart of expected utility. Only ordinal data on preferences
and on transitions likelihood are available. Guezguez et al. [39]
present qualitative possibilistic IDs.

• Instead of utility theory,multiobjective tradeoff analysismay be used
as in multiobjective IDs [23]. This avoids specifying preference
information before solving the ID.

• We have not elaborated on ID evaluationmethods since our focus is
on modeling. Pralet et al. [79] analyze some computational com-
plexity results for general IDs. However,we should remark that there
are considerable efforts to tackle IDs inwhich computing the optimal
strategy is infeasible. Tradeoffs between model quality and compu-
tational tractability are essential. Different approaches include:
- Simulation methods to obtain approximate solutions [16,21,73];
- Evolutionary algorithms to alleviate the computational burden of
the evaluation process [36];

- Anytime algorithms to construct (sub-optimal) strategies incre-
mentally that are increasingly refined as computation progresses
[45–47,80,93]. Thesemethods can be useful under time-pressured
situations in dynamic decision-making, when there are con-
straints inmodeling or computational resources and also, they can
be useful in providing intuitions about the level of detail required
in an ID model (as a sensitivity analysis of the ID structure);

- Assumptions such as limited memory to simplify the complexity
of solving an ID [61].

• As a result of incompleteness of data and partial knowledge of the
problem domain being modeled, the assessments obtained are
inevitably inaccurate. This influences the reliability of the model
output (e.g. non-optimal recommendations may result). Sensitivity
analysis identifies those input (critical) parameters to which
perturbations of the base-case value causes the greatest impact on
the output measure (maximum expected utility, optimal decisions,
etc.). Relevant references in the difficult task of performing
sensitivity analysis in large IDs may be found in [7,28,68].
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