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Abstract

Machine learning is concerned with the automatic extraction of patterns from data. Its most

common form is supervised classification, where we learn a predictive model from examples

labeled as belonging to one out of a number of possible classes. One type of model, based on

encoding the probability distribution over the examples and the classes, are Bayesian network

classifiers. Most search and score algorithms for learning Bayesian network classifiers traverse

the space of directed acyclic graphs (DAGs), making arbitrary yet possibly suboptimal arc

directionality decisions. This can be remedied by learning in the space of DAG equivalence

classes. This is commonly done for general Bayesian networks but has not been widely

applied for Bayesian network classifiers. First, we identify the smallest subspace of DAGs

that covers all possible class-posterior distributions when data is complete. All the DAGs

in this space, which we call minimal class-focused DAGs (MC-DAGs), are such that their

every arc is directed towards a child of the class variable. Second, we adapt the greedy

equivalence search (GES) by adding operator validity criteria which ensure GES only visits

states within our space. Third, we specify how to efficiently evaluate the discriminative score

of a GES operator for an MC-DAG in time independent of the number of variables and

without converting the completed partially DAG, which represents an equivalence class, into

a DAG. Our adapted algorithm has shown promising results on preliminary experiments.

Few of the many proposed methods for learning Bayesian network classifiers are available

in popular software tools. Some promising methods are only implemented as standalone,

often scarcely documented, programs, while many others lack available implementations. We

have implemented the bnclassify package for the R environment for statistical computing that

provides a unified interface and documentation to a number of such algorithms. Structure

learning algorithms include variants of the greedy hill-climbing search that can be combined

with discriminative scores, an adaptation of the Chow-Liu algorithm, and the averaged one-

dependence estimator. Parameter estimation includes naive-Bayes-specific methods based on

discriminative score optimization and Bayesian model averaging.

A major problem in neuroscience is to determine the types of GABAergic interneurons.

These neurons are very diverse with regards to morphological, electro-physiological, molec-

ular, and synaptic properties. Most researchers consider that interneurons can be grouped

into types with much less variability within types than among them. Yet, among the many

morphological types established in the literature, only the chandelier and Martinotti types

have widely accepted definitions. Some authors expect that a fully data-driven approach will

solve this with an objective classification by clustering neurons according to their molecu-

lar, morphological, and electrophysiological features. Currently, however, the data are too

scarce for this and are almost always limited to either morphological, electro-physiological,

or molecular features.

We learned supervised classifiers from neuron morphologies, pre-classified into some of

the established interneuron types. We were interested in whether these types, some of which

lack widely accepted definitions, could be distinguished by quantitative models. Also, inter-

pretable and accurate models could allow us to better understand these types. Leveraging



prior knowledge on existing types, via class labels, may allow us to extract insight from the

existing scarce data, which is likely insufficient for a fully unsupervised classification.

We used two sets of neuron morphology reconstructions. The first, Gardener’s, set con-

sisted of 237 cells which were classified by 42 leading neuroscientists into ten interneuron

types. The degree of agreement among neuroscientists varied widely, with 29 cells such that

at least 35 neuroscientists agreed on its type, yet 67 cells such that no more than 15 agreed on

a type. The neuroscientists also also classified the cells according to four categorical features

of axonal morphology, largely agreeing on their definitions. Learning to reproduce the classifi-

cation of this representative group of neuroscientists could provide objective, consensus-based,

models of interneuron type and features. We first learned separate Bayesian network classifier

models for the type and four axonal features, labelling each cell by its majority vote among

the 42 neuroscientists. We did this with different subsets of neurons, formed by increasing

the threshold on label reliability, which we defined as the minimal number of neuroscientists

agreeing on the majority type. Second, we used probabilistic class labels while predicting

the five variables at once. For this end, we proposed an instance-based classifier that han-

dles instances with probabilistic labels encoded as Bayesian networks. This classifier predicts

the multi-dimensional probabilistic labels by forming a consensus among a set of Bayesian

networks. Third, we considered a descriptive, rather than predictive, approach, by semi-

supervised projected clustering of the data. We 1) unlabelled some of instances; 2) initialized

a cluster for each type with the cells of that type; and 3) clustered the unlabeled cells, into

either the clusters of known types or newly created clusters. We sought potential subtypes

of the established types, while estimating localized feature relevance for the types/subtypes.

For this, we adapted a mixture of Gaussians with localized feature selection by simplifying

its definition of feature irrelevance.

The second, Markram’s, set of reconstructions consisted of 217 of rat interneurons from the

Markram laboratory, pre-classified into one of seven morphological types, with a single class

label per cell. We trained classifiers for each type in a one-versus-all fashion by applying state-

of-the-art learning algorithms. With seven chandelier and 15 bitufted —yet 123 basket— cells,

the sample was insufficient to accurately distinguish each of the seven types. We were able to,

however, learn accurate and interpretable models for the Martinotti, basket, and nest basket

types, and moderately accurate models for the double boquet and small basket types.



Resumen

El aprendizaje automático trata de la extracción automática de patrones a partir de datos.

Su formato más común es la clasificación supervisada, donde aprendemos un modelo predic-

tivo a partir de ejemplos etiquetados como miembros de una de las varias clases posibles. Un

tipo de modelo, basado en el modelado de la distribución de probabilidad sobre los ejemplos

y las clases, son los clasificadores basados en redes Bayesianas. La mayoŕıa de los algoritmos

de búsqueda y puntuación para aprender clasificadores basados en redes Bayesianas recorren

el espacio de grafos dirigidos aćıclicos (DAGs), tomando arbitrariamente decisiones posible-

mente suboptimas sobre la direccionalidad de arcos. Esto puede ser evitado mediante el

aprendizaje dentro del espacio de clases de equivalencia de DAGs pero, sin embargo, esto

no se ha aplicado ampliamente para clasificadores basados en redes Bayesianas. Primero,

identificamos el subespacio de DAGs mı́nimo que cubre todas las posibles distribuciones a

posteriori de la clase cuando los datos son completos. Los DAGs en este espacio, al que

llamamos el de los DAGs enfocados en la clase mı́nimos (MC-DAGs), tienen todos los arcos

dirigidos hacia un nodo que es hijo del nodo clase. Segundo, adaptamos el algoritmo greedy

equivalence search (GES) añadiendo criterios de validez de operadores de búsqueda que ase-

guran que el GES adaptado solamente visite estados que están dentro de nuestro espacio de

búsqueda. Tercero, especificamos cómo evaluar de manera eficiente puntuaciones discrimina-

tivas de operadores del GES para los MC-DAGs en tiempo que es independiente del número

de las variables y sin convertir el DAG parcialmente dirigido completado, que representa a

una clase de equivalencia, a un DAG. El GES adaptado ha mostrado buenos resultados en

experimentos preliminares.

Pocos de los métodos propuestos para el aprendizaje de clasificadores basados en re-

des Bayesianas están disponibles en herramientas de software populares. Algunos métodos

prometedores solamente están implementados como programas independientes, comúnmente

poco documentados, mientras que para otros no se tienen implementaciones públicamente

disponibles. Hemos implementado el paquete bnclassify, para el lenguaje y entorno para el

análisis estad́ıstico R, que provee una interfaz y documentación unificada para varios tales

métodos. Entre los algoritmos para el aprendizaje de estructura es incluyen variantes de

la búsqueda voráz hill climbing, que se pueden combinar con puntuaciones discriminativas,

una adaptación del algoritmo Chow-Liu y el averaged one-dependence estimator. La esti-

mación de parámetros incluye métodos espećıficos para el naive Bayes, como los basados en

optimización de puntuaciones discriminativas y en el Bayesian model averaging.

Un problema importante dentro de la neurociencia es la determinación de los tipos de

interneuronas GABAergicas. Estas neuronas son muy diversas con respecto a propiedades

morfológicas, electro-fisiológicas, moleculares, y sinapticas. La mayoŕıa de los investigadores

consideran que las interneuronas se pueden agrupar en tipos, con mucha menos variedad

dentro de los tipos que entre ellos. Sin embargo, dentro de los muchos tipos morfológicos

establecidos en la literatura, solamente los tipos candelabro y Martinotti tienen definiciones

ampliamente aceptadas entre los neurocient́ıficos. Algunos autores consideran que un enfoque

completamente dirigido por datos resolvera este problema mediante una clasificación objetiva



a través del clustering de neuronas tomando en cuenta sus propiedades morfológicas, electro-

fisiológicas, y moleculares. Actualmente, sin embargo, los datos existentes no son suficientes

para ello, y casi siempre están limitados a una de las tres dimensiones – morfológicas, electro-

fisiológicas, y moleculares – y no a una combinación de varias.

Hemos aprendido clasificadores supervisados a partir de datos morfológicos, pre-clasificados

en tipos establecidos de interneuronas. Estábamos interesados en saber si estos tipos, algunos

de los cuales no tienen definiciones ampliamente aceptadas, podŕıan ser distinguidos por un

modelo cuantitativo. También, un modelo de alto porcentaje de clasificación correcta e inter-

pretable podŕıa permitir una mejor comprensión de esos tipos. Utilizar conocimiento previo,

mediante las etiquetas de clase, nos puede permitir extraer conocimiento a datos limitados,

con los cuales una clasificación completamente no-supervisada probablemente no es viable.

Hemos usado dos conjuntos de reconstrucciones de morfoloǵıas neuronales. El primero,

el conjunto del Jardinaro, consist́ıa en 237 células clasificadas por 42 neurocient́ıficos pun-

teros en diez tipos de interneuronas. El nivel de acuerdo entre los neurocient́ıficos variaba

mucho, habiendo 29 células en las cuales al menos 35 neurocient́ıficos hab́ıan coincidido en

el tipo, pero también 67 tales que no más de 15 neurocient́ıficos hab́ıan coincidido en un

tipo de interneurona. Los neurocient́ıficos también clasificaron las células de acuerdo a cu-

atro caracteŕısticas categóricas de morfoloǵıa axonal y en gran médida śı coincid́ıan en los

valores para éstas. Aprender a reproducir la clasificación de interneuronas hecha por este

grupo representativo de neurocient́ıficos podŕıa proveer modelos objetivos, basados en el con-

senso, del tipo de interneuronas y las caracteŕısticas axonales. Primero, hemos aprendido

modelos independientes con clasificadores Bayesianos discretos para el tipo interneuronal y

las cuatro caracteŕısticas axonales, etiquetando cada célula con su voto mayoritario entre

los 42 neurocient́ıficos. Hemos considerado múltiples subconjuntos de neuronas, formados

al incrementar el umbral de fiabilidad de la etiqueta, definida como el número mı́nimo de

neurocient́ıficos que han coincidido en la etiqueta mayoritaria. Segundo, hemos consider-

ado etiquetas de clase probabiĺısticas prediciendo las cinco variables clase a la vez. Para

ello, hemos propuesto un clasificador instance-based que puede tratar con etiquetas prob-

abiĺısticas codificadas como redes Bayesianas. El clasificador predice las etiquetas proba-

biĺısticas multi-dimensionales formado un consenso entre un conjunto de redes Bayesianas.

Tercero, hemos considerado un enfoque más descriptivo que predictivo, a través del clustering

proyectado semi-supervisado. 1) desetiquetamos algunas de las instancias; 2) inicializamos

un cluster para cada tipo, asignándole todos las células del dicho tipo; 3) hacemos clustering

de las células desetiquetadas, un clusters correspondientes a los tipos existentes o clusters

nuevos. Con ello buscabamos potenciales subtipos de los tipos establecidos, a la vez que

identificabamos variables localmente relevantes para los clusters. Para ello, hemos adaptado

un modelo de mixtura de Gausianas con selección de variables localizada, simplificando la

definición de irrelevancia de una variable.

El segundo conjunto, de Markram, consistia en 217 reconstrucciones de interneuronas

de ratas del laboratorio Markram. Los autores de las reconstrucciones las hab́ıan clasifi-

cado en uno de ocho tipos morfológicos, por lo cual cada célula teńıa una etiqueta de clase



única. Hemos entrenado un clasificador para cada tipo, del modo uno contra todos, aplicando

clasificadores supervisados punteros. Con siete neuronas candelabro y 15 neuronas bitufted

—pero 123 células basket—, la muestra no era suficiente para modelos con alto porcentaje de

acierto para todos los tipos. Sin embargo, hemos aprendido modelos interpretables con alto

porcentaje de acierto para los tipos Martinotti, basket, y nest basket, y con un porcentaje

de acierto mediano para los tipos double boquet y small basket.
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Chapter 1
Introduction

Machine learning is concerned with the automatic extraction of patterns from data. It is

increasingly applied across both science and industry [Jordan and Mitchell, 2015]. This

addoption is driven by the large amounts of data being stored and processed, the low cost of

computation, and the need for extracting knowledge from this data.

The most common form of machine learning is supervised classification, where we learn

a predictive model from examples labeled as belonging to one out of a number of possible

classes. Many different classifiers exist, offering different tradeoffs which make them suitable

for different settings.

One family of such models, based on encoding the probability distribution over the exam-

ples and the classes, are Bayesian network classifiers [Bielza and Larrañaga, 2014b, Friedman

et al., 1997]. Most search and score algorithms for learning Bayesian network classifiers tra-

verse the space of directed acyclic graphs (DAGs), making arbitrary yet possibly suboptimal

arc directionality decisions. This can be remedied by learning in the space of DAG equivalence

classes. This is common for general Bayesian networks but has not been widely applied for

Bayesian network classifiers (en exception is Acid et al. [2005]). First, we identify the smallest

subspace of DAGs that covers all possible class-posterior distributions when data is complete.

All the DAGs in this space, which we call minimal class-focused DAGs (MC-DAGs), are such

that their every arc is directed towards a child of the class variable. Second, we adapt the

greedy equivalence search (GES) by adding operator validity criteria which ensure GES only

visits states within our space. Third, we specify how to efficiently evaluate the discriminative

score of a GES operator for an MC-DAG in time independent of the number of variables and

without converting the completed partially DAG, which represents an equivalence class, into

a DAG. Our adapted algorithm has shown promising results on preliminary experiments.

Although a lot of research has been carried out on Bayesian network classifiers [Bielza

and Larrañaga, 2014b], most proposals are not available in commonly-used software tools.

Some are only implemented as standalone, often scarcely documented, programs, while many

are not available at all. We have implemented the bnclassify package for the R environment

for statistical computing [R Core Team, 2015] that provides a unified interface and documen-

tation to a number of such algorithms. Structure learning algorithms include variants of the

1
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greedy hill-climbing search that can be combined with discriminative scores, an adaptation

of the Chow-Liu algorithm, and the averaged one-dependence estimator. Parameter estima-

tion includes naive-Bayes-specific methods based on discriminative score optimization and

Bayesian model averaging. The implementation is efficient enough to handle computation-

intensive discriminative scores with medium-sized data sets. The interpretad nature and

syntax of the R programming language allow the package to be used without advanced pro-

gramming skills.

Cortical interneurons are very diverse with regards to morphological, electro-physiological,

molecular, and synaptic properties [Fairen et al., 1984, Peters and Jones, 1984, White, 1989,

DeFelipe, 1993, Kawaguchi and Kubota, 1997, Markram et al., 2004, Jiang et al., 2015,

Tremblay et al., 2016]. Most researchers consider that interneurons can be grouped into

types [Ascoli et al., 2008] with much less variability within types than among them. There

is, however, no unique catalogue of types [Ascoli et al., 2008, DeFelipe et al., 2013]. High-

throughput generation of data is expected to enable learning a systematic taxonomy within a

decade [Zeng and Sanes, 2017], by clustering [Tasic et al., 2016, Cauli et al., 1997] molecular,

morphological, and electrophysiological features. Currently, however, researchers use [e.g.,

Markram et al., 2015] and refer to established morphological types such as chandelier, Mar-

tinotti, neurogliaform, and basket [Markram et al., 2004, DeFelipe et al., 2013, Feldmeyer

et al., 2018, Tremblay et al., 2016]. These types are identified on the basis of the target

innervation location —e.g., the peri-somatic area for basket cells— and somatodendritic and

axonal morphological features. The latter can be subjective and lead to different classifica-

tions: e.g., while Wang et al. [2002] distinguish between large, nest, and small basket cell

types, based on features such as axonal arbor density and branch length, DeFelipe et al. [2013]

only distinguish between large and common basket types. The different classification schemes

[Markram et al., 2004, DeFelipe et al., 2013] only partially overlap. There is, however, con-

sensus on the morphological features of the chandelier, Martinotti, and neurogliaform types

[DeFelipe et al., 2013].

Having a model to automatically classify interneurons into these morphological types

[Armañanzas and Ascoli, 2015] could bring insight and be useful to practitioners [DeFelipe

et al., 2013]. A sufficiently simple and accurate model would provide an interpretable map-

ping from the quantitative characteristics to the types, such as, for example, the classification

tree [Breiman et al., 1984] model by Toledo-Rodriguez et al. [2005] relating mRNA expression

to anatomical type. Unlike with the neuroscientist, a classifier’s assignment of an interneuron

into a particular type can be understood by analyzing the model. Also, many models can

quantify the confidence in their decision. Identifying cells that cannot be reliably classified

into any of the a priori known types might lead to refining the classification taxonomy —

these cells might belong to a novel type— or suggest that the boundary between a pair of

types is unclear —if many interneurons are very likely to belong to both of them simulta-

neously. Sufficiently accurate models could then be used by all practitioners to ‘objectively’

classify interneurons, rather than each of them assigning their own classification. Further-

more, learning such models may help enable future unsupervised type discovery by identifying
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and fostering the development and definition of useful morphometrics. With thousands of

neuronal morphology reconstructions [Parekh and Ascoli, 2013, Ascoli, 2006] available at on-

line repositories such as Neuromorpho.org [Ascoli et al., 2007, 2017] and the Allen Brain Cell

Types Database1, this seems more attainable than ever, especially for the rodent brain.

There are, however, practical obstacles and aspects to consider when learning such models.

First, it is important that class labels (i.e., the a priori classification) are assigned according

to well-established criteria, to avoid learning idiosyncrasies of the annotating neuroscientist.

Second, reconstructions at Neuromorpho.org are often incomplete (e.g., insufficient axonal

length or interrupted axons), lack relevant metadata, such as the cell body’s cortical area

and layer, and there is a lot of variability if combining data across species, age, brain region

[DeFelipe, 1993], as well as histological, imaging, and reconstruction protocol [Scorcioni et al.,

2004, Polavaram et al., 2014, Peng et al., 2015], whereas focusing on a homogeneous data

set shrinks the sample size. Third, infinitely many morphometrics [Uylings and Van Pelt,

2002] —variables that quantify morphological features— can be computed and their choice

will influence the model [Kong et al., 2005]. While the Petilla convention [Ascoli et al., 2008]

provided a reference point by identifying a set of features to distinguish interneuron types,

only some of them are readily quantified with software such as L-Measure [Scorcioni et al.,

2008] and Neurolucida Explorer (MicroBrightField), as many either rely on often-missing

metadata (e.g., laminar extent), or are vaguely defined (e.g., ‘dense plexus of highly branched

axons’). Indeed, researchers have often recurred to quantifying interneurons with custom-

computed morphometrics [Helmstaedter et al., 2009b,c, Dumitriu et al., 2007, Markram et al.,

2015].

We trained models in supervised [Murphy, 2012, Hastie et al., 2009, Guerra et al., 2011]

and semi-supervised fashion, with the cells pre-classified into some of the established in-

terneuron types. This could tell whether these types, some of which lack widely accepted

definitions, could be distinguished by quantitative models. Second, interpretable and accu-

rate models could allow us to better understand these types. Leveraging prior knowledge on

existing types, via class labels, may allow us to extract insight from the existing scarce data,

likely insufficient for a fully unsupervised classification.

We used two sets of neuron morphology reconstructions. The first, Gardener’s set, [DeFe-

lipe et al., 2013] consisted of 237 cells which were classified by 42 leading neuroscientists into

ten interneuron types. The cells come from different cortical areas of the rat, mouse, and mon-

key. The degree of agreement among neuroscientists varied widely, with 29 cells such that at

least 35 neuroscientists agreed on its type, yet 67 cells such that no more than 15 agreed on a

type. The neuroscientists also also classified the cells according to four categorical features of

axonal morphology, largely agreeing on their definitions. Learning to reproduce the classifica-

tion of this representative group of neuroscientists could provide objective, consensus-based,

models of interneuron type and features. DeFelipe et al. [2013] obtained limited accuracy for

the interneuron type and one of the axonal features, by using majority vote class labels and

considering multiple classifiers. We first learned separate discrete Bayesian network classifier

1http://celltypes.brain-map.org/

http://celltypes.brain-map.org/
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models for the type and four axonal features, labelling each cell by its majority vote among

the 42 neuroscientists. We did this with different subsets of neurons, formed by increasing

the threshold on label reliability, which we defined as the minimal number of neuroscientists

agreeing on the majority type. Second, we used probabilistic class labels while predicting

the five variables at once. For this end, we proposed an instance-based classifier that handles

instances with probabilistic labels encoded as Bayesian networks. This classifier predicts the

multi-dimensional [Bielza et al., 2011] probabilistic labels by forming a consensus among a set

of Bayesian networks. Third, we considered a descriptive, rather than predictive, approach,

by semi-supervised projected clustering of the data. We 1) unlabelled some of instances; 2)

initialized a cluster for each type with the cells of that type; and 3) clustered the unlabeled

cells, into either the clusters of known types or newly created clusters. We sought poten-

tial subtypes of the established types, while estimating localized feature relevance for the

types/subtypes. For this, we adapted a mixture of Gaussians model with localized feature

selection [Guerra et al., 2013b] by simplifying its definition of feature irrelevance.

The second, Markram’s, set of reconstructions consisted of 217 rat interneurons [Ra-

maswamy et al., 2015], which Markram et al. [2015] used for simulating the cortical column.

Each cell was pre-classified into one of seven morphological types, with a single class label

per cell, mainly on the basis of criteria by Markram et al. [2004], Wang et al. [2002, 2004]

regarding the soma’s layer and anatomical features. We trained classifiers for each type in a

one-versus-all fashion by applying state-of-the-art learning algorithms. The sample contained

only seven chandelier and 15 bitufted cells, yet 50 Martinotti and 123 basket ones.

1.1 Hypotheses and objectives

Out research hypotheses are:

• Completed partially DAGs can be usefully leveraged for learning Bayesian network

classifiers

• Supervised and semi-supervised learning can produce accurate and interpretable models

of GABAergic interneuron types

Based on these hypotheses, this thesis pursues the following specific objectives:

• Adapt the GES algorithm to learn Bayesian network classifiers in the space of equiva-

lence classes

• Implement state-of-the-art Bayesian network classifiers in an R package

• Propose and implement morphometrics for quantifying interneuron morphologies

• Learn accurate supervised classifiers for the Gardener’s scheme from interneurons clas-

sified by 42 leading neuroscientists

• Develop a method to predict multi-dimensional probabilistic labels encoded as Bayesian

networks-

• Apply semi-supervised projected clustering to validate / discover Gardener’s interneu-

ron types / subtypes and identify relevant variables
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• Learn accurate and interpretable per-type models of the Markram interneuron types

1.2 Document organization

In Part I we introduce notation and provide necessary background. In Part II we present

our present our proposal for learning Bayesian network classifiers with equivalence classes,

as well as the bnclassify R package. In Part III we present the contributions to interneuron

classification. In Part IV we summarize our contributions and list publications and developed

software. Appendix A lists the morphometrics used for classifying Markram interneurons,

including the definitions of custom morphometrics. Appendix B provides detailed results for

the classification of Markram interneurons. Appendix C provides additional results on the

neuroscientists’ classification of Gardener’s interneurons.
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BACKGROUND
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Chapter 2
Notation and terminology

We denote random variables with uppercase letters (e.g., X or Y ) and their values with

corresponding lowercase letters (e.g., x or y). We denote vector with boldface letters (e.g.,

X, x). ΩX is the domain of a random variable X and |ΩX | the cardinality of ΩX . ΩX

is finite for a discrete variable X while ΩX = [a, b] ⊆ R for a real-valued variable X. A

probability distribution for a discrete X is denoted P (x) and a probability density function

for a continuous X is denoted p(x). The indicator function I(a) returns 1 if its argument a

is true and 0 otherwise.

In supervised classification, we have vector of n predictor variables or features X =

(X1, . . . , Xn) and a discrete class variable C. When ΩC = {c0, c1} we talk of a positive class

c1 and a negative class c0. We have a data set D = {(x(i), c(i))}N1 consisting of N instances

(data points, examples) x(i) with their class label c(i). We say that the data are complete

if every x as a full instantiation of all variables in X (C is observed for all instances by

assumption). A classifier is a function f : ΩX1 × . . . × ΩXn 7→ ΩC . A learning algorithm

produces f̂ , an estimate of f , from a training set of observed values of X and C.

A graph G is a pair (V,EG), where V is the set of nodes and EG the set of edges connecting

the nodes in V. En edge may be undirected or directed. An undirected edge E ∈ EG is a

pair {Vi, Vj} with Vi, Vj ∈ V. A directed edge, or arc, is an ordered pair (Vi, Vj) encoding

the arc directed from Vi to Vj . We also denote an undirected edge {Vi, Vj} as Vi − Vj and

an arc (Vi, Vj) as Vi → Vj . An undirected graph G = (V,EG) is such that every E ∈ EG is

undirected, whereas a directed graph G = (V,EG) contains only directed edges. A directed

path is a sequence of edges over Vi . . . Vk such that for each i ∈ {1, . . . , k−1}, either Vi → Vi+1

or Vi−Vi+1 is in EG , with at least one edges being directed. A cycle is a directed path Vi = Vk

such that Vi = Vk. A directed acyclic graph (DAG) is a directed graph with no cycles. An

acyclic partially DAG (PDAG) P may contain both directed and undirected edges and has

no directed cycles.

ChP(X) denotes the children of X in P, ChP(X) the parents of X if P, NbrP(X) the

neighbour nodes connected to X in P by an undirected edge, and AdjP(X) = ChP(X) ∪
PaP(X) ∪ NbrP(X) the nodes adjacent to X in P. A v-structure is an ordered triple of

nodes (X,Y, Z) such that P contains the edges X → Y and Z → Y , and X and Z are not

9
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adjacent in P. These definition are easily specialized for DAGs. We drop the subscript to

Adj(·), Nbr(·), Ch(·), and Pa(·) when clear from context.

In chapters of Part III notation differs somewhat from the convention presented here. We

specify notation details in those cases.



Chapter 3
Machine learning

3.1 Introduction

Machine learning is concerned with the automatic extraction of patterns from data. Within

the field of artificial intelligence, it is used for tasks such as computer vision, speech recogni-

tion, and natural language processing. The reason is that it is easier to train a system to do

this by showing it examples of desired input-output pairs than to program it by anticipating

the output for every possible input [Jordan and Mitchell, 2015]. Machine learning is increas-

ingly applied across both science and industry, with use examples such as cell type detection

and fraud detection. We can only expect this trend to continue, driven by the large amounts

of data being stored and processed, the low cost of computation, and the need for extracting

knowledge from this data.

This chapter provides a brief introduction to machine learning topics relevant to this

thesis. For a thorough treatment we suggests the books by [Bishop, 2007, Murphy, 2012,

Hastie et al., 2009, Duda et al., 2000].

Section 3.2 presents an overview of machine learning, and Section 3.3 introduces basic

topics in supervised classification. Section 3.4 treats model selection and assessment while

Section 3.5 deals with loss functions. Section 3.6, Section 3.7, and Section 3.8 treat, respec-

tively, learning with class labels from multiple-annotators, with probabilistic class labels, and

with class label noise. Section 3.9 covers class imbalance. Section 3.10 briefly treats fea-

ture selection. Section 3.11 and Section 3.12 present, respectively, the classifiers and feature

selection methods used in Chapter 11.

3.2 Overview

The most most common types of machine learning are supervised and unsupervised learning.

In supervised, or predictive, learning we want to learn from data D = {(x(i), c(i))}N1 a function

f̂ that maps the features X to the values of a target variable C. This is called classification

when C is discrete and regression when C is real-valued. A typical example of classification is

11
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deciding whether an email is spam or ham given frequency counts of words from a dictionary

[Androutsopoulos et al., 2000]. The optimal prediction for an instance x is the class c∗ =

arg maxc P (c | x). The goal of learning, then, is to estimate P (c | x) from D. We want

a model that generalizes well, accurately classifying instances (e.g., emails) that were not

included in D.

A more general setting is multi-output or multi-dimensional classification [Bielza et al.,

2011], where we have a vector of class variables C instead of a single variable C. Its special

case is multi-label classification [Tsoumakas et al., 2009], where an instance is associated

with a subset of classes ΩC . For example, a news article can be labeled as related to both

religion and politics. This can be viewed as multi-dimensional classification with |ΩC | binary

variables indicating the presence or absence of a class. In such settings, prediction can be

improved by improved by taking into account dependencies among the class variables [Read

et al., 2009]. We can explicitly model them with Bayesian networks (see Chapter 4).

In unsupervised, or descriptive, learning the data set contains only observations of the

features X, D = {x(i)}N1 . The most common task in this setting is clustering [Jain, 2010,

Everitt et al., 2011]. Clustering assumes that there is an unobserved class variable C and

assign the instances in D to the classes in ΩC , that is, set values for the unobserved vari-

able C. Examples include customer segmentation for targeted advertising [Berkhin, 2006]

and cell type detection from flow-cytometry data [Lo, 2009]. In addition to clustering, un-

supervised learning includes density estimation, or the estimation of P (x) for discrete and

p(x) for real-valued X, and dimensionality reduction. A useful tool for density estimation

are Bayesian networks as they can encode distributions over many variables by assuming

conditional independencies (see Chapter 4).

Unsupervised learning is more widely applicable than supervised learning because it does

not require the instances to be labeled. Getting data to be labeled by experts can costly and

time-consuming. An intermediate setting is semi-supervised learning [Chapelle et al., 2006,

Zhu and Goldberg, 2009], with L (L < N) data instances labeled and N−L instances lacking

a label. We may use the unlabeled instances to train a better predictive model for the classes

present in D, or learn a descriptive model, such as the clustering the unlabeled instances by

assigning values to their corresponding instantiations of C. Crowd-sourcing services, such

as Amazon’s Mechanical Turk1, can provide inexpensive class labels by many annotators

[e..g, Snow et al., 2008], that is, a vector c(i) = (c
(i)
1 , . . . , c

(i)
Ri

) of candidate class labels by

Ri annotators for each x(i). These labels are possibly noisy as the annotators are often not

experts in the domain.

Besides the practical value of predicting an unknown value, a predictive model can be

descriptive of a domain. For example, we can read conditional independencies among the

variables from the learned structure of a Bayesian network model. We may obtain a compact

model of a domain with a subset of the variables X by feature selection [Guyon and Elisseeff,

2003, Guyon et al., 2006].

One can distinguish between parametric and non-parametric models. A simple supervised

1Available at https://www.mturk.com.

https://www.mturk.com
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non-parametric model is the k-nearest neighbors (k-nn) classifier [Aha, 1997, Fix and Hodges,

1989]. It approximates P (c | x) with the estimate from the k nearest neighbors of x in D
according to, for example, Euclidean distance if X are real-valued. While this is reasonable

for a low number of features n, as n grows the neighbors become more distant and a reliable

estimation requires an exponentially larger N . An alternative is to assume that the variables

follow some a parametric distribution. For example, the naive Bayes [Minsky, 1961] classifier

may assume that, for each value c of the class variable, a feature Xj follows a Gaussian

distribution with mean µj,c and variance σ2
j,c. With k-nn, the effective number of parameters

that we are estimating is N
k , while with the naive Bayes it is fixed and does not depend on

N . The less flexible parametric approach may allow us to learn a useful model with a smaller

N , as long as its assumptions are reasonable.

3.3 Supervised classifiers

Ideally, f̂ minimizes the expected loss, E[L(c, f̂(x))], where the expectation is over the un-

known true distribution of X and C and L(·, ·) is a loss function that penalizes misclassifica-

tions. In classification, the most common one is 1/0 loss, with L(f̂(x)), c) = I(c = f̂(x)). A

k-nn with k = 1 will achieve 0 loss on the training data D by memorizing the class of each

instance. However, D almost certainly contains noise and a model that learns it perfectly

may be more complex than the true generating model. Learning thus generally combines the

optimization of a loss function on D with the restriction, or regularization, of model complex-

ity. Means for such restriction include penalizing objective loss functions with a term that

is a function of the number of parameters, as well as making simplifying assumptions, such

as that the features are conditionally independent given the class, as does the naive Bayes

classifier.

One useful distinction is between discriminative and generative models. Generative ones,

such as the naive Bayes, model the joint distribution over the class and the features, P (c,x),

while discriminative ones model the class-conditional distribution, P (c | x). Generative mod-

els can handle missing data and allow for semi-supervised settings more easily than generative

ones. Discriminative models, on the other hand, allow for easy feature pre-processing, such

as replacing X1 with X2
1 . The discriminative approach of modeling the distribution of inter-

est, P (c | x), rather than P (c,x), gives a lower asymptotic loss (as the number of training

instances becomes large). The generative model, however, may converge to its asymptotic

loss faster than the discriminative one [Ng and Jordan, 2001].

There are thus many different models, with different assumptions about the true dis-

tribution of P (c | x). They can be learned with different algorithms, which offer different

runtime/accuracy trade-offs. No single model is best for all possible domains [Wolpert, 1996],

because assumptions that work well in one domain may fail in another. Some models, how-

ever, often outperform others. Fernández-Delgado et al. [2014] found that that random

forest and support vector machines with Gaussian kernels (see Section 3.11) were signifi-

cantly better than other 177 classifiers on 121 data sets from the UCI repository [Dheeru and
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Karra Taniskidou, 2017].

3.4 Model selection and assessment

Model selection refers to choosing one model out of several of of different complexity. For

example, we might want to pick the k parameter for the k-nn. A related task is to assess how

well our model generalizes to unseen data. While the training set estimate of the expected

loss is optimistic, we can approximate it with a data set that we did not use for training.

That is, we train models on a training set Dt, compute their losses on a validation set Dv,
and choose the model M with the optimal loss l. Note that l is not an unbiased estimate

of expected loss of M , since it comes from data, Dv, which we used to pick the very model

M . We would thus need a third, test set, Dtest, to estimate the loss of M . For example, we

might use 50% of our data for training, 25% for validation, and 25% for testing.

We often want to use all available data for training, and thus cannot afford separate

validation and test sets. We can get unbiased estimates of the expected loss with resampling

techniques such as cross-validation Stone [1974] and boostrap [Efron, 1979]. Cross-validation

randomly partitions D into k roughly equal-sized subsets called folds. We use each of the k

folds to compute the loss of the model learned from the remaining k - 1 folds. The average

loss over the k folds gives an estimate of the loss of a model learned on all of D. Each point is

predicted once yet used for training k-1 times, and thus the per-fold losses are not independent

for k > 2. If we do both model selection and assessment, we need nested cross-validation.

Stratified cross-validation is a variant such that the proportion of the class is roughly the

same as all folds.

3.5 Loss functions

As mentioned above, the most common loss function, or predictive performance metric, is the

1/0 loss. The 1/0 loss is also known as misclassification rate, while $1 - $ the misclassification

rate is known as classification accuracy.

Alternative metrics are useful in some settings, such as when the cost of misclassification

is asymmetric. For example, we prefer to classify a spam email as valid than to classify a

valid email as spam. If spam is the positive class, this means that we prefer false negative

(FN; spas as valid email) over false positive (FP) misclassifications. While the 1/0 loss does

not distinguish among these errors, metrics such as the following do

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
,

F-measure =
2 · TP

2 · TP + FN + FP
,
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‘Positive’ ‘Negative’

Positive TP FN
Negative FP TN

Table 3.1: A confusion matrix for two classes. The rows represent to true class and the columns the
predicted class. TP: true positives; FP: false positives; FN: false negatives; TN: true negatives.

where TP are the true positive classifications (see Table 3.1).

3.6 Multiple annotators

Rather than having a unique class label c(i) per instance x(i), we may have a vector of

Ri labels c(i) = (c
(i)
1 , . . . , c

(i)
Ri

), each label provided by a different expert or annotator. An

example [Raykar et al., 2010] is that of different radiologists providing subjective class labels

by looking for malignant lesions at medical image, while the true label (i.e., ground truth) can

only be determined by a biopsy. There may be strong disagreement among the annotators,

for example, due to different degrees of expertise.

In order to train and evaluate a classifier with such multi-annotator labels we need an

estimate of the ground truth. Simple estimators of the ground truth are: 1) majority voting,

i.e., the one selected by most annotators, arg maxcj
∑Ri

r=1 I(c
(i)
r = cj); and 2) label frequencies,

giving a probabilistic ground truth P (c(i) = cj) = 1
Ri

∑Ri
r=1 I(c

(i)
r = cj). Method 1) allows

us to use any supervised classifier and many can be adapted to deal with method 2) (see

Section 3.7). Both approaches, however, assume that all annotators are equally accurate.

This does not hold in many settings, notably when learning from a crowd of annotators

[Snow et al., 2008, Sorokin and Forsyth, 2008, Welinder et al., 2010, Raykar et al., 2010,

Raykar and Yu, 2012]. Thus, the general approach is to model annotator reliability in order

to decrease the influence of the less reliable ones on the ground truth estimate Dawid and

Skene [1979], Whitehill et al. [2009], Welinder et al. [2010], Raykar et al. [2010], Raykar and

Yu [2012]. While this adds parameters to be learned (the annotators’ reliability), it can be

better than the simple approaches. The method by Raykar et al. [2010], which learns the

classifier and ground truth labels simultaneously, outperformed majority voting on three real-

world data sets. It was better even with five annotators, when three of them were novices,

although in one of the samples majority voting was better with less than 40 annotators.

3.7 Probabilistic labels

Probabilistic or soft labels are natural when class membership is inherently uncertain, such

as in text categorization [Thiel et al., 2007, Schwenker and Trentin, 2014]. When a classifier

cannot be adapted to consider such labels, an alternative is to replicate training instances

according to the soft labels.
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3.8 Label noise

Noise in a finite sample may occur in the features and in the class labels. We may thus

have a unique class label c per each instance yet this label might, due to reasons such as

lack of information or human mistakes, be wrong [Frénay and Verleysen, 2014]. Methods

for dealing with label noise include data cleaning and modelling label uncertainty. One data

cleaning method is that by Brodley and Friedl [1999], which considers instances misclassified

by different models, that is, models from different families, as mislabeled.

3.9 Class imbalance

Class imbalance occurs when some classes are much less numerous that others. Many objec-

tive functions for learning classifiers implicitly optimize classification accuracy, which can be

high on a imbalanced set even with a poor prediction of the minority class. Approaches for

dealing with class imbalance [He and Garcia, 2009] include training data sampling and cost-

sensitive learning. Oversampling augments the training set with instances of the minority

class. The SMOTE [Chawla et al., 2002] method, in particular, creates a synthetic instance

of the minority class by randomly choosing a point on the line between some minority class

instance x and one of its k nearest neighbors from the minority class. Undersampling, on

the other hand, involves removing a number of instances from the majority class. One has

to determine the number of instances to add to (remove from) the training set; albeit a bal-

anced training set is usually desirable, many synthetic minority class instances can lead to

overfitting, while losing many majority class instances can mean losing valuable information

[He and Garcia, 2009].

In small-sample class-imbalance settings, univariate feature selection can improve predic-

tive performance more than over- and under-sampling, at least for the support vector machine

[Wasikowski and Chen, 2010].

3.10 Feature selection

Feature selection [Liu and Motoda, 2007, Guyon et al., 2006, Saeys et al., 2007] deals with

selecting a subset of the variables to learn the model with. The goals are [Guyon and Elisseeff,

2003] to improve the model, reduce the amount of data to be collected and processed, and

provide better understanding of the process that generated the data.

In supervised learning, the basic distinction is among filter, wrapper or embedded meth-

ods. Filters are pre-processing steps previous and independent of model learning. Wrappers

[Kohavi and John, 1997], no the other hand, use the model as a blackbox to evaluate sets of

features. Embedded methods select features simultaneously with model learning. They in-

clude Bayesian network structure learning algorithms that may render a feature independent

from the class node.

Another basic distinction is between univariate and multivariate feature selection. Uni-
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variate feature selection evaluates each feature independently. While fast an statistically

robust, it does not, for example, detect redundant features. Multivariate feature selection

considers sets of variables. Since the 2n possible feature subsets cannot be evaluated except

for a small n, one usually uses heuristic search algorithms, such as greedy hill-climbing, to

traverse the space of feature subsets.

3.11 Used classifiers

3.11.1 Naive Bayes

The naive Bayes [Minsky, 1961] is a simple approximation to the joint probability distribu-

tion P (C,X). It assumes that predictors are conditionally independent given the class and

classifies an instance according to

c∗ = arg max
c

P (c|x) ∝ P (c)

n∏
j=1

p(xj |c).

Albeit a simple model, the naive Bayes often performs well, generally due to its low

variance. See Chapter 4 for more details and for Bayesian network classifiers other than the

naive Bayes.

3.11.2 Linear discriminant analysis

Like multinomial regression, the LDA [Fisher, 1936, Rao, 1948] is a linear classifier, with

piecewise hyperplanar decision boundaries. It assumes p(x | cl) = N (µl,Σ), that is, multi-

variate normal class-conditional distributions, with an µl mean vector for each class cl and a

shared covariance matrix Σ, equal for all classes. The quadratic discriminant analysis model

has a covariance matrix Σl for each class. With diagonal Σl, that corresponds to the naive

Bayes.

3.11.3 Regularized logistic regression

According to the (binomial) logistic regression model [e.g., Hastie et al., 2009, Chapter 4],

the log odds of a class c0 and class c1 are a linear function of x:

ln
P (c0 | x)

P (c1 | x)
= β0 + βTx,

where β0 and β are the model’s coefficients. While the β can be fit by maximum likeli-

hood estimation, regularizing the model by shrinking them can reduce variance. The lasso

[Tibshirani, 1996] regularization finds the β by maximizing:

max
β0,β

1

N

N∑
i=1

logP (c(i) | x(i))− λ
n∑
j=1

|βj |,
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where P (c(i) | x(i)) is the probability, under the model, of c(i) given x(i) , while λ specifies

the degree of penalty on the magnitude of the coefficients. The lasso tends to shrink some

coefficients to zero, effectively selecting, for interpretation purposes, the non-zero coefficient

variables (features with βj = 0 are effectively omitted from the model). The β coefficients are

straightforward to interpret: keeping all other predictors fixed, a unit increase in a improved

predictor Xj increases the log-odds of the positive class by βj . Thus, the higher |βj |, the

more useful is Xj . For groups of correlated predictors, lasso tends to keep a single non-

zero coefficient and shrink the rest to zero. Implementations such as the glmnet package

[Friedman et al., 2010] can efficiently optimize λ according to the cross-validated estimate of

a loss function such as classification error.

3.11.4 Support vector machine

The SVM [Boser et al., 1992, Cortes and Vapnik, 1995] finds the maximal margin hyperplane

that separates the two classes. It uses kernel functions to project the data onto a higher

dimensional space, where they are more likely to be linearly separable. It searches for a

separating hyperplane, determined by a coefficient vector β and an intercept β0, by finding

min
β0,β,ξ

1

2
βTβ +R

N∑
i=1

ξ(i)

subject to ξ(i) ≥ 0, c(i)φ(βTx(i) + β0) ≥ 1− ξ(i), ∀i,

with c(i) ∈ {−1, 1}, ξ(i) = 0 if x(i) is on the correct side of the hyperplane, and R > 0 is

the complexity parameter, with larger values narrowing the margin and yielding less training

set misclassifications, while φ maps x to a higher dimensional space. φ is given by a kernel

function K such that K(x,x′) = φ(x)Tφ(x′). A common example is the radial basis function,

K(x,x′) = exp
(
−γ||x− x′||2

)
, whose parameter γ > 0 indicates spread from the target

instance x.

3.11.5 CART

The CART algorithm [Breiman et al., 1984] produces a classification tree by recursively

partitioning the training samples according to a single predictor at a time. For each node a

of the tree, CART selects the splitting predictor Xj , and its threshold value t, by minimizing

‘class impurity’ G,

min
j,t
{G(Dajt) +G(Da \ Dajt)},

where Da is a subset of D at node a, while Dajt and Da \ Dajt are the left and right splits,

respectively, of Da according to Xj and threshold t,

Dajt = {(x(i), c(i)) : x
(i)
j ≤ t,x

(i) ∈ Da}.

One measure of impurity is the Gini criterion,
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G(Da) =
k∑
l=1

PDa(cl)(1− PDa(cl)),

where PDa is the empirical probability of class cl in Da. Deep trees can overfit the data,

and options for regulating complexity include |Da|, the minimum size of Da required in order

to attempt a split, and |Dl|, the minimum size of some leaf node Dl.

3.11.6 Random forest

A CART tree can overfit the training data. Besides pruning, another way to reduce variance

is to use an ensemble of trees, such as the random forest classifier [Breiman, 2001]. One

draws T bootstrap [Efron, 1979] samples (size N samples from D with replacement), and

on each learns an unpruned CART tree. At each split, consider only m ≤ n randomly

selected features. To make a prediction, choose the majority class among the T trees. Due

to averaging over bootstrap samples, the random forest is generally robust to overfitting.

3.11.7 k-nearest neighbors

k-nn [Aha, 1997, Fix and Hodges, 1989] classifies an instance x according to its nearest

neighbors in feature space, by choosing the most common class label among them. The

number of neighbors k is a parameter to the model, with a lower value reducing bias but

increasing variance (a lower k fits the training data better). The neighbors are usually

identified using a variant of the Minkowski distance, such as Euclidean distance. A common

extension is to predict c∗ by giving more importance to the points that are closer to the

target point. Kernel functions are a common means of expressing such weight functions, with

weights decreasing smoothly with distance from the target point x [see, e.g., Hechenbichler

and Schliep, 2004].

3.12 Used feature selection methods

3.12.1 Kruskal-Wallis test

The null hypothesis of the Kruskal-Wallis test [Kruskal and Wallis, 1952] is that the medians

of k samples are the same. In our case, these samples correspond to the k different classes. It

is a non-parametric procedure and as such it does not assume that the data follow a particular

distribution. Its special case for k = 2 is the Mann-Whitney-Wilcoxon test [Wilcoxon, 1945,

Mann and Whitney, 1947]. The test statistic Hj , for some feature Xj , is

Hj = (N − 1)

∑k
l=1Nl(r̄l· − r̄)2∑k

l=1

∑Nl
i=1(rli − r̄)2

,

where rli is the rank of i-th sample in class cl, r̄l· is the average rank of samples in class cl, r̄

is the average rank, and Nl is the number of instances in class cl. Under the null hypothesis
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Hj asymptotically follows the χ2 distribution and thus we compute the test’s p-value as

P (χ2
k−1 ≥ Hj). With small Nl, the χ2 approximation is less accurate and results in reduced

test power [Sheskin, 2003]. We adjusted the p-values (obtained with the χ2 test) for multiple

testing by using the false discovery rate procedure [Benjamini and Hochberg, 1995]. Some

examples of its use for feature selection are Golugula et al. [2011], Christin et al. [2013].

3.12.2 RF variable importance

Variable importance (VI) is given by the out-of-bag (OOB) accuracy of the trees in the ran-

dom forest. An OOB sample for a tree t consists of instances which were not in the bootstrap

subsample from which t was learned. Let at be the percentage of correct classifications in

the OOB sample for tree t, and aptj the percentage of correct classifications after randomly

permuting the values of Xj in the OOB sample. Then,

V I(Xj) =
1

T

T∑
t=1

(atj − aptj),

where atj = aptj = 0 if Xj is not in tree t; otherwise atj = at; T , as mentioned in Sec-

tion 3.11.6, is the number of trees in the ensemble. Alternatively, one can compute per-class

VIs by measuring changes in class-specific accuracies.

VI can loosely be interpreted as the feature’s effect on accuracy and it provides a ranking

of the features (obtained in a multivariate way). Useful features will have positive values

whereas useless ones will have VIs around or below zero. A drawback is that the VI ranking

tends to favor correlated predictors, especially for low values of m [i.e., the number of features

considered at each split; see Strobl et al., 2008]. Because the ranking is stochastic, it is

important to use enough trees for it to stabilize.

The above-described VI is less effective in imbalanced settings, as misclassifications due

to imbalance can overcome those due to class label permutation. While Janitza et al. [2013]

proposed a VI derived from the change in area under the ROC curve [Swets, 1988, Fawcett,

2006], rather than the change in accuracy, so as to balance both types of errors (i.e., false

positives and false negatives), it is only implemented for the RF variant based on conditional

inference trees [Hothorn et al., 2006].

Finally, given a VI-based ranking, it is not straightforward to determine the cut-point that

separates useful features from useless ones. While Breiman [2001] suggests a statistical test

for the purpose, it has some undesirable statistical properties (i.e., its power increases with

the number of trees and decreases with sample size) and is thus not recommended [Strobl

and Zeileis, 2008]. The scaled VI also increases with the number of trees. Alternatives

include permutation tests [Wang et al., 2010, Altmann et al., 2010] and methods based on

OOB accuracy of nested RF models, corresponding to different cut-points along the ranking

[Svetnik et al., 2003, Dı́az-Uriarte and De Andres, 2006, Genuer et al., 2010].



Chapter 4
Bayesian network classifiers

Bayesian network classifiers [Bielza and Larrañaga, 2014a, Friedman et al., 1997] are compet-

itive performance classifiers [e.g., Zaidi et al., 2013] with the added benefit of interpretability.

Their simplest member, the naive Bayes [Minsky, 1961], is well-known [Hand and Yu, 2001].

More elaborate models exist, taking advantage of the Bayesian network [Pearl, 1988, Koller

and Friedman, 2009] formalism for representing complex probability distributions. The tree

augmented naive Bayes [Friedman et al., 1997] and the averaged one-dependence estimator

[Webb et al., 2005] are among the most prominent.

This chapter provides a brief introduction to Bayesian network classifier topics relevant

to this thesis. We refer the reader to Bielza and Larrañaga [2014a] for a survey and to Koller

and Friedman [2009] for a detailed treatment of Bayesian networks.

4.1 Bayesian networks

We are interested in modelling a distribution over a set of variables {C,X}, with C being a

discrete variable representing the class, and X = (X1, . . . , Xn) being n discrete or real-valued

predictor variables. We also use X,Y, Z and Q to refer to variables in {C,X}. A Bayesian

network B = (G,θ) models a probability distribution PG(x, c). G = (V,EG) is a directed

acyclic graph (DAG) with vertices (i.e., nodes) V corresponding to variables in {C,X}, and

directed edges (i.e., arcs) EG among the vertices. PG(x, c) factorizes according to G,

PG(x, c) = PG(c | paG(c))

n∏
i=1

PG(xi | paG(xi)),

where paG(x) are the values of parents of X in G. G imposes independence constraints on

PG(·), and they can all be derived from the constraint that each variable is independent of

its non-descendents in G given its parents. X1 ⊥⊥G X2 | C denotes that X1 is conditionally

independent of X2 given C in PG(·).
The parameters θ specify the local conditional distributions of each variable given its

parents’ values, with each θijk encoding P (Xi = k | Pa(Xi) = j).

21



22 CHAPTER 4. BAYESIAN NETWORK CLASSIFIERS

4.2 Structure learning

We learn B from a data set D = {(x1, c1), . . . , (xN , cN )} of N observations of X and C.

There are two main approaches to learning the structure G from D: a) the constraint-based,

by testing for conditional independence among triplets of variables and b) search and score,

searching a space of possible structures in order to optimize a network quality score. Under

assumptions such as a limited number of parents per variable, the constraint-based approach

can produce the correct network in polynomial time [Cheng et al., 2002, Tsamardinos et al.,

2003].

Common scores in structure learning are the penalized log-likelihood scores, such as the

Akaike information criterion (AIC) [Akaike, 1974] and Bayesian information criterion (BIC)

[Schwarz, 1978], and the Bayesian ones such as Bayesian Dirichlet equivalence (BDe) Hecker-

man et al. [1995]. The log-likelihood based ones measure the model’s fitting of the empirical

distribution P̂ (c,x) adding a penalty term that is a function of structure complexity. The

penalty helps avoid overfitting the training data D. Penalized log-likelihood scores are de-

composable with respect to G, allowing for efficient search algorithms.

Finding the optimal structure even with at most two parents per variable is NP-hard

[Chickering et al., 2004]. We can, however, find the optimal tree or forest in time quadratic

in n with the Chow-Liu [Chow and Liu, 1968] algorithm and a decomposable score. Thus,

heuristic local search algorithms are commonly used [see e.g., Koller and Friedman, 2009].

These include greedy hill-climbing and the tabu meta-heuristic [Glover and Laguna, 2013]

which allows for score-degrading operators while, for efficiency, avoiding those that undo the

effect of recently applied ones.

Two different DAGs can encode an identical joint probability distribution P (C,X). The

equivalence relation partitions the set of DAG structures into equivalence classes, and search-

ing in this space, rather than in the space of DAGs, can be more efficient and avoid arbitrary

arc choices. The greedy equivalence search (GES) [Chickering, 2002a] and k-greedy equiva-

lence search (KES) [Nielsen et al., 2003] are two algorithms that operate in this space. Both

guarantee learning the optimal DAG at the large sample limit if the data is sampled from a

Bayesian network.

4.3 Structure learning for classifiers

With limited N and a large n, discriminative scores based on P (c | x), such as conditional log-

likelihood and classification accuracy, are more suitable to the classification task [Friedman

et al., 1997]. These, however, are not decomposable according to G. While one can add a

complexity penalty to discriminative scores [e.g., Grossman and Domingos, 2004], they are

instead often cross-validated to induce preference towards structures that generalize better,

making their computation even more time demanding.

For Bayesian network classifiers, a common [Bielza and Larrañaga, 2014a] structure space

is that of augmented naive Bayes [Friedman et al., 1997] models (see Figure 4.1), factorizing
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P (X, C) as

P (X, C) = P (C)
n∏
i=1

P (Xi | Pa(Xi)), (4.1)

with C ∈ Pa(Xi) for all Xi and Pa(C) = ∅.
Models of different complexity arise by extending or shrinking the parent sets Pa(Xi),

ranging from the NB [Minsky, 1961] with Pa(Xi) = {C} for all Xi, to those with a limited-size

Pa(Xi) [Friedman et al., 1997, Sahami, 1996], to those with unbounded Pa(Xi) [Pernkopf

and O’Leary, 2003]. While the NB can only represent linearly separable classes [Jaeger,

2003], more complex models are more expressive [Varando et al., 2015]. Simpler models,

with sparser Pa(Xi), may perform better with less training data, due to their lower variance,

yet worse with more data as the bias due to wrong independence assumptions will tend to

dominate the error. In addition, simpler models allow for more efficient learning and inference

algorithms.

The algorithms that produce the above structures are generally instances of greedy hill-

climbing [Keogh and Pazzani, 2002, Sahami, 1996], with arc inclusion and removal as their

search operators. Some add node inclusion or removal [Pazzani, 1996], thus embedding

feature selection [Guyon and Elisseeff, 2003] within structure learning. Alternatives include

the adaptation [Friedman et al., 1997] of the Chow-Liu [Chow and Liu, 1968] algorithm to find

the optimal one-dependence estimator (ODE; see Section 4.6) with respect to decomposable

penalized log-likelihood scores in time quadratic in n. Some structures, such as NB or AODE,

are fixed and thus require no search.

There has been little work on learning Bayes network classifiers in the space of DAG

equivalence classes and the only work we are aware of is that by Acid et al. [2005].

4.4 Parameters learning

Given G, learning θ in order to best approximate the underlying P (C,X) is straightforward

with complete data. For discrete variables Xi and Pa(Xi), Bayesian estimation can be

obtained in closed form by assuming a Dirichlet prior over θ. With all Dirichlet hyper-

parameters equal to α,

θ̂ijk =
Nijk + α

N·j· + |ΩXi |α
, (4.2)

whereNijk is the number of instances inD such thatXi = k and Pa(Xi) = j, corresponding to

the j-th possible instantiation of Pa(xi), N·j· is the number of instances in which Pa(xi) = j,

while |ΩXi | is the cardinality of Xi. α = 0 in Equation 4.2 yields the maximum likelihood

estimate of θijk. With incomplete data, the parameters of local distributions are no longer

independent and we cannot separately maximize the likelihood for each Xi as in Equation 4.2.

Optimizing the likelihood requires a time-consuming algorithm like expectation maximization

[Dempster et al., 1977] which does not guarantee convergence to the global optimum.
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While the NB can separate any two linearly separable classes given the appropriate θ,

learning by approximating P (C,X) cannot render the optimal θ in some cases [Jaeger, 2003].

Multiple methods [Hall, 2007, Zaidi et al., 2013, 2017] learn a weight wi ∈ [0, 1] for each

feature and then update θ as

θweightedijk =
(θijk)

wi∑|ΩXi
|

k=1 (θijk)wi

.

A wi < 1 reduces the effect of Xi on the class posterior, with wi = 0 omitting Xi from the

model, making weighting more general than feature selection. Ways to compute the weights

include maximizing a discriminative score [Zaidi et al., 2013] and computing the usefulness

of a feature in a classification tree [Hall, 2007]. Mainly applied to naive Bayes models, a

generalization for augmented naive Bayes classifiers has been recently developed [Zaidi et al.,

2017].

Another parameter estimation method for the naive Bayes is by means of Bayesian model

averaging over the 2n possible naive Bayes structures with up to n features [Dash and Cooper,

2002]. It is computed in time linear in n and provides the posterior probability of an arc

from C to Xi.

4.5 Inference

A Bayesian network allows us to query for the conditional probability P (Q | O = o) for

any O and Q in {X, C}. In classification, however, we are only interested in the conditional

probability P (c | x) as our aim is to predict the class c∗ for an instance x: c∗ = arg maxc P (c |
x) = arg maxc P (x, c).

Computing P (c | x) for a fully observed x only requires multiplying the corresponding θ

and the time complexity is thus linear in n. With an incomplete x, however, exact inference

requires summing over parameters of the local distributions and is NP-hard in the general

case [Cooper, 1990], yet can be tractable with limited-complexity structures such as polytrees.

The AODE ensemble computes P (c | x) as the average of the P (c | x) of the n base

models. One method specific to Bayesian network classifiers is the lazy elimination [Zheng

and Webb, 2006] heuristic which omits xi from Equation 4.1 if P (xi | xj) = 1 for some xj .

4.6 Used structures and learning algorithms

We now list of the augmented naive Bayes structures and learning algorithms used throughout

this thesis. The naive Bayes (Figure 4.1a) assumes that the predictors are conditionally

independent given the class,

p(c|x) ∝ p(c)
n∏
i=1

p(xi|c).

One way to handle violation of conditional independencies is to omit some of the features

[Langley and Sage, 1994]. The forward sequential selection naive Bayes (NB-FSS) algorithm
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[Langley and Sage, 1994] learns a selective naive Bayes with a greedy forward search guided

by classification accuracy. In other words, it starts from a model consisting solely of the class

variable and progressively incorporates predictors as long as they do not degrade the score.

As mentioned above, a generalization of the selective naive Bayes is the weighted naive

Bayes, given by

p(c|x) ∝ p(c)
n∏
i=1

p(xi|c)wi , (4.3)

with wi ∈ [0, 1]. Equation 4.3 yields a model equivalent to a naive Bayes with parameters

learned with Equation 4.4. The weighting to alleviate the naive Bayes independence assump-

tion (WANBIA; Zaidi et al. [2013]) method computes w by optimizing either the conditional

log-likelihood or the mean root squared error of the predictions. The attribute weighted naive

Bayes (AWNB; Hall [2007]) sets wi = 1
1
T

∑T
t=1

√
dti

, where dti is an estimate of Xi’s dependence

on other features defined as the minimum depth at which Xi is tested in an unpruned classi-

fication tree ( 1√
dti

= 0 if Xi is not in the tree), with T trees learned from bootstrap samples

[Breiman, 1996] of D.

The model averaged naive Bayes (MANB) [Dash and Cooper, 2002] parameter estimation

method corresponds to exact Bayesian model averaging over the naive Bayes models obtained

from all 2n subsets of the n features, yet it is computed in time linear in n. The estimate for

a parameter θMANB
ijk is

θMANB
ijk = θijkP (GC 6⊥⊥Xi

| D) + θikP (GC⊥⊥Xi
),

where P (GC 6⊥⊥Xi
| D) is the local posterior probability of an arc from C to Xi, whereas

P (GC⊥⊥Xi
) = 1 − P (GC 6⊥⊥Xi

| D) is that of the absence of such an arc (which is equivalent

to omitting Xi from the model), while θijk and θik are the Bayesian parameter estimates

obtained with Equation 4.2 given the corresponding structures (i.e., with and without the

arc from C to Xi).

A one-dependence estimator (ODE) allows up to one feature parent per predictor. A

special case is the tree augmented naive Bayes (TAN; [Friedman et al., 1997] Figure 4.1b)

with exactly n− 1 augmenting arcs, while all other ODEs are forest-augmented naive Bayes

models (FAN; Figure 4.1c). A special case of the TAN is the super-parent ODE (SPODE)

where one feature Xi is the parent of all others (a super-parent), Xi ∈ Pa(Xj) ∀j 6= i [Keogh

and Pazzani, 2002]. With a penalized log-likelihood score the adaptation of the Chow-Liu

algorithm due to Friedman et al. [1997] can produce the optimal ODE in time quadratic in n;

this ODE is necessarily a TAN if no penalty term is added to the log-likelihood. [Keogh and

Pazzani, 2002] learn an ODE with a discriminative score and a greedy hill-climbing search.

k-dependence Bayesian classifier [Sahami, 1996] allows up to k parent features for each

feature Xi. Learning algorithms include those due to Sahami [1996], Pernkopf and Bilmes

[2010].

The semi-naive Bayes (SNB; Figure 4.1d) [Pazzani, 1996] structure has either a complete

or a disconnected subgraph induced by any subset of X. The complexity of its structure
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is not a priori bounded and the learning algorithm may produce a complete DAG in the

extreme case. Learning algorithms backward and forward greedy algorithms [Pazzani, 1996].

The averaged one-dependence estimator (AODE) [Webb et al., 2005] is an ensemble of n

SPODE structures.

C

X1 X2 X3 X4 X5 X6

(a) p(c,x) = p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)
p(x5|c)p(x6|c)

C

X1 X2 X3 X4 X5 X6

(b) p(c,x) = p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c, x4)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

C

X1 X2 X3 X4 X5 X6

(c) p(c,x) = p(c)p(x1|c, x2)p(x2|c)p(x3|c)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

C

X1 X2 X3 X4 X5 X6

(d) p(c,x) = p(c)p(x1|c, x2)p(x2|c)p(x4|c)
p(x5|c, x4)p(x6|c, x4, x5)

Figure 4.1: Examples of Bayesian network classifiers structures. (a) NB; (b) TAN (c) FAN (d) SNB.
The NB assumes that the features are independent given the class. ODE allows each predictor to
depend on at most one other predictor: the TAN is a special case with exactly n− 1 augmenting arcs
(i.e., inter-feature arcs) while a FAN may have less than n − 1. The k-DB allows for up to k parent
features per feature Xi, with NB and ODE as its special cases with k = 0 and k = 1, respectively.
The SNB does not restrict the number of parents but requires that connected feature subgraphs be
complete (connected, after removing C, subgraphs in (d): {X1, X2}, and {X4, X5, X6}), also allowing
the removal of features (X3 omitted in (d)).
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GABAergic interneurons

classification

5.1 Introduction

The human nervous system is the most complex biological system. In detecting and respond-

ing to changes in the environment, it is capable of learning, self-awareness, and gives rise to

the intellect. While many fundamental aspects of neuronal structure and function are well

understood, many questions remain open. Answering them is becoming more urgent, mainly

due to enormous social and economic cost of nervous system disorders. Brain disorders, such

as dementia, depression, and addiction, account for 36% of the burden of all disease in high-

income countries [Silberberg et al., 2015], with eight millions deaths a year attributable to

them [Walker et al., 2015]. The monetary cost of Alzheimer’s disease alone in the United

States in 2010 was estimated between 157 and 215 billion American dollars [Hurd et al.,

2013].

Progressing towards understanding the brain is a monumental endeavor. To this end,

ambitious neuroscience projects have been launched globally [Huang and Luo, 2015] over the

last decade or so. These include the Human Brain Project [Markram, 2012, Amunts et al.,

2016] in the European Union, the Brain Research through Advancing Innovative Neurotech-

nologies (BRAIN) initiative [Insel et al., 2013] and the Allen Institute for Brain Science in

United States of America, and others in Canada, China, Japan, Korea, and Israel [Huang

and Luo, 2015, Grillner et al., 2016]. Most of these are extremely large projects, reflecting

the complexity of the task. The Human Brain Project, for example, is one of the largest

European-funded research projects ever, with the total funding planned to be around one

billion euros. It is an interdisciplinary effort, including experts in computer science, physics,

and mathematics [Amunts et al., 2016], in addition to those in neuroscience and related life

sciences.

The Human Brain Project, the Allen Institute and the BRAIN initiative have neuron type

identification among their primary goals [Huang and Luo, 2015, Grillner et al., 2016]. Part of

27
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the problem is knowing how to distinguish among types. While each neuron is unique, and

broad categories clearly exist, the most useful grouping ought to be somewhere in between

[Zeng and Sanes, 2017]. Indeed, high-throughput generation of data, is expected to enable

learning a systematic taxonomy within a decade [Zeng and Sanes, 2017], by clustering [Tasic

et al., 2016, Cauli et al., 1997] molecular, morphological, and electrophysiological features.

The rest of this chapter introduces neuroscience concepts relevant to our work on super-

vised and semi-supervised classification of interneurons. Section 5.2 and Section 5.3 provide

basic neuroscience concepts. Section 5.4 covers interneuron classification, including the Gar-

dener’s and Markram’s classification schemes, according to which the neurons used in this

thesis have been pre-classified. Section 5.5 treats machine learning classification of interneu-

ron morphologies, which requires computing morphometric variables (Section 5.7) from digital

morphology reconstructions (Section 5.6).

5.2 The neuron

The basic structural and functional unit of the nervous system is the nerve cell or neuron.

There are around 1011 Azevedo et al. [2009] neurons in the human brain, with 1015 connections

among them [Sporns, 2011]. A neuron’s function it to receive and integrate information from

sensory receptors or other neurons and transmit it to other neurons or organs. Each neuron

has a single cell body, or soma, with branching processes, or neurites, called dendrites and

axon, emerging from it. The dendrites receive chemical signals, or neurotransmitters, from

axons of other neurons and transform them into electrical signals. The soma integrates

incoming signals and may send a signal to other neurons, by an electrical potential that

travels down the axon and away from the soma. At axon terminals, or boutons, this potential

triggers the release of a neurotransmitter, into the synapse, the region between two adjacent

neurons, passing the signal to the post-synaptic neuron. The post-synaptic component is

often located on a dendritic spine, a protuberance on a dendrite.

Neurons are generally studied in terms of their morphological, molecular and electrophys-

iological features.

5.3 Cortical neurons

The nervous system is divided into the central and the peripheral nervous systems. The

central nervous system contains the spinal cord and the brain, dominated by the cerebral

hemispheres [Kandel et al., 2000]. The largest part of the brain hemispheres is a superficial

sheet of gray matter called cerebral cortex [Crossman, 2010]. The term gray matter refers to

an area densely populated with neuron cell bodies, while the term white matter designates

parts of the nervous system mostly populated with axons. The cerebral cortex is responsible

for many important functions, such as learning, memory, and goal-directed behaviour [Harris

and Mrsic-Flogel, 2013, Li et al., 2015]. In terms of evolutionary development, it can be

divided into the older allocortex and the larger and newer neocortex. The cerebral hemi-
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spheres are divided into four lobes on the basis of surface topography. Beneath the cortex,

the hemispheres contain white matter and a mass of cell bodies called the basal ganglia, while

they are covered from above by the pia membrane layer.

Neocortical neurons are arranged in six layers, numbered I to VI, that connect to different

cortical and subcortical regions [White, 1989], with layer I nearest to the pia and layer VI

closest to subcortical regions. The layers are connected by short-range connections [Schubert

et al., 2007], forming a vertical cortical column with a diameter that varies between 200 µm

and 600 µm, depending on cortical area and species [Mountcastle, 1997, DeFelipe et al., 2012].

The cortical column is widely considered the elementary cortical unit of operation [DeFelipe

et al., 2012, Mountcastle, 1997].

Between 70% and 80% of neocortical neurons are excitatory pyramidal neurons [DeFelipe

and Fariñas, 1992, White, 1989, Peters and Jones, 1984]. These cells are relatively uniform in

terms of morphological, physiological and molecular properties [DeFelipe and Fariñas, 1992].

The remaining 20–30% neurons are interneurons. They are the main component of inhibitory

cortical circuits, which are associated with disorders such as epilepsy [DeFelipe, 1999, Hunt

et al., 2013], autism [Rubenstein and Merzenich, 2003], and schizophrenia [Curley and Lewis,

2012, Lewis, 2011, Inan et al., 2013, Joshi et al., 2014]. They are mostly inhibitory, that is,

use the gamma-amino butyric acid (GABA) as their neurotransmitter, and have short axons

that do not leave the cortex and dendrites with few or no spines.

5.4 Interneuron types

Cortical interneurons are very diverse with regards to morphological, electro-physiological,

molecular, and synaptic properties [Fairen et al., 1984, Peters and Jones, 1984, White, 1989,

DeFelipe, 1993, Kawaguchi and Kubota, 1997, Markram et al., 2004, Jiang et al., 2015,

Tremblay et al., 2016]. Most researchers consider that interneurons can be grouped into

types [Ascoli et al., 2008] with much less variability within types than among them. There

is, however, no unique catalogue of types [Ascoli et al., 2008, DeFelipe et al., 2013]. High-

throughput generation of data is expected to enable learning a systematic taxonomy within a

decade [Zeng and Sanes, 2017], by clustering [Tasic et al., 2016, Cauli et al., 1997] molecular,

morphological, and electrophysiological features. Currently, however, researchers use [e.g.,

Markram et al., 2015] and refer to established morphological types such as chandelier, Mar-

tinotti, neurogliaform, and basket [Markram et al., 2004, DeFelipe et al., 2013, Feldmeyer

et al., 2018, Tremblay et al., 2016]. These types are identified on the basis of the target

innervation location —e.g., the peri-somatic area for basket cells— and somatodendritic and

axonal morphological features. The latter can be subjective and lead to different classifica-

tions: e.g., while Wang et al. [2002] distinguish between large, nest, and small basket cell

types, based on features such as axonal arbor density and branch length, DeFelipe et al. [2013]

only distinguish between large and common basket types. The different classification schemes

[Markram et al., 2004, DeFelipe et al., 2013] only partially overlap. There is, however, con-

sensus on the morphological features of the chandelier, Martinotti, and neurogliaform types
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[DeFelipe et al., 2013].

5.4.1 Markram’s scheme

Markram et al. [2004] provided a widely cited morphological classification scheme for in-

hibitory interneurons in layers L2/3 to L6. It specifies nine distinct types (see Figure 5.1)

on the basis of axonal and dendritic features, including fine-grained ones such as bouton

distribution. This scheme is often refined [e.g., Markram et al., 2015, Jiang et al., 2015] by

adding a layer prefix to each type (e.g., layer 2/3 Martinotti, layer 4 Martinotti, etc.) for a

total of 4× 9 = 36 types. This scheme includes the following types (see Figure 5.1): bitufted

cell; chandelier cell; double bouquet cell; large basket cell; martinotti cell; nest basket cell;

small basket cell; neurogliaform cell; and bipolar (BP) cell. We refer to this scheme as the

Markram scheme. These types are defined mainly in terms of axonal arbor shape but also

of fine-grained properties such as bouton density and distribution (e.g., that of the chande-

lier cell is characteristic; see Figure 5.1) or axonal thickness, which are rarely captured in

morphology reconstructions (see Section 5.6).

5.4.2 Gardener’s scheme

DeFelipe et al. [2013] proposed a classification scheme based mainly on patterns of axonal

arborization.

The scheme contemplates ten interneuron types (see Figure 5.2): arcade, Cajal-Retzius,

chandelier, common basket, common type, horse-tail, large basket, Martinotti, neurogliaform,

and other, while DeFelipe et al. [2013] introduced the common type for cells without a

strikingly recognizable shape, while other is meant to be chosen when a type missing from

the scheme is considered most adequate. The gardener’s scheme partially overlaps with the

Markram scheme, sharing the neurogliaform, chandelier, and Martinotti types1.

In addition to interneuron type, the gardener’s scheme contemplates to five high-level

axonal features, such as whether the axon is restricted or not to the layer of its soma. These

features, termed features F1, F2, F3, F4, and F6 (in the scheme, F5 is the interneuron type)

have the following categories (see Figure 5.3):

• F1: intralaminar and translaminar

• F2: intracolumnar and transcolumnar

• F3: centered and displaced

• F4: ascending, descending, and both

• F6: characterized and uncharacterized

1We used Table 1 in Markram et al. [2015] to map between the two schemes. While the large basket type
was also common to the two schemes, Table 1 in Markram et al. [2015] maps it to the common basket type in
DeFelipe et al. [2013].
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Figure 5.1: The Markram scheme of cortical interneuron types. Axons are shown with blue lines and
axonal boutons as blue dots; dendrites with red lines. Figure from [Markram et al., 2004]. Reprinted
by permission from Nature Reviews Neuroscience.
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Figure 5.2: Interneuron types in the gardener’s scheme. Figure from [DeFelipe et al., 2013]. Reprinted
by permission from Nature Reviews Neuroscience.

Features F1 and F2 refer to the distribution of the axonal arbor relative to the cortical

layer and column of the soma, respectively. Cells with the axon predominantly in the soma’s

cortical layer are intralaminar, whereas the rest are translaminar. Likewise, regarding F2,

cells with the axon mainly confined to the soma’s cortical column are intracolumnar; the rest

are transcolumnar. Feature F3 refers to the relative location of axonal and dendritic arbors.

Cells with the dendritic arbor mainly located in the center of the axonal arborization are

centered whereas the rest are displaced. Feature F4 allows for further distinguishing between

translaminar and displaced cells: cells with an axon mainly ascending towards the cortical

surface are ascending, cells with an axon mainly descending towards the white matter are

descending, whereas the rest are termed both. Regarding F6, a cell is uncharacterized if its

reconstruction does not allow for the characterization according to the remaining features,

due to, e.g., insufficient axonal reconstruction; otherwise, a cell is characterized.

5.4.3 Consensus among neuroscientists

DeFelipe et al. [2013] asked 42 leading neuroscientists to classify 320 (cat, human, monkey,

mouse, rabbit and rat) interneurons according to the gardener’s scheme. Neuroscientists

categorized interneurons by observing images such as those in Figure 5.4. They were told

the neuron’s cortical layer and its approximate thickness, cortical area, when these data

were available, and species of the animal. DeFelipe et al. [2013] found highest inter-expert

agreemeent for the chandelier type, followed by the Martinotti, horse tail, and neurogliaform
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Figure 5.3: Axonal features F1 to F4 in the gardener’s scheme. Figure from [DeFelipe et al., 2013].
Reprinted by permission from Nature Reviews Neuroscience.
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Figure 5.4: Examples of interneurons of different types and with different high-level axonal features.
(a) is an intralaminar, intracolumnar, and centered cell, according to 38 (out of 42) experts.
Most of its axon (shown in blue) is located within 200 µm horizontally from the soma (shown in red;
the grid lines are established every 100µm), thus appearing to be in the same layer as the soma; it is
within the soma’s cortical column (the gray vertical shadows depict a 300 µm-wide cortical column);
and it seems to be centered around the dendritic arbor (also shown in red). Because this cell is
not translaminar and displaced, but rather intralaminar and centered, it is not characterizable
according to axonal feature F4. According to 24 experts, this is a common basket cell. (b) is a
translaminar, transcolumnar, displaced, and ascending cell according to 38 (out of 42) experts.
Unlike (a), this cell’s axon reaches over 300 µm horizontally above soma (i.e., it seems to extend to
another layer); a large portion of its axon is outside of the soma’s cortical column; its dendrites are
not in the center of the axonal arborization; and its axon is predominantly above the soma. According
to 29 experts, this is a Martinotti cell.

types. Inter-expert agreement was, in general, high regarding the high-level axonal features

F1-F4.

5.5 Data-driven classification

Both supervised classification and clustering have been used with neurons, usually with ei-

ther morphological, electrophysiological, or molecular features and rarely with a combination

thereof [Armañanzas and Ascoli, 2015]. Authors have used clustering to look for neuron

types, using methods such as hierarchical clustering [Cauli et al., 2000, Wang et al., 2002,

Tsiola et al., 2003, Benavides-Piccione et al., 2006, Dumitriu et al., 2007, Helmstaedter et al.,

2009a,b] k-means (e.g., Karagiannis et al. [2009], affinity propagation [Santana et al., 2013].

Supervised classification [Guerra et al., 2011] has been used to validate proposed groupings

[Marin et al., 2002, Druckmann et al., 2013]. Often, the code used classify neurons is not

publicly available [Armañanzas and Ascoli, 2015].

DeFelipe et al. [2013] trained supervised classifiers using their 241 digitally reconstructed

morphologies, training a model for each of the six axonal features. They computed over 2000

morphometrics and labeled each cell with its majority vote among the neuroscientists. Their

models were accurate for axonal features F1, F2, F3, and F6, and only moderately accurate
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for F4 and F5.

5.6 Morphology reconstructions

A typical neuronal morphology reconstruction [Parekh and Ascoli, 2013] is a sequence of con-

nected cylinders [Cannon et al., 1998], called segments (or compartments), each characterized

by six values: the Euclidean coordinates (X, Y and Z) and radius of its terminating point, all

given in µm, the identity of its parent segment, and its process type (whether soma, dendrite

or axon), with soma’s centroid usually at coordinates (0, 0, 0). A branch is the sequence of

segments between two bifurcation points (i.e., terminal point of a segment having multiple

child segments), while linked branches form an arbor.

The reconstructions are most commonly traced by hand [Parekh and Ascoli, 2013] and

there is substantial inter-operator variability [Scorcioni et al., 2004], especially regarding

fine-grained properties, such as dendritic and axonal thickness and local branching angles,

while bouton locations are seldom included. In addition, histological processing of brain slices

makes the tissue shrink, increasing arbor tortuosity (decreasing reach while maintaining total

length) [Jaeger, 2010]. Current efforts to improve and standardize automatic reconstruction,

such as BigNeuron [Peng et al., 2015] may remove reconstruction-specific differences, increas-

ing the usability of produced morphologies.

Thousands of morphology reconstructions are freely available online in repositories such as

Neuromorpho.org [Ascoli et al., 2007, 2017] and the Allen Brain Cell Types Database2. Neuro-

Morpho.Org is a curated repository that gathers reconstructions from laboratories worldwide.

It stores over 50,000 reconstructions from 36 distinct species, more than 200 brain regions,

and over 300 cell types, contributed by more than 250 laboratories [Ascoli et al., 2017].

5.7 Morphometrics

The Petilla convention [Ascoli et al., 2008] established a set of morphological features that

distinguish cortical interneuron types. They include characteristics such as branching angles,

axon terminal branch shape (curved / straight), bouton density and clustering patterns,

dendritic polarity, whether the axon is ascending or descending, or intra- or trans-laminar,

or the presence of distinctive patterns of arborization, such as bundles of long, vertical

branches or tufts' ordense plexus of highly branched axons’. Many of these correspond

to standard neuronal morphometrics (e.g., branching angles) or can be quantified rather

directly (e.g., one can compute the tortuosity of terminal branches). Others are either a)

often impossible to quantify, as relevant data (e.g., bouton density) may be missing from the

digital morphology reconstruction; b) can only be approximated (e.g., translaminar extent)

as the data is often incomplete (we often only know the soma’s layer, not its position within

it); or c) are vaguely defined (e.g., ‘dense plexus of highly branched axons’).

2http://celltypes.brain-map.org/

http://celltypes.brain-map.org/
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Standard neuronal morphometrics [Uylings and Van Pelt, 2002] are either metric (e.g.,

branch length) or topological [partition asymmetry; Van Pelt et al., 1992], and are computed

either at the whole arbor(s) level (e.g., height) or for a part of the tree, such as a branch or

a bifurcation (e.g., branch length); the latter are then quantified with summarizing statistics

across the arbor(s) (e.g., mean and maximal branch length). These morphometrics can

be computed with software such as the free, yet closed-source, L-Measure [Scorcioni et al.,

2008], the commercial Neurolucida Explorer (MicroBrightField), and open-source alternatives

under active development such as NeuroSTR and NeuroM3. L-measure provides 42 analyses

of morphology, with five summary statistics per analysis; 19 out of the 42 analyses depend

on arbor diameter or local bifurcation angles, which often differ across laboratories [Scorcioni

et al., 2004, Polavaram et al., 2014], and it seems to assume bifurcating branches, although

multi-furcations can occur [Verwer and Van Pelt, 1990].

Researchers have often quantified interneurons with custom-implemented morphometrics,

ranging from simple properties such as the mean X coordinate of the axon [e.g., Markram

et al., 2015], 2D (X and Y) axonal ‘tile surface’ and density [Dumitriu et al., 2007], the extent

of axonal arborization in L1 [Helmstaedter et al., 2009c], features derived from 2D axonal and

dendritic density maps [Jiang et al., 2015], dendritic polarity [Helmstaedter et al., 2009b],

estimates of translaminar extent and of the radial (ascending or descending) direction of

arborization [Mihaljević et al., 2014], or the position of the convex hull’s centroid as a proxy

for arbor orientation and extent [Dumitriu et al., 2007, Mihaljević et al., 2014].

3The online repository: https://github.com/BlueBrain/NeuroM.

https://github.com/BlueBrain/NeuroM
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Chapter 6
Learning with completed partially

directed acyclic graphs

6.1 Introduction

In this chapter, we present a method for learning Bayesian network classifiers in the space of

DAG equivalence classes, using completed partially directed acyclic graphs.

Bayesian network classifiers [Bielza and Larrañaga, 2014a, Friedman et al., 1997] are in-

terpretable models that offer competitive predictive performance [e.g., Zaidi et al., 2013].

They include the popular naive Bayes [Minsky, 1961] and its augmented naive Bayes [Fried-

man et al., 1997] variants with arcs among the features. A common way to learn them [e.g.,

Keogh and Pazzani, 2002, Pazzani, 1996] is by optimizing a score in the space of directed

acyclic graphs (DAGs). This may needlessly prune the search space by arbitrarily directing

an arc when its reversal would yield an equivalent model. Two DAGs are equivalent if they

impose identical independence constraints on the joint probability distribution P (C,X), with

C being the class and X the predictor variables. The equivalence relation partitions the set of

DAGs into equivalence classes, and by searching in this space we only set arc direction when a

reversal produces a non-equivalent model. The greedy equivalence search (GES) [Chickering,

2002a] is one algorithm that operates in this space. It represents an equivalence class with a

completed partially DAG (CPDAG), which has both directed and undirected edges.

Acid et al. [2005] learned Bayesian network classifiers by traversing the space of equiv-

alence classes. They pruned the space of DAGs to be considered by noticing that non-

equivalent DAGs could, nonetheless, be classification equivalent, that is, encode an identical

class-posterior distribution, P (C | x), for every instance x. They showed that, with complete

training data (i.e., without missing values), a minimal classification-equivalent subgraph of

any DAG, which they call a C-DAG, is such that each arc is either directed towards the

class variable or a child of the class variable. They traversed the equivalence classes of C-

DAGs with a heuristic greedy search and a representation based on their previous work [Acid

and de Campos, 2003], rather than the more standard CPDAG representation and its corre-

39
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sponding operators [Chickering, 2002a,b]. Unlike the CPDAG, their representation is not a

canonical representative of an equivalence class.

In this chapter, we extend the work by Acid et al. [2005] in a number of ways. First, we

show that the search can be reduced, without loss of generality, to a subset of the space of

C-DAGs. Namely, we need not consider C-DAGs with parents for the class variable, Pa(C),

because P (C | x) is unaffected by marginal independences among Pa(C) while we can model

the full dependencies among them conditional to C with them being children of C. Besides

being smaller, we argue that this space of minimal class-focused DAGs, or MC-DAGs, is also

more adequate for greedy forward learning of dependencies among Pa(C).

Second, we adapt the GES algorithm to traverse the space of MC-DAGs. We do this by

providing GES operator validity conditions, that can be checked efficiently on a CPDAGs,

that discard CPDAGs corresponding to equivalence classes that do not have an MC-DAG as

a member.

Third, we specify how to, for complete data, efficiently evaluate the discriminative score

of an operator locally, time independent of the number of variables, and on a CPDAG. This

is based on a technique, described by Keogh and Pazzani [2002], for updating P (C,x), for all

x in our data set, for an arc addition. We adapt the technique for the GES operators over

CPDAGs in the MC-DAG space.

We applied our method on thirteen real-world data sets using cross-validated accuracy as

the learning score, and compared it to other greedy and non-greedy augmented naive Bayes

classifiers. Our method outperformed them on three data sets while it was outperformed on

one.

The research covered in this chapter has been submitted in Mihaljević et al. [2018b].

The rest of this chapter is organized as follows. Section 6.2 introduces notation and

terminology. Section 6.3 describes the MC-DAG space and discusses its advantages over the

C-DAG space. Section 6.4 describes our adaptation of GES for learning MC-DAGs from data.

Section 6.5 presents the local updating of P (C,X), used to compute discriminative scores.

Section 6.6 shows the evaluation of our algorithm on real-world data sets. We conclude in

Section 6.7.

6.2 Preliminaries

The reader can see Chapter 4 for the definition of a Bayesian network and related concepts as

well as the basics of learning them from data. Here we recall that we are interested in modeling

a distribution over a set of variables {C,X}, with C being a discrete variable representing the

class, and X = (X1, . . . , Xn) being n discrete or real-valued predictor random variables. We

also use X,Y, Z and Q to refer to variables in {C,X}. We use a Bayesian network B = (G,θ)

to model a probability distribution PG(x, c). We are interested in learning B from a data set

D = {(x(1), c(1)), . . . , (x(N), c(N))} of N observations of X and C.

Two DAGs G and H are equivalent if the independence constraints that they impose on

PG(·) and PH(·), respectively, are identical. Searching in this space requires a score-equivalent
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function and a way to represent an equivalence class of DAGs. All discriminative and many

generative scores are score-equivalent, that is, they score all equivalent DAGs equally. A

partially DAG (PDAG) P, containing both directed and undirected edges, represents the

class of DAGs equivalent to a DAG G obtained by orienting undirected edges in P. We say

that such a G is a consistent extension of P, G ∈ cext(P), while any DAG H equivalent to G
is a member of the equivalence class of DAGs corresponding to P, H ∈ E(P). A completed

PDAG (CPDAG) P for en equivalence class E(P) is the PDAG with an oriented edge for

every edge that is identically oriented in every G ∈ E(P), and an undirected edge for all other

edges in E(P). We refer to the directed arcs in a CPDAG as compelled for the equivalence

class, and to the undirected ones as reversible. A CPDAG P is unique for an equivalence

class and has every G ∈ E(P) as a consistent extension, cext(P) = E(P).

The GES algorithm starts from a CPDAG P = (V,EP = ∅) and proceeds with the

Insert(X,Y,T) operator (to be defined below) considering all arc additions to every DAG in

the current equivalence class E(P). It adds the best among the considered arcs and sets the

equivalence class of the obtained DAG as the new state P ′, and applies the Insert(X,Y,T)

operator to P ′. Once it reaches a local optimum, it starts its backward phase, with the

Delete(X,Y,H) operator (to be defined below) considering the removal of every arc in every

DAG in the current equivalence class. The operators are scored locally on the CPDAG P,

without generating the DAGs to which the visited states correspond. A set of conditions veri-

fiable on P ensure that the operators correspond to valid DAGs in the desired neighbourhood

of P.

6.3 Minimal C-DAGs

We begin with the definitions of classification equivalence and class-focused DAGs, or C-

DAGs.

Definition 1 (Acid et al. [2005]). Let G = (V,EG) and G′ = (V,EG′) be two DAGs. Let P be

any joint probability distribution on V, and PG and PG′ be the probability distributions that

factorize according to G and G′, respectively, defined as PG(V | paG(V )) = P (V | paG(V ))

and PG′(V | paG′(V )) = P (V | paG′(V )), ∀V ∈ V. If PG(C | x) = PG′(C | x) ∀x, we say that

G and G′ are classification-equivalent.

That is, G and G′ are classification-equivalent if their class-posterior distributions are identical

for any value of x.

Definition 2 (Acid et al. [2005]). A DAG G = (V,EG) is a class-focused DAG (C-DAG) with

respect to the variable C if and only if it satisfies the following condition: ∀X,Y ∈ V, if

X → Y ∈ EG then either Y = C or X = C or C → Y ∈ EG .

In words, in a C-DAG only C and children of C can have parents (see Figure 6.1). Acid et al.

[2005] showed that, for any DAG H, its C-DAG subgraph HC , induced by including only

arcs that match Definition 2, is its minimal classification-equivalent subgraph. Acid et al.

[2005] searched the space of C-DAGs to learn Bayesian network classifiers because it covers

all possible class-posterior distributions.
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We now show that a smaller space is sufficient. Namely, we need not consider parents

for the class variable C. That is, for each DAG H and its C-DAG subgraph HC , there is a

classification-equivalent C-DAG G with no parents for C. We first formalize such a minimal

class-focused DAG (MC-DAG) structure, and then show how to convert a C-DAG into a

classification-equivalent MC-DAG.

Definition 3. A DAG G = (V,EG) is a minimal class-focused DAG (MC-DAG) with respect

to the variable C if and only if it satisfies the following condition: ∀X,Y ∈ V, if X → Y ∈ EG

then C → Y ∈ EG .

In words, an MC-DAG is a C-DAG that only allows children of C to have parents (see

Figure 6.1). Dispensing with the parents of C, PaH(C), while maintaining classification

equivalence, is possible by observing that, unlike PH(c,x), PH(c | x) is unaffected by con-

ditional independence constaints that hold only when C is not observed. This is because

we compute P (c | x) as ∝ P (c)P (x | c), setting each value of C as evidence. Thus, for the

C-DAG H, where X ⊥⊥H Y necessarily holds for all X,Y ∈ PaH(C), there exists a DAG

G such that X 6⊥⊥G Y for all X,Y ∈ PaH(C) while nonetheless PH(c | x) = PG(c | x). To

account for X 6⊥⊥H Y | C for all X,Y ∈ PaH(C) it suffices for G to have 1) every X ∈
PaH(C) as a child of C and 2) an arc for every pair {X,Y }, for all X,Y ∈ PaH(C). Thus,

any C-DAG H can be represented by an MC-DAG G with PaG(C) = ∅. We prove this by

showing that a C-DAG H can be converted into a classification-equivalent C-DAG H′ with

one class parent less (Proposition 4). The conversion to an MC-DAG follows by repeating

such parent removals until there are no more parents of C (Proposition 5). Figure 6.1 (above)

shows a C-DAG H and its classification-equivalent MC-DAG G.

Proposition 4. For a C-DAG H with X → C there is a classification-equivalent C-DAG H′

such that X → C is reversed to C → X.

Proof. Consider a C-DAG H with X ∈ PaH(C). Let H′ = H. By Definition 2, PaH′(X)

= ∅ and X may have children other than C, themselves also, by Definition 2, children of

C. Now reverse the arc X → C in H′ into C → X. H′ is a valid DAG because we did

not introduce a cycle: a Y ∈ ChH′(X) cannot be an ancestor of C since, by Definition 2,

Y ∈ ChH′(C) and a path from Y to C would imply that there was a cycle in H′ before the

reversal. Since PaH′(X) = ∅, the reversal did not introduce a v-structure centered around X.

The reversal did drop the v-structures X → C ← Y centered around C, ∀Y ∈ PaH(C) \X,

replacing them with serial connections Y → C → X. After the reversal, H′ and H differ, for

all Y ∈ PaH(C) \ X, as follows: 1) X ⊥⊥H Y while X 6⊥⊥H′ Y ; and 2) X 6⊥⊥H Y | C while

X ⊥⊥H′ Y | C. 1) does not affect classification equivalence of H and H′ since we compute

P (c | x) by always conditioning on C, via ∝ P (c)P (x | c). 2) can be remedied by adding

to H′ an arc Y → X for every Y ∈ PaH(C) \ X. Now add one such arc Y → X to H′.
This introduced no cycles in H′ because PaH′(Y ) = ∅ and therefore there is no directed path

from X to Y in H′. Before adding Y → X, the only parent of X in H′ was C, PaH′(X)

= C, and thus adding Y → X only introduced the v-structure Y → X ← C. Since Y ∈
PaH′(C), Y 6⊥⊥H′ C | X was already true, and the only effect of adding Y → X was to render
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X 6⊥⊥H′ Y | C, which was our purpose (because X 6⊥⊥H Y | C). After the addition, PaH′(X)

= {Y,C}. Now add to H′ the arc Q→ X, for Q ∈ PaH(C) \ {X,Y }. The only independence

constraint in H′ conditional to C that this addition modified is that now Q 6⊥⊥H′ X | C,

because the two introduced v-structures, Q → X ← C and Q → X ← Y , modified no such

constraints. The reasoning regarding Q → X → C in analogous to that for Y → X → C.

Regarding Q→ X ← Y , Q 6⊥⊥H′ Y | C was already true due to the v-structure Q→ C ← Y

in H′. For each next Z ∈ PaH(C) \ {X,Y,Q} added to H′ it follows by induction that the

only independence constraint conditional to C modified is to render Z 6⊥⊥H′ X | C. After

adding to H′ arcs Y → X for every Y ∈ PaH(C) \X, Y 6⊥⊥H′ X | C holds and there are no

independence constraints conditional to C holding in H′ that do not also hold in H. Thus,

H′ is classification-equivalent to H. It is easy to see that it is also a C-DAG.

Proposition 5. For each C-DAG H there is a classification-equivalent MC-DAG.

Proof. The proof is constructive. Start with G = H. At each step, produce a classification-

equivalent C-DAG G′ with one less parent of C than G. Set G = G′. Repeated application

will produce a classification-equivalent MC-DAG.

Any DAG H and its unique C-DAG HC subgraph can be mapped to multiple equivalent

MC-DAGs, obtained by choosing the arcs X → C which to reverse in a different order. An

MC-DAG G is not a subgraph of HC (unless PaHC
(C) = ∅ and HC is an MC-DAG itself),

as it contains the reversed arcs to PaHC
(C) and arcs among PaHC

(C) (shown in red in

Figure 6.1). Note that PHC
(c,x) = PG(c,x) need not hold and thus the generative scores of

HC and G might differ.

Since every C-DAG is an MC-DAG, but not vice-versa, the MC-DAG space is smaller.

It is nonetheless sufficient, as for each C-DAG there is at least one classification-equivalent

MC-DAG. We argue that it is also more suitable for greedy learning algorithms. Consider

a forward search starting from an empty graph H′ = (V = {X,Y, Z,C},EG′ = ∅), using

penalized log-likelihood to learn from D, a limited-N sample taken from B = (G′,θ), with

G′ = ({X,Y, Z,C},EG′) shown in Figure 6.1. After two iterations, the search may have

reached the state with EH′ = {X → C,C ← Y }. Then, its only option to account for

X 6⊥⊥G′ Z | C is to add Z as a parent of C in H′. This, however, renders Z 6⊥⊥H′ Y | C,

although Z ⊥⊥G′ Y | C, producing a model more complex that G′. Otherwise, the complexity

added by having Z 6⊥⊥H′ Y | C and might lead the algorithm to halt, adding no arc between

C and Y or adding Y as a child of C, either way introducing independence constraint missing

from G′. Proceeding in a MC-DAG space, however, the same algorithm could have X and

Y as children of C after two steps, and could recover the true structure in the following

iterations.

6.4 Adapted GES algorithm for learning MC-DAGs

In this section we describe the adapted GES algorithm which visits only equivalence classes

which contain MC-DAGs. We achieve this by means of additional operator validity conditions,
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Figure 6.1: Above: A C-DAG H (left) and a classification-equivalent MC-DAG G (right). Only C
and ChH(C) = {U,Z} have parents in H. In G, all arcs incoming to C in H are reversed and there is
an arc between every pair in PaH(C) (shown in red). Only ChG(C) = {U,Z,X, Y, Z} have parents
in G. Below: An MC-DAG G′ (left) and a classification-equivalent C-DAG H′ (right) which lacks the
independence constraint Y ⊥⊥ Z | C present in G′.

discarding operators that produce CPDAGs outside this space. We begin by describing the

properties of a CPDAG that has an MC-DAG consistent extension. We then provide the

operator validity criteria.

6.4.1 CPDAGs for representing equivalence classes of MC-DAGs

The following conditions are needed for a CPDAG to have an MC-DAG as a consistent

extension:

Proposition 6. A CPDAG P = (V,EP) has an MC-DAG as consistent extension if:

1. ∀X → Y ∈ EP : (Y ∈ Ch(C)) or (X ∈ {ChP(C),NbrP(C), C}, Y ∈ {NbrP(C)})

2. ∀X − Y ∈ EP : X,Y ∈ {ChP(C),NbrP(C), C}

Proof. Assume that the conditions in Proposition 6 hold for a CPDAG P. We need to find

a G ∈ cext(P) such that every arc X → Y in G is such that Y ∈ ChG(C). All arcs in G
are either directed or undirected in P. Consider first an arc X → Y in G corresponding

to an edge X − Y in P. By condition 2) in Proposition 6, Y ∈ {ChP(C),NbrP(C), C}.
If Y ∈ ChP(C), the desired condition already holds in G for X → Y . Otherwise, the arc

C − Y in P might be directed as Y → C in G. |PaG(C)| > 1 may hold if every pair Z,Q ∈
PaG(C) is adjacent in G and thus the Z → C ← Q are not v-structures. However, we will

only prove the result for the case when |PaG(C)| = 1. With |PaG(C)| = 1, there is an
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equivalent DAG G′ with Y ∈ ChG(C), obtained by reversing Y → C in G. G′ has no cycles,

because PaG(C) = Y and thus there is no other path from Y to C in G′. The reversal

does not introduces any new v-structures into G′ and thus does not modify its independence

constraints. This is because reverting C − Y as C → Y only adds v-structures C → Y ← Z

for Z ∈ PaG′(Y ) \ {C,AdjG(C)}. Necessarily, PaG′(Y ) ⊆ NbrP(Y ) ∪ PaP(Y ). For all

Z ∈ NbrP(Y ) it follows from condition 2) in Proposition 6 that Z ∈ { C, Ch(C), Nbr(C)}.
For all Z ∈ PaP(Y ), it follows from condition 1) that if Z 6∈ AdjP(C) then Y ∈ ChP(C) and

C → Y is already in the desired direction in P. Otherwise, if Z ∈ AdjP(C) no v-structures

are introduced by orienting C − Y as C → Y . Thus, for a P that satisfies conditions

1) and 2), there is a G′ ∈ cext(P) such that all undirected edges in P are directed into

ChG(C). Consider now the remaining case a directed arc X → Y in P. By condition 1), if

X 6∈ {C,AdjP(C)}, then Y ∈ ChP(C) and the condition is met. Otherwise, Y ∈ NbrP(C).

As dicussed for the case of an undirected arc X −Y , there is a G ∈ cext(P) such that Y −C
is directed as C → Y . Thus, for a P complying with the conditions in Proposition 6 there is

an MC-DAG G′ ∈ cext(P).

6.4.2 Insert operators

For a current state P, the Insert(X,Y,T) operator is:

Definition 7 (Chickering [2002b]). Insert(X,Y,T)

For non-adjacent nodes X and Y in P, and for any subset T of the neighbors of Y that are

not adjacent to X, the Insert(X,Y,T) operator modifies P by (1) inserting the directed edge

X → Y , and (2) for each T ∈ T, directing the previously undirected edge between T and Y

as T → Y .

Chickering [2002b] defined validity conditions for Insert(X,Y,T) that can be checked on

the CPDAG. The following additional conditions ensure that the operator can produce an

MC-CPDAG.

Proposition 8. Let P ′ be a PDAG obtained by applying a valid Insert(X,Y,T) to a CPDAG

P that has a consistent extension G which is an MC-DAG. P ′ has a consistent extension G′

which is an MC-DAG if Y ∈ {ChP ′(C),NbrP ′(C)}.

Proof. We need to find a DAG G′ ∈ cext(P ′) that satisfies the conditions in Definition 3, that

is, with each arc directed towards a child of the class variable. After applying Insert(X,Y,T),

P ′ differs form P in that it contains the arc X → Y and that undirected edges T − Y for

T ∈ T have been oriented as T → Y . These arcs will be identically oriented in every G′

∈ cext(P ′). The remaining arcs in G′ are either oriented as in G, because they are compelled

in P, or can be be oriented as in G because they are reversible in P. Thus it suffices to

show that, by proving Y ∈ ChG′(C), the arcs X → Y and T → Y , for every T ∈ T, satisfy

Definition 3. If Y ∈ ChP(C) our condition is already satisfied because Y ∈ ChG′(C) for

any G′ ∈ cext(P). If Y ∈ NbrP(C), we need to prove that C − Y can be oriented as

C → Y in G′ without modifying the independence constaints in G. Orienting C − Y as
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C → Y forms v-structures C → Y ← Z in P ′ for all Z ∈ {T,PaP(Y )} \ AdjP ′(C) as

well as C → Y ← X if X 6∈ AdjP ′(C). We first show that {T,PaP(Y )} \AdjP ′(C) = ∅.
Namely, because Y ∈ NbrP(C) and all T ∈ T, by Definition 7, have incident undirected

arcs, it follows, due to condition 2 in Proposition 6, that {T,PaP(Y )} ⊆ AdjP ′(C) and

thus {T,PaP(Y )} \ AdjP ′(C) = ∅. If X 6∈ AdjP ′(C), by condition 1) in Proposition 6,

Y ∈ ChP(C), so C → Y is already properly oriented in P. Therefore, enforcing in G the

direction C → Y for C − Y in P does not modify the independence constraints in G′. Thus,

for a P that matches the condition, the Insert(X,Y,T) operator produces a CPDAG such

that MC-DAG G ∈ cext(P).

6.4.3 Delete operators

For a current state P, we apply the Delete(X,Y,H) operator, followed by the Post-Delete(X,Y )

if X = C. The operators are:

Definition 9 (Chickering [2002b]). Delete(X,Y,H)

For adjacent nodes X and Y in P connected either as X − Y or X → Y , and for any subset

H of the neighbors of Y that are adjacent to X, the Delete(X,Y,H) operator modifies P
by deleting the edge between X and Y , and for each H ∈ H, (1) directing the previously

undirected edge between Y and H as Y → H and (2) directing any previously undirected

edge between X and H as X → H.

Definition 10. Post-Delete(X,Y )

Let P ′ be a PDAG obtained after applying a valid Delete(X,Y,H) to P. Then, if X = C, the

Post-Delete(X,Y ) operator deletes in P ′ all directed arcs Z → Y , and orients all undirected

edges Z − Y as Y → Z, for any Z ∈ V.

The conditions given in Chickering [2002b] specify whether the Delete(X,Y,H) operator is

valid for a given X, Y , and H. If X = C, the delete renders Y 6∈ {ChP(C),NbrP(C)}.
Thus, if it contains incoming or undirected edges into Y , P ′ does not satisfy the conditions

in Proposition 6 that ensure there is an MC-DAG G′ ∈ cext(P ′). Post-Delete(X,Y ) removes

the violating arcs ensuring that P satisfies the conditions in Proposition 6.

Proposition 11. Let PDAG P ′ be the result of applying a valid Delete(X,Y,H), for X = C,

followed by a Post-Delete(X,Y ), to a PDAG P. There exists a DAG G′ that is a consis-

tent extension of P ′ and is classification-equivalent to any MC-DAG G that is a consistent

extension of P.

We only sketch the proof for brevity. Because Post-Delete(X,Y ) ensured that P ′ matches

the conditions in Proposition 6, it follows that is there is a DAG G′ ∈ cext(P ′). Once

Delete(X,Y,H) rendered Y not adjacent to C, none of its incoming arcs affect classification-

equivalence because they are not part of the minimal C-DAG subgraph of P (see Definition 2).

Thus, we can delete them to obtain a PDAG with no parents for nodes that are no children

of C. The undirected edges into Y would necesarily be oriented away from Y in a valid

MC-DAG.
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Proposition 12. Let PDAG P ′ be the result of applying a valid Delete(X,Y,H), followed by

a valid Post-Delete(X,Y ), to a CPDAG P that has a consistent extension G which is an

MC-DAG. P ′ has a consistent extension G which is an MC-DAG if C 6∈ H.

Proof. G′ is an MC-DAG if all its arcs are directed towards a child of C. We need to

ensure that: 1) If Y 6∈ {ChG′(C),NbrG′(C)}, then PaG′(Y ) = ∅; 2) H ∈ ChG′(C), for all

H ∈ H. Y 6∈ {ChG′(C),NbrG′(C)} only happens if X = C. In that case, Post-Delete(X,Y )

ensures that PaG′(Y ) = ∅, satisfying the first condition. Regarding the second condition,

H ∈ {ChP(C),NbrP(C), C}, for all H ∈ H, by condition 2) in Proposition 6. If C 6= H,

the second condition can be satisfied. Otherwise, P ′ will contain a v-structure X → C ← Y .

Thus for every G′ ∈ cext(P ′), PaG′(C) 6= ∅ and therefore such G′ is not an MC-DAG. Thus,

for C 6∈ H, Delete(X,Y,H) followed by Post-Delete(X,Y ) produce a CPDAG that has an

MC-DAG as a consistent extension.

6.5 Local discriminative scoring for CPDAGs

Chickering [2002b] specified how to efficiently score Insert(X,Y,T) and Delete(X,Y,H) op-

erators for decomposable scores, without converting the current state’s CPDAG into DAGs.

We cannot do this for discriminative scores such as conditional log-likelihood, as 1) they do

not decompose over the network; and 2) we need a fully parameterized DAG to compute the

underlying class-conditional probability P (c | x).

With complete data we can, however, efficiently update the P (C,x) of the current state P,

without recomputing it from scratch and then recompute the P (c | x) and the discriminative

score from the updated P (C,x). This technique was described by Keogh and Pazzani [2002]

for a single arc insertion into a one-dependence Bayesian classifier. We adapt it for CPDAG

Insert(X,Y,T) and Delete(X,Y,H) operators for MC-DAGs.

Let A be the N × rc matrix holding the PG(c,x) for our current CPDAG P, where N is

the number of training instances in D and rc the number of distinct class values, and G ∈
cext(P). Then, for a valid Insert(X,Y,T) that yields a CPDAG P ′,

a′ij =


aij ×

PG(y(i)|x(i),t(i),pa∗G(y)(i),cj)

PG′ (y
(i)|pa∗

G′
(y)(i),cj)

if C ∈ Pa(X)

aij otherwise

where the i superscript denotes the values in the i-th instance of D, G′ ∈ cext(P ′), and

pa∗G(X) denotes denotes PaG(C) \C. After the update, aij is proportional to P (C,x) for the

new state P ′. If C 6∈ Pa(X), the factor for the observed variable X may be omitted because

its value is equal for every c. If C ∈ Pa(X), the result assumes that there exist such DAGs G
and G′, such that PaG′(Y ) = {PaG(Y ), X,T} also holds. They exist if any undirected edges

to Y in P, other than those to T ∈ T, C, are outgoing from Y in G and G′. Since these edges

are not compelled in P, there is a G with such an orientation. Such edges in P ′ can only be

comelled as outgoing from Y , since directing them towards Y could introduce v-structures
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with the newly oriented edges, and thus a G′ also exists.

To compute the update, we do not need G and G′, but only the probabilities

PG(y(i) | x(i), t(i),pa∗G(y)(i), cj) and PG′(y
(i) | pa∗G′(y)(i), cj) which we can re-estimate from D

each time.

For a Delete(X,Y,H), followed by a Post-Delete(X,Y ),

a′ij =

aij ×
P ′G(y(i)|x(i),pa∗G′ (y)(i),cj)

PG(y(i)|pa∗G(y)(i),cj)
if C ∈ Pa(X)

aij otherwise

The argument for the existence of adequate G and G′ is analogous to the one above. Thus, for

each operator, we update P (C,x) in O(Nrc) time, independently of the number of features

n.

6.6 Experimental evaluation

We compared our method (MG, short for MC-DAG GES) to a number of k-dependence

Bayesian classifiers [k-DB; Sahami, 1996], that is, augmented naive Bayes models with up

to k predictor parents per predictor. Namely, we used the naive Bayes (DB0, the 0 stand-

ing for 0-dependence), a 1-dependence classifier learned with a hill-climbing search and a

discriminative score [DB1
HC ; Keogh and Pazzani, 2002] and its 2-dependence generalization

(DB2
HC) implemented in the bnclassify R package [Mihaljević et al., 2018], and the optimal

log-likelihood 1-dependence classifier [DB1
CL; Friedman et al., 1997]. For comparison with the

corresponding k-DB, we also limited the number of parents per predictor for MG to 1 (MG1),

2 (MG2), or left it unbounded (MG). We considered both an empty graph and a naive Bayes

as the initial state of the search (the latter indicated with the NB subscript, e.g., MGNB).

We used data sets from the UCI repository [Dheeru and Karra Taniskidou, 2017], together

with the mofn-3-7-10 dataset by Kohavi and John [1997] (see Table 6.1). We discretized

numeric variables with the Fayyad and Irani [1993] method and removed instances with

missing values, except in voting, where we treated them as a separate value. For all MG and

DBHC variants we used 10-fold stratified cross-validation accuracy estimate as the scoring

function, with the greedy search proceeding until the score was not degraded. For the DB1
CL,

we used log-likelihood as the score.

MGNB outperformed all methods on car and mofn-3-7-10 (see Table 6.1). Both un-

bounded variants of MG (i.e., MGNB and MG) were outperformed only on the mushroom

data set, and by DB1
CL, the only non-greedy algorithm. Differences between the best un-

bounded MG and the remaining methods were not significant on the remaining data sets.

The difference on mushroom is probably due to the greedy nature of MG: DB1
CL is able to

find the optimal 1-DB with respect to log-likelihood, with 21 augmenting arcs, while MGNB

and MG added one and zero arcs, respectively, to their initial structures.

Traversing the space of equivalence classes, rather than that of DAGs, did not provide

an advantage when bounding the number of predictor parents. Namely, MG1
NB only outper-
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formed DB1
HC on tictac, with no additional significant differences between them, nor be-

tween MG2
NB and DB2

HC . MGNB only visited slightly more distinct structures than DBHC .

For example, on a single run on voting MG1
NB visited 968 states after ten iterations, ver-

sus 961 states by DB1
HC . While the difference grows with the number of augmenting arcs

included, it would still be negligible on voting with the maximal 16 of iterations.

MGNB strongly outperformed MG on car, tictac and mofn-3-7-10, while MG was

better on voting, and the differences were insignificant on other data sets. The poor per-

formance of MG was due to it returning extremely sparse graphs: an empty graph for car

and mofn-3-7-10, and one with three arcs on car. On the other hand, MG was accurate on

voting by using only four predictor variables, while MB NB added 15 augmenting arcs and

used all predictors.

6.7 Conclusion

We have specified the smallest DAG subspace that covers all possible class-conditional dis-

tributions. We presented an algorithm to traverse the equivalence classes in this space by

adapting the greedy equivalence search algorithm. Finally, we specified how to compute the

discriminative score of a CPDAG search operator in a time that is independent of the number

of variables and that does not require converting the CPDAG into a DAG.

Future work includes evaluating our algorithm on additional synthetic and real-world

data sets, to better assess its merits. It is possible that a different search algorithm could

take better advantage of equivalence classes when the nodes’ in-degree is bounded, as for

the k-dependence models. Adapting our algorithm to traverse the space of augmented naive

Bayes models, rather than that of MC-DAGs, would amount to simple additional restrictions

to operator validity conditions.
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Chapter 7
bnclassify: an R package for

learning Bayesian network

classifiers

7.1 Introduction

In this chapter, we present our implementation of Bayesian network classifiers in the bnclassify

package for the R environment for statistical computing [R Core Team, 2015]. A Bayesian

network classifier is simply a Bayesian network applied to classification, that is, the predic-

tion of the probability P (c | x) of some discrete (class) variable C given some features X.

The bnlearn [Scutari and Ness, 2018, Scutari, 2010] R package already provides state-of-the

art algorithms for learning Bayesian networks from data. Yet, learning classifiers is specific,

as the implicit goal is to estimate P (c | x) rather than the joint probability P (x, c). Thus,

specific search algorithms, network scores, parameter estimation and inference methods have

been devised for this setting. In particular, many search algorithms consider a restricted

space of structures such as that of augmented naive Bayes [Friedman et al., 1997] models.

Unlike with general Bayesian networks, it makes sense to omit a feature Xi from the model

as long as the estimate of P (c | x) is no better than that of P (c | x \ xi). Discriminative

scores, related to the estimation of P (c | x) rather than P (c,x), are used to learn both

structure [Keogh and Pazzani, 2002, Grossman and Domingos, 2004, Pernkopf and Bilmes,

2010, Carvalho et al., 2011] and parameters [Zaidi et al., 2013, 2017]. Some of the prominent

classifiers [Webb et al., 2005] are ensembles of networks, and there are even heuristics applied

at inference time, such as the lazy elimination technique [Zheng and Webb, 2006]. Many of

these methods [e.g., Dash and Cooper, 2002, Zaidi et al., 2013, Keogh and Pazzani, 2002,

Pazzani, 1996] are at best available in standalone implementations published alongside the

original papers.

The bnclassify package that we have implemented provides state-of-the-art algorithms

for learning structure and parameters. The implementation is efficient enough to allow for

51
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time-consuming discriminative scores on relatively medium-sized data sets. It provides util-

ity functions for prediction and inference, model evaluation with network scores and cross-

validated estimation of predictive performance, and model analysis, such as querying struc-

ture type or graph plotting via the Rgraphviz package [Hansen et al., 2017]. It integrates

with the caret [Kuhn et al., 2017, Kuhn, 2008] and mlr [Bischl et al., 2017, 2015] packages

for straightforward use in machine learning pipelines. Currently it supports only discrete

variables. The functionalities are illustrated in an introductory vignette, while an additional

vignette provides details on the implemented methods.1 It includes over 200 unit and inte-

gration tests that give a code coverage of 94 percent2.

The research covered in this chapter has been submitted in Mihaljević et al. [2018a].

The rest of this chapter is structured as follows. Section 7.2 describes the implemented

functionalities. Section 7.3 illustrates usage with a synthetic data set while Section 7.4

compares the methods’ runtime, predictive performance and complexity over multiple data

sets. Section 7.5 discusses implementation while Section 7.6 briefly surveys related software.

Finally, Section 7.7 concludes and outlines future work.

7.2 Functionalities

The package has four groups of functionalities:

1. Learning network structure and parameters

2. Analyzing the model

3. Evaluating the model

4. Predicting with the model

Learning is split into two separate steps, the first being structure learning and the second,

optional, parameter learning. The obtained models can be evaluated, used for prediction or

analyzed. The following provides a brief overview. For details on some of the underlying

methods please see Chapter 4.

7.2.1 Structures

The learning algorithms produce the following network structures:

• Naive Bayes (NB) (Figure 4.1a) [Minsky, 1961]

• k-dependence Bayesian classifier (k-DB) [Sahami, 1996, Pernkopf and Bilmes, 2010]

– One-dependence estimators (ODE)

∗ Tree-augmented naive Bayes (TAN) (Figure 4.1b) [Friedman et al., 1997]

∗ Forest-augmented naive Bayes (FAN) (Figure 4.1c)

• Semi-naive Bayes (SNB)(Figure 4.1d) [Pazzani, 1996]

1The vignettes are available within the R environment when bnclassify is installed.
2See https://codecov.io/github/bmihaljevic/bnclassify?branch=master

https://codecov.io/github/bmihaljevic/bnclassify?branch=master
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• Averaged one-dependence estimators (AODE) [Webb et al., 2005]

Figure 4.1 shows some of these structures and their factorizations of P (c,x). We use

k-DB in the sense meant by Pernkopf and Bilmes [2010] rather than that by Sahami [1996],

as we impose no minimum on the number of augmenting arcs.

7.2.2 Algorithms

Each structure learning algorithm is implemented by a single R function. Table 7.1 lists these

algorithms along with the corresponding structures that they produce, the scores they can

be combined with, and their R functions. Below we provide their abbreviations, references,

brief comments and illustrate function calls.

7.2.2.1 Fixed structure

We implement two algorithms:

• NB

• AODE

The NB and AODE structures are fixed given the number of variables, and thus no search

is required to estimate them from data. For example, we can get a NB structure with

n <- nb(’class’, dataset = car)

where class is the name of the class variable C and car the dataset containing observations

of C and X.

7.2.2.2 Optimal ODEs with decomposable scores

We implement one algorithm:

• Chow-Liu for ODEs (CL-ODE; Friedman et al. [1997])

Maximizing log-likelihood will always render a TAN while maximizing penalized log-

likelihood may render a FAN since including some arcs can degrade such a score. With

incomplete data our implementation does not guarantee the optimal ODE as that would

require computing maximum likelihood parameters. The parameters of the tan cl function

are the network score to use and, optionally, the root for features’ subgraph:

n <- tan_cl(’class’, car, score = ’AIC’, root = ’buying’)
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7.2.2.3 Greedy hill-climbing with global scores

bnclassify implements five algorithms:

• Hill-climbing tree augmented naive Bayes (HC-TAN) [Keogh and Pazzani, 2002]

• Hill-climbing super-parent tree augmented naive Bayes (HC-SP-TAN) [Keogh and Paz-

zani, 2002]

• Backward sequential elimination and joining (BSEJ) [Pazzani, 1996]

• Forward sequential selection and joining (FSSJ) [Pazzani, 1996]

• Hill-climbing k-dependence Bayesian classifier (k-DB)

These algorithms use the cross-validated estimate of predictive accuracy as score. Only

the FSSJ and BSEJ provide feature selection. The parameters of the corresponding functions

include the number of cross-validation folds k and the minimal absolute score improvement

epsilon required for continuing the search:

fssj <- fssj(’class’, car, k = 5, epsilon = 0)

Table 7.1: Implemented structure learning algorithms.

Structure Search algorithm Score Feature selection Function

NB - - - nb

TAN/FAN CL-ODE log-lik, AIC, BIC - tan cl

TAN TAN-HC accuracy - tan hc

TAN TAN-HCSP accuracy - tan hcsp

SNB FSSJ accuracy forward fssj

SNB BSEJ accuracy backward bsej

AODE - - - aode

kDB kDB accuracy - kdb

7.2.3 Parameters

bnclassify only handles discrete features. With fully observed data, it estimates the pa-

rameters with maximum likelihood or Bayesian estimation, according to Equation 4.2, with

a single α for all local distributions. With incomplete data it uses available case analysis and

substitutes N·j· in Equation 4.2 with Nij· =
∑|ΩXi

|
k=1 Nijk, i.e., the count of instances in which

Pa(Xi) = j and Xi is observed.

We implement two methods for weighted naive Bayes parameter estimation:

• Weighting attributes to alleviate naive Bayes’ independence assumption (WANBIA)

[Zaidi et al., 2013]

• Attribute-weighted naive Bayes (AWNB) [Hall, 2007]

And one method for estimation by means of Bayesian model averaging over all NB struc-

tures with up to n features:
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• Model averaged naive Bayes (MANB) [Dash and Cooper, 2002]

It makes little sense to apply WANBIA, MANB and AWNB to structures other than NB.

WANBIA, for example, learns the weights by optimizing the conditional log-likelihood of the

NB. Parameter learning is done with the lp function. For example,

a <- lp(n, smooth = 1, manb_prior = 0.5)

computes Bayesian parameter estimates with α = 1 (the smooth argument) for all local distri-

butions, and updates them with the MANB estimation obtained with a 0.5 prior probability

for each class-to-feature arc.

7.2.4 Utilities

Single-structure-learning functions, as opposed to those that learn an ensemble of structures,

return an S3 object of class bnc dag. The following functions can be invoked on such objects:

• Plot the network: plot

• Query model type: is tan, is ode, is nb, is aode, . . .

• Query model properties: narcs, families, features, . . .

• Convert to gRain and bnlearn objects: as grain

Ensembles are of type bnc aode and only print and model type queries can be applied on

such objects. Fitting the parameters (by calling lp) of a bnc dag produces a bnc bn object.

In addition to all bnc dag functions, the following are meaningful:

• Predict class labels and class posterior probability: predict

• Predict joint distribution: compute joint

• Network scores: AIC,BIC,logLik,clogLik

• Cross-validated accuracy: cv

• Query model properties: nparams

• Parameter weights: manb arc posterior, weights

The above functions for bnc bn can also be applied to an ensemble with fitted parameters.

7.2.5 Documentation

This vignette provides an overview of the package and background on the implemented meth-

ods. Calling ?bnclassify gives a more concise overview of the functionalities, with pointers

to relevant functions and their documentation. The “usage” vignette presents more detailed

usage examples and shows how to combine the functions. The “methods” vignette provides

details on the underlying methods and documents implementation specifics, especially where

they differ from or are undocumented in the original paper.
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7.3 Usage example

We illustrate the four groups of functionalities (see Section 7.2) with the synthetic car data

set with six features. We begin with a simple example for each functionality group and then

elaborate on the options in the following sections. We first load the package and the dataset,

library(bnclassify)

data(car)

then learn a naive Bayes structure and its parameters,

nb <- nb(’class’, car)

nb <- lp(nb, car, smooth = 0.01)

get the number of arcs in the network,

narcs(nb)

[1] 6

get the 10-fold cross-validation estimate of accuracy,

cv(nb, car, k = 10)

[1] 0.8623058

and finally classify the entire data set

p <- predict(nb, car)

head(p)

[1] unacc unacc unacc unacc unacc unacc

Levels: unacc acc good vgood

7.3.1 Learning

The functions for structure learning, shown in Table 7.1, correspond to the different algo-

rithms. They all receive the name of the class variable and the data set as their first two

arguments, which are then followed by optional arguments. The following runs the CL-ODE

algorithm with the AIC score, followed by the FSSJ algorithm to learn another model:

ode_cl_aic <- tan_cl(’class’, car, score = ’aic’)

set.seed(3)

fssj <- fssj(’class’, car, k = 5, epsilon = 0)

The bnc function is a shorthand for learning structure and parameters in a single step,

ode_cl_aic <- bnc(’tan_cl’, ’class’, car, smooth = 1, dag_args = list(score = ’aic’))

where the first argument is the name of the structure learning function while and optional

arguments go in dag args.
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7.3.2 Analyzing

Printing the model, such as the above ode cl aic object, provides basic information about

it.

ode_cl_aic

Bayesian network classifier

class variable: class

num. features: 6

num. arcs: 9

free parameters: 131

learning algorithm: tan_cl

While plotting the network is especially useful for small networks, printing the structure

in the deal [Bottcher and Dethlefsen, 2013] and bnlearn format may be more useful for

larger ones:

ms <- modelstring(ode_cl_aic)

strwrap(ms, width = 60)

[1] "[class] [buying|class] [doors|class] [persons|class]"

[2] "[maint|buying:class] [safety|persons:class]"

[3] "[lug_boot|safety:class]"

We can query the type of structure; params lets us access the conditional probability

tables (CPTs); while features lists the features:

is_ode(ode_cl_aic)

[1] TRUE

params(nb)$buying

class

buying unacc acc good vgood

low 0.2132243562 0.2317727320 0.6664252607 0.5997847478

med 0.2214885458 0.2994740131 0.3332850521 0.3999077491

high 0.2677680077 0.2812467451 0.0001448436 0.0001537515

vhigh 0.2975190903 0.1875065097 0.0001448436 0.0001537515

length(features(fssj))
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[1] 5

For example, fssj has selected five out of six features.

manb arc posterior provides the MANB posterior probabilities for arcs from the class

to each of the features:

manb <- lp(nb, car, smooth = 0.01, manb_prior = 0.5)

manb_arc_posterior(manb)

buying maint doors persons lug_boot

1.000000e+00 1.000000e+00 3.937961e-20 1.000000e+00 9.980275e-01

safety

1.000000e+00

With the posterior probability of 0 for the arc from ‘class‘ to ‘doors‘, and 100% for all

others, MANB renders doors independent from the class while leaving the other features’

parameters unaltered. We can see this by printing out the CPTs:

params(manb)$doors

class

doors unacc acc good vgood

2 0.25 0.25 0.25 0.25

3 0.25 0.25 0.25 0.25

4 0.25 0.25 0.25 0.25

5more 0.25 0.25 0.25 0.25

all.equal(params(manb)$buying, params(nb)$buying)

[1] TRUE

For more functions for querying a structure with parameters (bnc bn) see ?inspect bnc bn.

For a structure without parameters (bnc dag), see ?inspect bnc dag.

7.3.3 Evaluating

Multiple scores can be computed:

logLik(ode_cl_aic, car)

’log Lik.’ -13307.59 (df=131)

AIC(ode_cl_aic, car)

[1] -13438.59
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The cv function estimates the predictive accuracy of one or more models with stratified

cross-validation. In the following we assess the above models produced by NB and CL-ODE

algorithms:

set.seed(0)

cv(list(nb = nb, ode_cl_aic = ode_cl_aic), car, k = 5, dag = TRUE)

nb ode_cl_aic

0.8582303 0.9345913

Above, k is the desired number of folds, and dag = TRUE evaluates structure and parameter

learning, while dag = FALSE keeps the structure fixed and evaluates just the parameter learn-

ing. The output gives 86% and 93% accuracy estimates for NB and CL-ODE, respectively.

mlr and caret packages provide additional options for evaluating predictive performance,

such as different metrics, and bnclassify is integrated with both.

7.3.4 Predicting

As shown above, we can predict class labels with predict. We can also get the class posterior

probabilities:

pp <- predict(nb, car, prob = TRUE)

head(pp)

unacc acc good vgood

[1,] 1.0000000 2.171346e-10 8.267214e-16 3.536615e-19

[2,] 0.9999937 6.306269e-06 5.203338e-12 5.706038e-19

[3,] 0.9999908 9.211090e-06 5.158884e-12 4.780777e-15

[4,] 1.0000000 3.204714e-10 1.084552e-15 1.015375e-15

[5,] 0.9999907 9.307467e-06 6.826088e-12 1.638219e-15

[6,] 0.9999864 1.359469e-05 6.767760e-12 1.372573e-11

7.4 Runtimes

We illustrate the algorithms’ runtimes, resulting structure complexity and predictive perfor-

mance on the datasets listed in Table 7.2. We only used complete data sets as time-consuming

inference with incomplete data makes cross-validated scores costly for medium-sized or large

data sets. The structure and parameter learning methods are listed in the legends of Fig-

ure 7.1, Figure 7.2, and Figure 7.3.

Figure 7.1 shows that the algorithms with cross-validated scores, followed by WANBIA,

are the most time-consuming. Runtime is still not prohibitive: TAN-HC ran for 90 seconds
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Table 7.2: Used data sets, from the UCI repository [Lichman, 2013]. Incomplete rows have been
removed. rc is the number of classes (i.e., distinct class labels).

N n rc Dataset

1728 7 4 car
958 10 2 tic-tac-toe
435 17 2 voting
351 35 2 ionosphere
562 36 19 soybean

3196 37 2 kr-vs-kr
3190 61 3 splice
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Figure 7.1: Runtimes of the algorithms on a Ubuntu 16.04 machine with 8 GB of RAM and a 2.5 GHz
processor, on a log10 scale. We used the default options for all algorithms and k = 5 and epsilon =

0 for the wrappers. CL-ODE-AIC is CL-ODE with the AIC rather than the log-likelihood score. The
lines have been horizontally and vertically jittered to avoid overlap where identical.

on kr-vs-kp and 123 seconds on splice, adding 27 augmenting arcs on the former and 7 on

the latter (a added arcs mean a iterations of the search algorithm). Note that their runtime

is linear in the number of cross-validation folds k; using k = 10 instead of k = 5 would have

roughly doubled the time.

CL-ODE tended to produce the most complex structures (see Figure 7.2), with FSSJ

learning complex models on car, soybean and splice, yet simple ones, due to feature selection,

on voting and tic-tac-toe. The NB models with alternative parameters, WANBIA and MANB,

have as much parameters as the NB because we are not counting the length-n weights vector,

rather just the parameters θ of the resulting NB (the weights simply produce an alternative

parameterization of the NB).

In terms of accuracy, NB and MANB performed comparatively poorly on car, voting,

tic-tac-toe, and kr-vs-kp, possibly because of many wrong independence assumptions (see
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Figure 7.2: The number of Bayesian network parameters θ of the resulting structures, on a log10 scale.
The lines have been horizontally and vertically jittered to avoid overlap where identical.

Figure 7.3). WANBIA may accounted for some of these violations on voting and kr-vs-kp, as

it outperformed NB and MANB on these datasets, showing that a simple model can perform

well on them when adequately parameterized. More complex models, such as CL-ODE and

AODE, performed better on car.

7.5 Implementation

With complete data, bnclassify implements prediction for augmented naive Bayes models

as well as for ensembles of such models. It multiplies the corresponding θ in logarithmic

space, applying the log-sum-exp trick before normalizing, to reduce the chance of underflow.

On instances with missing entries, it uses the gRain package [Højsgaard, 2016, Højsgaard,

2012] to perform exact inference, which is notably slower. Network plotting is implemented

by the Rgraphviz package. Some functions are implemented in C++ with Rcpp for efficiency.

The package is extensively tested, with over 200 unit and integrated tests that give a 94%

code coverage.

7.6 Related software

NB, TAN, and AODE are available in general-purpose tools such as bnlearn and Weka,

while WANBIA3 and MANB4 are only available in stand-alone software, published along with

the original publications. We are not aware of available implementations of the remaining

methods implemented in bnclassify.

3https://sourceforge.net/projects/rawnaivebayes
4http://www.dbmi.pitt.edu/content/manb

https://sourceforge.net/projects/rawnaivebayes
http://www.dbmi.pitt.edu/content/manb
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Figure 7.3: Accuracy of the algorithms estimated with stratified 10-fold cross-validation. The lines
have been horizontally and vertically jittered to avoid overlap where identical.

bnlearn implements algorithms for learning general purpose Bayesian networks. Among

them, algorithms for Markov blanket learning by testing for independences, such as IAMB

[Tsamardinos and Aliferis, 2003] and GS [Margaritis and Thrun, 2000], can be very useful for

classification as they can look for the Markov blanket of the class variable. bnlearn combines

the search algorithms, such as greedy hill-climbing and tabu search [Glover and Laguna, 2013],

only with generative scores such as penalized log-likelihood. Among classification models, it

implements the discrete NB and CL-ODE. It does not handle incomplete data and provides

cross-validation and prediction only for the NB and TAN models, but not for the unrestricted

Bayesian networks.

Version 3.8 of Weka [Hall et al., 2009, Bouckaert, 2004] provides variants of the AODE

[Webb et al., 2005] as well as the CL-ODE and NB. It implements five additional search

algorithms, such as K2 [Cooper and Herskovits, 1992], tabu search and simulated annealing

[Kirkpatrick et al., 1983], combining them only with generative scores. Except for the NB,

Weka only handles discrete data and uses simple imputation (replacing with the mode or

mean) to handle incomplete data. It provides two constraint-based algorithms, but performs

conditional independence tests in an ad-hoc way [Bouckaert, 2004]. Weka provides Bayesian

model averaging for parameter estimation [Bouckaert, 1995].

jBNC5 (version 1.2.2) is a Java library which learns ODE classifiers from Sacha et al.

[2002] by optimizing penalized log-likelihood or the cross-validated estimate of accuracy. The

CGBayes (version 7.14.14) package [McGeachie et al., 2014] for MATLAB implements condi-

tional Gaussian networks [Lauritzen and Wermuth, 1989]. It provides four structure learning

algorithms, including a variant of K2 and a greedy hill-climber, all optimizing the marginal

5http://jbnc.sourceforge.net/

http://jbnc.sourceforge.net/
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likelihood of the data given the network.

7.7 Conclusion

bnclassify implements multiple state-of-the art algorithms for learning Bayesian network

classifiers. It also provides features such as model analysis and evaluation. It is reasonably

efficient and can handle medium-sized data sets. We hope that bnclassify will be useful to

practitioners as well as to researchers wishing to compare their methods to existing ones. So

far, bnclassify has been downloaded over 11 thousand times from the RStudio mirror of

the Comprehensive R Archive Network (CRAN). There are roughly a thousand downloads

per package update, suggesting that there are that many existing installations.

Future work includes handling real-valued features via conditional linear Gaussian models.

Straightforward extensions include adding flexibility to the hill-climbing algorithm, such as

restarts to avoid local minima.
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Chapter 8
Discrete Bayesian network

classifiers with majority labels

8.1 Introduction

In this chapter, we approach the supervised classification of Gardener’s interneurons by using

the majority vote label (see Section 3.6). Since this approach resulted in limited accuracy for

the interneuron type in DeFelipe et al. [2013], we are interested whether at least the reliably

categorized interneurons can be accurately classified by a model. We thus form data subsets

by increasing the threshold on label reliability, which we define as the minimal number of

neuroscientists agreeing on the majority type. We apply supervised classification on each

obtained data subset.

We separately categorize the interneurons according to interneuron type and four high-

level axonal features, termed F1, F2, F3, and F4 (see Section 8.2 for details). We measure 214

parameters of axonal and dendritic arborizations and use all or some of them as predictive

variables, depending on the axonal feature/type to be predicted. Additionally, we use axonal

features F1–F4 as predictors of the interneuron type, both on their own and together with

the morphological parameters. We estimate their values with majority vote and reliability

threshold as well, thus discarding, when using them as predictors, interneurons unreliably

categorized according to at least one of them. Figure 8.1 shows an overview of the described

approach.

We tackle each classification task with four different Bayesian network classifiers (see

Chapter 4). These are competitive performance classifiers [Morales et al., 2013, Friedman

et al., 1997] that allow for analyzing probabilistic relationships among the variables of a

domain.

The research covered in this chapter has been published in Mihaljević et al. [2015a].

The rest of this chapter is organized as follows. Section 8.2 describes the data and the

practical approach to interneuron classification and then elaborates on the methodology —

the formation of data sets according to label reliability; the Bayesian network classifiers

67
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Figure 8.1: A schematic overview of our automatic categorization of interneurons according to type
and high-level axonal features F1–F4. The full data set, D (center), is used to form data subsets (shown
around D) with different class variables (indicated by the superscript; e.g., F1 is the class variable in
D1

25), predictor variables (second and third superscript; e.g., D5,1234
25,21 has features F1–F4 as predictors

of the type), label reliability threshold (first subscript; e.g., D1
25 has label reliability 25), and predictor

reliability threshold (second subscript; e.g., D5,1234
25,21 has reliability 21 for predictors F1–F4). In D, all

instances are quantified with 214 morphological parameters and labeled with the majority vote for
the interneuron type and each high-level axonal feature, with the label reliability (number of agreeing
experts) shown in parentheses. The predictive variables in the classification tasks are indicated by the
columns of the corresponding data sets (e.g., the predictors for F1 are the morphological parameters
X1–X57; see D1

25). Note how label and predictor reliability determine which instances are included
in a data set: for example, the first instance in D (shown in red) is omitted from D5

25 because its
label reliability is 21, i.e., it is not above 25, the label reliability threshold in D5

25. Likewise, instance

237 in D (shown in orange) is omitted from D5,1234
25,21 and D5,1234,X

25,21 because its reliability for F1 is not
above 21. Besides the label reliability thresholds depicted here, many others were considered for each
categorization task, e.g., D1

24, D1
28, D5,1234,X

30,21 , etc.
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used; data preprocessing; and the experimental setting. Section 8.3 presents the results and

Section 8.4 rounds off with conclusions.

8.2 Materials and methods

8.2.1 Morphology reconstructions and class labels

We had the digital reconstructions of 241 cells which DeFelipe et al. [2013] had obtained

from NeuroMorpho.Org [Ascoli et al., 2007]. 42 leading neuroscientsts had classified these

cells, by looking at 2D images and 3D reconstructions of their morpologies, into one of the

ten classes of the Gardener’s scheme and according to four categorical features of axonal

morphology (see Section 5.4.2). 40 cells had an interrupted axonal process. For 36 of them

we drew the small missing fragments with the Neurolucida workstation [Glaser and Glaser,

1990] and omitted the remaining four cells with large missing parts, reducing our sample to

237 cells. The cells come from different cortical areas of the rat, mouse, and monkey. Recall

from Section 5.4.2, that the axonal features take the following values:

• Feature 1 (F1): intralaminar and translaminar

• Feature 2 (F2): intracolumnar and transcolumnar

• Feature 3 (F3): centered and displaced

• Feature 4 (F4): ascending, descending, and both

• Feature 5 (F5): arcade (AR), Cajal-Retzius (CR), chandelier (CH), common basket

(CB), common type (CT), horse-tail (HT), large basket (LB), Martinotti (MA), neuroglia-

form (NG), and other (OT)

• Feature 6 (F6): characterized and uncharacterized

8.2.2 Expert categorization reliability

Each cell was categorized according to every feature by up to 42 experts. To crisply categorize

a cell according to an axonal feature f , we reduced the vector of experts’ choices for f to its

mode (majority vote). We used such crisp categorizations as values of the class variable (la-

bels) and of the predictor variables —high-level axonal features F1–F4 were used as predictors

of interneuron type. Cells with no unique majority vote for a feature f were discarded from

classification tasks that involved f , either as the class or as a predictor variable (e.g., a cell

without a unique majority vote for F4 was omitted when predicting F4 and when using F4 as

a predictor of the type; it was used in all other classification tasks, e.g., when predicting F2

from the morphological variables (D2
25 in Figure 8.1)). Furthermore, we formed data subsets

with different label reliability thresholds, i.e., such that each instance’s label was backed by

at least a certain (threshold) number of experts. Thus, a data set Dft , for predicting f , was

formed of cells with label reliability larger than t for feature f , with t ∈ {0, . . . , 41}. When
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Figure 8.2: An example of a theoretically invalid characterization arising due to majority vote cate-
gorization —a cell might be categorized as translaminar and displaced in F1 and F3 but neither
as ascending, descending, nor both, but instead as none, in F4. The table shows a hypothetical
categorization of a cell by three experts. While translaminar and displaced are the modes for F1
and F3, only one expert selected them simultaneously, and therefore only he/she also categorized the
cell according to F4. The rest found that the cell was not characterisable according to F4, which
was registered with the value none. none was, therefore, the mode for F4. In our data, there were
only three such improperly categorized cells with reliability threshold 21 applied to axonal features
F1–F4. One of them is the CT cell (according to 21 experts) shown on the right, characterized as
translaminar, intracolumnar, displaced, and none.

using features F1–F4 as predictors, cells were additionally filtered according to reliability for

F1–F4. Thus, a data set D5,1234
t,r , for predicting the type with features F1–F4 as predictors,

is formed of cells with reliability greater than r for each of the features F1–F4, and reliabil-

ity greater than t for the interneuron type (the label). A data set D5,1234,X
t,r , with both the

morphological parameters and high-level axonal features as predictors of the type, is formed

in the same way as D5,1234
t,r . When using F1–F4 as predictors, we augmented F4 with a cat-

egory called none, to describe the cells which most experts considered as not categorizable

according to F4 —these cells would have otherwise been discarded due to few experts having

categorized them according to F4, yielding a low reliability for F4. Although this might lead

to incorrect categorizations —a cell being translaminar, displaced and neither ascending,

descending or both but instead none, in F1, F3, and F4, respectively— such combinations

barely appeared in our data (see Figure 8.2).

8.2.3 Morphological variables

We used Neurolucida Explorer, the data analysis companion to Neurolucida, to compute 214

parameters of dendritic and axonal morphology using, among others, the following morpho-

logical analyses:

• Vertex analysis (described in Sadler and Berry [1983]): the count of three types of bi-

furcations —those with two terminal branches attached (Va); with one terminal branch

attached (Vb); and with two bifurcating branches attached (Vc).

• Convex hull analysis: various measures of how much space the arbor occupies.

• Sholl analysis: a histogram of intersections of the arbor and a series of concentric
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spheres centered at the soma. Besides the intersections, we computed histograms of the

endings, nodes, and arbor length between two contiguous spheres.

• Fractal analysis (described in Panico and Sterling [1995]): box-counting k-dimension

—a measure of how well the arbor fills the space.

• Fan-in analysis [Glaser and McMullen, 1984]: torsion ratio —a measure indicative of

any preferred orientation of the arbor.

• Polar histogram [McMullen et al., 1984]: a round directional histogram of total ar-

borization length corresponding to an angle interval.

Table 8.1 shows all the parameters that we computed, grouped by morphological analysis.

We applied each analysis, except for ‘Dendritic analysis’, to both the axon and the dendrites.

So, for example, we computed the torsion ratio of the axon and the torsion ratio of the

dendrites. In total, we computed 128 axonal and 86 dendritic parameters.

We used all the computed parameters as predictive variables for predicting axonal features

F3, F4, and F5. For predicting features F1 and F2 we used only the following 57 axonal

parameters: total length (B3), number of endings (B1), mean branch length (B6), torsion

ratio (FI1), convex hull parameters (C1–C4), Sholl analysis of intersections starting from

radius 240 µm (S4–S16), and polar histogram (P1–P36).

8.2.4 Discrete Bayesian network classifiers

We used four Bayesian network classifiers. Three are variants of the naive Bayes: plain naive

Bayes [Minsky, 1961] (NB), forward sequential selection naive Bayes [Langley and Sage, 1994]

(NB-FSS), and the attribute-weighted naive Bayes Hall [2007] (AWNB). The fourth is the tree

augmented Bayes[Friedman et al., 1997] (TAN). See Chapter 4 for details on these classifiers.

8.2.5 Discretization and dimensionality reduction

Before classifier induction, we converted all numeric variables (i.e. the morphological param-

eters) to categorical ones. This process, known as discretization [Yang et al., 2010], often

yields more accurate naive Bayes classifiers than when assumptions such as that of normality

are made about the underlying probability distributions [Dougherty et al., 1995]. We used the

equal-frequency discretization technique and determined the number of intervals as a func-

tion of data set size, following the weighted proportional k-interval discretization (WPKID)

method [Yang and Webb, 2003]. The discretization process did not bias accuracy estimates

as it was guided only by training data (within a cross-validation scheme): the test data were

mapped, upon classification, to the intervals learned from training data.

The number of predictor variables (up to 218) was possibly too high for NB and TAN

to perform well, as they do not perform predictor selection. Thus, after discretizing the

training data and before inducing the classifiers (i.e., on the training set within a cross-

validation scheme), we reduced the predictor set to the 100 variables with the highest mutual
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Table 8.1: Axonal and dendritic parameters, grouped by morphological analysis. The parameter
abbreviations (shown in bold) indicate the number of parameters corresponding to each analysis (e.g.,
there were nine branching parameters); the exception is Sholl analysis for which there were 20 dendritic
and 64 axonal parameters, because more spheres were considered for the axon. The ‘dendritic’ analysis
(lowermost column) applies only to the dendrites. The rightmost column shows examples of applying
the analyses to a cell’s axon.

Analysis Parameters Axon Examples

Branching B1–B2 Number of endings and bifurcations

B3–B4 Total and mean arbor length

B5–B8 Total, mean, median and std. deviation of
branch length

B9 Highest branch order

B1 = 962.00

B3 = 41,697.10 µm

B6 = 21.75 µm

B9 = 103.00

Convex
hull

C1–C2 Area and perimeter of 2D convex hull

C3–C4 Volume and surface of 3D convex hull

C1 = 174,185.00 µm2

C3 =
18,864,800.00 µm3

Sholl Spheres of radii {60 µm, 2 × 60 µm, . . . , R × 60 µm},
with R = 16 for the axon and R = 5 for the dendrites.

S1–SR Intersections with the R spheres

SR+1–S2R Endings within the R spheres

S2R+1–S3R Nodes within the R spheres

S3R+1–S4R Arbor length within the R spheres

S1 = 57.00

S17 = 84.00

S33 = 91.00

S49 = 3,528.00 µm

Fractal F1 Box-counting k-dimension F1 = 1.49

Vertex V1–V4 Va, Vb, Vc, and Va
Vb

V1 = 225.00

Branch
angle

BA1–BA9 Mean, median, and std. deviation of planar,
local and spline bifurcation angles

BA1 = 1.11 rad

Fan-in FI1 Torsion ratio FI1 = 1.16

Polar
histogram

36 angle intervals of width 0.17 radians, starting with
[0 rad, 0.17 rad).

P1–P36 Length corresponding to the angle intervals

P1 = 625.40 µm

Dendritic D1 Number of primary dendrites

D2 Number of bifurcations of primary dendrites

Does not apply
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information with the class variable1. Since predictors were selected from the training set

alone, this did not bias the cross-validated accuracy estimates [Smialowski et al., 2010].

8.2.6 Experimental setting

8.2.6.1 Label reliability thresholds

The number of cells, naturally, decreased with higher label reliability. We only considered

label reliability thresholds with no fewer than five instances of at least two classes, which

provided the upper bounds for the reliability thresholds used: the bound was 40 for axonal

features F1–F4 (see Figure 8.3a–Figure 8.3d), and 28 for F5 (Figure 8.3e). The lower bound

in all classification tasks was ten, roughly corresponding to one quarter of the experts.

There were seven interneuron types up to threshold 24; no NG cells remained on higher

thresholds. Regardless of the threshold there were fewer than five CH, HT, and NG cells,

making these types especially hard to identify. Regarding F4, no both cells remained above

threshold 28. The predictions of F1, F2, and F3 were binary tasks regardless of label reliability

threshold, i.e., the same classes were present at all thresholds considered.

When using F1–F4 as predictors of the interneuron type (F5) we fixed the reliability

threshold for F1–F4 to 21 —corresponding to 50% of the experts— while considering all

thresholds from 10 to 28 for F5 (see Figure 8.3f), following the above-described criteria.

8.2.6.2 Classifier parametrization and accuracy estimation

For NB-FSS we used resubstitution accuracy as the objective function; we halted its search

process when new accuracy improved current accuracy by no more than 10% (i.e., accnew −
acccurrent ≤ 10, acc ∈ [0, 100]). For the AWNB classifier, we built classification trees from

10 bootstrap samples half the size of the data set (N2 ). We estimated the parameters of the

Bayesian networks with Laplace correction for maximum likelihood. We estimated predictive

accuracy of the classifiers with five repetitions of five-fold stratified cross-validation.

8.2.6.3 Software

The Bayesian network classifiers used are implemented in the bnclassify [Mihaljević et al.,

2018] package for the R [R Core Team, 2015] statistical software environment. We used Weka

[Hall et al., 2009] for discretization (through the RWeka [Hornik et al., 2009] interface for R)

and the caret R package [Kuhn, 2008] for cross-validation estimation of accuracy.

1This was not applied in classification tasks with less than 100 predictors, e.g., when predicting the in-
terneuron type with only F1–F4 as predictor variables.
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(f) F5 with threshold 21 applied to F1–F4

Figure 8.3: Number of cells of different classes of F1–F5, versus label reliability threshold. Note that
F1 is unbalanced: there are many more translaminar than intralaminar cells. Regarding F4, there
are no both cells above threshold 28 whereas for F5 there are no NG cells beyond threshold 24 in both
(e) and (f). Solid vertical lines indicate the highest label reliability threshold with no fewer than five
instances of at least two classes. Dashed vertical lines indicate the lowest label reliability threshold
considered for classification.
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Figure 8.4: Interneuron type classification accuracy versus label reliability threshold. (a) With mor-
phological variables as predictors (D5

10–28); (b) with axonal features F1-F4 as predictors (D5,1234
10–28,21);

and (c) with axonal features F1-F4 and morphological variables as predictors (D5,1234,X
10–28,21 ). For (b)

and (c), values of F1-F4 were obtained with a label reliability threshold 21, the used data thus being
a subset of data used in (a). (b) and (c) were produced by identical cross-validation produces (i.e.,

no differences between them due to chance). (d) plots the accuracy of AWNB at D5,1234,X
10–28,21 minus its

accuracy at D5,1234
10–28,21. Error bars in (a), (b), and (c) show the standard deviation of accuracy from

five runs of five-fold cross-validation.

8.3 Results

8.3.1 Predicting interneuron type

8.3.1.1 From morphological variables

In general, accuracy improved with label reliability (see Figure 8.4a). Best accuracy —

76.63%— was achieved by TAN at label reliability threshold 25 (D5
25). While a TAN model

incorporates all predictive variables2, AWNB and NB-FSS achieved comparable accuracy, at

this threshold, with few variables: AWNB with 24 (19 axonal and five dendritic) and NB-FSS

with two axonal variables: the 2D convex hull perimeter (C2) and Sholl intersections at 180

µm from soma (S3); these were also the most relevant variables according to AWNB —see

Figure 8.5a. At thresholds 25–27 NB-FSS was very accurate by using these two variables

alone, indicating that they suffice for discriminating among CB, LB, and MA cells, which are

the interneuron types that NB-FSS was able identify at these thresholds (see Table 8.2).

Unlike NB-FSS, TAN also managed to identify HT cells at threshold 25, thus accurately

discriminating among CB, HT, LB, and MA cells (see Table 8.3).

2The 100 variables that were selected previous to classifier induction.
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Figure 8.5: AWNB weights for predictor variables at (a): D5
25 and (b): D5,1234,X

26,21 . Only variables
with weights greater than zero are shown. ‘A:’ denotes an axonal variable whereas a ‘D:’ denotes
a dendritic variable. The numbers in Sholl variables refer to distances of spheric rings from soma,
in µm, e.g., ‘A: Sholl 600 Length’ is the axonal arborization length within the spheric ring at 540
µm–600 µm from soma. The numbers in the polar histogram variables refer to radian intervals, e.g.,
‘A: Polar 4.71-4.89’ refers to axonal arborization length corresponding to the angle between 4.71 and
4.89 radians. The weights were computed by learning an AWNB model from the full data set, after
selecting the 100 variables with the highest mutual information with the class variable.

Table 8.2: NB-FSS’ confusion matrix for D5
25 (i.e., for predicting feature F5 at threshold 25; Figure 8.1

explains this notation). Columns denote the true classes whereas rows denote the predicted classes.
Zeros were omitted. Bottom: NB-FSS’ sensitivity and specificity per class. All values in the table were
computed from a single run of stratified five-fold cross-validation and might not, therefore, exactly
match the accuracy reported in Figure 8.4a (yielded by five runs).

CB CH CT HT LB MA

CB 10 1 2 1
CH

CT

HT

LB 9 2
MA 1 1 4 1 19

Sensitivity 0.91 0.00 0.00 0.00 0.75 0.86
Specificity 0.90 1.00 1.00 1.00 0.95 0.76
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Table 8.3: TAN’s confusion matrix for D5
25. Columns denote the true classes whereas rows denote

the predicted classes. Zeros were omitted. Bottom: TAN’s sensitivity and specificity per class. All
values in the table were computed from a single run of stratified five-fold cross-validation and might
not, therefore, exactly match the accuracy reported in Figure 8.4a (yielded by five runs).

CB CH CT HT LB MA

CB 10 1 1
CH

CT

HT 3
LB 8 3
MA 1 1 1 3 19

Sensitivity 0.91 0.00 0.00 0.75 0.67 0.86
Specificity 0.95 1.00 1.00 1.00 0.92 0.79

Table 8.4: AWNB’s confusion matrix for D5,1234
26,21 . Columns denote the true classes whereas rows

denote the predicted classes. Zeros were omitted. Bottom: AWNB’s sensitivity and specificity per
class. All values in the table were computed from a single run of stratified five-fold cross-validation
and might not, therefore, exactly match the accuracy reported in Figure 8.4b (obtained by five runs).

CB CH CT HT LB MA

CB 6 1 1
CH

CT

HT 1 4
LB 2 9
MA 1 21

Sensitivity 0.75 0.00 0.00 1.00 0.82 1.00
Specificity 0.95 1.00 1.00 0.98 0.94 0.96

8.3.1.2 From axonal features F1–F4

In general, accuracy improved with label reliability (see Figure 8.4b) and NB, AWNB, and

TAN were similarly accurate at all thresholds. The best accuracy —88.58%— was achieved

by AWNB at threshold 26 (D5,1234
26,21 ). All classifiers could accurately discriminate between

reliable examples of the CB, HT, LB, and MA types (see Table 8.4 for AWNB). Not only were

they similarly accurate but they actually classified in a similar way —for example, TAN and

NB-FSS had identical confusion matrices at threshold 26. Prediction was more accurate than

with morphological predictors alone (note that, although different, the data sets from the two

settings were actually similar at high reliability thresholds, see Figure 8.3e and Figure 8.3f).

F4 seemed to be the most useful high-level axonal feature for predicting the interneuron

type. Regardless of label reliability, AWNB always assigned most importance to F4, then

to F2, and least to F1 and F3 (see Figure 8.6). Accordingly, the NB-FSS classifier selected

F4, while omitting F1 and F3, at all thresholds; when it selected F2 along with F4 —at

thresholds 20–27— it was more or similarly accurate as the remaining classifiers. Indeed,

features F4 and F2 alone could separate reliable examples of the CB, HT, LB, and MA types
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Figure 8.6: AWNB predictor weights for predicting F5 from axonal features F1–F4 versus label relia-
bility threshold. Note that the order of importance of the features is constant across the thresholds:
most weight is given to F4, least to F3, with F2 and F1 in between.

0

5

10

15

Ic. As. Ic. De. Ic. No. Tc. As. Tc. Bo. Tc. De. Tc. No.
F2 and F4

C
ou

nt

Class

CB

CH

CT

HT

LB

MA

Figure 8.7: Interneuron type (colours) versus combination of F2 and F4 values at threshold 26 for
interneuron type and threshold 21 for F1–F4 (D5,1234

26,21 ). F2 and F4 combined could discriminate
between CB, HT, LB, and MA and cells rather precisely (e.g., all transcolumnar and ascending cells
were MA). Feature F4 alone separated MA from HT: all HT were descending whereas MA were either
ascending or both, whereas F2 largely separated CB from LB cells: all LB were transcolumnar while
most CB were intracolumnar. Abbreviations: Ic. = intracolumnar; Tc. = transcolumnar; As. =
ascending; De. = descending; Bo. = both; and No. = none.

(see Figure 8.7). The omission of F1 and F3, in favour of F4, by NB-FSS, and their lower

importance in AWNB, is reasonable since F4 by definition carries information about F1 and

F3 —a cell that is none in F4 is not, by definition, translaminar and displaced (in F1 and

F3, respectively), whereas a cell with a different F4 value (ascending, descending, or both)

is translaminar and displaced (in F1 and F3, respectively). This redundancy of F4 on the

one hand and F1 and F3 on the other might suggest that predictor weighting is an adequate

approach.

Nevertheless, not even the combination of the four high-level axonal features is expressive

enough to separate the types well at low reliability thresholds. Many cells had identical ax-

onal features F1–F4 but nevertheless belonged to different types; since a single combination

of features can only be assigned to one type, many cells cannot be correctly classified. Poor

accuracies at low thresholds are partially due to this limited expressiveness; in fact, they

are close to the accuracies achievable by assigning each instance to its majority class (see

Figure 8.8). This suggests that a richer predictor space (i.e., beyond F1–F4) might be neces-

sary to better discriminate among interneuron types at low thresholds. For this purpose, we
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Table 8.5: Sensitivity, specificity and accuracy of the different classifiers at D1
37. intralaminar is

considered as the positive class.

Sensitivity Specificity Accuracy

NB 1 0.88 88.43%
NB-FSS 0 1 93.19%
AWNB 0 1 93.19%
TAN 0.11 0.97 90.78%

augmented the predictor set with the 214 morphological variables; the obtained results are

presented in the following section.

8.3.1.3 From morphological variables and axonal features F1–F4

Using the morphological variables together with the high-level axonal features improved

AWNB’s accuracy at all thresholds except for 28 (see Figs. 8.4c and 8.4d). AWNB achieved

the highest overall accuracy (considering all three predictor sets) for predicting the interneu-

ron type —89.52%— at threshold 26 (D5,1234,X
26,21 ). At this threshold, it assigned non-zero

weights to eight predictors: the features F1–F4 and four morphological parameters of the

axon (see Figure 8.5b), with most weight assigned to F4. These morphological parameters

were also used by AWNB in Section 8.3.1.1 (see Figure 8.5a). In both settings most weight

was assigned to the 2D convex hull perimeter (C2).

Augmenting the predictor set with morphological variables also improved the accuracies

of TAN and NB —which do not prune the predictor set— at low thresholds (up to thresholds

22 and 19 for TAN and NB, respectively; see Figure 8.4c). This seems to confirm that

poor accuracies at low thresholds in the previous setting were partially due to the limited

expressiveness of features F1–F4. NB and TAN performed worse at high thresholds —where

features F2 and F4 suffice to discriminate among the types—, possibly because the high-level

axonal features were dominated by the many morphological variables, only some of which

seem to be useful for class prediction.

8.3.2 Predicting axonal features F1–F4

The highest accuracy for predicting the axonal feature F1 —93.19%— was achieved by the

AWNB and NB-FSS classifiers at threshold 37 (D1
37; see Figure 8.9a). These classifiers,

however, assigned all cells to the predominant translaminar class (at threshold 37 there

were 95 translaminar and 7 intralaminar cells). NB was best at correctly identifying

intralaminar cells but had a lower accuracy that the remaining classifiers (88.43%; see

Table 8.5).

Regarding the prediction of the axonal feature F2, the highest accuracy —93.75%— was

achieved by AWNB at label reliability threshold 39 (D2
39; see Figure 8.9b). It was similarly

good at identifying both categories of interneurons (0.95 sensitivity and 0.91 specificity, with

intracolumnar being the positive class). Generally, AWNB was most accurate at classifying
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Figure 8.8: A combination of features F1–F4 does not clearly identify the interneuron type at a
low reliability threshold. (a) plots the interneuron type against the combinations of features F1–F4
at D5,1234

17,21 ; (b) is the confusion matrix of an ‘ideal’ classifier which would assign every combination
of F1–F4 values in (a) to its most common class. Thus, for example, the five LB cells correspond-
ing to combination 3 (blue part of the third bar in (a)) would be assigned to CB (salmon-colored
part of the same bar), since CB cells are predominant in combination 3. The confusion matrix
of AWNB is shown in (c) whereas the difference between the ‘ideal’ confusion matrix and that of
AWNB, (b) - (c), is shown in (d). AWNB was only slightly worse that the ‘ideal’ classifier: it
misclassified three CB and four LB cells more than ‘ideal’ classifier (shown in red in (d)) but cor-
rectly classified one CT cell more (shown in blue). The latter is possible due to random permutations
in cross-validation. The columns in confusion matrices denote the true classes whereas rows de-
note the predicted classes. Zeros were omitted. The confusion matrix of the AWNB was obtained
from a single run of cross-validation. F1–F4 combinations: 1 = (intralaminar, intracolumnar,
centered, none); 2 = (intralaminar, intracolumnar, displaced, none); 3 = (intralaminar,
transcolumnar, centered, none); 4 = (intralaminar, transcolumnar, displaced, none); 5 =
(translaminar, intracolumnar, centered, none); 6 = (translaminar, intracolumnar, displaced,
ascending); 7 = (translaminar, intracolumnar, displaced, descending); 8 = (translaminar,
transcolumnar, displaced, both); 9 = (translaminar, transcolumnar, centered, none); 10 =
(translaminar, transcolumnar, displaced, ascending); 11 = (translaminar, transcolumnar,
displaced, descending); 12 = (translaminar, transcolumnar, displaced, both); and 13 =
(translaminar, transcolumnar, displaced, none).
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Figure 8.9: Classification accuracy for axonal features F1–F4 ((a)–(d), respectively) versus label
reliability threshold. Error bars show standard deviation of accuracy from five runs of five-fold cross-
validation.

reliably labeled cells (it was the best at thresholds 17 and 31–39) whereas NB was most often

the least accurate, indicating that the predictor variables were redundant to some degree.

AWNB used ten variables at threshold 39 (see Figure 8.10a), with most weight assigned

to convex hull 2D area (C1), which was the only variable selected by NB-FSS —similarly

accurate as AWNB— at this threshold. Indeed, NB-FSS selected a single convex hull variable

at each threshold —either C1, C3, or C4— and it was nonetheless relatively accurate (scoring

within 2% of the highest accuracy at all but three thresholds).

Regarding the prediction of F3, the highest accuracy —91.83%— was achieved by NB

at label reliability threshold 40 (D3
40; see Figure 8.9c). NB was slightly more accurate,

at this threshold, at identifying the more numerous displaced cells (0.87 sensitivity and
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Figure 8.10: AWNB weights for predictor variables at (a): D2
39 and (b): D3

40. Only variables with
weights greater than zero are shown. ‘A:’ denotes an axonal variable whereas a ‘D:’ denotes a dendritic
variable. The numbers in Sholl variables refer to distances of spheric rings from soma, in µm, e.g., ‘A:
Sholl 600 Length’ is the axonal arborization length within the spheric ring at 540 µm–600 µm from
soma. The numbers in the polar histogram variables refer to radian intervals, e.g., ‘A: Polar 4.71-4.89’
refers to axonal arborization length corresponding to the angle between 4.71 and 4.89 radians. The
weights were computed by learning an AWNB model from the full data set, after selecting the 100
variables with the highest mutual information with the class variable.
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0.93 specificity, with centered being the positive class). Although F4 refers to the relative

distribution of axonal and dendritic arbors, AWNB was similarly accurate as NB at this

threshold by using only eight axonal variables (see Figure 8.10b). Although AWNB selected

no more than 48 variables at a single threshold (with the number of variables inversely

proportional to label reliability), it achieved similar accuracy as NB at most thresholds,

which might suggest that only a subset of variables is useful for predicting the axonal feature

F3.

The highest accuracy for predicting the axonal feature F4 —88.10%— was achieved by

TAN at threshold 35 (D4
35; see Figure 8.9d). At this threshold there were no both cells

and the classifiers thus had to distinguish between ascending and descending cells alone.

TAN was equally good at identifying both classes (0.88 sensitivity and specificity). When

distinguishing between ascending and descending cells, NB and TAN outperformed the

classifiers that prune the predictor set —AWNB and NB-FSS— (see Figure 8.9d), which may

suggest that many of the morphological variables used are useful for distinguishing among

these two categories.

8.4 Conclusions

We used discrete Bayesian network classifiers to classify GABAergic interneurons according

to their type and features of axonal arborization called F1, F2, F3, and F4. We trained the

classifiers with the categorization of 237 interneurons according to the mentioned features

and the interneuron type provided by 42 expert neuroscientists. We quantified the neurons

with up to 214 morphological parameters (depending on the target categorization) and, when

predicting the type, also with the high-level axonal features F1–F4. Due to little inter-expert

agreement on the categorization of some cells, we separately analyzed data subsets with

different expert categorization reliability thresholds.

We found that the interneurons that were categorized with more inter-expert agreement

were more accurately classified by our models. The models accurately distinguished between

reliable examples of the common basket, horse-tail, large basket and Martinotti interneuron

types. Analyzing the Bayesian network classifiers, we identified two axonal variables —the

convex hull 2D perimeter and number of branches at 180 µm from soma— and the high-level

axonal features F1–F4 as especially useful for discriminating among these interneuron types.

Indeed, axonal features F2 and F4 alone were able to accurately separate reliable examples

of these types. Besides the interneuron type, we were also able to accurately categorize

interneurons according to the axonal features F1–F4.

Since we show that the high-level axonal features can be accurately predicted, it might be

possible to avoid resorting to experts for future neuron labellings according to these features

and instead use the values provided by the models. A flexible alternative is to replace cate-

gorical high-level axonal features with real-valued measures: we could, for example, measure

the percentage of the axon that leaves the soma’s layer instead of categorically distinguishing

between ‘intralaminar’ and ‘translaminar’ axons.



Chapter 9
Multi-dimensional classification

with Bayesian network-modeled

soft labels

9.1 Introduction

As mentioned in the introduction, 42 leading neuroscientists classified a set of interneurons

according to their type and additional categorical axonal features of the Gardener’s classifica-

tion scheme (see Section 5.4.2). In this chapter, we predict interneuron type and four axonal

features simultaneously. We asume that each neuroscientist’s opinion is equally valid and that

the class membership of an interneuron is probabilistic, given by the empirical distribution

over the type and the axonal features in the annotators’ input for that interneuron.

The joint distribution over our five class variables has 2 × 2 × 2 × 4 × 10 = 320 entries

(see Section 9.3.1) and can be handled directly. In a general setting with more variables, the

joint distribution has too many entries and can only be compactly encoded with a tool such

as a Bayesian network [Pearl, 1988, Koller and Friedman, 2009]. Thus, we develop a method

for multi-dimensional classification with probabilistic labels which assumes that the labels

are given as Bayesian networks rather than as a fully expanded probability distribution. We

call such labels label Bayesian networks (LBNs). When applying our method to interneuron

classification, we first obtain LBNs from the experts’ input and then train and evaluate

our model using LBNs. Thus, we replace the annotators’ labels for an interneuron with

a probability distribution encoded with the LBN. In a real-world scenario, this might be

useful for hiding the actual labels for reasons such as confidentiality, or for representing them

compactly when there are many annotators.

To the best of our knowledge, this is the first study tackling multi-dimensional classifi-

cation (i.e., with multiple class variables; [van der Gaag and de Waal, 2006, Bielza et al.,

2011]) with probabilistic labels. Multi-dimensional classification with a separate model for

each class variable is suboptimal when the classes are not independent. We predict the LBN

83
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of an interneuron by forming a consensus Bayesian network (e.g., Matzkevich and Abramson

[1992]) among the LBNs of its k nearest neighbors [Fix and Hodges, 1989] in the space of

predictor variables. We form the consensus with the method by López-Cruz et al. [2014],

sampling from the neighbouring networks and learn the consensus model from the sampled

data. To account for distances among neighbours, we sample more instances from the labels

of cells that are closer to the instance being classified.

We introduce 13 axonal morphometrics to be used as predictor variables. We defined

these morphometrics seeking to capture the concepts represented by the four axonal features

(other than neuronal type) and implemented software that computes them from digital re-

constructions of neuronal morphology. In addition, we used five other axonal morphometric

parameters, computed with NeuroExplorer [Glaser and Glaser, 1990], which were already

used as predictors of neuronal type by DeFelipe et al. [2013]. In total, we used 18 axonal

morphometrics as predictor variables.

The research covered in this chapter has been published in Mihaljević et al. [2015a].

The rest of this chapter is structured as follows. Section 9.2 disusses some related methods.

Section 9.3 describes the data set, the morphometrics, including the ones we introduce in

this study, and the extraction of LBNs from expert-provided labels; it also describes the

proposed method —the distance-weighted consensus of k nearest label Bayesian networks—

, the metrics for assessing our method’s predictive performance, and, finally, specifies the

experimental setting. We provide our results in Section 9.4, discuss them in Section 9.5, and

conclude in Section 9.6.

9.2 Related methods

A suitable tool for multi-dimensional classification is a Bayesian network over both the fea-

tures and the class variables [Bielza et al., 2011, Borchani et al., 2013], as it can account

for dependencies among the class variables. We can easily learn Bayesian networks with

probabilistic class labels, by using probabilistic counts in Equation 4.2. A Bayesian network

commonly assumes a parametric conditional distribution, such as the Gaussian, for a real-

valued feature Xi. Our model, on the other hand, is the non-parametric k-nearest neighbors

(k-nn) classifier (see Chapter 3) and does not assume any particular distribution for the pre-

dictors. While the k-nn can readily handle probabilistic labels, we are not aware that it has

been used with multi-dimensional probabilistic class labels.

Combining multiple Bayesian networks into a consensus Bayesian network is a recurring

topic of interest. The standard methods for combining the parameters of a joint distribution,

disregarding its underlying graphical structure (i.e., the conditional independencies), can

yield undesirable results: for example, combining distributions with identical structures may

render a consensus distribution with a different structure [Pennock and Wellman, 1999]. It

is therefore common to first combine network structures (e.g., Pennock and Wellman [1999],

Matzkevich and Abramson [1992], Peña [2011], Del Sagrado and Moral [2003]) and combine

the parameters afterwards (e.g., Pennock and Wellman [1999], Etminani et al. [2013]). The
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cited structure-combining methods produce distributions which only contain independencies

that are common to all networks, rendering them too complex (i.e., having too many param-

eters) to be useful in practice. An alternative is to draw samples from the different Bayesian

networks and learn the consensus network from the generated data, using standard methods

for learning Bayesian networks from data [Neapolitan, 2004, Koller and Friedman, 2009], as

proposed by López-Cruz et al. [2014]. López-Cruz et al. [2014] weighted the influence of each

Bayesian network on the consensus by sampling from it a number of instances proportional

to its weight. We can readily adapt this method to weigh the effect of a neighbor’s LBNs in

proportion to how close it is to the instance being classified, x(u).

9.3 Materials and methods

9.3.1 Morphology reconstructions and class labels

We had the digital reconstructions of 241 cells which DeFelipe et al. [2013] had obtained from

NeuroMorpho.Org [Ascoli et al., 2007]. 42 leading neuroscientsts had classified these cells, by

looking at 2D images and 3D reconstructions of their morpologies, into one of the ten classes

of the Gardener’s scheme and according to four categorical features of axonal morphology

(see Section 5.4.2). 40 cells had an interrupted axonal process. For 36 of them we drew

the small missing fragments with the Neurolucida workstation [Glaser and Glaser, 1990] and

omitted the remaining four cells with large missing parts, reducing our sample to 237 cells.

The cells come from different cortical areas of the rat, mouse, and monkey.

Recall from Section 5.4.2 that the values of the class variables C are the following:

• Axonal feature 1 (C1): intralaminar and translaminar

• Axonal feature 2 (C2): intracolumnar and transcolumnar

• Axonal feature 3 (C3): centered and displaced

• Axonal feature 4 (C4): ascending, descending, both, and no

• Axonal feature 5 (C5): arcade (AR), Cajal-Retzius (CR), chandelier (CH), common

basket (CB), common type (CT), horse-tail (HT), large basket (LB), Martinotti

(MA), neurogliaform (NG), and other (OT)

• Axonal feature 6 (C6): characterized and uncharacterized

Axonal feature C6 is not a ‘proper’ morphological feature but more of a ‘filter feature’

which indicates whether the remaining axonal features can be reliably identified given a

reconstructed interneuron. We therefore omitted C6 from consideration in this study. Con-

sequently, we removed from our data set 11 interneurons considered as uncharacterized by

a majority (i.e., at least 21) of neuroscientists, considering that these interneurons cannot be

reliably classified according to C1–C5, thereby reducing our data sample to 226 interneurons.
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Thus, we have N = 226 interneurons, each of them quantified by a vector X of m = 18

real-valued predictor variables (i.e., x ∈ R18). We also have d = 5 discrete class (i.e., target)

variables C = (C1, . . . , C5), with c ∈ ΩC1 × . . . × ΩCd
. Each interneuron, x(j), is associated

with a Nj × 5 (Nj ≤ 42) matrix C(j) in which each row is an observation of C due to one

annotator neuroscientist, i.e., c
(j)
i,a is the label for class variable Ci assigned to interneuron

x(j) by expert neuroscientist a.1

9.3.2 Predictor variables

We used 18 axonal morphometrics as predictor variables. Five of these morphometrics were

computed with NeuroExplorer and were already used to predict interneuron types by DeFelipe

et al. [2013] and in Chapter 8. In addition, we introduce 13 axonal morphometrics, seeking

to the capture the concepts represented by axonal features C1–C4. We computed these mor-

phometrics from 3D interneuron reconstructions files in Neurolucida’s ASCII (*.asc) format.

The five morphometrics we computed with NeuroExplorer are:

• X1: 2D convex hull perimeter (in the XY projection)

• X2: Axon length

• X3: Axon length at less than 150 µm from the soma

• X4: Axon length at more than 150 and less than 300 µm from the soma

• X5: Axon length at more than 300 µm from the soma

Morphometrics X3–X5 are meant to measure axonal arborization with respect to the

cortical column. Namely, morphometric X3 approximates arborization length within a (300

µm wide) cortical column (at less than 150 µm from the soma); X4 approximates the length

outside but not far from the column (more than 150 and less than 300 µm from the soma);

and X5 approximates axonal length far from the column (more than 300 µm from the soma).

X1 and X2 were used by DeFelipe et al. [2013] while in Chapter 8 we used X3–X5.

We introduce the following axonal morphometrics:

• X6: Axon length within soma’s layer

• X7: Axon length outside soma’s layer

• X8: Proportion of axon length contained within soma’s layer, X6
X6+X7

• X9: Axon length within soma’s cortical column

• X10: Axon length outside soma’s cortical column

• X11: Proportion of axon length within soma’s cortical column, X9
X9+X10

1Only neuroscientists who considered that x(j) was characterized (axonal feature C6) labeled x(j) ac-
cording to C1–C5. Therefore, Nj may be less than 42 and varies across interneurons.
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• X12: Distance, in dimensions X and Y , from axon’s centroid to the soma

• X13: Distance from the centroid of the above-the-soma part of the axon to the soma

• X14: Distance from the centroid of the below-the-soma part of the axon to the soma

• X15: Proportion of distances X13 and X14, X13
X13+X14

• X16: Axon length above the soma

• X17: Axon length below the soma

• X18: Proportion of axon length above soma, X16
X16+X17

We computed these morphometrics following assumptions made by DeFelipe et al. [2013],

namely: a) cortical layer thickness is (roughly) determined by species and cortical area (see

following paragraphs for details); b) the cortical column is a cylinder whose axis passes

through the soma and has a diameter of 300 µm; and c) that the soma is equidistant from

the top and bottom confines of the layer (i.e., a 250µm thick layer reaches 125µm above and

125µm below the soma) and the lateral ‘borders’ of the column. We measured the distance

to soma as the distance to its centroid.

When computing morphometrics X6 and X7 we looked up the approximate layer thick-

ness according to the neuron’s species and cortical area. DeFelipe et al. [2013] defined an

approximate layer thickness for every species/area/layer combination present in their data,

and provided it as additional information for experts who classified the interneurons. DeFe-

lipe et al. [2013] specified the approximate thickness in the form of an interval —e.g., stating

that layer II/III of the mouse’s visual cortex is 200–300µm thick—; we used the interval’s

midpoint (250µm for the previous example) as an estimate of layer thickness.

For 16 mouse interneurons, seven of them from the somatosensory and nine from the

visual cortex, the cortical layer was not provided. In order to compute variables X6 and

X7 for these cells, we assumed them to belong to a hypothetical ‘average layer’ for which we

assumed a 197 µm thickness in the visual cortex and a 237 µm thickness in the somatosensory

cortex. Although only an approximation, we consider this a more informed approximation to

the ‘true’ values of these variables than one that could be performed by a distance-computing

rule (see subsections 9.3.4 and 9.3.5) if we had left these values unspecified.

9.3.3 From multi-annotator labels to label Bayesian networks

Instead of the provided multi-annotator label matrix C, our method requires each interneuron

to be associated with an LBN. Thus, for each interneuron, we learned its LBN from its C.
Formally, a label Bayesian network is a Bayesian network over the class variables C. A

Bayesian network [Pearl, 1988, Koller and Friedman, 2009] B is a pair B = (G,Θ) where G,

the structure of the network, is a directed acyclic graph whose vertices correspond to the

class variables C and encodes the conditional independencies in the joint distribution over

C, while Θ are the parameters of the conditional probability distributions that the joint
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distribution is factorized into (see Chapter 4). Learning a Bayesian network B from data

consists in two steps: learning network structure, G (i.e., the conditional independencies it

encodes), and, having obtained the structure, learning its parameters (see Chapter 4). The

second step is generally straightforward whereas many methods exist for performing the first

step. We used a search and score structure learning method (see subsection 9.3.5).

Finally, having learned the LBNs, our final data set was D = {(x(j),B(j))}Nj=1. Figure 9.1

depicts the LBNs for interneurons shown in Figure 5.4, along with the predicted LBNs for

those interneurons.

9.3.4 Multi-dimensional classification with label Bayesian networks

We have m predictor variables X, with x ∈ Rm, that describe the domain under study, and d

discrete class (or target) variables C, with c ∈ ΩC1× . . .×ΩCd
, that we wish to predict on the

basis of observations of X. We observe a data set, D = {(x(j),B(j))}Nj=1, where B is a label

Bayesian network encoding a joint probability distribution over the multi-dimensional class

variable C. We predict the LBN of an unseen instance x(u) by forming a consensus Bayesian

network among the LBNs of its k nearest neighbors (1 ≤ k < N) in the space of predictor

variables. To form the consensus we generate a data set Du by sampling from k Bayesian

networks {B(j)}kj=1 associated to k instances at distances d1, . . . , dk from the unseen instance

x(u) and learn the consensus Bayesian network, B∗(u), from Du. We want the number of

samples in Du that are drawn from B(j) to be proportional to the how close x(j) is to x(u),

relative to the remaining k − 1 neighbours. With M being the desired size of Du, we sample

wj ×M instances from B(j), where

wj =
(
∑k

i=1 di)− dj
(k − 1)(

∑k
i=1 di)

,

and
∑k

j=1wj = 1 and w ≥ 0 hold. Fig. 9.2 summarizes our approach.

9.3.5 Experimental setting

We identified the nearest interneurons by measuring Euclidean distance. Thus, for a pair of

interneurons xj and xo, the distance djo is given by

djo = (

m∑
i=1

(x
(j)
i − x

(o)
i )2)

1
2 .

Prior to computing distances, we standardized all predictor variables X1, . . . , Xm (i.e., for

each Xi, we subtracted its mean and divided by standard deviation).

We sought to draw enough samples from each distribution so to represent it correctly. We

therefore set M , the total number of samples drawn from the k nearest neighbors’ distribu-

tions, as k∗500∗c, where c was the maximal number of free parameters among the k networks

whose consensus is being sought. The number of free parameters of a Bayesian network is
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Figure 1. Examples of true ((A) and (B)) and predicted ((C) and (D)) label Bayesian
networks (LBNs) for neurons shown in Figure 5.4. The leftmost networks ((A) and (C))
correspond to interneuron (A) in Figure 5.4 whereas the right-hand ones ((B) and (D))
correspond to neuron (B) in Figure 5.4. The Bayesian networks are depicted with their
nodes (shown as rectangles), arcs, and each node’s marginal probability distribution. The
predicted distributions are similar to the true ones for many nodes —e.g., 93% vs. 98% for IC
(node C2) for interneuron (A). Some marginal probabilities do differ, such as that of the NG

type for neuron (A) —14% predicted vs. 45% true; a lot of its probability mass was assigned
to the more numerous CT type.
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Figure 2. A schematic representation of multi-dimensional classification with label Bayesian
networks (LBNs). The figure depicts the assessment of our method’s predictive performance.
First (step 1; upper left), an instance x(u) with LBN B(u) is retrieved from the test set. Then
(step 2; lower part), we identify k (k = 3 in this example) nearest neighbors of x(u) and
record their distances to x(u); the blue, green, and orange Bayesian networks (lower right)
depict the LBNs of the three nearest neighbors of x(u). Then (step 3; upper right), we obtain
the predicted Bayesian network labels, B∗(u), by forming a consensus Bayesian network from
the LBNs of the three nearest neighbors. Here, arrow thickness denotes the weight of a
neighbor’s LBN in the consensus: the orange arrow is thicker than the blue and green arrows
(orange is the closest neighbor of x(u), see lower left). Finally (step four; upper middle), we
compare true and predicted probability distributions, pB(u) and pB∗(u) , with Jensen-Shannon
divergence.
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the number of parameters that suffice to fully specify the network’s probability distribution

(recall that a network consists of a structure, G, and parameters Θ; see Chapter 4).

Once we had generated the data set of sample points, we applied a Bayesian network

learning algorithm to obtain the consensus probability distribution.

9.3.5.1 Learning Bayesian networks from data

There were two instances in which we learned Bayesian networks from data: when learning

LBNs from expert-provided class label matrices (see subsection 9.3.3) and when learning the

consensus network from sampled data points (subsection 9.3.4). We considered three options

for the learning procedure and chose the one that we considered most adequate for learning

LBNs, according to the criterion described in subsection 9.3.3. We then applied this chosen

procedure in both instances of network learning.

We followed the search and score approach for learning Bayesian network structure (see

Chapter 4). We searched the structure space with the tabu metaheuristic [Glover and Laguna,

2013] and considered three networks scores: Bayesian Information Criterion (BIC; [Schwarz,

1978]), K2 [Cooper and Herskovits, 1992] and Bayesian Dirichlet equivalence (BDe; Hecker-

man et al. [1995]). We fit parameters by maximum likelihood estimation.

9.3.5.2 Software and Assessment

We implemented the computation of the 13 here introduced axonal morphometrics from

scratch. We performed Bayesian network learning and sampling with the bnlearn [Scutari,

2010, Nagarajan et al., 2013] package for the R statistical software environment [R Core Team,

2015].

In traditional uni-dimensional classification, it is common to perform stratified cross-

validation, that is, to have similar class proportions in train and test sets. However, such

stratification is problematic in the multi-dimensional setting, due to the high number of

combinations of class variables. Therefore, instead of stratified cross-validation, we evaluated

our model with 20 repetitions of plain (unstratified) 10-fold cross-validation.

9.3.6 Assessing results

We were primarily interested in predicting LBNs. We assessed this prediction with Jensen-

Shannon divergence, a metric which we describe below. However, for comparison with related

work on interneuron classification, we also assessed how well our method predicted crisp (i.e.,

non-probabilistic) labels. Such an evaluation is negatively biased against our method since

we take label ambiguity into account to learn the model while it is evaluated as though a true

crisp label existed (i.e., as if there was no ambiguity). Below we describe how we obtained

crisp labels and present accuracy metrics for multi-dimensional classification.
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9.3.6.1 Comparing probability distributions

We measured the dissimilarity between two probability distributions, say pB(u) and pB∗(u) ,

with Jensen-Shannon divergence,

dJS(pB(u) , pB∗(u)) =
1

2
(dKL(pB(u) , pr) + dKL(pB∗(u) , pr)),

where pr = 1
2(pB(u) + pB∗(u)) and dKL(pB(u) , pB∗(u)) is the Kullback-Leibler divergence [Kull-

back and Leibler, 1951] between pB(u) and pB∗(u) ,

dKL(pB(u) , pB∗(u)) =
∑
c∈Ωc

pB(u)(c) log(
pB(u)(c)

pB∗(u)(c)
).

Unlike Kullback-Leibler divergence, Jensen-Shannon divergence is symmetric, it does not

require absolute continuity (i.e., that pB∗(u)(c) = 0 =⇒ pB(u)(c) = 0), its square root is a

metric, and it is bounded: 0 ≤ dJS ≤ 1.

9.3.6.2 Obtaining crisp labels

In order to assess the prediction of crisp labels, we needed to obtain a ‘true’ crisp class label

vector for each interneuron x(j). We assumed that such ‘true’ labels were given by the choice

of the majority of the experts. There were two alternative majority choices: a) the most

commonly selected class label vector, i.e., the most common row in a class labels matrix C;
and b) the concatenation of per-class majority labels, i.e., the vector formed by the most

common choice for C1, the most common choice for C2, and so on, until C5. We refer to the

former as the joint truth and to the latter as marginal truth; the latter was used by [DeFelipe

et al., 2013] and in Chapter 8 when predicting the axonal features C1–C5 independently. We

compared our predicted crisp labels to both ‘truths’.

We also needed to extract crisp predictions from a predicted label Bayesian networks.

The two straightforward methods are analogous to the above-described ones: a) choosing the

most probable explanation (MPE), i.e., the most likely joint assignment to C according to

LBN B∗); and b) concatenating the marginally most likely assignments to each of the class

variables. For simplicity, we only used the MPE as the predicted crisp class labels vector.

9.3.6.3 Multi-dimensional classification accuracy metrics

We assessed crisp labels prediction with accuracy metrics for multi-dimensional classification

[Bielza et al., 2011]:

• The mean accuracy over d (d = 5 in our case) class variables:

Acc =
1

d

d∑
l=1

1

N

N∑
u=1

δ(c
∗(u)
l , c

(u)
l ),
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where c
∗(u)
l is the predicted value of Cl for u-th instance, c

(u)
l is the corresponding true

value, and δ(a, b) = 1 when a = b and 0 otherwise.

• The global accuracy over d class variables:

Acc =
1

N

N∑
u=1

δ(c∗(u), c(u))·

Note that global accuracy is demanding as it only rewards full matches between the

predicted vector and the true one. We also measured uni-dimensional marginal accuracy per

each class variable,

Accl =
1

N

N∑
u=1

δ(c
∗(u)
l , c

(u)
l ).

When computing global and mean accuracy, we used the ‘joint truth’ crisp labels. When

computing per-class-variable marginal accuracy, we used the ‘marginal truth’ crisp labels

vector.

9.4 Results

9.4.1 From multi-annotator labels to label Bayesian networks

We first studied whether any network score was particularly adequate for transforming multi-

expert labels into label Bayesian networks. Different scores yielded networks of different

degrees of complexity but were all good at approximating of the empirical probability distri-

bution over the expert-provided labels, pε (see Table 9.1). We used the score that yielded the

best approximation, BDe, in the remainder of this study. Namely, we used it to a) transform

multi-expert labels into label Bayesian networks; and b) learn a consensus networks from the

generated samples.

Table 1. Transforming multi-expert labels into label Bayesian networks using different
network scores. Upper row: average Jensen-Shannon (JS) divergence between the empirical

probability distribution over the labels, pε, and the one encoded by the learned Bayesian
network labels, pB; lower row: average number of free parameters per learned network.

Averaged across entire data set.
BIC K2 BDe

JS divergence 00.10± 0.05 00.07± 0.04 00.06± 00.04
Free parameters 18.22± 1.83 31.08± 20.58 60.34± 31.14

9.4.2 Predicting label Bayesian networks

We considered four different values of k (the number of nearest neighbors) —namely, 3, 5,

7, and 9—, and obtained best results with k ∈ {5, 7}. As Table 9.2 shows, we predicted the
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label Bayesian networks relatively accurately, with a Jensen-Shannon divergence of 0.29 for

k ∈ {5, 7}.

Table 2. Predicting label Bayesian networks and crisp labels. The leftmost column shows
Jensen-Shannon (JS) divergence between predicted label Bayesian networks, pB∗ , and label
Bayesian networks pB learned from C. Rightmost columns show global and mean accuracy
for predicting joint truth crisp labels vector, i.e., the class label vector most often selected

by the experts. Obtained with 20 runs of 10-fold cross-validation.
JS Global acc. (%) Mean acc. (%)

k = 3 0.30± 0.00 41.29± 1.57 79.10± 0.74
k = 5 0.29± 0.00 43.84± 1.48 79.52± 0.79
k = 7 0.29± 0.00 43.99± 1.26 79.88± 0.34
k = 9 0.30± 0.00 39.46± 1.67 78.58± 0.52

Figure 9.1 depicts the true and predicted LBNs for two interneurons, one having barely

ambiguous axonal features and another having an ambiguous type; as the figure suggests,

the LBN of the former interneuron was accurately predicted, while in that of the latter, the

type (C5) marginal probability was predicted only moderately well.

9.4.3 Predicting crisp labels

We predicted the joint truth (the class label vectors selected by a majority of experts; see

Section 9.3.6.2) relatively accurately —with a mean accuracy of 80% and global accuracy of

44% for k ∈ {5, 7} (see Table 9.2). The latter result means that 44% of the MPEs of the

predicted label Bayesian networks (B∗) were equivalent to the joint truth vectors.

We also assessed the marginal accuracy for each axonal feature C1–C5. Here we compared

the B∗ MPE with the marginal truth, class variable by class variable. We predicted features

C1–C4 with over 80% accuracy —up to 88% in case of C1— and feature C5 with 64% accuracy

with k = 7 (see Table 9.3). Albeit it may seem low, the latter result is better than chance.

Namely, DeFelipe et al. [2013] showed that even 40.25% accuracy for C5 —obtained by

a classifier they used— was better than chance. It should also be recalled that the ten

neuronal types were often hard to distinguish for expert neuroscientists [DeFelipe et al.,

2013]. Regarding the prediction of the individual types, accurately predicted ones included

the MA and HT types, which were easy to identify for the experts, and the numerous but less

clear types such as CB and LB. The least clear out of the numerous types, CT, was predicted

with relatively low accuracy (see Table 9.4).

Table 3. Accuracy (in %) for each of the five axonal features C1–C5. Here we compared
the marginal true labels to the most probable explanation of the predicted soft labels.

Obtained with 20 runs of 10-fold cross-validation.
C1 C2 C3 C4 C5

k = 3 86.15± 1.12 83.17± 0.98 86.50± 0.88 83.11± 0.90 62.69± 1.24
k = 5 86.49± 0.98 83.25± 0.79 86.05± 0.79 84.18± 0.65 63.78± 1.11
k = 7 88.07± 1.01 83.12± 0.72 85.29± 0.55 84.06± 0.74 64.33± 1.52
k = 9 87.16± 1.03 83.06± 0.78 85.39± 0.78 83.88± 0.71 63.79± 1.59
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Table 4. Confusion matrix for predicting C5 with k = 7. Here we compared the marginal
true label for C5 (rows) to the C5 value of most probable explanation of the predicted label
Bayesian network (columns). The rightmost column shows per-type sensitivity. Types AR,
and CR and OT are omitted since no cell’s crisp label was of one of these types. Obtained

from a single run of 10-fold cross-validation.
CB CH CT HT LB MA NG Per-type sensitivity

CB 41 0 10 0 6 3 0 0.68
CH 2 0 1 0 0 0 0 0.00
CT 10 0 25 4 8 11 0 0.43
HT 0 0 3 10 1 0 0 0.71
LB 9 0 3 0 25 3 1 0.61
MA 0 0 2 0 4 36 0 0.86
NG 8 0 0 0 0 0 0 0.00

9.5 Discussion

DeFelipe et al. [2013] used majority crisp labels, estimated for each axonal feature indepen-

dently, to train and evaluate their models. DeFelipe et al. [2013] predicted axonal features

C1–C5 with an independent model for each of them. There were non-methodological differ-

ences among that study and the present work and therefore results comparison ought to be

taken with caution. DeFelipe et al. [2013] used 15 cells more than we did (see Section 9.3.1),

had several of variables’ values corrupted by imperfections in the reconstructions of 36 cells

—which we corrected—, and used only three values for C4 —ascending, descending, and

both. Furthermore, they used different morphometric predictors (over 2000 of them), and

applied a possibly more optimistic accuracy estimation technique —leave-one-out estimation.

Differences aside, in Table 9.5 we compare the accuracies from the present study with

those from DeFelipe et al. [2013]. We outperformed DeFelipe et al. [2013] in predictive

accuracy for every axonal feature, even though we used a single model to predict all features

simultaneously. We especially outperformed their approach in predicting C3 and, even more,

in predicting C4. The latter was likely affected by the use of the additional category no (see

Section 9.3.1).

Table 5. Our best predictive accuracy (in %) versus best accuracy from DeFelipe et al.
[2013], for each of the axonal features C1–C5. Our results were obtained with 20 runs of
10-fold cross-validation; those of DeFelipe et al. [2013] were obtained with leave-one-out

cross-validation.
C1 C2 C3 C4 C5

Present study 88.07 83.25 86.50 84.18 64.33
DeFelipe et al. [2013] 85.48 81.33 73.86 60.17 62.24

Despite the non-methodological differences with the study by DeFelipe et al. [2013], the

better accuracies that we achieved might suggest some or all of the following: a) the intro-

duced morphometrics are useful for predicting interneuron type and axonal features; b) we

adequately assigned the value no for cells to which the other values of C4 did not apply; c)

variables C1 – C5 are correlated; and d) our method is adequate for classifying interneurons.
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Note that in our motivating setting with multiple annotators, we may have learned the

predicted LBNs directly from the labels of all annotators of all neighbouring instances, appro-

priately weighted. Our method, based on having an LBN for every instance, is more general

as it applies to all settings with probabilistic labels, regardless of whether or not they come

from having multiple annotators.

9.6 Conclusion

We learned a model that classifes an interneuron, on the basis of a set of axonal morpho-

metrics, into the interneuron type and four other categorical axonal features of the Gar-

dener’s classification scheme. We used multi-dimensional probabilistic class labels encoded

as Bayesian networks over interneuron type and axonal features. We obtained these labels

from the classification choices provided by 42 leading neuroscientists. We then proposed

an instance-based classifier which can learn from such multi-dimensional probabilistic input,

predicting the output by forming a consensus among a set of Bayesian network labels.

We accurately predicted the probabilistic labels over the interneuron type and the four

remaining axonal features. We outperformed DeFelipe et al. [2013] in predicting the non-

probabilistic labels for axonal feature F4 and, slightly, for the interneuron type. Unlike

DeFelipe et al. [2013], we predicted the type and four axonal features with a single model.

We introduced 13 axonal morphometrics which we defined as quantitative counterparts

of the four categorical axonal features. Our results suggest that these morphometrics are

useful for predicting the type and the four axonal features. Thus, they might be considered

as objective replacements, or surrogates, of the subjective categorical axonal features.



Chapter 10
Semi-supervised projected

model-based clustering

10.1 Introduction

In this chapter, we consider the semi-supervised clustering of Gardener’s interneurons. We

first used majority voting (see Section 3.6) to obtain a crisp class label, from the labels by

42 neuroscientists, for each neuron. We then unlabeled the cells of a) one type at a time;

b) two types at a time; and c) half the instances of each type at a time, and ran the semi-

supervised projected model-based clustering algorithm (SeSProc) by Guerra et al. [2013b].

This algorithm starts with a cluster for each type, formed by the labelled cells that belong

to it, and clusters the unlabelled cells. It then considers forming an additional cluster and

recomputes the assignment of the unlabelled cells, repeating this as long as the model’s score

is improving. This way we sought to find subtypes of the existing types and assess the

separation among the types.

SeSProc models the data with the mixture model with localized feature selection by Li

et al. [2009]. It proposes an algorithm for learning this mixture in a semi-supervised setting,

with clusters memberships of the labelled cells fixed a priori, and an search procedure to

determine the number of clusters. We modified the underlying mixture by modeling a variable

Xi irrelevant for cluster m with a marginal distribution independent of any cluster. Despite

this change, we keep the term SeSProc for our method.

We quantified the neurons with nine simple axonal and dendritic morphological variables,

such as the axonal length close to the soma, and labeled them according to the choices of

the expert neuroscientists. Because some of our class labels were backed few neuroscientists,

we considered three subsets of our neuron sample, each given by a different ‘label reliability

threshold’ th, i.e., such that the label of each neuron in the subset was agreed upon by at

least th experts.

The research covered in this chapter has been published in Mihaljević et al. [2015b] and

is an extension of Guerra et al. [2013a]. We extended Guerra et al. [2013a] by adapting the

97
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SeSProC algorithm, refining some of the predictor variables, and considering two additional

experimental settings.

The remainder of this chapter is organized as follows: Section 10.2 describes the mate-

rials and methods we used; Section 10.3 reports and discusses the obtained results; while

Section 10.4 provides conclusions.

10.2 Materials and methods

10.2.1 Morphology reconstructions and class labels

We had the digital reconstructions of 241 cells which DeFelipe et al. [2013] had obtained from

NeuroMorpho.Org [Ascoli et al., 2007]. 42 leading neuroscientsts had classified these cells, by

looking at 2D images and 3D reconstructions of their morpologies, into one of the ten classes

of the Gardener’s scheme and according to four categorical features of axonal morphology

(see Section 5.4.2). 40 cells had an interrupted axonal process. For 36 of them we drew

the small missing fragments with the Neurolucida workstation [Glaser and Glaser, 1990] and

omitted the remaining four cells with large missing parts, reducing our sample to 237 cells.

The cells come from different cortical areas of the rat, mouse, and monkey.

We formed subsets of our sample by imposing minima on the number of experts that

agreed on the label of an included cell (i.e., a ‘label reliability threshold’), considering that

a higher threshold yields more confidence in the cells’ labels. We used thresholds 18, 22

(half plus one out of the 42 experts), and 26 to build three databases: th18, th22, and

th26, respectively. These data sets contained interneurons of four different types (classes):

common basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA). Table 10.1 shows

the distribution of different types at the three label reliability thresholds.

Table 10.1: Distribution of interneuron types with respect to label reliability threshold. Lowermost
row shows total number of cells per dataset.

th18 th22 th26

CB 49 24 9
HT 9 5 4
LB 27 19 12
MA 33 25 22

Total 118 73 47

We characterized each neuron using nine features of axonal and dendritic morphology that

are related to how, in our opinion, an expert classifies an interneuron upon visual examination.

Namely, we consider that an expert classifies an interneuron by estimating the distribution

and the orientation of axonal and dendritic arborizations. We therefore measured the axonal

and dendritic length according to the Sholl (5 features) and polar histogram (4 features)

analyses from NeuroExplorer, the data analysis companion to Neurolucida Glaser and Glaser

[1990]. Sholl analysis computes axonal and dendritic length at different distances from the

soma whereas the polar histogram [McMullen et al., 1984] describes the overall direction of
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dendritic growth; we only distinguished between two halves of the histogram, namely, the

bifurcation angles falling in the [0, π) interval and those falling in the [π, 2π) interval. See

Table 10.2 and Fig. 10.1 and for further details on predictor variables. We standardized

all variables (transformed them so to have zero mean and unit standard deviation) prior to

classification.

Table 10.2: Predictor variables used in the present study. Predictors X1–X5 correspond to the axon
whereas X6–X9 correspond to the dendrites.

Variable Arbor type Description
X1 Axon Polar histogram length (µm) for the [0, π) radians interval
X2 Polar histogram length (µm) for the [π, 2π) radians interval
X3 Sholl analysis length (µm) at less than 150 µm from the soma
X4 Sholl analysis length (µm) at more than 150 and less than 300 µm from soma
X5 Sholl analysis length (µm) at more than 300 µm from the soma
X6 Dendrites Polar histogram length (µm) for the [0, π) radians interval
X7 Polar histogram length (µm) for the [π, 2π) radians interval
X8 Sholl analysis length (µm) at less than 90 µm from the soma
X9 Sholl analysis length (µm) at more than 90 µm from the soma

Figure 10.1: A schematic representation of the nine morphological features of axonal and dendritic
morphology that we used as predictor variables. A, An example of a 3D reconstructed interneuron
classified by expert neuroscientists in DeFelipe et al. [2013], showing its axonal (displayed in blue) and
dendritic (red) arborizations. The grey vertical shadow indicates the extent of the cortical column
(assumed to be 300 µm wide) whereas the dimensions of the squares are 100 × 100 µm. B, Schematic
representation of the overall direction of dendritic growth (polar histogram) for the dendrites (above;
red) and the axon (below; blue). Features X1 and X2 encode axonal growth length in the angle
intervals [0, π) and [π, 2π), respectively, whereas features X6 and X7 capture the dendritic growth
length in the same angle intervals. C, Schematic representation of the features encoding axonal and
dendritic arborization lengths at different distances from the soma (Sholl analysis): features X3, X4,
and X5 encode, respectively, axonal lengths at 0–150 µm (marked with a dark blue circle), 150–300
µm (blue circle), and over 300 µm (outside of the blue circle) from the soma. Features X8 and X9

measure dendritic arborization at 0–90 µm (pink circle) and over 90 µm (outside of the pink circle)
from the soma, respectively.
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10.2.2 Semi-supervised projected model-based clustering

10.2.2.1 A mixture model with local feature selection

Let X = {x1, . . . ,xN} be observed data, with xi ∈ RF ,∀i ∈ {1, . . . , N}, where F denotes

the number of features. Assuming that the data are generated from a finite mixture of K

components, with the variables independent given the component, the density function for

an instance xi is,

f(xi | Θ) =

K∑
m=1

πm

F∏
j=1

f(xij | θmj),

with πm ∈ [0, 1] and
∑K

m=1 πm = 1. Law et al. [2004] integrate probabilistic feature selection

into the model,

f(xi | Θ) =
K∑
m=1

πm

F∏
j=1

(
ρjf(xij | θmj) + (1− ρj)f(xij | λj)

)
, (10.1)

where ρj is feature salience, defined as the complement of the probability that Xj has a

common density function f(Xj | λj) rather than a conditional density (xij | θmj) for each

component m. SeSProC uses the model from Li et al. [2009] with localized feature salience,

ρmj , for a variable Xj and component m,

f(xi | Θ) =

K∑
m=1

πm

F∏
j=1

(
ρmjf(xij | θmj) + (1− ρmj)f(xij | λmj)

)
. (10.2)

Unlike in Equation 10.1, a locally non-salient Xj has a component-conditional density f(· |
λmj) rather than a common one. We adapt Equation 10.2 so that a locally non-salient variable

Xj has a common density f(· | λj) instead,

f(xi | Θ) =
K∑
m=1

πm

F∏
j=1

(
ρmjf(xij | θmj) + (1− ρmj)f(xij | λj)

)
.

This reduces the number of parameters. We consider that it provides an intuitive meaning

to the notion of local salience.

We encode the clustering with a hidden variable Z, with zim = 1 if xi is assigned to

component m and zim = 0 otherwise. Z is partially observed because we fix its values for

the labeled cells. Thus, zim = I(ci = m) for all i ≤ L. We encode feature relevance with

a hidden variable, V, with vmj = 1 if feature Xj is relevant for component m and vmj = 0

otherwise. Feature salience if then ρmj = P (vmj = 1). Thus, learning the model involves: 1)

learning the parameters; 2) filling-in the missing Z, for the unlabeled cells, and filling-in V

for all feature-component pairs.
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10.2.2.2 Learning parameters

Except for estimating λj , learning is identical to that of the original SeSProC. We discuss

the basics and refer the reader to Guerra et al. [2013b] for details.

Because V is hidden and Z only partially observed, we cannot maximize log-likelihood an-

alytically. We approximate it with the expectation-maximization (EM) algorithm Dempster

et al. [1977]. The EM algorithm produces a sequence of parameter estimates by alternating

the expectation and the maximization steps. The expectation step fills the missing values

with their expected values given the current parameters. In our case, this corresponds to

missing rows in Z and all of V. The maximization step uses the completed values to compute

maximum likelihood parameter estimates, as if all data were observed. Repeated application

of this procedure converges to a local optimum.

Assuming that both f(· | θmj) and f(· | λj) are Gaussian densities, and given parameters

Θ from a previous iteration of the EM, and values filled-in in the expectation step, the

maximization step updates the parameters as follows

πm =

∑L
i=1 zim +

∑N
i=L+1 γ(zim)

N
, (10.3)

ρmj =

∑N
i=1 γ(zim)γ(vmj)∑L

i=1 zim +
∑N

i=L+1 γ(zim)
, (10.4)

µθmj
=

∑N
i=1 γ(zim)γ(vmj)xij∑N
i=1 γ(zim)γ(vmj)

, (10.5)

σ2
θmj

=

∑N
i=1 γ(zim)γ(vmj)(xij − µθmj

)2∑N
i=1 γ(zim)γ(vmj)

, (10.6)

µλj =

∑N
i=1

∑K
m=1 γ(zim)(1− γ(vmj))xij∑N

i=1

∑K
m=1 γ(zim)(1− γ(vmj))

, (10.7)

σ2
λj

=

∑N
i=1

∑K
m=1 γ(zim)(1− γ(vmj))(xij − µλj )2∑N
i=1

∑K
m=1 γ(zim)(1− γ(vmj))

, (10.8)

m = 1, . . . ,K; j = 1, . . . , F , where γ(x) = P (x = 1). Note that the only difference with

respect to the original SeSProC are Equation 10.7 and Equation 10.8.

10.2.2.3 Estimating the number of components

Our initial mixture has one component for each class in the data set. We learn the parameters

of this mixture with the EM and compute its score (see below). Then, we add a component,

and repeat the process. We repeat this until a mixture MK with K components is better

than a mixtureMK+1, returningMK as the final model. We score a model with the Akaike

information criterion (AIC) score [Akaike, 1974],

AIC = −2 logL+ 2R,
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where R, the number of parameters in a model, is a function of the number of components

K and the number of features F :

R = 2KF + 2F + (K − 1) +KF,

The first addend corresponds to θ’s, second to λ’s, third to π’s and fourth to ρ’s.

When starting the EM procedure for a model MK with K components, we use the class

labels to initialize the θ parameters for the classes, i.e., we estimate θm = (θm1, . . . , θmF ), for

m ≤ C, from instances belonging to class m. If K > C + 1 (i.e., if there are already newly

found components in the mixture), then we use the θm, C < m < K, from MK−1 as their

initial values inMK , since there are no labels that could guide the estimation of their initial

values. The initial θK for the new component K are estimated from a number of unlabeled

data points; the following paragraph describes how these data points are selected.

We have modified SeSProC to use the following heuristic for initializing new components.

Starting from the previous mixture,MK−1, we consider the neighborhood of each unlabeled

point as (a part of) a potential new cluster. Thus, we take the ct nearest unlabeled neighbors

(according to the Euclidean distance in full dimensionality), where ct is a parameter of the

algorithm, to a point xi and assign them to a new cluster, by setting zjK = 1 and zjm =

0,m 6= K for all xj in the neighborhood of xi; we then update all parameters (this includes

the θK) by maximum likelihood (i.e., with an M-step) and compute the likelihood of the

thereby obtained model. The neighborhood that yields the most likely model is then used

to initialize θK in the new model MK . All assignments to z here described are then undone

after θK is initialized (i.e., these assignments were only temporary).

10.2.3 Experimental settting

We applied SeSProC in three experimental settings. First, we unlabeled all the cells of a single

class and ran the algorithm once for each class. Here, there was initially a cluster for each of

the other (labeled) types and the desired result was to assign unlabeled instances to a (one of)

newly formed cluster(s), allowing us to explore the potential subtypes of each class separately.

Second, we simultaneously unlabeled all cells of each pair of classes, yielding six clustering

scenarios; this allowed to assess whether cells of different classes would be clustered together

and whether, and to what extent, would the subtypes identified in the previous setting re-

appear. Finally, we simultaneously unlabeled a half the cells of each of the four classes. This

allowed unlabeled cells to be placed in their ‘true’ cluster, other classes (i.e., be misclassified),

or assigned to a new cluster, providing insight into the homogeneity of each interneuron class.

We selected unlabeled cells by random sampling at each label reliability threshold (thus a cell

might have been unlabeled at th26 but not at th18, for example), and repeated the sampling

ten times. We used these three unlabeling settings for each label reliability threshold, i.e.,

for th18, th22, and th26.

For the first two settings, we defined per-class discrimination accuracy as acct = ct
ut

, where

ut is the number of cells of the unlabeled class t and ct the cardinality of the subset of ut
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assigned to a (one of) newly formed cluster(s) (and therefore not assigned to one of the other

classes). In the second setting, we averaged acct across the three ‘scenarios’ in which t was

unlabeled (e.g., HT was unlabeled together with CB, LB, and MA). For the third setting, we

defined two measures —‘error’ and ‘accuracy’—, as follows: errt =
∑

t′ 6=t att′

ut
, where att′ is the

number of unlabeled cells of class t assigned to class t′ and ut the number of unlabeled cells

of class t, and acct = att
ut

. ‘Accuracy’ considers the proportion of unlabeled cells of class t

classified as t whereas ‘error’ does not penalize assignments to newly formed clusters.

When starting the EM procedure for a mixture model MK , one has to choose how to

initialize the parameters. Furthermore, when K > C one can keep or adapt the parameters

from the previous model, MK−1. We initialize the parameters with the following heuristics:

• For m ≤ C, estimate θm from cells labeled as belonging to class m.

• Keep the θ and ρ parameters fromMK−1 for C < m < K . That is, θKm = θK−1
m ,ρKm =

ρK−1
m , C < m < K where ρm = (ρm1, . . . , ρmF ).

• Estimate θK from the instances selected as described in paragraph ‘Initializing a new

component’ in Section 10.2.2.3.

• For components m ∈ {1, . . . , C} ∪ {K}, i.e., those of fixed classes and the newly in-

troduced one, make all features equally relevant and irrelevant: ρmj = 0.5, ∀m ∈
{1, . . . , C} ∪ {K}, ∀j ∈ {1, . . . , F}.

• Adapt π fromMK−1 to give more weight to newly discovered components m > C than

to class components m′ ≤ C: πKm = 2πK−1
m′ , ∀m > C,∀m′ ≤ C.

• Estimate λ as if ρmj = 0.5, ∀m, ∀j, i.e., as if each feature was equally relevant and

irrelevant for every component, in order to fully ‘reset’ the λ estimates.

We halt mixture augmentation if MK contains a component m with less than two in-

stances (i.e., such that m is the most likely component for less than two instances), returning

MK−1, unless K = C, in which case MK is returned. The EM procedure iterates until

log-likelihood converges or up to 25 iterations. We set ct = 5 for initializing new components,

because this value produced the best results in preliminary experiments.

10.3 Results and discussion

10.3.1 Discriminating among classes

10.3.1.1 Unlabeling a single class

When unlabeling a single class, HT and MA cells were better distinguished from other classes

when label reliability increased; the opposite happened for LB, while the discrimination ac-

curacy for CB cells was rather unaffected (see Fig. 10.2a). At th26, HT and MA cells were

identified with rather high accuracy.
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Figure 10.2: Per-class discrimination accuracy and number of subtypes when unlabeling a single class,
versus label reliability threshold.
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Figure 10.3: Average per-class discrimination accuracy and number of subtypes when unlabeling two
classes, versus label reliability threshold. The averages are taken across the three different settings in
which a class is hidden, e.g., the averages for HT come from the settings: HT and LB hidden; HT and
CB hidden; and HT and MA hidden.

HT was the most easily identified class: with perfect accuracy at th22 and th26, and high

accuracy (0.89) at th18.

Although accurately identified at th22 and th26, MA cells were confused with all the other

classes, particularly with HT at th18 and th22, and CB at th26. In this respect, the MA seemed

to be the most heterogeneous interneuron type with respect to the used variables.

LB and CB cell types were often confused with each other but easily distinguished from

other types (with the exception of CB at th18, where it was heavily confused with HT; see

Table 10.3). This confusion is not surprising, as even expert neuroscientists often struggle to

discern these two classes [DeFelipe et al., 2013].

10.3.1.2 Unlabeling two classes

When hiding two classes at a time, discrimination accuracy generally increased with label

reliability (see Fig. 10.3a). CB cells were better discriminated than when hiding a single class,

HT cells equally well, whereas LB and MA cells better on some label reliability thresholds and

worse on others.

At th26, which contained the most reliably labeled cells, all classes were identified more
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Table 10.3: Clustering of unlabeled instances when hiding a single class. Each row corresponds to
one ‘labeling scenario’, e.g., CB is the hidden classes in the first row, whereas columns represent the
classes to which the unlabeled cells were assigned. The cells assigned to newly formed clusters are
considered as correctly classified and are thus displayed in blue color on the diagonal whereas the cells
assigned to other classes are shown in red, outside the diagonal. Thus, for example, 16 MA cells were
correctly classified, four were misclassified as CB, one as HT, and one as LB at th26 (row four, rightmost
table). Note that the number of formed subtypes is not shown —the 16 MA cells were placed in three
clusters—; the formed clusters are discussed in Section 10.3.2. Zeros were omitted.

(a) th18

CB HT LB MA

CB 29 7 11 2
HT 8 1
LB 3 22 2
MA 1 13 8 11

(b) th22

CB HT LB MA

CB 14 9 1
HT 5
LB 6 12 1
MA 5 2 18

(c) th26

CB HT LB MA

CB 5 3 1
HT 4
LB 4 7 1
MA 4 1 1 16

accurately than when unlabeling a single class (see Figs. 10.2a and 10.3a). Furthermore, the

classes were well separated in the formed clusters: only six out of the 20 clusters formed at

th26 (columns ‘A’, ‘B’, etc., in Tables 10.4a–10.4f) were ‘mixed’, i.e., contained instances of

more than one class (shown in black). Thus, even though MA cells were misclassified as CB at

th26 (when unlabeling the MA type), these two types were neatly separated when unlabeled

simultaneously (see Table 10.4a). HT cells were almost never placed in clusters containing

other cell types (only a single CB cell was assigned to a HT cluster; see Table 10.4b). LB cells

were least separated in the formed clusters: they were mixed with both CB and MA cells in

two clusters (see Tables 10.4e and 10.4f).

Table 10.4: Clustering of unlabeled instances when hiding two classes a time at th26. Rows represent
the hidden classes whereas columns denote the clusters the instances were ascribed to. ‘A’, ‘B’, etc.,
denote newly formed clusters. Misclassified instances are shown in red, instances in ‘pure’ (not-mixed)
clusters are shown in blue, and instances in mixed clusters in black. Zeros were omitted.

(a) Unlabeling MA and CB

HT LB A B C D E

MA 2 6 5 5 4
CB 3 1 5

(b) CB and HT

LB MA A B

CB 1 8
HT 4

(c) HT and LB

MA CB A B

HT 4
LB 4 8

(d) HT and MA

CB LB A B C D

HT 4
MA 2 5 6 4 5

(e) LB and MA

CB HT A B C

LB 6 5 1
MA 8 1 5 2 6

(f) CB and LB

HT MA A B C D

CB 2 4 2 1
LB 1 6 2 3

10.3.1.3 Partially unlabeling all classes

In this setting, discrimination accuracy generally improved with label reliability (see Fig. 10.4a),

except for MA and CB at th22, where it decreased due to more instances being assigned to

new clusters (indicated by their low error at th22 ; Fig 10.4b). Likewise, discrimination error
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generally decreased, except for MA and LB at th26.

At th26, the most accurately classified and most homogeneous types were HT and CB, as

they had lowest error and highest accuracy. MA and LB, on the other hand, displayed low

accuracies but relatively low errors, suggesting they were more heterogeneous than HT and

CB at th26.
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Figure 10.4: Per-class discrimination accuracy (acct) and error (errt) when unlabeling half the in-
stances of each class, versus label reliability threshold.

10.3.1.4 Summary

Summarizing the previous three sections, we can note that, despite some fluctuations —

possibly due to small data samples— discrimination accuracy tended to increase with label

reliability in all three experimental settings (e.g., accuracy was almost universally higher and

error lower at th26 than th18, see, e.g., Figs. 10.2a, 10.3a, 10.4a, and 10.4b). This might

suggest that the degree of label noise decreased with label reliability threshold, and that

therefore, the most reliable results were obtained at th26.

10.3.2 Potential subtypes

The number of subtypes generally decreased with label reliability (see Figs. 10.2b and 10.3b).

This may indicate that there was more heterogeneity among less reliably labeled cells; nonethe-

less, this heterogeneity may simply be due to the higher number of instances at lower thresh-

olds (especially for the CB, LB, and HT types). HT appeared as the most compact class as all

of its cells were clustered together (in a single cluster) at th22 and th26, in both the first and

the second labeling scenario (see Figs. 10.2b and 10.3b and Tables 10.4b, 10.4c and 10.4d).

MA, on the other hand, seemed to be the most heterogeneous —at th26 MA cells were clustered

into at least three subtypes (see Fig. 10.2b and Tables 10.4a, 10.4d and 10.4e). Thus, we

focused on th26 for analyzing the formed subtypes as it contained the most reliably labeled

interneurons.
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10.3.2.1 With a single hidden class

MA cells were clustered in three groups (see Fig. 10.5 for representative examples), with six,

five, and five cells each, whereas a single distinct subtype was identified for the CB and LB

classes, counting five and seven cells each, respectively. Since all HT cells were placed in a

single cluster (see Fig. 10.2b), no potential subtypes of HT were identified.

Overall, MA subtypes showed relatively sparse axonal arbors, as indicated by their low or

medium values for X1 and X2 (see Figs. 10.5a, 10.5b and 10.5c), with MA-A cells being less

sparse than MA-B and MA-C ones. MA-A cells had plenty of axonal arborization far from soma

(high X5 values in Fig. 10.5a) and dendritic polar histogram length in the [π, 2π) interval

(X7). MA-B cells exhibited medium values for all variables (Fig. 10.5b) whereas MA-C had the

sparsest axons (low values for X1 and X2 in Fig. 10.5c) and, like MA-A, plenty of axon far from

soma (X5) and dendrites in the [π, 2π) polar histogram interval (X7). CB-A cells displayed

relatively sparse axons (medium X1 and low X2 values in Fig. 10.5d), with little axon far

from the soma (low X5 values) and little dendritic arborization far from soma and in the

[π, 2π) polar histogram interval (low X7 and X9 values). LB-A cells exhibited the most dense

axonal and dendritic arbors, with high or medium values for X1, X2, X6 and X7; the X4

values (axonal length at medium distance from soma), was especially high (see Fig. 10.5e).

Validating the produced clusters While the discovered subtypes are relatively small

—their sizes ranging from five to seven cells—, they may nonetheless be relevant in the

domain of neuronal classification, where 3D neuronal reconstructions, and reliably classified

reconstructions in particular, are scarce. Cluster quality indices [Halkidi et al., 2001, Handl

et al., 2005] may thus help assess the goodness of the clustering solution.

One type of indices compares the obtained (crisp) clustering partition with the original

one, given by class labels. We performed such an analysis in Section 10.3.1 when we computed

accuracy, and now we report a measure more commonly used for this end, the Adjusted Rand

index (ARI; Rand [1971], Hubert and Arabie [1985]),

ARI =
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where Ncn is the number of instances of class c assigned to cluster m. ARI rewards two types

of agreements: a) clustering a pair of instances together (i.e., as members of a same cluster) in

both partitions; and b) clustering a pair of instances separately (i.e., as members of different

clusters) in both partitions. It reaches its maximum value, 1, when the two partitions agree

perfectly, and this occurs when unlabeling HT cells (see Table 10.5). We also achieved high

ARI values when unlabeling CB and LB cells whereas we obtained a low one when unlabeling

MA cells; this is due to the discovery of three MA subtypes in the setting, which was not favored

by ARI because it increased the difference among the two partitions.

We cannot easily compute a second type of clustering quality indices, based on assessing
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(a) MA-A

(b) MA-B
(c) MA-C

(d) CB-A

(e) LB-A

Figure 10.5: Representative members of potential subtypes identified at th26. The heatmaps show
the subtypes’ mean values for all variables. Due to standardization, values are not comparable among
different variables. Thus, for example, although X1 > X2 in the case of CB-A, it does not necessarily
mean that CB-A cells have (on average) more axonal length in the [0, π) than in the [π, 2π) polar
histogram interval; it means that they have more of the former relative to the values of the remaining
(i.e., non-CB-A) cells at th26. The five depicted subtypes contain 28 out of the 47 cells at th26 ; HT
cells and misclassified MA, CB, and LB cells are not represented.
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Table 10.5: Cluster validation indices when hiding a single class at th26. Columns denote the unlabeled
class whereas rows correspond to different metrics.

HT MA CB LB

Adjusted Rand index 1.00 0.42 0.83 0.79
Silhouette 1.00 1.00 1.00 1.00

properties such intra-cluster compactness and inter-cluster separation, because that would

require computing distances among data points, something which is unclear how to do when

points are located in different feature subspaces. When then assessed our clustering in terms

of probabilistic concordance, considering that a clustering is good if cluster membership prob-

abilities, p(zi), are similar among the members of a same cluster and different among members

of different clusters. We measured the similarities among cluster membership probabilities of

two data instances with Jensen-Shannon divergence,

dJS(p(zi), p(zj)) =
1

2
(dKL(p(zi), r) + dKL(p(zj), r)),

where r = 1
2(p(zi)+p(zj)) and dKL(p(zi), p(zj)) is the Kullback-Leibler divergence [Kullback

and Leibler, 1951] between p(zi) and p(zj),

dKL(p(zi), p(zj)) =
K∑
m=1

p(zim) log(
p(zim)

p(zjm)
).

Note that p(zjm) is simply γ(zim) computed in the final step of the EM algorithm. Unlike

Kullback-Leibler divergence, Jensen-Shannon divergence is symmetric, does not require ab-

solute continuity (i.e., that p(zim) = 0 =⇒ p(zjm) = 0), its square root is a metric, and it

is bounded: 0 ≤ dJS ≤ 1 [Lin, 1991].

Using Jensen-Shannon divergence as the measure of distance among data instances, we

computed the Silhouette width [Rousseeuw, 1987] clustering index, thus measuring intra-

cluster compactness and inter-cluster separation in terms of this distance. The Silhouette

width is given by

SW =
1

N

N∑
i=1

bi − ai
max(bi, ai)

,

where ai is the average distance between xi and other points in its cluster, while bi is its

average distance to the points in the closest cluster (defined as that yielding the lowest bi).

We achieved maximum Silhouette values (its values range from −1 to 1) for all labeling

scenarios (see Table 10.5), showing that the cluster membership probabilities had converged

reasonably.

A partial cause for high Silhouette widths was that we only unlabeled a subset of instances

in each setting, and it was only those instances’ p(zi) that were estimated by our algorithm,

while the rest instances’ p(zi) were fixed to degenerate distributions (probability 1 for the

class labels’ cluster; 0 for all other clusters) which were different among the clusters. Thus,
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e.g., when unlabeling the HT cells, we estimated the p(zi) of only four instances, the overall

Silhouette width therefore necessarily being high, due to the inter-cluster differences among

the fixed p(zi). Yet, as Table 10.6 shows, Silhouette widths were also high for the newly

discovered clusters, not only for those corresponding to the known types (and thus containing

many cells with fixed degenerate p(zi)).

Table 10.6: Average per-cluster Silhouette width. Rows correspond to the hidden (unlabeled) classes
whereas the columns denote clusters. ‘-A’, ‘-B’, and ‘-C’ denote newly formed clusters; for example,
the intersection of the first row and fifth column (-A) corresponds to the HT-A cluster, whose average
Silhouette width was 1.000.

CB HT LB MA -A -B -C

CB 1.000 1.000 0.996 1.000
HT 1.000 1.000 1.000 1.000
LB 0.994 1.000 0.996 0.985
MA 0.990 1.000 1.000 0.997 0.999 1.000

Finally, in the next section we validated the discovered subtypes with a different ex-

perimental setting —the hiding of two classes—, thus evaluating their ‘stability’, i.e., their

robustness to different labeling scenarios.

10.3.2.2 With two hidden classes

The validity of the above-described subtypes of the MA, CB, and LB types, identified when

hiding a single class, was confirmed when hiding two classes simultaneously. That is, in

almost every labeling scenario in the second setting (i.e., for every pair of hidden classes),

there was a cluster that greatly resembled the corresponding subtypes. So, for example, when

hiding CB and MA, cluster E (Table 10.4a) was identical to subtype CB-A. Furthermore, four

cells from the CB-A subtype were clustered together in every labeling scenario, that is, the

intersection of CB-A and cluster E in Table 10.4a, cluster B in Table 10.4b, and cluster B in

Table 10.4f consisted of four cells. This subset of CB-A cells emerged as its ‘core’ of highly

similar instances, showing the robustness of this subtype (which totalled five cells).

A ‘core’ of the MA-C subtype (i.e., the MA-C cells that were always clustered together)

emerged, consisting of four cells which formed the intersection of the pure MA clusters C, A,

and C in Tables 10.4a, 10.4d, and 10.4e, respectively (the latter two clusters being identical).

Regarding MA-A, a ‘core’ of three cells emerged, defined by the intersection of clusters A,

C and A in Tables 10.4a, 10.4d, and 10.4e, respectively (the latter being a mixed cluster).

Finally, clusters C and D in Tables 10.4a and 10.4d contained four and three MA-B cells,

respectively.

A LB-A core of five cells emerged, contained in clusters A, B, and A in Tables 10.4e, 10.4c and 10.4f,

respectively. The latter two contained a larger LB-A core of six cells.
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10.3.2.3 Feature relevance

We focused on the first setting (i.e., hiding a single class) and th26 to analyze the estimated

relevance of predictor variables. Overall, all predictor variables seemed useful, as each one

was very likely relevant (around 100% chance of being relevant; dark green boxes in Fig. 10.6)

for at least two subtypes/classes identified at th26. Feature X2 —axonal polar histogram in

the [π, 2π) interval— appeared to be the most useful as it was very likely relevant for all the

subtypes/classes (see Fig. 10.6). While its relevance for the HT class and MA subtypes is clear

—an MA’s axon grows predominantly upwards from the soma whereas the opposite holds for

HT— it is interesting that it was relevant for the CB and LB subtypes as well. Features X4 and

X5, which capture the length of axonal arborization at 150–300 µm and over 300 µm from

soma, were relevant for five (out of six) subtypes. On the other hand, feature X9 —length

of dendritic arborization at over 90 µm from soma— appeared as least useful as it was very

likely relevant for only two subtypes (CB-A and MA-B). In general, axonal features (X1 to

X5) were more likely to be relevant than dendritic ones (X6 to X9). For example, an axonal

feature was, on average, very likely relevant for 4.6 subtypes/classes in Fig. 10.6 whereas a

dendritic one was for 2.5. Likewise, a dendritic feature was, on average, probably irrelevant

(below 50% chance of being relevant; red and brown boxes in Fig. 10.6) for more subtypes

than an axonal feature.

Moreover, as shown by Fig. 10.6, the relevance of axonal features differed among the

subtypes/classes. All axonal features were very likely relevant for all MA subtypes (except X1

for MA-A: MA-A, unlike MA-B and MA-C, did not stand out regarding X1 —note the olive green

box for X1 in Fig. 10.5) and for the HT class. This suggests that the axonal arborizations

of the MA subtypes and the HT class were distinct among themselves and from the CB-A and

LB-A subtypes according to all axonal features. On the other hand, two and three (out of

five) axonal features were relevant for the CB-A and LB-A subtypes, respectively, and, in

particular, polar histogram in the [0, π) interval and close to soma axonal arborization length

(X1 and X3, respectively) were relevant with only 50% chance for both of those subtypes.

This suggests that CB-A and LB-A were not particularly distinct according to those variables.

In summary, the results clearly show that the length of axonal polar histogram in the

[π, 2π) interval (X2) is particularly relevant, followed by axonal length relatively near to

the cell body (X4) and the extent of the axon far from the cell body (X5). In addition,

the dendritic arborization was highly relevant for the characterization of CB cells and MA

cells. These findings may be useful for generating an accurate automatic classifier of 3D

reconstructed interneurons.

10.4 Conclusions

We introduced a semi-supervised approach to neuron classification. It can leverage prior

knowledge —in the shape of class labels— to identify members of established types, while

allowing for the discovery of new neuron types. Simultaneously, it is of descriptive value as

it identifies variable relevance for the types and subtypes.
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Figure 10.6: Relevance (ρ) of features (X1-X9) for the HT, LB, CB, and MA subtypes identified at th26
when hiding a single type. Each row corresponds to one subtype, e.g., the last three rows correspond
to the three subtypes of MA. The displayed subtypes do not contain all the cells contained at th26,
as some were misclassified (e.g., besides CB-A, CB cells at th26 were also assigned to the LB and MA

classes; the latter cells are not contained in any subtype represented in this graph).

We presented results on the classification of common basket, large basket, horse-tail, and

Martinotti cells. We quantified the neurons with simple morphological features which describe

the distribution and the orientation of axonal and dendritic arbors, seeking to mimic the

way in which an expert visually classifies a neuron. The algorithm accurately discriminated

among the different types when one and two types were unlabeled at a time and when

half the instances of all types were unlabeled. It identified potential subtypes of common

basket, large basket, and Martinotti cells, suggesting that these types are heterogeneous.

While the identified subtypes are small, consisting of few cells, they may be indicative of the

characteristics that differentiate cells belonging to the same interneuron type.

The proposed morphological variables seemed useful for discriminating among the types.

Axonal features were more useful than dendritic ones, especially axonal polar histogram

length in the [π, 2π) interval. It is possible that more refined variables, such as those consid-

ering both the distance and position with respect to the soma (e.g., over 300 µm from soma

and above it) could further improve discrimination accuracy.

Overall, the results suggest that a semi-supervised approach may be helpful in neuronal

classification and characterization. Further studies, with more morphological features and

neurons, are needed in order to obtain more conclusive results.

Instead of the majority label for each labeled instance, it would be straightforward to use

probabilistic labels given by considering the choices of all the experts.



Chapter 11
Per-class supervised classifiers

11.1 Introduction

In this chapter, we learn models from 217 high-quality reconstructions, namely two-week-old

male rat hind-limb somatosensory cortex interneurons, reconstructed at the Markram labo-

ratory [Ramaswamy et al., 2015]. Each cell was pre-classified into one of eight morphological

types described in Section 5.4.1 (see Figure 11.1 for abbreviations)1. With seven ChC and 15

bitufted (BTC) —yet 123 BA and 50 MC — cells, the sample was insufficient to accurately

distinguish each of the eight types, yet the homogeneity and quality of the data, along with

a careful selection of morphometrics and a comprehensive machine learning approach, allows

for establishing a baseline classification.

Although the class labels were assigned following clear criteria, they came from a sin-

gle laboratory, and we thus contrasted them, for 20 cells, to alternative labels provided by

42 leading neuroscientists that participated in DeFelipe et al. [2013]. We also looked for

morphology reconstructions issues which might distort the morphometrics.

We trained a model for each type in a one-versus-all fashion [e.g., ChC or not ChC; see

Rifkin and Klautau, 2004]. Importantly, we developed custom R [R Core Team, 2015] code to

quantify a number of Petilla features, including those relative to arbor shape and direction,

dendritic polarity, the presence of arborization patterns typical for the MC and ChC types,

and translaminar extent [Helmstaedter et al., 2009c], which we estimated using metadata

on laminar thickness and soma’s laminar location (i.e., which layer contained it). We com-

plemented them with standard axonal and dendritic morphometrics [Uylings and Van Pelt,

2002], such as the mean branching angle and mean terminal branch length, computed with

the NeuroSTR library2. For each classification task (e.g., ChC or non-ChC), we ran seven

state-of-the-art supervised classification algorithms [Murphy, 2012, Hastie et al., 2009], such

1While Markram et al. [2004] describe nine interneuron types in L2/3 to L6, we lacked enough bipolar and
neurogliaform cells to learn classifiers for them. We also grouped small, nest, and large basket cells into a
separate, basket type.

2NeuroSTR is an open source library developed in our research group in the context of
the Human Brain Project [Markram, 2012]. Its online repository is at https://github.com/
ComputationalIntelligenceGroup/neurostr.

113

https://github.com/ComputationalIntelligenceGroup/neurostr
https://github.com/ComputationalIntelligenceGroup/neurostr


114 CHAPTER 11. PER-CLASS SUPERVISED CLASSIFIERS

as random forest [Breiman, 2001] and lasso-regularized logistic regression [Tibshirani, 1996].

As a prior step, we applied univariate and multivariate feature selection [Guyon et al., 2006,

Saeys et al., 2007] and sampled the training data to deal with class imbalance [e.g., there

were seven ChC and 210 non ChC cells; see He and Garcia, 2009, Chawla et al., 2004]. We

validated the MC models against the classification by 42 neuroscientists from DeFelipe et al.

[2013] and found that cells commonly misclassified by different models [Brodley and Friedl,

1999] may correspond to atypical MC morphologies3. The study can be easily reproduced

[Ince et al., 2012, Leitner et al., 2016, Lowndes et al., 2017] as all code and data are available4.

The research covered in this chapter has been submitted in Mihaljević et al. [2018c].

The rest of this chapter is organized as follows. Section 11.2 briefly discusses the data.

Section 11.3 describes the methodology, including the computation and choice of morpho-

metrics, supervised classifiers, feature selection, sampling and evaluation procedures, and the

validation of the MC models. Section 11.4 presents the classification and feature selection

results, including interpretable models for the BA and MC types. We discuss the results in

Section 11.5 and conclude in Section 11.6. Appendix A provides the list and definitions of

morphometrics while Appendix B gives additional results.

11.2 Data

We obtained 228 hind-limb somatosensory cortex interneurons from two-week-old male Wis-

tar (Han) rats, which Markram et al. [2015] used for simulating the cortical column5. They

corrected shrinkage along the Z-axis, while shrinkage along the X and Y axes was of approx-

imately 10%. They classified the cells into 36 layer L2/3 to layer L6 morphological types

(see Section 5.4.1) of inhibitory neurons, based on their soma’s layer and anatomical features

described in Markram et al. [2004], Wang et al. [2002, 2004], updating these criteria with

a few laminar specificities: e.g., L6 MC cells were unique in that they did not reach L1,

but ‘had a second axonal cluster formed below L1’ [Markram et al., 2015, page 2 in their

supplementary material]. For each cell, we knew the layer that contained the soma and had

estimates of mean and standard deviation of cortical layers’ thickness (see Table A.3). We

had no data on fine-grained features related to boutons and dendritic spines. We merged the

interneuron types across layers (e.g., we considered L23 MC and L4 MC cells as members of

a single MC class) into the nine morphological types defined by Markram et al. [2004].

We had an alternative classification for 79 of our cells provided by 42 neuroscientists that

participated in the study by DeFelipe et al. [2013], who were shown 2D and 3D images of the

cells and were told the layer containing the soma, and classified them following the scheme

by DeFelipe et al. [2013]. Among these, we used the 20 cells6 classified in our data —that

3We restricted this analysis to the MC type as only for MC we could compare it to an independent
classification by neuroscientists in DeFelipe et al. [2013].

4Online repository at https://bitbucket.org/cbb-bojan/bbp-interneurons-classify.
5Markram et al. [2015] used 1009 digitally reconstructed cells; the 228 cells that we use are the interneurons

that they classified on the basis of morphological parameters, as shown in Figure S2 of that paper.
6One of these 20 cells, C040600B2, was shown to the neuroscientists rotated upside-down, which may have

https://bitbucket.org/cbb-bojan/bbp-interneurons-classify
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Figure 11.1: Examples of the eight morphological types from Markram et al. [2004] for which we
learned supervised models. The types are: bitufted (BTC); chandelier (ChC); double bouquet (DBC);
large basket (LBC); martinotti (MC); nest basket (NBC); small basket (SBC), and the compound
basket (BA) type, composed of NBC, LBC, and SBC cells. Neurogliaform (NGC) and bipolar (BP)
types not shown as we omitted them from supervised classification, because we had only three cells of
each. Typical features, according to Markram et al. [2004], include bitufted dendrites (BTC), sharply
branching axons and low bouton density (LBC), and axons with spiny boutons, reaching L1 (MC),
and vertical rows of boutons (ChC). Axons are drawn in blue and dendrites and somata in red. Dashed
green lines indicate layer boundaries from the rat hind-limb somatosensory cortex. There are 100µm
between consecutive grid lines.

is, by Markram et al. [2015]— as MC, ChC, and NGC —the three types common to both

classification schemes— to contrast the neuroscientists’ labels to ours, but we did not use

affected how they classified it.
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them to train the models. We will reserve the term ‘our labels’ to the labels by Markram

et al. [2015] which we trained the models with.

For supervised classification, we omitted the BP and NGC types, as we had only three

examples of each and formed a compound type —basket (BA)— by merging the NBC, LBC,

and SBC cells. We also omitted five cells with morphology issues: three cells whose axonal

arborization was interrupted, and two with short axons (2500µm and 2850µm)7, thus ob-

taining the final sample of 217 cells from eight interneuron types (seven ‘base’ types plus the

compound BA type) used for supervised classification (see Figure 11.2).8
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Figure 11.2: Frequencies of interneuron types in our data: overall (left) and per cortical layer (right).
This figure shows the 217 cells used for supervised classification, with the SBC, NBC, and LBC types
also shown in the bar corresponding to BA (i.e., the BA bar does not contribute to total cell count).

11.3 Method

11.3.1 Morphometrics

We computed a total of 103 axonal and dendritic morphometrics, 48 of which were custom-

quantified Petilla [Ascoli et al., 2008] features. The custom-implemented morphometrics cover

a) arbor shape, direction, density and size; b) laminar distribution; c) dendritic polarity and

displacement from axonal arbor; and d) the presence of arborization patterns typical of

the MC, ChC, and LBC types. We determined arbor orientation with principal component

analysis, following Yelnik et al. [1983]. We quantified laminar distribution as the probability

of the arbor reaching at least two layers (one being its soma’s home layer), given that the

soma’s vertical position within its layer was unknown and that laminar thicknesses were

random variables rather than precise values. We distinguished between bipolar/bitufted and

multipolar dendrites by determining whether dendrite roots were located along a single axis

(for an alternative metric see Helmstaedter et al. [2009b]). Finally, we quantified a number

of complex, type-specific patterns with simple, ad-hoc morphometrics. For the MC type, we

quantified the ‘axonal collaterals that reach layer L1 and then ramify to form a fan-like spread

7We found that in the study by DeFelipe et al. [2013], the shortest axon which allowed at least half of the
42 neuroscientists involved to characterize an interneuron (i.e., to consider that the neuron can be classified)
was 2805µm, with the next shortest being 3197µm.

8We considered all 228 cells when contrasting our class labels to those from DeFelipe et al. [2013].



11.3. METHOD 117

of axonal collaterals’ [Ascoli et al., 2008] pattern by considering the estimated probability

of the axon reaching L1 and properties, such as width, of the upper part of the arbor. For

ChC, we counted the number of ‘short vertical terminal branches’. We did not estimate

translaminar extent as, without knowing the soma’s location within the column, it is poorly

correlated to tangential arborization span [Helmstaedter et al., 2009c]. Figure 11.3 illustrates

some of these morphometrics.

The remaining 55 morphometrics were standard metric and topological [Uylings and

Van Pelt, 2002] ones, such as bifurcation angles and partition asymmetry [Van Pelt et al.,

1992], including features of axon terminal branches such as length and curvature. We

avoided morphometrics possibly sensitive to reconstruction granularity, such as those de-

rived from axonal and dendritic diameter, local bifurcation angles, or segment length (e.g.,

the Fragmentation and Length analyses in L-Measure), as we had two groups of cells that

differed sharply in mean diameter and segment length (see Section 11.4.1).

We computed the morphometrics with the open-source NeuroSTR library and custom

R [R Core Team, 2015] code. NeuroSTR allowed us to handle multifurcations (e.g., we ig-

nored angle measurements on multifurcating nodes) and compute arbitrary statistics, so that,

for example, we computed the median branch length. Still, a number of potentially useful

morphometrics available in Neurolucida Explorer, such as box counting fractal dimension

[Panico and Sterling, 1995], were not available in NeuroSTR and thus were not considered in

this study. Appendix A lists all the used morphometrics, with definitions and computation

details.

11.3.2 Supervised classification

Rather than training models to distinguish among all interneuron classes at once, we consid-

ered eight settings where we discerned one class from all the others merged together (e.g.,

whether a cell is a ChC or a non-ChC cell). A benefit is that we can interpret such models,

and look for relevant morphometrics, in terms of that particular type. On the other hand,

training these models suffers from class imbalance [He and Garcia, 2009]; this was most pro-

nounced for the ChC type (there were seven ChC cells and 210 non ChC cells), and least for

BA (123 BA and 94 non-BA cells), which was the only setting in which the class of interest

was the majority one (i.e., there were more BA than non-BA cells).

To each classification setting we applied seven supervised classification algorithms (see Ta-

ble 11.1 for a list with abbreviations), such as random forest (RF) or support vector machines

(SVM), representative of different machine learning paradigms. We handled class imbalance

with a hybrid of random undersampling and SMOTE oversampling [e.g., Estabrooks et al.,

2004], meaning that we removed some majority class and added minority class instances to

the training data. We also pruned the set of morphometrics by keeping only those relevant

according to the Kruskal-Wallis9 (KW) statistical test [Kruskal and Wallis, 1952] and our

9In our binary classification settings the Kruskal-Wallis test corresponds to its special case for two samples,
the Wilcoxon–Mann–Whitney test [Wilcoxon, 1945, Mann and Whitney, 1947]. We keep the term Kruskal-
Wallis as that is the implementation that we used (R function kruskal.test).
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adaptation of the RF variable importance ranking [Breiman, 2001] for imbalanced settings,

termed balanced variable importance (RF BVI; see Section 11.3.2.1 for details), seeking to

simplify the models. Also, in small-sample class-imbalance settings, univariate feature selec-

tion [Guyon et al., 2006], such as KW, can improve predictive performance more than over-

and under-sampling [Wasikowski and Chen, 2010].

Most of the used classifiers, as well as the sampling and feature selection methods, require

one to specify parameters, such as number of neighbors for the kNN classifier or the number

of majority class instances to remove in undersampling. While learning these from data

may improve performance, we opted to avoid additional learning complexity (i.e., increasing

the probability of over-fitting) and instead pre-specified all parameters, using mostly the

default values from the implementations of the corresponding methods (see Section 11.3.2.1)

rather than fine-tuning them. For over- and under-sampling we devised a heuristic (see

Section 11.3.2.1) to determine the sampling ratios; Figure 11.4 illustrates its effects on the

class distributions in the different settings. Note that we used the same parameters in all

eight classification settings.

The full learning sequence was then: 1) feature selection; followed by 2) data sampling;

and finally 3) classifier induction, with steps 1 and 2 being optional (i.e., we also considered

not selecting features and not sampling the training data). We evaluated the classification

performance with F-measure (see Section 3.5) and estimated it with k-fold cross-validation.

We ran all three steps of the learning sequence on the k training data sets alone, i.e., without

using the test fold (that is, we selected features and sampled data within the cross-validation

loop, not outside of it). Since data sampling is stochastic, and a large sampling ratio can

change the training set class distribution, we repeated cross-validation ten times when in-

cluding sampling within the learning sequence. Finally, we identified potentially atypical MC

morphologies as those commonly misclassified by different models [Brodley and Friedl, 1999].

The next section provides details about the used methods, describes the sampling proce-

dure and F-measure computation, and gives implementation details.

11.3.2.1 Details

We standardized all predictors to zero mean and unit variance. This gives equal weight to all

predictors for the kNN classifier, and allows us to interpret the magnitude of the coefficients

of the linear models, while it does not affect the remaining models.

We set the classifiers’ parameters (see Table 11.1) on the basis of available recommen-

dations [Boulesteix et al., 2012, Hsu et al., 2003] or we used the defaults in the software

implementation. For kNN we used k = 5, and, similarly, for CART we set |Dl| = 5; while

this might be too coarse-grained for ChC, as there are at most six ChC cells per training set,

we sought to avoid overly complex models (with a lower k). Note that the m =
√
n parameter

for RF was recomputed on every training set; thus, it was adjusted each time feature selection

reduced n. For RF, we set T = 2000 and chose the standard value of m =
√
n.

For KW feature selection, we set the significance level α = 0.05, whereas for RF BVI

ranking we selected features with BVI ≥ 0.01 and kept m =
√
n, although it can yield a
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BVI ranking that prefers correlated features [Nicodemus et al., 2010], while we increased

the number of trees, T , to 20000, as that produced stable BVI values (a higher T does not

increase model variance nor presents any other drawback besides longer computation time).

Due to the imbalance, we did not use the standard VI metric, while we did not use the

ROC-curve-based VI as it is only available for conditional inference trees (see Section 3.12.2).

Instead, we used the arithmetic mean of the unscaled per-class VI values provided by the

randomForest R package, and refer to this as the balanced VI (BVI)10. We used a simple

heuristic and selected only features with a BVI above 0.01.

For undersampling, we randomly removed up to a half of the majority class instances,

keeping at least three majority class instances per each one of the minority class (thus, for the

imbalance ratios minority:majority above (i.e., less pronounced than) 1:3 we did not under-

sample). More precisely, after undersampling there wereN
(u)
M = max (min (3Nm, NM ), 0.5NM )

majority class instances, where NM is the number of samples from the majority class and Nm

that of the samples from the minority class. We then run SMOTE on the undersampled data

set, adding up to three synthetic instances per each minority class example; thus, after over-

sampling there were N
(o)
m = min (N

(u)
M , 3Nm) minority class examples. Therefore, for large

imbalances (e.g., a ratio 1:10) most balancing was due to undersampling, potentially reducing

imbalance down to a ratio of to 1:3, with SMOTE oversampling then further reducing the

ratio towards 1:1.

We evaluated the learning procedures with stratified 10-fold cross-validation, except for

ChC versus rest, where we used seven folds (in order to have at least one ChC instance in

each test set). When sampling the training data, we repeated CV 10 times and averaged the

results. When computing F-measure, we always considered the minority class as the positive

one, except for BA versus rest, when we considered BA, the majority class, as the positive

one. Note that, unlike for classification accuracy, one cannot get an unbiased estimate of F-

measure by averaging over the k test samples [Forman and Scholz, 2010]; thus, we computed

the F-measure of a CV run from the full confusion matrix, obtained by aggregating the true

labels and predictions from the k test folds. That is, the F-measure estimate for a run of

cross-validation was not the average of k per-fold F-measure scores, but rather the single

value computed from the aggregated confusion matrix. We looked for mislabelled cells by

collected misclassifications over 30 runs of ten-fold cross validation. Table 11.1 and Table 11.2

list all the parameters.

10The VIs of the majority class are expected to be lower [Janitza et al., 2013] and using a harmonic or
geometric mean, instead of the arithmetic, would further decrease the estimate, obfuscating possible effects in
the minority class.



120 CHAPTER 11. PER-CLASS SUPERVISED CLASSIFIERS

●

● ●
L2/3

L4

MC NBC SBC

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●● ●●●

●●●

●●●

●●●

●●●
●●●

●●● ●●●
●●● ●●●

●●●

●●● ●●●

●●●

Arbor shape, direction, and density (XY) Laminar Type−specific pattern Dendritic

ax
on

_o
rig

in

ec
ce

nt
ric

ity

ra
di

al

y_
m

ea
n

y_
st

d_
m

ea
n

gr
id

_a
re

a

gr
id

_m
ea

n

d.
ec

ce
nt

ric
ity

d.
gr

id
_a

re
a

tr
an

sl
am

in
ar

l1
_p

ro
b

d.
tr

an
sl

am
in

ar

l1
_w

id
th

l1
_g

xa

l1
_g

x

l1
_b

ifs

sh
or

t_
ve

rt
ic

al
_t

er
m

in
al

s

d.
di

sp
la

ce
d

d.
in

se
rt

.e
cc

en
tr

ic
ity

d.
in

se
rt

.r
ad

ia
l

−2
−1

0
1
2

S
ta

nd
ar

di
ze

d 
va

lu
e

type

MC
NBC
SBC

Figure 11.3: Custom-implemented morphometrics for an L4 MC (top: left; bottom: red), an L2/3
NBC (top: middle; bottom: green), and an L2/3 SBC (top: right; bottom: blue) interneuron. The
bottom panel shows standardized values, with black dots indicating minima and maxima (extrema
outside (−2.5, 2.5) not shown). The axon of the MC cell originates from the upper part of the soma
(axon origin), grows along a radial axis (eccentricity, radial; axis drawn with the orange line),
radially far from the soma (y mean, center of mass shown with orange dot) and above it (y std mean),
covers a small surface (grid area), and its branches are not clustered together (grid mean). It is
translaminar (translaminar) and there is just a moderate (around 30%) probability it reaches L1
(l1 prob) because, even with its soma vertically in the middle of L4, it only touches the bottom
of L1. Low l1 prob and arbor width produce a low estimate of width (l1 width), bifurcations
count (l1 bifs), and horizontal fanning out (l1 gxa) in L1. The dendritic arbor of the MC cell
is displaced (d.displaced) from the axon and the dendrites stem from opposite ends of the soma
(d.insert.eccentricity), located along a radial axis (d.insert.radial). The NBC cell’s axonal
arbor is circular (radial), with closely grouped branches (grid mean)) and a number of short verti-
cal terminals (short vertical terminals). The axon of the SBC cell is intralaminar, tangentially
oriented, with closely grouped branches, while both cells’ dendrites are spread out (multipolar) and
colocalized with the axons. Dashed green lines indicate layer boundaries from the rat hind-limb so-
matosensory cortex, assuming that the somas are located in the middle of their layer. Axon is shown
in blue and dendrites and somata in red. The grid lines are at 100µm from each other. Dendritic mor-
phometrics are prefixed with d.. Axon terminal branch morphometrics, not shown here, are prefixed
in the remainder of the text with t..
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We implemented all the data analysis and classification in the R programming language

[R Core Team, 2015]. We used the mlr [Bischl et al., 2015] for classifier learning and

evaluation, feature selection, oversampling and undersampling, extending it to compute

a global F-measure for an entire cross-validation run and adding the FDR p-value cor-

rection to the KW feature selection method. All code and data are available at https:

//github.com/ComputationalIntelligenceGroup/bbp-interneurons-classify.

0

100

200

300

ChC BTC DBC SBC NBC MC LBC BA
Classification task

co
un

t Negative
Synthetic
Positive

Figure 11.4: Effects of under- and over-sampling the full dataset with the chosen rates. Each bar
represents a one-versus-all classification task (e.g., the leftmost bar is for ChC versus rest). ‘Positive‘
denotes the examples of the class of interest (e.g., ChC in the leftmost bar), ‘Synthetic‘ are the
artificial SMOTE examples of the positive class (i.e., the class of interest), while ‘Negative‘ are the
kept examples of all remaining classes. The horizontal line shows the size of the original data set (217
examples). For ChC (leftmost bar), for example, applying our sampling method to the full data set
holding seven ChC cells (red segment of the bar), would keep 105 (blue segment) out of 210 non-ChC
cells and add 14 synthetic ChC cells (green segment), yielding a data set of size 126 (hence the bar
is lower than the horizontal line at 217). Except for BA, in all cases the class of interest was the
minority class. For NBC, MC, LBC and BA we performed no undersampling (note that the bar is
higher than the horizontal line).

11.4 Results

In Section 11.4.1 we show that some class labels differed from those provided by the neuro-

scientists in DeFelipe et al. [2013] and illustrate reconstruction issues that require care when

choosing and computing morphometrics. Section 11.4.2 presents the classification results,

while Section 11.4.3 shows that accurate models classified MC cells in accordance with the

independent classification by the neuroscientists from DeFelipe et al. [2013]. In Section 11.4.4

we provide quantitative descriptions of the types, in terms of only a few morphometrics or

parsimonious CART and logistic regression models.

11.4.1 Validating class labels and morphology reconstructions

For eight out of 20 cells which were also classified by 42 neuroscientists in DeFelipe et al.

[2013] our class label differed from that given by the majority of the neuroscientists (see

Table 11.3 and Figure 11.5, left). There was no strong consensus on the actual type for these

cells among the neuroscientists, although cells C050600B2, C091000D-I3, and C170998D-I3

https://github.com/ComputationalIntelligenceGroup/bbp-interneurons-classify
https://github.com/ComputationalIntelligenceGroup/bbp-interneurons-classify
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were LBC, CB, and CB, respectively, according to at least 19 of them. For 5
19 = 26% of the

considered cells no more than five neuroscientists agreed with our class label11, suggesting

that there might have been many such differing class labels had we been able to compare

them for the entire data set.

Interestingly, the interneurons could be separated into two groups, one with its cells’

arbors reconstructed at a finer level —with shorter and thinner segments— than those of

the other (see Figure 11.5, right). We thus avoided using morphometrics sensitive to such

fine-grained properties (e.g., the number of segments per branch). This difference may have,

however, distorted metrics such as tortuosity, since finer reconstructed branches were more

tortuous; see Section B.1.1. 84 cells had at least one multifurcation (a branching point

splitting into three or more child branches; at most ten in a single neuron) yet their effect was

minimal as we ignored these branching points when computing bifurcation morphometrics,

such as mean partition asymmetry or mean bifurcation angle. Two cells seemed to be modified

clones of other cells; see Section B.1.2 for details. We only found two reconstruction anomalies:

a 285µm long segment (whereas median length was 2µm), and two axonal arbors extremely

flat in the Z dimension (less than 80µm deep while median depth was 215µm; ratio of depth

to axonal length was below 1
100 while median ratio was 1

62). We did not correct these issues

nor we removed the corresponding neurons.

11.4.2 Classification

Table 11.4 shows the best F-measure results for the eight classification settings. The most

accurately classified classes were BA, MC, and NBC (shown in green), each with an F-

measure ≥ 0.80, while classifying ChC and BTC cells was hard (best F-measure 0.49 and

0.44, respectively). The best model for MC performed better than the average neuroscientist

in DeFelipe et al. [2013] when identifying MC cells, as their average F-measure was 0.7212. In

general, more numerous classes were classified more accurately (F-measure tends to increase

towards the bottom rows of Table 11.4), with the exceptions of LBC, which was the third

hardest to classify despite being the second most numerous, and BTC, which was the hardest

type to classify yet only second least numerous.

Sampling improved the performance of most classifiers, although the largest increase in

best F-measure was only 0.03, for the ChC, NBC, and MC types (see Table 11.4, rows

2, 18, and 24). Feature selection increased the best F-measure for BA, DBC, MC, and

especially for BTC and SBC (Table 11.4, rows 7 and 15). RW BVI selected much smaller

sets of morphometrics (e.g., 7 for SBC; Table 11.4, row 15) than KW (up to 68, for BA;

Table 11.4, rows 31-32), allowing, for example, to accurately classify NBC cells using just

9 morphometrics (Table 11.4, row 15). Further feature pruning by the CART and RMLR

models after KW produced parsimonious and accurate models, such as the RMLR model for

11We are ignoring cell C040600B2, which was shown to the neuroscientists rotated upside-down (this may
have affected how they classified it), hence five out of 19 and not six out of 20.

12This value was not reported in DeFelipe et al. [2013]; instead we computed it from data from that study,
taking into account only cells that could be clearly classified into a type. See Section C.1 details.
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Table 11.3: Disagreement with our class labels by 42 neuroscientists who participated in DeFelipe et al.
[2013]. Cell type is the label in our data, given according to the classification scheme from Markram
et al. [2004] while DF (standing for DeFelipe) is the majority label chosen by the neuroscientists,
according to the scheme from DeFelipe et al. [2013]. Agree is the number of neuroscientists that
coincided with our label, while columns to the right show the number of neuroscientists who selected
the corresponding DF label (all shown in boldface): AR - arcade; CB - common basket; CR - Cajal-
Retzius; CT - common type; HT - horse-tail; OT - other; UN - uncharacterized, meaning that the
axonal morphology reconstruction was not sufficient to distinguish the type. The table shows eight
out of the 20 interneurons which were classified as ChC, MC, or NGC —the three types common to
both classification schemes— in our data yet differently by the majority of neuroscientists (column
DF); for the remaining twelve interneurons, the neuroscientists’ majority label matched ours. Cell
C040600B2, which was presented to the neuroscientists rotated upside-down, is marked in blue. ID
can be used to look the neuron up at Neuromorpho.org.

ID Layer Cell type DF Agree AR CB ChC CR CT HT LBC MC NGC OT UN
1 C040600B2 2/3 MC CT 0 3 9 0 0 15 2 5 0 0 5 3
2 C050600B2 2/3 MC LBC 1 0 5 0 0 10 1 20 1 0 2 3
3 C150600B-I1 2/3 MC CT 1 1 11 0 0 16 0 9 1 0 3 1
4 C091000D-I3 5 ChC CB 3 3 19 3 0 6 0 6 0 2 2 1
5 C260199A-I3 4 MC CT 3 0 5 0 0 17 0 6 3 0 4 7
6 C170998D-I3 2/3 NGC CB 5 1 19 0 0 11 0 0 0 5 4 2
7 C070600B2 4 MC LBC 11 2 1 0 0 8 0 15 11 0 2 3
8 C090997A-I2 4 MC CT 12 1 6 0 0 14 0 4 12 0 1 4
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Figure 11.5: Possible class label and reconstruction issues. Left panel: cells C050600B2 (left),
C091000D-I3 (middle), and C150600B-I1 (right) from Table 11.3, labelled as MC and ChC, respec-
tively, yet only one, three, and one (out of 42) neuroscientists in DeFelipe et al. [2013], respectively,
coincided with those labels, assigning them instead to the LBC, CB, and CT types. Note that we
did not know the location of soma inside their layers; for the MC cells, a soma closer to L1 would
mean more extensive axonal arborization in that layer. Axons are drawn in blue and dendrites and
somata in red. Dashed green lines indicate layer boundaries from the rat hind-limb somatosensory
cortex; L6 only partially shown. There are 100µm between consecutive grid lines. Right panel: newer
reconstructions, whose ids do not begin with a C, had thinner and shorter segments.
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MC (with an F-measure of 0.80 and 22 morphometrics; Table 11.4, row 23). See Figure B.3

to Figure B.10 for detailed per-type graphs of classification performance, broken down by

classification, feature selection and sampling method.

Table 11.4: F-measure one-versus-all classification. The table shows, for each type, the best F-measure
in all four learning settings: with and without sampling, and with and without feature selection. TPR:
true positive rate; TNR: true negative rate; the minority class is always the positive one, except for
BA; Acc: classification accuracy; Morphom.: the number of morphometrics in the model. Types are
sorted from least to most frequent (e.g., ChC, with only seven examples, is shown uppermost). The
best F-measure for each type is typeset in bold. Types with their best F-measure ≥ 0.75 are shown
in green; those with the F-measure ≥ 0.60 in orange; and the rest in red.

Cell Type Classifier FSS Sampling F-measure TPR TNR Acc Morphom.
1 ChC RMLR 0.40 2 / 7 209 / 210 0.97 11
2 RF Yes 0.49 2.8 / 7 208.5 / 210 0.97 103
3 LDA KW 0.46 3 / 7 207 / 210 0.97 15
4 RF KW Yes 0.46 3.5 / 7 205.2 / 210 0.96 15
5 BTC NB 0.35 8 / 15 179 / 202 0.86 103
6 RMLR Yes 0.35 6.7 / 15 185.8 / 202 0.89 23
7 LDA KW 0.44 6 / 15 196 / 202 0.93 7
8 LDA KW Yes 0.40 8.8 / 15 181.8 / 202 0.88 7
9 DBC RMLR 0.70 15 / 22 189 / 195 0.94 17

10 RF Yes 0.70 14.6 / 22 189.8 / 195 0.94 103
11 RF RF BVI 0.72 13 / 22 194 / 195 0.95 6
12 RF KW Yes 0.70 15.4 / 22 188.2 / 195 0.94 61
13 SBC CART 0.63 16 / 28 182 / 189 0.91 5
14 RF Yes 0.66 20.6 / 28 174.8 / 189 0.90 103
15 kNN RF BVI 0.73 20 / 28 182 / 189 0.93 7
16 RF RF BVI Yes 0.69 22.5 / 28 173.8 / 189 0.90 7
17 NBC CART 0.73 32 / 44 161 / 173 0.89 4
18 RF Yes 0.81 36.2 / 44 164 / 173 0.92 103
19 RF RF BVI 0.78 33 / 44 165 / 173 0.91 9
20 RF RF BVI Yes 0.76 36 / 44 158.6 / 173 0.90 9
21 MC SVM 0.77 37 / 50 158 / 167 0.90 103
22 RF Yes 0.81 40.2 / 50 158.4 / 167 0.92 103
23 RMLR KW 0.80 38 / 50 160 / 167 0.91 22
24 RF KW Yes 0.82 40.9 / 50 157.8 / 167 0.92 62
25 LBC RF 0.56 21 / 51 163 / 166 0.85 103
26 RF Yes 0.67 29.8 / 51 157.4 / 166 0.86 103
27 CART RF BVI 0.64 30 / 51 153 / 166 0.84 4
28 SVM RF BVI Yes 0.66 38.1 / 51 140 / 166 0.82 4
29 BA RF 0.86 106 / 123 76 / 94 0.84 103
30 SVM Yes 0.86 101.9 / 123 80.8 / 94 0.84 103
31 SVM KW 0.88 105 / 123 84 / 94 0.87 68
32 SVM KW Yes 0.88 104.2 / 123 84.2 / 94 0.87 68

11.4.3 Validating the MC models

We validated the two most accurate models for MC —RF with sampling and RMLR, both

preceded by KW feature selection (see Table 11.4, rows 22–24)—, by comparing their output

to the classification by the neuroscientists from DeFelipe et al. [2013], which was not used to
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train the models.

As Table 11.5 shows, the models largely agreed with the neuroscientists in DeFelipe

et al. [2013]. Cells that were considered MC by 13 or less neuroscientists (upper part of

Table 11.5) were also rarely classified as MC by our models, with cells C050600B2, C260199A-

I3, and C230998C-I4 never labelled as MC by either model. Both models disagreed with the

neuroscientists on cells C040600B2 and C090997A-I2 —the former was, however, shown to

the neuroscientists rotated upside-down, which may have yielded so few votes for MC— and

RF disagreed on cell C150600B-I1, considering it MC 22 out of 30 times. On the other hand,

cells that were MC according to 14 or more neuroscientists (lower part of Table 11.5) were

always classified as MC by the models, except for C061000A3, which RMLR never classified

as MC.

Figure 11.6 shows the four cells that were considered MC at most six (out of 30) times by

both RF and RMLR. These include the cells C050600B2, C260199A-I3, C230998C-I4 (shown

in red in Table 11.5), classified as MC by only one, three, and 13 neuroscientists, respectively.

These cells may correspond to atypical MC morphologies.

11.4.4 Feature selection

For all types except for ChC and BTC, we achieved at least moderately accurate (F-measure

≥ 0.65) models using only few morphometrics (see Table B.2). Below we describe the BA,

NBC, DBC, SBC, and SBC types in terms of the morphometrics selected with RF BVI, and

the MC type in terms of those selected with KW followed by CART and RMLR embedded

feature selection (this yielded more accurate models for MC than RF BVI). We also describe

the BA and MC types in terms of accurate (F-measure ≥ 0.75) and parsimonious CART and

logistic regression (RMLR) models. Finally, we complement each type description with some

of the best-ranked morphometrics according to the KW test, and conclude in Section 11.4.4.6

with a summary of feature selection. We begin with the most accurately classified type,

BA (Section 11.4.4.1), and proceed towards the least well discerned ones, ChC and BTC

(Section 11.4.4.5). See Table B.4 and Table B.5, respectively, for the full list of KW- and RF

BVI-selected morphometrics, along with the corresponding p-values and RF BVI values.

11.4.4.1 BA characteristics

Six axonal morphometrics selected by RF BVI (Figure 11.7) sufficed to accurately (with

an F-measure of 0.86) distinguish BA cells. These morphometrics captured two properties

only: remote branching angle and arborization distance from soma. Indeed, BA cells had

sharper remote bifurcation angles and arborized closer to the soma, especially in terms of

vertical distance (Figure 11.7). While LBC cells can extend vertically far from the soma

(Markram et al. [2004], Wang et al. [2002]; their average height in our sample was 1020µm ±
327µm, versus 603µm ± 190µm for the NBC and SBC together), it seems that most of their

arbor is nonetheless located near the soma, with radially distant ramifications being rather

sparse. The CART and RMLR models derived from the six RF BVI-selected morphometrics
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were accurate (F-measure of 0.85 and 0.83, respectively) and interpretable (e.g., Toledo-

Rodriguez et al. [2005] used CART to relate mRNA expression to neuro-anatomical type).

The CART model, for example, is a set of rules such as “all cells with path dist.avg < 414

and y mean abs < 133 are BA cells”. Both models are described in Figure 11.8.

The KW test identified additional 63 morphometrics, including 26 dendritic ones, that

differed between the BA and non-BA cells, yet using them barely improved the F-measure

achieved with the six RF BVI-selected morphometrics alone (from 0.86 to 0.88). Interestingly,

the number of dendritic trees was among the most relevant morphometrics, with BA cells

having more dendritic trees than non-BA ones (Figure 11.7). Although some basket cells

have curved axon terminals [Ascoli et al., 2008], t.tortuosity.avg was only 47-th most

relevant morphometric according to KW, suggesting that we may need a more appropriate

morphometric to capture the curved property of basket terminal branches. On the other

hand, axonal properties that did not differ for BA cells included average branch length, arbor

length and initial direction (whether towards pia or the white matter).

11.4.4.2 MC characteristics

The six morphometrics selected by CART (following KW selection) allowed for classifying

MC cells with an F-measure of 0.75. According to this model, a typical MC cell’s axon

arborized far above the soma (y mean), widely in layer L1, and bifurcated in wide angles.

The model is described in Figure 11.9. Using 22 morphometrics, including seven dendritic

ones, KW + RMLR was more accurate (F-measure of 0.80) and uncovered additional MC

properties, such as longer dendritic trees, displaced from axonal arbors, which in turn were

moderately radial (see Figure 11.10). This agrees with Markram et al. [2004] and Wang et al.

[2004], who reported elaborate dendrites, 1013 ± 503 µm axonal width in L1, and average tilt

angles of 80 degrees. It also contrasts with the above description of BA cells, which arborized

vertically close to soma, had shorter bifurcation angles, and many dendritic trees. This is

illustrated in Figure 11.10, which plots MA, BA and all other types using the two most useful

morphometrics for BA.

KW selected 40 additional morphometrics, including 17 dendritic ones, with the strongest

difference for path_dist.avg and y_mean (see Table B.4). MC cells often had bitufted

dendrites (also reported by Markram et al. [2004]) and axons originating above the soma.

11.4.4.3 NBC characteristics

Nine axonal morphometrics selected by RF BVI allowed an accurate (F-measure 0.78) clas-

sification of NBC cells (see Figure 11.11). Six of those morphometrics were related to ar-

borization distance from soma; the rest to translaminar reach, branch length, and arbor

density.

KW identified a larger and more diverse set of 48 morphometrics, including 21 dendritic

ones, that differed for NBC cells (see Table B.4), yet using all of them slightly decreased

performance with respect to using only the nine RF BVI-selected morphometrics (F-Measure
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from 0.78 down to 0.75). In addition to arborization distance from soma and translaminar

reach, relevant morphometrics included axonal terminal degree, arbor eccentricity, partition

asymmetry, terminal branch length, and whether the dendrites were bitufted.

11.4.4.4 DBC, SBC and LBC characteristics

DBC cells were classified with moderate accuracy (F-measure 0.72) with the five morpho-

metrics selected by RF BVI, all related to axonal arbor eccentricity, distribution along the

Y axis, and width (see Figure 11.12). While KW identified 61 significantly different mor-

phometrics for DBC —more than for SBC, NBC, and LBC, even though these were more

numerous than DBC— using all of those morphometrics did not improve DBC classification

(F-measure dropped to 0.70). The most relevant ones were related to the radial arborization

of both the axonal and the dendrites (Figure 11.12). Interestingly, KW selected more (26)

dendritic morphometrics for DBC than for any other type.

For SBC we achieved an 0.73 F-measure with the seven RF BVI-selected morphomet-

rics, related to mean branch length, arbor density, and arborization distance from soma (see

Figure 11.12). KW selected 39 morphometrics, although using them did not improve with

respect to just RF BVI-selected ones (F-measure from 0.73 down to 0.67). Relevant morpho-

metrics included y_sd, related to radial arborization extent, and the maximal arborization

distance from the soma (euclidean_dist.max).

LBC cells were classified with an F-measure of 0.66 with the four morphometrics selected

with RF BVI, related only to remote bifurcation angles and arborization distance from soma

(see Figure 11.12). According to KW, remote bifurcation angle was the most significant

morphometric, with a p-value of 3.7× 10−8, followed by remote tilt angle, median terminal

branch length, grid_area and the number of dendrites (see Table B.4). KW identified only

32 relevant morphometrics for LBC, much less that for other numerous types; using all these

morphometrics reduced the best F-measure to 0.62.

11.4.4.5 BTC and ChC characteristics

For BTC, only seven morphometrics were relevant according to KW, with dendritic polarity

and the standard deviation of branch length (length.sd), among the most significant ones.

For ChC, the relevant properties according to KW included arbor density (density_bifs,

grid_mean), mean branch length, the number of short vertical branches, and terminal degree.

11.4.4.6 Summary

KW identified more relevant morphometrics for the more numerous types, with the excep-

tions of LBC (second most numerous, yet only sixth most features) and DBC (sixth most

numerous, yet third most features). Dendritic morphometrics represented 30-40% of the

relevant ones, except for ChC (a single dendritic morphometric out of seven relevant ones;

see Table B.4). 11 dendritic and four axonal morphometrics were not relevant for any type,
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and are possibly useless for interneuron classification: dendritic bifurcation angles, tortu-

osity, and radial and tangential arbor distribution, and axonal torque angle and tangential

arbor distribution. Dendritic tree length and d.displaced, however, were relevant for six

out of eight types. Custom-implemented morphometrics represented between 47% and 72%

of the selected morphometrics. Only two custom-implemented morphometrics (ratio x and

x mean abs) were not useful for any type, while translaminar and y sd were relevant for six

types.

11.5 Discussion

We obtained accurate models for the NBC, MC, and BA types and moderately accurate ones

for DBC, SBC, and LBC. The best MC model was better than the average neuroscientist in

DeFelipe et al. [2013] and was outperformed by only three out of 42 of them (see Section C.1).

The best BA model was even more accurate, correctly identifying 105 out of 123 BA cells (see

Table 11.4). These models, along with the model for NBC, would probably be useful for the

definitive automatic classifier envisioned by DeFelipe et al. [2013] to replace neuroscientists

in this task. The remaining models were probably not good enough: the next best model

correctly identified only 20 out of 28 SBC cells (see Table 11.4). The main limiting factor

seems to have been sample size: with the exception of LBC, more numerous types were

classified more accurately; indeed, we only had 28 SBC, 22 DBC, 15 BTC and seven ChC cells.

Taking sample sizes into account, moderate F-measure values suggest that the DBC and SBC

types are morphologically distinct and we expect that around 50 cells (a count close to that

of NBC and MC cells) would suffice to accurately classify them. The LBC type was relatively

hard to classify. Either we have missed to quantify its distinctive morphometrics —there were

less relevant morphometrics for LBC than for other numerous types— or its morphology is

not sufficiently distinct when contrasted to the other types merged together. Distinguishing

across layers (e.g., L2/3 LBC, L4 LBC, etc.) might decompose it into morphologically distinct

subtypes.

One explanation for the differences between our class labels and the classification from

DeFelipe et al. [2013] shown in Table 11.3 is that ours were ultimately determined by the

presence of spiny boutons and dendritic spines (MC), short vertical rows of boutons (ChC),

or a high density of small boutons (NGC). Indeed, for Wang et al. [2004], spiny boutons,

along with axonal spread in L1, are an essential (mandatory) characteristic of MC cells. Yet,

ChC, MC and, to a lesser degree, NGC morphologies are often identifiable by axonal and

dendritic geometry alone [DeFelipe et al., 2013] suggesting that their arborization patterns

are distinct. Thus, while cells in Table 11.3 might be meeting fine-grained criteria for MC,

ChC, and NGC membership, their high-level morphologies are atypical, as most of the 42

neuroscientists considered that they did not belong to those types. It is hard for a model to

correctly classify such cells, unless some morphometrics are correlated with the fine-grained

features. Thus, there might be a limit to how well the classification by Markram et al. [2004]

could be replicated by a model trained on morphological reconstructions. However, even
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when the MC models failed to recover the class label, their output may have been sensible,

as it was often consistent with the classification by the 42 neuroscientists (see Table 11.3).

MC cells classified as not MC by accurate models might thus correspond to atypical MC

morphologies.

An alternative, yet less likely, explanation for the difference is that some class labels had

been wrongly assigned, without following the pre-specified criteria. In that case, wrong labels

biased the models as well as their performance estimates [Lam and Stork, 2003]. Instead of

assuming that all class labels are correct, as we did, they can be estimated together with

classifier learning (Frénay and Verleysen, 2014), although this makes the learning problem

harder.

Additional morphometrics might further improve the results. We consider that quanti-

fying Petilla features related to arborization patterns would be useful, especially for scarce

types such as ChC. Some of our custom-implemented morphometrics may have been too

simple (e.g., only branches extending no more than 50µm vertically were considered short

and vertical) to adequately capture the complexity of these features, and could be elabo-

rated. Type-specific morphometrics, such as the extent of axonal arborization in layer L1

for MC cells, incorporated prior knowledge about the types into the models. Note that such

underlying knowledge may be disputed: e.g., DeFelipe et al. [2013] do not require an MC cell

to reach layer L1, Wang et al. [2004] consider it an essential, mandatory feature, and so do

Markram et al. [2015], except for L6 MC cells. It would be interesting to study the robustness

of standard morphometrics to reconstruction issues such as inconsistent branch granularity

and then develop robust alternatives. For example, t.tortuosity.avg might have better

captured the ‘curved terminal branches’ feature of the BA type had not some cells’ branches

been reconstructed in finer detail than those of others, thus increasing their tortuosity (see

Section B.1.1). While at least 21 analyses available in L-Measure would have not been ro-

bust to reconstruction granularity inconsistency in this data set, they are nonetheless used

for neuron classification [e.g., Vasques et al., 2016]. Thus, a software tool that implements

robust morphometrics could be useful for practitioners.

The small feature subsets and parsimonious models that allowed for (moderately) accurate

classification serve as summaries of the types’ morphological characteristics. Most types can

be summarized in terms of simple morphometrics, related to arborization distribution with

respect to the soma (e.g., path_dist.avg), its vertical direction (e.g., y_std_mean), branch-

ing angles (remote_bifurcation_angle.avg), or the number of dendrites(d.N_stems), and

a few elaborate ones, such as the arborization extent in L1 (l1_width). It is possible that

the simple morphometrics would not suffice if distinguishing multiple types at once, as the

decision boundaries would presumably be more complex.

We have presented eight separate type-specific models. Combining them to classify a

given interneuron involves choosing the type with the most confident one-versus-all model.

An alternative is to learn a hierarchy of classifiers by grouping types into ‘super types’ such as

BA: one would first classify a cell as BA or non-BA and then, if classified as BA, distinguish

among LBC, NBC, and SBC types, and among the remaining types otherwise. Rather than
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learning the hierarchy from data, one might predefine it; useful ‘super-types’ could be formed,

for example, by grouping according to axonal target area — a dendrite-targeting type would

be composed of BP, BTC, DBC and NGC cells [Markram et al., 2004].

Note that we have learned the models from juvenile rat somatosensory cortex interneu-

rons and they might be less effective if applied to classify other species’ or brain area cells,

especially because metric variables, such as those related to distances from the soma and

arbor size, are affected by these factors. Doing so would also require appropriate laminar

thickness metadata in order to quantify laminar extent. The presented supervised classifi-

cation approach could easily be extended to allow the discovery of new types: since models

such as logistic regression can quantify the confidence in their prediction, one could consider

discovering types by clustering [Jain, 2010] cells that the model cannot reliably assign to any

of the a priori known types.

11.6 Conclusion

We used 217 high-quality morphology reconstructions of rat interneurons to learn models for

eight interneuron types. We have proposed and implemented morphometrics that quantify

relevant interneuron properties such as laminar distribution and arbor extent in L1, den-

dritic polarity, arbor orientation, and whether the dendrites are displaced from the axon.

We carefully selected standard metric and topological morphometrics, omitting those not

robust to reconstruction granularity. We applied state-of-the-art classification algorithms

and learned accurate models for the BA, MC, and NBC types, with F-measure values above

0.80, which can compete with neuroscientists, and moderately accurate (F-measure above

0.70), for the DBC and SBC types, although we had less than 30 cells of the latter two

types. We characterized the types in terms of parsimonious CART (for BA and MC) and

logistic regression (for BA) models that can be interpreted by neuroscientists, and of small

sets of relevant morphometrics: no more than nine morphometrics sufficed for an at least

moderately accurate classification of the DBC, SBC, NBC, MC and BA types. Most relevant

morphometric were related to axonal arborization distance from the soma and bifurcation

angles while most dendritic ones were not. Differences between our class labels and those

by 42 leading neuroscientists from DeFelipe et al. [2013] suggest that it might be hard to

perfectly replicate the classification by Markram et al. [2004] without access to fine-grained

morphological features. However, even when failing to recover the original label, the models’

output seemed sensible as it often matched the classification by 42 leading neuroscientists.

We computed all the morphometrics with open-source software and our code and data are

publicly available. This study showed that with quality reconstructions, a careful selection of

morphometrics and an informed machine learning approach, accurate models can be learned

from relatively few examples. We speculate that 50 cells could suffice for learning accurate

models for the DBC and SBC types. This study also illustrated minor reconstruction present

in a curated set of high-quality morphologies.

Achieving accurate automatic classification for the all established morphological types



132 CHAPTER 11. PER-CLASS SUPERVISED CLASSIFIERS

will require more labeled interneurons to train the models with, especially for scarce types

such as ChC. In the short term, this may require leveraging the reconstructions from Neu-

romorpho.org. Automated checks of morphology, such as those performed by NeuroSTR

(e.g., whether a bifurcation angle is too wide to be plausible), could help filter useful re-

constructions, while developing morphometrics robust to different types of variability (e.g.,

in reconstruction granularity) might facilitate combining diverse data. Aggregating cells la-

beled in different laboratories could be problematic if these class labels had been assigned

following different criteria, and the labels might need to be validated by multiple neurosci-

entists. Classification criteria that give importance to fine-grained morphological features,

such as bouton distribution, would imply a limit to attainable classification accuracy, unless

we can discover morphometric correlates of such features. Finally, morphometrics that quan-

tify complex arborization patterns could be especially useful for the less numerous types. In

the long run, we expect efforts by the Human Brain Project, the Allen Institute for Brain

Research, and NeuroMorpho.Org to provide many high-quality morphologies. Given such

data, we consider that the methodology presented in this chapter can provide an accurate

automatic classification into established morphological types.
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Table 11.5: Classification of MC cells by the neuroscientists in DeFelipe et al. [2013] and our two
most accurate models, RF and RMLR. MC is the number of neuroscientists who classified the cell
as MC, Non-MC the number of those who assigned it to another type, and UN the number of those
who considered that the axonal morphology reconstruction was not sufficient to distinguish the type.
RF and RMLR show the number of times (out of 30) that RF and RMLR classified the cell as MC.
Cells that were never classified as MC by both models are marked in red. Cell C040600B2, which was
presented to the neuroscientists rotated upside-down, is marked in blue. ID can be used to look the
neuron up at Neuromorpho.org.

ID Layer RF RMLR MC Non-MC UN

1 C040600B2 L2/3 29 23 0 39 3
2 C050600B2 L2/3 0 0 1 38 3
3 C150600B-I1 L2/3 22 1 1 40 1
4 C260199A-I3 L4 0 0 3 32 7
5 C070600B2 L4 12 0 11 28 3
6 C090997A-I2 L4 30 19 12 26 4
7 C230998C-I4 L4 0 0 13 25 4
8 C190997A-I1 L4 30 30 14 26 2
9 C290500B-I3 L2/3 30 30 18 20 4

10 C150501A-I3 L5 30 30 22 6 14
11 C060400C1 L2/3 30 30 24 18 0
12 C290500C-I4 L5 30 30 26 15 1
13 C061000A3 L4 30 0 34 6 2
14 C100501A3 L2/3 30 30 36 3 3
15 C050896A-I L5 30 30 37 4 1
16 C070301B2 L6 30 30 37 4 1
17 C180298B-I3 L5 30 30 38 3 1

C050600B2

C230998C−I4

C260199A−I3

RP110114_L5−1_IDH

L1

L2/3

L4

L5

Figure 11.6: MC cells that were classified as non-MC by the two most accurate models. Cells
C050600B2, C260199A-I3, and C230998C-I4 were classified as MC by only one, three, and 13 neu-
roscientists in DeFelipe et al. [2013], respectively. Cells C260199A-I3 and C230998C-I4 do not reach
L1 unless their actual soma was located near the top of L4 cell, although tissue shrinkage may have
reduced their height for around 10%. Axons are drawn in blue and dendrites and somata in red.
Dashed green lines indicate layer boundaries from the rat hind-limb somatosensory cortex. There are
100µm between consecutive grid lines.
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Figure 11.7: Relevant morphometrics for the BA type. Top left: per-type boxplots for the six mor-
phometrics selected with RF BVI (RF BVI values shown, in blue, to the right). The most relevant
morphometrics, mean arborization distance to soma (path dist.avg), and mean remote bifurcation
angle (remote bifurcation angle.avg), are shown in the upper part of the panel. Top right: a biplot
of these six morphometrics, with the data projected onto the two principal components, found with
principal component analysis (vectors represent morphometrics and the angles between them are in-
dicative of their pairwise correlation). All morphometrics were correlated with either path dist.avg

or remote bifurcation angle.avg. Bottom left: the ten most relevant morphometrics according to
KW, after removing those with absolute correlation ¿ 0.90 with a better ranked morphometric, with
the KW p-values shown, in blue, to the right of the boxplot. These morphometrics included those
relative to arborization distance from soma (e.g., euclidean dist.avg, path dist.avg), remote bi-
furcation angles (t.remote bifurcation angle.avg), the number of dendritic trees (d.N stems), and
axonal arborization along the radial direction (ratio y). In addition to having sharper bifurcation
angles and arborizing closer to the soma, especially in the radial direction, BA cells had more dendritic
trees than non-BA cells.
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Figure 11.8: Logistic regression (top) and CART models (bottom) for BA derived from the six mor-
phometrics selected with RF BVI. Top: the table shows the logistic regression (F-measure of 0.83),
with the β estimated from the standardized data set, and BA being the positive class. Interpretation
is straightforward; for example, according to the model, a 7.33° increase in the average bifurcation
angle of a cell reduce the log-odds of BA by 0.21. Bottom: CART tree for BA, with an F-measure
value of 0.85. Most of the BA cells (i.e., those contained in the two rightmost tree leaves) have a
path dist.avg ¡ 414 and either y mean abs ¡ 133 or remote bifurcation angle.avg ¡ 75°, meaning
that they arborize close to the soma, especially vertically, whereas if they do arborize further vertically
(as some LBC cells), they have sharper bifurcation angles. Each box represents a split in the data set,
indicating its majority type (BA is the majority type overall and hence it is shown in the root node of
the tree (i.e., the initial split)), proportion of positive examples (BA cells represent 57% of the data
set and hence 0.57 in the root node; they present 95% of the samples in the rightmost node), and the
percentage of the data set reaching the split (100% of the data passes through the root split; 44% of
the data set reaches the rightmost node).
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Figure 11.9: CART model for MC, with an F-measure value of 0.75. Most MC cells (rightmost leaf)
have a y mean ≥ 132 (their axons mainly arborize above the soma), remote bifurcation angle.avg

≥ 74°, l1 width ≥ 0.27 and dendritic terminal degree < 2.1. Each box represents a split in the data
set, indicating its majority type (Non-MC is the majority type overall and hence it is shown in the
root node of the tree (i.e., the initial split), whereas MC is the majority type in the rightmost split),
proportion of positive examples (MC cells represent 23% of the whole data set and hence 0.23 in the
root node; they present 95% of the samples in the rightmost node), and the percentage of the data
set reaching the split (100% of the data passes through the root split; 18% of the data set reaches the
rightmost node).
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Figure 11.10: Relevant morphometrics for the MC type. Left: ten morhpometrics with strongest β
in the KW + RMLR model (β shown, in blue, to the right of the boxplot; full model in Table B.3).
Largely positive y std mean (top of the boxplot) indicates that MC cells preferentially arborized above
the soma. Having longer dendritic arbors (d.total length) yet less dendrites (d.N stems) means
that MC cells had longer individual dendritic trees; these arbors were displaced from the axonal ones
(d.displaced), which were often radially oriented (radial). Right: MC cells mainly arborize above
the soma (y std mean) and have wide bifurcation angles (remote bifurcation angle.avg).
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Figure 11.11: Relevant morphometrics for the NBC type. Left: per-type boxplots for the nine mor-
phometrics selected with RF BVI (RF BVI values shown, in blue, to the right). For most NBC cells,
the axon never arborized far from the soma (low euclidean dist.max; top part of the panel) nor
outside of its cortical layer (low translaminar). Although selected by RF BVI, length.avg and
density bifs, the box-plots (bottom part) show that these morphometrics were not univariately use-
ful. Right: the nine selected morphometrics separate the NBC cells from non-NBC ones. The biplot
shows the data projected onto the two principal components, found with principal component analy-
sis, with the vectors representing the morphometrics and the angles between them indicative of their
pairwise correlation. Besides branch length (length.avg), translaminar reach (translaminar), and
arborization density (density bifs), all selected morphometrics are related to arborization distance
from soma. They correspond to the vectors pointing towards the right; only euclidean dist.avg is
annotated to avoid overlapping.).
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Figure 11.12: Relevant morphometrics for the DBC (above) and SBC and LBC (below) types. Top left:
per-type boxplots for the morphometrics selected with RF BVI (RF BVI values shown, in blue, to the
right). The axonal arbor of a typical DBC cell was radially oriented (high radial and eccentricity

values), rather than circular, it did not spread far tangentially (low x sd and width), and was mainly
located below the soma (low y std mean and y mean). Top right: the ten most relevant morphometrics
according to KW, after removing those already shown in the left panel and those with an absolute
correlation ¿ 0.90 with a better ranked morphometric (KW p-values shown, in blue, to the right). DBC
cells’s dendrites were bipolar/bitufted (d.insert.radial, not shown), arborized along the radial axis
(d.radial) and reached far radially (d.y sd), while their axonal arbors were short (total length),
with wide terminal bifurcation angles (t.remote bifurcation angle.avg). Bottom left: per-type
boxplots for the morphometrics selected with RF BVI for SBC (RF BVI values shown, in blue, to the
right). SBC cells had short branches (low length.avg) and dense, local arbors (low density bifs

and euclidean dist.avg). Bottom right: per-type boxplots for the morphometrics selected with RF
BVI for LBC (RF BVI values shown, in blue, to the right). LBC cells had sharp bifurcation angles.
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Chapter 12
Conclusions and future work

We now review our contributions to machine learning and neuroscience.

12.1 Machine learning

We have proposed a method for learning Bayesian network classifiers with equivalence classes.

For this, we have specified the smallest DAG subspace that covers all possible class-conditional

distributions, presented an algorithm to traverse the equivalence classes in this space, by

adapting the greedy equivalence search algorithm, and specified how to efficiently compute

the discriminative score of a CPDAG search operator. The algorithm showed promising

results on preliminary experiments. We consider that this validates our starting hypothesis:

completed partially DAGs can be usefully leveraged for learning Bayesian network classifiers.

We have implemented Bayesian network classifiers in the bnclassify package. The package

has been downloaded over 11 thousand times from the RStudio mirror of the Comprehensive

R Archive Network (CRAN). There are roughly a thousand downloads per package update,

suggesting that there are that many existing installations.

We adapted the mixture model underlying the SeSProc method Guerra et al. [2013b] in

order to use an, in our opinion, more intuitive notion of feature relevance.

Finally, we have provided a non-parametric method for multi-dimensional classification

with probabilistic labels encoded as Bayesian networks.

12.2 GABAergic interneuron classification

When using all Gardener’s interneurons to train and evaluate models, as with with the lowest

label reliability threshold in Chapter 8 and in Chapter 9, we only slighly improved interneuron

type prediction by DeFelipe et al. [2013] (from 62% to 64% accuracy). Prediction accuracy

was also limited with probabilistic labels, independently of any possibly noise introduced

by unreliabile majority vote labels. Besides the small size, this data set may be difficult

because it is heterogeneous, with neurons from different species, cortical areas and animals

143
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of non-uniform age and gender, reconstructed by different laboratories. We did improve the

prediction of axonal feature F4 of the Gardener’s scheme with respect to DeFelipe et al. [2013]

and did not degrade their already good results for features F1, F2, and F3.

Our supervised and semi-supervised models were accurate when using only reliably la-

belled cells of the Martinotti, horse-tail, common basket and large basket types. Thus, clear

examples of these types can be identified on the basis of morphology. Prediction improved

with axonal features F1-F4 as predictors. However, the training sets consisting of reliably la-

beled cells alone were small and not representative of these types’ populations. We identified

a number of relevant morphometrics, with the axonal ones more useful than dendritic ones.

With Markram neurons, we learned accurate and interpretable models for the Martinotti,

basket, and nest basket types, and moderately accurate for the double boquet and small bas-

ket types. We learned parsimonious and interpretable classification tree and logistic regression

models for Martinotti and basket, and identified predictive sets of up to nine morphometrics

for the double boquet, small basket, nest basket types.

Our initial hypothesis was: supervised and semi-supervised learning can produce accurate

and interpretable models of GABAergic interneuron types. We consider that our results

suggest that this hypothesis is valid.

In Chapter 9, Chapter 10, and Chapter 11, we proposed and implemented custom mor-

phometrics. We developed the neurostrplus R [R Core Team, 2015] package that quantifies

a number of Petilla [Ascoli et al., 2008] features, including those relative to arbor shape

and direction, dendritic polarity, translaminar extent [Helmstaedter et al., 2009c] estimate

based on laminar thickness and soma’s laminar location, as well as, motivated by our results,

morphometrics that capture axonal features F1-F4 from the Gardener’s scheme.

12.3 Publications

The following publications and submissions are associated with the research reported in this

dissertation.

Peer-reviewed journals:

• B. Mihaljević, C. Bielza, and P. Larrañaga. bnclassify: Learning Bayesian network

classifiers. The R Journal, 2018a. submitted

• B. Mihaljević, R. Benavides-Piccione, C. Bielza, J. DeFelipe, and P. Larrañaga. Bayesian

network classifiers for categorizing cortical GABAergic interneurons. Neuroinformatics,

13(2):192–208, 2015a

• B. Mihaljević, R. Benavides-Piccione, L. Guerra, J. DeFelipe, P. Larrañaga, and C. Bielza.

Classifying GABAergic interneurons with semi-supervised projected model-based clus-

tering. Artificial Intelligence in Medicine, 65(1):49–59, 2015b
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• B. Mihaljević, P. Larrañaga, and C. Bielza. Automatic classification of cortical in-

terneuron morphologies. In Proceedings of the Workshop on Advances and Applications

of Data Science & Engineering, Real Academia de Ingenieria, Madrid, 2016

12.4 Software

The following publicly available software tools have been produced to support the research

carried out in this thesis.

• bnclassify An R package for learning discrete Bayesian network classifiers from data.

It has been downloaded over 11 thousand times from the RStudio mirror of the Com-

prehensive R Archive Network (CRAN). There are roughly a thousand downloads per

package update, suggesting that there are that many existing installations. Published on

CRAN since 2015. https://cran.r-project.org/web/packages/bnclassify/index.html

• gabaclassifier An R package to classifies interneuron morphologies into established

types. https://github.com/ComputationalIntelligenceGroup/gabaclassifier

• neurostrplus An R package to computes interneuron morphometrics. https://github.

com/ComputationalIntelligenceGroup/neurostrplus

• neurostr An R wrapper for the NeuroSTR C++ library.

https://github.com/ComputationalIntelligenceGroup/neurostrr

12.5 Future work

Immediate future work regarding the learning of Bayesian network classifiers with equivalence

classes includes evaluating our algorithm on additional synthetic and real-world data sets, to

better assess its merits.

Regarding the Gardener data, it is desirable to use as much data as possible to train

models. It might be possible to improve our results by dropping the assumption that all

neuroscientists are equally good at classifying interneurons and applying multi-annotator

methods such as that due to Raykar et al. [2010].

https://cran.r-project.org/web/packages/bnclassify/index.html
https://github.com/ComputationalIntelligenceGroup/gabaclassifier
https://github.com/ComputationalIntelligenceGroup/neurostrplus
https://github.com/ComputationalIntelligenceGroup/neurostrplus
https://github.com/ComputationalIntelligenceGroup/neurostrr
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Achieving accurate classification for all established morphological types will require more

labeled interneurons to train the models with, especially for scarce types such as ChC. In the

short term, this may require leveraging the reconstructions from Neuromorpho.org. Develop-

ing automated checks of morphology quality and morphometrics robust to variability (e.g., in

reconstruction granularity) could enable combining such diverse data. Morphometrics that

quantify complex arborization patterns could be especially useful for the less numerous types.

In the long run, we expect the Human Brain Project, the Allen Institute for Brain Research,

and NeuroMorpho.Org to provide many high-quality morphologies. Given such data, we

consider that the methods presented in this thesis can provide for an accurate automatic

classification into established morphological types.
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Appendix A
Per-class supervised classifiers:

Morphometrics

A.1 NeuroSTR morphometrics

We computed ‘standard’ morphometrics with the NeuroSTR neuroanatomy library (see Ta-

ble A.1). These include branch length and bifurcation angles, arbor height and width, and

topological features such as vertex ratio. We mainly summarized part-of-tree analyses (i.e.,

those computed for a section of an arbor, such as a branch or segment) by computing their

average, using the median, standard deviation, or maximum statistics only when we deemed it

justified (e.g., for maximum arbor distance to soma). We also computed some morphometrics

specific to axonal terminal branches (e.g., mean terminal branch length).
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Table A.1: NeuroSTR morphometrics. For part-of-tree morphometrics, suffixes avg, med, sd, and max
denote the mean, median, standard deviation, and maximum, respectively. Detailed documentation
for NeuroSTR features is available online: https://computationalintelligencegroup.github.io/
neurostr/doc/measures/prebuilt.html.

Morphometric Axon Terminal Dendrite

centrifugal_order.avg X X
centrifugal_order.max X X
centrifugal_order.sd X X
euclidean_dist.avg X X
euclidean_dist.max X X
euclidean_dist.sd X X
height X X
length.avg X X X
length.med X X X
length.sd X X
N_bifurcations X X
N_stems X
partition_asymmetry.avg X X
path_dist.avg X X
path_dist.max X X
path_dist.sd X X
remote_bifurcation_angle.avg X X X
remote_tilt_angle.avg X X X
remote_torque_angle.avg X X X
terminal_degree.avg X X
tortuosity.avg X X X
tortuosity.med X X
total_length X X
tree_length.avg X
vertex_ratio X
width X X

A.2 Custom-implemented morphometrics

We used 48 axonal and dendritic custom-implemented morphometrics (see Table A.2).

https://computationalintelligencegroup.github.io/neurostr/doc/measures/prebuilt.html
https://computationalintelligencegroup.github.io/neurostr/doc/measures/prebuilt.html
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Table A.2: Custom morphometrics.

Type Morphometric Axon Dendrite

Arbor density density_area X X
Arbor density density_bifs X X
Arbor density density_dist X X
ChC arborization pattern short_vertical_terminals X
Dendritic displaced displaced X
Dendritic polarity insert.eccentricity X
Dendritic polarity insert.radial X
Laminar l1_prob X
Laminar translaminar X X
MC arborization pattern l1_bifs X
MC arborization pattern l1_gx X
MC arborization pattern l1_gxa X
MC arborization pattern l1_width X
XY distribution / Axon origin axon_above_below X
XY distribution / Axon origin axon_origin X
XY distribution / Grid grid_area X X
XY distribution / Grid grid_density X
XY distribution / Grid grid_mean X X
XY distribution / Moments ratio_x X X
XY distribution / Moments ratio_y X X
XY distribution / Moments x_mean X X
XY distribution / Moments x_mean_abs X X
XY distribution / Moments x_sd X X
XY distribution / Moments y_mean X X
XY distribution / Moments y_mean_abs X X
XY distribution / Moments y_sd X X
XY distribution / Moments y_std_mean X X
XY distribution / Moments y_std_mean_abs X X
XY distribution / PCA eccentricity X X
XY distribution / PCA radial X X

A.2.1 Distribution along X and Y axes

Each neuronal reconstruction consisted of points with Euclidean coordinates, with the center

of gravity of the soma located at coordinates (0, 0, 0). Thus, computing, e.g., the standard

deviation along the X axis provided an estimate of arborization extent in the horizontal

direction.

A.2.1.1 PCA-derived

Following Yelnik et al. [1983] we used principal component analysis (PCA) to quantify pos-

sible preferential orientation of an arbor along either the X or Y dimension. We set the Z

coordinates to zero and quantified such preference with the index of axialization measure of

Yelnik et al. [1983], calling it eccentricity:

e = 1− s2

s1
,

where s1 and s2 are standard deviations of the first and second principal components, respec-

tively (thus, s1 ≥ s2 ≥ 0). An e towards 1 indicates a strong preference for one axis, whereas
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an e towards 0 indicates a circular arbor. We used the angle θ of the main axis (i.e., the first

principal component) to a positive X axis passing through the center of mass to quantify the

degree of radial or tangential orientation of the arbor, namely,

r = (|y| − |x|)× e,

where y and x are the loadings of the first component on the Y and X axes, respectively, and

correspond to | sin θ| and | cos θ|. Thus, r is positive if the tree is ascending or descending,

and close to -1 if it mainly arborizes horizontally. To reduce its magnitude for trees that did

not have a preference for one of the two directions, we factored in the degree of eccentricity,

e (which is always positive).

A.2.1.2 Moments along the axes (distribution around the soma)

We computed the mean, standard deviation, and the standardized mean (i.e., the ratio of

the mean to the standard deviation) along the X and Y axes. The sign of y mean and

y std mean, for example, may help distinguish between arbors that ascend towards the pial

surface or descend towards the white matter; unlike y mean, y std mean is dimensionless and

expresses the arborization preference in terms of the Y extent of the arbor. We also computed

the means of |x| and |y| so as to not distinguish between arbors skewed towards the right

or the left (or above or below) of the soma, but instead between those arborizing close and

far from soma, both horizontally and vertically. The standard deviations indicate the extent

along an axis and are very correlated with the height and width morphometrics. Finally,

we computed the ratio of the range along an axis and the standard deviation along that axis

(ratio x and ratio y).

A.2.1.3 Grid analysis

We split the X and Y plane into 20µm by 20µm squares, and computed the number of

branches in each square. We recorded the number of non-empty squares (i.e., those containing

at least one branch; grid area), as an estimate of the arbor’s area, and the mean (grid mean)

branch count per non-empty square. Finally, we computed the ratio of non-empty 100µm by

100µm squares and grid area, to quantify arborization density (grid density), i.e., arbors

that tend to occupy a large of portion of a given 100µm by 100µm square.

A.2.1.4 Axon origin

In order to distinguish axons that originate from below the soma from those that originate

above it, we recorded the Y coordinate of the first axonal bifurcation (axon origin), as

well as the difference between the minimal path distance from the soma among points more

than 100µm below the soma (Y < 100 µm) and those at least 100µm above the soma

(Y > 100 µm; axon above below); a positive value would suggest that the arborization

begun on the upper side of the soma.
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A.2.2 Laminar distribution

Since we did not know the exact location of the soma within a layer, we could only estimate

axonal projection across the layers. For these estimates we relied on layer thickness data

from Figure 3 of Markram et al. [2015], shown in Table A.3, assuming that the thickness Tl

of layer l follows a Gaussian distribution, N (mtl, stl), where mtl and stl are the mean and

standard deviation of Tl (given in Table A.3).

The probability of an axon reaching L1 depends on axonal height above the soma, ha,

and the distance D from the soma to the center of L1, c1. We modelled D as a sum of two

independent random variables, D = Dl + P , where Dl is the distance from cl, the center

of the soma’s layer l, to c1, and P the position of the soma with respect to cl (considering,

in both cases, only the Y dimension). Assuming layers’ thicknesses are independent, Dl ∼
N (mdl, sdl), where

mdl =
mt1

2
+

l−1∑
k=2

mtk +
mtl
2
,

and

sdl =

√√√√st21
4

+
l−1∑
k=2

st2k +
st2l
4
,

where the summation term is omitted for L2 (i.e., l = 2). Assuming that P follows N (0, mtl4 ),

the sum Dl + P follows N (mdl,
√
sd2
l + (mtl4 )2) and the probability l1 prob of an axon

reaching L1 is that of drawing a value equal or greater than ha from this distribution. Thus,

for example, for an L4 cell with its axon extending 500µm above its soma, the probability

of reaching L1 was 0.0005, whereas for one with length 700µm was 0.6450, i.e., 65% (md4 =

679.5; see Table A.3).

Table A.3: Layer thickness data from Markram et al. [2015] and the estimated distance from the
layer’s center to the center of L1.

Layer Thickness Distance to L1 (mdl ± sdl)
1 165 ± 13
2/3 502 ± 27 333.5 ± 15
4 190 ± 7 679.5 ± 28
5 525 ± 33 1037.0 ± 33.1
6 700 ± 48 1649.5 ± 49.9

We estimated the probability pa of an arbor extending into the layer above as the proba-

bility of drawing ha from a Gaussian distribution N (mtl2 , mtl4 ), where ha is the arbor’s height

above the soma, and mtl, as above, the mean thickness of the soma’s layer l. We computed

the probability pb of reaching the layer below analogously, setting it to 0 for layer L6. The

probability of an arbor being translaminar (i.e., not confined to a single layer) was given

by max{pa, pb}.
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A.2.3 MC arborization pattern

To estimate axonal width in L1 (l1 width; MC cells’ axons tend to spread out horizontally

in this layer), we computed its width in the upper 165µm (i.e., the thickness of L1) of its

arborization and multiplied it with the probability of having reached L1 (l1 prob). In an

analogous way we estimated the total number of bifurcations in L1 (as a proxy for total

arbor extent in that layer). We also estimated the extent to which this arborization grew

horizontally (l1 gx) and away from the soma (l1 gxa), following the assumption that the

axon rises vertically approximately above the soma, and ramifies in both horizontal directions

in layer L1. l1 gx is the sum of all segments’ X-axis projections, whereas l1 gxa equals l1 gx

minus the X-axis projections of all segments directed towards the soma (i.e., their initial X

coordinate is further from the soma than their terminal coordinate).

A.2.4 ChC arborization pattern

Since ChC cells’ axons have short vertical terminals [Markram et al., 2004, Somogyi, 1977], we

counted the number of terminal branches with an extent along the Y axis < 50µm (Somogyi

[1977] reports ChC vertical terminals from 10µm to 50µm long) and at least twice as large

as the extent along the X axis (short vertical terminals).

A.2.5 Arbor density

We quantified arbor density with a number of ratios involving arbor length as the denomina-

tor: the ratio of the number of bifurcations and arbor length (density bifs), proportional

to the inverse of branch length; the ratio of area and arbor length (density area), and,

finally, the ratio of average Euclidean distance and total length (density dist).

A.2.6 Dendritic bipolarity

We quantified whether the dendrites stemmed from opposite ends of the soma and whether

those ends are located along a radial (i.e., parallel to the Y) axis, as is the case with bipolar

and bitufted dendrites. We did this by applying the above-described PCA-derived analysis

to the dendrite insertion points on the soma’s surface, after having replicated every insertion

point once for each whole µm of the corresponding dendrite’s length, so as to give more

weight to insertion points of longer dendrites, and having set the Z coordinates to 0. A high

insert.eccentricity thus indicated insertion points along an axis, rather than spread-out

across the soma’s surface, whereas a high insert.radial suggested that the axis was parallel

to the Y axis. For cells with a single dendrite insertion point we set insert.eccentricity

and insert.radial to 0.

A.2.7 Displaced dendritic arbor

To quantify whether the dendritic arbor was displaced [DeFelipe et al., 2013] from the axonal

one, we averaged the distance to the closest axonal reconstruction point for each point of a
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dendritic arbor (displaced).

A.3 Implementation

NeuroSTR is available at https://github.com/ComputationalIntelligenceGroup/neurostr.

https://github.com/ComputationalIntelligenceGroup/neurostr
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Appendix B
Per-class supervised classifiers:

Additional results

B.1 Morphology quality

B.1.1 Reconstruction differences

We found that the cells differed in mean axonal segment length and that this difference could

be related to the internal ids (e.g., C010600B1 and MTC070301B IDC) of the cells. Out

of the seven different initial letters of these ids, cells whose id begun with a letter C (88

of them) had shorter, as well as thicker, axonal segments than the remaining 131 cells (see

Figure 5 in main text). As branch and total arbor length did not differ between the two

groups, this meant that the C-prefixed cells had fewer long and thick segments per branch,

whereas the non-C cells contained more short and thin ones, suggesting that they were simply

reconstructed at a finer granularity. We found that the C-prefixed cells were deposited at

Neuromorpho.org repository [Ascoli et al., 2007] earlier than the non-C ones, meaning they

may have been reconstructed at an earlier stage.

More morphometrics, such as axonal remote tilt angle (remote_tilt_angle.avg), arbor

depth (depth), and tortuosity (tortuosity.avg), also differed between the two groups, albeit

with much less statistical significance (see Table B.1) than thickness and segment length. We

suspect that only some of these, such as possibly tortuosity (the non-C cells have lower

tortuosity, i.e., they are less straight, which seems logical given that they are broken into

more segments) had been affected by differences in branch reconstruction granularity; others

might have differed due to others causes, such as different proportion of interneuron types in

the two groups, or the different laminar distribution (see Figure B.1).
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Figure B.1: The branches of non-C cells’ (those whose ids do not begin with a C) were less straight
(i.e., their tortuosity values were lower), even after accounting for interneuron type and layer.

Table B.1: Morphometrics that differed between the cells whose id begins with a C and the rest,
according to a Kruskal-Wallis test at α = 0.05, with the p-value corrected for multiple testing with
the false discovery rate procedure [Benjamini and Hochberg, 1995].

Morphometric Axon Dendrite

compartment_length.avg 1.3× 10−27

diameter.avg 5.3× 10−26 9.5× 10−3

N_nodes 6.2× 10−22

remote_tilt_angle.avg 4.4× 10−6 2.6× 10−2

depth 2.5× 10−5

tortuosity.avg 8.6× 10−5

tortuosity.med 3.8× 10−4 8.9× 10−3

l1_gx 4.9× 10−4

x_sd 1.4× 10−3

density_area 3.2× 10−3 1.9× 10−4

l1_bifs 6.7× 10−3

local_tilt_angle.avg 8.9× 10−3

height 1.3× 10−2 8.0× 10−4

width 2.0× 10−2 2.0× 10−2

l1_gxa 2.1× 10−2

euclidean_dist.max 2.3× 10−2 1.2× 10−4

y_mean 2.9× 10−2

grid_area 3.8× 10−2 2.6× 10−2

density_dist 1.5× 10−2

euclidean_dist.avg 3.2× 10−3

euclidean_dist.sd 2.5× 10−5

path_dist.avg 3.8× 10−2

path_dist.max 1.6× 10−3

path_dist.sd 4.1× 10−4

ratio_x 2.6× 10−2

remote_torque_angle.avg 1.2× 10−2

terminal_degree.avg 1.6× 10−3

x_mean_abs 2.3× 10−2

y_sd 8.3× 10−3
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B.1.2 Two cloned cells

We visually identified two cells as possible modified duplicates of another pair of cells (see

Figure B.2). They differed in most axonal and dendritic morphometrics, including the number

of branches or axonal length, but were similar in axonal height and total dendritic length and

height, suggesting how cells which are similar to the eye are not so according to most of the

morphometrics that we are using. We then ran hierarchical clustering on all cells using these

variables (i.e., axonal height, dendritic length and height) but found no additional pairs of

duplicated cells.

B.2 Feature selection results

Table B.2 shows the sizes of the feature subsets selected by the different methods and their

performance.

Table B.2: Number of selected morphometrics with the different methods. The color indicates the
best F-measure obtained with the corresponding feature selection method. Best F-measure ≥ 0.75 are
shown in green; best F-measure ≥ 0.60 in orange; and the rest in red. CART and RMLR refer to the
embedded feature selection performed by those models. Filter feature selection followed by embedded
selection is denoted with a +, e.g., KW followed by CART is denoted with KW + CART. CART and
RMLR are only considered in absence of prior sampling. There are no entries for RF BVI + RMLR
for the BTC as RMLR could not be fit due to too few features being selected by the RF BVI.

Class KW KW + CART KW + RMLR RF BVI RF BVI + CART RF BVI + RMLR CART RMLR

ChC 15 2 5 3 1 1 2 11
BTC 7 5 3 2 2 4 22
DBC 61 3 15 6 2 4 3 17
SBC 39 5 9 7 5 4 5 24
NBC 57 5 19 9 3 5 4 27
MC 62 6 22 8 5 6 5 28
LBC 32 9 17 4 4 4 8 38
BA 68 11 27 6 5 5 10 31

Table B.3 shows the logistic regression model for MC.
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Figure B.2: Cells OG061201A1-8 IDA and OG061201A3 CH1 IN H ZK 60X 1 (above), and
OG061201A1-8 IDE and OG061201A6 CH5 BC H ZK 60X 1 (below) which seemed very similar by
visual inspection. Axons are drawn in blue and dendrites and somata in red. There are 100µm
between consecutive grid lines.
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Table B.3: The logistic regression model for MC. The β were estimated from the standardized data
set, after feature selection with KW.

Morphometric β

y_std_mean 1.44
ratio_y -0.88
remote_bifurcation_angle.avg 0.79
path_dist.max 0.63
d.displaced -0.63
l1_width 0.59
d.total_length 0.47
translaminar 0.43
radial 0.31
d.N_stems -0.30
d.terminal_degree.avg -0.24
density_bifs -0.23
l1_bifs 0.22
d.path_dist.avg -0.22
path_dist.avg 0.14
t.tortuosity.avg -0.14
d.y_std_mean_abs 0.13
x_mean -0.11
d.insert.radial -0.09
t.length.med -0.09
l1_prob 0.01
grid_density 0.00

Table B.4 shows the 88 features selected by KW for at least one of the types, showing

the corresponding p-values. Each column corresponds to a one-versus-all classification set-

ting. Overall, the single most relevant feature was path_dist.avg for BA, with a p-value of

3.6× 10−17, and the strongest dendritic predictor was the number of dendrites (d.N_stems)

also for BA, with p-value 5.3× 10−14. Table B.5 shows the features selected by RF BVI for

the different classification settings, along with their RF BVI values. Overall, RF BVI selected

only one dendritic morphometric, for the BTC type, and picked only axonal features for all

remaining types.
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Table B.4: Morphometrics that differed most between the given class and the remaining classes joined together, according to the
Kruskal-Wallis test. Empty entries mean that the p-value was above 0.05. Morphometrics that were significant for most classes are
shown in the upper rows.

Morphometric ChC BTC DBC SBC NBC MC LBC BA

1 height 3.8× 10−3 8.3× 10−3 2.4× 10−7 5.5× 10−7 4.2× 10−6 8.1× 10−3 2.7× 10−7

2 d.displaced 5.0× 10−2 8.5× 10−4 1.3× 10−4 2.2× 10−4 4.7× 10−2 3.0× 10−10

3 d.insert.eccentricity 4.3× 10−2 1.5× 10−3 8.6× 10−4 2.6× 10−3 4.5× 10−2 7.9× 10−10

4 euclidean_dist.max 3.6× 10−3 2.7× 10−8 1.1× 10−10 3.4× 10−10 2.0× 10−2 4.1× 10−12

5 grid_density 4.8× 10−2 3.1× 10−4 2.2× 10−2 1.7× 10−4 1.3× 10−4 1.6× 10−8

6 grid_mean 2.1× 10−3 1.2× 10−2 8.6× 10−9 2.0× 10−2 2.5× 10−6 3.2× 10−7

7 terminal_degree.avg 4.5× 10−2 7.3× 10−3 3.5× 10−8 2.0× 10−7 4.5× 10−2 2.7× 10−9

8 t.length.avg 3.8× 10−3 7.0× 10−3 7.3× 10−3 1.5× 10−7 2.4× 10−3 1.1× 10−2

9 t.length.med 5.8× 10−4 4.3× 10−3 5.6× 10−7 1.8× 10−3 2.9× 10−4 2.1× 10−8

10 translaminar 5.5× 10−3 9.4× 10−4 1.2× 10−5 3.1× 10−9 7.0× 10−8 8.2× 10−10

11 y_sd 3.8× 10−3 1.1× 10−3 9.5× 10−8 6.3× 10−9 9.6× 10−11 2.5× 10−12

12 d.centrifugal_order.avg 2.7× 10−3 1.7× 10−5 5.6× 10−7 2.2× 10−2 3.1× 10−13

13 d.centrifugal_order.sd 1.0× 10−2 2.8× 10−2 7.0× 10−4 6.9× 10−4 7.9× 10−8

14 d.density_bifs 3.7× 10−3 1.4× 10−5 2.2× 10−4 2.8× 10−3 3.3× 10−11

15 density_area 3.8× 10−3 3.2× 10−6 3.4× 10−3 1.4× 10−5 1.5× 10−6

16 density_bifs 2.1× 10−3 2.4× 10−3 3.5× 10−10 1.4× 10−2 4.5× 10−2

17 density_dist 8.2× 10−7 3.1× 10−6 5.5× 10−7 5.0× 10−2 3.6× 10−13

18 d.insert.radial 2.8× 10−3 7.7× 10−4 9.0× 10−7 2.8× 10−2 4.0× 10−9

19 d.N_bifurcations 3.8× 10−2 1.9× 10−4 1.3× 10−7 2.8× 10−2 1.8× 10−11

20 d.N_stems 6.9× 10−4 2.3× 10−5 5.0× 10−6 3.5× 10−4 5.3× 10−14

21 d.path_dist.avg 5.2× 10−3 2.6× 10−2 9.1× 10−3 1.3× 10−2 3.0× 10−5

22 d.terminal_degree.avg 1.4× 10−3 3.0× 10−4 1.1× 10−3 2.8× 10−2 3.4× 10−9

23 d.tree_length.avg 9.4× 10−3 8.1× 10−4 3.3× 10−7 1.3× 10−2 1.2× 10−11

24 euclidean_dist.avg 1.5× 10−3 6.1× 10−9 1.2× 10−10 1.2× 10−13 6.7× 10−17

25 euclidean_dist.sd 7.8× 10−4 6.1× 10−9 4.0× 10−11 7.1× 10−13 3.5× 10−15

26 length.avg 2.1× 10−3 2.4× 10−3 3.5× 10−10 1.4× 10−2 4.5× 10−2

27 length.med 2.4× 10−3 1.6× 10−2 1.5× 10−7 1.1× 10−2 2.8× 10−3

28 length.sd 2.1× 10−3 4.9× 10−4 3.5× 10−10 4.9× 10−6 2.4× 10−6

29 path_dist.avg 7.5× 10−3 3.2× 10−6 3.8× 10−10 6.8× 10−14 3.6× 10−17

30 path_dist.max 4.1× 10−2 5.5× 10−7 1.1× 10−10 4.0× 10−13 8.2× 10−15

31 path_dist.sd 1.3× 10−3 2.3× 10−7 1.2× 10−10 1.4× 10−13 6.7× 10−17

32 radial 4.6× 10−8 4.3× 10−2 3.1× 10−6 1.8× 10−4 9.8× 10−9

33 remote_bifurcation_angle.avg 3.1× 10−4 3.4× 10−4 1.2× 10−5 3.7× 10−8 7.8× 10−15

34 t.remote_bifurcation_angle.avg 1.3× 10−4 1.3× 10−4 5.2× 10−6 6.9× 10−8 3.4× 10−15

35 y_mean_abs 1.2× 10−3 8.3× 10−4 5.3× 10−8 1.0× 10−10 2.1× 10−15

36 y_std_mean_abs 1.7× 10−2 5.9× 10−4 1.7× 10−4 4.7× 10−2 1.6× 10−8

37 centrifugal_order.max 2.9× 10−2 1.3× 10−5 2.5× 10−3 5.5× 10−4

38 centrifugal_order.sd 7.7× 10−4 5.5× 10−7 3.9× 10−5 1.3× 10−7

39 d.centrifugal_order.max 3.1× 10−3 1.7× 10−4 2.9× 10−5 5.4× 10−10

40 d.euclidean_dist.avg 5.1× 10−3 1.2× 10−2 1.6× 10−2 6.0× 10−4

41 d.path_dist.max 9.4× 10−3 1.8× 10−2 4.0× 10−2 3.7× 10−3

42 d.y_sd 3.1× 10−4 1.2× 10−2 8.5× 10−3 7.2× 10−3

43 eccentricity 4.6× 10−8 7.2× 10−8 1.4× 10−3 5.3× 10−8

44 grid_area 1.3× 10−4 1.1× 10−6 1.4× 10−3 3.9× 10−5

45 N_bifurcations 1.1× 10−2 5.8× 10−4 4.4× 10−2 1.2× 10−2

46 partition_asymmetry.avg 2.0× 10−4 8.2× 10−7 3.9× 10−5 1.9× 10−9

47 ratio_y 3.3× 10−3 4.4× 10−6 1.1× 10−10 5.0× 10−12

48 vertex_ratio 9.8× 10−4 5.5× 10−6 5.7× 10−4 1.9× 10−7

49 width 1.9× 10−6 2.1× 10−4 2.0× 10−3 3.8× 10−3

50 x_sd 1.9× 10−6 3.4× 10−4 3.1× 10−3 4.6× 10−3

51 y_mean 5.8× 10−4 9.1× 10−3 9.7× 10−14 1.4× 10−3

52 centrifugal_order.avg 3.5× 10−5 2.7× 10−4 1.9× 10−4

53 d.eccentricity 4.9× 10−5 2.5× 10−3 1.8× 10−2

54 d.euclidean_dist.max 5.6× 10−3 1.1× 10−2 1.6× 10−2

55 d.grid_area 4.0× 10−3 3.3× 10−3 3.1× 10−2

56 d.grid_mean 3.8× 10−2 1.3× 10−2 5.8× 10−3

57 d.height 1.1× 10−3 1.2× 10−2 3.1× 10−2

58 d.length.avg 4.4× 10−2 7.3× 10−3 7.4× 10−4

59 d.path_dist.sd 3.4× 10−2 2.3× 10−2 2.8× 10−2

60 d.radial 8.2× 10−7 6.9× 10−4 1.2× 10−3

61 d.ratio_y 1.5× 10−3 2.7× 10−2 3.6× 10−5

62 l1_bifs 4.2× 10−3 1.2× 10−7 1.0× 10−3

63 l1_gx 2.2× 10−2 1.3× 10−6 2.4× 10−3

64 l1_gxa 8.7× 10−4 3.2× 10−9 4.5× 10−5

65 l1_prob 7.0× 10−4 2.2× 10−8 4.9× 10−5
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66 l1_width 4.1× 10−4 1.0× 10−10 5.7× 10−6

67 remote_tilt_angle.avg 1.4× 10−3 3.4× 10−6 3.9× 10−2

68 short_vertical_terminals 2.7× 10−3 5.2× 10−3 1.3× 10−3

69 tortuosity.avg 4.1× 10−2 2.7× 10−2 5.0× 10−4

70 t.remote_tilt_angle.avg 1.2× 10−2 4.6× 10−6 1.6× 10−3

71 t.tortuosity.avg 2.2× 10−2 4.5× 10−2 6.7× 10−4

72 y_std_mean 5.6× 10−4 1.6× 10−10 2.7× 10−2

73 axon_above_below 4.0× 10−2 1.7× 10−2

74 axon_origin 1.6× 10−2 5.0× 10−6

75 d.euclidean_dist.sd 2.4× 10−2 1.8× 10−2

76 d.length.med 4.4× 10−2 1.3× 10−3

77 d.length.sd 3.6× 10−2 4.7× 10−2

78 d.total_length 3.3× 10−2 1.4× 10−3

79 d.y_mean_abs 4.1× 10−2 1.8× 10−2

80 tortuosity.med 5.0× 10−2 4.0× 10−3

81 total_length 6.5× 10−6 4.0× 10−3

82 x_mean 5.6× 10−4 2.1× 10−2

83 d.density_dist 1.9× 10−3

84 d.partition_asymmetry.avg 2.4× 10−3

85 d.translaminar 4.5× 10−3

86 d.width 2.9× 10−3

87 d.x_sd 8.5× 10−4

88 d.y_std_mean_abs 1.6× 10−2

Dendritic 1 2 26 12 21 17 11 26

Total 15 7 61 39 57 62 32 68
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Table B.5: Morphometrics that differed between the given class and the remaining classes joined
together, according to the RF BVI ranking. Empty entries mean that the RF BVI for that class was
above 0.01. Morphometrics that were relevant to most classes are shown in the upper rows.

Morphometric ChC BTC DBC SBC NBC MC LBC BA

1 density_bifs 0.02 0.03 0.01

2 euclidean_dist.avg 0.02 0.02 0.01

3 euclidean_dist.sd 0.02 0.04 0.02

4 length.avg 0.02 0.03 0.01

5 path_dist.sd 0.02 0.01 0.01

6 euclidean_dist.max 0.03 0.01

7 length.sd 0.01 0.02

8 path_dist.avg 0.02 0.02

9 path_dist.max 0.02 0.01

10 remote_bifurcation_angle.avg 0.02 0.02

11 t.length.avg 0.01 0.01

12 t.remote_bifurcation_angle.avg 0.02 0.02

13 y_mean 0.02 0.03

14 y_std_mean 0.01 0.01

15 axon_origin 0.01

16 d.insert.radial 0.01

17 eccentricity 0.04

18 l1_gxa 0.01

19 l1_width 0.01

20 length.med 0.01

21 radial 0.02

22 ratio_y 0.01

23 translaminar 0.01

24 width 0.02

25 x_sd 0.02

26 y_mean_abs 0.01

27 y_sd 0.02

Dendritic 0 1 0 0 0 0 0 0

Total 3 3 6 7 9 8 4 6

B.3 Classification results

Figures B.3 to B.10 show all classifiers’ F-measure for all eight classification tasks. For ChC

and BTC the results depended more strongly on sampling, with some samplings providing

better and other worse results (e.g., for ChC, the F-measure of RF BVI + SVM ranged from

0.13 to 0.57; see Figure B.3), as in these settings the amount of removed instances was highest.

Perhaps an informed, rather than random, undersampling scheme could have improved the

results.
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Figure B.3: ChC versus rest. Violin plot of 7-fold cross-validation estimates of F-measure. Above:
seven CV repetitions when under- and over-sampling training data; below: a single CV repetition
with no data sampling. Vertical rows of panels correspond to the feature selection methods applied:
none, KW, and RF BVI.
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Figure B.4: BTC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above:
ten CV repetitions when under- and over-sampling training data; below: a single CV repetition with
no data sampling. Vertical rows of panels correspond to the feature selection methods applied: none,
KW, and RF BVI.
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Figure B.5: DBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above:
ten CV repetitions when under- and over-sampling training data; below: a single CV repetition with
no data sampling. Vertical rows of panels correspond to the feature selection methods applied: none,
KW, and RF BVI.
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Figure B.6: SBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above:
ten CV repetitions when under- and over-sampling training data; below: a single CV repetition with
no data sampling. Vertical rows of panels correspond to the feature selection methods applied: none,
KW, and RF BVI.
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Figure B.7: NBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above:
ten CV repetitions when under- and over-sampling training data; below: a single CV repetition with
no data sampling. Vertical rows of panels correspond to the feature selection methods applied: none,
KW, and RF BVI.

None KW RF_BVI

S
am

pling
N

one

CART

kNN
LDA

NB RF RM
LR

SVM
CART

kNN
LDA

NB RF RM
LR

SVM
CART

kNN
LDA

NB RF RM
LR

SVM

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Classifier

CART

kNN

LDA

NB

RF

RMLR

SVM

Figure B.8: MC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above:
ten CV repetitions when under- and over-sampling training data; below: a single CV repetition with
no data sampling. Vertical rows of panels correspond to the feature selection methods applied: none,
KW, and RF BVI.
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Figure B.9: LBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above:
ten CV repetitions when under- and over-sampling training data; below: a single CV repetition with
no data sampling. Vertical rows of panels correspond to the feature selection methods applied: none,
KW, and RF BVI.
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Figure B.10: BA versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above:
ten CV repetitions when under- and over-sampling training data; below: a single CV repetition with
no data sampling. Vertical rows of panels correspond to the feature selection methods applied: none,
KW, and RF BVI. KW feature selection improved the performance of multiple models, most notably
kNN, LDA, and SVM.



Appendix C
Gardener’s classification:

Additional results

Here we present additional results regarding the classification of interneurons in DeFelipe

et al. [2013] (see Section 5.4).

C.1 Neuroscientists’ F-measure for the MC type

42 neuroscientists classified 320 cells in DeFelipe et al. [2013]. For 299 those cells, at least

22 (half + one) of them agreed on single type, which we then considered as the true type of

that interneuron; 48 of those cells were MC and 251 non-MC. We computed the F-measure

of each neuroscientists with respect to the determined true type. The average F-measure was

0.72, minimal 0.12 and maximal 0.89, with only three neuroscientists performing better than

our best MC model (F-measure 0.81).
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