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Summary
• We compare human and mouse basal dendrites morphology by modelling them with Gaussian
Bayesian networks.

• Such models can uncover differences in interactions among variables between the two species.
They can be used to test hypotheses about data.

Introduction
Comparing mouse and human neurons can give insight on translating our studies on rodents to
humans. We can focus, for example, on the morphology basal dendrites of pyramidal cells.

It is common to compare features univariately across species. For example, human pyramidal
cells have are larger than mouse pyramidal cells.
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This ignores interactions among variables. Are such interactions similar across the two species?
Is, for example, branch length difference more pronounced in cells with larger average bifurcation
angles? A general approach to answering such questions is to model the joint probability
distribution with a graphical model.

Bayesian networks
A Bayesian network (Koller and Friedman 2009; Bielza and Larrañaga 2014) can compactly
encode a multivariate probability distribution. It leverages conditional independencies to factor
the joint density into a product of local ones:
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The d-separation criterion lets us read conditional independencies off the network. We can learn
the network from data, with approximate solutions for the general case. We can compute the
probability, conditional to some event, of another event or set of variables, in a high-dimensional
distribution, with exact and approximate inference algorithms.

Method
• If the data are scarce, we can assume they come from a multivariate Gaussian joint
distribution. This implies that (1) the variables are marginally Gaussian; and (2) the
dependencies among them are linear. While restrictive, this assumption is common, especially
since scarce data prohibits complex models. We can test our assumption with Mardia’s test
(Mardia 1970).

• We can learn, for example, the network structure G with the tabu algorithm and the BIC
score, which provides regularization. We can learn from 1000 bootstrap samples and use the
arcs that appear in at least 80% of the networks (Scutari and Nagarajan 2011). We can
perform approximate inference by sampling 100,000 instances from the learned neworks for
each query.

Results
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• Correlated: X1 and X6; X5 and X6; X2 and X6; X2 and X1;
• Uncorrelated: X3 and X4 with the remaining variables.
• X1 and X5 marginally uncorrelated (ρ = -0.153391); uncorrelated in human given X6; yet correlated in mouse given X6and X2.
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Hypothetical example: empirical distribution of X1 and X5 (left); values of X1 and X5 sampled from human network when
X6> 0.3 (center); and X1 and X5 sampled from the mouse network when X2 > 1.15‘ and X6> −0.2 (right).

Testing hypotheses
The models indicate absence / presence of correlations, not their direction nor strength. For that, we need inference. When
conditioning on above-average X6 (right), X1 decreases slighly in both mouse and human, but the relative difference is unchanged:
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Discussion
• With more variables we could take better advantage of the Bayesian network formalism.
• Bayesian networks can account for clusters in data as well as hidden real-valued variables (factor analysis).

References
Bielza, Concha, and Pedro Larrañaga. 2014. “Bayesian Networks in Neuroscience: A Survey.” Frontiers in Computational
Neuroscience 8: 131.
Koller, Daphne, and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA, USA: MIT
press.
Mardia, Kanti V. 1970. “Measures of Multivariate Skewness and Kurtosis with Applications.” Biometrika 57 (3). Oxford
University Press: 519–30.
Scutari, Marco, and Radhakrishnan Nagarajan. 2011. “On Identifying Significant Edges in Graphical Models.” In Proceedings of
Workshop on Probabilistic Problem Solving in Biomedicine. Bled, Slovenia: Springer-Verlag, 15–27.

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Specific Grant Agreement No. 785907 (HBP SGA2).

mailto:bmihaljevic@fi.upm.es

