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Abstract: Many important problems in Operations Research and Statistics require the computation of nondominated (or Pareto
or efficient) sets. This task may be currently undertaken efficiently for discrete sets of alternatives or for continuous sets under
special and fairly tight structural conditions. Under more general continuous settings, parametric characterisations of the
nondominated set, for example through convex combinations of the objective functions or e-constrained problems, or discreti-
zations-based approaches, pose several problems. In this paper, the lack of a general approach to approximate the nondominated
set in continuous multiobjective problems is addressed. Our simulation-based procedure only requires to sample from the set of
alternatives and check whether an alternative dominates another. Stopping rules, efficient sampling schemes, and procedures to
check for dominance are proposed. A continuous approximation to the nondominated set is obtained by fitting a surface through
the points of a discrete approximation, using a local (robust) regression method. Other actions like clustering and projecting points
onto the frontier are required in nonconvex feasible regions and nonconnected Pareto sets. In a sense, our method may be seen
as an evolutionary algorithm with a variable population size. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 52: 469-480, 2005.
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1. INTRODUCTION

Many problems in Operations Research and Statistics
lead to comparisons of alternatives in terms of a class of
objective functions, typical reasons being the existence of
(1) multiple conflicting objectives or (2) imprecision in the
decision maker’s beliefs and/or preferences. Important ex-
amples include: multiobjective programming problems
where alternatives are ranked, in a Pareto sense, with re-
spect to several objective functions (see, e.g., [38, 35, 36,
30, 16]); robust Bayesian analysis problems, where alter-
natives are ranked according to a class of posterior expected
utilities, with respect to a class of utility functions and a
class of prior distributions (see [27] and references therein);
stochastic dominance problems, where options are ranked
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according to their expected utilities with respect to a class of
utility functions (see, e.g., [17]); experimental design prob-
lems, where the utility function is difficult to assess and
designs are compared with respect to several utility func-
tions (see, e.g., [7]). Our main concern here is with problem
(1). In that context, we say that an alternative is better than
another one (or dominates it) if it is better for each of the
objective functions. The natural solution concept is that of
nondominated alternative and our computational aim should
be the determination of the nondominated (or Pareto, or
efficient) set.

Solutions for this problem are well known under fairly
tight structural conditions. Two examples are the computa-
tion of the Pareto frontier via the multiobjective simplex
method in multiobjective linear programming (see, e.g.,
[38]) or the nondominated set in discrete decision analytic
problems (see, e.g., [25]). Under more general settings, we
may appeal to a characterization of the Pareto set, for
example, through convex combinations of the objective



470 Naval Research Logistics, Vol. 52 (2005)

functions or e-constrained problems (see, e.g., [34]). Based
on such parametric characterizations, we may undertake a
systematic or random exploration of the parametric space,
and suggest the associated set of solutions as an approxi-
mation to the efficient set. This approach poses several
problems, however. For example, for the case of optimisa-
tion of convex combinations of the objective functions (see
[35, 37]), if there are no preconditions, we may not be able
to generate enough solutions to obtain a good approxima-
tion of the nondominated set. Moreover, unless appropriate
convexity conditions for the objective functions and the set
of alternatives hold, current methods cannot solve the cor-
responding optimisation problem. Therefore, a good idea
would be to convert the problem into a form where relevant
algorithms do exist which may benefit from the problem
structure. In that sense, White [37] proposes convex com-
binations of finite powers of the objective functions to
generate all efficient solutions. This method can be consid-
ered as a means of generating solutions additional to those
generated from convex combinations of the objective func-
tions. Considerable computational difficulties arise when
some of the objective functions are convex and others are
concave and a transformation to retain concavity is often
needed, which is far from easy. To sum up, there is not a
sufficiently general approach to the problem, especially in
continuous settings.

A way to tackle the general problem would be through
discretization (see [2]). Several recent papers have ex-
tended the results obtained with genetic algorithms to
multiobjective problems (see, e.g., [13, 8, 5]). Coello and
Christiansen [9] place the origins in the work by Rosen-
berg [28], while Hanne [15] provides convergence results
for these methods. However, their convergence depends
heavily on the initial population generated and there may
even exist unreachable points. Sarker, Liang, and Newton
[29] avoid this problem by means of modifications of the
population size. Moreover, most papers focus on obtain-
ing some nondominated points, rather than an approxi-
mation to the efficient set. Benson and Sayin [3] propose
a method to represent this set generating a finite set of
solutions. They also provide an excellent bibliography on
different solution methods. Their proposal works on the
image set instead of the feasible set, with the advantage
of reducing the dimension. Other approximation methods
to the efficient set may be found in [14, 21]. Teghem,
Tuyttens, and Ulungu [31] use simulated annealing for
discrete multiobjective problems.

In this paper, we shall provide a general approach to
approximate the nondominated set in continuous prob-
lems. We only require procedures to sample from the set
of alternatives and check whether an alternative domi-
nates another. Then, we may define a discrete approxi-
mation of the nondominated set by taking a sample and

finding the nondominated subsample. We also provide an
efficient set representation. In Section 2 we show that,
under appropriate conditions, we truly approximate the
nondominated set. Several examples in Section 3 allow
us to point out potential shortcomings of our basic ap-
proach, which we address in Section 4. Specifically, we
study continuous approximations, stopping rules, effi-
cient sampling schemes and how we may deal with the
problem of checking dominance. Finally, through an
example, we show how our approach may be seen as an
evolutionary algorithm with a variable population size.
We end up with some conclusions.

2. PROBLEM DESCRIPTION AND BASIC
STRATEGY

Suppose we have to choose among a set { C R™ of
alternatives according to a preference relation X (a is at
most as preferred as b)

axb & (V(a, w) =V (b, w), VweES).

W( -, w) may be interpreted as an objective function to be
maximized.

Recall, that the standard multiobjective programming
problem with k objective functions v;,

max (v(a), ..., vla)
s.t. ace A
can be described as
ab&(vla) = vi(b),i=1,...,k). (1)

We could define ¥(a, w) = v,(a), w € S = {1,2, ...,
k}. Examples in Section 3 illustrate this formulation.

The natural solution concept in our problem is the set
N(sA) of nondominated alternatives in s{:

DEFINITION 1: a € s is nondominated if there is no
b € o such that a < b (thatis, a X b and b X a).

Equivalently, we may say that a is nondominated if for
any b € A, V(a, w) = V(b,w), Vw € S = V(a, w) =
W(b, w), Vw € S. We aim at computing the set N(HA).

We shall assume here that S is finite, s{ is a nonempty,
compact set without isolated points, and functions ¥ (a, w)
are continuous with respect to a in a topology appropriate to
ensure the existence of the nondominated set. For reasons
outlined in the Introduction, in general cases we may not
appeal to standard methods based on auxiliary problems
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with convex combinations of objectives and/or e-con-
straints.

Our basic strategy may be seen as a pure random search
method extended to a case with many objectives. The basic
idea is to sample randomly the set of alternatives and apply
a pairwise comparison procedure, as in, for example, [26].
We shall make two assumptions:

a. We may sample from s{ in such a way that all points in
o are in the support of the underlying sampling distri-
bution. We could use the uniform distribution on s,
which can be sampled with the rejection method (see,
e.g., [23]), though this is not always efficient. Occa-
sionally, we may have additional information which
may be reflected in the distribution used.

b. Given two alternatives a, b, we have a procedure to
determine whether a <X b, or vice versa. This would
need discussions for specific cases, but has been the
object of extensive work (see, e.g., [24]). The general
approach would be to solve problem

min (W(b, w) — V(a, w)) = A,,. 2)

wES

Then,
(@ IfA,,>0,a<b.
(® If A, = 0,
iLIfA, <0,a<b
ii. If A, =0,b~a
(c) IfA,<O0,ifA, =0,b<a.
(@ IfA,, <0,ifA, <0,b«aanda « b.

and we may discard alternatives correspondingly. For
example, in case 2(a) we would discard alternative a, as
it is dominated by b. Note though that problems (2) may
be difficult to deal with if, for example, we lack an
explicit formula for W( + , w) or is a high dimension
integral, for example, in stochastic optimization prob-
lems. In these cases, we can use simulation methods
with criteria provided in [20].

The basic approach proposed is as follows:

1. Sample A, = {a,, ..., a,} C dA.

2. Choose w € S and relabel the a’s as (e, . ..
3. Let d(i) = 0, Vi.

4. Fori = 1ton — 1

Ifd@i) =0
Forj=i+ 1ton
Ifd(j) =0
If e; X e; then d(j) = 1

Clearly, we have that N,, is the nondominated set of the
discrete approximation A, that is, N,, = N(A,). We can
prove that the procedure converges to the true nondomi-
nated set N as n increases, under our assumption a, i.e., N,
is a discrete approximation to N.

LEMMA 1: Let s be a nonempty, compact set without
isolated points. Va € s, a.s. there is a subsequence (an/),
obtained with our basic approach, convergent to a.

PROOF: Let p denote the underlying sampling distribu-
tion. Fix a € o and suppose there is not such sequence.
Then, as all the points in s{ are in the support of p, there are
ny and a neighborhood B(a) of a, with 0 < p(B(a)) < 1
such that Vn > ng, a, ¢ B(a). But p(a, ¢ B(a), Vn >
ny) = lim, p(a; ¢ B(a), i = ny, ..., n) = lim, II}_,
pla; ¢ Ba) = lim, (1 — p(B(@))" "™*' =0. O

In particular, this holds Va € N(A).

PROPOSITION 1: Under the conditions of Lemma 1,
Va € N(sA), a.s. there is a convergent subsequence (a),
with a, € N,,j such that a, — band b ~ a.

PROOF: Suppose this does not hold. We know (Lemma
1) that a.s. there is a subsequence a, —>a. Then, for almost
all j, a, & N,, and, consequently, there is b,,/ EN,, such
that a, < bn]. Since o is compact, there is a convergent
subsequence, say b,,‘,‘ — b, b € . But now, taking into
account a,, — a, a,, < b, and the continuity of the evalu-
ation functions, we have a <X b. But a was nondominated,
and, consequently, a ~ b. [

The result implies that, for the b found, ¥(a, w) = ¥ (b,
w), Yw € S. Then

COROLLARY 1: Under the conditions of Lemma 1 and
identifiability condition, i.e., when W(a, w) = V(b, w),
Vw €S = a = b, we have that Va € N(), a.s. there is
a sequence (anj), with a, € Nnj such that a, — a.

, e,) sothat V(e ,, w) = V(e;, w), Vi.

Else, if (W(e;, w) = W(e;, w) and e; X ¢))

then d(i) = 1 and next i

5. Set N, = {e, : d(i) = 0}.
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The above results suggest using N,, as a discrete approx-
imation to the nondominated set.

Note that the proof is simpler and the result is more
general than that given in [15]. The reason lies mainly in
our increasing population size at each step of the algo-
rithm, and also, in effectively sampling from the whole
feasible set and, consequently, from the whole efficient
set. This removes dependence from the initial population
in the evolutionary algorithms. Obviously, this may be at
the expense of a higher computational cost, although we
must emphasize our interest in the approximation of the
whole efficient set.

Two examples describe several subtleties that need to be
dealt with before this strategy may be used routinely in
applications.

3. EXAMPLES

We consider two simple examples which will allow us
to motivate various implementation issues. The first one
is a standard biobjective linear programming problem.
The second example has a nonconnected nondominated
set.

3.1. Example 1: Multiobjective Linear Programming

Consider the multiobjective programming problem, with
feasible region o of alternatives (x;, x,) defined by

2.7x; + x, = 3,
X, +x,=1.5,

X1
?‘l‘ X2S 11,

OthxZSl’

and objective functions v,( Xy, X,) = Xy, U5(X{, X5) = X5.
Clearly, in this case, x Xy © x|, = y,, X, = y, which is
checked easily. Using the notation of Section 2, we have
S = {1, 2}, and for a = (x;, x,), we have ¥(a, w) =
v,,(a), w € S. The nondominated set is also easily ob-
tained, e.g., graphically. Suppose we sample uniformly
from o, e.g. with the rejection method (see [23]). Panel (a)
in Figure 1 shows the initial sample (200 points), whereas
panel (b) shows the approximation to the nondominated set
based on the 13 points in the nondominated set of the
sample. Panel (d) shows the approximation when a bigger
sample is taken. Note how the approximation improves as
the sample size grows (25 nondominated points from a

sample with 500 points). Other panels will be described
later.

3.2. Example 2: Multiobjective Nonlinear
Programming

Suppose now that the feasible region is the set o« in R?
given by

Xy — \16—x%56,
X, t \/1 —(x, —5)*=4,
Xy — \/9_(X|_5)2507

0=x,=8,

with preferences defined by
(x1, )2 (1, YIS =y, x + 55, =y, + 5y)).

Now, § = {1, 2} and for a = (x4, x5), ¥(a, 1) = x,
W(a, 2) = x; + 5x,. This is a case in which conventional
methods would have problems because of the nonconvexity
of the feasible region and, as we shall see, the nonconnect-
edness of the nondominated set. Again, we sample uni-
formly, see panel (a) of Figure 2. Panels (b) and (d) show
two approximations, for nested samples. Similar comments
to Example 1 would follow. Note that the approximations
seem to suggest the mentioned nonconnectedness of the
nondominated set.

4. IMPLEMENTATION DETAILS

The previous examples raise several issues that need to be
addressed before our basic strategy becomes effective. The
first one is that since we are especially interested in contin-
uous problems, we should probably look for continuous
approximations to the non-dominated set. The second one
refers to stopping rules: We expect approximations to im-
prove as the sample size grows, but we must introduce rules
to stop sampling. Other issues concern sampling schemes
other than uniform. In the examples, we used this one, that
is, all points in the feasible set have the same likelihood to
be in the sample. In general problems, we may need to use
rejection sampling (see Section 4.3). This may be wasteful
in two senses: If we use rejection sampling, for some
feasible regions, we might generate many nonfeasible solu-
tions; by uniformly sampling, we might be generating far
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Figure 1. Example 1.

apart from the nondominated set. Finally, we should look
for procedures to check for dominance. We address these
issues now.

4.1. A Continuous Approximation

We have suggested using N, as a discrete approximation
to the nondominated set. When &{ is continuous, we may be
interested in having a continuous approximation. We could
pose the approximation problem of fitting a surface
@, (a) = 0 through the points of N,,. We may use one of the

coordinates, say the mth one, of the approximate alterna-
tives as a response variable, the other m — 1 coordinates as
explanatory variables and the points of N, as data.

In general, this will be a nonlinear regression problem,
possibly in high dimensions and with little structural infor-
mation. This begs for a robust regression method. In our
implementation, we use a local regression method, called
loess [6], as implemented in S-Plus [33]. Local regression
models provide nonparametric regression methods, with the
underlying assumption that there is a neighborhood contain-
ing the explanatory variables in which the regression sur-
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face is well approximated by a function from a specific
parametric class. Linear and quadratic polynomials are the
functions generally used. The sizes of the neighborhoods,
defined via the Euclidean distance, are specified by a pa-
rameter, which determines the smoothness of the local re-
gression fit. There are many other possibilities including
interpolation methods from Numerical Analysis or neural
networks.

Then, once we have fitted the curve, we suggest the set s
N {a: ®,(a) = 0} as the approximation to the nondomi-
nated set. This set is computed using the information from
the local regression model and the nondominated points
from the last sample. Panel (c) in Figure 1 shows our
continuous approximation in Example 1 based on the dis-
crete approximation in Figure 1(b).

We may gain further computational efficiency, when the
evaluation functions W are increasing in a, possibly after a

10

x2

x1

Example 2.

convenient transformation (as when working on the image
set). In such case, a = b > VY(a, w) = V(b, w), Vw €
S = a X b. Loess (and other regression methods) adapt
easily to that case, producing a function ®,, such that a =
b implies @, (a) = ®,,(b). In this monotonic case, we know
that the efficient set will be in the frontier of s{. Hence, we
could think of sampling uniformly from that set. However,
this problem is extremely involved, even in the linear case
(see, e.g., [4]). Since we know that efficient points are in the
frontier, we could project the points of N,, onto the frontier,
by searching in the direction of the gradient of ®,, if
available, or simply in the direction (1, 1, . . ., 1); eliminate,
if any, the dominated projections, and smooth through the
remaining solutions. Figure 1(e) shows the projections from
solutions in (d); (f) has filtered the dominated solutions, and
(g) shows the continuous approximation, which we compare
with the actual nondominated set in Figure 1(h). Note that

85U80|7 SUOWILLIOD @A 18810 3|qedl|dde 8Ly Aq pausenob afe sajone VO ‘88N JO S8|nJ o Akeid18UlIUO /8|1 UO (SUORIPLOD-pUR-SLURI/LID A3 1M ATeIq Ul |UO//SdNL) SUORIPUOD pUe Swiia | 38U 88S *[£202/2T/S0] Uo ARiqiTauliuo A8 (1M ‘PLpeIN 8 B01USY 0d PepisRAIUN AQ 06002 AeU/Z00T OT/I0p/LI0d" A3 |Im ARIq Ul UO//Sdny WOy papeojumod ‘G ‘G002 ‘05.902ST



Martin, Bielza, Rios Insua: Approximating Nondominated Sets 475

there are only some differences near the extreme points, but
this is not surprising, since there is a small probability of
sampling near them.

The proposed approach would however fail in Example
2, because the nondominated set is not connected. In this
case, prior to undertaking the smoothing, we could proceed
by clustering the solutions in N, and then applying a
smoother in each cluster. Figure 2(c) shows the smoother
fitted without clustering; Figures 2(e) and 2(f) represent the
projection of the discrete approximation in 2(d) and the
filtered projections, respectively. Figure 2(g) includes the
smoothed approximations based on three clusters detected,
which is compared in Figure 2(h) with the actual nondomi-
nated set. We used an agglomerative hierarchical clustering
method with the S-Plus program, via the hclust function.
The dissimilarity matrix was built with the Euclidean dis-
tance, and the between-cluster dissimilarity was defined by
using the nearest neighbor method.

In more general cases, we could fit a surface ®,(a) = 0
through the pairs (a, b(a)) with b(a) = 1 if a € N,,, and b(a) =
Oifa ¢ N, or is infeasible. Logistic regression models, (see,
e.g., [1]) are relevant in this context. This method has a number
of advantages over the previous one, at the price of requiring
more statistical sophistication. For example, an interesting
point is that we may view ®,(a) as the probability of a
belonging to the nondominated set. However, this criterion
must be used cautiously as close points will tend to have
similar @, values, due to the continuity of this function. Con-
sequently, it would be better viewed as an indicator of the
closeness to a nondominated solution.

4.2. Stopping Rules

We have shown how the set N, approximates the non-
dominated set as the sample size grows, and suggested a
continuous approximation based on N,,. Clearly, we need
criteria to determine when the approximation is good
enough and stop sampling. All conceivable rules should
take into account the effort wasted in generating new solu-
tions and discovering new nondominated solutions. Per se,
this is an extremely interesting problem, and there is related
work in the area of stopping rules for stochastic global
optimization methods (see, e.g., [22]).

We propose two types of stopping rules:

1. For problems with evaluation functions increasing in a
(possibly after some transformation), we have the fol-
lowing scheme:

(a) Fit a smoother @, to N,,.

(b) Generate another sample from <. If only a small
enough proportion (say 5%) of the points is above
the smoother, stop. Else, compute a new approx-
imation.

Then, we are discarding the alternatives a with
®,(a) < 0 (geometrically, those that are below the
smoother). Examples 1 and 2 used this rule.

2. In the more general case in which we fit @, through

the pairs (a, b(a)), we suggest:

(a) Fit a smoother ®,, to the set {(a, b(a)) : a €
A,}.

(b) Generate a sample A,,, ; from A.

(c) Compute ®,(a), Va € A, .

(d) Compute N, ;.

(e) Check the discrepancy between the fitted values
®,(a) and the observed values b(a), by

po 3 @da) = b

Al
A€ n+1

where | - | denotes the cardinal of a set.
(f) Stop, either, if

e D is very small (say, less than 0.15), or
e D has not decreased sufficiently during the last steps.

Consider Example 1. We apply this approach to samples
of sizes 100, 500, and 1000. The value of D for the second
sample (with respect to the logistic regression applied to the
first sample) is 0.2913. For the third sample with respect to
the second one, D is 0.1824. We may consider it small
enough and stop or we may continue the sampling process.
Figure 3(a) shows the relationship between actual values
b(a) and fitted values ®,,, for the second sample. Figure
3(b) shows the same feature for the third sample. Observe a
higher concentration of points near vertices (0, 0) and (1, 1)
in Figure 3(b) since both are the best prediction points with
the logistic regression model [predict 1 when b(a) = 1 and
predict O when b(a) = 0].

4.3. Sampling Scheme and Checking Dominance

To sum up, the proposed procedure is:

1. Initialization: n = 1, N, = &
2. Generate a sample A, from A
3. Compute N, = N(A, U N__;)
4. Until stopping rule holds,
Cluster N,
Fit &, to N,
n=mn+1
Go to 2
5. Project N, onto the frontier
6. Compute nondominated alternatives
7. Cluster
8. Fit a surface to each cluster
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Figure 3. Relationship between @ ,(a) (b pred.) and b(a) for Example 1.

Obviously, steps 5-8 will be appropriate for increasing
objective functions. Steps 6—8 will improve the approxima-
tion even more, as seen above.

We now provide further insights about steps 2 and 3. For
step 2 (sampling), we propose two strategies:

a. Rejection. We can draw points from the feasible re-
gion with the rejection method. We first bound the
region. For that, we solve 2n optimization problems:

x¥= sup{x;, x € oA}, Xy = inf{x;, x € A},

i=12,...,n

Note that we only search for bounds for the different
values rather than accurately solving the optimization
problems. Thus, &§ C IT7_; [x;+, x%¥]. Now we draw
points from this region and reject those which do not
belong to . Sampling from intervals like [x;., x7] is
straightforward.

The region is better fitted if we use stratified sampling,
that is, we divide the region into subsets (strata) and a
sample is generated from each stratum. For instance,
we can divide [x,., x’}] into a partition with m regions
X, X,'n and, for each one, solve the problems:

xh=sup{x, x Esd N{x:x, EX}},
xp=infly,xEdAN{x:x, EX}}Li=2,...,n.
We get
dc U {le x 11 I:xl:f*7 xﬁ]}
j=1 i=2

Sampling from UL, {X} X II, [x;., x}]} may be un-

j:
dertaken by composition (see [23]).

b. Adaptive sampling. The following technique is based
on the ideas of adaptive sampling [32]. We build a
grid which grows until it contains the whole feasible
region. Suppose o is connected:

1. Find an initial feasible solution.

2. Generate a grid around it with s cells (s is the

number of partitions made at each of the m dimen-

sions).

Generate ¢+ > 1 points at each cell of the grid.

Check the feasibility of each point.

5. Add to the grid every cell that adjoins any cell with
feasible points.

6. Generate points on the new cells.

7. If stopping rule does not hold, go to 5. Otherwise,
stop.

Lol

The generation of points at each cell will be carried out
whenever the cell has not been visited before. The algorithm
will stop when there is no new cell with feasible points.
Note that the grid has to be constructed once and it can be
reused later.

As far as the computation of nondominated alternatives is
concerned, some improvements follow:

e Use of nadir point. Mateos, Rios-Insua, and Nevado
[19] provide approximation methods to the non-
dominated set in multicriteria decision-making. One
of these methods, based on a nadir point generalisa-
tion, removes feasible points which are dominated.
By taking advantage of this technique, we can re-
duce the region to be explored. It can be also used as
a pretest. For example, suppose ¢ C R* and we have
two criteria W,, W, increasing in both components.
We compute the optimal solutions x%, x% for both
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criteria and evaluate ¥, = ¥ (x%) and V,. =
W,(x%). Then, any generated point z is removed
from the sample if ¥,(z) = V. and ¥,(z) = V,..

Another alternative is to find, if possible, y = (y;, y,)
such that ¥(y) = ¥,. and W(y) = W,.. All the points
(24, 2o) such that z; <y, and z, < y, are dominated,
reducing the region of points to be generated.

o [nformation from the logistic regression. If we use a
grid to generate from the feasible region and a lo-
gistic regression model, as described above, we can
estimate the probability, p;, of being nondominated
at each mean point of each cell j. This quantity p;
gives us information to generate additional points at
that grid: At each cell, we generate a number of
points proportional to the probability of being non-
dominated. Thus, in order to have s points in all, we
generate at each cell j, R[s - p;/2; p,] points, where
k ranges over all the cells and R[x] denotes the
roundoff of x. Therefore, the total number of gener-
ated points, without taking into account roundoffs, is
28 pilEpp =S,

e Evolutionary algorithm. We can employ evolution-
ary algorithm techniques in combination with our
proposal. Given the nondominated set, the new pop-
ulation could consist of: nondominated points of the
current population, points uniformly sampled from
A, and points generated by crossover or mutation
from the last population nondominated points. Note
these changes modify neither Lemma 1 nor Propo-
sition 1 since points of each population are generated
from o independently. The next subsection illus-
trates the ideas with an example taken from [3].

4.4. Example 3

Benson and Sayin [3] propose working on the image set
instead of the alternative set, because the dimension is
usually smaller. Moreover, many efficient points may have
the same point as image, and we make unnecessary com-
putations. Also, for decision-makers, it is easier to choose a
solution to the outcome space than on the feasible set. These
and other arguments may be seen in [10, 11, 12].

Example 1 would be considered as a problem solved in
the image space since the objective functions coincide with
the coordinates. For that reason, let us analyze the example
proposed in [3], working on the alternative set, rather than
on the image set, to show the power of our method.

Consider the problem

A = [0, 11"

and

4 8 10
u(x) = =D x+ > 0.667x, — >, 0.75x,,
i=1 i=5 i=9

4 8 10
v,(x) = D x;— >, 0.333x; + > 0.25x,.

i=1 i=5 i=9

We apply our method with the evolutionary algorithm vari-
ation.

Figure 4 shows the algorithm evolution. Initially, we
generate a population of size 200 in {. We compute the
nondominated points and undertake the smoothing. We
proceed to obtain the next populations (with size 1.3 X last
population size) by using the last nondominated points, the
points generated from them, and points uniformly sampled
from . Specifically, for each nondominated point, we
generate 1 point from a 10-dimensional normal distribution,
with mean equal to the nondominated point and variance—
covariance matrix 0.1/, where / is the identity matrix. This
may be interpreted as a mutation. A point that is not in the
feasible region is rejected, and another point is drawn.
Moreover, for each parent pair randomly chosen, we gen-
erate four offspring by crossover as follows: Given two
parents x = (X, Xo, ..., X)) andy = (¥, Yo, -+ Y10)s
a random number between 1 and 5 is chosen, say 3. The
children would then be (x,, x5, X3, Y4, Vs, - . - » ¥10) and
(Y15 Y25 Y35 X4 Xs5 ..., X;0). For the same parents, the
same process is carried out generating a number between 6
and 9. Since all the variables belong to [0, 1], all the children
belong to the feasible set. Note that, due to the increase in the
population size, we can have two children per parent and, also,
a parent mutation. Obviously, other alternative ways to pro-
ceed might be devised: mutate children, define more parent
pairs, . . .. Panels 1-12 in Figure 4 show the fitted surface in
the image set through the different generations. We have
considered the first type of stopping rule given in Section 4.2,
stopping when 90% of the generated points are below the
smoother. Although many panels seem equal, note that the
number of nondominated points is, respectively, 22, 28, 45, 72,
75, 110, 153, 166, 200, 243, 298, and 351. Panel 13 shows the
resulting points on the image set after performing the projec-
tion onto the feasible set frontier. Note that we do not project
onto the image set frontier, because we do not work on this set.
Panel 15 shows our final approximation to the efficient set.
Both the sampling and the projection have been carried out in
the alternative set, whereas the stopping rule has been defined
in the image set.

We must emphasize the algorithm good performance in a
problem with 34 extreme points, 68 efficient edges, one
2-dimensional efficient face, and two 4-dimensional effi-
cient faces (see [3]).
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4.5. Computational Discussion

The proposed approach is specially useful when the
objective functions are monotonic. However, one of its
main strengths is that it is possible to apply the approach

Example 3.

to other functions by suitably changing the stopping rule,
e.g., using rule 2 of Section 4.2 and removing the pro-
jection onto the frontier. It can be used also by perform-
ing the local regression on the image of the sample
nondominated points.
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Mean CPU times for the examples (50 executions) have
been: Example 1, 4.1 s; Example 2, 14.6 s; Example 3,
464 s. The costliest step is pairwise dominance checking. It
is important to do the relabeling (step 2) since it substan-
tially reduces this cost: in Examples 1 and 3, mean CPU
times increase to 4.9 and 19.1 s, respectively, if relabeling is
not used. In order to apply clustering and regression tech-
niques, it is convenient to use statistical software. Our
examples have been run with the S-Plus program for Win-
dows 98, in a Pentium IV 1.8 GHz PC.

As far as parameters are concerned, we recommend an
initial population size of 100. The size increases multiplying
this value by a number in [1.2, 2]. Smaller values may yield a
lack of points above the smoother and problems with stopping
rule 1 from Section 4.2. Higher values involve a high compu-
tational burden. The 1.3 value seems to be especially effective.

5. CONCLUSIONS

This research has provided a stochastic approach to ap-
proximate the nondominated set in general problems. It is
general enough to cope with fairly unstructured contexts,
yet it permits the efficient incorporation of partial informa-
tion, allowing us therefore to take advantage of any special
structure available. In this sense, it may be competitive even
in cases in which there is a structured method like a mul-
tiobjective simplex procedure, given the enormous compu-
tational complexity of those ones. Our method may be
viewed as an evolutionary algorithm in which the popula-
tion size is variable, and the objective is not to obtain a point
from the efficient set but a representation of it.

Moreover, many problems of interest in areas such as
multiobjective programming, robust Bayesian analysis, sto-
chastic dominance, and experimental design, may be de-
scribed with our formulation, opening up new fields of
application. In many of these cases, S will not be finite. For
example, in stochastic dominance problems, alternatives are
ordered through their expected utilities, but there is impre-
cision in both the utility function u and the probability
distribution p (see [27]). Then,

axb & (J u(a, 0) dp(6)
Sf u(b, 0) dp(6), Vue U, VpeP|,

where U is a class of utility functions and P is a class of
probability distributions. Therefore, w = (u, p), ¥(a,
w) = [ u(a, 0) dp(6) and S = U X P.

Finally, ongoing research is directed towards extending
some of the ideas suggested throughout the paper, like using
a neural network as a smoother or trying other stopping
rules.
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