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A review of undirected and acyclic directed Gaussian

Markov model selection and estimation

Irene Córdoba-Sánchez

Concha Bielza

Pedro Larrañaga

Abstract

Markov models lie at the interface between statistical independence in a probability
distribution and graph separation properties. We review model selection and estimation in
directed and undirected Markov models with Gaussian parametrization, emphasizing the
main similarities and differences. These two model types are foundationally similar but
not equivalent, as we highlight. We report existing results from a historical perspective,
taking into account literature from both the artificial intelligence and statistics research
communities, which first developed these models. Finally, we point out the main active
research areas and open problems now existing with regard to these traditional, albeit rich,
Markov models.

Keywords. Conditional independence, Gaussian Bayesian network, Gaussian graphical
model, Gaussian Markov model, model selection, parameter estimation

1 Introduction

Markov models, or probabilistic graphical models, explicitly establish a correspondence between
statistical independence in a probability distribution and certain separation criteria holding in a
graph. They originated at the interface between statistics, dominated by Markov random fields
(Darroch et al., 1980), and artificial intelligence, with a focus on Bayesian networks (Pearl, 1985,
1986). Markov random fields and Bayesian networks are now both considered traditional models.
Nevertheless, they are still widely applied and attract a significant amount of research nowadays
(Daly et al., 2011; Uhler, 2012). A feature that they have in common is that they both model
conditional independence: Bayesian networks relate conditional independence to acyclic directed
graphs, whereas it is associated with undirected graphs in Markov fields. However, the models
that they represent are only equivalent under additional assumptions on the respective graphs.

In this paper, we review the existing methods for model selection and estimation in undirected
and acyclic directed Markov models with Gaussian parametrization. The multivariate Gaussian
distribution is one of the most widely developed and applied statistical families in this context
(Werhli et al., 2006; Ibáñez et al., 2016). It provides for an explicit parametric comparison of
their similarities and differences. The terminology used in methodological developments and
theoretical results varies considerably due to the highly interdisciplinary nature of these Markov
models. With a few exceptions (Wermuth, 1980; Pearl, 1988), they are usually studied separately,
and most unifying works (Sadeghi and Lauritzen, 2014; Wermuth, 2015) are characterized by a
high-level view, where the models are embedded in other more expressive models and the focus
is on the properties of those container models. In this paper, on the other hand, we review these
models from a low-level perspective. In doing so, we use a unified notation by means of which we
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can directly compare the two types of models, in terms of both methodological and theoretical
developments.

The paper is structured as follows. A historical introduction to Markov models is presented
in Section 2, emphasizing the different research areas that contributed to their birth. Prelimi-
nary graph theory concepts are then presented in Section 3. In Section 4, undirected and acyclic
directed Markov models are introduced under distribution-free assumptions because many foun-
dational relationships between these models can be established from this general perspective.
Next, their parametrization is restricted to multivariate Gaussian distributions, and we explore
the main properties derived from this constraint in Section 5. We review maximum likelihood
estimation in Section 6. These estimates are used for model selection via hypothesis testing,
as reported in Section 7. When maximum likelihood estimators are not guaranteed to exist,
a popular technique is to employ regularisation, outlined in Section 8. Finally, the alternative
Bayesian approach for model selection and estimation is treated in Section 9. We conclude the
paper with a discussion of the current main active lines of research and open problems in Section
10.

2 A historical perspective

We now introduce the main terminology applied to Gaussian Markov models currently in use
from a historical perspective. Figure 1 is a timeline illustrating the origins of Markov models,
including most of the key works that are cited in this section.

1970 1996

Linear
covariance

Anderson (1973)

Covariance
selection

(CS)

Dempster (1972)

CS ↔
contingency
tables (CTs)

Wermuth (1976) Markov
fields (MFs)

↔ CTs

Darroch et al. (1980)

Influence
diagrams

(IDs)

Howard & Matheson (1981)

Probabilistic
IDs ↔

Bayesian
networks
(BNs)

Pearl (1985)

Gaussian
MFs

Speed & Kiiveri (1986)

BNs & MFs

Pearl (1988)

Directed
MFs ↔ BNs

Lauritzen et al. (1990)

Concentration
graphs

Cox & Wermuth (1993)

Figure 1: Timeline of the origins of Gaussian Markov models. Papers from the statistical com-
munity appear above the line and papers from other research areas are shown below the line.
Thematically, grey filled boxes are papers about acyclic directed Markov models, white boxes
refer to undirected models, and gradient filled boxes deal with both types of models.

Undirected Markov models for conditional independence are the oldest type of Markov mod-
els. They were preceded only by special cases such as the Ising model for ferromagnetic ma-
terials (Kindermann and Snell, 1980; Isham, 1981). They are actually a generalization of the
Ising model, which is likewise a generalization of Markov chains. Originally, undirected Markov
models were called Markov random fields (Grimmett, 1973), since they generalized the corre-
spondence between Gibbs measures (Besag, 1974) and Markov properties. The term graphical
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model was not introduced until Darroch et al. (1980) linked the graphical ideas for contingency
tables with Markov properties of discrete Markov fields. They are also termed Markov networks
(Pearl, 1988) by artificial intelligence researchers by analogy with Bayesian networks, used to
refer to acyclic directed Markov fields.

Regarding Gaussian parametrization, we find that Anderson (1973) was one of the first re-
searchers to impose some sort of structure on the covariance matrix of a multivariate Gaussian
distribution. He aimed to reduce the number of parameters to be estimated and considered the
mean vector and covariance matrix to be linear combinations of known linearly independent vec-
tors and matrices, respectively. Along similar lines, Dempster (1972) suggested estimating the
inverse of the covariance matrix (concentration matrix) by assuming certain entries to be equal
to zero. This was motivated by the representation of the multivariate Gaussian distribution as
an exponential family. His work was later referred to as covariance selection models. Interest-
ingly, although Dempster did not have any graphical interpretation in mind, such zero entries
in the concentration matrix are directly associated with missing edges in undirected Gaussian
Markov models, and this correspondence was analysed some years later by Wermuth (1976). On
this ground, these Markov models with a Gaussian parameterization are sometimes still called
covariance selection models today.

Lastly, in further developments of Markov models, Cox and Wermuth (1993) gave a top-
down, unifying view of some graphical models used for representing linear dependence. They
equated a special case of graphs with Dempster’s covariance selection models, when assuming
a multivariate Gaussian distribution. They referred to these graphs as concentration graphs ,
resembling the zero entries in the concentration matrix.

In contrast, acyclic digraphs were often used as models for multivariate probability distri-
butions after the definition of influence diagrams, introduced by Howard and Matheson in 1981
(article reprinted in Howard and Matheson (2005)) and used to model decision-making processes.
The probabilistic reduction of influence diagrams coincides with acyclic directed Markov mod-
els. This was subsequently studied at length by Pearl (Pearl, 1988), who renamed probabilistic
influence diagrams as Bayesian networks or influence networks (Pearl, 1985). Some researchers
working on Markov fields also developed a theory regarding these directed counterparts, which
they called directed Markov fields (Lauritzen et al., 1990).

There are other works published before the research outlined above employing or referenc-
ing acyclic directed Markov models. They were studied implicitly by Wermuth (1980) in the
Gaussian case as linear recursive regression systems, although the main focus was actually on
covariance selection models. The use of directed graphs as graphical models for dependence
among random variables can actually be traced back to the work of geneticist Sewall Wright
in 1918. Wright developed the method of path coefficients (Wright, 1934), nowadays known as
path analysis. Linearly related variables were represented using a directed acyclic graph, whereas
their correlation was represented by bi-directed edges joining the variables.

3 Graph preliminaries

A graph is defined as a pair G = (V,E) where V is the set of vertices and E is the set of edges.
Throughout the whole paper, the graphs will, unless otherwise stated, be labelled and simple.
This means that the elements in V are labelled, for example, as 1, . . . , p; and E is composed
of pairs of distinct elements in V . A graph is called undirected if these pairs are unordered
(E ⊆ {{u, v} : u, v ∈ V }), and directed or digraph otherwise (E ⊆ {(u, v) : u, v ∈ V }). Edges
{u, v} in an undirected graph are usually denoted by uv and drawn as a line (see Figure 2a). In
a digraph, however, they are called arcs or directed edges and represented as arrows (Figure 2b
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and 2c).

1

3

2

4 5

6

(a) Undirected graph

1

3

2

4 5

6

(b) Cyclic digraph

1

3

2

4 5

6

(c) Acyclic digraph

Figure 2: Examples of an undirected graph and two digraphs.

3.1 Undirected graphs

In an undirected graph G = (V,E), if uv ∈ E, u and v are called neighbours. For v ∈ V , the set
of its neighbours is denoted by ne(v), and the closure of v is cl(v) := {v} ∪ ne(v). G is called
complete if for every u, v ∈ V , uv ∈ E. A maximal C ⊆ V such that GC is complete is called a
clique. Let H = (VH, EH) be another undirected graph. H is a subgraph of G (written as H ⊆ G)
if VH ⊆ V and EH ⊆ E. If EH = {uv ∈ E : u, v ∈ VH}, then H is called the induced subgraph
and denoted by GVH .

A walk between u and v is an ordered sequence of vertices (u =)u0, u1, . . . , uk−1, uk(= v),
where ui−1ui ∈ E for i ∈ {1, . . . , k}. The number k is called the length of the walk. If u = v,
the walk is closed, and when u0, . . . , uk−1 are distinct, the walk is called a path. A closed path
of length k ≥ 3 is called a cycle or k-cycle. G is called chordal or triangulated if all minimal
k-cycles are of length k = 3. A chordal cover of a graph G is a graph G∗ such that G ⊆ G∗ and
G∗ is chordal.

S ⊆ V separates u and v in G = (V,E) if there is no path between u and v in the subgraph
GV \S . If we consider A,B, S ⊆ V , A and B are said to be separated by S if u and v are separated
by S for all u ∈ A, v ∈ B. Let V be partitioned into disjoint sets A,B, S ⊆ V . (A,B, S) is called
a decomposition of G if S separates A and B in G and GS is complete. If A 6= ∅ and B 6= ∅, the
decomposition is said to be proper. An undirected graph is decomposable if: (i) it is complete
or (ii) it admits a proper decomposition into decomposable subgraphs. An undirected graph is
decomposable if and only if it is chordal.

3.2 Acyclic digraphs

In a digraph D = (V,A), the definitions of (induced) subgraph, walk, path, and cycle are analo-
gous to the undirected case. The undirected graph DU := (V,AU ) with AU := {uv : (u, v) ∈ A}
is called the skeleton of D, and D is one of its orientations. A digraph D is said to be complete
when DU is complete.

In the following, assume that D is acyclic (see Figure 2b and Figure 2c for a cyclic and
an acyclic digraph, respectively). The parent set of v ∈ V is pa(v) := {u ∈ V : (u, v) ∈ A}.
Conversely, the child set is ch(v) := {u ∈ V : (v, u) ∈ A}. The ancestors of v, an(v), are those
u ∈ V such that there exists a directed path from u to v; the descendants of v, de(v), are those
u ∈ V such that there exists a directed path from v to u. The set nd(v) := V \ ({v} ∪ de(v))
will be the set of non-descendants of v ∈ V , and An(A) := A ∪ (∪a∈A an(a)) the ancestral set of
A ⊆ V . Note that a total order ≺ can be defined over the set of vertices V in an acyclic digraph
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D = (V,A), such that if (u, v) ∈ A, then u ≺ v. This ordering is usually called ancestral, and it
is a linear extension of the partial order naturally defined as u � v if u ∈ an(v). For v ∈ V , the
set of successors of v with respect to ≺ is su(v) = {u ∈ V : u ≻ v}; the set of predecessors of v
is pr(v) = {u ∈ V : u ≺ v}.

Finally, let u,w1, w2 ∈ V with (w1, u), (w2, u) ∈ A and (w1, w2), (w2, w1) /∈ A (see vertices
1, 2 and 3 in Figure 2c). Such configurations are usually called v-structures and denoted by
w1 → u ← w2. The moral graph of D is defined as the undirected graph Dm = (V,Am) with
Am := AU ∪ {w1w2 : w1 → u← w2 for some u ∈ V }.

4 Undirected and acyclic directed Markov models

The Markov models that we review associate conditional independence in random vectors X =
(X1, . . . , Xp)

t with undirected graph and acyclic digraph separation properties. This is explicitly
specified by the Markov properties of the distribution of X, which are in turn based on what are
known as independence relations.

In the following, for arbitrary I ⊆ {1, . . . , p}, we will denote the |I|-dimensional subvector
of X by XI := (Xi)i∈I . Conditional independence will be expressed as XI ⊥⊥ XJ | XK ,
which represents the statement ‘XI is conditionally independent from XJ given XK ’ (see Dawid
(1979)).

4.1 Independence relations

An independence relation over a set V = {1, . . . , p} is a collection I of triples (A,B,C), where
A, B and C are pairwise disjoint subsets of V . It is called a semi-graphoid when the following
conditions are met:

if (A,B,C) ∈ I then (B,A,C) ∈ I,
if (A,B ∪ C,D) ∈ I then (A,C,D) ∈ I and (A,B,C ∪D) ∈ I,
if (A,B,C ∪D) ∈ I and (A,C,D) ∈ I then (A,B ∪ C,D) ∈ I,

and a graphoid when, additionally, if (A,B,C∪D) ∈ I and (A,C,B∪D) ∈ I then (A,B∪C,D) ∈
I (Pearl and Paz, 1987).

Independence relations occur in different contexts that are relevant for Markov models. Specif-
ically, an independence relation I over V = {1, . . . , p} is said to be induced by

• an undirected graph G = (V,E) if (A,B, S) ∈ I ⇐⇒ A and B are separated by S in G,

• an acyclic digraph D = (V,A) if (A,B, S) ∈ I ⇐⇒ A and B are separated by S in
(DAn(A∪B∪S))

m
,

• a p-dimensional random vector X if (A,B, S) ∈ I ⇐⇒ XA ⊥⊥XB |XS .

Graph-induced independence relations are always graphoids, while probabilistic independence
relations are always semi-graphoids. Additional assumptions on the probability spaces involved
are required for probabilistic independence relations to be graphoids (Dawid, 1980).

The core of Markov models is the relationship between induced independence relations, which
we will denote by I(·) with the argument being the inducing element. Specifically, if G is an
undirected (acyclic directed) graph, an undirected (directed) Markov model is defined as

M(G) := {PX : I(G) ⊆ I(X)} ,
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where the random vectors X are defined over the same probability space and PX denotes their
distribution. These models are non-empty (Geiger and Pearl, 1990, 1993), that is, for any undi-
rected or acyclic directed graph, there is always a probability distribution whose independence
model contains the one generated by the graph.

4.2 Markov properties

When a distribution PX belongs to M(G) for an undirected or acyclic directed graph G, it
is said that PX is globally G-Markov or satisfies the global Markov property with respect to G.
Other weaker Markov properties can be defined that are usually capable of simplifying the model.
Specifically, if G = (V,E) is an undirected graph, then the probability distribution PX of X is
said to be

• pairwise G-Markov if Xu ⊥⊥ Xv |XV \{u,v} for all uv /∈ E,

• locally G-Markov if Xv ⊥⊥XV \cl(v) | Xne(v) for all v ∈ V ,

whereas if G is an acyclic digraph, then PX is called

• pairwise G-Markov if Xu ⊥⊥ Xv |Xnd(u)\{v} for all u ∈ V, v ∈ nd(u) \ pa(u),

• locally G-Markov if Xv ⊥⊥Xnd(v)\pa(v) |Xpa(v) for all v ∈ V .

The three Markov properties are equivalent when G is acyclic directed (Lauritzen et al., 1990),
while, if G is undirected, this equivalence is only guaranteed when I(X) is a graphoid (Pearl,
1988). Suffice it for PX to admit a continuous and strictly positive density for this to occur. This
sufficient condition was obtained in different forms by several authors, but it is usually attributed
to Hammersley and Clifford (1971), who were the first to outline the proof for the discrete case
(Speed, 1979). It relies on an additional characterization of a probability distribution with respect
to G: if C (G) denotes the class of cliques of G, the density function f of PX is said to factorize
according to G when there exists a set {ψC(xC) : C ∈ C (G) , ψC ≥ 0} such that

f(x) =
∏

C∈C(G)

ψC(xC). (1)

When Equation (1) holds, then PX is globally G-Markov, while if f is continuous and strictly
positive, the pairwise Markov property implies Equation (1). This yields the equivalence of
Markov properties.

Finally, recall that the nodes of an acyclic digraph D = (V,A) can be totally ordered such
that if (u, v) ∈ A, then u ∈ pr(v). This gives rise to another Markov property, exclusive to acyclic
digraphs: PX is said to be ordered D-Markov if Xv ⊥⊥ Xpr(v)\pa(v) | Xpa(v) for all v ∈ V . This
property is also equivalent to the global, local and pairwise Markov properties (Lauritzen et al.,
1990).

4.3 Independence and Markov equivalence

When the Markov models defined by two graphs G and G̃, with the same vertex set V , coincide,
such graphs are said to be Markov equivalent. A simpler notion, also implying Markov equiv-
alence, is independence equivalence, holding when I(G) = I(G̃). Independence equivalence is
implied by Markov equivalence under fairly general circumstances (Studený, 2005, §6.1), which
is why most authors treat them as the same notion. The best suited graph for the Markov model
can be chosen based on these equivalences.
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We will first characterize equivalence within undirected graphs. For each graphoid I over
V , there exists a unique edge-minimal undirected graph G such that I(G) ⊆ I (Pearl and Paz,
1987). It follows that I(G) = I(G̃) (independence equivalence) if and only if G and G̃ are
identical. Furthermore, if we assume that I(X) is a graphoid for all PX ∈M(G), then a unique
edge-minimal G̃ exists, with G̃ ⊆ G, such that M(G) = M(G̃) (Markov equivalence), that is, a
unique undirected graph can be chosen as representative of each undirected Markov model.

In contrast, acyclic digraphs are not, generally, unique representations of a Markov model,
since I(D) = I(D̃) if and only if D and D̃ have the same skeleton and the same v-structures
(Verma and Pearl, 1991). However, unique representatives can be constructed: Let Dp be the
set of acyclic digraphs over V = {1, . . . , p} and define an equivalence relation ∼ in Dp as D ∼
D̃ ⇐⇒ I(D) = I(D̃). The quotient space of ∼ is Dp/∼ = {[D] : D ∈ Dp}, where [D] := {D̃ ∈
Dp : D̃ ∼ D} is the Markov equivalence class ; thus, M(D̃) = M(D) for all D̃ ∈ [D], that is,
[D] is the unique representative of the directed Markov model.

Finally, we characterize the equivalence between directed and undirected graphs, first ob-
tained by Wermuth (1980) for multivariate Gaussian distributions and by Wermuth and Lauritzen
(1983) for contingency tables, and then generalized by Frydenberg (1990) for graphoid-inducing
distributions. When G is an undirected graph, M(G) = M(D) for some acyclic digraph D if
and only if G is chordal. Conversely, an acyclic digraph D is Markov equivalent to its skeleton
DU if and only if D contains no v-structures. Furthermore, D can be related to its moral graph.
This requires an analogous formula to Equation (1): a density function f is said to recursively
factorize according to D when

f(x) =
∏

v∈V

f(xv | xpa(v)).

This characterization is equivalent to the Markov properties, and also implies that f factorizes
as in Equation (1) with respect to the moral graph Dm (Lauritzen et al., 1990). This means
that PX is always globally Dm-Markov for continuous X, and thus M(D) ⊆M(Dm), with the
equality only holding when Dm = DU .

Example 1. Figure 3 illustrates the above concepts. The graph in Figure 3a is not chordal, and
thus there is no Markov equivalent acyclic digraph. Figure 3b is a chordal cover of Figure 3a,
and a Markov equivalent orientation is depicted in Figure 3c. The acyclic digraph in Figure 3d
has v-structures, emphasized in dark grey, and thus cannot be Markov equivalent to its skeleton
( Figure 3a). The moral graph in Figure 3d is Figure 3e, which in fact is another chordal cover
of Figure 3a, and thus none of its orientations will be Markov equivalent to Figure 3c.

1

3

2

4 5

6

(a) Chordless cycle
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3
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4 5

6

(b) Chordal cover
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(c) Orientation
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(d) V -structures
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(e) Moral graph

Figure 3: Markov equivalence.
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5 Gaussian parametrization

When restricting to multivariate Gaussian distributions, we find connections between condi-
tional independence and vanishing parameters. This correspondence can be used to provide a
direct interpretation of Markov properties in both the undirected and directed cases, allowing
an enhanced manipulation of these Markov models.

In the following, the elements of a real q × r matrix M ∈ Mq×r(R) will be denoted by mij ,
where i ∈ {1, . . . , q} and j ∈ {1, . . . , r}. MIJ will be the |I| × |J | submatrix of M, where

I ⊆ {1, . . . , q} and J ⊆ {1, . . . , r} , and we will use M−1
IJ as (MIJ)

−1
. S

≻0 and S
�0 will represent

the sets of positive and semi-positive definite symmetric matrices, respectively. The p-variate
Gaussian distribution is denoted by Np (µ,Σ), where µ ∈ R

p is the mean vector and Σ ∈ S
≻0

is the covariance matrix. Ip will denote the p × p identity matrix. Dimensional subscripts will
often be dropped if the dimension of the respective object is clear from the context.

5.1 Markov properties and the multivariate Gaussian distribution

Let V = {1, . . . , p}. When a random vector X is distributed as Np (µ,Σ), then for i, j ∈ V ,
Xi ⊥⊥ Xj is equivalent to σij = 0. If we consider a partition (I, J) of V , then XI | xJ is
distributed as N|I| (µI ,ΣI·J), where ΣI·J = ΣII − ΣIJΣ

−1
JJΣJI (Anderson, 2003). Thus, for

i, k ∈ I, we have that Xi ⊥⊥ Xk | xJ is equivalent to σik·J = 0, the (i, k) element in the
conditional covariance matrix ΣI·J .

A correspondence can be established between the zeros in ΣI·J and zero patterns in other
representative matrices (Wermuth, 1976, 1980) as follows. Let the concentration matrix of X be
Ω = Σ−1, with elements ωuv for u, v ∈ V . The matrix ΣIJΣ

−1
JJ is usually denoted by BI·J and

called the matrix of regression coefficients of XI on XJ . Let ΩI·J := Σ−1
JJ , then we have the

following matrix identity (Horn and Johnson, 2012) .

Ω =

(
ΣII ΣIJ

ΣJI ΣJJ

)−1

=

(
Σ−1

I·J −Σ−1
I·JBI·J

−Bt
I·JΣI·J

−1 ΩI·J +Bt
I·JΣ

−1
I·JBI·J

)
.

Hence ΣI·J can be related to Ω and BI·J , as

ΣI·J = Ω−1
II , (2)

BI·J = −Ω−1
II ΩIJ . (3)

This implies that, dually, ΩII is identically equal to the concentration matrix of XI | xJ , while
ΩI·J is the concentration matrix of XJ .

Using the above correspondences, conditional independence can also be related with Ω and
BI·J . From Equation (2) we get, for i, k ∈ V ,

Xi ⊥⊥ Xj |XV \{i,k} ⇐⇒ ωik = 0, (4)

whereas from Equation (3) it follows that, for J ⊆ V , i, k ∈ V \ J ,

Xi ⊥⊥ Xk |XJ ⇐⇒ βik·J∪{k} = 0, (5)

where βik·J∪{k} is the v entry in the vector βt
i·J∪{k}, that is, the coefficient of Xk on the regression

of Xi on xJ∪{k}. The original notation for this, introduced by Yule (1907), was βik·J , that is, k
is implicitly considered as included in the conditioning indexes. However, we have opted for the
alternative explicit notation βik·J∪{k}, since it simplifies the notation in later sections.
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5.2 Gaussian Markov models

In the Gaussian case, undirected Markov models are in correspondence with the concentration
matrix, while for acyclic digraphs this correspondence is with the regression coefficients. Both
rely on the auxiliary Markov properties that we presented in Section 4.2.

Let G = (V,E) be an undirected graph and consider X distributed as PX ≡ Np (µ,Σ)
with PX ∈ M(G). Since PX is globally G-Markov, it is also pairwise G-Markov, and thus
Equation (4) directly yields ωuv = 0 for all u, v ∈ V such that uv ∈ E. This means that, if
we define the set S

≻0(G) :=
{
M ∈ S

≻0 : muv = 0 for all uv /∈ E
}
, we have Ω ∈ S

≻0(G) if and
only if PX is pairwise G-Markov. Furthermore, since the multivariate Gaussian distribution has
positive density, I(X) is a graphoid and thus the three Markov properties are equivalent. In
this manner, we can redefine the Gaussian undirected Markov model as

N (G) =
{
Np (µ,Σ) : Σ−1 ∈ S

≻0(G),µ ∈ R
p
}
. (6)

In the directed case, the redefinition is not so direct. Let D = (V,A) be an acyclic digraph,
and assume, for notational simplicity, that the nodes are already ancestrally ordered as 1 �
· · · � p. If X is distributed as PX ≡ Np (µ,Σ) with PX ∈ M(D), it satisfies the ordered
Markov property. Thus, whenever v ∈ pr(u) \ pa(u), we have Xu ⊥⊥ Xv | Xpa(u), which is
equivalent to βuv·pa(u)∪{v} = 0 as in Equation (5). Since we have assumed an ancestral order,
βuv·pa(u)∪{v} = βuv·pr(u) for all u ∈ V , v ∈ pr(u) \ pa(u), which leads to PX being ordered D-
Markov if and only if βuv·pr(u) = 0 for all u ∈ V , v ∈ pr(u) \ pa(u). This triangular requirement
on the regression coefficients can be expressed with the triangular matrix B defined as buv = 0
for v < u, v /∈ pa(u), and buv = βuv·pa(u) ≡ βuv·pr(u) otherwise.

If vu := σuu·pr(u), the above characterization leads to a matrix form of the respective linear
regressions, as X = µ+B(X − µ) +E, where Eu ∼ N (0, vu). We can rearrange it as

X = U−1ξ +U−1E, (7)

where ξ := Uµ and U := Ip − B, since U is invertible. Let V be the diagonal matrix
of conditional variances v. Sometimes ξ, B and V are called the D-parameters of (µ,Σ)
(Andersson and Perlman, 1998). In fact, using U and V, Σ (and Σ−1) can be decomposed
as Σ = U−1VU−t. Furthermore, this decomposition uniquely determines Σ via U/B and V

(Horn and Johnson, 2012). Thus, by analogy with Equation (6), if we define the set M(D) :=
{M ∈ Mp×p(R) : muv = 0 for all (u, v) /∈ A} and the set ∆p of p× p diagonal matrices, we can
redefine the Gaussian directed Markov model as

N (D) =
{
Np (µ,Σ) : Σ−1 = (Ip −B)tV−1(Ip −B), B ∈M(D), V ∈∆p

}
. (8)

6 Maximum likelihood estimation

Exponential family theory greatly simplifies maximum likelihood estimation (Barndorff-Nielsen,
1978). The multivariate Gaussian distribution is a regular exponential family, and thus both
undirected and directed Gaussian Markov models can be expressed as special subfamilies of this
family.

6.1 The Gaussian family and maximum likelihood

The canonical parameter in the multivariate Gaussian family is η = (Ωµ,−Ω/2) over the space
H = {(η1,η2) : η1 ∈ R

p,−η2 ∈ S
≻0}, and the sufficient statistics are t(X) = (X,XXt).
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Let {x(n) : 1 ≤ n ≤ N} be N independent observations, where X(n) ∼ Np (µ,Σ) for each
n ∈ {1, . . . , N}, arranged in x ∈ Mp×N (R), the respective random matrix being X. The random
sample is also a regular exponential family with canonical parameter η = (Ωµ,−Ω/2) over the

space H. The sufficient statistics in this case are t(X) = (NX̄,XXt) with NX̄ =
∑N

n=1 X
(n).

In a regular exponential family FH, a maximum of the likelihood function, L(η), given a
random sample X = x, is reached in H if and only if t(x) belongs to the interior of C(t), the
closed convex hull of the support of the distribution of t, denoted by int(C(t)). When this occurs,
the maximum is unique and given by η ∈ H satisfying E[t(X)] = t(x).

For the multivariate Gaussian random sample, we have that E[NX̄] = Nµ and E[XXt] =
NΣ + Nµµt, thus the convex support of t(X) = (NX̄,XXt) is C(t) = {(v,M) ∈ R

p × Sp :
M − vvt/N ∈ S

�0}. This indicates that the maximum likelihood estimator for (µ,Σ) exists if
and only if xxt −N x̄x̄t ∈ S

≻0, whose probability of occurrence is one whenever N > p and zero
otherwise. The solution in this case is (x̄,Q/N), where

Q =

N∑

n=1

(
X(n) − X̄

)(
X(n) − X̄

)t
= XXt −NX̄X̄

t
.

A particular scenario, which is usually assumed, is when µ = 0. In this case, the canonical
parameter is η = −Ω/2 in the space {η : −η ∈ S

≻0}, and the sufficient statistic is t(X) = XXt.
The maximum likelihood estimator exists if and only if xxt ∈ S

≻0 and , when it does exist, it is
XXt/N = Q/N .

6.2 Gaussian Markov models as exponential families

When G is an undirected graph, the set S
≻0(G) is a convex (linear) cone inside the positive

definite cone S
≻0 (Uhler, 2012), which means that Rp×S

≻0(G) is an affine subspace of Rp×S
≻0,

and thus N (G) is also a regular exponential family (Barndorff-Nielsen, 1978). Assume that
µ = 0 and let QG be the projection of Q on E ∪ {uu : u ∈ V }, that is, such that qGuv = 0

for all uv /∈ E with u 6= v. Since L(Ω) ∝ det(Ω)
1
2 exp (− tr(ΩQ)) and Ω ∈ S

≻0(G), we have
tr(ΩQ) = tr(ΩQG) and the sufficient statistic for N (G) is t(x) = QG (Lauritzen, 1996). Its
convex support is C(t) = {PG : P ∈ S

�0}, alternatively referred to as the set of projections
extensible to full positive definite matrices. Thus, the maximum likelihood estimator for Σ exists
if and only if QG ∈ int(C(t)). This is equivalent to QG being extensible to a full positive definite

matrix. Whenever it exists, it is the only extensible matrix Σ̂ that also satisfies the model
restriction Σ̂−1 ∈ S

≻0(G). A sufficient condition thus is that Q ∈ S
≻0, which almost surely holds

for N ≥ p.
Now we turn to the case where the random sample X is assumed to a follow multivariate

Gaussian distribution constrained by the separation properties in an acyclic digraph. The re-
striction in Equation (8), however, is not linear in the canonical parameter. In fact, Geiger et al.
(2001) show that they are curved exponential families. Multivariate linear regression theory can
be applied to obtain the maximum likelihood estimates (Andersson and Perlman, 1998). Recall
that if X ∼ Np (µ,Σ) and Np (µ,Σ) ∈N (D), then X can be expressed as Equation (7). Thus,
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we can estimate the D-parameters for (µ,Σ) as the ordinary least squares estimators:

β̂t
u·pa(u) =

(
N∑

n=1

(
x(n)u − x̄u

)(
x
(n)
pa(u) − x̄pa(u)

)t
)(

N∑

n=1

(
x
(n)
pa(u) − x̄pa(u)

)(
x
(n)
pa(u) − x̄pa(u)

)t
)−1

,

ξ̂u = x̄u − β̂t
u·pa(u)x̄pa(u),

Nv̂uu = Nσ̂u·pa(u) =

N∑

n=1

(
x(n)u − x̄u

)2
− β̂t

u·pa(u)

(
N∑

n=1

(
x
(n)
pa(u) − x̄pa(u)

)(
x(n)u − x̄u

))
,

respectively for each u ∈ V . We can then directly obtain the maximum likelihood estimator
for (µ,Σ) from its respective D-parameter estimators (see Andersson and Perlman, 1998, for an

algorithm). As opposed to the undirected case, (µ̂, Σ̂) exist with probability one if and only if
N ≥ p+max {|pa(u)| : u ∈ V }.

7 Model selection via hypothesis testing

The maximum likelihood estimators presented in Section 6 can be used to address the problem
of model estimation. A statistical procedure is required to previously select the graph that will
define the Markov model. In this section, we will review the main hypothesis testing methods
for this purpose.

In the undirected case, we are interested in testing the hypothesis H0 : Ω ∈ S
≻0(G0) against

H1 : Ω ∈ S
≻0(G), where G0 = (V,EG0) ⊆ G = (V,EG). The result of this test determines whether

the edges in EG \EG0 should be excluded from the selected model. On this ground, these tests are
usually known as edge exclusion tests. Note also that this is backward model selection, since our
null hypothesis consists of a subgraph. Let Σ̂0 and Σ̂ be the maximum likelihood estimators for
a covariance matrix in the Markov model determined by G0 and G, respectively. The likelihood
ratio statistic is

TL =
det(Σ̂)

N
2

det(Σ̂0)
N
2

.

Under H0, −2 log(TL) is asymptotically distributed as χ2
|EG|−|EG0 |

up to terms of order N−1/2.

However, this is a poor approximation in many cases (Porteous, 1989). More accurate distribu-
tional results, which are in fact exact in the chordal case, have been derived (Porteous, 1989). If
G and G0 are chordal, and G0 ⊂ . . . ⊂ Gk(= G) is a sequence, where, for 1 ≤ i ≤ k, Gi = (V,EGi

)
is chordal and EGi−1 = EGi

\ {ei} for some ei = uivi ∈ EGi
(sequence of edge deletions), then,

under H0, T
2/N
L is distributed as the product

∏k
i=1Bi of univariate Beta variables, where, for

1 ≤ i ≤ k,
Bi ∼ B

(
1

2
(N − |ne(ui) ∩ ne(vi)| − 1),

1

2

)
.

When G0 and G have the same non-chordal minimal subgraphs, this result is a better approxi-
mation than the χ2 (Eriksen, 1996). When performing model selection with these tests, multiple
testing error rates need to be controlled. To do this, Drton and Perlman (2004) propose an alter-
native to the previous stepwise methods: a set of simultaneous p-values and confidence intervals
is obtained such that the edge set is estimated, for a significance level α, as

Êα :=

{
uv :

√
N − p

∣∣zuv·V \{u,v}

∣∣ > Φ−1

(
1

2
(1 − α) 2

p(p−1) +
1

2

)}
, (9)

11



where zuv·V \{u,v} is the Z-transform of ruv·V \{u,v}, the sample partial correlation,

zuv·V \{u,v} =
1

2
log

(
1 + ruv·V \{u,v}

1− ruv·V \{u,v}

)
,

and Φ is the cumulative distribution function of a standard Gaussian. Denoting Ĝα = (V, Êα),

lim infN→∞ P (Ĝα = G) ≥ 1− α holds if the distribution under consideration Np (µ,Σ) ∈ N (G)
conforms to G, that is, if ωuv = 0 ⇐⇒ uv /∈ E (this condition is also known as faithfulness). If
it does not conform, then the result holds with respect to the smallest graph H such that G ⊆ H
and Np (µ,Σ) conforms to H.

In the case of a directed Gaussian Markov model over an acyclic digraph D = (V,A), most of
the results are adaptations from analogues in multivariate linear Gaussian models. The likelihood
ratio, whose moments are also characterized in Andersson and Perlman (1998), is

TL =
det(Σ̂)

N
2

det(Σ̃)
N
2

=

∏
v∈V

∣∣∣σ̂vv − σ̂t
v·pa(v)Σ̂

−1
pa(v)σ̂v·pa(v)

∣∣∣
∏

v∈V

∣∣∣σ̃vv − σ̃t
v·pa(v)Σ̃

−1
pa(v)σ̃v·pa(v)

∣∣∣
,

where Σ̃ and Σ̂ are the respective maximum likelihood estimators for D̃ and D, D̃ ⊆ D. The
multiple testing procedure in Equation (9) has also been extended in Drton and Perlman (2008),
obtaining an estimate of the arc set as

Âα :=

{
(v, u) : v < u and

√
N − u− 1

∣∣zuv·pr(u)\{v}
∣∣ > Φ−1

(
1

2
(1− α) 2

p(p−1) +
1

2

)}
, (10)

where an ancestral ordering ≺ is being assumed in V such that the resulting permutation is
the identity, that is, such that v ≺ u ⇐⇒ v < u. Consistency is established as in the
undirected case; note the symmetry with Equation (9). See Drton and Perlman (2007) for a
general discussion on some variations of Equation (9) and Equation (10) and their impact on
overall error control.

8 Regularization

Regularization approaches, which simultaneously perform model selection and estimation, have
become popular in the context of Markov models. They are usually applied when N < p, and
thus the existence of the maximum likelihood estimator is not guaranteed. The main consis-
tency results available for both the directed and undirected cases share sparseness and high-
dimensionality assumptions, as we will see below. There are two different approaches: methods
that penalize likelihood and methods that instead focus on the regression coefficients.

Throughout this section, we will employ the asymptotic notation, specifically symbols O (·)
and Θ(·), which stand for asymptotic inferiority and equivalence, respectively. For M ∈ Mq×r(R),
vec(M) will denote the vectorized function of M, (m11, . . . ,mq1, . . . ,m1r, . . . ,mqr)

t. This way,
the operator norm of M will be denoted by ‖M‖; whereas ‖M‖q+r will be used to denote
‖vec(M)‖q+r, ‖·‖p being the p-norm function. If v is a p-vector, diag(v) will denote the matrix
M in ∆p with main diagonal v; analogously, diag(M) ∈∆p will have the same diagonal as M,
and M− will be used for M− diag(M).
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N (G) (Meinshausen and Bühlmann, 2006) N (D) (van de Geer and Bühlmann, 2013)

l1 regularization l0 regularization
p ∈ O (N ǫ) p ∈ O (N/ log(N))
Lower bound on

∣∣ρuv·V \{u,v}

∣∣ Lower bound on
∣∣βuv·pr(u)\{v}

∣∣
Upper bound on |ne(v)| Upper bound on |pa(v)|
Bounded neighbourhood perturbations Bounded permutation perturbations

Table 1: Comparison of assumptions for consistency results on penalized estimation in Gaussian
Markov models.

8.1 Node-wise regression

Let G = (V,E) be an undirected graph, with V = {1, . . . , p}. Meinshausen and Bühlmann (2006)
penalize the regression function, as

b̂λu := argmin

{
1

N
‖xu − bux‖22 + λf(bu) : buu = 0

}
, (11)

where λ ≥ 0 and f(·) is the penalty function. Let n̂e(v) :=
{
u ∈ V : b̂vu 6= 0

}
and

Ê∧ := {uv : u ∈ n̂e(v) and v ∈ n̂e(u)} ,
Ê∨ := {uv : u ∈ n̂e(v) or v ∈ n̂e(u)} .

If E∧, E∨ denote the respective population versions, then E∧ = E∨, since u ∈ ne(v) ⇐⇒ v ∈
ne(u), for all u, v ∈ V , whereas this may not be true with the estimated sets. Let f(B) = ‖B‖1,
commonly known as the lasso penalty (Tibshirani, 1996), and assume that

(a) there exists ǫ > 0 such that p ∈ O (N ǫ) as N →∞;

(b) |ne(v)| and
∥∥βv·ne(u)

∥∥
1

are upper-bounded for all v ∈ V and u ∈ ne(v);

(c)
∣∣ρuv·V \{u,v}

∣∣ is lower-bounded for all uv ∈ E;

(d)
∣∣∣
∑

z∈ne(v) sign(βvz·ne(v)βuz·ne(v))
∣∣∣ < 1, for all u, v ∈ V with u /∈ ne(v).

Then, both Ê∧ and Ê∨ are consistent estimators of E for a choice of λ under assumptions
(a)-(d) (Meinshausen and Bühlmann, 2006). This result was also independently discovered by
Zhao and Yu (2006), who termed assumption (d) as the irrepresentable condition.

As an alternative to the lasso penalty, van de Geer and Bühlmann (2013) use l0 regularization
in the context of directed Gaussian Markov models. Like Meinshausen and Bühlmann (2006),
their approach uses regression coefficients, more generally, D-parameters. As such, the assump-
tions required for the consistency of both methods share some symmetry, as outlined in Table 1.
The estimators in this case are obtained as

(V̂, B̂) = argmin
{
−N log |Ω|+ tr(ΩS) + λ2|A| : Ω = (Ip −B)tV−1(Ip −B),B ∈M(D)

}
,

where λ ≥ 0, and they are equal among Markov equivalent models (van de Geer and Bühlmann,
2013).
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8.2 Penalized likelihood

In Equation (11) the zero entries are estimated in B. Alternatively, conditional independences
can be obtained from Ω, for λ ≥ 0, as

Ω̂λ = argmin
{
−N log det(Ω) + tr(ΩS) + λf(Ω) : Ω ∈ S

≻0(G)
}
,

where S = Q/N . Yuan and Lin (2007) were the first to pursue this approach, and they chose
f(Ω) = ‖Ω−‖1. Later, Banerjee et al. (2008) included the diagonal elements in the regularization
function, that is, f(Ω) = ‖Ω‖1. In the former case, the convergence rate is (Rothman et al.,
2008)

∥∥∥Ω̂λ −Ω

∥∥∥
2
∈ O

(√
(|E|+ p) log(p)

N

)
as N →∞. (12)

A relaxation of Equation (12) can be obtained based on the correlation matrix as follows.
Since Σ = DPD with P the correlation matrix and D is the diagonal matrix of standard
deviations, if we let the corresponding sample estimates be D̂2 = diag(Σ̂) and P̂ = D̂−1Σ̂D̂−1,
then we can estimate K = P−1 as

K̂λ = argmin
{
−N log det(K) + tr(KP̂) + λf(K) : K ∈ S

≻0(G)
}
,

for λ ≥ 0. The concentration matrix can then be alternatively estimated as Ω̃
λ
= D̂−1K̂λD̂−1.

Both regularized estimators of Ω are consistent when f(Ω) = ‖Ω−‖1 and f(K) = ‖K−‖1
(Rothman et al., 2008): assuming that the eigenvalues of Σ are positive and bounded, then, if

λ ∈ Θ
(√

log(p)/N
)

as N →∞,

∥∥∥Ω̃λ −Ω

∥∥∥ ∈ O
(√

(|E|+ 1) log(p)

N

)
as N →∞. (13)

9 Bayesian model selection and estimation

In Bayesian model selection, the graph G with highest ‘a posteriori’ probability, P(G | X), (usually
called the score) is chosen.

In the following, the p-variate Wishart distribution will be denoted by Wp (n,Λ) with n ∈ R,
n > p− 1 and Λ ∈Mp×p(R), Λ ≻ 0; analogously, the p-variate inverse Wishart distribution will
be W−1

p (ν,Ψ) with ν ∈ R, ν > p− 1 and Ψ ∈Mp×p(R), Ψ ≻ 0.

9.1 Hyper Markov laws

When G is undirected, the target probability is P(G,Ω | X) ∝ P(X | G,Ω)P(Ω | G)P(G). A
uniform probability over the space of undirected graphs is usually chosen for P(G). However,
this choice is biased towards medium-sized graphs, and thus other prior distributions have been
proposed (Jones et al., 2005; Mohammadi and Wit, 2015).

For P(Ω | G), Dawid and Lauritzen (1993) defined what are known as the hyper Markov
laws for chordal graphs, which Roverato and Whittaker (1998) generalised to the non-chordal
case. Let θ be a random variable taking values over N (G). The probability distribution of θ
is said to be (weakly) hyper G - Markov if, for any decomposition (A,B, S) of G, it holds that
θA ⊥⊥ θB | θS; if it further holds that θB|A ⊥⊥ θA, it is called strongly hyper G-Markov. For
chordal graphs, if the probability distribution of θ is strongly hyper G-Markov with respect to
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G, then the probability distribution of θ | x is the unique (strong) hyper G-Markov distribution

specified by the clique-marginal distributions {P(θC | x(1)
C , . . . ,x

(N)
C ) : C ∈ C (G)}; and, when

densities exist, f(θC | x) ∝ f(x
(1)
C , . . . ,x

(N)
C | θC)f(θC) (Dawid and Lauritzen, 1993). In other

words, under these assumptions, it is possible to localize computations over the graph cliques
when performing Bayesian inference.

Assuming µ = 0, the inverse Wishart is a conjugate prior for Ω, that is, if Σ ∼ W−1
p (ν,Ψ),

then Σ | Q/N ∼ W−1
p (N + ν,Q+Ψ) (recall Q = xxt). We can thus construct the hyper

inverse Wishart distribution, as the unique hyper Markov distribution associated with inverse
Wishart clique marginals: ΣCC ∼ W−1

|C|

(
ν,ΨC

)
, for each clique C ∈ C (G). This hyper Markov

distribution is denoted by HW−1
p (ν,Ψ), where Ψ ∈ S

≻0 such that ΨCC = ΨC for each clique
C ∈ C (G). This distribution is strongly hyper G-Markov. The main advantage of this prior is that
it has many properties that mirror those for Markov models, since hyper Markov distributions
are also defined in terms of an underlying graph.

An explicit expression for the hyper inverse Wishart density is devised in Giudici (1996).
In order to set the parameters of the hyper inverse Wishart distribution, we might adopt a
hierarchical Bayesian method such as is reported by Giudici and Green (1999), where δ and Ψ

are assumed to have a gamma and Wishart distribution, respectively.

9.2 Conjugate priors

In the directed case, the Bayesian approach has mainly been developed for model selection. Thus,
the target probability is P(D | X) ∝ P(X | D)P(D), where D denotes an acyclic digraph,

P(X | D) =
∫

(µ,Ω)∈Rp×S≻0

P(X | µ,Ω,D)P(µ,Ω | D) dµ dΩ, (14)

and P(D) is usually set as uniform. Consider directed Markov models over a general parametric
family of distributions, Fθ (as is the case of Gaussian directed Markov models). The following
assumptions are used to simplify the computation of Equation (14):

(a) Let D, D̃ be two complete acyclic digraphs. Then M(D) = M(D̃) and the transformation
between their parameters is regular (complete model equivalence and regularity).

(b) Let D = (V,ED) and D̃ = (V,ED̃) be acyclic digraphs and v ∈ V such that paD(v) =

paD̃(v). Then, P(Xv | Xpa(v), θv,D) ≡ P(Xv | Xpa(v), θv, D̃) and P(θv | D) ≡ P(θv | D̃)
(likelihood and prior modularity).

(c) Let M(D) be a directed Markov model over Fθ. Then P(θ | D) =∏v∈V P(θv | D) (global
parameter independence).

When they are satisfied, if Dc is an arbitrary complete digraph, then

P(X | D) = P(X(1), . . . ,X(N) | D) =
∏

v∈V

P(X
(1)
{v}∪paD(v), . . . ,X

(N)
{v}∪paD(v) | Dc)

P(X
(1)
paD(v), . . . ,X

(N)
paD(v) | Dc)

, (15)

and Equation (15) is equal among independence equivalent directed Markov models (usually
called score equivalence property) (Geiger and Heckerman, 2002).

When Fθ is the Gaussian family, the conjugate prior for (µ,Ω) unknown is the normal-
Wishart distribution, where Ω ∼ Wp (αΩ,Λ) and µ | Ω ∼ Np

(
µ0, (αµΩ)−1

)
. Geiger and Heckerman

(1994) obtain an explicit expression for each factor in Equation (15): for U ⊆ V ,

f(x
(1)
U , . . . ,x

(N)
U | D) =

(
αµ

αµ +N

) |U|
2

2π− lN
2

Γ|U|

(
N+αΩ−p+|U|

2

)

Γ|U|

(
αΩ−p+|U|

2

) |ΛUU |
αΩ−p+|U|

2

|RUU |
αΩ−p+|U|+N

2

,
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where Γp(·) is the p-dimensional Gamma function, and

R = Λ+Q+
NαΩ

N + αΩ

(µ0 − x̄)(µ0 − x̄)t.

Furthermore, Geiger and Heckerman (2002) characterize the normal-Wishart prior for (µ,Ω) as
the only distribution satisfying the global parameter independence assumption.

Another score commonly used in both the directed and undirected cases is the Bayesian in-
formation criterion (BIC) (Schwarz, 1978). It was originally defined and proven to be consistent
for model selection in linear exponential families. Haughton (1988) extended this consistency
to curved exponential families. Thus, since undirected Gaussian Markov models are linear, and
directed ones are curved, it is a valid scoring metric for both of them. It is an approximation
of −2 log(P(X | D)), for choosing the model with highest P(D | X), as −2 log(L(θ̂)) + k log(N),

where θ̂ is the maximum likelihood estimator of θ and k is the dimension of the model.

10 Open problems

Figure 4 illustrates the main papers containing the methods and theory that we have reviewed in
this paper on a timeline following on from the chronology illustrated in Figure 1 at the beginning
of the paper.

1990 2016

Hyper
Markov

laws (HML)

Dawid & Lauritzen (1993)

Normal-
Wishart
(NW)

Geiger & Heckerman (1994)

Explicit
expression

HML

Giudici (1996)

Edge
exclusion

tests

Eriksen (1996)

MLE and
likelihood

ratios

Andersson & Perlman (1998)

HML
non-chordal

Roverato & Whittaker (1998)

Properties
of NW

Geiger & Heckerman (2002)

Multiple
testing

Drton & Perlman (2004)

Penalized
likelihood

Yuan & Lin (2007)

Nodewise
regression

Meinshausen & Bühlman (2006)

Multiple
testing

Drton & Perlman (2008)

Nodewise
regression

van de Geer & Bühlman (2013)

Figure 4: Timeline of Gaussian Markov model selection and estimation since their origins. Papers
concerning undirected Markov models appear at the top, while papers dealing with the acyclic
directed case appear underneath. MLE stands for maximum likelihood estimation.

Although directed and undirected Markov models are considered as traditional models, several
open problems remain.

At the foundational level, independence relations can be generalised to what are known
as separoids (Dawid, 2001), a relaxation of graphoids. Separoids usually appear whenever a
notion of ‘irrelevance’ is being mathematically treated, although they are sometimes too re-
strictive (Cozman and Walley, 2005). Furthermore, they can be expressed as abstract axiom
sets (Córdoba-Sánchez et al., 2016), closely related to the recently defined independence logic
(Grädel and Väänänen, 2013). Further research on these axiom systems from an abstract point
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of view could shed more light on how the apparently different mathematical contexts in which
such structures arise are related.

Hammersley and Clifford’s theorem (Hammersley and Clifford, 1971) is a straightforward
tool for checking whether an independence model originated from a distribution is a graphoid;
however, the condition is not necessary and sufficient. Further relaxations remain to be found,
although positivity is generally essential (Moussouris, 1974). Graphoids are also essentially nec-
essary for characterizing Markov equivalence classes, since most of them assume this condition.
It will also be interesting to get deeper insights into how these assumptions influence such char-
acterizations. Furthermore, also regarding independence models, recall the space of Markov
equivalence classes of acyclic digraphs, Dp/∼. The asymptotic ratio l = limp→∞|Dp|/|Dp/∼|
influences the computational gain obtained by using Dp/∼ instead of Dp as a search space for
model selection. Steinsky (2004) analytically calculates an upper bound of l as 13.65. Exact
computations by Gillispie and Perlman (2002), for p ≤ 10, and approximations by Sonntag et al.
(2015), up to p = 31, seem to indicate that l ∼ 3.7. However, its analytical deduction remains an
open problem. Note that the computational gain is not only influenced by l, but also by other
factors, such as how the element size in Dp/∼ is distributed.

The existence of the maximum likelihood estimator in Gaussian undirected Markov models
has not yet been completely characterized. Since the problem lies at the interface between
statistics and linear algebra, several of the existing results have been independently discovered by
researchers in both areas. For chordal graphs, the problem was solved separately by Grone et al.
(1984) and Frydenberg and Lauritzen (1989): if C (G∗) is the class of cliques in G, G∗ is a chordal
cover of G, and q∗ := max {|C| : C ∈ C (G∗)}, q := max {|C| : C ∈ C (G)}; then there is a

probability of one that Σ̂ exists if N ≥ q∗, and does not exist if N < q. This result does not
account for the case q ≤ N < q∗ for non-chordal graphs, since otherwise q = q∗. Special subtypes
of non-chordal graphs are p-cycles, which were addressed by Barrett et al. (1993) (from the
viewpoint of linear algebra), and separately by Buhl (1993) (from the perspective of statistics):

there is a probability strictly between zero and one of Σ̂ existing if N = 2. Finally, Uhler (2012)
recently detailed, from the algebraic viewpoint, results paralleling findings reported by Buhl
(1993) for bipartite graphs.

Regarding both regularization and hypothesis testing, with a few exceptions (Drton and Perlman,
2007), most methods have been asymmetrically developed for either undirected or directed mod-
els, as we have shown. A theoretical comparison of how these approaches complement each other
would be a key contribution to the field. Specifically, the implications of their assumptions is
an essential consideration in regularization when applied to real data, and, as shown in Table 1,
there are plenty of similarities that could lead to a unified method.

Finally, Bayesian estimation was actively researched after the seminal papers by Dawid and Lauritzen
(1993) (undirected graphs) and Geiger and Heckerman (1994) (directed graphs). Some researchers
have extended hyper Markov properties to other Markov models (Rajaratnam et al., 2008). It
would be interesting to see how these two widely researched families of distributions are re-
lated, for example, to check if hyper Markov distributions satisfy the assumptions stated in
Geiger and Heckerman (1994) and vice versa.
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