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Abstract

Machine learning and scientometrics are the scientific disciplines which are covered in this
dissertation. Machine learning deals with the construction and study of algorithms that can
learn from data, whereas scientometrics is mainly concerned with the analysis of science from
a quantitative perspective. Nowadays, advances in machine learning provide the mathemat-
ical and statistical tools for properly working with the vast amount of scientometrics data
stored in bibliographic databases. In this context, the use of novel machine learning methods

in scientometrics applications is the focus of attention of this dissertation.

This dissertation proposes new machine learning contributions which would shed light on
the scientometrics area. These contributions are divided in three parts:

Several supervised cost-(in)sensitive models are learned to predict the scientific success of
articles and researchers. Cost-sensitive models are not interested in maximizing classification
accuracy, but in minimizing the expected total cost of the error derived from mistakes in the
classification process. In this context, publishers of scientific journals could have a tool capa-
ble of predicting the citation count of an article in the future before it is published, whereas
promotion committees could predict the annual increase of the h-index of researchers within

the first few years. These predictive models would pave the way for new assessment systems.

Several probabilistic graphical models are learned to exploit and discover new relationships
among the vast number of existing bibliometric indices. In this context, scientific community
could measure how some indices influence others in probabilistic terms and perform evidence
propagation and abduction inference for answering bibliometric questions. Also, scientific
community could uncover which bibliometric indices have a higher predictive power. This is
a multi-output regression problem where the role of each variable, predictive or response, is
unknown beforehand. The resulting indices could be very useful for prediction purposes, that
is, when their index values are known, knowledge of any index value provides no information

on the prediction of other bibliometric indices.

A scientometric study of the Spanish computer science research is performed under the
publish-or-perish culture. This study is based on a cluster analysis methodology which char-
acterizes the research activity in terms of productivity, visibility, quality, prestige and inter-
national collaboration. This study also analyzes the effects of collaboration on productivity
and visibility under different circumstances.






Resumen

El aprendizaje automatico y la cienciometria son las disciplinas cientificas que se tratan
en esta tesis. El aprendizaje automatico trata sobre la construccion y el estudio de algoritmos
que puedan aprender a partir de datos, mientras que la cienciometria se ocupa principalmente
del andlisis de la ciencia desde una perspectiva cuantitativa. Hoy en dfa, los avances en el
aprendizaje automatico proporcionan las herramientas matematicas y estadisticas para tra-
bajar correctamente con la gran cantidad de datos cienciométricos almacenados en bases de
datos bibliogrédficas. En este contexto, el uso de nuevos métodos de aprendizaje automatico

en aplicaciones de cienciometria es el foco de atencion de esta tesis doctoral.

Esta tesis propone nuevas contribuciones en el aprendizaje automatico que podrian arro-
jar luz sobre el area de la cienciometria. Estas contribuciones estan divididas en tres partes:

Varios modelos supervisados (in)sensibles al coste son aprendidos para predecir el éxito
cientifico de los articulos y los investigadores. Los modelos sensibles al coste no estan in-
teresados en maximizar la precision de clasificacién, sino en la minimizacién del coste total
esperado derivado de los errores ocasionados. En este contexto, los editores de revistas
cientificas podrian disponer de una herramienta capaz de predecir el nimero de citas de un
articulo en el fututo antes de ser publicado, mientras que los comités de promocién podrian
predecir el incremento anual del indice h de los investigadores en los primeros anos. Estos

modelos predictivos podrian allanar el camino hacia nuevos sistemas de evaluacion.

Varios modelos graficos probabilisticos son aprendidos para explotar y descubrir nuevas
relaciones entre el gran nimero de indices bibliométricos existentes. En este contexto, la
comunidad cientifica podria medir cémo algunos indices influyen en otros en términos pro-
babilisticos y realizar propagacién de la evidencia e inferencia abductiva para responder a
preguntas bibliométricas. Ademads, la comunidad cientifica podria descubrir qué indices bi-
bliométricos tienen mayor poder predictivo. Este es un problema de regresiéon multi-respuesta
en el que el papel de cada variable, predictiva o respuesta, es desconocido de antemano. Los
indices resultantes podrian ser muy ttiles para la prediccion, es decir, cuando se conocen sus
valores, el conocimiento de cualquier valor no proporciona informacioén sobre la prediccién de

otros indices bibliométricos.

Un estudio bibliométrico sobre la investigacion espanola en informética ha sido realizado
bajo la cultura de publicar o morir. Este estudio se basa en una metodologia de andlisis
de clusters que caracteriza la actividad en la investigaciéon en términos de productividad,
visibilidad, calidad, prestigio y colaboracién internacional. Este estudio también analiza los
efectos de la colaboracién en la productividad y la visibilidad bajo diferentes circunstancias.
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Part 1

Preliminaries






Chapter

Introduction

Machine learning is a scientific discipline that addresses how systems can be programmed to
automatically learn and to improve with experience. Learning in this context is associated
with recognizing complex patterns and make intelligent decisions based on data. The difficulty
lies in the fact that the set of all possible decisions given all possible inputs is too complex
to describe. To tackle this problem the field of machine learning develops algorithms that
discover knowledge from specific data, based on sound statistical and computational princi-
ples. In this context, supervised and unsupervised learning methods address issues related to
classification, regression, clustering and association problems, among others. Over the past
decades machine learning has become one of the mainstays of information technology and
with that, an important part of our life.

Data mining can be seen as the application of machine learning to concrete data. It is a
step within a larger process, called knowledge discovery in databases. The whole process can
be divided into nine steps, including understanding the domain of the problem; generating
a dataset; cleaning and preprocessing the data; reducing, projecting and selecting data;
identifying the aim of the process; selecting the appropriate methods and algorithms; data
mining; interpreting the discovered patterns and, finally, exploiting the new knowledge. Data
mining is the main step of the process, and therefore, it is frequently used to refer to the
whole process.

In this dissertation, machine learning is used in scientometrics, a field which has grown
in popularity during last years. Scientometrics is concerned with the analysis of science
from a quantitative perspective. Its major research issues include the measurement of im-
pact, understanding of scientific citations and the production of indicators for use in policy
and management contexts. Citation analysis is one of the most widely used scientometric
methods. It uses citations in scientific works to establish links to other works or other re-
searchers with the intention of analyzing the frequency, patterns, and graphs of citations in
articles. Bibliometric measures have emerged from citation analysis to assess and compare
the research activity of individual researchers according to their output. These measures
essentially involve counting the number of times scientific papers are cited. They are based
on the assumption that influential researchers and important papers will be cited more fre-

3



4 CHAPTER 1. INTRODUCTION

quently than others. They constitute an objective method that can summarize the scientific
production of a researcher as a set of quantitative figures. Nowadays, many funding agencies
and promotion committees use bibliometric measures regularly as a decision-support tool to
evaluate almost every research assessment decision. Therefore, the field of scientometrics is
hence an increasingly important topic within the scientific community. Finally, scientometrics
is not only focused on measuring the literature output but also on analyzing the practices of
researchers, the socio-organizational structures, research and development management, the
role of science and technology in the national economy, governmental policies towards science
and technology, and so on.

As science advances, scientists around the world continue to produce large numbers of
research articles. The amount of data that can be not only stored but also processed is getting
larger and larger nowadays. Due to the vast amount, human beings cannot directly analyze
the information by hand using classical statistical tools. In this context, machine learning
provides the tools for properly managing and working with these large amounts of data.
Also, it facilitates the mathematical and statistical models that permit to make predictions
from experience. It is an important issue because the prediction task could be considered the

essence of science.

Chapter outline

This chapter is organized as follows. The main contributions of the dissertation are presented
in Section 1.1. Then, the organization of this manuscript is explained in Section 1.2.

1.1 Contributions of the dissertation

Based on the motivation that machine learning could provide the tools for properly working
with the vast amount of scientometrics data, this dissertation presents different contributions
which would shed light in the prominent area of scientometrics and pave the way for new
applications. These contributions are presented in three parts.

Predicting bibliometric indices: One of the most commonly employed measures of pro-
fessional recognition is the number of times an article is cited by fellow researchers. Although
using citations to judge the quality of journals papers has been criticized, it should be noted
that citations frequently correlate with other forms of professional recognition like winning
a Nobel Prize. Consequently, citations will serve as a proxy for the professional recognition
received by a journal article. Nowadays, publishers of scientific journals face the tough task
of selecting high quality articles that will attract as many readers and citations as possible
from a pool of articles. In this context, the first part of the dissertation proposes several
predictive models to forecast the citation count of an article within the first four years after
publication. The possibility of a journal having a tool capable of predicting the citation count

of an article before it is published would pave the way for new assessment systems.



1.1. CONTRIBUTIONS OF THE DISSERTATION )

Beyond traditional measures like the number of citations, one of the most successful
bibliometric measures is the h-index which combines both the quantity and visibility of re-
searcher’s publications into a single-number criterion. This indicator has received a lot of
attention from researchers over the last few years since it is used by funding agencies and
promotion committees to evaluate the importance of research. Considering the popularity of
the h-index, several cost-sensitive models are also proposed to predict the annual increase for
a four-year time horizon. These new models are not interested in maximizing classification
accuracy, but in minimizing the expected total cost error derived from mistakes in the clas-
sification process. The use of models capable of predicting the h-index that a researcher will
have in coming years could be a useful tool for the scientific community.

Discovering new associations among indices: Many bibliometric indices have been
developed in the literature to take into account aspects not previously covered. The result
is that, nowadays, the diversity of bibliometric indices poses the challenge of exploiting the
relationships among them. In this context, the second part of this dissertation deals with
analyzing relationships among bibliometric indices by means of Bayesian network models.
The proposed models analyze the joint probability distribution over all analyzed indices and
discover new conditional (in)dependencies relationships among triplets of indices. Also, they
perform all kinds of probabilistic reasoning, and measure how some indices influence others
in probabilistic terms.

Besides discovering new relationships among indices, researchers have also turned their
attention to the predictive power of bibliometric indices in many situations. Therefore, scien-
tific community now faces the challenge of selecting which of this pool of bibliometric indices
have a higher predictive power. In this context, a method for identifying a core set of bib-
liometric indices for prediction purposes, i.e., relevant indices which have a higher predictive
power, is also proposed. This method solves a proposed multi-output regression problem
where the role of each variable is unknown beforehand. Gaussian Bayesian networks and
genetic algorithms are used to select which subset of bibliometric indices best corresponds to
predictive variables and which group can be considered as response variables. The resulting
predictive indices are very useful for prediction purposes, that is, when the relevant index
values are known, knowledge of any index value provides no information on the prediction of
other bibliometric indices.

Exploring Spanish computer science research: National exercises for the evaluation
of scientific research are becoming regular events in ever more countries. In general, these
exercises are aimed at informing selective funding allocations, stimulating better research
performance, and demonstrating that investment in research is effective and delivers public
benefits, among others. Until recently, the conduct of these evaluation exercises has been
founded on the so-called peer-review methodology, where research products submitted by
scientists are evaluated by appointed panels of experts. In general, these assessments give
the greatest weight to output quality. But recent developments in scientometrics, particularly
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for measurement of publication quality, have lead many policy-makers to introduce the more
or less extensive use of bibliometric indicators in their research assessments. In this context,
the third part of this dissertation carries out a scientometric analysis of the computer science
field in Spain using bibliometric indices.

The proposed scientometric analysis is achieved at macro (nationwide), meso (universities)
and micro (researchers) levels. It provides a comprehensive overview of the current situation of
scientific production under the publish-or-perish culture. It is commonplace that the pressure
to publish has affected researchers’ behavior in the sense that it is not only important what
they write, but also how often, where and with whom they write. Therefore, an overview is
required to characterize research activity and analyze how the publish-or-perish culture affects
Spanish computer science research. Also, the third part of the dissertation presents a robust
cluster analysis methodology to analyze universities and their academic staff and identify
both their strengths and weaknesses in terms of productivity, visibility, quality, prestige and
international collaboration. Finally, the effects of collaboration on productivity and visibility

is also studied under different circumstances.

1.2 Overview of the dissertation

The manuscript includes 13 chapters grouped into five parts:
Part I. Introduction

This is the current part.

- Chapter 1 introduces this dissertation, stating the main contributions of the dissertation

and summarizing the document organization.
Part II. Background

This part includes three chapters introducing the basic concepts and definitions used
throughout this dissertation. The chapters explain the basic theory behind the models and
tools used in the following chapters. The state-of-the-art is discussed in each of these chapters.

- Chapter 2 presents an overview of machine learning. The main machine learning ap-
proaches, supervised learning and unsupervised learning, are discussed in depth. The
different methods used in this dissertation are briefly reviewed, and some notes are

given on how to evaluate the performance of the machine learning methods.

- Chapter 3 introduces probabilistic graphical models, with a special focus on Bayesian
networks. The chapter includes the theoretical foundations of Bayesian networks in
discrete and continuous domains, and discusses some of the issues that will be addressed
during this dissertation, e.g., parameterization, learning from data and inference. Also,
specific Bayesian network models for solving supervised learning problems are reviewed.
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- Chapter 4 includes an introduction to scientometrics. Citation analysis and bibliometric
indices are presented as scientometric methods to quantify science, technology and
innovation. The well-known h-index and other measures are reviewed to assess scientific
research. Also, a comparison of the main features of most important bibliographic
databases (Web of Science, Scopus and Google Scholar) is presented.

Part III. Data Mining in Research Evaluation

This part consists of three chapters including data mining proposals in research evalu-
ation. The objective of this part is two-fold. First, several supervised predictive models are
learned from data to forecast bibliometric indices values like the number of citations and
the h-index. Second, the relationships among bibliometric indices are analyzed by Bayesian
models which discover probabilistic conditional (in)dependencies among triplets of indices.
Finally, the chapters explain all steps from data acquisition to evaluation of obtained results.

- Chapter b presents a tool capable of predicting the citation count of a journal article
before it is published. In this context, several predictive models (naive Bayes, logistic
regression, and decision trees, among others) are learned for the Bioinformatics journal.
To build these models, tokens found in the abstracts of Bioinformatics papers have been

used as predictive features, along with other features.

- Chapter 6 incorporates cost-sensitive learning and feature subset selection into new
predictive models. These models are used to forecast the annual increase of the h-index
for Neurosciences journals in a four-year time horizon using a set of bibliometric indices.
The proposed models are not interested in maximizing classification accuracy, but in
minimizing the expected total cost error derived from the classification process.

- Chapter 7 analyzes how bibliometric indices relate (irrelevant, dependent and so on) to
each other by means of Bayesian network models. The induced Bayesian networks are
then used to discover probabilistic conditional (in)dependencies among the indices and,
also for probabilistic reasoning. A case study of 14 well-known bibliometric indices on
computer science and artificial intelligence journals is performed to test the reliability
of proposed models. Using these models, editorial boards could answer many questions
related to their journal citation indices.

Part IV. Exploring Spanish Computer Science Research

This part includes five chapters which analyze the Spanish computer science research.
The first three chapters achieve a comprehensive overview of the current situation of the
Spanish computer science research under the publish-or-perish culture. In contrast, the last
two chapters focus on building different models to predict the scientific success of Spanish
computer science academics and to uncover the best core set of relevant indices which have

a higher predictive power.
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- Chapter 8 presents an overview of the Spanish computer science research, including
different analysis at the macro, meso and micro levels. Parameters such as number of
documents, number of citations, number of citations per document, number of authors
per document, document types, types of collaboration, and computer science disciplines,
are analyzed in this chapter. Finally, a comprehensive overview of the current situation

in the area of computer sciences is achieved.

- Chapter 9 develops a cluster analysis methodology for measuring the performance of
research activities in terms of productivity, visibility, quality, prestige and internation-
alization. It permits a robust cluster analysis whose results can be used to characterize
the Spanish computer science research activity of universities and academic staff, iden-
tifying both their strengths and weaknesses. Also, this methodology could support
policy-makers in the processes of strategic planning, in verifying the effectiveness of

policies and initiatives for continuous improvement.

- Chapter 10 analyzes the relationship among research collaboration, number of docu-
ments and number of citations, that is, how publication and citations vary by number of
authors. These measures are also analyzed under different circumstances, i.e., when doc-
uments are written in different types of collaboration, when documents are published in
different document types, when documents are published in different computer science
subdisciplines, and, finally, when documents are published by journals with different
impact factor quartiles.

- Chapter 11 deals with the prediction of scientific success of Spanish computer science
academics. An approach based on cost-sensitive Bayesian classifiers forecasts the annual
increase of the h-index for a four-year time horizon using some author-based variables
(area, position, university, seniority) and 12 bibliometric indices. The proposed model
takes into account the expected cost of instances predictions at classification time.

- Chapter 12 deals with the challenge of exploiting the relationships among bibliometric
indices. This chapter uncovers the best core set of relevant indices which have a higher
predictive power for forecasting other bibliometric indices. This results in a novel
multi-output regression problem where the role of each variable (predictor or response)
is unknown beforehand. Gaussian Bayesian networks and genetic algorithms are used
to solve the above problem and discover new multivariate relationships among indices.

Part V. Conclusions

This part concludes this dissertation.

- Chapter 13 summarizes the contributions of this dissertation and the scientific results
derived from it. The chapter also discusses the research lines opened in this work and

summarizes future research topics.



Part 11

Background






Chapter

Machine Learning

2.1 Introduction

The advances in computer technology has enabled the possibility of storing vast amount of
data. Despite this, it is not feasible to analyze this information using classical statistics tools.
Therefore, machine learning provides the tools for managing and working with these data.

Most data acquisition devices are now digital and record gigabytes of data every day. For
example, a supermarket chain has many stores selling thousands of products to millions of
customers. The point of sale terminals are able to record the details of each transaction.
These stored data becomes useful only when it is analyzed and turned into information that
the supermarket can make use, for example, to discover relationships among products and
to make predictions about sales and stocks. In this retail context, the consumer behavior is
not completely random. People do not go to supermarkets and buy things at random. When
they buy beer, they buy chips; they buy ice cream in summer and hot drinks in winter,
and so forth. Such patterns can be found using machine learning techniques and may help
supermarkets understand the consumer behavior.

Machine learning is inherently a multidisciplinary field which draws on results from re-
search fields as diverse as: artificial intelligence, Bayesian methods, computational complexity
theory, control theory, information theory, philosophy, psychology, and neurobiology [327].
It is concerned with building systems which automatically learn programs from data and
make accurate predictions without human intervention. It also rests upon the theoretical
foundation of statistical learning theory which provides conditions and guarantees for good
generalization of learning algorithms [458].

Some authoritative definitions of machine learning follows: Arthur Samuel, one of the pio-
neers in the field, defined machine learning as a “field of study that gives computers the ability
to learn without being explicitly programmed”. Tom Mitchell [327] also stated that “the field
of machine learning is concerned with the question of how to construct computer programs
that automatically improve with experience”. Finally, Ethem Alpaydin [19] provided a defi-
nition for machine learning as “programming computers to optimize a performance criterion

using example data or past experience”.

11
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Machine learning can be used to solve different problems:

- Classification: It focus on identifying to which of a set of labels a new observation
belongs, on the basis of a set of data containing observations whose label membership
is known. Although the set of labels could have several discrete values, binary clas-
sification is probably the most frequently studied problem in machine learning. This
can be thought of as a discrimination problem, modelling the differences or similarities
between labels. An example would be the spam detection. Given an email inbox, the
goal is to identify those email messages that are spam and those that are not. Having
a model of this problem would allow a program to leave non-spam emails in the inbox
and move spam emails to a spam folder.

- Regression: It is concerned with modelling the relationship between variables labelled
with real values rather than labels. More specifically, it helps one understand how the
value of the output variable changes when any one of the predictor variables is varied,
while the other predictor variables are held fixed. An example would be predicting the
price of a used car based on car attributes like brand, year, engine capacity and mileage,

among others.

- Clustering: It is based on grouping a set of observations in such a way that observations
in the same group are more similar to each other than to those in other groups. Usually
there is more than one way of partitioning the data into meaningful groups, therefore
there is no right or wrong answer. In this case, observations are not labelled with
labels, but can be divided into groups based on similarity and other measures of natural
structure in the data. An example would be face detection, that is, organizing pictures
by faces without names. Given a digital photo album of many hundreds of digital
pictures, the aim is to identify those photos that include a given person. A model of
this decision process would allow a program to organize photos by person.

- Associations: It is intended to discovering interesting relations between variables in
large databases. An example would be the product recommendation. Given a purchase
history for a customer and a large inventory of products, the objective is to identify
those products in which that customer will be interested and likely to purchase. A
model of this decision process would allow a program to make recommendations to a
customer and motivate product purchases.

The above problems, and many others, are solved using different machine learning algo-
rithms. These algorithms are usually categorized into supervised and unsupervised methods.
Supervised methods infer a mapping function from a set of labeled data. They rely on a set of
observations for which the target property is known. These methods are trained on this set of
observations, and the resulting mapping is applied to further observations for which the target
property is not available. In contrast to supervised methods, unsupervised methods try to
find hidden structures in unlabeled data. This is an advantage in the sense that the data can
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speak for themselves without preconceptions such as expected classes being imposed. Since
the observations given to these methods are unlabeled, there is no error signal to evaluate a
potential solution. Finally, the categorization of machine learning algorithms into these two
groups is not a concluding division. Other categories, like semi-supervised learning methods
[84, 490], reinforcement learning methods [434] and deep learning methods [40], also cover
machine learning algorithms but they are out of the scope of this thesis.

Chapter outline

On the one hand, Section 2.2 introduces an overview of supervised learning approaches. It
also shows the measures and methods used to estimate how well classifiers predict the class
value for new instances. On the other hand, Section 2.3 provides an overview of unsupervised
learning approaches and their main dissimilarity measures. Finally, it also focus the clustering
validation problem, including internal and external validity indices.

2.2 Supervised learning

Supervised learning [45, 130] is the most widely studied approach in machine learning. It
addresses the problem of predicting the class of a new observation based on a set of features
describing its main properties. For instance, an application of supervised learning is the
credit concession. Financial institutions usually calculate the risk that a customer could pay
the loan back given some predictive features, e.g., the amount of credit and the information
about the customer (income, savings, profession, age, past financial history, and so forth).
In this context, a supervised learning approach could be able to calculate the risk for a new
application and then decides to accept or refuse it accordingly.

The objective of supervised learning is to build models based on training data, and then,
predict testing data using the learnt model. The training data must be characterized using
pairs of descriptive features and a class label variable, whereas the test data are characterized
using only the descriptive features. Let the training set D = {(z®, M), ..., (&™), M)} be

a set of instances described by a tuple of a vector of features, that is, w("):{xgi), ZL‘gi), . ,xﬁf)},
and a label from a class variable ¢ € Q(C)={cy, ca,...,c}, then a supervised classification

algorithm builds a model, learnt from D, which will be used to assign class labels to new
instances, {x(Vt1) N+2) g (N+M)Y

2.2.1 Supervised learning approaches

Many supervised learning algorithms have been developed in the literature [264]. They can be
organized into different classification approaches such as Bayesian classifiers, decision trees,
instance-based learning, regressions, kernel methods, neural networks and ensemble learning,
among others. Although the scope of this thesis does not cover all mentioned approaches, a
brief introduction to the most important approaches is carried out.
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Bayesian network classifiers Bayesian network classifiers [43, 163] are a class of Bayesian
networks specially designed to solve supervised classification problems. These classifiers
model the joint probability distribution over the predictive variables and the class variable.
The Bayes rule [37] is used to classify a new instance & according to its predictive vari-
ables. The class with the maximum posterior probability is selected as the class label for the
available instance. Bayesian network classifiers will be studied in depth in Section 3.5.

Decision trees Decision tree learning [61, 339, 341] is one of the most used and practical
approach for inductive inference. Decision trees are hierarchical models that represents the
knowledge of the problem with a tree structure by a recursive division of the predictive
variables’ space. Their goal is to build tree structures whose nodes are as pure as possible,
that is, they contain observations of a single class value. Each node in the decision tree
specifies a test of some variable of the problem, and each branch descending from that node
corresponds to one of the possible values for this variable. The leaf nodes of a decision tree
contain the class label assigned to each subregion of the problem. Once the decision tree
structure has been created, a new instance is classified by starting at the root node of the
tree structure. Then, the new instance moves down the tree branch corresponding to the
value of the variable specified by this node. This process is repeated for the sub-tree rooted
at the new node as long as it takes to reach the appropriate leaf node, then returning the
class label associated with this leaf.

Several algorithms can be used to construct a tree based on some data set. For exam-
ple, the ID3 and C4.5 algorithms [372] are greedy search algorithms that construct a tree
recursively and choose at each step the variable to be tested using the information gain ratio,
so that the separation of the data examples is optimal. The C4.5 algorithm is an extension
of ID3 and made a number of improvements to ID3: C4.5 deals with both continuous and
discrete variables, it handles variables with missing values and different costs, and it could go
back through the tree structure and attempts to remove unnecessary branches by replacing
them with leaf nodes. Although algorithms belonging to this approach are interpretable,
efficient and reasonably accurate, they have problems like overfitting, among others [372].

Instance-based learning Instance-based learning approaches [14, 112, 299] do not provide
an explicit model as the other paradigms when training examples are provided. Instead, they
simply store the training examples until a new instance to be classified appears. Given a new
instance, its relations to the already stored examples are examined in order to assign a class
label value for the new instance. This approach classify a new instance by looking for the
most similar instances in the training dataset and returning their labels. If the most similar
instances have different class labels, combination rules have been proposed [13].

Examples of instance-based learning include k-nearest neighbor classifiers [103, 196] and
locally weighted regression methods [25]. On the one hand, the simplest method is arguably
the k-nearest neighbor classifier. Here, the k points of the training data closest to the test
point are found according to some distance metric, and a class label is then assigned depending
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on the class labels for the k closest training instances. This class label is usually given to
the test point by a majority vote between the k£ points. On the other hand, locally weighted
regression performs a regression around a point of interest using only training data that are
local to that point. Methods belonging to this approach are highly intuitive and attains,
given their simplicity, remarkably low classification errors. In contrast, these methods are
computationally expensive and require a large memory to store the training data.

Linear models Linear models [346, 375] are excellent and simple methods for classification
and numeric prediction. They have been widely used in statistical applications for decades.
These models are easy to understand: the final output is usually a weighted sum of the
input variables. The magnitude of the weight shows the importance of each variable and
its sign indicates if the effect is positive or negative. Of course, these methods suffer from
the disadvantage of linearity since if the data exhibits a nonlinear dependency, the resulting
solution may not fit data very well.

Linear regression [406, 474] is the most appropriate method when the class is numeric, and
all the variables are also numeric. This technique expresses the class as a linear combination
of the attributes with predetermining weights as follows:

y = Po+ Bix1 + Pexe + ...+ Bpzn (2.1)

where y is the class, x1,x2,...,x, are the attribute values, and By, B1,..., B, are weights
calculated from the training data. The sum of the squares of the difference between the
predicted and the actual values over all the training instances is minimized to compute the
coefficients 8. This technique can easily be used for classification in domains with numeric
attributes. The trick is to perform a regression for each class value, setting the output equal
to one for training instances that belong to the class value and zero for those that do not.
The result is a linear expression which approximates a numeric membership function for each
class value. Then, given a test example of unknown class, calculate the value of each linear

expression and choose the one that is largest.

Although linear regression often yields good results in classification, it has some draw-
backs [478]. First, the membership values it produces are not proper probabilities because
they can fall outside the range 0 to 1. Second, least squares regression assumes that the
errors are not only statistically independent, but are also normally distributed with the same
standard deviation, an assumption that is blatantly violated when the method is applied to
classification problems because the observations only ever take on the values 0 and 1.

Logistic regression [214, 322] does not suffer from the above problems. It is used to predict
the class of new instances in a binary classification problem by using a linear function of the
predictive features as

1
1 + e~ (Bo+3%y Biws)

p(C = l]z) = (2.2)
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e—(Bo+327= Biwi)
1 + e~ (Bo+XZiy Bimi)

p(C=0lx)=1—p(C =1|z) = (2.3)

where By, B1,- - ., Bn are the parameters of the model. The estimation of these parameters is
based on the maximum likelihood estimation method. These parameters describe the size of
the contribution of each variable to the model.

Kernel methods Kernel-based algorithms [337, 394, 413] provide a simple bridge from
non-linearity to linearity problems. These methods use a linear classifier to solve a non-linear
problem by mapping the original non-linear observations into a higher-dimensional space
where the problem is easier to model. It is hoped that the data could become more easily
separated in this new higher-dimensional space. This approach was first used to solve binary
classification problems by means of support vector machines [58, 106, 459].

Support vector machines work by mapping the training data into a feature space by the
aid of a kernel function that computes a similarity between two given observations. Using
this transformation, the problem becomes linearly separable and can be solved using decision
hyperplanes [4, 69]. Although their training time is very high, and, the learnt model cannot
be easily interpreted, they have yielded very accurate results and are less prone to overfitting
than other methods. Also, the attractiveness of such classifiers stems from their elegant
treatment of nonlinear problems and their efficiency in high-dimensional problems.

Neural networks Artificial neural networks [44, 201, 315, 378] are computational models
that tries to simulate the structure and/or functional aspects of biological neural networks.
These networks consist of an interconnected group of processing units, also called neurons, and
processes information using a connectionist approach to computation. They are composed
by one or more layers of processing units connected with each other. Each processing unit
aggregates the inputs that it could receive from the environment or could be the outputs
of other processing units, and sends the result, which is a weighted sum of the inputs in
the simplest case, to other processing units. The connection between processing units are
modeled with weights.

The simplest networks are called perceptrons [382, 383] which have a single layer of pro-
cessing units. Although these classifiers are able to distinguish labels in a binary classification
problem by means of a linear discrimination function, they present some limitations [326].
If a set of instances is not linearly separable, perceptrons will never reach a model where
all instances are classified properly. Multi layered perceptrons have been created to try to
solve this problem [387]. These networks are usually used to model complex relationships be-
tween inputs and outputs by means of nonlinear discrimination functions. There are several
algorithms with which a network can be trained [345]. However, the most well-known and
widely used learning algorithm to estimate the values of the weights is the back propagation
algorithm [387], which use gradient descent to tune network parameters to best fit a training
set of input-output pairs. Finally, artificial neural networks usually provide higher accuracies
than other methods. However they operate as a black box and they are difficult to interpret.
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Cost-sensitive algorithms Cost-sensitive algorithms [140, 486] are not interested in max-
imizing classification accuracy, but in minimizing the expected total cost error derived from
mistakes in the classification process. They take into account matrices of misclassification cost
to express relative distances between classes. This approach incorporates decision-making
costs to define fixed and unequal misclassification costs between classes. The cost model
takes the form of a cost matrix, where the cost of classifying a sample from a true class j in
class ¢ corresponds to the matrix entry m;;. The diagonal elements of this matrix are set to
zero, meaning correct classification has no cost.

Cost-sensitive algorithms can be divided into two main categories. Algorithms belonging
to the first category (direct methods) [128, 294, 442] design classifiers that are naturally cost-
sensitive, using directly the misclassification costs in the learning algorithms. Most of the
works belonging to this category are devoted to make decision trees cost-sensitive. A detailed
survey of cost-sensitive decision trees induction algorithms can be found in [297]. In contrast,
the second category (indirect methods) convert existing cost-insensitive classifiers into cost-
sensitive classifiers. These classifiers can be further categorized into relabeling methods,
weighting methods and sampling methods. Specially, relabeling methods [126, 478] relabel
the classes of training or testing instances by applying the minimum expected cost criterion
[266]. This criterion is defined by fixed misclassification costs and posterior probabilities
as follows: R(c|x) = ZC/EQ(C)p(C/|$) cost(c|c’). Weighting methods [436] assign a weight
to each instance in terms of its class according to misclassification costs, that is, instances,
which carries a higher misclassification cost, are assigned proportionally high weights. Finally,
sampling methods [414, 487] modify the class distribution of training data according to their
costs and then directly apply cost-insensitive classifiers on the sampled data.

2.2.2 Classification validation

The evaluation of the performance of classifiers is a matter of on-going debate among re-
searchers [422]. It is a key step in any supervised learning problem since its aim is to estimate
how well a classifier predicts the class value for new instances. The validation of supervised
classifiers is relatively simple procedure due to the presence of real class values. Based on
these real class values, a classifier correctly classifies a new instance if the predicted class is
the same as than the real class, that is counted as a success; if not, it is an error.

The confusion matrix [432] is an important tool to validate the performance of classifiers.
It is a specific table layout that allows visualization of the performance of a classifier. In a
dichotomic classification problem, each column of the matrix represents how many instances
have been classified as been either positive or negative, while each row represents how many
of those classifications were according to the real class value and how many were not. The
main diagonal values in the confusion matrix correspond to the corrected classified instances,
which are the number of true positive (TP) and the number of true negatives (TN). The
missclassification values are divided into false negatives (FN) and false positives (FP).
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Real / Predicted ‘ as Positive as Negative
Positive TP FN
Negative FP TN

Performance measures Supervised learning has several ways of evaluating the perfor-
mance of classifiers that they produce. Several measures of the quality of classification can
be directly obtained using these values from the confusion matrix. For classification problems,
it is natural to measure a classifier’'s performance in terms of the error rate. The classifier
predicts the class of each instance: if it is correct, that is counted as a success; if not, it is an
error. The error rate is the proportion of errors made over a whole set of instances, and it
measures the overall performance of the classifier. It is also usually expressed in terms of the
classification accuracy, that is, the proportion of success made over a whole set of instances.
The accuracy of a classifier is thus the probability of correctly classifying a new instance, and
is estimated by

TP+TN
TP+ FP+TN+FN

accuracy = (2.4)

The total number of correctly classified instances is usually the score to be maximized in the
most general ways of comparing algorithms. When a dataset is unbalanced, the above score
is not representative of the true performance of that classifier because it does not distinguish
between the number of correct labels of different classes. In this context, two measures that
separately estimate a classifier’s performance on different classes are:

TP
Tty = ————— 2.5
SEnSitivity = om s (2.5)
TN
L ficity = —————— 2.6
speci ficity FP+TN (2.6)

The sensitivity estimates the probability of the positive label being true, that is, the ratio
of positive instances that are correctly classified as positive. The counterpart of sensitivity
for the negative instances is the specificity. It estimates the probability of the negative label
being true, that is, the ratio of negative instances that are correctly classified as negative.
Both measures distinguish the correct classification of labels within different classes. Finally,
other measures have been developed to address situations in which the cost of a false positive
and the cost of a false negative are very different. An example of these measures is precision
which can be defined as the probability that an instance classified as positive is actually
positive. From the confusion matrix, it is computed as

TP

precision = TP+ FP (2.7)
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Estimation methods Besides defining performance measures, it is necessary to defined
methods to honestly estimate these measures. There are several approaches in the literature.
Resubstitution [417] is a simple estimation method which consists of training a classifier
with the full dataset and testing its performance again on the same whole dataset. It is not
likely to be a good method since presents a high bias due to the specific data and, thus,
provides accuracy estimations which are too optimistic. Although it cannot be considered an
honest method for estimating any performance measures, resubstitution can be useful as an
upper bound of accuracy performance. With the intention of solving the previous optimism
problem, hold-out [278] splits the dataset into two disjoint sets, one to induce the model
and the other one to estimate its performance. In this way, an honest estimation is achieved
by training the classifier with a set of instances that are independent from the ones used to
testing. The disadvantage of this method is that a subset of instances is not used to build
the model, which cannot be desirable if the available data sample size is not very high.

The most frequently used evaluation method is called k-fold cross validation [433]. This
method solves the possible disadvantage of hold-out by means of dividing all instances from
the dataset into k£ randomly disjoint subsets of approximately equal size. Fach subset is used
to test a model that is learned from the other k-1 subsets. The k accuracy values are averaged
to output the estimated value of the model learned from all instances. This procedure can
be repeated several times to reduce the variance of the estimate, giving rise to the repeated
k-fold cross validation [258]. Then, the final estimate of the accuracy is the mean of the
estimates computed in each repetition. Another improvement of the original k-fold cross
validation is the stratified k-fold cross validation [61] which tries to preserve the proportion
of instance of each class in every fold. This method, which obtains more realistic estimations,
is recommended when the class labels are imbalanced.

Another popular evaluation technique is the leave-one-out method [333]. It is a special
case of k-fold cross validation where the number of folds is equals to the number of instance
in the training set, that is, the learning process is repeated k times, using k-1 instances to
learn, and using a single instance to test each time.

The above presented performance measures and methods are accepted and frequently used
by the machine learning community. There are more performance measures and methods in
the state of the art of classification validation. Of remarkable relevance could be the area
under the ROC curve [427] and the F-measure [455] as performance measures, and jackknife

[376] and bootstrap [132] as methods to estimate the performance measures.

2.3 Unsupervised learning

Unsupervised learning is the most frequently analyzed machine learning problem after super-
vised learning. It studies the problem of finding groups of similar observations in a dataset.
In the case of a company with customer data (demographic information and past transactions
with the company), the company may want to see the distribution of the profile of its cus-
tomers. In this context, a clustering model allocates customers similar in their attributes to
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the same group, providing the company with natural groupings of its customers. Once such
groups are found, the company may decide specific strategies to different groups. Outliers
can be also detected by the clustering model, so they may imply a niche in the market that
can be further exploited by the company.

Clustering is concerned with finding a structure in a collection of unlabeled elements that
are characterized by several variables. The goal is to group elements in this collection so that
elements that belong to a cluster are very similar to each other, whereas different clusters are
highly heterogeneous.

A formal definition of clustering is as follows. Let the data set D = {z,... (M} be a
set of instances described by a vector of descriptive features in a space of dimension F', that
is, ) € RF Vi {1,...,N}. In this way, the goal is to assign a cluster label @ to each
instance, with ¢(?) e {1,..., K}, based on some similarity measure with the other instances.
The final number of clusters, K, is often unknown and must be estimated.

Dissimilarity measures Clustering approaches usually rely on the definition of a distance
or dissimilarity measure between the observations. These measures play an important role
in clustering approaches, like partitional or hierarchical, since their results can be completely
different according to the selected dissimilarity measure. Many dissimilarity measures can
be found [125]. One of the most used dissimilarity measure is the Euclidean distance. For

instance, the distance between two instances is calculated with the Euclidean distance as

F
. . . . 2
Euclidean(z 2+ = Z (l‘gl) - :EglJrl)) . (2.8)

J=1

The Euclidean distance is a concrete case of the general Minkowski distance:

F
Minkowski(x®, 2(+Y) = Zw; (:cgl) — :CE.ZH)) , (2.9)
j=1

where w; is a possible weight for feature j, and r the distance norm. Manhattan distance is
another measure following this structure, with r=1. There are other different measures, like
the Mahalanobis distance [306] or Pearson’s correlation [360], based on correlations between
features. The definition of the Mahalanobis distance is as follows

Mahalanobis(x®, 21 = \/(w(i) — T 1) — g(i+1)) (2.10)
where X is the covariance matrix of features in a space of dimension F'.

2.3.1 Unsupervised learning approaches

Different starting points and criteria usually lead to different taxonomies of clustering algo-
rithms [143, 234, 481]. A simple agreed frame is to classify clustering techniques as partitional
clustering, hierarchical clustering and probabilistic clustering, based on the properties of the
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clusters generated. Partitional clustering groups elements exclusively, so that any element
belonging to one specific cluster cannot be a member of another cluster. On the other hand,
hierarchical clustering produces a hierarchical structure of clusters. Hierarchical clustering
proceeds successively by either merging smaller clusters into larger ones (agglomerative clus-
tering) or by splitting larger clusters (divisive clustering). Finally, probabilistic clustering
provides a cluster membership probability for each element, where elements have a specific
probability of being members of several clusters. The above clustering techniques are some-
how used throughout this thesis. An introduction of these techniques are detailed as follows.

Partitional clustering Partitional clustering algorithms assign a set of instances into K
pre-fixed number of clusters with no hierarchical structure. In principle, the optimal partition,
based on some dissimilarity measure, can be found by enumerating all possibilities. But
this brute force method is infeasible in practice, due to the expensive computation [295].
Therefore, heuristic algorithms have been developed in order to seek approximate solutions.

The k-means algorithm [303] is a well-known partitional clustering algorithm. This al-
gorithm process as follows. Fisrt, the K clusters are initialized [355], obtained K centroids,
which represent the K cluster centers, being i the centroid of cluster Cp. Each instance
2 is assigned to a cluster by minimizing the distance between the instance and cluster cen-
troids. One each instance is assigned to a cluster, the cluster centroids are recalculated based
on those assignments. After the new centroids are calculated, the instances are again real-
located in the clusters. This is an iterative process that converges when cluster centroids do
not suffer any changes from an iteration to another. This algorithm works conveniently only
with numerical attributes and can be negatively affected by a single outlier. Some outliers,
which are quite far away from the cluster centroid, are still forced into a cluster and, thus,
distorts the cluster shapes. In this way, new algorithms, like Partitioning Around Medoids
(PAM) [249], have appeared in order to overcome these obstacles.

PAM begins by selecting an instance as a medoid for each cluster C. After selecting a set
of K medoids, K clusters are constructed by assigning each instance to its nearest medoid.
If the objective function can be reduced by switching a selected medoid for an unselected
(non-medoid) element, then they are switched. This continues until the objective function
can be decreased no further. This algorithm has several advantages with regard to K-means.
First, this algorithm presents no limitations on attributes types because it utilizes real data
points (medoids) as the cluster prototypes (medoids do not need any computation and always
exist). Second, the choice of medoids is dictated by the location of a predominant fraction of
points inside a cluster and, therefore, it is lesser sensitive to the presence of outliers. Unlike
k-means, the resulting clustering is independent of the initial choice of medoids. The objec-
tive of this algorithm is to determine a representative element (medoid) among the elements
of the dataset for each cluster. For K clusters, the goal is to find K representative instances

which minimize the following objective function
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K
E=Y" Y d&® m), (2.11)

=1z 0y

where K is the number of clusters, (¥ is an instance belonging to the cluster Cj, my, is the
medoid of cluster Cj, and d(w(i),mk) is the dissimilarity measure between @ and my,.

Hierarchical clustering Hierarchical clustering also rely on the definition of a dissimilar-
ity measure between the instances. Hierarchical clustering algorithms build a tree of clusters
called dendrogram. This dendrogram allows exploring data on different levels of granularity.
Hierarchical clustering algorithms are categorized into agglomerative and divisive [233]. Ag-
glomerative clustering starts with clusters and each of them includes exactly one instance.
A series of merge operations based on the linkage function are then followed out that finally
lead all instances to the same group. Divisive clustering proceeds in an opposite way. It
starts with one cluster of all instances and recursively splits the most appropriate objects.

2N=1 _ 1 possible two-subset divisions, which is

For a cluster with IV instances, there are
very expensive in computation [143]. Therefore, divisive clustering is not commonly used in
practice. Despite this, some divisive clustering algorithms, like MONA and DIANA [249],
are also developed in the literature.

Based on the different definitions for distance between two clusters, there are many ag-
glomerative clustering algorithms. The simplest methods include single linkage [420] which
calculates the distance between the two closest instances in each cluster, and complete link-
age technique [426] which calculates the distance between the two remote instances in each
cluster. Other linkage metrics, such as median linkage, centroid linkage and average linkage
[421], are also developed.

Unlike methods based on linkage metrics, a more complicated clustering algorithm called
the Ward’s method [471] uses an analysis of variance approach to evaluate the distances
between clusters. It is also known as Ward’s minimum variance method. Given K clusters,
the Ward’s algorithm reduces them to K — 1 mutually exclusive clusters by considering the
union of all possible K (K — 1)/2 pairs. It selects the union of clusters which minimizes the
heterogeneity among cluster elements. Thus, homogeneous clusters are linked to each other.
The complete hierarchical structure can be obtained by repeating this process until only one
cluster remains.

Finally, hierarchical clustering techniques do not generate a single partition but a hi-
erarchy of clusters. Different dissimilarities measures and linkages functions yield different
hierarchies of clusters. Therefore, these decisions should be carefully made taking into ac-
count the nature of the data. Also, a limitation of hierarchical clustering is that divisions in
the divisive, and mergers in the agglomerative paradigm, cannot be undone once made.

Probabilistic clustering Probabilistic clustering deals with the problem of fitting a fi-
nite mixture of distribution [317], where each component is the probability distribution that
models the observations belonging to the cluster. Although other distributions can be used,
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the most popular mixture model is formed by Gaussian components [318]. In this way, each
cluster k is represented by one component fi(x) of the mixture. Each distribution (k) is
characterized by two parameters for each variable (j): the mean (ju;) and the standard
deviation (oy;).

Using this approach, the clustering problem becomes a mixture parameter estimation
problem. Once the parameters are estimated, they can be used to calculate the posterior
probabilities of each instance and distribution. The parameter estimation is performed using
methods such as AutoClass [85] or SNOB algorithms [467], but the most widely used is the
Expectation-Maximization (EM) algorithm [124, 316].

The EM algorithm is an iterative method that is used to find the maximum likelihood
estimates of the mixing coefficients (7;) and the parameters of the conditional Gaussian
distributions (u; and oy;). Thus,

K
fl@) =Y "m fr()

k=1
K

=3 e N (@ g, ) (2.12)
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The algorithm converges to a locally optimal solution by iteratively updating values for
Tk, Mi; and op;. This whole process is embedded in a cross-validation procedure that is
capable of estimating the number of clusters K without this having to be set a priori.

2.3.2 Clustering validation

One of the most important issues in cluster analysis is the evaluation of clustering results
[194]. Clustering validation is concerned with checking the quality of clustering results and
determining the optimal number of clusters (the best for the input dataset) by means of
quality measures [324]. Recent works [22, 190] have focused on the comparison of cluster
validity indices. It is usual to classify these indices into two groups (internal and external
validity indices) but the classification criteria are not always clear [233, 484].

Internal validation Internal validity indices do not require a priori information from the
dataset, they are based on the information intrinsic to the dataset alone. The optimal number
of clusters is usually determined based on internal validity indices. These indices are used to
measure the goodness of a clustering structure (compactness and separation of the clusters)
without external information. The internal validity indices used throughout this thesis are
well-known in the literature. Some of the most widely used indices are detailed as follows.
Silhouette index [385] measures cluster cohesion using the distance between all the points
in the same cluster and the cluster separation using the nearest neighbour distance. A larger
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average silhouette coefficient indicates a better overall quality of the clustering result. For

an instance (| it is defined as

b(x)) — a(x)
maz(b(x®), a(z®)) ’

Silhouette (z() = (2.13)
where a(w(i)) is the average dissimilarity between instance (¥ and all other points in the
cluster where x(? belongs, and b(z)) is the minimum average dissimilarity to instance of
each different clusters.

Davies-Bouldin index [113] estimates the cluster cohesion based on the distance from the
points in a cluster to its centroid and the cluster separation based on the distance between
centroids. A lower Davies-Bouldin index indicates better clustering. It is calculated by
averaging each pair of clusters as

K
1 d dy
Davies-Bouldin = — Z max <k+k) , (2.14)

where K is the total number of clusters, di and dj are the average distances of all instances
in each cluster to their respective centroid py and pyr. Finally, d(ug, prr) is the distance
between cluster centroids.

Calinski-Harabasz index [75] estimates the cluster cohesion based on the distances from
the points in a cluster to its centroid, whereas the cluster separation is based on the distance
from the centroids to the global centroid. A high index value indicates isolated and unified

clusters. This index can be defined as

BSSk(K — 1)
WSSk(N — K)

Calinski-Harabasz = (2.15)
where BSSk is the between-cluster sum of squares, WSSk is the within-cluster sum of
squares, K is the total number of clusters and N is the total number of instances.

External validation FExternal validity indices require previous knowledge about dataset
to check the quality of clustering results. When the correct partition of a dataset is available
the usual approach is to compare it with the partition proposed by the clustering algorithm.
It is based on one of the many indices that compare the agreement between two different data
partitions. Given a set of IV instances and two different partitions, S and T, to be compared,
then, a is defined as the number of pairs of instances that are located in the same group in
S and in T, b is the number of pairs of instances in the same group in S but not in T', ¢ is
the number of pairs of instances in the same group in 7" but not in S, and d is the number
of pairs of instances in different groups in both partitions .S and 7T". Given this context, some
of the most widely used external validity indices are presented as follows:
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On the one hand, the Rand index [374] is defined as

a+d
Rand= —— . 2.16
a+b+c+d ( )
This index lies between 0 and 1. It takes the value of 1 when the two clusterings are identical.
The problem of this index is its value when two random partitions are compared, since it
does not take a zero value.

On the other hand, the adjusted Rand index [216] is defined as

Adjusted Rand — (N)@a+d) —[(a+b)(a+c)+ (c+d)(b+d)]

N 2 (2.17)
(3)" = [@+b)(a+c)+ (c+d)(b+d)

This index overcomes the Rand index limitation concerning the random partitions. It intro-
duces a penalization to avoid the possibility of random classification. This index also lies
between 0 and 1, the latter being the value output when two partitions are equals.

Finally, the Russel index [388] is defined as

a
Russel = —— . 2.18
a+b+c+d ( )
This index only considers pair of instances in the same group in both partitions as good
decisions. This index also lies between 0 and 1. A high index value indicates two partitions

are highly similar.
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Chapter

Probabilistic Graphical Models

3.1 Introduction

Probabilistic graphical models [81, 259, 280, 477] have received many attention from machine
learning community over the last years, due to their capability for knowledge discovery and
reasoning under uncertainty. They combine probability theory and graph theory into a single
framework that is able to manage many real-world problems. These models are composed of
two main components: a graphical component and a probabilistic component. The graphical
component is a graph where the nodes represent the variables in the problem domain and the
edges represent the conditional (in)dependence relationships among the variables, whereas the
probabilistic component models these dependence relationships using (conditional) probabil-
ity distributions. The main characteristic of these models is that they consist of a graphical
structure and a set of parameters that together encode a joint probability distribution for
the variables in the problem domain.

The basket analysis in a supermarket chain can be an application of probabilistic graphical
models. This application tries to learn associations between products bought by customers.
The main idea is to learn a conditional probability of the form p(Y'|X) where Y is the product
conditioned on X, which is the set of products which the customer has already purchased.

Although different probabilistic graphical approaches have been introduced in the liter-
ature such as Bayesian networks [237, 356, 357|, Markov networks [256] and chain graphs
[282], among others, this thesis is focused on Bayesian networks, as it is the most frequently

used model for reasoning with uncertainty in many problems [366].

Chapter outline

Section 3.2 introduces Bayesian network models and their parameterizations according to the
nature of variables. Section 3.3 provides an overview of the state-of-the-art approaches dealing
with Bayesian network structure and parameter learning. Section 3.4 describes probabilistic
inference in Bayesian networks, which consists of estimating the posterior probability of
some variables of interest given evidence of the value of some other variables in the Bayesian
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network. Finally, Section 3.5 deals with Bayesian network classifiers, a class of Bayesian

networks for solving supervised learning problems.

3.2 Bayesian networks

A Bayesian network [203, 238, 280] is a probabilistic graphical model that represents a set
of random variables and their conditional independencies via a directed acyclic graph. For-
mally, a Bayesian network is defined as a pair (S,60). The first element, S, is a directed
acyclic graph, S = (V(S), A(S)), with a set of nodes given by the random variables of the
problem, i.e., V(S) = {X1,..., X, }, and a set of arcs A(S) C V(S) x V(S) representing the
probabilistic conditional (in)dependencies among the nodes. The second element, 8, is a
vector of conditional probabilities that in combination with S allows the factorization of the

joint probability distribution over (X1i,..., X)) as:

n

p(X1, ., Xn) = [ [ (X | TI(X3)), (3.1)
i1

where TI(X;) represents the set of parents of X;. A node X; is a parent of another node Xj
if there is an arc from X; to X;. The probabilistic component, €, determines the kind of
probability distributions used in a Bayesian network. Different parameterizations of Bayesian
networks have been proposed depending on the nature of the random variables.

3.2.1 Discrete Bayesian networks

In the discrete domain, the statistical relationship between a variable X; and its parents
IT(X;) is encoded using discrete probability distributions which are defined by conditional
probability tables. These tables store the parameters of the discrete probability distribu-
tions of each variable for all the combinations of the values of its parents, that is, 0;;;, =
p(Xi:xgj) | TI(X;)=n(x;)®)) where acgj) is the jth value of variable X; and 7(z;)*) is the kth

p(X1)

X1=0 | 0.20
X1=110.80

p(XzlXi1) [ X1=0 Xi=1
X2=0 | 0.80 0.80 p(XalX1) | X1=0 Xi=1
Xz=1{0.20 0.20 X=0 | 0.20 0.05
Xs=1| 0.80 0.95

p(Xs|X3) | Xs=0 Xs=1

Xs=0 | 0.80 0.40
Xs=1] 0.20 0.60

X2=0
X3=0 Xa=1

Xa=1

p(X4|X2,X3) X3=0 X3=1

Xa=0
Xa=1

0.80 0.80
0.20 0.20

0.80 0.05
0.20 0.95

Figure 3.1: Bayesian network example: graphical and probabilistic components
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combination of values of the parents of X;. Figure 3.1 illustrates an example of a Bayesian
network where all the variables are binary. It is observed that variable X; has no par-
ents, whereas IT(X2)={X1}, II(X3)={X1}, II(X4)={X2, X3} and II(X5)={X3}. Thus, the
Bayesian network in Figure 3.1 encodes the following factorization of the joint probability
distribution:

p(X) = p(X1) p(Xa|X1) p(X3]X1) p(X4| X2, X3) p(X5]|X3) (3.2)

3.2.2 Gaussian Bayesian networks

A Bayesian network is said to be a Gaussian Bayesian network [178, 411] if and only if its
associated joint probability distribution is a multivariate normal distribution, N (u, X), with
a joint probability density function

) = 2n) 2 e (e - " e - ). (33

where x is a realization of the random variables, p is the n-dimensional mean vector, X is

the n x n covariance matrix, || is the determinant of ¥, and p” is the transpose of u.
The joint probability distribution of the variables in a Gaussian Bayesian network can be

specified as in Equation (3.1) by the product of a set of conditional probability distributions

FXGITLXG) ~ N it Y Bijlg — ) oi | (3.4)

x;€I(X;)

where p; is the unconditional mean of X;, 3;; is the regression coefficient of X; in the regres-
sion of X; on its parents II(X;), and v; is the conditional variance of X; given its parents. It
can be calculated as

vi = x, — Exn(x) B Exrx) (3.5)

where Yy, is the unconditional variance of X;, ¥x,(x;) is the row matrix with covariances
between X; and IT(X;), and Xpy(y,) is the covariance matrix of II(X;). Finally, Figure 3.2
shows an example of Gaussian Bayesian network structure and its joint probability distribu-

tion.

3.3 Learning Bayesian networks

The learning Bayesian network problem [203, 344] can be divided into two tasks: structural
learning, that is, to identify the topology of the Bayesian network, and parametric learning,
that is, to estimate the conditional probabilities for a given Bayesian network topology. Both
the structure, S, and the parameters of the probability distributions, 8, can be obtained in
two ways. The first way uses expert knowledge for the learning task, whereas the second
way uses algorithms which learn Bayesian networks from a dataset D. Learning Bayesian
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° J(X) = f(X1)f(Xo|X1) f(X3] X1) f(Xa] X2, X3) f(X5]X3)
where
e f(Xl) NN(MX17UX1)
f X2|X1) ~ N(MX2+6X1X2 (wl‘MX1)va2)

X4|X23X3) ~ N(/‘X4+5X2X4 (332',UX2)+BX3X4 (x3‘NX3)7UX4)

(
(X3]X1) ~ N (pxs+Bx; x5 (21-1x, ) vx5)
(
(X5]X3) ~ N (px;+Bxsx5 (23-1x5), vx5)

Figure 3.2: Gaussian Bayesian network structure and its joint probability distribution

networks from expert knowledge [150, 176] is out of the scope of this dissertation. Therefore,
the remaining of the section presents a brief review on principled approaches for learning
Bayesian networks from data. This is a very active field of research, and there have been
several new proposals in the last years [68, 215, 460, 483].

3.3.1 Structural learning

The most difficult task in Bayesian networks is to determine their structure S, that is, which
node should be connected to which node. The task of automatically defining the structure
from a dataset is called Bayesian network structure learning. There are two basic approaches
for learning the structure of a Bayesian network: algorithms based on constrained methods
[115, 358, 431] and score+search methods [98, 204]. Constraint-based methods use conditional
independence tests to identify the dependent and independent relationships among variables
and then build a directed acyclic graph. In contrast, score4search methods approach the
structure learning problem as an optimization problem. They use a search procedure to
explore the space of network structures, and a score function to evaluate the candidate

network structures and guide the search procedure.

Constraint-based methods Constraint-based methods [87, 418] perform statistical tests
to determine a large percentage of the conditional (in)dependence relationships among the
variables in the given dataset and then a directed acyclic graph is built. The PC algo-
rithm [430] is a well-known example of constraint-based methods. It starts from a complete
undirected graph, then performs recursive conditional independence tests for deleting edges.
The result is a skeleton in which all edges are still undirected and should be transformed
into arcs using edge orientation rules. Some improved version of the PC algorithm [67, 246]
have been also developed in the literature. A major weakness of methods belonging to this
constraint-based approach is that too many tests may have to be performed, with each test
being built upon the results of another. This may lead to escalated errors in structure iden-
tification. Additionally, increasing cardinality in the conditioning part dramatically reduces

test reliability.
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Score+search methods Most of developed structure learning algorithms fall into the
score+search category. This approach states the learning task as an optimization problem,
and two main components (a scoring metric and a search strategy) have to be defined. Once a
score metric is specified, a search method is needed to move in an intelligent way through the
space of possible directed acyclic graphs and find the structure with the optimal score. The
fitness score measures the quality of every candidate structure with respect to a dataset. The
number of candidate structures that can be built from data grows more than exponentially
as the number of variables increases, so an exhaustive search is not a sensible approach to the
problem [89]. Therefore, search strategies have been used to iterate comparisons on reduced

sets of structures.

Scoring metrics [16, 92, 204, 379, 405] are developed to evaluate how well a particular
Bayesian network structure fits with respect to a dataset and to guide the learning process.
Classical goodness-of-fit criteria rank complex models higher than sparse ones. Nonethe-
less, a model should only have enough parameters to give an adequate representation of the
association structure underlying the data. A criterion accounting for this tradeoff between
model complexity and goodness-of-fit is the Bayesian information criterion (BIC) [405]. BIC
provides a quantitative measure for model selection, penalizing the complexity of a model by
an additional term which depends on the number of parameters and the sample size.

BIC = p(D|S,0) — pen(N) dim(S), (3.6)

where p(D|S, 0) is the log-likelihood function, pen(N) is equal to log(N)/2, being N the
number of instances in the dataset, and dim(S) is the network’s dimension, that is, the

number of independent parameters that have to be estimated.

The K2 scoring metric [98] computes the marginal likelihood of the dataset given the
structure, subject to a uniform prior assumption on each variable data distribution. This
scoring metric is decomposable, which facilitates the search process. Given the decompos-
ability of the score, the marginal likelihood is maximized by maximizing, for each variable

X, the expression:
qi

r; —

X, II(X;)) = N; 3.7

9(X;, TI(X;)) jHl<Nw+n—1'H ik (3.7)

where r; is the number of possible values of X;; ¢; is the number of possible values of TI(X;);

Niji is the number of cases in the database in which variable X; takes its k-th value and
IT(X;) its j-th value; and Nj; is defined as Nij = > 1% | Nyji.

Search methods explore the space of Bayesian network structures and try to find a high
scoring network structure. The most commonly used method is the greedy search algorithm
[99] which uses a candidate network structure, which may be empty or provided by some
expert, as a starting point. Then, at each iteration, this algorithm considers three possible
operations: arc insertion, deletion or reversal. Next, the score is computed for every resulting
candidate, and the candidate presenting the best score is selected and becomes the current

candidate. This search process is iterated until there is no more score improvement.
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The K2 algorithm [98] is one of the most famous Bayesian networks learning algorithms.
This algorithm greedily learns a Bayesian network from a dataset by using the marginal like-
lihood score. Starting from the empty graph and a fixed order of the variables, this algorithm
adds a variable as a parent to a given variable (from the subset of variables that are before
this variable in the ordering only) whenever its inclusion represents an improvement in the
marginal likelihood score. The algorithm stops the addition process when the marginal like-
lihood score decreases or the algorithm reaches the maximum admissible number of parents
for each variable, which is fixed beforehand.

The search of the optimal Bayesian network structure have also tackled by means of other
approaches. Some of these approaches are: simulated annealing [90], best-first search [261],
estimation of distribution algorithms [46], ant colony optimization [116] and particle swarm
optimization [104], among others. Despite this wide range of approaches, most researchers use
genetics algorithms for the purpose of structure learning [142, 240, 276, 277, 311, 340, 441].

3.3.2 Parametric learning

Once the Bayesian network structure, S, has been learnt, parameters, 8, have to be estimated
from the dataset D. Parameter learning aims to estimate the values of the conditional
probability distribution of each variable X; given any value of its parent set II(X;). Two
well-known approaches for parametric learning are described in the following.

The maximum likelihood estimation (MLE) assesses the probabilities of variables from
data without assuming any prior knowledge. It is based on the frequency of occurrences of
variables in the data set, and selects the parameter configuration for a Bayesian network
model, é, that maximizes the probability of the data set given the model (S, 0):

~

0 = arg max p(D|S,0) , (3.8)

where p(D|S, 0) represents the likelihood function.

The maximum a posteriori (MAP) estimation is able to include prior knowledge into the
parameter estimation problem. It selects the parameter configuration for a Bayesian network
model, é, that maximizes the posterior probability of the parameters given the dataset D:

~

0 = arg max p(0|D), (3.9)

3.4 Inference in Bayesian networks

Given the learned Bayesian network model, one of the most fundamental tasks for reasoning
under uncertainty is evidence propagation [111, 281] which usually refers to computing the
posterior probability of each single variable given the available evidence. In evidence propa-
gation, a subset of variables X, C X (evidence variables) have been observed, and the goal is
to reason about another subset of variables X, C X \ X, (query variables) given the observed
values of the evidence variables. This conditional probability can be computed as
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P(Xq|Xe) = ZPX %o X), (3.10)

where X,, = (X \ X¢) \ X, is the subset of non-observed variables.

Another interesting inference task is the total abduction problem. It consists of finding
the most probable configuration of a set of variables of interest, X, given the evidence X..
Similarly, the partial abduction deals with the problem of finding the values of only a subset
of the query variables X, C X which yield the maximum posterior probability given the
observed values for the evidence variables X, C X \ X,.

Tq = arg max p(Xq| Xe) - (3.11)
q

Although the process of probabilistic inference is proved to be NP-hard is some scenarios
[97], the inference task is tractable for many real-world problems. The methods proposed
for probabilistic inference can be divided into exact and approximate methods [192]. Many
exact inference methods have been developed in the literature, such as [110, 255, 410, 429].
In contrast, approximate inference methods have been proposed when the previous exact
inference methods are not suitable [78, 205, 236, 446].

3.5 Bayesian networks classifiers

The use of Bayesian network structures in supervised learning problems give rise to Bayesian
classifiers [43, 163]. These classifiers model the joint probability distribution over the predic-
tive variables X={X1, X»,..., X, } and the class variable C'. To classify an instance x, the
Bayes rule [37] is used to compute the posterior probability of each class label given the values
of the predictive variables. The class with the maximum posterior probability is selected as

the class label for the available instance. That is
¢ = argmax p(clx) o< arg max p(c)p(x|c) (3.12)
C (&

There exists a wide spectrum of Bayesian classifiers. A brief introduction of most impor-
tant methods belonging to this classification approach is carried out.

Naive Bayes Naive Bayes [325] is one of the simplest models for supervised classification.
It is one of the most efficient and effective inductive learning algorithms for machine learning.
Figure 3.3(a) represents the naive Bayes structure. The class variable, C| is discrete and takes
values in the set £2(C'). The predictive features can be divided into two sets: the set of discrete
features {X1,..., X;n} and the set of continuous features {X,,11,...,X,}. This classifier is
based on Bayes theorem under the assumption of conditional independence of predictive
features given the class variable. The naive Bayes classifier selects the most likely class value
¢ of the posterior distribution:
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Q(C) m
6:argmé‘1XZp(c)H (zilc) H N (@, 115, (05)?) . (3.13)
c=1 =1 j=m+1

The above conditional independence assumption could be restrictive in several real-world

problems, so, the following Bayesian classifiers are developed to alleviate this assumption.

Selective naive Bayes Selective naive Bayes [275] is a variant of naive Bayes that deals
with correlated variables by selecting only a subset of the given variables into the final clas-
sifier. Figure 3.3(b) represents the selective naive Bayes structure where X3 is excluded
from the final model. This classifier improves accuracy in domains with redundant and ir-
relevant variables. The learning component adds the capability to exclude attributes that
introduce dependencies to the original naive Bayes classifier. This greedy process consists
of searching the space of attribute subsets. The direction of the search could be forward or
backward. A forward selection method would start with the empty set and successively add
variables, whereas a backward elimination process would begin with the full set and remove
unwanted variables. The search process stops adding or eliminating attributes when none of
the alternatives improves classification accuracy.

Seminaive Bayes Seminaive Bayes [260, 354] considers statistical relationships between
variables in order to join them into new multidimensional ones that smooth the indepen-
dence assumption of the naive Bayes. Figure 3.3(c) represents the seminaive Bayes structure
where the new multidimensional variable is composed by the cartesian product of X5 and

PSP N
OIOIOIOMNOIO

(a) Naive Bayes (b) Selective naive Bayes

) Seminaive Bayes (d) Tree augmented naive Bayes

Figure 3.3: Examples of Bayesian classifiers structures
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X3. Kononenko [260] relaxed the independence assumption by a restricted structure learn-
ing. His algorithm partitions the variables into disjoint groups and assumes independence
only between variables of different groups. Pazzani [354] performed feature selection and
feature joining to improve the naive Bayes. Specifically, he used forward sequential selec-
tions and joining (F'SSJ) and backward sequential elimination and joining (BSEJ) to search
dependencies and join the variables.

Tree augmented naive Bayes Tree augmented naive Bayes classifier [163] allows rela-
tionships between pairs of predictive variables in the network. It builds a dependence tree
structure among the variables and, then, connect all the predictive variables with the class
one. Figure 3.3(d) represents the tree augmented naive Bayes structure where the root node
of the tree is X;. Unlike the naive Bayes classifier, each predictive variable (except for the
root node of the variable tree) has one additional predictive variable as a parent. Similarly,
the k-dependence Bayesian classifier [391] also builds a dependence tree structure among the
variables. In this case, it allows each predictive variable to have a maximum number of k
parent variables. Both classifiers use the mutual information conditioned to the class variable
to decide which edges are included and in which order. Its value is computed through the

following expression:

Q(X) Q) QC)

I(X,Y|C) = Z Z Zp (xi,yj,cx)log P(@i, yjler) , (3.14)

i=1 j=1 k=1 p(@ilex)p(y;lex)

where X and Y are discrete predictive variables conditioned to the class variable C'.
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Chapter

Scientometrics

4.1 Introduction

Scientometrics is the study of science, technology, and innovation from a quantitative per-
spective. This field has grown in popularity during last years and is used to describe the
growth, structure, trend, interrelationship and productivity of science. Scientometrics rep-
resents the multiple facets of scientific activity in models of use to science policy makers,
using quantitative tools with sound properties [491]. It uses the published works of scien-
tists to answer the questions of policy makers, stakeholders and scientists themselves, among
others, taking research and science as a research object. Major research issues include the
measurement of impact, reference sets of articles to investigate the impact of journals and
institutes, understanding of scientific citations, mapping scientific fields and the production
of indicators for use in policy and management contexts [289].

Scientometrics has typically been defined as the “quantitative study of science and tech-
nology” [452]. Previously, Brusilovsky defined this field as the “study of the measurement of
scientific and technological progress” [66], whereas Hess defined it as the “quantitative study
of science, communication in science, and science policy” [206]. Other many definitions not
covered here have been also proposed in the literature [65, 435, 465].

Modern scientometrics is mostly based on the work of Derek de Solla Price and Eugene
Garfield. The 1960s and "70s saw the development of scientometrics as an operational activity
for providing a response to the pressing demand for the measuring of science. The historian
Derek de Solla Price published a number of books and articles which laid the foundations for
the newly emerging field of quantitative science studies [118, 119, 120], culminating in a full-
fledged research program [121]. In contrast, Eugene Garfield created the Science Citation
Index [170] and founded the Institute for Scientific Information which is heavily used for
scientometric analysis [95]. Other founding fathers of the discipline were Narin [343] in the
United States of America, Nalimov and Mulchenko [342] in Russia and Braun and Bujdoso
[59] in Hungary.

The origin of the term scientometrics goes back to the year 1969, when Nalimov and
Mulchenko [342] coined the Russian equivalent of the term scientometrics (“naukometriya”).
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The term had gained wide recognition by the foundation in 1978 of the journal Scientometrics
by Tibor Braun in Hungary. The launching of the journal Scientometrics that persuaded all
those concerned that a self-contained research field under this name really exists. The journal
became soon the leading information channel of the field.

Scientometrics is related to, and has similar interests with, bibliometrics, which is quanti-
tative analysis of media in any written form. Although some works, like Campbell [77], Cole
and Eales [94] and Hulme [217], are supposed to be the first bibliometric studies, the coining
of the term bibliometrics is frequently credited to Pritchard [371] in 1969, who defined the
new bibliometrics widely, to be “the application of mathematical and statistical methods to
books and other media of communication”. There are other many definitions of the term
bibliometrics in the literature [71, 145, 200, 253, 254] which are not discussed here. There
has been considerable confusion in the terminology of the two closely related metric terms
[211]. The focus of bibliometrics has always been preponderantly on the literature per se
of science, whereas scientometrics is not only focused on measuring the literature output
(papers, books, patents, etc) but also on analyzing the practices of researchers, the socio-
organizational structures, research and development management, the role of science and
technology in the national economy, governmental policies towards science and technology,

and so on.

Chapter outline

Section 4.2 introduces how citation analysis is used in scientometrics. The well-known h-
index, its advantages and its drawbacks are presented in Section 4.3. According to the
improvements of the h-index, Section 4.4 lists measures that complement the h-index, take
time into account, allow for co-authorship and consider other variables. By journal measures,
Section 4.5 presents the well-known impact factor and other measures that assess the quality
of citations and correct for differences among fields. Finally, Section 4.6 introduces the main
features of bibliographic databases like Web of Science, Scopus and Google Scholar.

4.2 Citation analysis in research evaluation

Citation analysis is one of the most widely used methods of scientometrics. This method uses
citations in scientific works to establish links to other works or other researchers with the
intention of analyzing the frequency, patterns, and graphs of citations in articles and books
[174, 328]. Bibliometric measures have emerged from citation analysis to assess and compare
the research activity of individual researchers according to their output. They constitute an
objective method whose results are reproducible. The main advantage of these bibliometric
measures is that they can summarize the scientific production of a researcher as a set of
quantitative figures that permit rapid comparison. This can at the same time be a limitation,
because it removes many details from the citation records. Nowadays, many funding agencies
and promotion committees use bibliometric measures regularly as a decision-support tool to
evaluate the impact of research projects and researchers alike. Also, bibliometric measures
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are commonly adopted for the purpose of allocating public funds. These measures essentially
involve counting the number of times scientific papers are cited. They are based on the
assumption that influential researchers and important papers will be cited more frequently
than others. Thus, bibliometric measures are an increasingly important topic within the
scientific community.

The process of evaluation of scientific research has become a central, difficult and lengthy
process in the management and governance policies of national research systems [283]. Al-
most every research assessment decision (accepting research projects, contracting researchers,
awarding scientific prices, concede a grant and so on) depends to a great extent upon the sci-
entific merits of the involved researchers. The most well-known method used for researchers
assessment is peer review. This process involves some reviewers reading and discussing sci-
entists’ papers to determine the validity of the ideas and results, and their potential impact
on the world of science. Peer assessment is undoubtedly the principal procedure for judging
quality. However, it has been mooted that peer assessment and similar expert-based eval-
uations have serious shortcomings and disadvantages [96, 450]. The opinions of experts are
linked to subjectivity and may have conflict of interest elements or be the result of unrelated
factors and negative or positive biases. Although if used properly peer review is assumed to
be the most reliable system, it is slow, expensive and unwieldy [93, 338, 393]. Other authors
contest this appraisal [27, 195, 212]. This difference of opinion among authors has led to
the development of bibliometric measures as a method for researchers assessment. These
measures may contribute to the fairness of research evaluations by presenting objective and
impartial information to a peer review that would otherwise depend more on the personal
views and experiences of the scientists appointed as referees. Both types of methods have
pros and cons, extensively discussed in the literature [213, 304, 334, 453], in terms of costs,
execution times, limitations and objectiveness. It appears that these methods can coexist,
but not always in an easy and synchronized fashion. Sometimes it appears that the two
methods of evaluating research quality tend to contradict or oppose each other [245].

Several bibliometric measures have been developed in the literature (see reviews [17, 138].
An obvious measure is citation count, which quantifies the impact of the cited work [170, 173].
In spite of its simplicity, the main recognized disadvantages of this standard bibliometric mea-
sure is that it does not reflect the full impact of the scientific research and is extremely affected
by a single highly-cited paper [353]. Thus, the average citation rate [403] was proposed as
total quality of the research output. Beyond these traditional measures, one of the most
successful bibliometric measures was proposed by Jorge Hirsch and it was called the h-index
[207]. Tt quantifies the scientific output of a single researcher as a single-number criterion. It
is a simple new measure incorporating both the quantity and visibility of publications. Since
its introduction, the h-index has received a lot of attention from other researchers. In the
Web of Science Hirsch’s article has been cited more than 1,800 times (November, 2014).
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4.3 The h-index

The h-index [207] is a single measure that combines papers (an aspect of quantity) and
citations (an aspect of quality) to characterize researchers’ scientific output. Considering a
researcher’s list of publications, ranked according to the number of citations received, the
h-indez is defined as the highest rank such that the first h publications received each at least
h citations. Formally, Hirsch defined the h-index as follows: “A scientist has index h, if h of
his or her N, papers have at least h citations each and the other (N, - h) papers have no
more than h citations each”. According to the example of Table 4.1, it is observed that the
h-index value is 6. The papers on ranks 1,...,h constitute the so-called h-core [384].

Although Hirsch defined the h-indez in 2005, it appears that the h-index (of course
not with this name) was defined some 35 years earlier by Arthur Stanley Eddington in a
communication of Eddington to the Harold Jeffreys [131]. In order to record his cycling
prowess, Eddington records n, being the highest number of days on which he had cycled n
or more miles. This is nothing else than Hirsch’s index but in cycling terminology.

A short paper published in Nature made the h-indez known to many scientists [28].
Undoubtedly, the h-index synthetically aggregates two important aspects of the scientist’s
production: impact, represented by the number of citations per paper, and productivity,
represented by the number of different papers. Hirsch originally suggested the h-index for
application at the micro level, that is, as a measure to quantify the scientific output of a
single researcher. It has been used at an even further micro level to assess single highly cited
publications [401]. However, the h-index can be also used at the meso and macro levels by
means of successive h-indices [367, 403]. Thus, the h-index can be also applied to journals
[60, 403], research groups [454], institutions [332, 367], publishers [400] and countries [108].
Finally, the h-index has not been only used for scientific comparisons but also for detecting
interesting hot topics and compounds in diverse research areas [30], and for predicting future
achievements [208], among others.

Table 4.1: Calculating bibliometric measures of a fictitious researcher

Features Papers

rank 1 2 3 4 5 6 7 8 9 10 11
cits 28 17 12 10 9 6 2 2 2 1 0
rank? 1 4 9 16 25 36 49 64 81 100 121
S cits 28 45 57 67 76 82 84 86 88 89 89
year 2009 2008 2010 2010 2012 2011 2012 2013 2014 2013 2014
age 6 7 5 5 3 4 3 2 1 2 1
cits/age 4.6 2.4 2.4 2.0 3.0 1.5 0.6 1.0 2.0 0.5 0.0
authors 4 3 2 2 3 3 3 4 1 2 3
cits/authors 7.0 3.4 6.0 5.0 3.0 2.0 0.6 0.5 2.0 0.5 0.0
Teff 0.25  0.58 1.08 1.58 1.91 2.25 2.58 2.83 3.83 433 4.66
posttion 1st 2nd 1st 1st 2nd 1st 2nd 3rd 1st 1st 2nd

S(a,d) 040 033 066 066 033 050 033 020 1.00 066 0.33
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In his original proposal, Hirsch pointed out good properties of the h-indezr. For example,
he stated that the proposed h-index measures the broad impact of an individual’s work,
avoids all of the disadvantages of traditional criteria (total number of papers, total number
of citations, citations per paper, number of significant papers, etc.), is easy to compute by
ordering papers by “times cited” field in the Web of Science, among others.

Other works like Costas and Bordons [100] and Glanzel [180] and Vanclay [456] also
pointed out the advantages of the h-index. Some of the most interesting properties of the
h-index are summarized in the following:

- It combines citation impact with publication activity measures.

- It performs better than other single criteria commonly used in research evaluation.

- It can be applied to any level of aggregation but is used at individual scientists level.
- It measures durable performance, not only single peaks.

- It is not immediately affected by increasing publications alone.

- It is insensitive to a set of lowly cited papers.

- It is an objective indicator which may play an important role when making decisions
about promotions, fund allocation and awarding prizes.

However, the h-index presents some disadvantages that have been pointed out in the liter-
ature [51, 136, 227, 251, 252, 310, 395, 448, 464, 476]. Different authors have tried to overcome
those drawbacks by defining new indicators, see Section 4.4. Hirsch himself noted that there
are inter-field differences in typical h-index values due to differences among fields in produc-
tivity and citation practices, so the h-index should not be used to compare scientists from
different disciplines [207]. Moreover, Hirsch noted that there exist some technical limitations,
such as the difficulty to obtain the complete output of scientists with very common names.
It is important to remark that these drawbacks are shared with almost any indicator that is
based in citation counts. Also, the h-indexr depends on the duration of each scientist’s career
because the pool of publications and citations increases over time. In order to overcome this
limitation, Hirsch presented the “m parameter”, which is the result of dividing the h-indez
by the scientific age of a scientist (number of years since the author’s first publication). Other
shortcomings of the h-index are presented in the following:

- It is insensitive to highly cited papers, being the excess citations completely ignored
once papers are included into the h-core.

- It does not show decay in a scientist’s carrier since the number of citation might increase
even if no new papers are published.

- It does not take into account in any way the number of coauthors of each paper.



42 CHAPTER 4. SCIENTOMETRICS

- It does not take into account the distribution of the citations in the h-core.

- Due to its simple computation, there is a risk of indiscriminate use, such as relying only
on it for the assessment of scientists.

- Its use could provoke changes in the publishing behavior of scientists, such an artificial

increase in the number of self-citations.

- It is suited for the micro level but at higher levels of aggregation there are more versatile
indicators.

- The application of appropriate indicators sets instead of one single measure can provide
a more adequate and multifaceted picture of reality.

4.4 Improvements of the h-index

Despite of the good properties of the h-indexr, many authors have pointed out several draw-
backs of the indicator (see Section 4.3). To overcome these drawbacks many new bibliometric
measures have been proposed in the literature. For clarity reasons, these measures are cat-
egorized into four groups: (i) measures that try to complement the h-indez, (ii) measures
that extend the h-indez to take time into account, (iii) measures which analyze how to count
multi-authored publications, and iv) measures which take into account other variables. Their

main properties are summarized in the following.

4.4.1 Bibliometric measures that complement the h-index

The h-index has been extended by many authors that have proposed new variations of the
h-index that try to overcome its main drawbacks. For example, the g-index [134], the e-index
[489] and the tapered h-index [20] are proposed to take citations that are completely ignored
by the h-index calculation into account.

g-index Since the h-indezr tends to underestimate the achievement of researchers that have
a selective publication strategy, that is, researchers that do not publish a lot of documents
but have a major international impact, the g-index [134, 135, 136] was proposed as being
sensitive to the level of the highly cited papers. It is defined as the highest rank such that the
cumulative sum of the number of citations received is greater than or equal to the square of
this rank. According to Table 4.1, the g-index value is 9. It is the highest rank such that the
top 9 papers have at least 92=81 citations (here 88 > 81); on rank 10 we have 89 < 10? = 100
citations. Unlike the h-index, the g-inder takes into account the exact number of citations
received by highly cited papers, favoring researchers with a selective publication strategy. A
criticism of the g-inder was raised observing that the highest rank could be larger than the
total number of author’s publications. However, the greatest drawback of the g-index is that
it may be greatly influenced by a unique very successful paper. Finally, although the g-index
is better than the h-index in this sense, is not a fully satisfactory solution.
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e-index Although effective and simple, the h-index suffers from some drawbacks that limit
its use in accurately and fairly comparing the scientific output of different researchers. Aimed
to the same goal as the g-index, the e-index [489] was proposed to represent the excess
citations that are completely ignored by the h-index calculation. As a mathematical formula

the e-index is defined as i

e-index = Z(citi —h) (4.1)
i=1
where h is the value of h-index, and cit; is the number of citations of paper i. According to
Table 4.1, the e-index value is (28-6)+(17-6)+(12-6)4(10-6)+(9-6)+(6-6) = 46.

tapered h-index The main idea of the tapered h-index (hi-index) [20] is to take into account
all the citations, giving to each of them a value equal to the inverse of the increment that
would suppose to increase h-index one unit. It is defined as

"
Np 2CZ 11 if cit; <1
Z —
h-index = _ hy(i), where hy (i) = ; citi 4 S (4.2)
i=1 22._14-'2 57— 1 if  cit; >4
Jj=t+1

where IV, is the number of total publications and cit; is the number of citations of paper i.
According to the values of Table 4.1, the h;-index can be calculated as

ity hy(i) 7 cit;  he(7)

1 28 1+z]22j = 2.64 6 6 =054

2 17 s 2+ Z] 5 23 =1.73 7 2  5=015

312 : 24+ ZJ ) 23 =1.29 8 2 £=013

4 10 : T+ Z] 5 2] = 1.02 9 2 Z=011

59 54X gz =084 10 1 55 =005
11 0 & =0.00

where the h;-index is 2.644-1.73+1.29+1.02+0.84+0.54+0.15+0.13+0.114+0.054-0.00=8.55.

Other indices like the a-index [242], the m-index [55] and the r-index [243] are developed
to measure the citation intensity of the h-core papers.

a-index The average number of citations received by the articles included in the h-core is
represented by the a-index [242]. This index measures the citation intensity of the h-core
papers; however, it can be very sensitive to just a few papers receiving high citation counts. It
achieves the same goal as the g-index, namely correcting for the fact that the original h-indez
does not take the exact number of citations of articles included in the h-core into account.
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Mathematically, it is defined as:

h

‘ 1 .
a-index = 7 ; cit; (4.3)

where h is the h-index value and cit; is the numbers of citations of paper i. According to
Table 4.1, it is observed that the a-indexr value is (28-+17+12+10+9+6)/6 = 13.66.

m-index As the distribution of citation counts is usually skewed, the median and not
the arithmetic mean should be used as the measure of central tendency. Therefore, a new
index, called m-indez [55], is proposed as a variation on the a-index. The m-indez, which
was designed to illustrate the impact of the papers in the h-core, is the median number of
citations received by the h most visible papers. According to Table 4.1, it is observed that

the m-index value is 11.

r-index In order to overcome some problems related to the a-inder, a new measure, called
r-indez [243], is proposed. Unlike the a-index, which involves a division by the h-indez, the
r-index does not punish researchers for having a higher h-indexr value. Therefore, instead
of dividing by the h-index, the r-index takes the square root of the sum of citations in the
h-core to calculate the citation intensity of the h most visible papers. Like the a-index, the
r-index can be also very sensitive to just a very few papers receiving extremely high citation
counts. As a mathematical formula the r-index is defined as:

r-index =

(4.4)

where h is the h-index value and cit; is the numbers of citations of paper i. According to
Table 4.1, it is observed that the r-index value is v/28+17+12+10+9+6 = 9.06. Finally, the
r-index can be also computed as Va - h, where a and h are the h- and a-index values.

This section also introduces some measures which are useful to distinguish individuals
with the same h-index value. The rational h-index [386], the multidimensional h-index [168]
and the individual annual h-index [197)] are described in the following.

rational h-indexr As an extension of the original h-index, the rational h-index [386] is
proposed to take into account the number of citations needed to increase the h-indez by one

unit. It measures the distance to the next value of the h-index. Mathematically, this is

n

17 l h-index=h+1—
rationa mdex + o+ 1

(4.5)
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where h is the value of the h-inder, and n is the number of citations needed to increase the

h-index by one unit. In this context, the rational h-index value can be calculated as

rational h-index =6 + 1 — 1% = 6.53.
multidimensional h-index For the purpose of distinguishing among individuals with the
same h-index value, the multidimensional h-index [168] is proposed. It uses the same logic
as the original h-inder and provides additional information under the same principles. The
multidimensional h-index is composed by a set of components in which the conventional
h-index value is only the first component. Additional components of the multidimensional
index are obtained by computing the h-index for the subset of papers not considered in the
immediately preceding component. This process iterates to obtain subsequent h-indexr values
until all cited papers are analyzed. According to Table 4.1, the multidimensional h-index is
formed by the set (6, 2, 1, 1). This extension is useful in fields where h-index values are

generally low.

) cit; 1 cit; 1 ity 1 cit;
1 28

2 17

3 12

4 10

5 9

6 6

7T 2 1 2

8 2 2 2

9 2 3 2 1 2

10 1 4 1 2 1 1 1
11 0 5 0 3 0 2 0

15t h-index: 6 2ndy index: 2 3"%h-index: 1 4"h-index 1

individual annual h-indexr This index [197] is proposed to represent the average annual
increase in the academic’s individual h-index. It provides a more reliable comparison between
academics in different disciplines and at different career stages than the original h-index.

In order to provide a more balanced view of scientific production some measures like the

hg-index [18] and the q?-index [74] are proposed.

hg-index With the intention of keeping the advantages of both h-indez and g-index as well
as to minimize their disadvantages, the hg-indez [18] is developed. Both measures incorporate
several interesting properties about the publications of a researcher and that both should be

taken into account to measure the scientific output of scientists. Therefore, the hg-index is
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a combined index which characterizes the scientific output of researchers. It is compute