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ABSTRACT
Variational quantum algorithms (VQAs) offer some promising char-
acteristics for carrying out optimization tasks in noisy intermediate-
scale quantum devices. These algorithms aim to minimize a cost
function by optimizing the parameters of a quantum parametric
circuit. Thus, the overall performance of these algorithms, heavily
depends on the classical optimizer which sets the parameters. In the
last years, some gradient-based and gradient-free approaches have
been applied to optimize the parameters of the quantum circuit. In
this work, we follow the second approach and propose the use of es-
timation of distribution algorithms for the parameter optimization
in a specific case of VQAs, the quantum approximate optimization
algorithm. Our results show an statistically significant improve-
ment of the cost function minimization compared to traditional
optimizers.

CCS CONCEPTS
•Computingmethodologies→Concurrent computingmethod-
ologies; • Theory of computation→ Design and analysis of
algorithms; • Hardware→ Quantum computation.
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1 INTRODUCTION
In the last decades an exponential use of quantum hardware for
different optimization tasks in the academic and industrial areas
has been witnessed. Although it has been shown that the use of
quantum hardware can outperform classical computation in some
mathematical operations or in the energy consumption for some
processes, it is still unclear if the use of noisy intermediate-scale

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’22, July 9–13, 2022, Boston, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9268-6/22/07. . . $15.00
https://doi.org/10.1145/3520304.3533963

quantum (NISQ) hardware can outperform classical computation
for real use cases such as optimization.

There exist several research topics regarding quantum optimiza-
tion. Some of the most relevant are quantum adiabatic compu-
tation (QA) and variational quantum algorithms (VQA) [7]. The
former consists of translating the optimization problem into a set
of Hamiltonians which define an energy function that describes
the dynamics of a quantum system. This problem encoding is a
quadratic unconstrained binary optimization (QUBO) problem, and
several real world applications have been encoded into QUBOs
[14]. The latter consists of translating the cost function to be op-
timized into a quantum state which is represented as a quantum
parametric circuit, which in this work will be henceforth named as
an ansatz. These parameters are iteratively optimized to minimize
a cost function. A wide range of problems have been faced using
VQA approaches [19, 21], due to multiple advantages such as its
quantitative resilience to the quantum noise in NISQ devices [18].

VQAs are hybrid approaches where a classical optimizer itera-
tively proposes new sets of parameters to fit the ansatz in order
to reduce the energy of the system. Thus, the overall performance
of VQAs heavily depends on the performance of the classical op-
timizers. Barren plateau problem [15] is a particular challenge of
this optimization problem,a phenomenon where gradients of the
VQA parameters vanish exponentially with the number of qubits.
Finding limitations of these optimizers is crucial depending on the
task or the VQA complexity that is being used. Several studies have
been carried out comparing traditional optimizers in this problem
[5]. VQAs are commonly known as quantum heuristics for sharing
characteristics with classical heuristics such as population-based
algorithms [2]. A well-known VQA is the quantum approximate
optimization algorithm (QAOA) [10].

In this work, we propose to use estimation of distribution algo-
rithms (EDAs) [13] to approach the ansatz parameter optimization.
EDAs have demonstrated to achieve very good results in continu-
ous space optimization for a wide range of problems [8], and thus,
we believe that these algorithms can provide competitive results to
approach this problem and overcome limitations such as the Barren
plateau problem [15].

2 VARIATIONAL QUANTUM ALGORITHMS
The VQA objective is to find the approximate ground state of an 𝑛-
qubit quantum system as an output to an ansatz. The parameters𝜽 ∈
[0, 2𝜋]𝑑 defined in the ansatz represents rotation of single or two-
qubit gates. During VQA runtime, the classical optimizer proposes
new sets of these vector 𝜽 of parameters with 𝑑 components. After
setting the parameters, the quantum circuit is measured 𝑡 times and
the expectation value among solutions is computed. Since the aim of
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Figure 1: VQAflowchart for a hybrid approach between quan-
tum and classical computing. In each iteration, a classical
optimizer proposes a new set of parameters, and a measure-
ment is performed in the ansatz (𝜓 (𝜽 )). Considering the com-
puted expectation value, the classical optimizer proposes a
new set of parameters. The algorithm iteratively runs until
a convergence criterion is met.

VQA is tominimize the defined cost function, the aim of the classical
optimizer is to minimize the expectation value computed in each
iteration.Minimizing the expectation valuewill lead to cost function
minimization. The general workflow is shown in Figure 1. Such an
expectation can be obtained by performing measurements along
the Z-axis of the quantum system and computing the following
expression

𝐸 (𝑍𝑖 ) =
1
𝑡

∑︁
𝑧∈𝑍

𝐶 (𝑧)𝑁𝑍𝑖
, (1)

where 𝑁𝑍𝑖
is the number of times solution 𝑧 is measured by exe-

cuting the circuit 𝑡 times in iteration 𝑖 , 𝑍 is the set of possible basis
states obtained by the circuit,𝐶 (𝑧) is the evaluation of the solution
𝑧 in the classical cost function to be optimized by the VQA, and 𝑍𝑖
the set of measurements obtained in iteration 𝑖 .

2.1 Quantum Approximate Optimization
Algorithm

QAOA was proposed by Farhi, Goldstone and Gutmann [10] for
solving combinatorial optimization problems. The QAOA ansatz
consists of 𝑝 ∈ N layers, and each layer is formed by two different
operators that encode the cost function to be optimized (Fig. 2)
where the cost operator𝑈 (𝐻𝐶 , 𝛾) parameterized by 𝛾 ∈ [0, 2𝜋] has
the following expression:

𝑈 (𝐻𝐶 , 𝛾) = 𝑒−𝑖𝛾𝐻𝐶 =

𝑚∏
𝛼=1

𝑒−𝑖𝛾𝐶𝛼 (2)

where 𝐶𝛼 is the cost function to be minimized, and the mixed
operator𝑈 (𝐻𝐵, 𝛽) is parameterized by 𝛽 ∈ [0, 2𝜋],

𝑈 (𝐻𝐵, 𝛽) = 𝑒−𝑖𝛽𝐻𝐵 =

𝑛∏
𝑗=1

𝑒
−𝑖𝛽𝜎𝑥

𝑗 (3)

where 𝜎𝑥
𝑗
is the rotation in the 𝑋 -axis of the qubits {+1, -1}.

The QAOA ansatz is represented as:

𝜓 (𝜸 , 𝜷) = 𝑈 (𝐻𝐵, 𝛽𝑝 )𝑈 (𝐻𝐶 , 𝛾𝑝 ) . . .𝑈 (𝐻𝐵, 𝛽1)𝑈 (𝐻𝐶 , 𝛾1) ⟨𝑠⟩

Figure 2: A quantum parametric circuit with 𝑝 layers and
2𝑝 parameters. The initial state is a superposition of all the
possible computational states, and after applying the 𝑝 layers,
ameasurement along the𝑍 axis of all the qubits is performed.

where 𝑝 ≥ 1,𝜸 = (𝛾1, . . . , 𝛾𝑝 ), 𝜷 = (𝛽1, . . . , 𝛽𝑝 ), and ⟨𝑠⟩ is the uniform
superposition state over all possible computational states. A quan-
tum circuit is composed by 𝑝 layers and a total of 2𝑝 parameters
(𝜽 = [𝛾1, 𝛽1, . . . , 𝛾𝑝 , 𝛽𝑝 ]) to be optimized.

2.2 Parameter Optimization
From an optimization perspective, the ansatz parameter optimiza-
tion task does not much differ from any other continuous opti-
mization problem. However, in the NISQ era, several facts should
be considered such as the number of layers to be optimized, as
it defines the number of parameters to be optimized, or whether
it is more important to achieve a better expectation value or to
minimize the computation time.

Depending on whether the optimizers are gradient-based or
gradient-free [3] we list the following algorithms commonly used
for ansatz parameter optimization, which will be compared to the
EDA approach in Section 4. Gradient-based optimizers include
ADAM [12], conjugate gradient method (CG) [11], gradient de-
scent [17], limited-memory Broyden–Fletcher–Goldfarb-Shanno
algorithm (L-BFGS) [6] and sequential least squares programming
(SLSQP) [4]. Gradient-free optimizers include constrained optimiza-
tion by linear approximation (COBYLA) [16] and simultaneous
perturbation stochastic approximation (SPSA) [20].

3 ESTIMATION OF DISTRIBUTION
ALGORITHM

Evolutionary computation is one of themain branches in population-
based algorithms [2]. Evolutionary algorithms are increasingly de-
manded for solving optimization problems as they can achieve very
good results across a wide range of problem domains [8]. EDAs are
one of the best known EAs. The main characteristic of EDAs is the
generation of new solutions from a probabilistic model built from
the best solutions of previous iterations.

Each solution considered during runtime is a set of parameters
to be set into the ansatz. Thus, a solution is a vector defined as
𝜽 ∗ = [𝜃1, 𝜃2, . . . , 𝜃𝑑 ] where 𝑑 is the number of parameters to be
optimized in the ansatz.

The pseudocode of the EDA approach is presented in Algorithm 1
where 𝐸 is the expectation value to be minimized (Eq. 1).

Depending on the problem characteristics, different probabilistic
models can be considered in the EDA approach. In this case, as
the objective is to optimize a set of continuous parameters, we are
using normal distributions. In each iteration, we fit a univariate
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Algorithm 1 EDA
1: Initialize parameters including population size 𝑁 and selection

ratio 𝛿
2: 𝐸 (𝜽 ∗) ← Cost function to be optimized
3: Randomly generate initial population 𝑮0 with size 𝑁
4: for 𝑙 = 1, 2, ... until stopping criterion is met do
5: 𝑮𝑙−1 ← Select 𝛿𝑠 individuals from 𝐺𝑙−1 considering 𝐸 (𝜽 ∗)
6: 𝑃 (𝐺𝑙 ) ← Estimate probabilistic model from 𝐺𝑙−1
7: 𝑮𝑙 ← Sample 𝑁 individuals from 𝑃 (𝐺𝑙 )
8: end for=0

normal distribution to each of the parameters (line 6) from the best
solutions found in the elite selection (line 5). Each solution evalua-
tion means a set of parameters in the ansatz, and an expectation
value computation. Then, 𝑁 new individuals are sampled from the
probabilistic model, and the EDA iterates until a stopping criterion
is met. The expected behaviour of the algorithm is that the mean
of each parameter normal distribution will tend to move in the
direction of the optimal value that each parameter should achieve
and standard deviations will be reduced.

4 RESULTS
In this section we compare the results obtained by the EDA ap-
proach with those obtained by other traditional optimizers when
optimizing the parameters of the QAOA ansatz. All experiments
have been codified using Qiskit-0.19.2 [1], and ran in the same
device in order to perform honest comparisons. The implemented
approach is available in GitHub1, andwill be pull requested to Qiskit
repository. To compare the optimizers, we are using a specific in-
stance of the Max-Cut problem using 10 qubits, and all optimizers
are set to the same number of maximum iterations (150 iterations).

Figure 3 shows the relation encountered between the number
of layers 𝑝 of the QAOA ansatz and the population size (𝑁 ) of the
EDA. The expectation value improves with increasing 𝑁 regardless
of the number of 𝑝 layers (see (a)). However, this leads to a higher
computation time (see (b)). On the other hand, increasing 𝑝 regard-
less of the value of 𝑁 , the expectation value worsens. To keep a
constant expectation value, the population size must be increased
while increasing 𝑝 . Analyzing the computation time, note that in-
creasing the population size for low values of 𝑝 , the increasing of
computation time is not as drastic as increasing 𝑁 for larger values
of 𝑝 . Thus, it seems that the EDA approach can be a good option
for those problems in which the number of layers is not high.

Figure 5 shows a comparison of the EDA approach with tradi-
tional optimizers when optimizing the 𝜽 parameters of a QAOA
for the same Max-Cut problem. The performance of two different
EDAs, eda_20 (𝑁 = 20) and eda_30 (𝑁 = 30), is shown.

When comparing the EDA approach with the gradient-free opti-
mizers, the EDA achieves better expectation values independently
of 𝑝 . Comparing the EDA with gradient-based optimizers, the EDA
achieves better results than the other optimizers when 𝑝 < 6. Con-
sidering the difference between eda_20 and eda_30, by increasing
the population size the EDA would achieve better results for 𝑝 > 6.
Figure 5 shows a critical difference diagram [9] for the expectation

1https://github.com/VicentePerezSoloviev/EDA_QAOA
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Figure 3:Mean expectation value (a) andmean computational
time (b) as a function of the population size (𝑁 ) and the
number of layers (𝑝) for 25 different executions of the EDA
optimizer in the QAOA ansatz.
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Figure 4: Critical difference diagram [9] by Friedman tests to
reject the null hypothesis, and a post-hoc analysis based on
the Wilcoxon-Holm method. Horizontal black lines, connect
group of algorithms that do not have a significant difference.

value achieved by the optimizers, fromwhere we conclude that EDA
achieves statistical improvements. Regarding the computation time,
gradient-free optimizers take lower time to be executed than the
EDA approach, but at the expense of achieving worse results, and
gradient-based optimizers show competitive computation times
compared with the EDA approach.

5 CONCLUSIONS
In this work the problem of ansatz parameters optimization has
been faced by an EDA. Results show the EDA approach compared
to some traditional gradient-based and gradient-free optimizers.

Our results show that the EDA is able to converge to better
expectation values than any other optimizers for low numbers of
layers. When increasing 𝑝 , the population size of the algorithm
should be increased. Analyzing the computation time, the EDA
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Figure 5: Comparison of EDA approach with other optimizers when optimizing the set of parameters of a QAOA. First panel
shows the mean and standard deviation of computational time it takes to return the best solution for different values of 𝑝 and
25 different executions. Second panel shows the mean and standard deviation of the expectation value the QAOA achieves for
different values of 𝑝 and 25 different executions. Best results after hyper parameter tunning are shown.

approach is more expensive than the gradient-free approaches, but
cheaper than other gradient-based algorithms. EDA approach can
be a good solution for those situations in which it is more important
to achieve a good expectation value than a quick execution of
the QAOA. As future steps, it would be interesting to apply more
complex probabilistic models into the EDA approach to consider
relations between the parameters.
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