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Bayesian network structure learning is an NP-hard problem that has been
faced by a number of traditional approaches in recent decades. Currently,
quantum technologies offer a wide range of advantages that can be exploited
to solve optimization tasks that cannot be addressed in an efficient way when
utilizing classic computing approaches. In this work, a specific type of varia-
tional quantum algorithm, the quantum approximate optimization algorithm,
was used to solve the Bayesian network structure learning problem, by employ-
ing 3n(n−1)/2 qubits, where n is the number of nodes in the Bayesian network
to be learned. Our results showed that the quantum approximate optimization
algorithm approach offers competitive results with state-of-the-art methods and
quantitative resilience to quantum noise. The approach was applied to a cancer
benchmark problem, and the results justified the use of variational quantum
algorithms for solving the Bayesian network structure learning problem.

1 Introduction
Bayesian networks (BNs) are a family of probabilistic graphical models that compactly
represent the joint probability distribution of a set of random variables [23]. Some of
the most important characteristics of this type of model are its capability of graphically
representing the uncertain knowledge contained in data and the possibility of including
expert knowledge in the model. For these reasons BNs are widely used in machine learning
[28] for different applications [6, 33].

Regarding the high computational demands associated with BNs, two main problems
have been studied in the literature: inference, which involves calculating a posterior prob-
ability distribution for some system variables when observing the values of other variables;
and structure learning, which involves finding the optimal BN graph that best fits some
given data. This paper is focused on the latter type of problem.

The Bayesian network structure learning (BNSL) problem is known to be NP-hard
[9] because the number of possible structures for a Bayesian network with n nodes h(n)
increases more than exponentially with the number of variables n in the given data [35]:

h(1) = 1

h(n) =
n∑
i=1

(−1)i+1
(
n

i

)
2i(n−i)h(n− i), (1)
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and thus, heuristic search algorithms are commonly used. In classic computing a wide range
of approaches, such as particle swarm [3, 34], evolutionary algorithms [7, 25], simulated
annealing [26], and tabu search [21] have been applied to solve the BNSL problem in recent
decades [36].

More recently, the capabilities of quantum computers to reduce the required execution
time when facing different optimization tasks and to solve very complex problems that
may not be approachable with classic computing methods have attracted much interest.
Quantum computing [29] is based on quantum mechanics principles such as quantum en-
tanglement and quantum superposition, which allow quantum algorithms to explore areas
of the search spaces of optimization problems in a parallel and more efficient way.

Quantum annealing (QA) [18] is a quantum heuristic that can solve certain optimiza-
tion problems exponentially faster than classic approaches. The BNSL problem has been
mapped to a quadratic unconstrained optimization problem (QUBO) to be solved by using
QA [30, 40].

In recent years, quantum machine learning (QML) [37] has attracted much attention.
QML combines machine learning algorithms and quantum computing theory to construct
new hybrid algorithms that exploit the benefits of both fields. An example of such a hybrid
algorithm is a variational quantum algorithm (VQA) [27], which is composed of a classic
optimization loop that embeds a quantum subroutine. This routine measures a quantum
parametric circuit (variational ansatz), while the classic loop optimizes the parameters of
the quantum circuit in each iteration of the algorithm used to minimize the cost function.
VQAs, such as the variational quantum eigensolver [31] and the quantum approximate op-
timization algorithm (QAOA) [15], are widely used for different combinatorial optimization
problems [10, 16, 39, 45, 46]. Some studies [41] have proven that some types of optimization
problems have landscape dispositions that makes the quantum and simulated annealing
methods converge to local optimal solutions, while the QAOA is able to overcome this
limitation and provide better solutions. Quantum and simulated annealing have already
been applied to BNSL; however, to the best of our knowledge, the use of the QAOA has
not been found in the literature. In this work, we address the BNSL problem with the
QAOA, and analyse the performance of different variants of the algorithm.

Currently, the state of the art of quantum computers is the noisy intermediate-scale
quantum (NISQ) era, which is characterized by quantum computers with hundreds of
qubits and no error correction. Thus, there is a need to develop algorithms that do not
require a large number of qubits and that offer resilience to the presence of quantum noise
(which characterizes quantum devices). VQAs, and QAOAs in particular, are some of the
most promising algorithms in the NISQ era, as their implementations optimize the number
of utilized qubits, and moreover, the variational ansatzs are expected to offer resilience to
quantum noise such as amplitude and phase damping errors [29]. We also analyse the
resilience of the algorithm to the presence of different types of quantum noise, in the
particular case of the BNSL problem.

The paper is organized as follows. Section 2 describes the fundamental basis of BNs, the
classic methods for learning the structures of these models, and the QUBO formulation
in which this work is inspired. Section 3 provides an overview of the QAOA approach.
Section 4 describes how the QAOA ansatz is built and the characteristics integrated in our
approach. Section 5 analyses the performance of the QAOA approach, the resilience of the
algorithm to quantum noise, and a real application of the algorithm for solving the BNSL
problem. Finally, Section 6 rounds the paper off with the conclusions of our work.
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2 Structure learning of Bayesian networks
A BN can be properly defined as a pair (G,Θ) that represents a joint probability distri-
bution over a set of random variables X = {X1, X2, . . . , Xn}. Its representation is given
by (i) a directed acyclic graph (DAG) G = (V,A), whose nodes V correspond to the set
of random variables, X1, . . . , Xn, and arcs A that represent the probabilistic dependencies
among the variables; and (ii) a set Θ of parameters that define the conditional probability
distribution of any variable Xi given its parents Πi in the graph, where the parents Πi of
a variable Xi are the nodes that have arcs that reach Xi.

Given this definition, the probability distribution P (X) over the set of variables X is
defined as the product of the conditional probability distributions of all variables:

P (X) = P (X1, . . . , Xn) = P (X1|Π1)P (X2|Π2) · · ·P (Xn|Πn)

The BNSL problem is a very complex NP-hard problem [9] that is well-known in the
state-of-the-art research due to the combinatorial explosion of possible DAGs which can
represent the relationships among the variables in X. Given a dataset D with n columns
and as many rows as variable observations, the objective is to determine the DAG that bet-
ter reflects the relationships among the variables X = {X1, X2, . . . , Xn} found in D. Two
variablesA andB are said to be conditionally independent given C if P (A|B,C) = P (A|C),
and thus, the values that B takes contribute nothing to the certainty of A. Three main
BNSL approaches are available: (i) the score-based approach, whose objective is to optimize
a function that evaluates the quality of the structure given the data; (ii) the constraint-
based approach, which performs some statistical tests to check the conditional indepen-
dences among the variables; and (iii) hybrid methods that combine both approaches. In
this paper, we focus on implementing a score-based approach.

Some well-known scores have been used for the BNSL problem. The decomposability
property is desirable for computational reasons. This means that the score of a structure
given some data is computed as the sum of the local scores of the subgraphs formed by
each variable Xi and its parents Πi,

score(G,D) =
n∑
i=1

scorei(Πi,D),

where G denotes a DAG. The objective of the optimization task is to maximize this score.
Relevant decomposable scores used for BNSL are the Bayesian information criterion

(BIC) [38], K2 score [11] and Bayesian Dirichlet equivalent uniform (BDeu) [19], among
others.

2.1 QUBO formulation of BNSL
In this section, we describe the original QUBO formulation introduced in [30], on which
we base our approach. The formulation is based on four different Hamiltonians: Hscore,
which optimizes the likelihood of a structure given the input data; Hmax, which ensures
the maximum in-degree of each node to limit the Hamiltonian complexity; and Htrans and
Hconsist which guarantee that the adjacency matrix that represents the BN is acyclic. The
computed QUBO expression is,

H(A,R,Y ) = Hscore(A) +Hmax(A,Y ) +Htrans(R) +Hconsist(A,R),

where A,R and Y are the quantum bits associated to the adjacency matrix, topolog-
ical order, and the maximum in-degree restriction variables, respectively, for variables
X1, X2, . . . , Xn.
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The QUBO problem formulation for solving a BNSL problem with n nodes requires

vsize = n(n− 1) + n(n− 1)
2 + 2n (2)

quantum bits, where n(n− 1), n(n−1)
2 , and 2n are the number of bits associated with the

adjacency matrix, the topological order, and the number of variables needed to restrict the
maximum in-degree, respectively.

Each of the four different Hamiltonians that compose H(A,R,Y ) are deeply explained
in this section.

2.1.1 Hscore(A)

For Hscore we need to introduce the concept of an adjacency matrix (A):

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 (3)

where aij = 1 if there exists an arc from Xi to Xj and aij = 0 otherwise.
In this case, as BNs are represented as DAGs, the diagonal of this matrix is equal to

zero, and thus, the bits of the diagonal are not required for the QUBO formulation. Then,
n(n− 1) qubits are needed for the Hscore Hamiltonian to learn a BN of n nodes, and

Hscore(A) =
n∑
i=1

H i
score(ai) (4)

H i
score(ai) =

∑
J⊂{1,...,n}\{i}
|J |≤m

(wi(J)
∏
j∈J

aji) (5)

where ai = (a1i, . . . , ani), is the i-th column of A, wi(J) =
∑|J |
l=0(−1)|J |−l

∑
K⊂J
|K|=l

si(K), in

which si(K) is the score of node i given the parent set K, and m is the maximum in-degree
allowed.

Note that the constant term is wi(∅) = si(∅), which refers to the score of node Xi

without its parents. If Xi has a single parent Xj , then the above equation simplifies to

H i
score(A) = wi(∅) + wi({j}) = si(∅) + si({Xj})− si(∅) = si({Xj})

Similarly, if Xi has two parents Xj and Xk,

H i
score(A) = wi(∅) + wi({j}) + wi({k}) + wi({j, k})

= si(∅) + (si({Xj})− si(∅)) + (si({Xj})− si(∅)) + wi({j, k})
= si({Xj}) + si({Xk})− si(∅) + wi({j, k})
= si({Xj}) + si({Xk})− si(∅) + si({Xj , Xk})− si({Xj})−
− si({Xk}) + si(∅)) = si({Xj , Xk})

2.1.2 Hmax(A,Y)

To ensure that the quantum algorithm only considers the maximum in-degree m = 2 to
restrict the search space, the Hmax Hamiltonian is implemented in a way such that 2n
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quantum bits are needed. These quantum bits are represented as a matrix:

Y =

y11 y12
...

...
yn1 yn2


where yij ∈ {0, 1} are random binary variables. Y represents a slack variable used to
reduce the inequality constraint of the maximum in-degree to an equality constraint.

The corresponding Hamiltonian results in Hmax(A,Y ) = 0 if the restriction is met,
and Hmax(A,Y ) > 0 otherwise. Thus,

Hmax(A,Y ) =
n∑
i=1

H i
max(ai, yi)

H i
max(ai, yi) = δmax(m−

n∑
j=1

aij − yi)2

=
{

0, di ≤ m
δmax(di −m)2, di > m

where yi =
∑2
l=1 2l−1yil, i = (1, . . . , n), and δmax ∈ R+ is a prefixed penalization term.

2.1.3 Htrans(R) and Hconsist(A,R)

To ensure the acyclicity of the adjacency matrix we need to implement two different Hamil-
tonians, Htrans(R) and Hconsist(A,R). The former uses the topological order to check the
transitivity of the graph, and the latter checks the consistency between the topological
order and the adjacency matrix.

A topological ordering of a directed graph is a linear ordering of its vertices such that
for every arc i→ j from vertex i to vertex j, i comes before j in the ordering (i < j). The
topological order is represented as

Rtop =

r11 · · · r1n
...

. . .
...

rn1 · · · rnn


where rij can be equal to 1, only if i ≤ j and rij = 0 if i > j for the given QUBO
formulation. The lower triangular portion of Rtop provides no additional information to
the upper triangular portion of Rtop. Moreover, if a matrix is acyclic, then the trace of
Rtop is equal to zero. Considering this, the variables used for the QUBO formulation
are represented as part of the matrix Rtop, where the diagonal of the matrix and all the
elements below it have been removed

R =


r12 r13 · · · r1n
. . . r23 · · · r2n
...

. . . · · ·
...

· · · · · · . . . rn(n−1)

 (6)

Then Htrans(R) is zero if the relation encoded in the R matrix is transitive and δtrans
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otherwise:

Htrans(R) =
∑

1≤i<j<k≤n
H ijk
trans(rij , rik, rjk)

H ijk
trans(rij , rik, rjk) = δtrans(rik + rijrjk − rijrik − rjkrik)

=
{
δtrans, [(i ≤ j ≤ k ≤ i) ∨ (i ≥ j ≥ k ≥ i)]
0, otherwise

Hconsist(A,R) is zero if the order encoded in the R matrix is consistent with the structure
encoded in A, and δconsist otherwise.

Hconsist(A,R) =
∑

1≤i<j≤n
H ij
consist(aij , aji, rij)

H ij
consist(aij , aji, rij) = δconsist(ajirij + aij(1− rij))

=
{
δconsist, (aji = rij = 1) ∨ (aij = 1 ∧ rij = 0)
0, otherwise

where δtrans ∈ R+ and δconsist ∈ R+ are prefixed penalization terms.

3 Quantum Approximate Optimization Algorithm
Many real optimization problems can be framed as combinatorial problems. The QAOA
was proposed by Farhi, Goldstone and Gutmann [15] for solving combinatorial optimization
problems.

A combinatorial optimization problem is formulated by n bits and m clauses. Each of
the clauses affects a subset of bits and is satisfied when this subset is assigned to certain
values. Satisfiability asks if a string that satisfies every clause is available. The objective
is to maximize the following equation

C(z) =
m∑
α=1

Cα(z) (7)

where z = z1z2 · · · zn is a bit string with n bits and Cα(z) = 0 if clause α is not satisfied
by the z string (Cα(z) = 1 otherwise).

The QAOA [15] uses a quantum parametric circuit (variational ansatz) which is built
for a specific combinatorial optimization problem and represents a quantum parametric
state. In each iteration of the algorithm, the parameters are optimized to find the bit
string z′ for which C(z′) is the maximum of C. The quantum circuit consists of p layers,
and each layer is formed by two different operators that encode the cost function to be
optimized (Fig. 1): the cost operator U(HC , γ) parameterized by γ,

U(HC , γ) = e−iγHC =
m∏
α=1

e−iγCα (8)

and the mixed operator U(HB, β) parameterized by β,

U(HB, β) = e−iβHB =
n∏
j=1

e−iβσ
x
j (9)
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where B =
∑n
j=1 σ

x
j and σxj is the mapping of zj from a binary variable to quantum spin

{+1, -1}, which is rotated in the X-axis. The parameters γ and β are restricted to lie
between 0 and 2π, as they represent the rotation angles (degrees) over the qubits.

In the literature [45, 46], it has been shown that by increasing the number of layers of
a circuit, the algorithm improves its performance and better solutions are obtained. For
p → ∞, the QAOA approximates the adiabatic quantum evolution path [14], which is
how the algorithm starts from the initial state and converges to a solution. The quantum
adiabatic path is approximated in p steps. However, increasing p also increases the depth of
the circuit, which entails other disadvantages, such as facing the quantum noise embedded
in quantum computers. It is then necessary to find the ideal p so as not to drastically
increase the depth of the circuit, while still being able to find the final solutions reached
by the quantum adiabatic path.

The quantum parametric state is represented as:

ψ(γ,β) = U(HB, βp)U(HC , γp), . . . , U(HB, β1)U(HC , γ1) 〈s〉

where p ≥ 1, γ = (γ1, . . . , γp), β = (β1, . . . , βp), and 〈s〉 is the uniform superposition state
over all possible computational states. A quantum circuit with p layers and a total of 2p
parameters (γ1, β1, . . . , γp, βp) to be optimized is shown in Fig. 1.

Figure 1: A quantum parametric circuit with p layers and 2p parameters. The initial state is a super-
position of all the possible computational states, and after applying the p layers, a measurement along
the Z axis of all the qubits is performed.

The role of the optimizer is to find the optimal parameters (γopt, βopt) such that the
expectation value that encodes the cost function to be optimized,

f(γ,β) = 〈ψ(γ,β)|C|ψ(γ,β)〉

is minimized. f(γ,β) encodes the total energy of the system, which should be minimized.
Such an expectation can be obtained by performing measurements along the Z-axis of the
quantum system and computing the following expression

E = 1
t

∑
z∈Z

C(z)Nz (10)

where Nz is the number of times solution z is measured by executing the circuit t times
and Z is the set of possible basis states obtained by the circuit. The total energy of the
system, E, is expected to be minimized for increasing p.

The pseudocode of the QAOA is quite simple once the quantum parametric circuit
is built. In each iteration of the algorithm, a new set of (γ, β) parameters is given to
the circuit, which is run t times. Then, the optimizer computes the expectation value
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(Eq. (10)) and proposes a new set of (γ, β) parameters. The loop is repeated until a
stopping criterion is met. In each iteration, when the quantum circuit is executed t times,
a probability distribution is computed for the solutions. The expectation value (Eq. (10))
is also referred to in the machine learning literature as the uncertainty among the solutions,
and is expected to be reduced as the algorithm runtime increases.

Thus, the quantum trial state is prepared, and we then optimize the parameters to bring
the trial state as close as possible to the target state. The quality of the QAOA solutions
heavily depends on the quality of the parameters (evaluated by Eq. (10)) obtained by the
optimizer used during the runtime of the algorithm.

4 Method
This section explains how the variables are deployed in the QAOA approach and how the
Hamiltonian is transformed to quantum circuits. All the implemented software is codified
by using Qiskit-0.18.1 [2] and myQLM-1.5.1 [4] and is freely available in GitHub1.

4.1 QAOA variables
To make the QAOA able to manage the QUBO variables (A,R,Y ), it is necessary to
arrange them in such a way that they are represented as a vector. Thus, the previous
QUBO variables are disposed as a vector of qubits with a size of vsize (Eq. (2)).

As explained in Section 3, the QAOA is a hybrid approach in which the classic part
of the algorithm computes the cost function of the obtained solutions and the expectation
value of all the solutions of the corresponding iteration. Our proposal also computes the
maximum in-degree (m = 2) of the solutions and penalizes those that do not meet the
restriction in a classic manner. Upon doing so, vsize reduces to

vsize−QAOA = n(n− 1) + n(n− 1)
2 = 3n(n− 1)

2 , (11)

where vsize−QAOA < vsize ∀ n, because the Y variables in the Hamiltonian are not consid-
ered.

Thus, the vector q needed to solve the BNSL problem for a BN of n nodes by using
the QAOA is an array of size vsize−QAOA,

q = (q1, q2, . . . , qn∗(n−1), . . . , qvsize−QAOA)
= (a12, a13, a1n, . . . , an(n−1), r12, r13, r1n, r23, . . . , r(n−1)n),

where aij and rij are defined in Eq. (3) and Eq. (6), respectively.

4.2 QAOA circuit
In Section 3, we have seen that the process of preparing the quantum state during the
operation of the QAOA is composed of three elements:

1. Preparing an initial state of superposition.

2. Applying the cost operator U(HC , γ) (Eq. (8)).

3. Applying the mixed operator U(HB, β) (Eq. (9)).

1https://github.com/VicentePerezSoloviev/QAOA_BNSL_IBM
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4.2.1 Initial state

The initial state used during the QAOA is usually the superposition of all the basis states,
which is defined as:

|ψ0〉 =
( 1√

2
(
|0〉+ |1〉

))⊗vsize−QAOA

,

where ⊗vsize−QAOA refers to the number of qubits used in the quantum state (Eq. (11)).
To reach the superposition state of all the possible basis states, we apply Hadamard

gates to each qubit (π/2 degrees in the qubit Y-axis).

4.2.2 Applying the cost operator U(HC , γ)

As the maximum in-degree verification is implemented in the classic part of the VQA, the
Hamiltonian to be implemented is reduced to

H(D,R) = Hscore(D) +Htrans(R) +Hconsist(D,R). (12)

The Hamiltonian described in Eq. (12) involves binary variables in {0, 1}, and the
QAOA needs the Hamiltonian to be transformed into a spin Hamiltonian where all the
variables are spins in {−1, 1}. Thus, each binary variable Xi in the QUBO formulation
must be transformed as Xi → 1−Zi

2 , where Zi is the Pauli Z operator that has eigenvalues
of {−1,+1} and acts on qubit i while ignoring all other qubits:

Zi =
(

1 0
0 −1

)
.

Thus, the QUBO formulation is transformed into a formula in which all the variables
involved are q. The QAOA is a circuit model-based approach, and thus, each Pauli operator
Zi is a quantum gate in the QAOA circuit. Each operator is a rotation-Z gate of qubit i,
and each multiplication of two Pauli operators ZiZj is a sequence of three gates in qubits
i and j (Fig. 2).

Figure 2: A multiplication of two Pauli operators ZiZj is represented in the quantum circuit as a
combination of two controlled NOT (CNOT) gates between qubits i and j and a rotation-Z gate in
one of them.

Each Zi gate has a rotation angle that is parameterized by γ and influenced by the
structure evaluation scores (Eq. (5)).

4.2.3 Applying the mixed operator U(HB, β)

The last step of the QAOA circuit is the mixed operator. This operator consists of applying
a rotation-X gate in all the qubits of the circuit with parameter β.

An example of the resultant circuit is shown in Fig. 3. For each extra layer, a cost
and mixed operators U(HC ,γ) and U(HB,β) should be added sequentially with their
respective parameters to the actual circuit to increase p.
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Figure 3: A QAOA circuit example for a BNSL problem with 3 nodes and 1 layer. This variational
ansatz has γ and β parameters as the parameters of the first layer of the circuit.

4.3 Conditional value at a risk
As explained in Section 3, in each iteration, the expectation value of the measurements
along the Z-axis is computed for minimization. This value can be computed classicly by
using Eq. (10) after executing the QAOA circuit t times.

We add a modification to the standard QAOA baseline so that not all the solutions
obtained after the measurement process are considered for the expectation value computa-
tion. Thus, instead of computing the expectation value, we compute the conditional value
at a risk (CV aRα), which is a measure that takes only the tail of the distribution of the
solutions obtained after measurement into account and is widely used in finance [1]. The
CV aRα is widely used in different VQAs, such as the QAOA and the variational quantum
eigensolver [5], as it has been proven to lead to faster convergence to better solutions.

Evolutionary algorithms (EAs) [12] have several characteristics in common with VQAs.
A well-known type of EA is the estimation of distribution algorithm [24], which in each
iteration sample new solutions from a probability distribution learned from the best old
solutions, and then selects the best solutions to update this probability distribution. The
top solutions are a percentage of the total set of solutions. This is equivalent to the
behaviour of the QAOA considering the CV aRα.

A new parameter α is added to the QAOA implementation, and its function is to select
the best solutions from the set of solutions measured after executing the QAOA circuit
t times. Given a cumulative density function FK among all the basis states obtained
after measuring the QAOA circuit t times, computing the CV aRα implies computing the
expectation value for the α-head of FK assuming that samples are sorted in a decreasing
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order. This selection henceforth referred to as αK with size dαte. Then, the CV aRα is
defined as

CV aRα = 1
dαte

∑
z∈αK

C(z)NzαK , (13)

where C(z) is defined in Eq. (7) and NzαK is the number of times that solution z is
measured during selection αK. The α parameter is defined in the interval (0, 1], such that
for α = 1, the entire set of solutions is considered for the expectation value computation
(Eq. (10)), and for a decreasing α, the number of solutions considered for computing the
CV aRα is reduced.

5 Results
In this section, some results are shown for the BNSL problem after applying the proposed
QAOA. Some plots are first given to show how the QAOA performs in terms of cost function
minimization (Section 5.1). Then, a perfromance evaluation of the QAOA considering
different types of simulated noise is analysed (Section 5.2). Finally, a real example of
BNSL is shown (Section 5.3).
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Figure 4: Histograms for different numbers of layers p for the same BNSL problem. The Y and X axes
represent the frequency, and the solutions, respectively. The names of the solutions have been removed
from the X-axis for aesthetics, but how they are sorted is the same for each subplot.
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Note that the real limitation of this algorithm has been the number of available qubits
in the available architectures. In our experiments, the QAOA looks for the optimal BN
structure in a search space containing 543 possible structures for n = 4 and 29281 structures
for n = 5 (see Eq. (1)). This architecture restriction is imposed due to the number of qubits
that we can access at the moment in Qiskit and myQLM. Despite the fact that these
problem sizes are far from those examined by the classic BNSL approaches, the number
of qubits that companies such as IBM and Google are offering is increasing rapidly, and
thus, the use of VQAs is increasingly justified.

The optimizer used in the implementation is the constrained optimization by linear
approximation (COBYLA) algorithm [32], which is widely used in the state-of-the-art
VQAs [8].

5.1 QAOA performance
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Figure 5: Minimization of the CV aRα (Eq. (13)) for different numbers of layers p (X-axis) in the QAOA
circuit and different values of the parameter α. Blue dots and error bars correspond to the means and
standard deviations of the best results found after executing the QAOA 50 times, respectively, and red
denotes the minimum costs found in those executions. Dashed trend lines are plotted to guide the
human eye.

The QAOA approach aims at minimizing the uncertainty among the solutions obtained
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after completing the QAOA circuit measurement process, which is optimized by the min-
imization of the expectation value; see Eq. (10). It is expected that by increasing the
number of layers p of the circuit, the expectation value among the solutions must decrease.
The task of the optimizer is to iteratively search the optimal parameters (γopt, βopt) of the
QAOA circuit to minimize the expectation value. When the optimizer converges to a so-
lution, the parameters (γopt, βopt) are set to those of the quantum circuit. Fig. 4 shows an
example histogram of the obtained solutions. This experiment is performed with different
numbers of layers (p = 2, 4, 6, 8) to show the differences between the resultant histograms.

Fig. 4 shows that increasing the number of layers, clearly minimizes the uncertainty.
Note the existence of two clear optima with similar costs for p = 8; this is not as clear
for p = 2. Moreover, a reduction in the number of solutions that are represented by the
X-axis for increasing p is clearly visible. The solutions obtained with p = 2 have a density
close to 0; for p = 8, they tend to have a density equal to 0 and thus become insignificant
in the corresponding subplot.

As shown before, the QAOA approach is able to reduce the uncertainty among the
solutions for the implemented Hamiltonian. However, the proposed approach heavily de-
pends on the random pair of (γ, β) parameters from which the optimizer is initialized.
Thus, depending on the initialization, different solutions might be proposed in different
executions for the same Hamiltonian problem.

The minimization of the CV aRα (Eq. (13)) is analysed next by using a random dataset
of 4 variables. In Fig. 5, a comparison of the performances achieved by the QAOA for
different values of the parameter α and the number of layers p in the QAOA circuit is
shown. Note that increasing the number of layers decreases the mean best cost although
it increases the depth of the circuit and the computing time.

In Fig. 5, we observe an improvement as p increases and α takes intermediate values.
The best solutions are found for intermediate values of α in the range [0.3, 0.5] and p = 7.
Note that this improvement with increasing p is not as noticeable for large values of α
(α → 1.0) as it is for the lowest values (α → 0). Despite these results, we claim that it is
not necessary to increase the number of layers in the QAOA circuit to find the best results.
Fig. 5 shows cases in which the same results are obtained, with fewer layers but different
values of α.

Figure 6: Means and standard deviations of the number of iterations until convergence after executing
the QAOA 50 times for different values of p (X-axis) and α (colours).

In Section 4.3, a quantitative comparison of the QAOA approach with estimation of
distribution algorithms is provided. This type of algorithm tends to converge to local
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optima when the percentage of solutions selected to update the probability distribution is
too low. However, as shown in Fig. 5, the QAOA does converge to the same solution for any
value of α. This is analysed in Fig 6, where the mean numbers of iterations required until
convergence are shown for different executions of the QAOA approach and different values
of p. Independently of the value of α, the number of iterations remains approximately
constant for the same value of p, whereas it increases with p.

5.2 Noise resilience
Two main disadvantages of NISQ computers are their limited numbers of qubits and the
presence of quantum noise. Thus, there is a need to implement approaches that offer re-
silience to quantum noise and to optimize the number of qubits used to solve the given
problem. It has been shown that VQAs can compensate for quantum errors such as
over-/under-rotations [27]. However, a wide range of studies have analysed the QAOA
in different applications to determine the hard limit of its resilience to quantum noise
[16, 22, 39, 42, 44, 47]. In other words, we analyse how much noise the QAOA can bear
without worsening its optimization behaviour.
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Figure 7: Mean best costs (a) and mean numbers of iterations until convergence (b) as a function of
the noise amplitude ω. Blue, red and green lines represent the simulated amplitude, phase damping and
depolarizing noise models, respectively. For the detailed mean and standard deviation values of these
experiments, see the Appendix section. Fifty different executions of the QAOA algorithm were run for
the 4 node BNSL problem, and p = 3.

To perform this analysis, we construct different noise channels to simulate different
types of quantum noises. Two main type of quantum noise can occur: (i) that related to
the longitudinal relaxation time (T1) and to the dephasing time (T2) which are metrics for
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determining the qubit quality; and (ii) that related to the depolarization noise. Regarding
the former group, the amplitude damping error accounts for the loss of energy in a quantum
system after T1. After T1, the quantum behaviour is no longer so predictable. On the
other hand, the phase damping error accounts for the phase loss of a qubit after T2. In
this case, the qubit can perform different phase rotations than those it was required to
perform. Regarding the latter group, the depolarizing error describes the probability that
a qubit is depolarized, that is, replaced by a completely mixed state [29]. Other types of
quantum noises exist, such as the cross talk error, which is neglected in this study, as the
main focus is to analyse the effects of decoherent noise channels (i and ii). Similarly, the
readout error is not considered as this type of noise is independent from the ansatz design.

For this study, the noise strength is parameterized by ω ∈ [0, 1], where ω → 1 increases
the noise and ω = 0 denotes no noise. The amplitude and damping noises are only applied
to the 1-qubit gates, while the depolarization noise is applied to the 2-qubit gates, such as
CNOT gates.

Fig. 7(a) shows the resilience of the algorithm to the three types of previously explained
noise. The figure shows the mean best costs for different values of ω. Note that the QAOA
behaviour remains approximately constant for ω ≤ 10−2 with respect to the phase damping
error and for ω ≤ 10−2.75 with respect to the amplitude damping and depolarizing errors.
However, for ω → 1, the cost clearly worsens. By analysing the mean best costs obtained
from the executions it can be observed that the QAOA exhibits better resilience to the
amplitude damping and phase damping errors for larger values of ω, than it does for the
depolarizing error. Moreover, the amplitude damping error seems to converge to a stable
mean best cost while the other simulated noises worsen with increasing values of ω.

The numbers of iterations needed by the algorithm to converge are shown in Fig. 7(b).
Note that for large values of ω, the number of iterations until convergence decreases. In
this case, the QAOA approach converges to local optimal solutions. Thus, the QAOA
provides quantitative resilience to quantum errors for approximately ω ≤ 10−2. For larger
noise values, the algorithm converges to local optimal solutions, as we observe premature
convergence to solutions with poor costs. After analysing Fig. 7, we conjecture that our
approach has better resilience to the amplitude damping error than to other types of noise.
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Figure 8: Mean best cost obtained for different values of the parameters ω and p for 50 executions of
the QAOA algorithm for the BNSL problem considering the amplitude damping error.

In Fig. 8, a deeper analysis of this noise is shown for different values of p. The figure
shows the influence of the quantum noise on the results based on the number of layers p
of the QAOA circuit. As p increases, the depth of the circuit also increases, and thus, a
greater part of the qubit lifespan will be executed outside the coherence times defined by
T1 and T2. The results obtained by the QAOA for higher values of p are much worse than
those obtained with low values of the parameter, and in most cases a worsening of the
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mean best cost is observed as ω increases. From this analysis we conjecture that as the
number of layers p increases, the QAOA becomes less resilient to the amplitude damping
error.

5.3 BNSL from real-world data
In this section, the QAOA approach is applied to a real BNSL problem by using the
Cancer2 benchmark. The Cancer BN (Fig. 9) has 5 discrete variables, from which we
sampled 3 different datasets using probabilistic logic sampling [20] with 500, 1000 and
10000 instances. The structures provided by the QAOA are compared to the original BN
structure through the structural Hamming distance (SHD) metric, where SHD=0 means
that the QAOA approach fully recovers all the arcs of the original BN. We consider two
different structure evaluation scores: the BIC and BDeu scores. This experiment is limited
to 5 nodes due to the limit of qubits we can access with Qiskit and myQLM, for which the
search space is composed of 29281 possible BN structures.

Pollution Smoker

Cancer

XRay Dyspnoea

Figure 9: Original Cancer BN structure composed of 5 nodes that represent 5 discrete variables and 4
arcs.

Table 1: Comparison of the QAOA approach with three different classic approaches and simulated
quantum annealing. The experiment is executed 10 times for each of the non-deterministic (SQA and
QAOA) approaches (the best results are shown), and three different dataset sizes are simulated with
500, 1000 and 10000 instances. BIC and BDeu scores are used for the local BN structure evaluation.
The SHD metric is shown for each experiment.

500 1000 10000
α BIC BDeu BIC BDeu BIC BDeu

HC - 4 4 4 4 0 0
Tabu - 4 4 4 5 0 0

MMHC - 4 4 4 4 0 0
SQA - 5 5 4 5 3 2

QAOA 0.9 0 0 1 0 0 1
QAOA 0.7 1 1 1 0 0 0
QAOA 0.5 1 1 0 1 1 1
QAOA 0.3 0 0 1 0 0 1

2https://www.bnlearn.com/bnrepository/discrete-small.html#cancer
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We compare the results obtained by the QAOA approach with those of two score-
based algorithms: the hill climbing (HC) [17] and tabu search [21] algorithms; with that of
a hybrid algorithm: max-min hill climbing (MMHC) [43]; and with that of the simulated
quantum annealing (SQA), which is a version of quantum annealing executed in the quan-
tum learning machine [4]. The QAOA results are shown in Table 1 for different values of α,
where the number of layers p is optimized for each case. The parameters of the algorithms
are optimized, and the best results are shown in Table 1.

The QAOA approach obtains better results than those of classic approaches regardless
of the α parameter for a low number of instances. As the number of instances increases,
the α parameter seems to have a larger influence on the obtained results. The QAOA
improves upon the results of the SQA in all the experiments.

6 Conclusions
In this work the BNSL problem was approached by using the QAOA quantum variational
algorithm. The problem was transformed into a Hamiltonian energy function, and then
translated into a QAOA parametric circuit to be optimized into a classic loop.

A remarkable uncertainty reduction across all the possible solutions was shown for
increasing number of QAOA circuit layers. We introduced the concept of the CV aRα
to reduce the number of solutions selected for computing the expectation value of each
iteration. Considering this new parameter, we could observe that it was not necessary to
increase the number of circuit layers to obtain the best results since the QAOA was able
to converge to similar solutions by tuning the α parameter.

The NISQ-era quantum computers are characterized by the quantum noise embedded
in these systems. We analysed the performance of our approach while simulating different
types of quantum noise, and our results show that the QAOA is resilient to quantum noise
over a range of noise amplitudes. More specifically, our approach offers better performance
when considering the amplitude damping error, which was more deeply analyzed.

Our approach was also applied to the Cancer benchmark and a comparison with other
optimizers was shown with different structure evaluation scores and dataset sizes. The
QAOA found the global optimum for every size-score combination and seemed to outper-
form classic and quantum approaches on any dataset.

Considering the results obtained in this work, we believe that the use of VQAs to solve
the BNSL problem is justified. As future lines of research, we suggest considering the warm
starting scenario [13] and a more in-depth analysis of other quantum noises with different
quantum computers. Even though the sizes of the BNs that the QAOA has faced are
small, we believe that this approach will be worthwhile for further research as the number
of qubits that can be freely accessed increases.

A Appendices
Table 2 shows the detailed mean and standard deviation of the experimental results rep-
resented in Fig. 7.
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cost convergence
AD PD DE AD PD DE

log10ω µ σ µ σ µ σ µ σ µ σ µ σ

-5.00 -12.25 10.80 -7.20 15.61 -12.45 8.96 69.80 4.70 66.50 6.73 68.40 6.64
-4.75 -9.00 10.53 -10.95 10.80 -12.00 7.94 66.70 6.34 66.95 5.13 67.65 6.04
-4.50 -9.50 10.69 -4.90 11.49 -9.30 9.65 69.90 7.79 66.45 8.11 68.15 7.80
-4.25 -10.65 8.97 -11.45 10.95 -7.65 11.34 69.90 7.83 66.15 5.95 66.45 5.36
-4.00 -15.10 7.75 -5.95 9.58 -11.25 11.50 68.05 5.48 67.30 5.53 69.65 4.36
-3.75 -10.75 10.97 -10.25 11.54 -8.00 12.53 71.00 9.00 66.90 5.18 69.00 5.52
-3.50 -12.35 9.17 -14.00 8.47 -13.45 7.47 71.05 8.01 66.65 5.65 65.70 6.06
-3.25 -10.20 13.78 -15.20 8.79 -10.85 10.98 69.90 8.47 71.95 7.16 65.55 6.07
-3.00 -14.55 7.55 -12.70 8.86 -10.65 8.64 68.25 7.35 70.05 9.41 69.30 5.92
-2.75 -16.00 8.07 -8.15 13.69 -8.70 11.72 66.30 5.20 69.40 7.61 69.00 6.28
-2.50 -12.05 8.84 -8.75 13.18 -12.10 10.34 66.95 5.52 64.60 6.94 69.45 7.94
-2.25 -10.05 9.40 -6.55 12.15 -10.90 8.23 66.65 4.69 68.45 6.63 66.45 6.37
-2.00 -9.45 11.91 -11.70 9.59 -9.60 12.33 69.85 6.18 68.45 6.10 66.55 5.07
-1.75 -7.80 12.76 -5.85 12.78 -3.40 9.33 64.50 5.84 65.35 5.29 68.80 7.70
-1.50 -6.40 7.16 -8.80 11.62 6.25 15.34 68.20 5.52 68.20 6.96 62.50 4.88
-1.25 0.40 9.30 -7.15 10.16 9.85 16.68 67.50 6.06 67.75 6.22 63.65 5.58
-1.00 -1.95 5.67 -8.50 10.04 18.25 13.26 65.00 6.05 65.30 6.39 60.70 4.66
-0.75 -0.50 2.24 -2.50 7.25 13.20 12.89 66.95 6.48 65.55 5.86 58.10 4.59
-0.50 0.00 0.00 7.80 12.88 21.05 11.81 66.75 5.76 62.60 3.76 58.50 4.57
-0.25 0.00 0.00 22.15 14.53 20.01 10.30 64.05 6.73 58.75 4.02 59.10 4.59
0.00 0.00 0.00 11.65 13.35 21.50 11.20 37.00 0.00 60.60 5.86 58.60 4.80

Table 2: Mean best costs (µ) and standard deviations (σ) found for different values of the ω parameter
over 50 executions of the QAOA approach for the BNSL problem, and the mean numbers of iterations
(µ) and standard deviations (σ) until convergence for 50 executions. AD, PD and DE represent
amplitude damping, phase damping, and depolarizing simulated errors, respectively.
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